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This paper introduces a methodology to disentangle the hedging error associated with the hedging
of exotic derivatives, whose payment time is unknown at inception. We derive the mathematical rep-
resentation for a one-dimensional setting: we identify and characterize the hedging error and discuss
the economic intuition of hedging error as a generalized timing risk. We then provide its mathe-
matical integral representation to: (i) disentangle the hedging error into a specific set of positions in
barrier options, (ii) re-iterate the procedure to the second order to reduce the hedging error cost. We
provide an illustrative example via a dedicated numerical study. From a theoretical point of view,
this paper states the foundations for future extensions in the directions of: (i) building a general mul-
tidimensional framework, (ii) re-iterating the procedure to higher orders, (iii) investigate the bridge
with advanced analytics methodologies and techniques.

Keywords: Timing risk; Barrier options; Semi-static hedge; Hedging error

1. Introduction

The uncertainty characterizing financial markets renders both
pricing and hedging activities crucial from a risk manage-
ment perspective (Carr et al. 1998, Carr and Wu 2014, Der-
man et al. 1994, Engelmann et al. 2006, Milne and
Madan 1994, Carr and Madan 2001). In the context of trad-
ing, the payoff of many OTC exotic derivatives occurs at a
random time τ when the underlying asset price crosses a cer-
tain barrier. Depending on the type of derivative, the random
time at which the payment will occur is not known, even if,
in some cases, the amount to be paid is known (e.g. con-
stant payment). In Carr and Picron (1999), the authors show
how a static position in plain vanilla European options could
be used to hedge against this timing risk component in the
case of barrier options. The authors show how to decompose
the timing risk component into an integral (w.r.t. maturity) of
knock-in options by considering a calendar-spread approach.
Calendar spread refers to hedging via a portfolio composed of
derivatives with different maturities. As an alternative, strike-
spread refers to a portfolio of path-independent options with
different strikes (and same maturity). The paper by Bowie
and Carr (1994) introduces a strike-spread approach under

∗Corresponding author. Email: f.barsotti@tudelft.nl,
f.barsotti@uva.nl

a one-dimensional Black–Scholes setting, which provides a
perfect hedge, e.g. no hedging error. It represents the first con-
tribution studying a static hedge of single barrier options and
look-back options. Other contributions have extended their
results by taking into account: (i) dividend paying underlying
assets (Carr and Chou 1997a), (ii) more complex distributions
for the underlying asset dynamics (Chou and Goergiev 1998),
(iii) multiple barrier options (Carr and Chou 1997b). As a
common feature, in some of these cases, the reflection prin-
ciple of Brownian motion and put-call symmetry arguments
play a central role (Carr and Lee 2009). In the same direction,
the work by Carr and Nadtochiy (2011) provides an elegant
mathematical solution to the problem in the one-dimensional
setting. Among contributions on calendar-spread approaches,
the work by Derman et al. (1995) introduces the concept of
static hedge via options with distinct maturities, and more
recently the article by Kim and Lim (2021) nicely reduces the
problem to solving an integral equation.

The present paper introduces an alternative methodology to
identify the timing risk component associated with the hedg-
ing of exotic derivatives as defined in Carr and Picron (1999),
decompose it into a specific set of positions in barrier options
and then build a semi-static hedge à la Bowie and Carr (1994)
for each hedging option. The proposed economic intuition
behind the concept of timing risk is key to: (i) enable disen-
tangling the hedging error into specific components, (ii) build
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a general framework where the procedure can be re-iterated
to higher orders.

In order to illustrate this intuition and its implementation,
the present paper considers knock-in barrier options under
a one dimensional setting. We identify and characterize the
(first order) hedging error and discuss the economic intu-
ition of hedging error as a generalized timing risk. We then
provide its mathematical integral representation to: (i) dis-
entangle the hedging error into a specific set of positions in
barrier options, (ii) re-iterate the procedure to the second order
to reduce the hedging error cost. We provide an illustrative
example and a dedicated numerical analysis. From a theoret-
ical point of view, the proposed methodology represents the
basis to build extensions in the direction of a general multi-
dimensional framework and procedure re-iteration to higher
orders.

The paper is organized as follows: section 2 defines the
mathematical framework underlying the concept of timing
risk, its value and its decomposition. Section 3 introduces the
proposed methodology to represent the hedging error as a gen-
eralized timing risk: it describes how to identify the first-order
hedging error and how to re-iterate the hedging procedure
to the second order. Section 4 provides an illustrative exam-
ple and a simulation study. Section 5 gives some concluding
remarks and discusses future research directions.

2. The value of timing risk and its decomposition

The payoff of many exotic derivatives occurs at the first pas-
sage time of the underlying asset price to a constant barrier.
Depending on the type of derivative, even if in some cases the
amount to be paid could be known (e.g. constant payment),
the random time at which the payment will occur is not. The
concept of timing risk introduced in Carr and Picron (1999)
refers to the uncertainty associated with the payment time
linked to the derivative contract conditions. In its essence,
the concept of timing risk can be mathematically represented
as a random variable, whose present value can be formu-
lated as a discounted expectation. For a generic time t ≥ 0,
definition 2.1 provides a mathematical formulation for the
value of timing risk.

Definition 2.1 (The Value of Timing Risk) Let r > 0 be the
constant risk-free rate of the economy, τ a stopping time, T the
finite maturity of the exotic derivative and {Ft} the filtration.
Let Trt(τ , T) denote the value of timing risk, computed as the
present value at time t of one unit paid at random (stopping)
time τ :

Trt(τ , T) := 1{t≤τ }E[e−r(τ−t)1{τ≤T}|Ft], (1)

with 1{·} denoting the indicator function.

