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ARTICLE OPEN

Hamiltonian phase error in resonantly driven CNOT gate
above the fault-tolerant threshold
Yi-Hsien Wu 1,2✉, Leon C. Camenzind 2✉, Akito Noiri 2, Kenta Takeda 2, Takashi Nakajima 2, Takashi Kobayashi 3,
Chien-Yuan Chang2,3, Amir Sammak4, Giordano Scappucci 5, Hsi-Sheng Goan 1,6,7 and Seigo Tarucha 2,3✉

Because of their long coherence time and compatibility with industrial foundry processes, electron spin qubits are a promising
platform for scalable quantum processors. A full-fledged quantum computer will need quantum error correction, which requires
high-fidelity quantum gates. Analyzing and mitigating gate errors are useful to improve gate fidelity. Here, we demonstrate a
simple yet reliable calibration procedure for a high-fidelity controlled-rotation gate in an exchange-always-on Silicon quantum
processor, allowing operation above the fault-tolerance threshold of quantum error correction. We find that the fidelity of our
uncalibrated controlled-rotation gate is limited by coherent errors in the form of controlled phases and present a method to
measure and correct these phase errors. We then verify the improvement in our gate fidelities by randomized benchmark and gate-
set tomography protocols. Finally, we use our phase correction protocol to implement a virtual, high-fidelity, controlled-phase gate.

npj Quantum Information            (2024) 10:8 ; https://doi.org/10.1038/s41534-023-00802-9

INTRODUCTION
Spin qubits in solid-state devices1 are a promising platform for
large-scale quantum computers. Universal control has recently
been demonstrated in a six-qubit device in Silicon2, and a four-
qubit device in Germanium3, marking a first step of scaling up spin
qubit devices. Spin qubits in Silicon exhibit long coherence
times4,5, fast manipulation6 and ability to operate at an elevated
temperature7–9. The compatibility with the already matured
semiconductor industry processes allows potential mass fabrica-
tion of such devices10, integration with cryo-electronics11, and
opens the potential for high-performance integrated quantum
circuits in the future12. Phase-flip code, a critical feature of large-
scale quantum computers, has also been demonstrated
recently13,14. These progress make spin qubits a viable qubit
platform for the future.
To implement large-scale quantum computers, the ability to

implement quantum error correction code is required. One of the
most promising quantum error correction codes is the surface
code15. Typically, under certain assumptions of the error model,
the surface code gives an error threshold of 1%16. High-fidelity
single-qubit4,17 and two-qubit gates18–22 which satisfy this error
threshold, have been demonstrated with spin qubits in isotopi-
cally enriched Silicon. Among these results, the two-qubit gates
are implemented as a controlled-phase (CZ) gate or controlled-
rotation (CROT) gate. In contrast to the CROT gate, the CZ gate can
be implemented with base-band gate pulses, eliminating the
requirement for high-frequency signals typically in the range of
GHz. However, a high-fidelity CZ gate requires fast and precise
pulses to control the exchange coupling between two qubits
because of the exponential dependence of the exchange coupling
on the gate voltage19. The CROT gate, on the other hand, can be
implemented in a less demanding way by keeping the exchange
always on18,23. In the exchange-always-on system, the CROT gate

fidelity is reduced by a coherent off-resonant Hamiltonian phase
error, which has the form of a controlled phase. This phase error
must be mitigated to obtain high-fidelity CROT gates above the
fault-tolerant threshold. Previous work avoids this problem by
shifting the control microwave frequency18. The microwave
frequency is adjusted by a feedback loop to minimize this
phase error. Here, we systematically compensate for the effect of
these phase errors by shifting the phase of the applied microwave
pulses. We measure the phase errors with a calibration sequence
and compensate the effects. Our procedure to compensate for
these controlled-phase errors enables us to implement a CZ gate
virtually, similar to a virtual single-qubit z-gate24, thus without
additional execution time in the quantum circuit. The ability to
implement both high-fidelity CROT and a virtual CZ gate without
complicated pulse engineering makes the exchange-always-on
system interesting to study. Compared to a synthesized imple-
mentation using CZ gates19,20, the CROT gate allows for a native,
resonant CNOT logical gate with fidelity above the fault-tolerant
threshold18, which makes this gate relevant for future spin-based
quantum processors.
Here, we demonstrate a procedure to obtain a high-fidelity

resonantly driven CROT gate in an exchange-always-on two-qubit
system. We present a systematic way to measure the accumulated
phase error and then a method to compensate for these gate
errors. We use randomized benchmarking (RB) protocol25,26 to
compare the gate fidelity with and without compensation. We
then perform gate-set tomography (GST)27 to obtain the details on
the error processes of our quantum gates using experimental and
simulated data. The experimental and simulation data results
show good agreement, which proves the validity of the quantum
gate model we use for simulation. Finally, we demonstrate the
implementation of a virtual high-fidelity CZ gate using the
compensation method and benchmark the performance of this
virtual CZ gate with GST.

