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1 Introduction

The propagation of wa.vesfromoffshoreto onshore is a difficultproblem due to the mathematical
complexities of the governing equations and the degree of uncertainty of the bathymetry over
which the wavesmust travel.

In this lecture, the various methods of transforming offshore wave trains to shallow water
are discussed. First, single wave trains will be covered and then the shoaling of spectra will be
introduced. Various wave transformation methods, such as ray tracing and parabolle modelling,
are covered.
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70 ROBERTA. DALRYMPLE, F. ASCE

2 Propagation of Wave Trains

The simplest model of a wave train is due to Airy (1845). The displacement of the water surface
from its mean location (at z = 0) for a wave train propagating in the x direction is

1)(x, t) = acos(kx - at) (2.1)

where the amplitude of the wavemotion is a, k is the wavenumber, defined as k = 27rf L, where
L is the wave length, and a is the angular frequency,defined as a = 27rfT, where T is the wave
period. If the wave is propagating in an arbitrary direction, then the wave form is most easily
described as

1)(x,y,t) acos(kcos8 x + ksin8 y - at)
a cosSex, y, t)

(2.2)
(2.3)

where 8 is the angle that the wave train makes with the x axis. The argument of the cosine
function is the phase function, Sex, y, t), where S = k cos8 x + k sin 8 y - at. Defining the wave
number vector with components in the (x,y) direction, k = (kcos8,ksin8) and x = (x,y), we
have S = k· x - at. The direction of the wavenurnber vector is the wavedirection. Waves crests
are located where the phase function has values of 2n7r, n= 0, 1,2, .... The locations of the
crests moves in space according to S constant. For example, following the crest associated
with S = 0 leads to

(2.4)

whcre thc lcft hand sicle is the disrance in the wave direction travelled in time tand the ratio
ajlkl is the wave phase speed, C.

Wave trains shoaJ and refract as they propagate from one water depth to another because the
wave length (and therefore the speed of the wave) changes with depth. The local wave length
from Airy wave theory (see, e.g., Dean and Dalrymple, 1984)is related to the local water depth,
h, and waveperiod as given by the dispersion relationship, which can be written in several ways:

L = Lo tanhkh (2.5)
where

Lo = gT2 /21r, the deep water wave length
or, after introducing the definitions for k and a,

(2.6)

a2 = gk tanh kh (2.7)

The dispersion relationship (2.5 or 2.7) indicates that the wave length in shallow water is always
shorter than that in deep water, Lo, which is solely dependent on the period, T, of the waves.

The transeendental nature of the dispersion equation makes it difficult to solve. A Newton­
Raphson iterative method is often used. This technique requires a starting estimate of the
solution.

Recently Fenton and McKee (1990) provided an approximate equation which gives solutions
within 1.6%of the exact dispersion relationship:
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WAVE PROP AGA TION IN SHALLOW WATER 71

This approximation can provide the initial starting point for the Newton-Raphson technique or it
be used to provide the final solution if its accuracy is sufficient. In the followingtwo figures, the
exact dispersion relationship is solved for wavenumber and wave length, given the water depth
and wave period, with the Fenton/McKee approximation as a starting value in both FORTRAN
and Mathematica, which is a higher level computer language-as seen by the fewer number of
lines required. The FORTRAN program converges to a relative error of 0.000001 in 3 or less
iterations.

The wave phase speed (or celerity) in Eq. (2.4) is also given by C = L/T. From (2.5), the
celerity can be written as

C = Co tanh kh.

where Co is the deep water value of the celerity (Co = gT /27r). The wave celerity decreases
monotonically with depth.

The wavelength change is also reflected in the rate at which the energy is transported by the
waves,or the group velocity,Cg, which is defined as

1 ( 2kh)Cg = nC = 2 1+ sinh2kh C

The factor n is 1/2 in deep water and is unity in shallowwater, where the group velocitybecomes
smalI, since the dcpth is smal!.

Conscrvation of waveenergy implies that for normal wave incidence,

leading to

II = llo~ = HoK.

where K. is the shoaling factor (which is tabulated and graphed in the Shore Protection
Manual).

2.1 Refraction

Refraction occurs when an obliquely incident waveencounters a change of depth. In this case, a
portion of the wave crest is in shallowerwater than the rest of the wave crest. This part of the
wavetravels slower than the other and hence the wavecrest changes direction.

For straight and parallel contours, it is easy to show that Snell's law (from opties) holds for
wavedirection. Given the wave direction, 8l! in deeper water, Snell's law gives the direction in
shallowerwater, 82,

(2.8)

This simple relationship provides a means to compute the wave direction in shallowwater given
the deep water direction by simply computing the deep water and shallowwater celerities. The
intervening contours play no role in the ultimate wave direction.

If the bottom contours are not straight and parallel, then ray tracing is possible, and in fact
was the first practical means to compute waverefraction. By using Snell's law at each contour
crossing,assuming straight and parallel contours locally, a wave ray can be drawn from offshore
to onshore or in reverse (e.g., U.S. Army Shore Protection Manual, 1984).
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c•••• ••••••••••••••••••••••••••••••••••••••••••••••••• •••••••••••
c determine the wavelength, wavenumber from linear theory
c

c.·.·················································· .
common /const/g, pi
g=9.81
pi=3.1415927
write(6,.) , Input the water depth (m) and wave period'
read(5,.) h,T
call wvnum(h,T,xk)
xl=2.•pi/xk
vrite(6,.) , The wave length is ',xl,' m'
write(6,.) , The wave number is', xk
stop
end