A timing risk decomposition is possible by means of inte-
gration by parts formula. In Carr and Picron (1999), the
authors discuss the Black–Scholes case. Building on this
idea, we derive analytic results for a one-dimensional set-
ting (section 3): we identify the hedging error and discuss the
economic intuition of hedging error as a generalized timing
risk. We then provide its mathematical formalization to: (i)

disentangle the hedging error into a specific set of positions
in barrier options, (ii) re-iterate the procedure to reduce the
hedging error. Proposition 2.2 states the timing risk decompo-
sition result for the case of finite maturity T and discusses the
limiting behavior for T → ∞.

Proposition 2.2 (Timing Risk Decomposition) Let us ass-
ume P(τ < s|Ft) to be continuously differentiable in variable
s, and

P(τ < ∞) = lim
t→∞ P(τ < t) = 1.

The value of timing risk Trt(τ , T) at time t given in
equation (1) has the following expression for finite maturity T:

Trt(τ , T) = 1{t≤τ }

{
e−r(T−t)

E[1{τ≤T}|Ft]

+
∫ T

t
e−r(s−t)

E
[
1{τ≤s}|Ft

]
r ds

}
. (2)

Letting T → ∞, the value of timing risk Trt(τ , T) tends to:

lim
T→∞

Trt(τ , T) = 1{t≤τ }
∫ ∞

t
E
[
e−r(s−t)1{τ≤s}|Ft

]
r ds. (3)

Proof The result in equation (2) directly follows by apply-
ing integration by parts formula to equation (1). Assumption
P(τ < ∞) = 1 implies the result given in equation (3). �

The value of timing risk at time t can be disentangled into
the sum of distinct components: (i) the value of a European
cash-or-nothing knock-in option with payoff 1 at maturity T,
(ii) the integral of European cash-or-nothing knock-in options
with payoff r ds at maturity s. Notice that the integral implies
a continuum of options with maturities s ∈ [t, T]. Formalizing
this economic intuition is the basis we consider to extend the
timing risk representation to the concept of hedging error and
to build its decomposition based on re-iterating the procedure.

3. Hedging error and timing risk

This section introduces the mathematical foundation to rep-
resent the hedging error as a generalized timing risk. The
value of timing risk at generic time t in equation (2) enables
to (i) formalize its mathematical representation as discounted
expectation, depending on the random time τ , (ii) disentangle
it into specific components allowing to identify specific risk
drivers. Leveraging on this, we consider an economic agent
holding a position on an exotic derivative and implementing
a hedging strategy. We identify the hedging error associated
with the strategy and introduce its mathematical representa-
tion as generalized timing risk. Subsequently, we introduce a
methodology to re-iterate the procedure to the second order
and reduce the hedging cost.

Let us consider the case of an agent holding a position
on a specific exotic derivative, whose payment will occur
at random time τ coinciding with the underlying asset price
crossing a constant barrier K. From a theoretical point of view,
we consider the payment at random time τ as described by
the payoff function f. In general terms, this contract is asso-
ciated with a barrier K triggering the payment of a specific
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payoff at random time τ , with τ indicating the instant at
which the underlying asset price, namely Xt, crosses the bar-
rier. If a hedging strategy h is in place, the cost associated with
the strategy can be measured via the related hedging error.
Definition 3.1 introduces the mathematical representation of
the hedging error value as discounted expectation.

Definition 3.1 (Hedging Error) Let r > 0 be the constant
risk free rate of the economy, τ a stopping time, T the finite
maturity of the exotic derivative and {Ft} the filtration. Let
He1

t (τ , T) denote the hedging error, computed as the present
value at time t of the hedging error He1

τ (τ , T) at random
(stopping) time τ :

He1
t (τ , T) := 1{t≤τ }E[e−r(τ−t)He1

τ (τ , T)|Ft], (4)

with He1
τ (τ , T) given by

He1
τ (τ , T) := E[e−r(T−τ)ph(XT )1{τ≤T}|Fτ ], (5)

where XT is the underlying asset price at T, and function ph

is the payoff obtained in the case τ ≤ T according to the
hedging strategy h.

Remark 3.2 (Hedging Error as Generalized Timing Risk)
This paper introduces the economic intuition of hedging error
as a generalized timing risk. In equation (4) it is shown that
the value of the hedging error at time t is equivalent to the dis-
counted price of a pseudo-option with payoff ph(XT ). We refer
to equation (4) as the mathematical representation of the hedg-
ing error as a generalized timing risk, since the same structure
of equation (1) is derived. Notice that equation (4) embeds
not only the timing risk uncertainty associated with the ran-
dom time τ , but also to the payment level, associated with
the stochastic nature of Xt and the resulting final (uncertain)
payoff ph(XT ).

Let us see how the hedging strategy can be built and how
to derive the resulting first-order hedging error to fully char-
acterize its expression in equation (4) for a specific case. We
refer to ‘first-order hedging error’ as we will introduce ‘sec-
ond order’ one later. As illustrative example, we consider
the case of a knock-in option in a one-dimensional setting
(ref. assumptions 3.3) and derive the hedging error resulting
from the implementation of the hedging strategy. The results
can be extended via symmetrization arguments to the case of
knock-out barrier options.