1Department of Physics, National Taiwan University, Taipei 10617, Taiwan. 2RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako-shi 351-0198 Saitama, Japan.
3RIKEN Center for Quantum Computing, 2-1 Hirosawa, Wako-shi 351-0198 Saitama, Japan. 4QuTech and the Netherlands Organisation for Applied Scientific Research
(TNO), Stieltjesweg 1, 2628 CK Delft, The Netherlands. 5QuTech and Kavli Institute of Nanoscience, Delft University of Technology, PO Box 5046,2600 GA Delft, The Netherlands.
6Center of Quantum Science and Engineering, National Taiwan University, Taipei 10617, Taiwan. 7Physics Division, National Center for Theoretical Sciences, Taipei 10617, Taiwan.
✉email: yi-hsien.wu@riken.jp; leon.camenzind@riken.jp; tarucha@riken.jp

www.nature.com/npjqi

Published in partnership with The University of New South Wales

1
2
3
4
5
6
7
8
9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s41534-023-00802-9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41534-023-00802-9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41534-023-00802-9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41534-023-00802-9&domain=pdf
http://orcid.org/0009-0002-4137-989X
http://orcid.org/0009-0002-4137-989X
http://orcid.org/0009-0002-4137-989X
http://orcid.org/0009-0002-4137-989X
http://orcid.org/0009-0002-4137-989X
http://orcid.org/0000-0002-2278-1915
http://orcid.org/0000-0002-2278-1915
http://orcid.org/0000-0002-2278-1915
http://orcid.org/0000-0002-2278-1915
http://orcid.org/0000-0002-2278-1915
http://orcid.org/0000-0001-9145-0303
http://orcid.org/0000-0001-9145-0303
http://orcid.org/0000-0001-9145-0303
http://orcid.org/0000-0001-9145-0303
http://orcid.org/0000-0001-9145-0303
http://orcid.org/0000-0003-1240-1103
http://orcid.org/0000-0003-1240-1103
http://orcid.org/0000-0003-1240-1103
http://orcid.org/0000-0003-1240-1103
http://orcid.org/0000-0003-1240-1103
http://orcid.org/0000-0001-6759-6441
http://orcid.org/0000-0001-6759-6441
http://orcid.org/0000-0001-6759-6441
http://orcid.org/0000-0001-6759-6441
http://orcid.org/0000-0001-6759-6441
http://orcid.org/0000-0003-2841-8129
http://orcid.org/0000-0003-2841-8129
http://orcid.org/0000-0003-2841-8129
http://orcid.org/0000-0003-2841-8129
http://orcid.org/0000-0003-2841-8129
http://orcid.org/0000-0003-2512-0079
http://orcid.org/0000-0003-2512-0079
http://orcid.org/0000-0003-2512-0079
http://orcid.org/0000-0003-2512-0079
http://orcid.org/0000-0003-2512-0079
http://orcid.org/0000-0001-8117-5846
http://orcid.org/0000-0001-8117-5846
http://orcid.org/0000-0001-8117-5846
http://orcid.org/0000-0001-8117-5846
http://orcid.org/0000-0001-8117-5846
http://orcid.org/0000-0001-7465-0135
http://orcid.org/0000-0001-7465-0135
http://orcid.org/0000-0001-7465-0135
http://orcid.org/0000-0001-7465-0135
http://orcid.org/0000-0001-7465-0135
https://doi.org/10.1038/s41534-023-00802-9
mailto:yi-hsien.wu@riken.jp
mailto:leon.camenzind@riken.jp
mailto:tarucha@riken.jp
www.nature.com/npjqi


RESULTS
Device and controlled-rotation gates
Figure 1a shows the device used for the experiment, which is a
triple quantum dot device fabricated in an isotopically purified
silicon quantum well, the same device as used in ef. 18. A three-
layer aluminium gate stack is deposited to fabricate the gate
electrodes, which control the electric confinement potential of the
quantum dots. We apply an external magnetic field of
Bext= 0.408 T. A cobalt micro-magnet is deposited on the gate
stack to induce a gradient magnetic field. The gradient magnetic
field generated by the micro-magnet enables the individual
adrresing of the spins in the quantum dots and the manipulation
of the spin qubit state by performing electric dipole spin
resonance (EDSR). The device has a charge sensor quantum dot
in the upper part of the device and an array of three quantum
dots in the lower part. We perform charge sensing with
reflectometry28 and accumulate an electron in the center (qubit
Q1) and right dot (qubit Q2), while the leftmost dot is used as an
extension of the left reservoir. Figure 1b shows the stability
diagram around this configuration. Energy-selective single-shot
readout is used for qubit readout and initialization29.
As the exchange coupling between the two qubits is turned on,

when the Zeeman energy difference δEz between two qubits is
much larger than the exchange coupling J, the energy levels of
"#j i and #"j i are lowered, and the basis states that diagonalize the
Hamiltonian become ""j i, g"#j ig#"j i and ##j i. The two-qubit

