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One of the key kernels in scientific applications is the Sparse Ma-
trix Vector Multiplication (SMVM). Profiling OpenFOAM, a sophis-
ticated scientific Computational Fluid Dynamics tool, proved the
SMVM to be its most computational intensive kernel. A traditional
way to solve such computationally intensive problems in scientific ap-
plications is to employ supercomputing power. This approach, how-
ever, provides performance efficiency at a high hardware cost. An-
other approach for high performance scientific computing is based on
reconfigurable hardware. Recently, it is becoming more popular due
to the increasing On-Chip memory, bandwidth and abundant reason-
able cheaper hardware resources. The SGI Reconfigurable Applica-
tion Specific Computing (RASC) library combines both approaches
as it couples traditional supercomputer nodes with reconfigurable
hardware. It supports the execution of computational intensive ker-
nels on Customized Computing Units (CCU) in Field Programmable
Gate Arrays (FPGA). This thesis presents the architectural design
and implementation of the SMVM product for the OpenFOAM tool-
box on an FPGA-enabled supercomputer. The SMVM is targeted
to be a Custom Computing Unit (CCU) within the RASC machine.
The proposed CCU comprises multiple Processing Elements (PE)

for IEEE-754 compliant floating point double precision data. Accurate equations are developed that de-
scribe the relation between the number of PEs and the available bandwidth. With two PEs and an input
bandwidth of 4.8 GB/s the hardware unit can outperform execution in pure software. Simulations suggest
speedups between 2.7 and 7.3 for the SMVM kernel considering four PEs. The performance increase at the
kernel level is nearly linear to the number of available PEs. The SMVM kernel has been synthesized and
verified for the Virtex-4 LX200 FPGA and a hardware counter is integrated in the design to obtain the
accurate performance results per CCU. Although the synthesis tool reports higher frequencies, the design
has been routed and executed on the Altix 450 machine at 100 MHz. Based on our experimental results we
can safely conclude that the proposed approach, using FPGAs as accelerator, has potential for application
speedup for the SMVM kernel against traditional supercomputing approaches.
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Computing Unit (CCU) within the RASC machine. The proposed CCU comprises multiple Pro-
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Introduction 1
To keep up with the increasing demand for computing power in the area of Scientific Com-
puting complex machines are fabricated. These machines consist of multiple processing
units coupled through high speed interconnections. The performance can be increased to
higher levels, if Customized Computing Units (CCU) replace partitions of the program
that would be normally executed on the Central Processing Unit (CPU) of the general
purpose computer. The CCUs usually implement computational intensive parts of the
program and can be mapped on hardware. Depending on the content of the kernels, or-
ders of magnitudes speed up can be gained. The CCUs can be mapped on An Application
Specific Integrated Circuit (ASIC) can be targeted or on an Field Programmable Gate
Array (FPGA). It has been identified that the Sparse Matrix by Dense Vector multipli-
cation (SMVM) is a key component in scientific applications. This thesis presents an
CCU for the Double Precision Floating Point SMVM for the OpenFOAM Computation
Fluid Dynamic (CFD) tool. Section 1.1 present an introduction and motivation behind
the presented work. Subsequently, Section 1.2 defines the thesis goals. Section 1.3 con-
cludes this chapter and gives an overview of the organization of the remaining part of
this thesis.

1.1 Problem Statement

With an Computation Fluid Dynamic (CFD) tool the movement and dynamics of flows
can be examined. By turning real world object into mathematical models representing
the system or environment, the flow of fluids can be simulated and predicted by means
of solving physical equations that apply for the particular fluid.

The OpenFOAM (Open Field Operation and Manipulation) CFD toolbox is a scien-
tific application that can be used to simulate a variety of industrial processes. Examples
of these processes include but are not limited to complex fluid flows involving chemical
reactions, turbulence and heat transfer, solid dynamics, electromagnetics and the pricing
of financial options.

ActiFlow [1], a Dutch-based company is interested in OpenFOAM for their modeling
activities in the field of the automotive, aerospace, oil and gas industry, the medical
industry and the construction industry. The time to finish the simulation processes
using traditional approaches is in the order of weeks and any kind of optimization, to
decrease the execution time is necessary. The CFD tool, allows fast design verification
and prototype-building. One can build a model of the system or device that must be
analyzed. By applying real-world physics and chemistry to the model, the software will
provide images and data, which predict the behavior of that system.

Predicting the behavior of the models requires enormous computational power. In
the past years, the computational power of a single processor is reaching its technological

1
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limitations. Currently, performance increase is obtained by executing the simulations on
multiple CPU nodes which run in parallel, that divide the computational load of the
modeled environment or system among the CPUs. The communication between the
processing nodes is controlled through the Message Passing Interface (MPI) library.

In this thesis, the approach is taken to accelerate the OpenFOAM solvers beyond the
traditional achievements employing reconfigurable hardware. The design of computer
architectures on reconfigurable hardware is becoming more popular now that classical
drawbacks are diminishing. Field-Programmable Gate Arrays (FPGAs) are constantly
improving in terms of IO-bandwidth and area, and they provide a technology platform
that allows fast and complex reconfigurable designs.

Silicon Graphics Inc. (SGI) builds supercomputers applicable for scientific appli-
cations. By integrating and connecting multiple state of the art CPU cores into one
machine supercomputers can be created. The Altix series allow integration of multiple
Itanium 2 cores with the optionality to include multiple FPGAs. Each FPGA, a Xil-
inx Virtex 4(XC4VLX200-FF1513-10) has a direct bandwidth of 6.2 GB/s to the main
memory and a total bandwidth up to 22.4 GB/s, when off-chip memory is included.