Assumption 3.3 Let us consider a time homogeneous one-
dimensional diffusion and denote a general price func-
tion (natural-scaled process) with St := �(Xt), where Xt is
the underlying asset price, and � is the Lamperti trans-
form (Lamperti 1962, Karatzas and Shreve 1991). We assume
that �−1 is a real-valued function with at most exponential
growth (i.e. log |f | is with at most linear growth).

The state variable process St satisfies the following stochas-
tic differential equation (SDE):

dSt = d(�(Xt)) = b(St) dt + dWt, S0 = x0, (6)

where Wt is a one-dimensional Wiener process under the risk-
neutral measure, and b is a globally Lipschitz continuous
function. The risk-free rate in the economy is r > 0.

The remainder of the paper considers the hedging error
and its related quantities as directly dependent on the natural-
scaled process St.

Remark 3.4 Examples of underlying asset price processes Xt

enabling to apply our setting are Geometric Brownian motion
and the exponential of Ornstein–Uhlenbeck process. More
generally, if Xt satisfies

dXt = μ(Xt) dt + σ(Xt) dWt,

where μ(Xt) and σ(Xt) represent drift and volatility, we can
retrieve the setting described in assumption 3.3 under specific
conditions for the existence of the Lamperti transform (Lam-
perti 1962) and its inverse.

Let us consider a knock-in option written on the underlying
asset price Xt and work with its natural scaled process St =
�(Xt) whose SDE is given in equation (6). Let us suppose
that the knock-in condition is triggered if St hits the barrier K
before the maturity T. Let S0 > K, and τ be the first hitting
time of St crossing K, defined as

τ = inf{t : St = K}. (7)

At maturity T, the option payoff is

f (ST )1{τ≤T} (8)

with f measurable function on the real line with at most
exponential growth.

Remark 3.5 The results derived by Menozzi et al. (2021)
ensure the integrability condition E[|f (ST )|] < ∞ when f is
a measurable function with at most exponential growth and
drift b in equation (6) satisfies global Lipschitz continuity.

Definition 3.6 (Hedging Instruments) We define the hedg-
ing instruments with payoff functions:

fK+(ST ) := f (ST )1{ST >K},

fK−(ST ) := fK+(2K − ST ) = f (2K − ST )1{ST ≤K}, (9)

associated with options having a non-zero outcome in distinct
complementary cases, i.e. 1{ST >K}, 1{ST ≤K}.

3.1. The first-order hedging error

This section introduces the formal mathematical representa-
tion of the first-order hedging error. In order to do this, we
first introduce the definition of a specific hedging strategy h1

à la Bowie and Carr (1994) and then build the corresponding
hedging error.

Definition 3.7 (First-Order Hedging Strategy h1) We define
the first-order hedging strategy h1 based on the following
steps:

(1) at inception, t = 0, the agent buys path-independent
options with payoff functions f (ST )1{ST ≤K} and
fK−(ST );
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Table 1. First-order hedging strategy h1.

Strategy h1 t = 0 τ

Buy f (ST )1{ST ≤K} fK+(ST )

fK−(ST )

Sell fK−(ST )

Net position f (ST )1{ST ≤K} + fK−(ST ) fK+(ST ) − fK−(ST )

Note: The table reports the structure of the hedging strategy h1

introduced in definition 3.7 and associated with the first-order
hedging error.

Table 2. Payoff at maturity T.

Knock-in
time τ ,
Maturity T if τ < T if τ > T

Payoff at
maturity T

f (ST )1{ST ≤K} + fK+(ST )= f (ST ) 0

Note: The table provides an overview of the payoff at maturity T,
as a result of the implementation of the first-order hedging strategy
h1 reported in table 1.

(2) at the knock-in (random) time τ , the agent sells the
latter option with payoff fK−(ST ) and buys the option
with payoff fK+(ST ).

Table 1 reports the structure of the hedging strategy and the
net position both at inception t = 0 and at the random hitting
time τ . Based on the implementation of h1, table 2 reports the
mathematical formulation of the payoff at maturity T, depend-
ing on the knock-in triggering event being before or after the
maturity:

• if τ < T , the option to be hedged has been
knocked-in, thus the hedging strategy h1 provides
f (ST )1{ST ≤K} + fK+(ST ) at maturity T ;

• if τ > T , the two options bought at inception give
a null payoff at maturity T.

Case 3.1 provides the analytic expression of the payoff at
maturity and the corresponding hedging instruments in the
case of a put-option. Results for the case of a call option
can be derived analogously by means of put-call symmetry
arguments.

Case 3.1 Put option. Let us consider the case of a plain-
vanilla put option written on XT at maturity T. In this special
case, function f in equation (8) becomes:

f (ST ) = max(K ′ − �−1(ST ), 0),

with K ′ strike price and � natural scale function. Recall-
ing the option barrier K, we have 0 < K ′ < 2K; based on
definition 3.1, by means of equation (9), we define the cor-
responding hedging instruments as:

fK+(ST ) = max(K ′ − �−1(ST ), 0)1{ST >K},

fK−(ST ) = fK+(2K − �−1(ST ))

= max(K ′ − 2K + �−1(ST ), 0)1{ST ≤K}. (10)

Note that f and fK+ are bounded functions, while fK− is a
function with at most exponential growth w.r.t. ST .