Hamiltonian diagonalized by these states is23,30

HðtÞ � h
2

2Ez BðtÞ BðtÞ 0

B�ðtÞ δ ~Ez � J 0 BðtÞ
B�ðtÞ 0 �δ ~Ez � J BðtÞ
0 B�ðtÞ B�ðtÞ �2Ez

0BBB@
1CCCA; (1)

where Ez is the averaged Zeeman energy of the two qubits, δ~Ez ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J2 þ δE2z

q
the effective Zeeman energy difference and B(t) the

effective magnetic field induced by the EDSR. Figure 1c shows the
energy levels of the four basis states. This results in four distinct
transition resonance frequencies fm;σ ¼ Ez þ ðcσJ þ cmδ~EzÞ=2
where m= 1, 2 is the qubit index and σ= ↓, ↑ is the spin with
the coefficients c1= c↓=− 1, c2= c↑=+ 1. By exciting one of the
four transition frequencies, we implement the resonantly driven
zero-controlled rotations (ZCROT) and controlled rotations
(CROT)31. The ZCROT rotates the target qubit if the control qubit
is in #j i (0 state), and the CROT rotates the target qubit if the
control qubit is in "j i (1 state). The notation CROTctrl;targ (ZCROT
ctrl;targ) indicates a rotation of the target qubit (targ= 1, 2) if the
control qubit (ctrl= 1, 2) is in "j i ( #j i) state. Figure 1d shows the
measured EDSR frequencies and δEz ~ 310 MHz. We choose J= 18
MHz such that the system is in an optimal condition for high two-
qubit gate fidelities18.
The effective magnetic field induced by the EDSR has the form

BðtÞ ¼ f Reþ2iπfMWt with fMW the microwave driving frequency and

a
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Fig. 1 Two-qubit system. a False-color scanning electron microscope image of a device identical to the one measured (scale bar 100 nm). The
two quantum dots are formed below plunger gate electrodes P1 (Q1) and P2 (Q2), and the yellow circle indicates the charge sensor quantum
dot. Quantum gates are implemented via electric dipole spin resonance in the gradient field of a micro-magnet (not shown) by applying
microwave signals to the MW gate electrodes. b Charge stability diagram around the qubit operation condition. The number of electrons in
two quantum dots is denoted as (N1, N2). Readout and initialization of qubit Q1 (Q2) are performed at square A (B). Qubit operations are
executed at the charge symmetry point (circle C) to achieve high-fidelity two-qubit gates. c Energy level diagram of the two-qubit system.
Exciting one of the four frequencies rotates the target qubit conditioned on the state of the other qubit, which allows the implementation of
controlled-rotation (CROT) and zero-controlled-rotation (ZCROT) gates. The label X indicates a π/2 pulse around the x axis of the qubit Bloch
sphere. d Electric dipole spin resonance peaks. The measured spectra show the transition frequencies of Q1 when Q2 is in #j i (blue) and "j i
(purple) and the frequencies of Q2 when Q1 is in #j i (red) and "j i (orange).
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fR the Rabi frequency. The Rabi frequencies of both qubits are set
to the same value to simplify operation. To implement the CROT12
gate, where Q1 is the control qubit, and Q2 is the target qubit, we
choose a driving frequency that is resonant with the correspond-
ing transition frequency, i.e., fMW= f2,↑. By substituting B(t) into the
Hamiltonian given in Eq. (1), transforming to the rotating frame
(see “CROT simulation”) and neglecting far off-resonance terms
using the rotating wave approximation (RWA), the Hamiltonian
becomes23,30

HCROT12 ðtÞ ¼
h
2

0 f R 0 0

f R 0 0 0

0 0 0 f Re�2iπJt

0 0 f Re2iπJt 0

0BBB@
1CCCA: (2)

The upper-left 2-by-2 sub-block provides the desired controlled-
rotation, while the lower-right 2-by-2 sub-block introduces error to
the gate. Choosing f R ¼ J=

ffiffiffiffiffi
15

p
cancels out the population

transfer caused by the lower-right sub-block for the π and the
half-π CROT, but two z-phases resulting from e±2iπJt terms will be
accumulated in this sub-block. This results in a controlled-phase

error which accumulates in the ##j i and g#"j i states23,30. We verify

this source of error using GST experiments as we discuss later. We
call these phase errors the off-resonant Hamiltonian phase errors
since they are errors arising from the control Hamiltonian. We
change the rotating frame by offsetting the microwave phase in
the pulse sequence to account for the accumulated phase errors.
This allows us to correct these off-resonant Hamiltonian phase
errors.

Measuring the off-resonant Hamiltonian phase error
There are four calibration sequences used to measure the off-
resonant Hamiltonian phase errors, one for each controlled-
rotation pulse (see “Calibration sequences”). Two of the calibration
sequences for control qubit Q1 and target qubit Q2 are shown in
Fig. 2a, b. For target qubit Q1, the roles of Q1 and Q2 are swapped.
The calibration sequence has three parts: First, the control qubit is
prepared to the off-resonant state of the target gate, "j i for the
ZCROT and #j i for the CROT. Next, we perform a Ramsey
experiment with the target sequence inserted. We rotate the
target qubit to the ð #j i þ "j iÞ=

ffiffiffi
2

p
state with a π/2 pulse. Then we

apply the target gate of the sequence to accumulate phase error.
We rotate the target qubit again to "j i using a π/2 pulse with an

off-resonant state

target

Ramsey interferometry

d

e

c

b

CROT12

CROT21

ZCROT12

ZCROT21

offset

a ZCROT CROT

0 /2 3 /2 2

(rad)

