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Controlling the pinning time of a receding contact line under forced wetting conditions

J-C. Fernández-Toledano, C. Rigaut, M. Mastrangeli, J. De Coninck

• Development and validation by MD simula-
tions of an analytical model able to predict
the dynamic contact angles in a capillary liq-
uid bridge confined between two parallel plates
in relative motion with different wettabilities.

• Detailed description of the pinning/depinning
process of a contact line on a chemical hetero-
geneity at the nanoscale.

• Development and validation by MD simula-
tions of a geometrical model able to predict
the pinning time on a chemical heterogeneity.

• The pinning time depends not only on sub-
strate/heterogeneity wettability contrast and
relative plate velocity, but also on the separa-
tion distance between the plates confining the
capillary bridge.
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Abstract

Hypothesis: The contact line pinning that appears in a flow coating process over substrates patterned
with chemical or physical heterogeneities has been recently applied to deposit micro- and nanoparticles with
great precision. However, the mechanism underlying pinning of a receding contact line at the nanoscale
is not yet well understood. In the case of a contact line pinned at a chemical heterogeneity, we hypothe-
sise that it is possible to establish a relation between the pinning time, the contact line velocity and the
liquid/plate/heterogeneity affinity that can help to optimize particle deposition.
Methods: We use large-scale molecular dynamic (MD) simulations of a finite liquid bridge formed between

two parallel, non–identical, smooth solid plates. The top plate slides relative to the bottom plate inducing
a displacement of the four different contact lines of the liquid bridge. The introduction of a chemical
heterogeneity on the bottom plate by modifying locally the liquid-solid affinity provokes the transient pinning
of the contact line in contact with the bottom substrate. By means of this simple MD simulation, we can
study the mechanism of contact line pinning and its relation with the liquid/heterogeneity affinity and the
contact line velocity. Additionally, we compare this mechanism with the case of the receding contact line
pinned on a physical heterogeneity (a simple step discontinuity).
Findings: We propose an analytical model that predicts the values of the dynamic contact angles in the

general case of a capillary liquid bridge confined between two parallel plates with different wettabilities
versus the relative velocity of the top plate. These predictions are successfully validated by the results
of the large–scale MD simulations. The model allows thus to predict the value of the dynamic contact
angles for the different contact lines of the system versus the relative speed of the moving plate. Once
the chemical heterogeneity is introduced in the bottom plate, we show that when the receding contact line
reaches the patch it remains temporarily pinned while the receding contact angle evolves with time. Once
the receding angle reaches the value of the equilibrium contact angle of the patch, the receding contact line
overcomes pinning. A geometrical model able to predict the pinning time is proposed and validated by our
MD simulations. The pinning time depends not only on the relative plate velocity and plate wettability
properties but also on the separation distance between the plates confining the capillary bridge. The model
can consequently be used to select the substrate wettability or meniscus geometry suitable to impose the
pinning time required for specific applications.

Keywords: contact line pinning, heterogeneous substrates, dynamics of wetting, molecular dynamics

1. Introduction

The design of regular structures by nanoparticle
manipulation is a topic of major scientific and tech-
nological interest [1, 2, 3]. A particular example is

∗Corresponding author
Email address: carlos.toledano@umons.ac.be (J-C.

Fernández-Toledano)

provided by freeze casting, which allows to design
new types of battery electrodes with superior prop-
erties [4] or to design bone scaffolds with remark-
able features [5]. Another example is the attempt
by many research teams to create superhydrophobic
surfaces by depositing layers of nanoparticles lead-
ing to the Cassie state for sessile water drops – the
well-known Lotus effect [6]. The ultimate objective
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of these and other methods is to use the proper-
ties of the system to self-assemble the corresponding
structures. The idea is simple, but the realization
is challenging. Among the available techniques, we
reconsider here the flow coating method since we
believe it can be considerably improved to deposit
nanoparticles at will.

Forced wetting corresponds to any method by
which the contact line is driven across the substrate
at a steady state, as in liquid coating. Forced wet-
ting methods have been classically used to deposit a
thin liquid film of a given thickness on top of a sub-
strate [7, 8, 9, 10] including semiconducting poly-
mers to create organic electronics [11]. Recently,
flow coating [12] has been exploited to deposit mi-
croparticles [13, 14] and nanoparticles [15, 16] with
great precision on relatively large substrate areas
patterned with templating structures. In the tech-
nique, a confined meniscus [17] of the stabilised par-
ticle suspension is driven across a substrate hav-
ing physical (topographic structures) or chemical
heterogeneities (defined by a wettability contrast).
The flow created by the motion of the plate and by
the local evaporation of solvent confines particles
in the vicinity of the receding contact line [18]. By
designing physical or chemical traps on the target
substrate (typically the bottom plate), it has been
observed that the particles in the vicinity of the re-
ceding contact line remain trapped as a result of
the balance of the particle-solid and particle-liquid
interactions[19, 20] as well as interfacial capillary
force [12]. Under appropriate conditions in terms of
sliding speed, temperature, shape of the traps and
features of the nanoparticles, the deposition process
can achieve high yield [16]. In both cases, the pro-
cess consists of three distinct steps: 1) insertion and
localization of the particle in the trap, which in the
chemical heterogeneity case is triggered by the tran-
sient pinning of the receding contact line at the edge
of the trap to form a liquid lens around it, whereas
it can happen also before in the case of the physi-
cal heterogeneity; 2) resilience of the particle in the
trap against the receding front of the meniscus and
particularly the unpinning of the receding contact
line; and 3) evaporative drying of the solvent in
the trap, which finalizes the placement of the par-
ticle [16]. A key property of capillary assembly is
the absence of deposition on the flat, homogeneous
and unpatterned lyophobic surface. This ensures
that the particles end up being located only within
the target patterns and not elsewhere. This effect
can be related to the deformation of the meniscus

when it comes in contact with the edges of the traps
[13, 16, 14].