C•••••••••••••••••••••••••••• *•••••••••••••••••••••••••••••••••••
subroutine wvnum(dpt,per,xk)

c this ...~\c::ulatAslinear wave number by Newton's method

common /const/ g, pi
xkhO=«2 .•pi/per)••2.).dpt/g
coth=l./tanh( xkhO••(3./4.))
xkh=xkhO.(coth)••C2./3.)
do 4 i=1,10

th=tanh(xkh)

ch=cosh(xkh)

f=xkhO-xkh.th

fprime=-xJth/ch**2-th

dXkh=-f/fprime

if(abs(dxkh/xkh}.lt. O.oooocn !Yl to 9
4 xkh=xkh+dxkh

vrite(.,.) , ten iterations failad for kh'
9 xk=xkh/dpt

return

end

Figure 1: Newton-Raphson Solution of the Dispersion Relationship in FORTRAN.
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WAVE PROPAGATION IN SHALLOW WATER 73

(. Dispersion Relationship in Mathematica

Robert A. Dalrymple, December 1991
••••••••••••••••••••••••••••••••• * ••••••••••••••••••• )

WaveNumber[h_,T_] ::
Block[{kh,khO,k,y},

khO:(2 Pi/T)-2 • h/9.S1;
kh:N[khO (Coth[(khO)-(0.75)])-(2/3)];
kh:y I. FindRoot[khO::y Tanh[y],{y,kh},AccuracyGoal->5,

Maxlterations ->20];
k:kh/h
]

••••••••••••••••••••••••••••••••••••••••••••••••••••

h=Input["Water depth (m) = "]
T=Input ["Wave period = ,,]

k=WaveNumber[h,T]
L=N [2 Pi/k]
Print[" The wave length is ",L]
Print[" The wave number is ",k]

Figure 2: Newton-Raphson Solution of the Dispersion Relationship in Mathematica.
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For irregular bathymetry, where the assumption of locally straight and parallel contours could
lead to erroneous results, the irrotationality of the wave number has been used to generalize the
Snell's law result. This equation follows from the definitions (2.2):

k = V'S(x,y,t)
8S
8t

(2.9)

(2.10)u

Identically, V'xk = O. This can he expanded to

ok sin 8 ok cos 8
-----=0ox oy (2.11)

For straight and parallel contours (x onshore, y alongshore), the derivatives in y are zero and
this equation reduces to Snell's Law, given above. For realistic bathyrnetry, this equation can be
solved for 8 in a number of ways, as shown helow.

2.1.1 Ray Tracing

Historically, Eq. (2.11) has heen converted to an equation along a wave ray (e.g., Dean and
Dalryrnple, 1984):

08 1BC
8s C on '

whcre s, nare coordinates along and normal to the ray. This equation is Fermat's Principle, which
follows from the statement that light always follows the shortest transmission path hetween two
points.

Associated with the direction change is a wave height change due to convergence/divergence
of the rays (Munk and Arthur, 1952). If bo is the original spacing between two adjacent wave
rays and bis the local spacing of the rays, and defining 13 as b/bo, Munk and Arthur derived the
following second order ditferential equation for 13:

0213 013
os2 + p OS + qf3 = 0 (2.12)

where
cos8OC sin 8 8C sin28 02C sin 28 82C COS202C

P = -C ox - C 8y; q = -c 8x2 - -cox8y +C 8y2
The local wave height is found from

(2.13)

(2.14)

where Cg is the local group velocity.

Noda (1974) solved the refractionjshoaling problem by simultaneously solving the set of four
first order ditferential equations with a fourth-order Runge-Kutta scheme:

ox 8 oy . 8
8s = cos ; 8s = sin
08 1 se 8C
8s C[sinO 8x - cos0 Oy}

a;: r; :: = -pr - qf3
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Figure 3: Rays for Oblique Incidence Over a Rip Channel, Noda (1974)

where the last two equations are two first order equations obtained from splitting the second
order equation (2.12). An example of Noda's results are given in Figure 3.

Jonsson and Christoffersen (1984) have developed ray tracing procedures for waves on cur­
rents. The conservation of wave action (which replaces the waveenergy conservation for waves
on currents; see below) is used.

Ray tracing has drawbacks. The computation of rays does not guarantee that the area
of interest is densely covered with rays, providing information for the design wave height and
direction (although ray tracing can be used backwards from the site to offshore). Also, the
crossing of wave rays leads to trouble in interpretation and most ray tracing methods neglect
diffractive effects.

2.1.2 Grid Models

More recently, refraction calculations have been carried out by solving the irrotationality condi­
tion (2.11) on a rectangular grid (Perlin and Dean, 1983;Dalrymple, 1988, with Lax-Wendroff
modification, 1991). The gridded results can then be used for input to other models of interest­
wave-induced circulation, for example. These models entail dividing the offshore region into a
grid, say, x = mLlx, m = 1,2, ... , Mand y = nLly, n = 1,2, ... , N. See figure 4.

Now, Eqn. (2.11) must be solved in finite differenceform. Dalrymple (1991) rewrites this
equation as

oA oB
---=0ox oy (2.15)

where A = k cos (J and B = k sin (J = "lp - A 2. (Knowing k at every grid location from the
dispersion relationship (2.7), and given A, B is calculable.) The two-step Lax-Wendroffmethod
first involves taking a half step in both the x and y directions.
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Figure 4: Schematic Diagram for Grid Models

Step 1.
Am+l/2,n+I/2 - (Am,n+1 + Am,n)/2 _ (Bm,n+1 - Bm,n) = 0

6.xl2 6.y
(2.16)

whieh is solved for Am+I/2,n+l/2. Bm+I/2,n+I/2 is then determined from its definition.
Step 2.