0.0

0.5

1.0

P

CROT12 CROT21ZCROT12 ZCROT21

0 /2 3 /2 2
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0.0

0.5

1.0

P

f
CROT12 CROT21ZCROT12 ZCROT21

12 12

Fig. 2 Calibration sequences for measuring the off-resonant Hamiltonian phase error. a, b Calibration sequences used to measure off-
resonant Hamiltonian phase errors for ZCROT12 and CROT12, where X denotes a half-π rotation. For all the sequences see Supplementary Fig. 1.
c Phase shifts in the calibration sequences. The spin-up probability measured in each calibration sequences are fitted with A cosðθþ θiÞ þ B to
obtain the phase shifts. With A the amplitude, B the offset, θ the phase of the second half-π pulses and θi the phase shift. d The off-resonant
Hamiltonian phase error associated with each pulse. The phase error ϕm,σ associated with each transition frequency fm,σ will accumulate in the
off-resonant state when applying each pulse. Here we introduce the += (−=) operators which add (subtract) the value on the right to (from)
the variable on the left, a common syntax in modern programming languages. e Schematic of compensation procedure for the off-resonant
Hamiltonian phase error for the example of the calibration sequence for CROT12. The phases accumulated on each basis states before the
pulse is applied are shown in the columns. We then use this table to calculate the phase offset ϕoffset and subtract this offset from the applied
pulses' microwave phase to compensate for the effect of off-resonant Hamiltonian phase error. f The measured phase shifts in the calibration
sequences after the phase compensation, demonstrate a significant improvement to the uncompensated case shown in b.
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offset θ in phase. Finally, we measure the spin-up probability P↑ of
the target qubit at the end of the sequence. We fit the sinusoidal
modulation of P↑ as a function of θ to get the phase shift
associated with each calibration sequence, as shown in Fig. 2c.
The fitted phase shifts are ðθZCROT12 ; θCROT12 ; θZCROT21 ; θCROT21Þ
¼ ð0:41 ± 0:025;�0:58 ± 0:02; 0:43± 0:015;�0:49± 0:03Þ rad , which
show a distinct asymmetry between CROT12 (ZCROT12) and
CROT21 (ZCROT21) sequences. We conduct simulations of the
calibration sequences using the CROT Hamiltonian both with
(without) using the RWA to neglect (include) the far off-resonant
terms (see “CROT simulation” and Supplementary Figs. 3 and 4).
We observe symmetric phase shifts when simulating with the
RWA, but these phase shifts become asymmetric without the RWA.
We simulate the phase shifts for different Zeeman energy
difference δEz and observe the asymmetry increases when δEz
decreases (see Supplementary Fig. 5). This indicates that the
asymmetry arises from the far off-resonant terms, but further
investigations are necessary.
The Hamiltonian in Eq. (2) implies that when a CROT12 gate is

applied, the e±2iπJt terms result in phases accumulated in the ##j i
and #"j i states. From the full CROT Hamiltonian it follows that
phase is always accumulated in the states which the pulse is not
acting on (see “CROT simulation”). Figure 2d shows the relation
between the four pulses and their corresponding off-resonant
Hamiltonian phase errors. To obtain the relation between the
fitted phase shifts and the off-resonant Hamiltonian phase errors,
we write down a table of phase errors accumulated on the four
basis states along the sequence and obtain a relation between
fitted phase shifts and the off-resonant Hamiltonian phase errors
(see “Calibration sequences”). Using this relation and the phase
shifts measured, we obtain the off-resonant Hamiltonian phase
errors (ϕ1,↓, ϕ1,↑, ϕ2,↓, ϕ2,↑)= (−0.07 ± 0.03, 0.14 ± 0.02,
−0.07 ± 0.03, 0.12 ± 0.03)rad. We note that the phase errors are
time-independent coherent errors, and therefore, we can cancel
the effect by characterizing the accumulated phases.
We use the measured off-resonant Hamiltonian phase errors to

compensate for the unwanted phases accumulated in the
calibration sequences. Figure 2e shows the procedure we use to
compensate for the phase errors in the CROT12 sequence. We
record all the phase errors at each step of the sequence. From
these phase errors, we obtain the offset ϕoffset needed for each
pulse to compensate for the effect of phase error, which is the
phase accumulated on the states the pulse is acting on (see
“Calibration sequences”). To compensate for the accumulated
phase error, we subtract the accumulated phase from the
microwave phase, which implements a virtual z-gate24. These
virtual z-gates change the rotating frame according to the
accumulated phase errors such that the effects on the qubit
gates caused by the phase errors are canceled. Figure 2f shows
the measured curves after compensating phase errors in the
sequences. The fitted phase shifts after compensation are
ðθ0ZCROT12 ; θ

0
CROT12 ; θ

0
ZCROT21 ; θ

0
CROT21Þ ¼ ð0:15 ± 0:03;�0:02 ± 0:03;

0:08 ± 0:04; 0:01 ± 0:04Þ rad . After the phase compensation, all
the phase shifts are reduced to ≤0.15rad ~9∘. We notice that there
are still non-zero phase shifts in the two ZCROT sequences. This is
also observed in simulation (see “CROT simulation” and Supple-
mentary Fig. 3) from which we notice that this phase is not
originating from the far off-resonant terms. This residual phase is
only observed in sequences when both qubits are operated and
its origin is not yet clear. A possible source for this residual phase
could be a correlated gate error on Q2 (Q1) when applying gates
acting on Q1 (Q2)19. Another potential source of these residual
phase shifts is the AC-Stark shift. We compare our simulations with
the AC-Stark shift (see Supplementary Fig. 5) and find that at low
exchange coupling J the residual phase shifts ϕres /
f 2R=½2ðδEz ± JÞ� but deviate from the AC-Stark shift behavior at
the experimental exchange coupling J= 18MHz. This indicates

that the residual phase shifts are not related to the AC-Stark shift
effect, however, further investigations are required.