Along with significant experimental progress in
process control [14, 16], some interesting advances
were achieved in computational modeling of flow
coating based on the Reynolds lubrication equation
[21], and some theoretical predictions were obtained
for the deposition of colloidal particles with this
technique [22]. However, these studies are based
on continuum macroscopic hydrodynamic models
which require boundary conditions and which ig-
nore the influence that the dynamics of wetting
may have on the mechanism. Moreover, the con-
tact line pinning plays a critical role in the particle
deposition through the contact line and therefore,
to further optimize the trapping conditions, a more
comprehensive understanding of the pinning mech-
anism is needed. The pinning/depinning process
has been previously studied for the case of drop
evaporation on top of heterogeneous surfaces exper-
imentally [23, 24], computationaly [25, 26, 27] and
the corresponding stick times of the contact line
have been successfully modelled by Shanahan et al.
[28, 29]. However, to the best of our knowledge,
there is a lack of studies of the pinning/depinning
process for contact lines formed by liquids in a capil-
lary bridge geometry which could have many poten-
tial applications as for the particle deposition men-
tioned previously. Therefore, the aim of our study
is to model in this geometry the transient pinning
of the contact line due to the presence of hetero-
geneities on the substrate. We will also show that
the pinning-depinning process observed in chemi-
cal traps is similar to the case of physical hetero-
geneities.

The present work may additionally be viewed as
a generalization of previous works from our group
devoted to the dynamics of wetting for a meniscus
between two identical plates [30], as here we take
into account the possible pinning of the receding
contact line due to some heterogeneity.

The paper is organized as follows. The next sec-
tion provides a description of the molecular dy-
namics (MD) simulation technique. In section 3
we present an extension of our previous analytical
model and its results describing a link between flow
coating and dynamics of wetting. In section 4 this
model is then used to study the receding interface
behavior in the presence of chemical heterogeneities
on the substrate, and we detail the MD model by
which we confine the moving meniscus and validate
the analytical model. Section 5 discusses analogies
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with the behavior of receding interfaces at physical
substrate heterogeneities. Discussion and further
remarks are finally presented in the concluding sec-
tion.

2. Molecular dynamics simulations

We study the dynamics of the three-phase con-
tact lines formed by a liquid bridge vertically con-
fined between two parallel, non–identical, molecu-
larly smooth solid plates separated by a distance
H with the top plate sliding relative to the bottom
plate as it is sketched in Fig. 1. Full details of the
simulation methods, base parameters and poten-
tials were presented in our previous publications on
droplet spreading [31], capillary bridges [30, 32] and
the wetting of nanofibers [33]. To recapitulate, all
atoms interact among them with a Lennard-Jones
(LJ) potential:

V (rij) = 4εCAB

((
a

rij

)12

−
(
a

rij

)6
)

(1)

Here rij is the distance between the atoms i and
j. The coupling parameter CAB tunes the affinities
between the different types of atoms: liquid-liquid
(L-L), solid-solid (S-S) and solid-liquid (S-L). The ε
and a parameters are the depth of the potential well
and an effective atomic diameter, respectively. For
both solid and liquid atoms we use a = 0.35 nm and
ε = kBT , where kB is the Boltzmann constant and
T = 33 K is the temperature. We fix to 1 the cou-
pling between the L–L and the S–S interactions (
CLL = CSS = 1) and it is varied independently be-
ing CStL = 0.8 for the interaction top plate/liquid
and CSbL = 0.6 bottom plate/liquid. The selection
of the solid/liquid couplings determines the value of
the equilibrium contact angle of the liquid on the
top plate (θ0t = 78.0◦ ± 2.0◦) and on the bottom
plate (θ0b = 107.1◦ ± 3.2◦). We introduce a stan-
dard cutoff for the LJ interaction of rc = 2.5a and
then, the pair potential is set to zero for rij = 2.5a

Each solid plate contains 39000 atoms in a rect-
angular square-planar lattice arrangement contain-
ing three atomic layers. The equilibrium distance
between atoms interacting through the Lennard-
Jones potential ( 21/6a = 0.393 nm) is used as
the lattice parameter. The atoms can vibrate ther-
mally from their initial positions r0 to an instanta-
neous location r according to the harmonic poten-
tial Vh(r) = 100ε | r − r0 |2 /a2.