1.2 Project Goals

1.2.1 Scope

The main goal is to increase the performance of the SimpleFoam solver, by moving time
critical software kernels to a hardware CCU unit. Moving these kernels to hardware al-
lows to exploit data level parallelism efficiently. The OpenFOAM tool contains hundreds
of Mega Bytes of source code and we focus on the most important kernels only.

1.2.2 Objectives

In Chapter 2.7, the Double Precision floating point SMVM is identified as one of the main
kernels potentially to be executed in hardware. The hardware design will be mapped on
the FPGAs available on the Altix machine. The main thesis goals are:

• Profile the SimpleFoam solver and identify the time critical kernels.

• Design hardware CCU units supporting these kernels.

• Integrate the CCU kernels into the SGI RASC system and accelerate OpenFOAM.

• Integrate the sparse matrix vector product, being one of the identified critical
kernels, with the dense matrix vector product implementations proposed in [26].

1.2.3 Previous Art

Different proposals for the SMVM designs based on FPGAs are proposed. In [7], a
striping algorithm is proposed for matrices that contain limited number of stripes in
the Finite Element Method (FEM). In [28], the matrix is divided in vertical sections
with low performance results for sparse matrices. In [4], the authors arrange PEs in
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a bidirectional ring to compute y = Aib. The proposed design significantly saves I/O
bandwidth due to local storage of the matrix and intermediate results, but the matrix
sizes are limited by the FPGA On-Chip memory. In [23], the authors divide the matrix
in vertical and horizontal sections. So far, they report the highest peak performances.
In our design, we present a new approach which does not require adder trees. Moreover,
we are planning to design the PEs of our design in such a way that they are capable
of computing both dense and sparse matrix vector multiplications. Section 5.4 contains
more details for the related work.

1.2.4 Main thesis contributions

The following contributions can be assigned to this thesis:

• Identification of the performance critical kernels of the OpenFOAM CFD tool.
Precisely, the simpleFoam solver is used to profile a mesh containing over 6 millions
cells, which is considered a realistic input.

• Analysis and selection of the best Sparse Matrix Format to represent typical ma-
trices of the FVM method.

• The design of an SMVM capable of computing c = αAb + βc. For α={−1, 1} and
β={−1, 0, 1} in IEEE-754 compliant floating-point format.

• Verification of the SMVM design in simulation and hardware for one and two Pro-
cessing Elements and verification in simulation for more (four and eight) Processing
Elements.

• A set of equations is derived containing the relation between the number of Pro-
cessing Elements, the required bandwith and the performance of the SMVM kernel.

• Modification of the Processing Element in [26], which computes a dense vector
matrix multiplication. The design of the PE is modified in such a way that it is
capable of computing sparse and dense vector multiplications. The new design with
the combined Processing Elements is verified in simulations. A paramater allows
users to select between dense and sparse matrix vector multiplication. Thus, c =
αAb + βc can be computed for A being a dense or a sparse matrix, for α={−1, 1}
and β={−1, 0, 1}.

• A decision rule is derived to select between dense and sparse matrices. In case over
40% of the matrix is filled with non-zero elements, it is more performance efficient
to employ the dense sparse matrix multiplication rather then the sparse one.

• A list of bugs for the RASC-core has been identified.

• Customized Computing Units that are integrated to the RASC environment suffer
from complex routing issues. A small number of modifications improves signifi-
cantly the routing issues. Moreover, by iteratively generating multiple bitstreams,
in each iteration information can be extracted from the timing report and from it
the VHDL design can be adjusted accordingly to improve the performance.
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1.3 Thesis Organization

The remainder of this thesis is organized as follows. Chapter 2 discusses one of the solvers
of the OpenFOAM toolbox named SimpleFoam, which is used to simulate moving fluids.
The profiling results of this solver are presented also in this chapter. Subsequently, the
SMVM kernel is analyzed in Chapter 3. The cost of the matrix storage format, as it
is currently in OpenFoam, is analyzed and compared against other storage schemes in
terms of required memory bandwidth and memory space. Next, Chapter 4 discusses the
hardware unit designed for the CCU SMVM. It includes a description of the hardware
platform and the CCU unit that is presented, which is analyzed and compared against
software execution time for the stand alone version. Besides software comparison, the
hardware unit is also compared to related work in Chapter 5. Chapter 5 includes the
interconnection between OpenFOAM and the SMVM and the analysis for the application
performance increase due to the hardware acceleration of the SMVM kernel. Finally, this
thesis is concluded in Chapter 6, where recommendations for future work can also be
found.

Appendix A contains a brief explanation of the code inside the OpenFOAM solver.
In Appendix B, a description of the profile commands included with the profiling re-
ports. Appendix C reports the results of the Metis and Simple decomposition methods
using four CPUs. Appendix D discusses a list of bugs and issues regarding the SGI
RASC-library. Furthermore, recommendations to improve routing issues for the RASC-
reconfigurable FPGA can be found here. Last, Appendix E describes the contents of the
CD-ROM containing design files for this thesis.



SimpleFoam 2
OpenFOAM supports different solver applications to best fit the different models. Simple-
Foam is a steady state solver used to simulate the movement of incompressible flows. In
this chapter, a description of the SimpleFoam application solver will be given, in addition
with certain input and output files describing the mesh, solvers etc. This gives an insight
and understanding of the basic principles needed to use the OpenFOAM CFD toolbox.