Compensation of the off-resonant Hamiltonian phase error
Next, we extend the use of the compensation procedure to general
pulse sequences. Figure 3a shows the phase compensation
procedure for general pulse sequence U1, U2, ..., UN. We keep a
phase error table that records the phase errors accumulated on the
four basis states and check the sequence pulse by pulse with this
phase error table to obtain the phase offsets. Since the errors are
time-independent, we can compensate for the phase errors pulse
by pulse. For each applied pulse, we check the phase error, which
is accumulated on the states on which the pulse acts on and offset
the microwave phase correspondingly, as done in the previous
section. We then add the phase error accumulated by the pulse to
the phase error table and move on to the next pulse. This
procedure is performed in software before the execution of the
physical pulses. We emphasize that this method can also be
implemented in real-time, e.g., on an FPGA using a phase counter2.
To evaluate the performance of our calibration, we compare the

pulse fidelity with and without the compensation by performing a
two-qubit RB experiment18,23. We use 15 (59) different random
sequences for the experiment without (with) the phase compensation
protocol (see “Two-qubit randomized benchmarking”). Figure 3b
shows measured RB decays. In the run without the compensation
procedure, a Clifford fidelity of 94.73 ± 0.28% is obtained, correspond-
ing to a primitive gate fidelity of 97.95 ± 0.11%. With the compensa-
tion procedure, we achieve a Clifford fidelity of 98.48 ± 0.06%,
corresponding to primitive gate fidelity of 99.41 ± 0.02%. The increase
in gate fidelity demonstrates that the compensation procedure has
significantly reduced the errors in the pulses.
To get a more detailed report on the performance of the

quantum gates, we conduct a GST experiment27,32 (see also “Gate-
set Tomography”). Here, the GST experiment generates the two-
qubit Pauli transformation matrix (PTM) of the implemented
quantum gates, which describes how Pauli matrices are transformed
under the quantum gate. The experimentally obtained PTM is then
compared to the ideal PTM to get the error generator, which gives
more specific gate error processes. By writing the error generator
into a linear combination of terms representing different error
processes, we can interpret the errors of our gates more intuitively33.
Figure 3c shows the Hamiltonian projections of the CNOT12 gate

obtained by both experiment and simulated GST. The simulated data
is obtained using an ideal Hamiltonian (see Eq. (2)) without
introducing any noise (see “CROT Simulation”). Without the
compensation, there are large errors in the IZ and ZZ Hamiltonian
elements, both in simulation and experimental results. The
consistency between the experiment and simulation shows the off-
resonant Hamiltonian phase error considered in the Hamiltonian
given in Eq. (2) is indeed the dominant error we measured in the
experiment. The two terms are significantly suppressed when using
the compensation procedure, as shown in Fig. 3d. Both experiment
and simulation results exhibit this suppression, showing that the off-
resonant Hamiltonian phase errors are understood and corrected as
expected. The full GST gate metrics of the experiment with the phase
error compensation protocol are shown in Supplementary Table 1.
After the phase compensation protocol, the CNOT12 gate still

has an infidelity of ~0.5%. The precision of our GST result does not
allow us to make a definite statement on whether the source of
this infidelity is coherent Hamiltonian errors or incoherent
stochastic errors. The correlated gate error mentioned in
“Measuring the off-resonant Hamiltonian phase error” could be
an indication that there are still Hamiltonian errors in our gate.
Further investigations are required to determine whether the
CNOT12 fidelity can be increased by compensating for this error.
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Virtual CZ gate
Finally, we demonstrate the implementation of a virtual CZ gate
with the compensation procedure, shown in Fig. 4a. In the
compensation procedure, we use the phase error table to obtain
the microwave phase offset for each pulse in the sequence U1, U2,
. . . , UN. When a π phase is added to the ""j i row, the following
CROT12 pulses will acquire an additional π phase in the offset
while the offsets of ZCROT12 pulses are unchanged. This results in
a π phase difference between CROT12 and ZCROT12 pulses, which
is effectively equivalent to a CZ12 gate.
To verify the virtual CZ12, we perform a GST experiment with the

CZ12 gate-set. Figure 4b shows the estimated PTM of the virtual
CZ12. The measured PTM is close to the ideal CZ12 and has a
fidelity of 99.49 ± 0.08%, which shows that the virtual CZ12 gate is
well implemented. The digital phase offset needed to perform a
virtual CZ operation may not be exactly π. We anticipate that by
using calibration sequences similar to the CROT sequences, we
can measure the actual offset and further improve the fidelity of
the virtual CZ12 gate.
One advantage of virtually implementing quantum gates is that

the gate time is reduced to zero such that the qubits are not
affected by dephasing. Figure 4c shows the IZ stochastic error
component for I⊗ I, X1= X⊗ I and virtual CZ12. We use the identity
gate I⊗ I, which idles both qubits for 62 ns to emulate the
dephasing in a physical CZ gate. We find experimentally that IZ is

the dominant component for these gates (see Supplementary
Fig. 7). There is a large IZ stochastic term for the identity gate due
to dephasing by residual nuclear spin or charge noise34. This term is
reduced in X1 as the driven qubit is less affected by dephasing
because the drive effectively acts as a filter function4,35–37. For the
virtual CZ12, this noise is reduced to essentially zero, showing that
the virtual CZ12 is indeed not affected by charge noise, as expected.
In regards to the virtual CZ12 gate, we note that in the GST