Figure 1: Sketch of the system under study, composed of two
solid plates separated by a distance H with the top plate slid-
ing at a speed U relative to the bottom plate. The case of a
chemical heterogeneity in the bottom plate is also illustrated

We model the presence of a chemical heterogene-
ity on the bottom plate as a patch of length Lp

larger than the amplitude of the contact line fluc-
tuation (typically between 2-3 nm for our system
[30, 34]). Two different patch lengths have been
considered, Lp = 4.7 nm and 9.4 nm. The y and z
dimensions of the patch are identical to the plate.
The chosen y dimension implies that all the points
of the contact line reach the boundary between
plate and the patch at the same time and due to
the periodical boundary condition in the y axis,
the patch is effectively infinite in this direction.
Although this approximation should be valid for
most experimental situations, it could be interest-
ing in future work to investigate what changes when
considering finite heterogeneities. The equilibrium
contact angle between the liquid and the patch θ0p
is determined by the coupling CSpL. Three patch
couplings were studied, CSpL = 0.8, 0.9 and 1.0 cor-
responding to θ0p = (107.1±3.2)◦, (69.8±3.2)◦ and
(54.1± 3.1)◦, respectively.

The liquid contains 8928 molecular linear chains
of 8 atoms each (71424 atoms in total). The ad-
jacent atoms in a molecule are bonded through a
FENE potential VF (r) = −0.5κR2

0 ln[1 − (r/R0)2]
where r is the distance between the atoms, κ =
12.25ε/a2 and R0 = 1.4a is the maximum exten-
sion length. All atoms have a mass equal to carbon
atoms (12 g/mol).

The dimensions of the simulation box are
(Lx, Ly, Lz) = (98.2, 10.2, 13.9) nm. We set peri-
odic boundary conditions in the x and y directions.
In order to analyze the effect of the selected geom-
etry on the results, two different gaps between the
plates were studied: H = 10.2 and 20.4 nm. The
time step used to integrate the Newton equations
is 0.005 ps. Classical methods [35] were used to de-
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termine the surface tension between the liquid and
its vapor phase γL = (2.84 ± 0.56) mN/m and its
shear viscosity ηL = (0.264 ± 0.005) mPa·s. This
uncomplicated model includes all the fundamental
elements necessary to describe the details of the
flow coating technique [16]. The aim here is not to
reproduce all the complexity of a real experiment
but to discriminate the mechanism controlling wet-
ting and the contact line pinning in flow coating
experiments.

At the start of each simulation, the liquid bridge
is equilibrated between the plates for 2 × 106 time
steps with a thermostat using a velocity rescaling
applied to the liquid and the solid phases. This
time is sufficient to achieve an equilibrated system
characterized by stable values of energies and den-
sity profiles. Then, we apply the thermostat only
on the plates to mimic a real experiment and we
move the top plate at constant velocity from 1 to
5 m/s. Next, we determine the four contact-line
positions and their corresponding contact angles as
follows. First, we locate the position of the menis-
cus by subdividing the liquid in several layers and
then fitting the corresponding shapes with a sec-
tor of a circle. The circular approximation of the
local meniscus shape is legitimate since we do not
account for gravity in the model, given that the
characteristic size of the S-L interface is far smaller
than the capillary length LC =

√
γL/ρg ≈ 798 µm.

The intersection of the fitted circle with the plate
determines the contact-line location and its tangent
at this intersection provide us the value of the con-
tact angle. This technique works well for plates
with the same wettability. For plates with different
wettabilities, it still works for the system at equi-
librium. However under dynamic conditions, as in
the present study, two circles are needed to fit the
meniscus profile and obtain the contact angles. In
this case, the profile is cut in two and the circles
are fitted individually on the half-interfaces. We
have checked that when the plates are not moving,
we recover the same results versus the solid-liquid
interaction as in [30].

3. Homogeneous substrates

In a previous publication, Blake et al.[30] we have
considered the dynamics of wetting of a bridge of
the same liquid as used in the present work and
confined between two identical parallel plates mov-
ing in opposite directions at constant velocity U .

In this case, once the system reaches the station-
ary regime, the mean location of the contact lines
does not change with time. The authors observed
that the velocity of the first layer of liquid in con-
tact with the plate U1L in the centre of the con-
tact area was lower than the plate velocity U due
to the presence of slip between the liquid and the
solid phases. The first layer of liquid is here de-
fined as the molecules confined between the plate
and the first minimum in the density due to layer-
ing [31]. The associated slip velocity at the contact
line, U cl

s = U −U1L, modifies the dynamics of wet-
ting of the system, i.e. the relation between the
dynamic contact angles and the contact-line veloc-
ity UCL. The low surface tension of the liquid and
the considered values of the plate velocities lead to
a linear relation between the out-of-balance capil-
lary force γL(cos θ0 − cos θd) and the contact-line
velocity UCL [30]:

ζUCL − ζU cl
s = γL

(
cos θ0 − cos θd

)
(2)

where ζ = kBT/k
0λ3 is the contact-line friction

where λ and k0 are the jump length and the jump
frequency, respectively. This relationship can be
viewed as a linear approximation of the full Molec-
ular Kinetic Theory [30]:

ζUCL − ζU cl
s =

2kBT

λ2
sinh

[
λ2γ

(
cos θ0 − cos θd

)
2kBT

]
(3)

The linear approximation in Eq. 2 is valid whenever
the argument of the hyperbolic sine in Eq. (3) is
lower than 0.1 as in our case due to the low value
of the surface tension.