Am+l,n - Am,n _ Bm+I/2,n+l/2 - Bm+l/2,n-I/2 = 0
6.x 6.y

(2.17)

These two equations permit seeond order accurate differencing to be carried out. Additionally
th is method does not require any iteration (for the linear dispersion relationship). The results
of the two-step Lax-WendrolTmethod are the wave direction at all locations of the grid.

e . -I (Am,n)m,n = Sin -k--
m,n

The wave height follows from the wave energy equation or the wave action equation (for
waves on eurrents). The steady-state wave energy equation is

.., (EC-) _ DEeg cose DECgsin e _
v • g - ax + ay - -(d (2.18)

where (d represents energy losses due to such things as bot tom friction or percolation. If (d is
zero, then this equation ean be rewritten as

(2.19)

with A and B redefined aceordingly. This equation also ean be solved by the two-step Lax­
Wendroff method.

For waves on eurrents, the wave energy is replaced by the wave action, developed by Brether­
ton and Garrett (1968), which is the wave energy divided by the relative frequeney, CT, EICT,
where CT is changed due to the presenee of the eurrent:

CT=w-k·Ü (2.20)

where CT is the wave frequency with respect to eoordinate system moving with the eurrent,
Ü = (U,V) and w is the absolute frequency (hiT). The equation for the relative frequeney
depends on the wave number implicitly since the formula for CT is given by (2.7).
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Figure 5: Bathymetry and Wave Veetors Given By REFRACT, Dalrymple (1988). Soundings
are in feet and Area Depicted is 24 by 44 n. miles. Arrow Lengths are Proportional to Wave
IIeight. The Wave Period is 12 s. and Incident Wave IIeight is 2 m.

The conservation of wave action (in the absence of dissipation) is

(2.21)

For the case of no currents, the conservation of wave action reduces to the conservation of
energy equation. Dalrymple (1988, 1991) used the steady-state wave action equation (2.21) and
the dispersion relationship (2.20) for waves on currents. Figure (5) shows the bathymetry and
resulting wave direction and height vectors (the length of the vector is proportional to the wave
height).

2.2 Diffraction

The presence of surface piercing obstacles provides a good example of diffraction. The mathe­
matica! theory for waves passing a semi-infinite breakwater is given by Sommerfeld (1849) and
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where A is now a spatially varying amplitude. The governing equation for the potential is the
Laplace equation, with associated bottom and free surface boundary conditions;

{J2</J {J2</J {J2</J
{Jx2 + 8y2 + 8z2 = 0 (2.23)

Substituting our assumed form for </J, yields the fol!owingHelmholz equation for A,

82 A {J2A
8x2 + 8y2 + k2 A = 0 (2.24)

This elliptic equation must be solvedsubject to certain boundary conditions. In the caseof harbor
oscillations, Lee (1971) introduced the use of boundary integral methods in coastal engineering
by solving (2.24) for arbitrarily shaped harbors with vertical sides and constant depth.

2.3 Combined Refraction and Diffraction

The parabolic approximation provides a convenient method to predict the waveswhen refraction,
shoaling, and dilfraction occur simultaneously. Further, it allows dropping the requirement for
a downwaveboundary condition. Exarnining the assumed form for </J for the case of diffraction,
we notice that the amplitude A must vary rapidly with x to account for the wavelikebehavior
of the wavesin the x direction. For waves propagating in the x direction, this behavior is of the
form ékx. For wavespropagating nearly in the x direction, this function wil!provide for most of
the wave oscillation. Therefore, we wil! assume that the local velocity potential is described by

cosh k(h + z) 'k .Ij>(x,y,z,t) = A(x,y) h kh e' xe-,,,tcos .

In this case, we expect that A(x, y) wil! vary slowlyin x. Substituting into the Laplace equation
(2.23) and treating a constant depth problem, we have

;)2 A {J2A {JA- + -+2ik- =0{Jx2 {Jy2 {Jx (2.25)

The first term can be shown to be smal! compared to the others for smal!waveangles"; therefore,
we arrive at the simple parabolle equation for constant depth,

{JA i {J2A
{Jx = 2k{Jy2 (2.27)

For plane waves,we find that A is

(2.28)

ICwe compare the approximate solution, A( x,y) e=, to the plane wave solution for the elliptic
equation (2.24), we have

aél: cao 9 ",+il: ain 9 11 compared to aeil:(l- t ain2 9)x+il:ain 911 (2.29)
'Il A = IleO(lo(co.'-1) s •• oi••• ), which i. the plane wave solution (2.2) without the e'" .-ó"', then

82A 2 2
8z2 = -I.: (cos 8 - 1) A (2.26)

For small angles, cOIII_ 1 - 82/2 ... ; therefore, thi. term is much smaller, 0(11'), than the other terms, 0(112), in
Eq. (2.25) for smallIl.
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Figure 6: Errors Between Simple Parabolle Model (Dashed Line) and the Exact Solution (Solid
Line)

This shows that the simple parabolle approximation for plane waves represents cos8 = VI - sin2 8
as the first two terms in a binomial expansion, 1- sin2 8/2. For small 8, there is very little error;
however, for 8 greater than 45°, tbere can be significant errors, thus limiting the effectiveness
of tbe simple parabolle equation method. This is shown in Figure 6. Kirby (1986) provides a
means to extend the parabolle method to wider angles of wave incidence.