analysis, there are two types of error generators associated with
each gate: The intrinsic error generator, which commutes with the
gate and the relational error generator, which does not21. The GST
does not differentiate between relational error generators for
different gates in a gate-set. Since the virtual CZ12 gate is
implemented virtually, its infidelity might be assigned to the other
physical gates through the relational error. We observed a higher
error rate in the I, X1 and Y1 gates for the gate-set, which includes
the virtual CZ12 (see Supplementary Table 2). This suggests that
the error in the virtual CZ12 gate might be incorrectly attributed to
the physical gates, such that the actual fidelity of the virtual CZ12
gate is slightly lower than stated. Additionally, we check the active
and Pauli-correlation projections of the virtual CZ12 gate-set (see
Supplementary Fig. 7). The active generators, when combined
with stochastic Pauli generators, account for T1 relaxation process
and are negligible in our result. The Pauli-correlation generators
shift the error mechanism of the stochastic error. For example,
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changing the cX,Z projection shifts the stochastic error from
independent bit- and phase-flip error to pure dephasing in the
X+ Z basis33. These correlation projections should satisfy the
condition jcP;Qj �

ffiffiffiffiffiffiffiffiffi
sQsP

p
, where sP, sQ are the stochastic Pauli

projections, to make the stochastic error matrix positive semi-
definite33. We observe that some of the Pauli-correlation
projection terms violate this semidefinite condition in our result.
These violations can be attributed to the large error bars in the
stochastic projection terms or to the possibility that the GST
estimation is not fully physical for this virtual CZ12 gate set. Further
investigation and more precise GST measurements are needed to
draw further conclusions regarding this issue.

DISCUSSION
Understanding the off-resonant Hamiltonian phase errors allows
us to implement high-fidelity CROT gates systematically. With a
better understanding of the origin of these phase errors, we can
estimate the experimental phase shifts by numerical simulations
(see Supplementary Figs. 3 and 4). The phase error compensation
method also allows the implementation of a virtual CZ gate, which
is useful in quantum circuits that use controlled-phase gates
extensively. For example, the quantum Fourier transformation
(QFT) circuit uses controlled-phase gates of several different
rotation angles38. Our procedure is implementable on an FPGA,
which tracks and corrects the phase offsets in real-time. Such a

real-time approach is crucial for quantum circuits that cannot be
pre-calculated before execution, e.g., for quantum error correc-
tion13,14 or real-time feedback initialization2.
In the original proposal of the CROT gate30,31, the exchange

coupling is only turned on for the execution of the CROT and
turned off for subsequent single-qubit operations. The pulse to
control the exchange effectively results in a CPhase gate up to
single-qubit z-rotations30. This exchange coupling pulse length
can be calibrated such that the CPhase gate accumulates a
controlled phase of one full rotation. A microwave pulse within
this exchange pulse is applied to implement a CNOT gate up to
single-qubit z-rotations30. In this case, we anticipate the off-
resonant Hamiltonian phase errors discussed here can be
canceled out by adjusting the exchange pulse time to control
the accumulation of an extra-controlled phase.
The practical scalability of the exchange-always-on system

remains an open question. For the three-qubit resonantly driven
Toffoli gate in the exchange-controlled system, the extra condi-
tional phase error can be removed by changing the timing of the
exchange coupling pulse13,39. This exchange pulse accumulates
additional, conditional phases and has the same effect as shifting
the microwave phases. In a three-qubit exchange-always-on
system, keeping track of all the transition frequencies becomes
more challenging, and the calibration sequences for measuring the
off-resonant Hamiltonian phase errors become more complicated.
While further investigations are required, we anticipate that the
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procedure discussed here can also be used to calibrate the
controlled rotations in a three-qubit exchange-always-on system.
In summary, we demonstrated a systematic way to calibrate

high-fidelity CROT gates in an exchange-always-on two-qubit
system. We present a calibration procedure to compensate for the
Hamiltonian off-resonant phase errors in our CROT gates, allowing
us to achieve universal single and two-qubit gate fidelities above
the fault-tolerant threshold of 99%. Finally, we implement a virtual
CZ gate using our phase error compensation protocol.

METHODS
Calibration sequences
Supplementary Fig. 1 shows all four calibration sequences and the
corresponding phase error table used to obtain the phase offsets.
For the ZCROT12 sequence, the phase errors associated with the
four states at the end of the sequence are

ϕ"" ¼ 2ϕ1;# þ 2ϕ2;#; (3)

ϕ"# ¼ �2ϕ1;#; (4)

ϕ#" ¼ 2ϕ1;" � 2ϕ2;#; (5)

ϕ## ¼ �2ϕ1;": (6)

The Ramsey sequence at the end measures the relative phase
between the two off-resonant states of ZCROT12, the "#j i and ""j i
state. Thus, the measured phase shift is

θZCROT12 ¼ ϕ"# � ϕ"" ¼ �4ϕ1;# � 2ϕ2;#: (7)

Using a similar argument, we can write the phase shifts measured
into a linear combination of the off-resonant Hamiltonian phase
errors