The liquid velocity at the centre of the solid-
liquid interface has a linear relation with the plate
velocity, U1L = αU . Then, the slip at the centre
of the solid-liquid interface is just U c

s = U1L −U =
(α − 1)U . However, at the contact line we have
an additional contribution to the slip coming from
the decay of the liquid velocity in contact with
the plate since this velocity is varying from a con-
stant value at the centre of the S-L interface to
zero at the contact line. Then, at the contact line
U cl
s = U1L/2−U . By knowing the contact-line fric-

tion ζ and the slip given by the parameter α it is
thus possible to measure the contact-line friction
by fitting the data in the range of plate velocities
where the linear approximation given in Eq. (2)
holds. This friction ζ was shown to be identical to
the one obtained from spontaneous spreading sim-
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ulations where slip is absent.[31] The results are
reproduced in Table 1.

CSL θ0 (deg) ζ (mPa·s) α
0.4 126.0± 1.1 0.09± 0.04 0.50± 0.05
0.5 118.1± 2.8 0.21± 0.06 0.44± 0.05
0.6 107.1± 3.2 0.31± 0.10 0.64± 0.06
0.7 96.5± 3.2 0.56± 0.12 0.69± 0.05
0.8 78.9± 2.0 0.77± 0.14 0.81± 0.06
0.9 69.8± 3.2 0.95± 0.20 0.85± 0.07
1.0 54.1± 3.1 1.05± 0.23 0.90± 0.06

Table 1: Equilibrium contact angles θ0 and values of contact-
line friction ζ (from Ref.31).

Figure 2: a) Framework of reference 1 where the top plate
moves at constant velocity U and the bottom plate remains
at rest. Here, the four contact lines move at constant velocity
Ucl. b) Framework of reference 2 where the four contact
lines remain at rest and the top and bottom plates move at
constant velocity of U − Ucl and −Ucl, respectively.

In the present work we extend the theory to
model flow coating as a liquid bridge confined be-
tween two parallel, non-identical plates where only
the top plate moves at constant velocity U as
sketched in Fig. 2a. Accordingly, the affinity be-
tween the top plate and the liquid (characterized
by a coupling CStL) and the affinity between the
bottom plate and the liquid (characterized by a cou-
pling CSbL) will, in general, be different. Also, the
top (ζt) and the bottom (ζb) contact line friction
coefficients, as well as the top and the bottom slip
(determined by αt and αb respectively) may be dif-
ferent. In this geometry, when the system reaches
the stationary regime, the contact lines will move
at constant velocity UCL = −U/2. To mimic the
geometry of Ref. 30 and to measure the velocities
with respect to the contact-line location, we can
change the original frame of reference, in which the

top plate is moving at velocity U and the bottom
plate is at rest as represented in Fig. 2a (frame-
work 1), to a reference system in which the contact
lines are not moving shown in Fig. 2b (framework
2) by subtracting the contact-line velocity from all
the atoms of the system. The contact-line velocity
in framework 1 will just be

UCL =
U

2
+ (αt − αb)

U

2
(4)

Then, the top plate and the bottom plate veloc-
ities in framework 2 will be U − UCL and −UCL,
respectively. Therefore, we can identify the velocity
of the first layer of liquid close to each plate in the
framework 2 as

Ut = αt(U − UCL) (5)

Ub = −αbUCL (6)

We can thus generalize Eq. (2) to this system:

ζtUCL − ζtU cl
s,t = γL

(
cos θ0t − cos θdt

)
(7)

ζbUCL − ζbU cl
s,b = γL

(
cos θ0b − cos θdb

)
(8)

where U cl
s,t and U cl

s,b are the slip velocity at the con-
tact line on the top and on the bottom plate, re-
spectively.

With this simple model we can then compute the
value of the four different dynamic contact angles
(θdbL, θdbR, θdtL and θdtR showed in Fig. 2a) and the
liquid velocities in proximity of each plate by know-
ing the surface tension γL, the equilibrium contact
angle of the bottom and top plates (θ0b and θ0t ), the
contact-line friction coefficients for the bottom and
the top plate (ζb and ζt), the slip parameters (αb

and αt) and the velocity of the top plate U .
To check the validity of the model, we selected

CStL = 0.8 and CSbL = 0.6 as the couplings for
the top and the bottom plate, respectively, and we
moved the top plate at velocity U between 1 to 5
m/s. The contact-line frictions ζt and ζb as well as
the slip factors are given in table 1. The measured
contact line velocity Ucl for the different plate ve-
locities U are shown in Fig. 3a together with the
predicted values according with Eq. 4. Figure 3b
shows the calculated values of Ut and Ub measured
with respect to the contact-line location (framework
2) as well as the prediction given by Eqs. (5)–(4).
Very good agreement between theory and simula-
tion is observed. Figure 3c shows the dynamic (ad-
vancing and receding) contact angle on the bottom
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Figure 3: a) Contact line velocity measured for the different
velocities of the plate (symbols) and the prediction from Eq.4
(line). b) Velocity of the first layer of liquid in contact with
the top (Ut) and the bottom (Ub) plates and the prediction
from Eqs. (5)–(4). c) Dynamic contact angles on the bottom
(θtb) and on the top (θdt ) plates and the model predictions
from Eqs. (7)–(8). All three figures correspond to CSbL =
0.6 and CStL = 0.8, and to homogeneous bottom plate (No
patch) or presence of heterogeneity on the bottom plate far
from the contact lines (Patch) where noted.