2.1 The Navier Stokes equations

SimpleFoam, implements the Navier-Stokes equations. These equations for incompress-
ible fluids contain the relation between pressure and velocity for moving fluids in time
and space. The equations are:

∂U
∂t

+∇ · (UU) = g −∇p +∇ · (ν∇U) (2.1)

∇ ·U = 0 (2.2)

where, U is the velocity, ν the kinematic viscosity (dynamic viscosity/density), p the
kinematic pressure, g the external body force vector. The first equation, the momentum
equation, describes the relation between the velocity, pressure and external forces of the
incompressible fluid. The second equations, states that the divergence of the velocity
must be zero, which means that the fluid can’t expand (positive divergence) nor compress
(negative divergence).

2.2 Discretizing continual operations

A computer can only process discrete quantities and therefore continual quantities like
time and space must be discretized in order to be processed. A distinction of 3 dif-
ferent discretization processes must be made. Each one of them is explained in the
subparagraphs below.

Spatial discretization Spatial discretization is the process of decomposing the
mesh into cells which form the basis for the computational grid. Each cell is bounded by
its faces, and the center of the cell should be inside the cell. The cells must be contiguous,
meaning they have to fill up the whole computational domain without overlapping each
other. Accuracy of the solution can be increased by incrementing the cell account for
the same grid size.

5
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Temporal discretization Fluids naturally tend to flow in time depending on phys-
ical properties. To compute and approximate such flows in time, the time solution space
must be divided into a finite number of intervals.

Equation discretization The partial differential equations that are appropriate
for certain cases must be discretized in order to be processed. OpenFOAM solves cer-
tain fields, like pressure and speed, through a translation from the partial differential
equations and the computational grid into a set of equations. Specifically, the Simple-
Foam solver implements the Navier-Stokes equations added with transport and turbulence
equations. The final goal is to calculate the movement of the fluids by solving the set of
equations.

The discretized Navier-Stokes equations can be written into a block decomposition:[
A G
D 0

] [
Un+1

pn+1

]
=

[
rn

0

]
+

[
bc′s

]
(2.3)

In this equation, matrix G equals the discrete gradient operator, matrix D the divergence
operators and matrix A depends on spatial and temporal discretization (depends on
mesh and on time interval step). The first row of 2.3 is the discretized version of the
momentum equation of Eqn. (2.1) and the second row the descretized form of the second
equation of the Navier Stokes equations, Eqn. (2.2). The vector with bc’s contain the
boundary conditions for the momentum and pressure equations. The pressure must be
solved implicitly to ensure the compressibility constraints. The vector rn is the explicit
right hand side of the momentum equations.

Before going into more detail how SimpleFoam solves these equations, the interface
to the OpenFOAM toolbox is described, meaning for the input the description of the
meshes, select the desired models and solvers, and for the output, the results after solving
the case and the post-processing thereof.

2.3 I/O-interface

The easiest way to describe the interface is probably to look at the input and output
files and their ordering in folders. Each case is build up, out of 3 folders as depicted
in figure 2.2. Each of the folders, the system, constant and the time directories will be
discussed now.

2.3.1 Input files

All the input files in the different folders have a common header, depicted in figure 2.1.
Comments are preceded with //. The header consist of 9 entries that contain general
information like the OpenFOAM version, location of the file, the directory path and the
file class/type. In the next paragraphs different file and there classes will be discussed.
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FoamFile
{

// Keyword Entry Description
version 1.4.1; // OpenFoam version
format ascii; // Datatype: ascii or binary input

root "/home/FastBak"; // The root directory of the case
case "case04b"; // The case name
instance "system"; // The subdirectory in the case
local ""; // Any subdirectories in instance

// e.g polyMesh in figure 2.2
class dictionary; // Typical a dictionary or a field
object controlDict; // The name of the filename

}

Figure 2.1: I/O header

. <case name >
|– system

|– controlDict
|– fvSchemes
|– fvSolution
|– decomposeParDict (optional)

|– constant
|– ...Properties
|– polyMesh

|– points
|– cells
|– faces
|– boundary

|– time directories

Figure 2.2: Organization of the directory structure of a case

2.3.1.1 System folder

The system folder contains at least 3 files that specify the chosen solvers (fvSolution), the
selected discretization schemes (fvSchemes) and timing and storage information (control-
Dict). If the computational domain is divided, in order to solve it on multiple processing
nodes an additional file has to be included (decomposeParDict). An example of each of
the files will be given.
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fvSolution The fvSolution file contains for each physical quantity the selected
solver scheme. An example of such a file is shown in figure 2.3. A difference must
be made here with the application solver like SimpleFoam, which solves a particular
problem by a set of equations and likely will use different solvers for its physical quan-
tities. In contrast to the application solver, the solver methods mentioned here are
techniques used to solve particular equations. Section 2.4 contains more information
about the solvers.

fvSchemes The fvSchemes file allows users to select appropriate discretization
schemes. Table 2.1 describes the keywords used in this file with their mathematical
terms.

Keyword description
interpolationSchemes Point-to-point interpolations of values
snGradSchemes Component of gradient normal to a cell face
gradSchemes Gradient ∇
divSchemes Divergence ∇·
laplacianSchemes Laplacian ∇2

timeScheme First and second time derivatives ∂
∂t ,

∂2

∂2t
fluxRequired Fields which require the generation of a flux

Table 2.1: Keywords in fvSchemes [19]

controlDict The controlDict file contains time related settings and options to store
to the mesh calculated. Figure 2.5 shows an example of such a file.

decomposeParDict In the decomposeParDict file, the user can specify which de-
composition technique will be used and how many processing nodes the mesh will be
divided on.

2.3.1.2 constant folder

The constant folder contains the description of the mesh in the polyMesh subfolder and
some physical models depended on the application. SimpleFoam requires a selected
turbulence model in the file turbulenceProperties and a transport model in the file trans-
portProperties models, while for example a totally different solver application could use
a perfectGas model.