Proposition 3.8 Let us consider a generic payoff function f
and assume it is a measurable function with at most exponen-
tial growth. Under assumption 3.3 for the underlying asset
dynamics, the mathematical representation of the correspond-
ing first-order hedging error is given as

He1
τ (τ , T) = E[e−r(T−τ)ph1(ST )1{τ≤T}|Fτ ], (11)

with

ph1(ST ) = fK+(ST ) − fK−(ST ), (12)

where h1 is the first-order hedging strategy introduced in
definition 3.7, functions fK+, fK− are given in equation (9) and
ST is the scaled underlying asset value at T, following the SDE
in equation (6).

Proof The proof of the results follows by considering: (i)
definition 3.1, and (ii) the implementation of the hedging strat-
egy reported in table 1, for the resulting error at random time
τ . Computing the hedging error at time τ < T means com-
puting the expected value of the net position at time τ for the
hedging strategy h1. The net position is given in table 2 and
the hedging error at random time τ is computed as:

He1
τ (τ , T) = E[e−r(T−τ)(fK+(ST ) − fK−(ST ))1{τ≤T}|Fτ ].

�

By leveraging on the economic intuition of hedging error as
a generalized timing risk, theorem 3.11 provides the integral
representation of the hedging error by extending the valid-
ity of the timing risk decomposition in equation (2) to the
first-order hedging error. Definition 3.9 introduces the oper-
ator Jt. Proposition 3.8, definition 3.9 and lemma 3.10 enable
to prove the main result stated in theorem 3.11.

Definition 3.9 Given t > 0, x ∈ R, let Jt be the operator
defined as

Jtg(x) := b(x)
∫

R
∂yp(t, x, y)(g(y)1{y>K}

− g(2K − y)1{y≤K}) dy, (13)

with g being a measurable function with at most exponen-
tial growth, b the drift in SDE equation (6), K the barrier for
the knock-in condition in equation (7) and p(t, x, y) the Gaus-
sian kernel representing the transition density of a Brownian
motion, given by

p(t, x, y) := P(Wt ∈ dy|W0 = x)/dy

= 1√
2π t

exp

(
− (x − y)2

2t

)
. (14)

Lemma 3.10 Let g(·) be a function on R with at most expo-
nential growth. Suppose that, at inception, the Brownian
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motion satisfies W0 > K. Then, for any fixed time t > 0, we
have:

g(Wt)1{τW <t} = u(t, W0) − v(t, W0) +
∫ t

0
(∂xu(t − s, Ws)

− ∂xv(t − s, Ws)1{s≤τW }) dWs, (15)

where

u(t, x) =
∫

R

1√
2π t

e− (x−y)2

2t g(y) dy,

v(t, x) =
∫ ∞

K

1√
2π t

(
e− (x−y)2

2t − e− (2K−x−y)2

2t

)
g(y) dy,

τW := inf{s > 0, Ws = K}.
Proof Observe that

E[g(Wt)1{τW <t}|W0 = x]

= E[g(Wt)|W0 = x] − E[g(Wt)1{τW >t}|W0 = x]

= u0(t, x) − v0(t, x),

where u0 and v0 are the unique solutions of

∂tu − 1

2
∂2

x u = 0, u(0, x) = g(x), u ∈ C1,2(R)

and

∂tv − 1

2
∂2

x v = 0, v(0, x) = g(x), lim
x→K

v(t, x) = 0,

v ∈ C1,2((K, ∞)),

respectively. We have u = u0 and v = v0, the latter being
the consequence of the reflection principle. Applying Itô’s
formula to u(t − s, Ws) and v(t − s ∧ τW , Ws∧τW ) and letting
s → t, we obtain

g(Wt) = u(t, W0) +
∫ t

0
∂xu(t − s, Ws) dWs,

and

g(Wt)1{τW >t} = v(t, W0) +
∫ t∧τW

0
∂xv(t − s, Ws) dWs,

respectively. Thus we obtain (15). �

We now state the main result in theorem 3.11 and its
corollary 3.13 on the integral representation of the first-order
hedging error for the case of knock-in options.

Theorem 3.11 (First-Order Hedging Error: Integral Repre-
sentation) Under assumption 3.3, the first-order hedging error
He1

t (τ , T) evaluated at time t ≤ T has the following integral
representation:

He1
t (τ , T) = 1{t≤τ }

∫ T

t
e−r(T−s)

E[e−r(s−t)

× 1{τ≤s}JT−sf (Ss)|Ft] ds, (16)

with f measurable function with at most exponential growth
and operator Jt introduced in definition 3.9.

Proof We can write

He1
t (τ , T) = 1{t≤τ }E[e−r(τ−t)He1

τ (τ , T)|Ft]

based on proposition 3.8. Considering equation (11), we can
write:

He1
t (τ , T) = 1{t≤τ }e−r(T−t)

E[(fK+(ST ) − fK−(ST ))1{τ≤T}|Ft]

and from the Markov property of St, it is sufficient to
prove the formula for t = 0. By means of Cameron–Martin–
Maruyama–Girsanov theorem (Rogers and Williams 2000),
we have:

E[(fK+ − fK−)(ST )1{τ≤T}|S0 = x]

= E[(fK+ − fK−)(WT )1{τW ≤T}

× e
∫ T

0 b(Ws) dWs− 1
2

∫ T
0 (b(Ws))

2ds|W0 = x] (17)

for any x > K, where

τW := inf{t > 0 : Wt = K}.