(θdb ) and on the top (θdt ) plate for different plate ve-
locities and the predicted values from Eqs. (7)–(8).
Clearly, the model reproduces the simulation data
reasonably well within the errorbars.

In real experiments [15, 16], various factors in-
cluding the inevitable presence of heterogeneities
on the plates make the slip negligible, and hence
αt = αb = 1. In this case, the equation for the re-
ceding contact angle on the bottom plate simplifies
to:

cos θdb =
ζb
γL

U

2
+ cos θ0b (9)

where the key parameter is clearly the contact-line
friction on the bottom plate ζb. Although it has
been derived for a nanometric system, Eq. (9) can
be also applied to macroscopic systems for a range
of contact line velocities where the linear approxi-
mation between the capilary force and the contact
line velocity is valid. The prediction of the receding
angle is a key point to understand wetting dynam-

ics implications in contact line pinning as developed
in the next section.

4. Chemical heterogeneities

When a contact line is moving on top of a
substrate, the presence of heterogeneities in the
substrate will affect the wetting dynamic of the
system and therefore, the contact line velocity
[19, 12, 16, 18, 13, 20]. Here we focus on the study
of chemical heterogeneities defined by a wettability
contrast.

Initially the patch is located at the centre along x
of the solid/liquid interface and the system is equi-
librated with the thermostat applied to all atoms
of the system. Then, we remove the scaling of the
velocity over the liquid atoms and the thermostat is
only applied on the solid atoms. This allows some
dissipation of energy between the liquid and the
solid as in real experiments. The top plate is moved
at constant velocity U and the contact lines start
to move. When the system reaches the stationary
regime, the four contact lines move at constant ve-
locity given by Eq. 4. After some time, the receding
contact line of the bottom plate reaches the patch
and the contact line remains pinned from a finite
time interval which depends on the plate velocity,
the wettability contrast between the bottom plate
and the patch and, as we will show later, on the
plate separation H.

Figures 4a shows the evolution of (a) the reced-
ing contact line location on the bottom plate xBL

(marked as BL in Fig. 2a) close to the location
of the heterogeneity and (b) its corresponding dy-
namic contact angle θBL for CSpL = 1.0 for different
velocities of the top plate U . In order to compare
the effect of U we set the time origin at t0 defined
as the instant where xBL reaches the heterogeneity.
We can observe the presence of four different regions
in the evolution of xBL and θBL strongly influenced
by the top plate velocity. To observe the correlation
between the changes of xBL and θBL, we present
both in the same plot in Fig. 4c for CSpL = 0.9 and
U = 1 m/s. Region I extends until xBL reaches
the heterogeneity represented as a colored horizon-
tal band in Fig. 4a. Here, the contact line moves
with a velocity given by Eq. 4. The corresponding
dynamic contact angles for t < t0 in Fig. 4b can also
be predicted by Eqs. 7–8 as shown in Fig. 3. There-
fore, the presence of one small chemically heteroge-
neous patch on the bottom plate does not modify
the wetting dynamics outside of the patch which
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can be described with the model proposed in the
previous section.

Once xBL reaches the patch we have region II
where the bottom left (BL) contact line (see Fig. 2a)
dramatically decreases its velocity (pinning). The
presence of this second region is more evident at low
velocities. For example, in Fig. 4a the contact line
remains stuck for U = 1 m/s for the whole consid-
ered period of time and xBL moves very slowly for
U = 2 m/s until t− t0 = 9 ns. In this region II the
dynamic contact angle θBL decreases from its ini-
tial value of region I until it reaches the equilibrium
contact angle of the patch θ0p which defines then the
starting of the region III. This confirms that the de-
pinning of the receding contact line originates from
the dynamics of the process: for a given speed, the
fact that the contact line does not have the appro-
priate contact angle to cross the patch forces it to
slow down until the contact angle has been able to
evolve and reach the right value. In region III θBL

evolves from θ0p to a steady value and afterwards
it remains constant. Meanwhile, xBL moves much
faster than in region II (depinning) and eventually
it reaches the end of the heterogeneity which de-
limits the end of region III and the starting point
of the final region IV. In this region IV the contact
line rapidly recoils to recover the receding contact
angle outside the patch θBL. Hence a much faster
contact line velocity is observed when the contact
line escapes from the patch. Finally, after region
IV the contact line recovers the dynamic angle and
the velocity of region I.

In this work, we focus on the analysis of the dis-
placement of the BL contact line only (see Fig. 2a).
Nevertheless, the evolution of the other three con-
tact lines is identical to that of the BL contact line
in all regions except region II. In region II the BL
contact line remains pinned and the other three
contact lines move at the same velocity related to
the variation of the BL contact angle and under the
constraint of conservation of liquid volume.