2.3.1.3 time folder

Before solving a certain case, the time folder requires a folder, named after its first start
time (according to the keyword startTime in the controlDict file and usually equals 0),
with each physical property at that time. For the simpleFoam solver, expected files could
be the pressure p, velocity U, and some other quantities which depend on the selected
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// * * * * * * * * * * * fvSolution file: solver properties * * * * * * * * * * * //

solvers

{
p GAMG

{
tolerance 1e-06;

relTol 0.1;

smoother GaussSeidel;

nPreSweeps 0;

nPostSweeps 2;

cacheAgglomeration true;

nCellsInCoarsestLevel 10;

agglomerator faceAreaPair;

mergeLevels 1;

};

U smoothSolver

{
smoother GaussSeidel;

nSweeps 1;

tolerance 1e-8;

relTol 0.1;

};

k smoothSolver

{
smoother GaussSeidel;

nSweeps 1;

tolerance 1e-8;

relTol 0.1;

};

epsilon smoothSolver

{
smoother GaussSeidel;

nSweeps 1;

tolerance 1e-8;

relTol 0.1;

};

R smoothSolver

{
smoother GaussSeidel;

nSweeps 1;

tolerance 1e-8;

relTol 0.1;

};

nuTilda smoothSolver

{
smoother GaussSeidel;

nSweeps 1;

tolerance 1e-8;

relTol 0.1;

};
SIMPLE

{
nNonOrthogonalCorrectors 0;

pRefCell 0;

pRefValue 0;

}

relaxationFactors

{
p 0.3;

U 0.7;

k 0.7;

epsilon 0.7;

R 0.7;

nuTilda 0.7;

} // ************************************************************************* //

Figure 2.3: The fvSolution file



10 CHAPTER 2. SIMPLEFOAM

// * * * * * * * * * * * fvSchemes file: Discretization properties * * * * * * * * * * * //

ddtSchemes

{
default steadyState;

}

gradSchemes

{
default Gauss linear;

grad(p) Gauss linear;

// grad(p) cellLimited Gauss linear 1.0;

grad(U) cellLimited Gauss linear 1.0;

grad(nuTilda) cellLimited Gauss linear 1.0;

}

divSchemes

{
default none;

div(phi,U) Gauss linearUpwind cellLimited Gauss linear 1.0;

div(phi,k) Gauss limitedLinear 1.0;

div(phi,epsilon) Gauss limitedLinear 1.0;

div(phi,R) Gauss limitedLinear 1.0;

div(R) Gauss limitedLinear 1.0;

div(phi,nuTilda) Gauss limitedLinear 1.0;

div((nuEff*dev(grad(U).T()))) Gauss linear;

}

laplacianSchemes

{
default none;

laplacian(nuEff,U) Gauss linear limited 0.333;

laplacian((1|A(U)),p) Gauss linear limited 0.333;

laplacian(DkEff,k) Gauss linear limited 0.333;

laplacian(DepsilonEff,epsilon) Gauss linear limited 0.333;

laplacian(DREff,R) Gauss linear limited 0.333;

laplacian(DnuTildaEff,nuTilda) Gauss linear limited 0.333;

}

interpolationSchemes

{
default linear;

interpolate(U) linear;

}

snGradSchemes

{
default limited 0.333;

}

fluxRequired

{
default no;

p;

}

// * * * * * * * * * * * * * * * * * * fvSchemes file * * * * * * * * * * * * * * * * * * //

Figure 2.4: The fvSchemes file

transport and turbulence model. Each file contains the initial values on each cell for the
entire mesh.

2.4 Solvers

OpenFOAM users have the option to select between different solver which suites them
best. In figure 2.3 an example is given where 2 different solvers have been used. A
Gauss-Seidel smooth solver and a Geometric Algebraic Multigrid solver. A full list of
solvers can be found in the openFOAM userguide.
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// * * * * * * * * * * * * * * * * * * controlDict file: time and data I/O control * * * * * * * * * * * * * //

application simpleFoam;

startFrom startTime;

startTime 0;

stopAt endTime;

endTime 60;

deltaT 1;

writeControl timeStep;

writeInterval 10;

purgeWrite 0;

writeFormat binary;

writePrecision 6;

writeCompression compressed;

timeFormat general;

timePrecision 6;

graphFormat xmgr;

runTimeModifiable yes;

// * * * * * * * * * * * * * * * * * * * * * * * * controlDict * * * * * * * * * * * * * * * * * * * * * * * //

Figure 2.5: The controlDict file

// * * * * * * * * * * * * * * decomposeParDict file: mesh decomposition * * * * * * * * * * * * * * * * * * //

arguments "" off off;

numberOfSubdomains 2;

method metis;

simpleCoeffs

{
n (1 1 1);

delta 0.001;

}

hierarchicalCoeffs

{
n (1 1 1);

delta 0.001;

order xyz;

}

manualCoeffs

{
dataFile "";

}

// * * * * * * * * * * * * * * * * * * * * * * * controlDict * * * * * * * * * * * * * * * * * * * * * * * * //

Figure 2.6: The decomposeParDict file

2.5 SimpleFoam

The previous sections concentrated on the Input Output of the CFD tool. In this section,
we continue with the description of the algorithm behind the SimpleFoam solver. In
subsection 2.5.1 an explanation of the discretized pressure equation that is solved in
SimpleFoam will be given. The algorithm behind SimpleFoam, the SIMPLE algorithm,
is described in 2.5.2.
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2.5.1 The Pressure Equation

The pressure equation can only be solved implicitly and must be solved from a semi-
descretized form of the momentum equation, presented in Eqn. (2.4).