Note that Cameron–Martin–Maruyama–Girsanov theorem is
valid for the linear growth b (see Beneš 1971 and Karatzas
and Shreve 1991, Corollary 3.5.16). By lemma 3.10, we write:

(fK+ − fK−)(WT )1{τW ≤T}

= E[(fK+ − fK−)(WT )1{τW ≤T}|W0 = x]

+
∫ T

0
(∂xu(T − s, Ws) − ∂xv(T − s, Ws)1{s≤τW }) dWs,

= u(T , W0) − v(T , W0) +
∫ T

0
(∂xu(T − s, Ws)

− ∂xv(T − s, Ws)1{s≤τW }) dWs (18)

where

u(t, x) =
∫

R

1√
2π t

e− (x−y)2

2t (fK+(y) − fK−(y)) dy (19)

and

v(t, x) =
∫ ∞

K

1√
2π t

(
e− (x−y)2

2t − e− (2K−x−y)2

2t

)

× (fK+(y) − fK−(y)) dy. (20)

Observe that the following holds:

v(t, x) =
∫ ∞

K

1√
2π t

(
e− (x−y)2

2t − e− (2K−x−y)2

2t

)
fK+(y) dy

=
∫ ∞

K

1√
2π t

e− (x−y)2

2t f (y) dy

−
∫ K

−∞
e− (x−y)2

2t f (2K − y) dy

=
∫

R

1√
2π t

e− (x−y)2

2t (fK+(y) − fK−(y)) dy

= u(t, x). (21)
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Therefore, we can re-write equation (18) as equivalent to:

(fK+ − fK−)(WT )1{τW ≤T} =
∫ T

0
∂xu(T − s, Ws)1{τW ≤s} dWs,

since based on equation (21) we have:

E[(fK+ − fK−)(WT )1{τW ≤T}|W0 = x] = u(T , x) − v(T , x) = 0

and ∫ T

0
(∂xu(T − s, Ws) − ∂xv(T − s, Ws)1{s≤τW }) dWs

=
∫ T

0
∂xu(T − s, Ws)1{τW ≤s} dWs.

Moreover, we have:

e
∫ T

0 b(Ws) dWs− 1
2

∫ T
0 (b(Ws))

2ds

= 1 +
∫ T

0
e
∫ u

0 b(Ws) dWs− 1
2

∫ T
0 (b(Ws))

2dsb(Wu) dWu,

from equation (17); by means of Itô’s isometry, we can state

E[(fK+ − fK−)(ST )1{τ≤T}|S0 = x]

= E

[∫ T

0
∂xu(T − s, Ws)1{τW ≤s}

+ e
∫ s

0 b(Wv) dWv− 1
2

∫ s
0 (b(Wv))

2dvb(Ws) ds
∣∣∣W0 = x

]
. (22)

Once again, by considering Cameron-Martin-Maruyama-
Girsanov theorem, we obtain:

E[(fK+ − fK−)(ST )1{τ≤T}|S0 = x]

= E

[∫ T

0
b(Ss)∂xu(T − s, Ss)1{τ≤s} ds

∣∣∣∣ S0 = x

]

× (based on Eq. (19))

= E

[∫ T

0
b(Ss)

∫
R

∂xp(T − s, Ss, y)

+ (fK+(y) − fK−(y)) dy1{τ≤s} ds
∣∣ S0 = x

]

= E

[∫ T

0
1{τ≤s}JT−sf (Ss) ds

∣∣∣∣ S0 = x

]
,

proving the result. �

Remark 3.12 In the proof of proposition 2.2, the standard
integration by parts is used, while the key mathematical
tool enabling the proof of theorem 3.11 is Itô’s isometry in
equation (22), which can be seen as a special case of the
integration by parts in Malliavin sense (Nualart 2006).

The integral representation of the first-order hedging error
in equation (16) states an important result of the present
paper. The first-order hedging error admits a mathematical
integral representation: it is equivalent to the integral of an

infinitesimal amount ds of knock-in options prices with pay-
off JT−sf (Ss) at each maturity s. In principle, the agent can
approximate the integral representation via discretization, i.e.
by holding an amount si+1 − si of knock-in options with
payoff JT−si f (Ssi) for a partition t = s0 < s1 < · · · < sN =
T , as in a classical calendar spread approach (see Derman
et al. 1995). By leveraging on this discretization, the integral
representation enables a ‘decomposition’ of the hedging error.

Corollary 3.13 states a fundamental result implementing
the intuition behind the methodology proposed in this paper
for the hedging error as a timing risk. It provides the math-
ematical representation for the value of a knock-in option
at time t and its link to the first-order hedging error. More-
over, corollary 3.13 shows how to disentangle it based on
the generalized timing risk representation. The procedure can
then be re-iterated to derive the second-order hedging error
(subsection 3.2).

The integral representation for the value of a knock-in
option at a generic time t is given in corollary 3.13 as follows.

Corollary 3.13 Let f be a measurable function with at most
exponential growth. Under assumption 3.3, for any time t ≤
min{τ , T}, the value at t of a knock-in option with generic
payoff f is given as

pki(t) := E[e−r(T−t)f (ST )1{τ≤T}| Ft]

= E[e−r(T−t)f (ST )1{ST ≤K}| Ft]

+ E[e−r(T−t)fK+(2K − ST )| Ft]

+
∫ T

t
e−r(T−s)

E[e−r(s−t)1{τ≤s}JT−sf (Ss)| Ft] ds,

with fK+, fK− given in equation (9).

Theorem 3.11 and corollary 3.13 represent the building
blocks enabling to re-iterate the procedure and obtain higher
orders hedges.