2.4 Mild Slope Equation

Berkhoff (1972) introduced the mild-slope equation for the calculation of waves over mildly
sloping bathymetry. If tbe total potential is

A. _ ;. coshk(h + z) ;<1'
'I' - 'I' cosh kh e ,

then by integrating over depth, using the hyperbolic function as an integrating factor, this
three-dimensional elliptic equation reduces to an approximate two-dimensional equation of the
following form:

o ( {}(P) {} ( o(P) 2 -
ox CCg {}x + oy CCg oy + k CCglP= 0

Ifwe substitute 4> = A(x, y) e;S(:<oll), where the amplitude, A, and the phase, S, are real, then we
can separate the mild slope equation into two equations:

(2.30)

k2 _ IVSI2 V .CCg VA = 0
+ CC Ag

(
2 VS)V· CgA 0" IVSI = 0

(2.31)

(2.32)

The first equation is the eikonal equation, which provides the real wavenumber, VS, in terms
of the wavenumber k given from the dispersion relationship (2.7) and a correction term due to
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diffraction, resulting from local gradients in amplitude A and wave speed. The second equation
is a conservation equation for wave action (or wave energy in the absence of currents).

Ebersole (1985) solved these last two equations and the irrotationality condition (2.11) in
finite difference form, resulting in a model called RCPWAVE,which is used by the U.S. Army
Corps of Engineers. The disadvantage of RCPWAVE(and all models which use the irrotational­
ity condition, such as REFRACT) is the use of the irrotationality of the wavenumber condition,
which restricts the model to situations where the wave phase is single-valued, precluding am­
phidromic points in the phase and intersecting wave trains/.

The mild slope equation (2.30) has been solved a variety of ways. Finite element methods
were used first (e.g., Berkhoff, 1972; Bettess and Zienkiewicz,1977; Houston, 1981). For large
areas, these methods can lead to very large grids and matrices which must be inverted.

Radder (1979) introduced a parabolic representation of the mild slope equation, which had
the advantage of removing the downwave boundary condition, which is often unknown, while
still retaining the diffraction capabilities of the model. Kirby and Dalrymple (1983) introduced
a nonlinear parabolle representation, which included the third order Stokes correction to the
wave speed, leading to the development of the numerical code, REF/DIF. This model, which
neglects backscattered waves,only requires the efficient inverting of tri-diagonal matrices of the
size of the width of the model grid. Kirby and Dalrymple (1984) showed excellent agreement
between laboratory data of Derkhoff, Booij, and Radder (1982) and their model, particularly
when the nonlinear corrections were used. Other numerical codes exist, sueh as CREDIZ, from
the Rijkswaterstaat in the Netherlands and the model of Tsay and Liu (1989).

The mild slope equation has also been solved by separating it into three time-dependent
equations, a technique first used by Ito and Tanirnoto (1972). Copeland (1985) and Madsen and
Larsen (1987) present examples of this method. The advantages are that the elliptic equation
is replaced by equations similar to long wave equations and large matrices do not have to be
inverted, but, as Kirby and Rasmussen (1991) have pointed out, this methodology is valid only
for strictly periodic wave trains.

3 Energy Dissipation

Waves lose energy through a variety of processes, such as breaking (treated separately here),
interaction with the bottom and by reflection.

The steady-state conservation of wave energy flux is given by

(3.1)

The ftl is the energy dissipa.tionrate.

Bottom friction creates a loss of wave energy as the waves must work against the bot tom
shear stress, Tb. Here, ftl = 7Ï . Ub, where Ub is the wave-induced velocity at the bottom. For
waves in the x direction and a turbulent shear stress given by Tb = pfUbIUbl/8, where f is the
Darcy-Weisbach friction factor, see, e.g., Ka.mphuis(1975), Putnam and Johnson (1949) found
that

pfug
fd= --611"

(3.2)

2The problem arises in expressing the wave form in terms of an amplitude and a phase. If the wave form is zero
somewhere, then A is zero and Sis undefined and non-differential. Therefore the phase is no longer single valued.
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The loss of wave energy is also given by k;, which is the damping rate with distance of the
wave height, as given in this form

Using this equation in the conservation equation (3.1) gives

k·--~
1- 2CgE

Liu and Dalrymple (1984) examined the damping of wavesover a sandy bed and found that
the wave number is complex, k = (kr + ik;), due to the influence of the energy loss due to
the induced flow in the porous medium. Neglecting flowaccelerations, the complex dispersion
relationship for this case is

q2 = gktanhkh - iC':) (gk - u2tanhkh) (3.3)

Here, K is the soil permeability and v is the kinematic viscosity of the fluid. For small perme­
abilites, the real part of the wavenumber is unchanged from that given by the impermeable bed
case (2.7), while the imaginary part of the wave number is approximately

k; = 2 (uK/v) kr
2krh + sinh2krh (3.4)

See also Dalrymple and Dean (1984) for this case. Liu and Dalrymple also resolved the contra­
dictions between previous models for this problem.

Dalrymple, Kirby, and IIwang (1984) examine the inclusion of damping into the mild slope
equation (2.30), Iollowing the work of Dooij (1981).

(3.5)

where wis the dissipation term, related to (d, by wE = (d and k; for small k;, as w = 2Cgk;.
They further show various forms of k; for viscous muds, porous bottoms, surface films, laminar
bot tom boundary layers, and seaweed. Areas of extreme damping can cause the wavesto diffract
around such regions of damping. Figure 7 shows the wave field created by a rectangular region
representing an area of kelp, which are damping the waves.

4 Shallow Water Wave Equations

The above sections have referred to the solutions of the Laplace or mild slope equation, which
are best used for intermediate water depths. In shallowwater, which is defined as when the ratio
of water depth to wave length is small, h/L « 1/20, then other wave theories become more
efficient in describing the wave forms. This is not to say that solutions to Laplace equations are
incorrect in shallow water; indeed, the Stream Function wave theory of Dean (1965) is valid in
shallow water, but requires very high order wave theory.