The regions showed in Fig. 4c are quite similar
to the regions reported in the study of the pin-
ning/depinning mechanism of the contact line dur-
ing droplet evaporation. In their pioneering work,
Picknett and Bexon [36] identified two regimes in
droplets evaporation on smooth substrates: the
constant contact radius region (CCR) where the
contact line is pinned to the solid substrate (simi-
lar to our region II) and the constant contact angle
region (CCA) where the contact angle remains con-
stant while the contact line recedes (similar to our

region III). More recent works have extended this
study to the analysis of the pinning-depinning tran-
sition (CCR-CCA transition) that appears in spon-
taneous drop evaporation on substrates patterned
with a series of hydrophobic and hydrophilic stripes
[25, 26, 37]. There, the contact line moves along the
hydrophobic stripe during the evaporation (equiva-
lent to our region I). After some time, the contact
line reaches the hydrophobic-hydrophilic bound-
ary and it remains pinned while the contact angle
changes (CCR equivalent to our region II) although
the observation at the nanoscale of this region sug-
gests that, at the molecular level, pinning is actu-
ally a strong decrease in the contact line velocity
and not an absence of displacement as already de-
scribed in literature [37]. When the contact angle
reaches a critical value, the contact line continues
receding across the hydrophilic patch and the con-
tact angle eventually reaches a constant value (CCA
equivalent to our region III). When the contact
line reaches the hydrophilic-hydrophobic boundary
there is a sudden jump of the contact line due to
the unbalance of Young’s force [26] corresponding
to our region IV. Obviously, the displacement of
the top plate, or equivalently, the dynamics of wet-
ting associated to flow coating, allows to control
in great details the different mechanisms appearing
when the receding interface has to cross the patch.
Let us now consider in details each of these regions.

4.1. Region II

Once the BL contact line reaches the heterogene-
ity region II starts where the contact line drastically
reduces its velocity (quasi–pinning) and the associ-
ated contact angle θBL(t) decreases with time which
is very similar to the “Constant Contact Radius”
(CCR) region observed in the modeling of drop
evaporation over a patterned substrate [25, 26, 37]
characterized by a constant value of the contact
radius and a variation of the contact angle. The
length of this time period is characterized by the
pinning time τp defined as the time required for
the receding contact angle on the bottom plate to
evolve from its stationary value in the absence of
the patch θstb to the equilibrium contact angle of
the liquid on the patch θ0p as represented in Fig. 4c.
Once θBL(t) ≈ θ0p, the BL contact line increases
its velocity and the depinning occurs (see Fig.4c).
This angle transition can be modelled geometrically
if we simplify the problem considering that the BL
contact line remains totally pinned in this region
and that the change of the contact angle θBL can
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Figure 4: a) Evolution of the receding contact line location
on the bottom plate (BL) for CSpL = 1.0 and different plate
velocities U . b) Evolution of the receding contact angle on
the bottom plate θBL(t) for CSpL = 1.0 and the same ve-
locities as in subplot a). c) Evolution of the contact line
location and the contact angle for the BL contact line for
CSpL = 0.9 and U = 1 m/s. The different regions are de-
limited by vertical dashed lines.

be linked to the displacement of the top plate as
sketched in Fig. 5a. If we neglect the presence of
slip as expected in real experiments, we can approx-
imate the velocity of the advancing contact line on
the top plate as Ucl ≈ U/2 and then, the evolu-
tion of the BL contact angle in the region II can be
modelled as:

U

2
t ≈ H

(
cot θBL(t)− cot θstb

)
(10)

Then,

θBL(t) ≈ arctan

(
1

cot θstb + U
2H t

)
(11)

Figure 5b shows the time evolution of θBL for
CSpL = 1.0 and U = 4 m/s, the initial value of
the contact angle in region I predicted from Eqs. 4–
8 (dashed line) and the time evolution of θBL inside
region II predicted from Eq. 11.

It is then straightforward to estimate the pinning
time from Eq. 10 considering θBL(τp) = θ0p:

τp ≈
2H

U

(
cot θ0p − cot θstb

)
(12)

Then, by increasing the difference in wettability
between the bottom substrate and the patch (for
example by using a superhydrophic substrate) the
pinning time will increase. Introducing the natu-
ral time unit τ0 = H/U , we obtain a dimensionless
equation which should be valid for any liquid menis-
cus between two plates in the linear approximation:

τp
τ0

= 2
(
cot θ0p − cot θstb

)
(13)

where θstb can be estimated from Eq. 9 for velocities
where there is a linear dependence between U and
the capillary force. This is always the case in our
simulations.

Figure 5c shows the pinning time versus the plate
velocity obtained from the simulations for the dif-
ferent patches ( wettabilities ) and the prediction
given by Eq. 12. Clearly, the agreement is very
good.

One important prediction derived from this sim-
ple model is that the pinning time depends not only
on the plate velocity U and on the wettabilities of
the plate but also on the geometry, i.e. on the sep-
aration distance between the plates H. In order to
check this relation between τp and H, we run sim-
ulations with a double separation H2 = 2H = 20.4
nm. Figure 6a shows the evolution of θBL for
CSpL = 1.0, U = 3 m/s for both plate separa-
tions and the expected values obtained from Eq. 11
which successfully predicts the strong influence of
H on pinning time. As a corroboration of the influ-
ence of H on the pinning, we present in Fig. 6b the
pinning time for CSpL = 0.8 and the different plate
velocities for both plate separations and the pre-
diction computed from Eq. 12. Clearly, this simple
model is able to capture reasonably well the values
of the pinning time as well as the influence of the
plate separation.