3.2. The second-order hedging error

Theorem 3.11 —equation (16)—states that the first-order
hedging error He1

t (τ , T) is decomposed into the integral of a
continuum of knock-in options whose payoff is JT−sf , matur-
ing at s, with knock-in boundary K. This section introduces a
methodology to re-iterate the hedging to the second order and
provides a proof of the main results.

Definition 3.14 (Second-Order Hedging Strategy h2) We
introduce the notion of second-order hedge à la Bowie and
Carr (1994) defined as the integral (with respect to the matu-
rity s) of a specific second-order hedging strategy h2(s) for
each maturity s.

We define the second-order hedging strategy h2(s) for
maturity s based on the following steps:

(1) at inception t = 0, the agent buys ds units of path-
independent options with payoff JT−sf (Ss)1{Ss<K} and
(JT−sf )K−(Ss) = (JT−sf )K+(2K − Ss) = (JT−sf )(2K
− Ss)1{Ss<K};

(2) at the knock-in (random) time τ , the agent sells the
option with payoff (JT−sf )K−(Ss) = (JT−sf )K+(2K −
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Table 3. Second-order hedging strategy h2.

Strategy h2(s) t = 0 τ

Buy JT−sf (Ss)1{Ss≤K} ds (JT−sf )K+(Ss) ds
(JT−sf )K−(Ss) ds (τ ≤ s ≤ T)

(0 ≤ s ≤ T)
Sell (JT−sf )K−(Ss) ds

(τ ≤ s ≤ T)

Net position (JT−sf (Ss)1{Ss≤K} ((JT−sf )K+(Ss)

+(JT−sf )K−(Ss)) ds −(JT−sf )K−(Ss)) ds

Note: The table reports the structure of the hedging strategy h2

introduced in definition 3.14 and associated with the second-
order hedging error.

Table 4. Payoff at maturity s.

if τ ≤ s if τ > s

Final
payoff at
maturity s

(JT−sf (Ss)1{Ss≤K}+(JT−sf )K+(Ss)) ds 0
= JT−sf (Ss) ds

Note: As a result of the implementation of hedging strategy h2

[table 3], the table reports the payoff at maturity s.

Ss) = (JT−sf )(2K − Ss)1{Ss<K} and buys ds units of the
one with payoff (JT−sf )K+(Ss) = JT−sf (Ss)1{Ss>K}.

Functions fK+, fK− are given in equation (9), ST is the
scaled underlying asset value at T, following the SDE in
equation (6), and operator Jt is introduced in definition 3.9.

Table 3 reports the structure of the hedging strategy and
the net position both at inception t = 0 and at the random
hitting time τ . Based on the implementation of h2, table 4
reports the mathematical formulation of the payoff at maturity
s, depending on the knock-in triggering event being before or
after it:

• if τ ≤ s, that is, if the option to be hedged has been
knocked-in, the strategy leaves (JT−sf (Ss)1{Ss<K} +
JT−sf (Ss)1{Ss>K}) ds = JT−sf (Ss) ds;

• if τ > s, the two options bought at the initial date
pay nothing.

Thus, the second-order hedging strategy h2, integrated in s,
hedges the knock-in option at maturity s.

Proposition 3.15 (Second-Order Hedging Error: Integral
Representation) Under assumption 3.3, the second-order
hedging error He2

τ (τ , T) evaluated at time τ has the following
integral representation:

He2
τ (τ , T) :=

∫ T

τ

E[e−r(T−τ)1{τ≤T}ph2(Ss) |Fτ ] ds, (23)

with

ph2(Ss) := {(JT−sf )K+(Ss) − (JT−sf )K−(Ss)}, (24)

where h2 is the second-order hedging strategy in definition
3.14, f a measurable function with at most exponential growth
and Jt the operator introduced in definition 3.9.

The integral representation of the second-order hedging
error evaluated at time t < T is given by

He2
t (τ , T) := 1{t≤τ }E[e−r(τ−t)He2

τ (τ , T)|Ft] (25)

which is equivalent to

He2
t (τ , T) = 1{t≤τ }E

[
e−r(T−t)

∫ T

t
{(JT−sf )K+(Ss)

− (JT−sf )K−(Ss)}1{τ≤s} ds|Ft

]
. (26)

Proof We can prove intuitively and heuristically the result
by considering: (i) definition 3.1 applied to the first-order
hedging error, (ii) the implementation of the hedging strat-
egy h2 in definition 3.14, reported in table 4, and focusing on
the resulting error at random time τ . Computing the hedging
error at time τ < T means computing the expected value of
the net position at time τ for h2, integrating w.r.t. the maturi-
ties s. Based on the results in table 4, we can write the hedging
error at random time τ as:

He2
τ (τ , T) =

∫ T

τ

E[e−r(T−τ)1{τ<s}{(JT−sf )K+(Ss)

− (JT−sf )K−(Ss)} ds|Fτ ],

which proves the result given in equations (23)–(24). More-
over, we have

1{t≤τ }E[e−r(τ−t)He2
τ (τ , T)1{τ<T}|Ft]

= 1{t≤τ }E[e−r(τ−t)
∫ T

τ

e−r(T−τ)1{τ≤s}1{τ<T}{(JT−sf )K+(Ss)

− (JT−sf )K−(Ss)} ds|Ft]

= 1{t≤τ }E[e−r(T−t)
∫ T

t
1{τ≤s}{(JT−sf )K+(Ss)

− (JT−sf )K−(Ss)} ds|Ft]

as desired. �

4. First- and second-order hedging errors: an illustrative
example

We discuss our theoretical results for the case of constant
drift b(x) = b and payoff function f ≡ 1. From the perspec-
tive of financial modeling, this represents the special case of a
bond payoff under a Black–Scholes setting. This enables us to
build an analytically tractable proof of concept for the first and
second-order hedging errors. We define the hedging error cost
both in absolute and relative terms (definition 4.5) and provide
a study on the behavior of the hedging error cost reduction
obtained when considering re-iterating the procedure from the
first to the second order for different parameters’ values.