The most common equation used in shallowwater are the Boussinesqequations. For variabie
depth, these equations are (Peregrine, 1967):

(4.1)
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Figure 7: Wave Field in and around Strong Damping Region. a) Contours of Transmission
Coefficient and b) Instantaneous Water Surface Elevation, from Dalrymple, Kirby and Hwang
(1984).·

8." 8(h + .,,)u
Ft + 8x = 0 (4.2)

For constant depth, the solitary wave and the cnoidal waves are solutions. For variabie depth
and a two dimensional problem, numerical solutions by a number of techniques are available.
Someof the more well-knowninclude that ofAbbott, Peterson and Skovgaard (1978)-the Jupiter
21 model.

If the initial wavefieldis expanded in terms of slowlyvarying (in x) Fourier modes, Boussinesq
equations yield a set of coupled evolution equations that predict the amplitude and phase of the
Fourier modes with distance. Field applications of the speetral Boussinesq theory show that
the model predictions agree very well with normally incident ocean waves (Freilich and Guza,
1984). Eigar and Guza (1986) show that the model is also able to predict the skewnessof the
shoaling wave field, which is important for sediment transport considerations. Liu, Yoon and
Kirby (1985) developed a parabolic approach to the Boussinesq equations to permit modelling
of directional seas.

Within the surf zone, wave breaking creates a radically different wave field. The nonlinear
shallow water equations, which predict waveswhich steepen and break in shallow water have
been used by Hibberd and Peregrine (1979) to predict bores in the surf zone. The methodology
involves numerical integrations with the Lax-Wendrof technique, which preserves 'shock' fronts
across the surf zone. Packwood (1983) added friction and permeability to this model, while
Ryrie (1983) allowed for oblique incidences. Engineering models of this method for regular and
irregular waves,including time dependent swashoscillations and set-up, have been developedby
Kobayashi, Otta, and Roy (1987) and Kobayashi, Cox, and Wurjanto (1990). Their models are
!BREAK and RBREAK.
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5 Wave Breaking

Waves become unstable in shallow water and will aften break. The historical criterion for wave
breaking is that the wave will break when the wave height is sorne fraction of the water depth,
Hb = ",hb, where the subscripts denote breaking values. The breaking index, «, is a function of
the bottom slope and wave steepness and ranges in value from 0.78 for horizont al bottoms to
over 1.5 on steeper slopes. The Share Protection Manual provides curves for the breaking
index versus slope and offshore wave steepness.

Within the surf zone, the energy flux equation (3.1) still holds; what is required is the
appropriate farm for the energy loss «(d) due to breaking.

The Dally, Dean, and Dalrymple (1985) model assumes that there is a stabie wave height
after breaking equal to some fraction of the water depth and that the rate of energy dissipation
in the surf zone is proportional to the difference between the actual wave energy flux and the
stabie wave energy flux, (EeG) •. The model has the following farm,

d~~G = _~ (EeG - (EeG).) (5.1)

The stabie wave height is given by H. = "'(h,where "'(is of order 0.4. Figure 8 shows a comparison
this model with data, using J( = 0.15. This model has been used in a variety of wave modeis,
such as REFfDIF.

For speetral wave breaking, the distribution of breaking waves has to be considered. Battjes
and Janssen (1978) truncated the Rayleigh wave height distribution at the breaking wave height
and utilized a turbulent bare model la dissipate wave energy. A turbulent bare (hydraulic jump)
dissipates energy as

(5.2)

where hl and h2 are the depth befare and after the bare, and q is the discharge per unit area.
Relating the water level difference to the wave height and introducing q = Cli] L for a periodic
bore, this dissipation is modified to

1 (BH?
(d = -pgu---

811' h (5.3)

B is a breaker coefficient of O(1), resulting from (h2 - hl) = BJI. The last step is the introduetion
of the probability distribution function for the breaking wave height, Pb( H), (Thornton and Guza,
1983) and integrating over all wave heights.

(5.4)

Utilizing field data, Thornton and Guza devised two different farms of the breaking wave proba­
bility distribution. The first was a simple model that permits analytic solutions for wave height
and the second provided a bet ter fit to the data. They are

Simple Model: (d = (5.5)

Complete Model: (d (5.6)
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Figure 9: Hrm. versus Distance Across the Surf Zone, from Thornton and Guza (1983)

The parameter -y is the empirical relationship between the rms wave height and the depth,
Hrm. = -yh, and -y is about 0.42.

For this model, the energy loss equation (3.1) is written in terms of the root-mean-square
wave height,

(5.7)

Figure 9 shows the shoaling and then the wave height decrease due to breaking across a real
beach using a model based on the complete breaking model. This shows that the rms wave
height is predicted very weilby the model.

6 Spectra} Models for Shoaling and Refraction

In the previous portion of this chapter, a singlewavetrain was discussed. However,in arealistic
sea state, the water surface can be decomposedinto a large number ofwavetrains with different
frequencies and directions. The sea state is then described by a spectrum. Studies of wave fields
(independent of direction) have lead to a variety of frequency spectra, S(u); for example, the
Pierson-Moscowitz, Bretschneider, JONSWAP, and Mitsuyasu spectra. As direction resolving
capabilies have improved, we now use directional spectra, which have the form, S(u,D). Most
often, S(u,D) is separated as S(u)D(u,D), where D(u,D) is the directional distribution of the
waves.

For shoaling of spectra from offshoreto the shoreline, two differentmethods have been used.
The first is to consider the shoaling of the spectra directly using the wave energy or the wave
action equation and the second has been to use the Boussinesqequations.

