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Abstract. An aeroelastic modelling of an axisymmetrical airship is discussed in this
paper. The main difficulty is due to the fact that instabilities are not axisymmetrical.
Furthermore an Euler-Lagrange kinematical coupling is necessary in order to represent
the fluid-structure interaction. Our strategy is based on some arbitrary change of domain
(for the air flow) which are governed by the movement of the structure. Some numerical
results illustrate the method.

1 INTRODUCTION

Let us consider an airship which is assumed to be axisymmetrical and which is set
into an air flow which is not necessarily axisymmetrical. Nevertheless, it is assumed that
the perturbation with respect to the main axis of symmetry of the airship is small. Fur-
thermore the movement of the airship eigenmodes of the structure (including rigid body
motion) are also assumed to be small enough in order to permit a Taylor expansion of
the non-symmetrical solution using axisymmetrical models.

• The first case that we consider corresponds to small angle of attack without flexi-
bility of the airship. Therefore one can use a Fourier decomposition with respect to the
cylindro-polar angle of the 3-D solution assuming that there is no instabilities (cf. figure
1). But this is possible if one neglect the coupling between the harmonics which appears in
the non-linear convection terms. From a linearization around the axisymmetrical steady
state, this decoupling is straightforward. Then, one can derive a first order approximation
of the aerodynamical coefficients. Three of them are meaningful: the drag coefficient CD,
he lift coefficient CL and the pitching coefficient Cm.

• The second case is more complicated and concerns flexible movements of the airship.
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The basic point of our method consists in updating the geometry for the Navier-Stokes
solver using an arbitrary Euler-Lagrange updating that we call progessive updating. The
idea is to use a continuous prolongation of the movement of the airship inside the fluid.
But it is restricted to a neighbourhood of the structure. Then a Fourier decomposition
with respect to the cylindro-polar angle is used again (see figure 1).

2 HOW TO TAKE INTO ACCOUNT THE PITCHING ANGLE

2.1 Steady state approximation

First of all let us define some notations used in the following. The open set occupied
by the fluid when the flow is axisymmetrical is denoted by Ω(0). It corresponds to a rigid
airship. The boundary of the airship at rest is S(0). The remaining part of the boundary
of Ω(0) is split into two component. One denoted Γ0 is defined by:

Γ0 = {x ∈ R3, e(α).ν(x) ≤ 0} (1)

where ν(x) is the unit outwards normal to the boundary of Ω(0) at point x. Therefore,
Γ0 is the intake of the flow. The flow velocity on Γ0 is given by:

u = Ue(α), on Γ0 and u = 0 on S(0), (2)

where e(α) is the direction of the flow at infinity and U its magnitude (U > 0).
The complementary of Γ0 and S(0) is the output of the airflow and it is denoted by Γ1.
The boundary condition corresponds to a free edge (Neuman condition), but better results
are obtained when one is using the characteristics method. This last condition enables to
stabilize the flow near the output. The flow velocities (say u) and the pressure field p are
solution of the following system:

(u, p) ∈ V × L2(Ω(0)) such that:

∀v ∈ V,
∫
Ω(0)

%[
∂u

∂t
+ u⊗∇u].v − p div(v) + 2µγ(u) : γ(v) = 0,

∀q ∈ L2(Ω(0)), −
∫
Ω(0)

qdiv(u) = 0.

(3)

The following notations have been used:

u = uiei, [u⊗∇u]j =
∑

k=1,3

uk∂kuj, [γ(u)]ij =
1

2
(∂jui + ∂iuj) (4)

Furthermore µ is the viscisity and % is the mass density. Finally V is the functional space:

V = {v = viei, vi ∈ H1(Ω(0)); vi = 0 on Γ0 ∪ S(0)} (5)

and it is equiped with the norm induced by H1(Ω(0)). Existence and uniqueness are an
open problem, the only known results are in 2D [7]. Concerning the numerical scheme,
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Figure 1: The airship and the notations

the mixed formulation is well adapted [5]. This is the method that has been used. When
the flow direction vector e is parallel to the axis of symmetry of the airship, there is at
least one axisymmetrical solution. It can be computed using cylindro-polar coordinates
(r, β, x) (see figure ??). The velocity field u is expressed in the frame: (er, eβ, ex). Let us
set:

u = urer + uβeβ + uxex.