θZCROT12 ¼ �4ϕ1;# � 2ϕ2;#; (8)

θCROT12 ¼ �4ϕ1;"; (9)

θZCROT21 ¼ �2ϕ1;# � 4ϕ2;#; (10)

θCROT21 ¼ �4ϕ2;": (11)

Solving these four equations gives the explicit form of the off-
resonant Hamiltonian phase errors. The relation is

ðϕ1;#;ϕ1;";ϕ2;#;ϕ2;"Þ (12)

¼ �2θZCROT12 þ θZCROT21
6

;� θCROT12
4

;
θZCROT12 � 2θZCROT21

6
;� θCROT21

4

� �
:

(13)

With the obtained off-resonant Hamiltonian phase errors, we write
down a table of phase errors accumulated on each basis state
before the pulse is applied. We calculate the offsets needed by

ϕoffset;ZCROT12 ¼ ϕ## � ϕ#"; (14)

ϕoffset;CROT12 ¼ ϕ"# � ϕ""; (15)

ϕoffset;ZCROT21 ¼ ϕ## � ϕ"#; (16)

ϕoffset;CROT21 ¼ ϕ#" � ϕ"": (17)

Two-qubit randomized benchmarking
We choose sequence lengths L= (1, 8, 16, 23, 31) in our two-qubit
randomized benchmarking experiment. For each length, we use
59 (15) different random sequences for the experiment with
(without) the phase compensation protocol. We combined three

datasets measured over a time span of one week, demonstrating
the stability of our qubits. For each sequence, the probability is
obtained by averaging 150 single-shot measurements. The gates
in each sequence are randomly chosen from the two-qubit Clifford
group, which contains 11520 elements40. We use a computer
search to find the combinations of primitive gates (see
Supplementary Fig. 2) to construct all two-qubit Clifford group
elements18,23. At the end of the sequence, we search for the
recovery gate, which projects the state into the target state ""j i or
##j i. This results in two sequence fidelities F↑↑(n) and F↓↓(n). We fit
the difference between two sequences F(n)= F↑↑(n)− F↓↓(n) with
the formula F(n)= (At− Bt)pn where (At− Bt) is the visibility and
absorbs the SPAM error and p is the depolarizing strength. The
two-qubit Clifford gate fidelity is obtained by FC= (1+ 3p)/4. Each
Clifford element is composed of 2.57 primitive gates on average.
We, therefore, calculate the primitive gate fidelity as
Fp= 1− (1− FC)/2.57.

CROT simulation
We start with the Hamiltonian given in Eq. (1) and transform the
Hamiltonian into the rotating frame using

HRðtÞ ¼ RHRy � ih
2π

∂R
∂t

Ry; (18)

with R ¼ diag ðe�2iπEzt; e�iπð�δ~Ez�JÞt; e�iπðδ~Ez�JÞt; e2iπEztÞ. The Hamil-
tonian in the rotating frame is then

HRðtÞ ¼
h
2

0 BðtÞe�2iπf 2;"t BðtÞe�2iπf 1;"t 0

B�ðtÞe2iπf 2;"t 0 0 BðtÞe�2iπf 1;#t

B�ðtÞe2iπf 1;"t 0 0 BðtÞe�2iπf 2;#t

0 B�ðtÞe2iπf 1;#t B�ðtÞe2iπf 2;#t 0

0BBB@
1CCCA;

(19)

with the effective EDSR magnetic field BðtÞ ¼ f Reþ2iπfMWtþiϕ. We
substitute this magnetic field into the rotating frame Hamiltonian
and calculate the propagator. If the RWA is used, we set the
elements in the far-off-resonant terms to zero before calculating
the propagator.
We choose J= 18 MHz and f R ¼ J=

ffiffiffiffiffi
15

p
’ 4:64 MHz, which

results in a π/2 gate time Tπ/2≃ 53.8 ns. We compute the unitary
propagator with this Hamiltonian by

UðfMW;ϕÞ ¼ T exp � i
_

R Tπ=2
0 HðfMW;ϕ; tÞdt

� �
; (20)

with T the time-ordering operator. By choosing the driving frequency
fMW, we select which ZCROT or CROT is implemented. Changing the
microwave phase ϕ changes the rotation angle of the pulse. This
unitary is then used for simulating the implemented pulses.

Gate-set tomography
For the GST experiments, depending on the implemented gates in
the system, a different target gate-set is chosen. This target gate-
set is then used to compose a preparation and measurement
gate-set and a set of germ sequences. The preparation- and
measurement-fiducial gates are used to make tomographic
measurements. These fiducial gates must be able to prepare
and measure an information-complete set of states. The germ
sequence in between is chosen from the germ set, which is
amplificationally complete27 and, therefore capable of amplifying
all possible errors that can occur during the gate operation.
We perform GST with the python package pyGSTi32. We use the