apUp = H(U)−∇p (2.4)

H(U) = −
∑

f

aNUN +
U0

∆t
(2.5)

Up =
H(U)

ap
− ∇p

ap
(2.6)

Uf = (
H(U)

ap
)f −

(∇p)f

(ap)f
(2.7)

∇ ·U =
∑

f

S ·Uf = 0 (2.8)

∇ · ∇p

ap
= ∇ · (H(U)

ap
) =

∑
f

S · (H(U)
aP

)f (2.9)

The term H(U) in this equation consist of 2 parts, a transport part and a source
part, rewritten in Eqn. 2.5. The transport part contains the matrix coefficients
for all neighbours aN multiplied by their corresponding velocities. The source part
contains the transient term of the velocity. Eqn. (2.6) is obtained from Eqn. (2.4) by
expressing for Up. The next equation, Eqn. (2.7) is derived from the previous one by
face-interpolating the cell center values. By substituting Eqn. (2.6) into the left had
side of Eqn. (2.8) and Eqn. (2.7) into the right handside of Eqn. (2.8), Eqn. (2.9) is
obtained. Eqn. (2.9) is the expression used to solve for the pressure.

The speed and pressure equations, i.e Eqn. (2.9) and Eqn. (2.6) are coupled. A
segregated approach by Patankar deals with inter-equation coupling and solves them in
sequence. The SIMPLE algorithm is explained in the coming section.

2.5.2 The SIMPLE algorithm

The Semi-Implicit Method for Pressure-Linked Equations allow to solve the Navier-
Stokes equations with the additively transport equations to be solved in an iterative
procedure. It consist of the following steps:

1. Set the boundary conditions.

2. Solve the discretized momentum predictor.

3. Compute the cell face fluxes.

4. Solve the pressure equation and apply under-relaxation

5. Correct and adjust the cell faces.

6. Correct the velocities on the basis of the new pressure field.
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7. Update the boundary conditions

8. Repeat, until the convergence criteria are satisfied

The code is explained in more detail in Appendix A.

2.6 High Performance Computing

This section will contain information regarding parallel computing of the domain. To
use the SimpleFoam solver in parallel, the computational grid must be divided in parts.
In section 2.6.1 the decomposition of meshes will be described.

2.6.1 Mesh decomposition

The techniques that OpenFOAM uses are listed in the decomposeParDict file in Fig-
ure 2.6 and each one of them will be discussed on the following 2 properties:

• A fairly distributed work-load balance among the processors.

• Minimizing the communication cost.

2.6.1.1 Simple decomposition

In the simple decomposition technique, the mesh is divided into pieces along the xyz-
axes, e.g. 1 piece in the x and z direction and 4 pieces in the y-direction. Using this
technique, only the first metric, a fairly distributed work-load balance among the pro-
cessors is guaranteed. However the algorithm behind this decomposition totally ignores
communication, and as a consequence lower performance can be expected. The tech-
nique is simple and fast and can lead to good decomposition results for regular structured
meshes.

The algorithm behind the Simple decomposition method, will be explained by means
of an example. Consider a structured mesh with 32 nodes, with 4 nodes in the x- and y-
direction and 2 nodes in the z-direction shown in Figure 2.7. And n=242, i.e 2 processors
in the x-direction denoted as nprocx, 4 in the y-direction denoted as nprocy and 2 in the
z-direction denoted as nprocz.

The algorithm uses 2 lists, pointIndices and finalDecomp. The first list is a temporary
list used to keep up the indexes of the nodes, sorted in a certain direction (x y or z).
Each value at position i is initialized with i for the list (pointIndices[i]=i). For each node,
finalDecomp list stores the index of the processor where the node will map to.

The first step is to reorder the pointIndices list, according to the sorting of the nodes
along their x-coordinate. This means pointIndices[0] will hold the index of the node with
the smallest x-coordinate and each next element will have an equal or large x-coordinate
value. The next step is to map the sorted nodes on the number of processors in the
x-direction. The result of this step is shown in figure 2.7.a. The numbers in the figure
represent the processor values where the node will be mapped on to, i.e the values so far
in finalDecomp. Since nprocx is 2, the former 16 values of pointIndices will be mapped
to processor 0 and the later 16 to processor 1.
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Figure 2.7: Decomposing meshes with simple decomposition, the numbers represent the
processor where the nodes map on.

The same steps are repeated, but now for the y-coordinates. There are 4 processors
in this direction, therefore the 8 nodes with the lowest y-coordinates will be mapped on
processor 0, the next lowest 8 on processor 1 etc... This is drawn in figure 2.7.b.

The results from figure 2.7.a and 2.7.b are now combined to get the resulting mesh
in figure 2.7.c by the following formula:

finalDecompC = finalDecompA + nprocx ∗mapy (2.10)

where finalDecompA the mapping as in figure 2.7.a, mapy the mapping as in figure
2.7.b and finalDecompC the resulting mapping in figure 2.7.c.

The final steps of the algorithm consist of including the processors in the z-direction
to the finalDecomp list. Figure 2.7.d shows the mapping of the nodes to the processors
in the z-direction. Since there are 2 processors along this direction, the 16 nodes with
the smallest z-coordinates will be mapped to processor 0 and the others to processor 1.
Figure 2.7.e contains the final decomposition by using the following formula:

finalDecompE = finalDecompC + nprocx ∗ nprocy ∗mapz (2.11)

where mapz the mapping shown in figure 2.7.d and finalDecompE the final decomposi-
tion shown in figure 2.7.e.