We study the behavior of the first- and second-order hedg-
ing errors at random time τ for different values of b and τ . To



700 J. Akahori et al.

capture this dependence, for the purpose of this analysis, we
use the following notation:

He1
τ (b, r; τ , T) := He1

τ (τ , T); He2
τ (b, r; τ , T) := He2

τ (τ , T),
(27)

with He1
τ (τ , T), He2

τ (τ , T) defined respectively in equa-
tions (11) and (23).

We work under assumption 3.3, with SDE for the underly-
ing log-price St given in equation (6) as:

dSt = d(�(Xt)) = d(log(Xt)) = b dt + dWt, S0 = x0,

and hitting time τ defined in equation (7). In this case, we
consider the scale function satisfying St = �(Xt) = log(Xt).

Proposition 4.1 Assume that b(x) ≡ b, with b being in this
case a constant drift in SDE equation (6). Consider the
operator Jt(x), t > 0 given in definition 3.9. The following
equivalence holds:

Jtg(2K − x) = −Jtg(x), (28)

based on direct substitution and the reflection principle of
Brownian motion.

Proof By applying definition 3.9 to Jtg(2K − x) and then
direct computation, we can prove the result:

Jtg(2K − x)

= b
∫

R

(y − 2K + x)

t

1√
2π t

e− (2K−x−y)2

2t

× (g(y)1{y>K} − g(2K − y)1{y≤K}) dy

= b
∫

R

(x − (2K − y))

t

1√
2π t

e− (2K−y−x)2

2t

× (g(y)1{y>K} − g(2K − y)1{y≤K}) dy

= −Jtg(x).

�

Remark 4.2 Observe that the result stated in proposition 4.1
relates to an asymmetry property of the operator Jt. In the
case of constant payoff, e.g. f ≡ 1, the integral expression for
operator Jt in definition 3.9 is given as

Jt1(x) = −2b
1√
2π t

exp

(
− (x − K)2

2t

)
. (29)

Proposition 4.3 Under assumption 3.3, when f ≡ 1, the first
and second-order hedging errors given in equations (11)
and (23) have the following analytic expression:

He1
τ (b, r; τ , T) = e−r(T−τ)1{τ≤T}

× (�(−b(T − τ)) − �(b(T − τ))) , (30)

He2
τ (b, r; τ , T) = −1{τ≤T}e−r(T−τ) b

π

×
∫ √

T−τ

0

∫ b
√

u(
√

T−τ−u)

−b
√

u(
√

T−τ−u)

e− u2+s2

2 du ds,

(31)

with � cumulative distribution function of a standard Normal
random variable

�(x) = 1√
2π

∫ x

−∞
e− u2

2 du.

Proof The result follows by considering Remark 4.2, propo-
sition 4.1 and by direct analytic computation. The result for
the first-order hedging He1

τ (b, r; τ , T) error is obtained as
follows:

He1
τ (b, r; τ , T) = e−r(T−τ)

E[(1{ST >K} − 1{ST ≤K})|Fτ ]1{τ≤T}

= e−r(T−τ)1{τ≤T}

(∫ ∞

b(T−τ)

1√
2π

e− u2

2 du

−
∫ b(T−τ)

−∞

1√
2π

e− u2

2 du

)

= e−r(T−τ)1{τ≤T}

× (�(−b(T − τ)) − �(b(T − τ))) .

The result for the second-order hedging error He2
τ (b, r; τ , T)

is obtained as follows:

He2
τ (b, r; τ , T)

= 1{τ≤T}
∫ T

τ

e−r(T−τ)
E[JT−sf (Ss)1{Ss>K}

− JT−sf (2K − Ss)1{Ss≤K}|Fτ ] ds

= −2b1{τ≤T}
∫ T

τ

e−r(T−τ)

{∫ ∞

K
p(s − τ , K, y

− b(s − τ))p(T − s, y, K) dy

×
(

−
∫ K

−∞
p(s − τ , K, y − b(s − τ))

× p(T − s, y, K) dy

}
ds

)

= −2b1{τ≤T}
∫ T

τ

e−r(T−τ) 1√
2π(T − τ)

e− (s−τ)2

2(T−τ)

×
(

�

(
b

√
(s − τ)(T − s)

T − τ

)

− �

(
−b

√
(s − τ)(T − s)

T − τ

))
ds

= −2b1{τ≤T}e−r(T−τ) 1√
2π

∫ √
T−τ

0
e− u2

2

×
(

�

(
b
√

u(
√

T − τ − u)

)

− �

(
−b
√

u(
√

T − τ − u)

))
du

= −1{τ≤T}e−r(T−τ) b

π

∫ √
T−τ

0

∫ b
√

u(
√

T−τ−u)

−b
√

u(
√

T−τ−u)

e− u2+s2

2 du ds.