When the flow is axisymmetrical all the derivatives with respect to β are zero and one
has: uβ = 0. In this case the solution is denoted (u0, p0) and is solution of the following
system: 

∀v ∈ V0, %
∫

ω(0)

∂u0

∂t
.v + [u0 ⊗∇u0].v

−
∫

ω(0)
p0 div(v) + 2µ

∫
ω(0)

γ(u0) : γ(v) = 0,

∀q ∈ L2(ω(0)), −
∫

ω(0)
qdiv(u0) = 0,

(6)

with the boundary conditions:

u0 = Uex sur γ(0), et u0 = 0 sur s(0). (7)

The following notations have been used (figure ??):

Ω(0) = {(r, β, x)|(r, x) ∈ ω(0), β ∈ [0, 2π[}, Γ0 = γ0 × [0, 2π[, S(0) = s(0)× [0, 2π[.
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and:
V0 = {v = (vr, vx) ∈ [H1(ω(0))]2, v = 0 sur γ0 ∪ s(0)}. (8)

Let us come back to the general case in which the pitching angle α is not zero. Nevertheless
e(α) is assumed to be close to ex. In fact the only non axisymmetrical condition is the
Dirichlet condition satisfied by the velocity on the boundary Γ0. Let us set:{

e(α) = cos(α)ex + sin(α)sin(β)er + sin(α)cos(β)eβ,
u = u0 + uα, p = p0 + pα,

(9)

Let us now formulate the linearized model with respect to α, (uα, pα) is the solution of
which. Using a Fourier decomposition with respect to the angle β, one observes that only
the harmonic 1 is different from zero. Hence, using a complex representation for sake of
brevety, one obtains:

(uα, pα) ' (u1, p1) =
∑
±

(u±1
r er + u±1

β eβ + u±1
x ex, p

±1)e±iβ, (10)

where (u1, p1) ∈ V ×L2(Ω(0)) is solution of an axisymmetrical model (hence 2D!) excepted
concerning the boundary condition:

∀v ∈ V, %
∫
Ω(0)

∂u1

∂t
.v + [u0 ⊗∇u1 + u1 ⊗∇u0].v

−
∫
Ω(0)

p1 div(v) + 2µ
∫
Ω(0)

γ(u1) : γ(v) = 0,

∀q ∈ L2(Ω(0)), −
∫
Ω(0)

qdiv(u1) = 0.

(11)

Furthermore these boundary conditions satisfied by u1 on Γ0 are:

u1 = Usin(α)[sin(β)er + cos(β)eβ]. (12)

Let us point out that the component (see figure ??) u1
βeβ is not zero along the axis

of symmetry, but one has: (uθ, ex) = 0. In order to ensure that γ(u) ∈ L2(ω(0)) it
is necessary that: ur + iuβ = 0 on this axis corresponding to r = 0. The solution to
the previous system is proportional to sin(α). It can be solved with a two dimensional
problem but with a coupling with uβ. It is worth to recall the explicit expression of the
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strain tensor expressed in the basis: (er, eβ, ex).
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(13)

2.2 Quasi steady state

Let us consider two time scalings. The first one is connected to the frequencies fs of
the structure, and the second one to the flow velocity U and the wave length L of an
eigenmode. Let us set:

fr =
Lfs

U
. (14)