For simplified bathymetry, shoaling and refraction of spectra is relatively straightforward.
LeMéhaute and Wang (1982) show that the spectrum is shoaled over straight and parallel con­
tours by

S(u,O) = :~~ So (u, sin-1 [:0 sin0])

Freilich, Elgar and Guza (1990) showthat this simple model does reasonableweIl (within 30%)
for shoaling between 10 mand 4 m; however,wa.ve-waveinteractions due to wave nonlinearity
which are neglected in this model can be important. In Figure 10, the measured offshore and
inshore directional spectra are shown as contour plots. In Figure l1, the results given by the
linear transformation model (6.1) are shown.

(6.1)

Karlson (1969) was the first to developa finite differencemodel for the refraction of spectra
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from offshore to onshore. Due to the prevalenee of currents, most models now include the
refraction of the spectrum by currents as well as the bathymetry. Sakai, Koseki and Iwagaki
(1983) and Hirosue and Sakai (1986) solve the wave action equation using finite differences. The
total derivative ofthe wave action, defined here as A(x,y,O,t) is

(6.2)

where the velocity components Vx, VII are composed of the mean current components plus the
group velocity of the waves:

U+CgcosO
V +CgsinO

(6.3)
(6.4)

A new term in this expression is derivative with respect to 0, which accounts for changes in wave
direction. Assuming steady state conditions, V9 is found by carrying out the derivatives in the
irrotationality condition (2.11) to find OO/Dt (Brink-Kjaer, Christoffersen, and Jonsson (1984).

100' Dh k OÜ
V9 = -------

k Dh on kon (6.5)

where the normal (to the wave direction) derivative operator is

~ = (sinO~ - cosO~)Dn Dx oy (6.6)

For cornputational purposes, I1irosue and Sakai (1986) used the wave action at the offshore
boundary in terms of 18discrete directions and 19 frequency bins and all wave action was assumed
to propagate in the onshore direction. The values of the wave action on the next onshore grid
line is computed by solving finite difference approximations to (6.2) for each direction and each
frequency range.

Booij, Holthuijsen, and Herbers (1985) and Holthuijsen and Booij (1990) use the wave action
equation method, but in a simplified form by integration of the steady state wave action equation
(6.2) over frequency. Two wave action moments are defined:

(6.7)

(Note that a mean frequency is defined by 0'0 = mt/mo.) Two differential equations are obtained
by integrating the wave action equation for with weights of O'n, n = 0,1. Using finite difference
representations, these equations, including additional terms for wind generation, bottom friction
and wave blocking, which is the stopping of waves by opposing currents, are solved. This is the
HISWA model.

Collins (1972) and Abernethy and Gilbert (1975), for the case of no currents, and Mathiesen
(1984), Brink-Kjaer (1984), and Yamaguchi and Hatada (1990), with currents, use the fact that
the wave action is conserved along wave rays to develop backward ray tracing modeis, which
involve computing rays for numerous pairs of frequency and direction from a given point to the
offshore boundary, where boundary values of the wave spectrum are given. By summing over
all pairs of frequencies and directions, the local wave spectrum is determined at the point of
interest. This is very labor intensive; for a calculation of the refraction due to a current eddy,
Mathiesen (1987) used 1450 rays per point!
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Parabolle speetral shoaling modeis, involving the superposition oflinear solutions to the mild
slope equation of many different frequencies, have been carried out by Panchang, Wei, Pearce
and Briggs (1990) for comparison to laboratory wave data. A linear parabolic model was run
for many directions and frequencies. The amplitude of a wave within a frequency/direction bin
was given by .j2E(u)D(O)t:..ut:..fJ. The results of the many model runs were summed at a given
location for the significant wave height,

n

H2 = '" H2• L...., I;=1
(6.8)

where n is the number of model runs used (up to 615). They found good agreement with the
laboratory data. Another method was used by O'Reilly and Guza (1991), who computed the
response at different locations to unit amplitude waves of different directions for a given frequency.
This provides the impulse response function for that direction/frequency. Once the impulse
response function is known, then any given offshore directional spectrum can be converted to a
shallow water directional spectrum, including the effects of diffraction (if the nonlinearities in
the wave field may be neglected). More work needs to be carried out in the use of parabolic
models for speetral calculations.

7 References

Abbott , M.D., H.M. Petersen and O. Skovgaard, "On the Numerical Modelling of Short Waves
in Shallow Water," J. Hydraulic Research, 16, 173-204, 1978_

Abernethy, C.L. and G. Gilbert, "Refraction of Wave Spectra," Rpt. INT 117, Hydraulics
Research Station, Wallingford, 1975.

Airy, G.B., "Tides and Waves," Encyclopedia Metropolitana, 1845.

Battjes, J.A. and J.P.F.M. Janssen, "Energy Loss and Set-up due to Breaking of Random
Waves," Proc. 1(j1h Inti. Conf. Coastal Engrg., ASCE, 1978.

Berkhoff, J.C.W., "Computation of Combined Refraction-diffraction," Proc. 1:1h Inti. Coastal
Engrg. Conf., ASCE, Vancouver, 471-490,1972_

Berkhoff, J.C.W., N. Booij, and A.C_ Radder, "Verification of Numerical Wave Propagation
Models for Simple Harmonie Linear Water Waves," Coastal Engrg_,6, 255-279, 1982.

Bettess, P. and O.C. Zienkiewicz, "Diffraction and Refraction of Surface Waves Using Finite
and Infinite Elements," Int. J. Num. Methode in Engrg., 2, 1221-1290, 1977_

Booij, N., Gravity Waves on Water with Non-uniform Depth and Current" Ph.D. disc., Tech.
Univ. of Delft, the Netherlands, 1981.

Booij, N., L_Holthuijsen and T.H.C_ Herbers,"A Numerical Model for Wave Boundary Condi­
tions in Port Design," Proc. Intl. Conf. Num. and Hçd. Modelling of Ports and Harbours,
Birmingham, U.K., BHRA, 263-268, 1985.