The number of nodes for this mesh, 32, is a multiple of nprocx, nprocy and nprocz.
Therefore the figures 2.7.a, 2.7.b and 2.7.c had all mappings where each processor got
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Figure 2.8: Dividing meshes on different places.

assigned an equal amount of nodes. Consider a mesh with 104 nodes, and where the
processors in each direction are: nprocx = 2, nprocy = 4 and nprocz = 5. Since 104 is
not a multiple of nprocz a non-equal node distribution will take place. Each processor in
the z-direction gets assigned b 104

nprocz
c = 5 processors, except for the first 104%nprocz = 4

which have to process one node more.
The whole approach tries to fairly distribute the cells but disregards the connectivity

of the mesh and therefore also the communication cost. While for regular meshes and
cubes communication can be minimized, the opposite could be the case for unstructured
meshes. Consider a fragment of a mesh in Figure 2.8 where the mesh could be divided at
the vertical lines 1 and 2. Cutting the mesh on line 1 will lead to more communication
traffic at runtime than the case where the mesh is cut at line 2, since more nabour cell
information has to be exchanged.

2.6.1.2 Hierarchical decomposition

The hierarchical decomposition decomposes the mesh in the same way as in simple
decomposition, but allows different ordering in the x,y and z direction [19]. Like in
simple decomposition no edge connectivity is taken into account.

2.6.1.3 Metis decomposition

Metis is a software package that partitions large irregular graphs, large meshes, and
computing fill-reducing orderings of sparse matrices. The Metis application is used to
partition large meshes. The objective is to minimize the communication cost and to
achieve a fair distributed load-balance. These objectives can be realized by computing
a balanced k-way partitioning such that the numbers of edges shared between different
processor boundaries is minimized.
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Minimizing the Communication Volume Minimizing the edgecut, is an ap-
proximation of the true communication cost and the partitioning algorithm can minimize
the true communication cost reasonably well. Given a graph G = (V, E), and let P be
a vector with size —V—, such that P[i] stores the number of processor partitions which
belongs to vertex i. The edgecut is defined as the number of edges, which its vertices
belong to different processor partitions. That is, the number of edges (v,u) for which
P(v) != P(u).

Let Vb ⊂ V be the subset of the boarder vertices. That is, each vertex v in Vb,
is connected to at least one vertex that belongs to a different partition. For each v in
Vb let Nadj[v] be the number of Sub-domains that the vertices adjacent to v belong to,
without its own partitioning P[v]. The total volume is now defined as the sum of all
Nadj[v] for each v in Vb. During computations, each processor interface vertex must be
sent to all of its Nadj[v] partitions, which means, that the sum corresponds to the total
communication volume.

By minimizing the totalv, the overall communication cost will be directly minized,
this in contrast to minimizing the edgecut which is an approximation for the same. The
results are comparable for well-shaped finite elements, because the degrees of the vertices
are similar and the different objectives (totalv and the edgecut) behave the same. In
terms of the amount of time required by these 2 partitioning objectives, minimizing the
edgecut is faster then minimizing the totalv [17].

Interface with Metis The various functionalities that Metis provides are accessi-
ble through the MetisLib library. The Metis decomposition utility used in OpenFOAM
makes use of two different methods called: k-way and recursive. The algorithms used
in the k-way and recursive methods are developed by G. Karypis and V. kumar [17].
The library functions that are called from the OpenFOAM decomposePar tool are
METIS PartGraphRecursive and METIS PartGraphKway

Graph data structure Metis expects the graph in compressed storage format
(CSR) format. Its a wildly used scheme for storing sparse graphs. Two arrays called
xadj and adjncy are used to present the graph. The index element xadj[i] holds the
startindex of the neighbours list of node i, in the array adjncy. The neighbours are stored
in consecutive order in the adjncy matrix. The last neigbour belonging to node i can be
found by xadj[i+1]-1, which says, take the start index of the next node and substract one
from it. The size of xadj equals the amount of vertices +1, and the size of adjncy equals
twice the amount of edges, since each edge is stored twice. If the processors have different
computing capacities, a weight list can be added. This processor weight list allows for
example a 2-way partitioning in such a way that first processor takes 70% of the weight
and the latter only 30%. To use the same functionality, but included with a processor
weight list, one of the following functions will be called: METIS WPartGraphRecursive
or METIS WPartGraphKway.

The objectives of these functions are minimizing the edgecut. If one wants to min-
imize for the totalv, the call function must be changed to METIS PartGraphVKway or
METIS WPartGraphVKway.
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2.6.1.4 Manual decomposition

In manual decomposition, the user has to specify the allocation of the cells to the available
processors. This to support decomposition methods other then the ones described above
possibly generated with other tools.

Each decomposition method calculates the allocation of cells to the processors. After
the allocation the cells and faces have to be distributed to each processor. The boundaries
of each created submesh need be closed with processor patches. Each processor patch
contains all the faces which 2 processors share.

2.7 Profiling the SimpleFoam solver

Identifying hot-spots in applications allow engineering’s to mark functions as potential
candidates that can be accelerated. Applying optimization techniques on these hot-spots
results in a faster execution time of the program. This section focuses on the hot-spots
for the SimpleFoam solver for a certain input parameter set which conclusions are made
from. To do so, the platform, the profiling method and the results will be discussed in
this chapter. SimpleFoam is one of the many solvers used in the OpenFOAM toolbox.

2.7.1 Profiling platform

The platform, the full hardware architecture on which the application runs on, influences
the profiling report in 2 ways:

• The profiler can call specific hardware counter units, architecture depended, to
assist in the profiling.

• Certain functions can execute faster on different platforms due to dedicated hard-
ware execution units.