The pinning behavior of the receding contact line
observed in the MD simulations and captured in
the extended analytical model presented above is
consistent with experimental characterizations of
meniscus geometry, deformation and dynamics in
flow coating over heterogeneous substrates [17, 38].
Notably, the extent of contact line pinning is known
to be modulated by the thickness of the meniscus
(i.e., the distance between the confining plates H),
since the latter is one of the parameters that con-
trols the macroscopic stiffness of the meniscus: a
thicker meniscus is a more compliant meniscus, and
thus susceptible to larger elongation of the reced-
ing interface upon pinning of the receding contact

8



Figure 5: a) Sketch for the geometrical approximation used
to determine the pinning time. The red dashed line repre-
sents the initial interface when the contact line pins and the
black line is the interface when the contact line deepens. b)
Evolution of θBL(t) for CSpL = 1.0 and U = 4 m/s and the

prediction from Eq. 11. The dotted line corresponds to θ0p.
c) Pinning time τp for some performed simulations (symbols)
and the corresponding estimations from Eq. 12.

line [17]. Unpinning is then regularly observed to
be followed by contact line recoil, as also seen in
the MD model. More generally and with respect
to applications in particle deposition from suspen-
sions, contact line pinning is de facto exploited to
deform the receding meniscus interface, with impor-
tant and convenient effects over local solvent evap-
oration flux and consequent particle accumulation
[13, 16].

4.2. Region III

Once θBL reaches the value of the equilibrium
contact angle of the heterogeneity θ0p, the BL con-
tact line increases drastically its velocity which cor-
responds to the depinning transition. It is tempting

Figure 6: a) Evolution of θBL(t) for CSpL = 1.0 and U =
3 m/s for both plate separations. The lines correspond to
the estimation from Eq. 11. b) Pinning time versus plate
velocity for CSpL = 0.8 and both plate separations. The
lines corresponds to the predictions from Eq. 12.

to identify this region III as the “Constant Con-
tact Angle” (CCA) region observed in the model-
ing of drop evaporation over a patterned substrate
[25, 26, 37] characterized by a constant value of
the contact angle and a variation of the contact
line position. The classical method to model this
phenomenon corresponds to a quasi-static process
where the contact line velocity does not affect the
value of the contact angles. However, in the dy-
namic process presented in this work the role of the
contact line velocity cannot be neglected and the
dynamics of wetting should be taken into account
in this region. Therefore, region III is not a con-
stant contact angle region. The presence of a flow
inside the liquid introduces an additional force con-
tribution at the contact line which modifies the as-
sociated force balance. To overcome this additional
force, the contact angle at the contact line has to
change from its equilibrium value to a dynamical
one [39]. Therefore, the evolution of θBL(t) initi-
ated in region II does not stop when the bottom
receding contact angle θBL reaches the equilibrium
contact angle of the patch θ0p. θBL(t) will overcome
θ0p and will continue to decrease until it reaches

some critical value θdp and then, the correspond-

ing unbalanced Young’s force γ(cos θ0p− cos θdp) will
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compensate the additional force contribution at the
contact line introduced by the presence of the flow.

To estimate the dynamic contact angle of the BL
contact line moving on top of the heterogeneity we
use the set of Eqs. 7–8 to predict the velocity of the
first layer of liquid in contact with the bottom plate
Ub. Then, we extract the dynamic contact angle
from the linear version of the MKT of a contact
line moving on top of the patch

ζpU1L = γ(cos θ0p − cos θdp) (14)

where ζp is the contact line friction of the het-
erogeneity that is showed in Table 1 for each cou-
pling CSpL. Figure 7a shows the measured contact
angle on the patch and the results using Eq. 14.
The model predicts quite well the simulations re-
sults except for CSpL = 1.0 at the larger velocity
U = 5 m/s. To understand this discrepancy we
have run additional simulations where we doubled
the length of the heterogeneity in x, i.e. Lp = 9.4
nm. Figure 7b shows the evolution of θBL(t) for
CSpL = 1.0 and U = 5 m/s for the two lengths of
the patch. We observe that both curves initially
overlaps but for the shorter patch, the contact line
is able to escape from the heterogeneity before it
reaches the steady state. Then, the dynamic an-
gle in region III is larger than the one expected for
this velocity of the BL contact line. However, the
larger patch is long enough for θBL to reach the
steady value. Therefore, the length of the patch in
x does not affect the pinning time τp but it could
affect the minimum value of the contact angle of
the BL contact line. If the length of the patch is
short enough, the BL contact line will escape from
the patch before reaching the steady state. The
values of the final dynamic angles in region III for
different CSpL and U for the longer Lp are showed
as open symbols in Fig. 7a. As it can be seen, we
have differences only for CSpL = 1.0 and when the
plate is large enough, the measured values coincide
with the predicted values from Eq. 14.