The steady state approximation can usually be applied if fr << 1. Furthermore it is as-
sumed that the magnitude of the structural displacements is small enough. Nevertheless
it is necessary to take into account the changes in the flow velocity due to these move-
ments. This leads to the concept of the aerodynamical damping [4], [3]. Three terms are
meaningful in the dynamical contribution. One is the classical relative acceleration. The
second one is the acceleration of the frame connected to the structure, and the third one
is the gyroscopic effect. Let us introduce the relative velocity va on Γ0:

va = Ue(α)− Ż0 − Ṙ ∧ ox, (15)
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The second term is the rigid body motion of the structure: Ż0 is the velocity at point o
and Ṙ is the rotation vector. The flow model is then similar to (3), excepted the new
terms due to the acceleration and those on Γ0 which become:

u = va = U(cos(α)ex + sin(α)ez)− Ż0 − Ṙ ∧ ox. (16)

Thus:
∂u

∂t
+ u⊗∇u is replaced by:

∂u

∂t
+ u⊗∇u + γe + 2Ṙ ∧ u, where γe is given by:

γe = Z̈0 + R̈ ∧ ox + Ṙ ∧ (Ṙ ∧ ox).

Let us consider a movement of the structure which implies a translation dzez and a
rotation: αey.The boundary condition becomes:

u = (Ucos(α)− α̇rsin(β))ex + (Usin(α) + α̇x− ḋz)sin(β)er

+(Usin(α) + α̇x− ḋz)eβ
(17)

Furthermore, the acceleration of the frame is:

γe = d̈zez + ḋzα̇ex + α̈ey ∧ ox + α̇2ey ∧ (ey ∧ ox).

The linearisation around the axisymmetrical solution gives:

∂u1

∂t
+ u0 ⊗∇u1 + u1 ⊗∇u0 + γeL + 2α̇ey ∧ u0 (18)

where the linearized acceleration is denoted by γeL, and is such that:

γeL = d̈zez + α̈ey ∧ ox = d̈z[sin(β)er + cos(β)eβ] + α̈[cos(β)er − sin(β)eβ] ∧ ox. (19)

Concerning the gyroscopic term, one gets:

γc = 2α̇[cos(β)er − sin(β)eβ] ∧ u0. (20)

All the addditional terms (six) are confined on the first Fourier harmonic with respect to
the angle β. The solution method requires to solve seven independent linear 2D models.
• The first one corresponds to the axisymmetrical flow with a flow velocity at the infinity
equal to Ucos(α)ex ' Ue. The solution is denoted (u0, p0).
• The six following ones corresponds to the first Fourier harmonic in β.
i) One is dependent on α and the solution is proportional to U sin(α) ' Uα.
ii) Another one is proportional to α̇.
iii) In a similar way there is one proportional to ḋz.
iv) Then, one contribution is proportional to d̈z,
v) and a similar one is proportional to α̈.
vi) Finally the gyroscopic term is proportional to α̇.
Finally, let us set, using a complex representation for sake of brevity:

u = u0 +
∑
±

e±iβ[Uαu±i + α̇u±t + ḋzu
±g + d̈zu

±ma + α̈u±ia + α̇u±c]. (21)
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3 COMPUTATION OF THE AERODYNAMICAL FORCES

3.1 Slow movements

Let us consider the simpliest case where the structure is stationary versus the flow
direction. The unit normal to S(0) is denoted by N and its projection onto the plane
(er, ex) is ν. The mechanical stress is:

T = pN− 2µγ(u).N = T0 + T1,

with:
T0 = p0N− 2µγ(u0).N, et T1 = p1N− 2µγ(u1).N.

Because T1 is proportional to sin(α) and thus to α after linearisation, one obtains a linear
expression with respect to α. Let us now consider a movement of the rigid structure
represented by:

δŻ(x) = δŻ(0) + δṘ ∧ ox.

The virtual work of the aerodynamical forces is:

P (δŻ) =
∫

S(0)
T0.δŻ

0
+
∫

S(0)
(T1, δṘ,ox).

But T1 is proportional to sin(α), and α is constant along the structure, therefore:

P (δŻ) = P 0(δŻ) + sin(α)P 1(δŻ).

This enables one to formulate a stability model for the coupled system as follows:

J0α̈ = ξsin(α) ' ξα, pour α petit , (22)

therefore the stability depends on the sign of ξ. In fact the question is to set the center
of rotation denoted by o, with respect to the aerodynamical centre.