�
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Figure 1. Hedging errors and the associated absolute and relative cost reduction. The plot at the top reports the hedging errors Hei
τ (b, r; τ , T),

for the first and second order, namely, i = 1, 2 as function of the drift parameter b. The analytic expression of hedging errors is given in
equation (30) for He1

τ (b, r; τ , T) and in equation (31) for He2
τ (b, r; τ , T). The absolute hedging cost reduction cabs

τ (b, r; τ , T) and the relative
hedging cost reduction crel

τ (b, r; τ , T) reported in the other plots (i.e. middle, bottom plot) are given in equations (33)–(34).

Proposition 4.4 The limiting behavior of the first-order
hedging error given in proposition 4.3, equation (30), as
function of the constant drift b is

lim
b→0

He1
τ (b, r; τ , T) = 0,

lim
b→+∞

He1
τ (b, r; τ , T) = −e−r(T−τ)1{τ≤T}. (32)

Proof The results follow by direct analytic computation con-
sidering the mathematical representation of the first-order
hedging error given in equation (30). �

Proposition 4.4 states that, for τ < T , the first-order hedg-
ing error is a bounded function of the drift b, and assumes neg-
ative real values in [−e−r(T−τ), 0]. Starting from this result,
we study how the hedging error decomposition applied to
He1

τ (b, r; τ , T) can be exploited to reduce the hedging cost,
after re-iterating it to the second order.

Definition 4.5 (Hedging Error Cost) The hedging error cost
could be measured in absolute and relative terms, respec-
tively, via functions cabs

τ (b, r; τ , T) and crel
τ (b, r; τ , T) defined

as follows:

cabs
τ (b, r; τ , T) := |He2

τ (b, r; τ , T)| − |He1
τ (b, r; τ , T)|, (33)

crel
τ (b, r; τ , T) := |He2

τ (b, r; τ , T)| − |He1
τ (b, r; τ , T)|

|He1
τ (b, r; τ , T)| , (34)

with He1
τ (b, r; τ , T), He2

τ (b, r; τ , T) given in equations (30)–
(31).

Figures 1 and 2 report the behavior of the hedging errors
(both first and second order) and the hedging cost reduction
as given in definition 4.5 as function of the drift parameter
b. Each plot is built based on a specific value of the random
time τ , namely τ = 0.2, τ = 0.8 for the same level of risk-
free interest rate (r = 0.08) and option maturity (T = 1). In
this way, we isolate the effect of the timing risk component
deriving from the hitting time τ . Let us denote with b̂ the value
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Figure 2. Hedging errors and the associated absolute and relative cost reduction. The plot at the top reports the hedging errors Hei
τ (b, r; τ , T),

for the first and second order, namely, i = 1, 2 as function of the drift parameter b. The analytic expression of hedging errors is given in
equation (30) for He1

τ (b, r; τ , T) and in equation (31) for He2
τ (b, r; τ , T). The absolute hedging cost reduction cabs

τ (b, r; τ , T) and the relative
hedging cost reduction crel

τ (b, r; τ , T) reported in the other plots (i.e. middle, bottom plot) are given in equations (33)–(34).

at which the first and second-order hedging errors coincide,
namely:

b̂ : He1
τ (b̂, r; τ , T) = He2

τ (b̂, r; τ , T),

|He2
τ (b̂, r; τ , T)| ≤ |He1

τ (b̂, r; τ , T)|, for b ∈ [0, b̂].

The numerical analysis on this illustrative example shows
b̂ as an increasing function of the random hitting time τ .
The drift value equalizing the first and second-order hedg-
ing error increases with τ , while the value of the errors at
that point decreases in absolute value. When b ∈ [0, b̂], hav-
ing a second-order semi-static hedging in place enables the
holder of the position to reduce the hedging cost. This is pos-
sible by means of the integral decomposition of the first-order
hedging error (theorem 3.11), which can be represented as
a generalized timing risk. In this interval, the absolute cost
reduction cabs

τ (b, r; τ , T) has a convex shape: initially increas-
ing in absolute value as the drift increases and then reducing
in absolute value until the drift b = b̂. The relative cost mea-
sure crel

τ (b, r; τ , T) is close to a full off-set of the hedging cost

when the drift is small, and then decreases in absolute value
until the drift b = b̂. Re-iterating the hedging strategy from
the first to the second order produces higher cost reductions
when the hitting time is closer to inception, as in this illus-
trative example, the uncertainty associated with the financial
position is mainly driven by the timing risk component.

5. Conclusion

This paper introduces a methodology to disentangle the hedg-
ing error associated with the hedging of exotic derivatives,
whose payment time is unknown at inception. From a finan-
cial point of view, it introduces the financial economic intu-
ition of hedging error as generalized timing risk and provides
its mathematical formalization. Based on this idea, we define
the hedging error and then motivate how to: (i) enable dis-
entangling the first-order hedging error into specific compo-
nents, (ii) state the mathematical derivation of the results and
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(iii) re-iterate the procedure to the second order. We analyze
the hedging error cost reduction obtained by re-iterating the
procedure from first to second order via an illustrative exam-
ple, considering both an absolute and relative cost assessment.
Results show that the reduction can vary depending on both
the drift of the underlying asset value dynamic and the ran-
dom hitting time, which embeds the timing risk uncertainty.
These findings represent the basis for further research exten-
sions. From a theoretical point of view, the core mathematical
results enable us to consider alternative directions: (i) build-
ing a general multidimensional framework, (ii) re-iterating the
procedure to higher orders, (iii) investigating the bridge with
advanced analytics methodologies and techniques, as in recent
literature within the field of quantitative finance (Buehler
et al. 2019, Lütkebohmert et al. 2022).
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