5. Similarities with physical heterogeneities

When the receding contact line reaches a physical
heterogeneity on the bottom plate, similar pinning
dynamics is induced as in the case of a chemical
patch. To show this, we run additional simulations
using a model including a step discontinuity on the
bottom plate to represent a physical heterogeneity.
As sketched in Fig 8a, the step is characterized by

Figure 7: a) Contact angle of the BL contact line in region
III before escape from the patch for the different simula-
tions performed. The full and open symbols correspond to
the smaller and the larger Lp, respectively. The lines corre-
sponds with the results from Eq. 14. b) Evolution of θBL(t)
for CSpL = 1.0, U = 5 m/s and both patch lengths Lp. The
continuous line corresponds with the results from Eq. 11.

a sharp edge at the frontier among the two sepa-
rations H1 = 10.2 nm and H2 = 20 nm between
the bottom and the top plate. Initially, this edge
is located at the centre of the liquid meniscus. By
moving the top plate at constant velocity U a flow
is generated within the liquid and, as in the case of
the chemical heterogeneity, the contact line moves
at constant velocity UCL until the receding contact
line in contact with the bottom plate reaches the
edge. The process occurring at the physical hetero-
geneity then follows a similar dynamics to the one
seen with the chemical heterogeneity. In this case,
the meniscus is pinned at the edge of the step in
the bottom plate, as shown in Fig. 8b. The shape
of the interface is modified by the movement of the
top plate which leads to a change of the contact an-
gle as shown in Fig. 8c. Once this angle reaches the
equilibrium value for the vertical part of the edge,
the contact line unpins and moves downward over
the vertical interface (not shown). The abrupt jump
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in the contact angle value at the end of the pinning
apparent in Fig. 8c is due only to the change of
the reference plane for contact angle measurement
from the horizontal to the vertical. The behaviour
of the receding contact line in the presence of an
edge is captured by the so-called Gibbs’ criterion
and widely observed experimentally [40, 41].

Figure 8: a) Scheme of the physical heterogeneity. b) Snap-
shot of a simulation with the receding contact line pinned at
the physical heterogeneity. c) Evolution of the contact angle
on the edge. The lines at the left and the right side repre-
sent respectively the receding contact angle for the horizontal
plate and the equilibrium contact angle for the vertical edge.

The prediction of variable settling time of the
contact line at the edge of the heterogeneity as
a function of the sliding speed inferred from the
model has direct implications for the understand-
ing of capillary particle deposition by flow coating.
We can for instance expect the settling time to di-
rectly affect the accumulation of particles in prox-
imity of the receding contact line, as the transient
deformation of the meniscus influences the local sol-
vent evaporation flux and hence the convective flow
dragging the particles towards the receding front.
Moreover, longer settling times – and more gener-
ally, slower sliding speeds – correlate experimentally
with higher particle assembly yield in topographical
traps [13].

6. Conclusions

We have performed large-scale molecular dy-
namics simulations to analyze at the molecular
scale the mechanism underlying pinning–depinning
transition of a receding contact line on patterned

substrates under forced wetting conditions. Ini-
tially, we have studied a liquid bridge confined be-
tween two homogeneous parallel plates with differ-
ent wetabilities when the top plate is moving at con-
stant velocity Uplate with respect the bottom one.
As an extension of our previous work [30] where we
modelled the wetting dynamics in the case of identi-
cal plates, here we have presented an improved and
more general model containing different affinities
between the liquid and the top/bottom plates. The
predictions of this model for the values of the ad-
vancing and receding contact angles in both plates
as a function of Uplate have been successfully com-
pared with the results of MD simulations.

We have then modelled a patch of chemical het-
erogeneities on the bottom plate by modifying lo-
cally the liquid-solid affinity. We have shown that
when the receding contact line reaches the patch
it remains pinned while the receding contact angle
evolves with time. Once the receding angle reaches
the value of the equilibrium contact angle of the
patch, the receding contact line will overcome the
pinning We have proposed a geometrical model able
to predict the pinning time which depends not only
on the velocity and the wettability properties but
also on the separation distance between the plates
of the capillary bridge. We have corroborated this
dependence by running additional simulations with
larger plate separation whose pinning time can be
successfully reproduced with the proposed model.

One of the outcomes of this paper is that, for
the first time to the best of our knowledge, we
have demonstrated the dynamic origin of contact
line depinning in a capillary bridge geometry. This
mechanism leads to a predictable pinning time as
described in Eq. 12. This model can now be used
to link the liquid-patch affinity or the plate separa-
tion distance with any time of pinning required by
some application. In fact, according with the pro-
posed model, the pinning time can be controlled
just by tunning the separation between the plates.
This geometical dependence of the pinning time dif-
fers from the experimental [23, 24], computational
[25, 26, 27] and theoretical [28, 29] pinning time ob-
tained for pinning–depinning transitions observed
for sesile drop. If this result can be validated ex-
perimentally, this will be the first step to signifi-
cantly improve applications such as the deposition
of nanoparticles at the receding contact line during
pinning.

It would now be interesting to explore experi-
mentally the implications of the proposed relations
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for particle assembly yield and other aspects of the
forced wetting process. Importantly, our simulation
model does not yet take into account the full com-
plexity of the process, and in particular the evap-
oration at the contact line, which depends on the
local contact angle and plays a crucial role in cap-
illary particle assembly [13]. Also, the periodical
boundary condition along the y axis in the MD
model implies that the patch is effectively infinite in
this direction. Although this approximation should
be valid for most experimental situations, it could
be interesting to investigate what changes when we
consider finite size heterogeneities. These aspects
will be included in a future version of the model.
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