3.2 Steady aeroelasticity

From section 2.2, one can write the forces applied to the structure as follows:

T = Ucos(α)T a + Usin(α)Ti + α̇Tt + ḋzT
g + α̈Tia + d̈zT

ma + α̇Tc, (23)

where: ∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Ta is the stress vector due to the axisymmetrical flow (cos(α) ' 1)
Ti is the stress vector due to the pitching angle α ' sin(α)
Tt is the stress vector due to the pitching velocity
Tg is the stress vector due to the galloping
Tia is the added inertia for the pitching
Tma is the added mass due to the galloping
Tc is the stress vector due to the gyroscopic effect

(24)
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After a linearization of the full system with respect to the pitching angle (α) and the
galloping (dz), one obtains:

Ma

(
α̈

d̈z

)
+ Ca

(
α̇

ḋz

)
+ Ka

(
α
dz

)
= 0 (25)

with:
• Ma is the full mass matrix,
• Ca is the damping (symmetrical part) and the gyroscopic (skew part) matrix,

• Ka =

(
kt 0
kg 0

)
is the aerodynamical stiffness matrix.

Because Ka not symmetrical, one can observe (at a critical velocity of the steady flow), a
flutter instability (mode crossing). If the damping becomes negative, one says that there
is a wake-flutter instability. Hence the stability analysis consists in studying the real part
of λ solution to:

det(−λ2Ma + iλCa + Ka) = 0. (26)

4 PROGRESSIVE EULER-LAGRANGE METHOD

The coupling equation between the fluid and the structure should be written in the
deformed configuration. Because the steady state is not neglectible, additional terms due
to the rotation of the normal appear in the model. The best way to write correctly this
compatibility condition in our opinion, is to use a progressive Euler-Lagrange frame. First
of all let us recall the formulation of the shell model for the structure.

4.1 The shell model

The classical Koiter model has been used in order to compute the eigenmodes wn. The
corresponding frequencies are denoted by fn.
Let us define by z the displacement field of the structure. If m(., .) is the inertia bilinear
form, a(., .) the stiffness one and W the admissible displacement space, the eigenvalue
problem consists in finding (λn = (2πfn)2,wn) such that:{

wn ∈ W , λn ∈ R+, such that:
∀v ∈ W , λnm(wn, v) = a(wn, v)

(27)

Let us assume that the structural movement is well represented by a space of N eigenmodes
denoted by WN :

z =
∑

n=1,N

κn(t)wn. (28)

Let us denote by N the unit normal to the shell oriented towards the inside of the fluid.
From shell theory the deformed normal becomes:

N′ = N + ζ(t), (29)
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where ζ(t) is the inplane rotation which depends on z. Let us extend z inside the fluid
by: ∣∣∣∣∣∣∣

i) θ = (θi), i = 1, 2, θi ∈ W 1,∞(Ω(0)),
ii) the support of θ being included in a neighbourhood of the shell S(0),
iii) θ = z on S(0).

(30)

Let us now define the mapping F θ from Ω(0) onto Ω(z) (deformed configuration):

x ∈ Ω(0) → xθ = x + θ(x) ∈ Ω(z). (31)

• Change of functions: Let ϕ be a function defined on Ω(z). We set: ϕθ(x) = ϕoF θ(x).

• Changes in the integrals:
∫
Ω(z)

ϕ =
∫
Ω(0)

ϕθdet(I + Dθ),

where Dθ is the Jacobian matrix associated to θ. Its transpose in the polar coordinate
system (er, eβ, ex) is ∇θ.

• Changes in the derivatives: (
∂ϕ

∂xθ
)θ =

∂ϕ

∂x
o(I + Dθ)−1

• Divergence for a vector p: (div(p))θ =
1

det(I + Dθ)
div((I + Dθ)−1pθdet(I + Dθ))

• Change in the convection term: (u⊗∇u)θ = uθ ⊗ (I +t Dθ)−1∇uθ

• Changes in the strain rates: (γ(u))θ = γθ(uθ) =
1
2
((I +t Dθ)−1∇uθ +t∇uθ(I +Dθ−1)).