The platform that is used to profile the SimpleFoam solver is the Silicon Graphics,
Inc. (SGI) Altix 450 midrange server. A blade architecture is used to connect dual-
socket blades containing a dual-core Intel Itanium-II chip. The Blade-to-NUMAlinkTM

architecture allow to integrate eight choices of blade servers, each with interchangeable
memory, I/O and compute power. The latency over this NUMAlinkTM using Message
Passing Interface (MPI) for a short message is 1 microsecond with a bandwidth for
unidirectional throughput of maximum 3.2 GB/s. In addition, the NUMAflexTM archi-
tecture makes memory global visible for each processor. The experiment for the profiling
will take place on 1 CPU-core, 2 CPU-cores and 4 CPU-cores communicating through
Message Passing Interface (MPI).

2.7.2 Compiling OpenFoam on the Altix 450

To compile OpenFOAM on the Itanium-II the following changes had to be made:

• The first problem encountered is that system GCC (version 4.1.2), pre-installed
on the Altix by SGI, could not create any OpenFOAM libraries. Therefore a local
GCC (4.3.0) was build in order to start the compilation.
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• In the file /src/OpenFOAM/global/new.C ::abort() was changed to abort()

• Copied pointPatchFieldFunctions.H from http://openfoam.cfd-
online.com/forum/messages/126/5122.html?1187081100 to OpenFOAM-
1.4.1/src/OpenFOAM/fields/pointPatchFields/pointPatchField/

• Copied /usr/include/c++/4.1.2/ia64-suse-linux/bits/c++locale.h (from the sys-
tem GCC) to the corresponding location inside the local GCC folder.

• Modified the wmake rules in OpenFOAM-1.4.1/wmake/rules/linuxIA64I64. Each
occurrence of -kPIC has been changed to -fPIC.

All these steps where necessary to successful compile the OpenFOAM CFD toolbox. The
openMPI version included with the OpenFOAM is not used. We used the native MPI
version of the Altix 450 machine, since its already optimized for the Altix machine.

2.7.3 Profiling method

A large number of profilers exist. The task of the profiler is to report bottlenecks in
terms of execution time so that designers can concentrate on accelerating them. From
the report the exact functions or lines of code where most CPU cycles are spend can be
seen. The report should contain accurate information, should be complete and preferably
generated fast.

Extra effort, compared to normal execution, must be done in order to be able to
profile the software and to find the bottlenecks. Different profiling techniques exist and
the most common ones have been summarized here.
Source-level instrumentation Source-level instrumentation involves altering the
source code that eventually becomes the application by inserting profiling code. A pro-
grammer can add explicit calls to the profiling API or this can be done automatically
through a pre-processor.
Compile-time instrumentation The compiler itself can insert extra code which is
needed for the profiling. This has the advantage above source-level instrumentation of
being more convenient, but requires the source code to be recompiled.
Offline binary instrumentation Binary images that contain the text sections for
shared libraries or applications can be rewritten to add instrumentation. This technique
is complex to implement.
On-line binary instrumentation Mapped binary images are rewritten to add instru-
mentation.
Simulation A simulator can easily collect detailed data as part of the simulation run.
Such techniques tend to be very reliable and slow, so they are used when the level of
detail is critical.
Sampling In contrast to the software instrumentation methods above, sampling does
not require any instrumentation. Sampling can be based on 3 different methods:

• Instruction Pointer (IP) Sampling. This the most commonly used method of the
3.

• Hardware Event Sampling on application level or procedural level.
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• Call Stack Sampling.

Itanium supports monitoring of more then 100 hardware events and can give precise
information about the address and instruction pointer which can be used to generate the
profiling report. The easiest and fastest method to profile SimpleFoam on the Itanium-
II processor is to collect data received from the hardware Performance Monitoring Unit
(PMU), since it has the advantage above the software instrumentation techniques that
it does not require any binary of library to be recompiled for procedural profiling. In
addition, the overhead in terms of execution time profiling-enabled will be minimal. The
Performance Monitoring Unit (PMU) is integrated into the Linux kernel and available
through the Perfmon API. Different profiling tools exist for the Itanium-II that are
based on one or more of the sampling techniques. Some of these profiling tools are
Vtune, Pfmon, profile.pl and histx.

Vtune Intels VTune performance counters monitor events inside Intel microproces-
sors to give a detailed view of application behavior. VTune provides time- and event-
based sampling, call-graph profiling and hotspot analysis. It collects and analyzes soft-
ware performance data from a systemwide view down to specific functions or instructions
in the source application.

pfmon The pfmon tool is a performance monitoring tool designed for Linux. It uses
the Itanium (PMU) to count and sample unmodified binaries. In addition, it can be
used for the following tasks [12]:

• To monitor unmodified binaries in its per-CPU mode.

• To run system-wide monitoring sessions. Such sessions are active across all pro-
cesses executing on a given CPU.

• Launch a system-wide session on a dedicated CPU or a set of CPUs in parallel.

• Monitor activities happening at the user level or at the kernel level.

• Collect basic hardware event counts.

• Sample program or system execution, monitoring up to four events at a time.

Profile.pl The Perl script profile.pl provides a simple way to do procedure-level
profiling of a program running on the Altix system. It requires that symbol information
is present in the program text. The profile.pl script handles the entire user program
profiling process and is designed for Altix machines. Profile.pl is actually an interface to
the pfmon, in a more user-friendly way. In addition it is very easy to use with MPI.

histx Like the profile.pl script, the histx module is also developed by SGI. The histx
module is a set of tools used to assist in application performance analysis. It includes
three data collection programs and three filters for performance data post-processing
and display. The following sections describe this set of tools. The programs can be used
to gather data for later profiling:

• histx: A profiling tool that can sample either the program counter or the call stack.