default gate set provided by the pyGSTi package and the fiducial
pair reduction function to reduce the number of sequences
required. The CNOT12 gate-set contains {X1, Y1, X2, Y2, CNOT12}.
The identity gate I is implemented by idling both qubits for a time
of Tπ/2= 62 ns. X1,2 (Y1,2) are π/2 rotations along the x-axis (y-axis)
for Q1 or Q2, respectively. The 15 germs for this gate-set are {I, X1,
Y1, X2, Y2, CNOT12, X1Y1, X2Y2, X1X1X1, X2X2X2, CNOT12X2X1X1,
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X1X2Y2X1Y2Y1, X1Y2X2Y1X2X2, Y1Y2X1Y1X1CNOT12, Y1X2Y2X1X2-
X1Y1Y2}, and the fiducial gates {null, X2, Y2, X2X2, X1, X1X2, X1Y2,
X1X2X2, Y1, Y1X2, Y1Y2, Y1X2X2, X1X1, X1X1X2, X1X1Y2, X1X1X2X2}. In
contrast to the identity gate I, the null gate has no physical idling
time. We choose the sequence lengths L= (1, 2, 4, 8, 16), which
results in a total of 1760 sequences. For the CZ12 gate-set which
contains { I, X1, Y1, X2, Y2, CZ12}, the germs and fiducial gates are { I,
X1, Y1, X2, Y2, CZ12, X1Y1 X2Y2, X1X1Y1, X2Y2CZ12, CZ12X2X1X1,
X1X2Y2X1Y2Y1, X1Y2X2Y1X2X2, CZ12X2Y1CZ12Y2X1,Y1X1Y2X1X2X1Y1Y2
}, and {null, X2, Y2, X2X2, X1, X1X2, X1Y2, X1X2X2, Y1, Y1X2, Y1Y2,
Y1X2X2, X1X1, X1X1X2, X1X1Y2, X1X1X2X2 }, which results in a total of
1644 sequences. All the gates used in the GST experiment are
composed of CROT and ZCROT π/2 pulses and single-qubit z-
rotations (see Supplementary Fig. 6). The sequences are executed
on the device to gather outcome counts. After execution of these
sequences, the measured spin-up and spin-down counts are
analyzed with an H+S model (see “Error generators”) to obtain the
PTMs Gexp of the gates. This PTM has the form

ðGexpÞij ¼
1
d
tr ½PiGðPjÞ�; (21)

where d is the Hilbert space dimension and Pi are the two-qubit
Pauli operators. The estimated PTMs are then compared with the
ideal PTMs to obtain the error generators through functions in the
pyGSTi package.
To verify the assumption we made for the off-resonant

Hamiltonian phase error, we also perform GST with simulated
datasets. First, we take the sequences used in the experiment and
calculate the corresponding series of unitary propagators with the
ideal Hamiltonian. Then, we evolve the input ground state with
this series of unitaries to obtain the final output state and calculate
probabilities in each outcome to generate simulated counts.
Finally, the simulated counts are analyzed in the same way as the
experimental counts.

Error generators
For a noisy implementation Gexp of the ideal quantum gate Gideal,
we can model the imperfect gate as

Gexp ¼ EGideal; (22)

which is an ideal quantum gate followed by some noise process E.
By inverting the ideal gate, we get the noise process as

E ¼ GexpG
�1
ideal: (23)

If we take the logarithm of this noise process and assume that
noise is small i.e., E ’ I. Using the approximation log X ’ ðX � IÞ
with small (X−I) we get the error generator33

L ¼ logðGexpG
�1
idealÞ ¼ log E ’ E � I; (24)

which is the approximated difference between the noise process E
and the identity. If the gate is noise-free, i.e., E ¼ I, then L= 0. This
error generator can be written into a linear combination

L ¼ LH þ LS þ LC þ LA (25)

¼
X
P

hPHP þ
X
P

sPSP (26)

þ
X
P;Q>P

cP;QCP;Q þ
X
P;Q>P

aP;QAP;Q: (27)

The terms in the linear combination correspond to error
generators representing different error processes. The error
generators are divided into four categories, Hamiltonian generator
HP, stochastic Pauli generator SP, Pauli-correlation generator CP,Q
and active generator AP,Q. We use the H+S model of pyGSTi
package21,32, which only contains Hamiltonian and stochastic Pauli
errors which have clear physical meanings. The Hamiltonian error
generators represent a systematic over- or under-rotation of the

qubit state on the Bloch sphere in one of the rotation axes. On the
other hand, the stochastic Pauli generators represent the
contraction to one of the axes of the qubit Bloch sphere. The
coefficient of these error generator terms is obtained by33

hP ¼ � i

d2
Tr ðP � I � I � PÞL½ �; (28)

sP ¼
1

d2
Tr ðP � IÞL½ �; (29)

where P is the two-qubit Pauli matrices. We extract these
coefficients using internal functions in the pyGSTi package. These
coefficients can be used to calculate the Jamiolkowski probability
ϵJ(L) and the Jamiolkowski amplitude θJ(L), which gives the
amount of incoherent and coherent errors, respectively. For an
error generator L being decomposed into list of {hP, sP}
coefficients, these two metrics are33

ϵJðLÞ ¼ tr ½ρJðLÞðI � Ψj i Ψh jÞ� ¼
X
P

sP; (30)

θJðLÞ ¼ kðI � Ψj i Ψh jÞρJðLÞ Ψj ik ¼
X
P

h2P

 !1=2

: (31)

The Jamiolkowski probability and Jamiolkowski amplitude can be
used to approximate the averaged gate infidelity related to error
generator L. For small errors, the approximated average gate
infidelity is33

r ¼ d
d þ 1

½ϵJðLÞ þ θJðLÞ2�: (32)

DATA AVAILABILITY
All data in this study are available from the Zenodo repository at https://doi.org/
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