These formulae enables one to formulate an equivalent flow problem but set on Ω(0).

4.2 Progressive Euler-Lagrange formulation

Using the mapping F θ and setting: (uθ, pθ) = (u, p)oF θ, we derive the following model.

Find (uθ, pθ) ∈ V × L2(Ω(0)) such that:

∀v ∈ V, %

∫
Ω(0)

[
∂uθ

∂t
.v + uθ ⊗ (I +t Dθ)−1∇uθ.v]det(I + Dθ)

−
∫
Ω(0)

pθ div((I + Dθ)−1uθdet(I + Dθ))

+µ

∫
Ω(0)

((I +t Dθ)−1∇uθ +t ∇uθ(I + Dθ−1)) : (I +t Dθ)−1∇vdet(I + Dθ) = 0,

∀q ∈ L2(Ω(0)), −
∫
Ω(0)

q div((I + Dθ)−1uθdet(I + Dθ)) = 0.

(32)

If θ = 0 the obtained model is exactly the axisymmetrical one. Let us introduce a linearization
with respect to θ, which is a linear function of z. Let us set (uθ, pθ) = (u0, p0) + (u1, p1) + . . .

9
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anb by introducing this approximation into (32) one obtains that (u1, p1) is solution of:

find (u1, p1) ∈ V × L2(Ω(0)) such that:

∀v ∈ V, %

∫
Ω(0)

∂u1

∂t
.v + [u0 ⊗∇u1 + u1 ⊗∇u0].v −

∫
Ω(0)

p1 div(u1)

+µ

∫
Ω(0)

γ(u1) : γ(v)

= −%

∫
Ω(0)

[(
∂u0

∂t
+ u0 ⊗∇u0) div(θ)− u0.tDθ.∇u0].v

+
∫
Ω(0)

p0div(u0)div(θ)− p0div(Dθ.v)

−µ

∫
Ω(0)

2γ(u0) : γ(v)div(θ)− (tDθ.∇u0 +t ∇u0.Dθ).∇v

+2µ

∫
Ω(0)

γ(u0) :t Dθ.∇v,

∀q ∈ L2(Ω(0)), −
∫
Ω(0)

q div(u1) =
∫
Ω(0)

qdiv(u0)div(θ)− p0div(Dθ.v).

(33)

4.3 Fourier decomposition

In order to simplify the three dimensional flow model we make use of a Fourier decomposition
in β. The only harmonics which are different from zero are those which are contained in the
structural displacement z.

4.4 Kinematical continuity between the fluid and the structure

In the deformed configuration one has:

u(F θ(x, t), t) =
∂z
∂t

(x, t), ∀x ∈ S(0) (34)

which is equivalent in Ω(0) to the following relation:

uθ(x, t) =
∂z
∂t

(x, t). (35)

Let us consider for instance the normal component to the shell. The unit normal to the surface
S(z) is denoted by N′ and we already point out that: N′ = N + ζ(z), where ζ is the inplane
rotation. Let us set: u = u0 + u1, and thus we derive the kinematical continuity condition:

(u1,N) + (ζ(z),u0) = (
∂z
∂t

,N). (36)

10
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Let us point out that the time derivative of u1 appears in the model, and this implies the second
order time derivative of z which acts an an added mass term.
The Fourier decomposition of ζ(z) only implies the harmonics contained in z. The unit normal
N can be written as follows :

N = cos(κ)er + sin(κ)ex,

where κ is the angle between N and er. Hence, all the harmonics in β are decoupled.