Bretherton, F.P. and C.J.R. Garrett, "Wavetrains in Inhomogeneous Moving Media," Proc.
Roy. Soc. London, A, 302, 529-554, 1968.

4-20



WAVE PROPAGA1l0N IN SHALLOWWATER 89

Brink-Kja.er,0., "Depth-current Refraction ofWaveSpectra," Proc. Symposium on Description
and Modelling of Directional Seas, Tech. Univ. Denmark. C7, 1984.

Brink-Kja.er,0., J. B. Christoffersenand l.G. Jonsson, discussionof "Irregular WaveRefraction
due to Current," J. Hydraulic Engry., ASCE, UO, 12, 1871-1873,1984.

Collins, J.I., "Prediction of ShallowWater Spectra," J. Geophys. Res., 77, 15,2693-2707,1972.

Copeland, G.J .M., "A Practical Alternative to the Mild-slope Equation," Coastal Engry., 9,
125-149,1985.

Dally, W. R., R. G. Dean and R. A. Dalrymple, "Wave Height Variation Across Beaches of
Arbitrary Profile," J. Geophysical Research, 90, C6, 11917-11927,1985.

DaJrymple, R.A., "Model for Refraction of Water Waves," J. Waterway, Port, Coastal, and
Ocean Engry., ASCE, 114,4,423-435, 1988.

Dalrymple, R.A., REFRACT: A Refraction Program for Water Waves, Center for Applied
Coastal Research, Rept. 91-09, University of Delaware,199!.

Dalrymple, R.A., J.T. Kirby, and P.A. Hwang, "Wave Diffraction Due to Areas of Energy
Dissipation," J. Waterway, Port, Coastal and Ocean Engry., ASCE, 110, 1,67-79, 1984.

Dean, R.G., "Strearn Function Representation of Nonlinear Ocean Waves," J. Geophys. Res.,
70,18,4561-4572, 1965.

Dean, R.G. and R.A. Dalrymple, Water Wave Mechanica for Engineers and Scientists,
Prentice-Hall, 1984;2nd Printing, World Scientific, 1991.

Ebersole, B.A., "Refraction-diffraction Model for Linear Water Waves," J. Waterways, Port,
Coastal and Ocean Engry." 111,939-953, 1985.

Elgar, S. and R.T. Guza, "Shoaling Gravity Waves: Comparison Between Field Observations,
Linear Theory and a Nonlinear Model," J. Fluid Mechanics, 158,47-70, 1985.

Freilich, M.H. and R.T. Guza, "Nonlinear Effects on Shoaling Surface Gravity Waves," Phil.
Trans. Roy. Soc. London, A, 31, 1-41, 1984.

Freilich, M.H., R.T. Guza and S.L. Elgar, "Observations of Nonlinear Effects in Directional
Spectra of ShoaJingGravity Waves," J. Geophys. Res., 95, C6, 9645-9656,1990.

Hibberd, S. and D. H. Peregrine, "Surf and Run-up on a Beach: A Uniform Bore," J. Fluid
Mechanics, 95, 2, 323-345,1979.

Hirosue, F. and T. Sakai, "Directional Spectra in current-depth Refraction," Proc. 2r1" Inti.
Coastal Eng. Conf., ASCE, Taipei, 247-260, 1986.

Holthuijsen,1. and N. Booij, "Grid Model for ShallowWater Waves," Proc. 2r1" Inti. Coastal
Eng. Conf., ASCE, Taipei, 261-270, 1986.

Houston, J.R., "Combined Refraction-diffraction of Short Waves Using the Finite Element
Method," Applied Ocean Res., 3, 163-170,1981.

Horikawa,K. and C.T. Kuo, "A Study of WaveTransformatiens Inside Surf Zone," Proc. lr1h
Inti. Coastal Engry. Conf., ASCE, 1966.

4-21



90 ROBERT A. DALRYMPLE, F. ASCE

Ito, T. and K. Tanimoto, "A Method of Numerical Analysis of Wave Propagation-Application
to Wave Diffraction and Refraction ," Proc. l:1h Intl. Coostal Engrg. Conf., ASCE,
Vancouver, 502-522, 1972.

Jonsson, l.G. and J.B. Christoffersen, "Current Depth Refraction of Regular Waves," Proc.
uP Inti. Coastal Engrg. Conf., ASCE, Houston, 1984.

Kamphuis, J.W., "Friction Factor under Oscillatory Waves," J. Waterway, Harbars and Coastal
Engrg. Div., ASCE, 101, 135-144, 1975.

Karlson, T., "Refraction of Continuous Ocean Wave Spectra," J. Waterways and Harbor Div.,
ASCE, 95, WW4, 437-448,1969.

Kirby, J.T., "Rational Approximations in the Parabolle Equation Method for Water Waves,"
Coostal Engrg., 10, 355-378, 1986.

Kirby, J.T. and R.A. Dalrymple,"A Parabolic Equation for the Combined Refraction-Diffraction
of Stokes Waves by Mildly Varying Topography," J. Fluid Mechanics, 136,453-466, 1983.

Kirby, J.T. and R.A. Dalrymple, "Verification of a Parabolic Equation for Propagation of
Weakly-nonlinear Waves," Coostal Engrg., 9, 219-232, 1984.

Kirby, J.T. and C. Rasmussen, "Numerical Solutions for Transient and Nearly Periodic Waves
in Shallow Water," Proc. ASCE Engrg. Mech. Specialty Conf., Columbus, 328-332, 1991.

Kobayashi, N., A.K. Otta and I. Roy, "Wave Reflection and Run-up on Rough Slopes," J.
Waterway, Port, Coastal and Ocean Engrg., ASCE, 113, 3, 282-298, 1987.

Kobayashi, N., D.T. Cox and A. Wurjanto, "Irregular Wave Reflection and Run-up on Rough
Impermeable Slopes," J. Waterway, Port, Coastal and Ocean Engrg., 116, 6, 708-726,
1990.

Lee, J.J., "Wave Induced Oscillation in Harbors of Arbitrary Geometry," J. Fluid Mech., 45,
375-394, 1971.

Le Méhaute, B. and J.D. Wang, "Wave Spectrum Changes on Sloped Beach," J. Waterway,
Port, Coastal and Ocean Engrg., ASCE, 108,33-47, 1982.

Liu, P.L.-F. and R.A. Dalrymple, "The Damping of Gravity Water Waves Due to Percolation,"
Coostal Engrg., 8, 33-49, 1984.

Liu, P.L.-F., S. B. Yoon and J. T. Kirby, "Nonlinear Refraction-Diffraction of Waves in Shallow
Water," J. Fluid Mechanics, 153, 184-201, 1985.

Madsen, P.A. and J. Larsen, An Efficient Finite-difference Approach to the Mild-slope Equa­
tion," Coastal Engrg., 11,329-351, 1987.

Mathiesen, M., "Current-depth Refraction of Directional Wave Spectra," Proc. Symposium on
Description and Modelling of Directional Seas, Tech. Univ. Denrnark, C6, 1984.

Munk, W.H. and R.S. Arthur, "Wave Intensity along a Refra.cted Ray in Gravity Waves," Natl.
Bur. Standards Circ. 521, Washington, D.C., 1952.

Noda, E.K., "Wave-induced Nearshore Circulation," J. Geophys. Res., 79, 27, 4097-4106, 1974.

4-22



WAVE PROPAGATION IN SHALLOW WATER 91

O'Reilly, W.C. and R.T. Guza, "Comparison of Speetral Refraction and Refraction-diffraction
Wave Modeis," J. Waterway, Port, Coastal and Ocean Engrg., ASCE, 117, 3, 199·215,
1991.

Packwood, A.R., "The Inftuence of Beach Porosity on Wave Uprush and Backwash," Coostal
Engrg., 7, 29·40,1983.

Panchang, V.J., G. Wei, B.R. Pearce and Michael J. Briggs, "Numerical Simulation of Irregular
Propagation over Shoal," J. Waterway, Port, Coostal and Ocean Div., ASCE, 116, 3, 324-
340,1990.

Penney, W.G. and A.T. Price, "The Diffraction Theory of Sea Waves and the Shelter Afforded
by Breakwaters," Philos. Trans. Roy. Soc., A, 244(882), 236·253, 1952.

Peregrine, D.H., "Long Waves on a Beach," J. Fluid Mechanics, 27, 815-827,1967.

Perlin, M. and R.G. Dean, "An Efficient Numerical Algorithm for Wave RefractionjShoaling
Problems," Proc., Coostal Structures '89, ASCE, Arlington, Va., 988-1010,1983.

Putnam, J.A. and J.W. Johnson, "The Dissipation of Wave Energy by Bottom Friction," Trans.
American Geophys. Un., 30, 67-74,1949.

Radder, A.C., "On the Parabolic Equation Method for Water-Wave Propagation," J. Fluid
Mechanics, 95, 159-176,1979.

Ryrie, S.C., "Longshore Motion Generated on Beaches by Obliquely Incident Bores," J. Fluid
Mechanics, 129, 193-212, 1983.

Sakai, T., M. Koseki and Y. Iwagaki, "Irregular Wave Refraction due to Current," J. Hydraulic
Engrg., ASCE, 109,9, 1203-1215, 1983.

Sommerfeld, A., "Mathematische Theorie der Diffraction," Math. Annalen, 47, 317-374, 1896.

Thornton, E.B. and R.T. Guza,"Transformation of Wave Height Distribution," 88, C10, 5925-
5938,1983.

Tsai, T.-K. and P.L.-F. Liu, "Numerical Model Computing Wave Propagations in an Open
Coast," U.S. Army Corps of Engineers, M.P. CERC-89-14, Coastal Engrg. Res. Center,
Vicksburg, 244 pp., 1989.

U.S. Army Corps of Engineers, Shore Protection Manual, CoastaJ Engrg. Research Center,
U.S. Government Printing Office,Washington, D.C., 2 Vols., 1984.

Yamaguchi, M. and Y. Hatada, "A Numerical Model for Refraction Computation of Irregular
Waves due to Time-varying Currents and Water Depth," Proc. 2f!'d Inti. Coostal Engrg.
Conf., ASCE, Delft, 205-217,1990.

4-23



92 ROBERT A. DALRYMPLE. F. ASCE

8 Symbols

A = wave number component; amplitude of potential
B = wave number component: breaking coefficient
C = wave celerity (speed)
Cg group velocity
H wave height
J( soil permeability
K. shoaJing factor
L = wave length
S wave phase function; spectrum
T = wave period
U = mean current component in x direction
V mean current component in y direction
a wave amplitude
f friction factor
9 acceleration of gravity
h = water depth
k wave number
n = c.tc
p probability
s ray distance
Uh = bot tom velocity
w dissipation term (Booij)
x = horizontal coordinate direction
y horizontal coordinate direction
z = verticaJ coordinate direction
f3 ray spacing
(d energy dissipation
Ti water surface displacement
'"Y = breaking index
11 fluid viscosity
w absolute wave frequency (fixed observer)
4> velocity potential
p fluid density
(1 angular frequency
(J = wave direction
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