5 FORCES DUE TO THE FLUID

5.1 Forces due to the eigenmodes

On the surface S(z) the stress vector is:

T = −pN′ + 2µγ(u).N′. (37)

Using the mapping Tθ, this quantity becomes at order one on S(0):

Tθ = −p0N + 2µγ(u0)− p1N− p0ζ(z) + 2µγ(u1)− µ(tDθ.∇u0 +t ∇u0.Dθ). (38)

The two first terms correspond to the axisymmetrical flow. The four next ones are due to the
dynamical behaviour. Let us assume that the reduced frequency is small enough in order to

justify the use of the steady flow. In fact they are proportional to: z,
∂z
∂t

, and
∂2z
∂t2

. Let us set
here again:

z =
∑

n=1,N

κn(t)wn.

This enables one to write at order one:

Tθ = T0 +
∑

n=1,N

[κn(t)T0z +
∂κn

∂t
T1z +

∂2κn

∂t2
T2z]. (39)

Hence, in order to compute the previous term, one has to solve 3N + 1 axisymmetrical and
independent problems. For instance concerning the harmonic n one has the following expression
to compute:

Fn =
∫

S(0)
[(T0,wn) + κn(t)(T0z,wn) +

∂κn

∂t
(T1z,wn) +

∂2κn

∂t2
(T2z,wn)]. (40)

Let us denote by F the vector in RN the component of which are Fn. Then:

Fn = F0
n + κn(t)F0z

n + κ̇n(t)F1z
n + κ̈n(t)F2z

n (41)

5.2 The aeroelastic model

Let us denote by Z the vector in RN the component of which being ζn and which are the
coefficients of the eigenvectors wn. Then:

M
∂2Z
∂t2

+ KZ = F(Z,
∂Z
∂t

,
∂2Z
∂t2

), (42)
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One should add initial conditions. Furthermore, the right hand side F depends on Z and its
time derivatives. The matrices M and K are diagonal in the eigenvector basis. Let us set:

F = F0 −KaZ− Ca ∂Z
∂t

−Ma ∂2Z
∂t2

. (43)

The coupled system becomes, with already mentioned notations:

(M + Ma)
∂2Z
∂t2

+ Ca ∂Z
∂t

+ (K + Ka)Z = F0 (44)

The aeroelastic study consists in computing the eigenvalues λ with respect to U :

det(−λ2(M + Ma) + iλCa + (K + Ka)) = 0. (45)

An instability can occur if the imaginary part of λ is negative.

5.3 Discussion about the influence of the various terms appearing in the
aeroelastic model and example

The effect of the added mass matrix is to reduce the eigenfrequencies. The even part of the
matrix C is an aerodynamical damping. It can contribute to a so-called wake flutter. The odd
part of C is the Corriolis effect and in most cases, stabilizes the system. The matrix K + Ka

is the augmented stiffness and is no more symmetrical because of the aerodynamical forces. A
classical flutter instability can appear if two eigevalues are crossing each other. Let us give a
simple example. It corresponds to a pitching or a galloping movement of the airship. The eigen-

Figure 2: Drag coefficient with respect to the velocity

values have been computed for several values of the angle of attack α and taking into account
the aerodynamical forces due to ḋz and α̇. Furthermore, the lift and the pitching moment coef-
ficients have been computed (see figure 3). One can see on figure 3 left, that the airship is stable
-from the static point of view- versus a pitching movement (cm ≤ 0). The aerodynamical centre
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Figure 3: Left: lift and pitching moment at the center versus α; Right: imaginary part of λ for a pitching
movement (green) and a galloping (blue)

is located in the front part of the airship. The drag coefficient has been plotted on figure 2. Even
if it decreases, it is not meaningful because of the scale used. But concerning the aerodynamical
damping it is quite zero for very small angle of attack. Then it is slightly negative for α ' 4.
But it becomes positive for larger value of α, (see on the right on figure 3).

6 CONCLUSION

A simplified method for studying the aeroelasic stability of an axisymmetrical body is sug-
gested. The method enables to take account the small perturbation with respect to the axis of
symmetry in an aeroelastic analysis.

Acknowlegment This work has been carried out in collaboration with the University of Pau,
France. The authors thank professor M. Amara for his support.

REFERENCES

[1] S. Amara, Etude des vibrations propres d’un ellipsöıde plongé dans un écoulement.
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