• lipfpm: Reports counts of desired events for the entire run of a program.
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• samppm: Samples selected counter values at a rate specified by the user.

Like the profile.pl script, using mpirun with histx is very simple. Both are developed by
SGI to make the profiling easy on the Altix machines. The profiler selected to profile
SimpleFoam histx for the reason of the simplicity to use it. The option is chosen to use
the Instruction Pointer sample since the callstack for the application can be huge and
a depth of it must be specified. Line level information is not included. Appendix B.1
contains all the commands used to start the profiling.

2.7.4 Profiling input parameters

The description of the input parameter set will be presented by means of the I/O files
described in Section 2.3. Figure 2.3 and 2.4 contain the selected solvers for the physical
quantities and the selected descretized schemes respectively. Figure 2.5 contains the file
with the timing related information, such as the number of time steps taken. Profiling
on multiple CPUs requires the mesh to be decomposed. Figure 2.6 shows a set-up for 2
subdomains (2 CPUs in this case) with the Metis decomposition technique selected. By
changing the value of the keyword method to simple the simple decomposition technique
will be selected with the options under simpleCoeffs.

Mesh stats
points 2886846
edges 12400342
faces 16371921
internal faces 16029396
cells 6858424
boundary patches 10
point zones 0
face zones 0
cell zones 0

Table 2.2: Statistics of the properties of the mesh

Table 2.2 and Table 2.3 show certain properties of the mesh. The former table
contains global information on the number of cells, faces etc. while the later table
contains data of the numbers of types of cells inside the mesh. Each run will be executed
for an amount of 60 time steps as stated in Figure 2.5.

2.7.5 Profiling results

This section gives an overview of the results of the profiling of SimpleFoam. Since C++
functions can have very long names, due to inheritances and namespaces the tables with
the profiling results will obtain short references to their real names. The full names and
the references to them can be found in Appendix B.2. Table B.1 contains the profiling
report for the candidate functions that could be implemented in hardware. Information
is gathered running the application on one CPU and two CPUs. In the case of two
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Types of cells
hexahedra 0
prisms 4952537
wedges 0
pyramids 15084
tet wedges 0
tetrahedra 1890803
polyhedra 0

Table 2.3: Statistics of the structures of the cells of the mesh

CPUs both Metis and simple decomposition techniques have been used. The results for
using 4 CPUs are shown in Table B.2 and B.3. The discussion of the potential hardware
candidates continues in Section 2.7.6.

The execution time, during the profiling, for each test case is summarized in Table 2.4.
The first column obtain the number of CPUs SimpleFoam is executed on and the selected
decomposition method. The second column contains the user time and the last column
the elapsed wall time. The elapsed wall time is the actual time taken by a computer
to complete a task. It includes the CPU time, I/O time and the communication time
between the multiple CPUs. The presented numbers in the table are directly retrieved
from the application solver. The time needed to decompose and reconstruct the mesh
are shown in Table 2.5 and 2.6 respectively. The table shows for each testcase the
user time to decompose or reconstruct the mesh. The linux time command has been
used here. The execution time, to decompose and reconstruct the mesh is for all test
cases similar and negligible compared to the execution timing of the solver. However,
the selected decomposition method does effect the execution time as can be seen from
Table 2.4 and Table 2.7. Table 2.7 shows the achieved speed up by using multiple cores.
The numbers presented in this table are directly calculated from Table 2.4 by dividing
the execution time for each case with the execution time for one CPU. A number of
statements regarding the selected decomposition method can be concluded:

• The number of cells shared between different processors is more balanced with
Metis decomposition. The decomposition reports for four CPUs are included in
Appendix C.

• The relative time spend in the kernels is approximately the same for all the CPU
nodes when the Metis decomposition is select. There is more variation when the
simple decomposition method is selected.

• The number of faces shared between the processors is more then 50% higher when
simple decomposition is selected.

• For the given mesh, running the application on both two and four CPUs using
Metis decomposition resulted in lower execution time.



22 CHAPTER 2. SIMPLEFOAM

#CPUs - Method User time in seconds Wall Time in seconds
1 - none 10330.6 10352
2 - Metis 4812.74 4838
2 - Simple 5057.15 5091
4 - Metis 3398.48 3428
4 - Simple 3267.72 3359

Table 2.4: Execution time running SimpleFoam for two decomposition methods for one,
two and four CPUs

#CPUs-Method User Time in seconds
2 - Metis 315.716
2 - Simple 307.885
4 - Metis 316.678
4 - Simple 310.951

Table 2.5: Execution time running decomposePar

2.7.6 Hardware candidates

The profiling shows the potential functions that could be implemented in hardware.
First these functions must be analyzed whether they are suitable to be implemented in
hardware. Potential bottlenecks are usually coming from 4 different types of processes:
CPU-bound processes, Memory-bound processes, I/O bound processes and communi-
cation. Functions where the CPU is the bottleneck are favorite to be implemented in
hardware as data level parallelism can be exploited in such cases. The following functions
are worth to be investigated to be implemented in hardware:

• smooth

• residual

• Amul

• limitFace

• grad 1

• grad 3

Appendix B.2 contains the library, namespaces and classes in which the functions
belong and what arguments they take. The grad functions are difficult to be implemented
in hardware and are outside the scope of this thesis, since they are build on a deep-level
of classes. The other kernels are basically written in C and are basically independent
functions. Examining these functions, some kernels consist of a communication part in
which data between processors is exchanged and some are pure computational intensive.
Table 2.8 shows for these kernels the relative time that is spend in the computation and



2.7. PROFILING THE SIMPLEFOAM SOLVER 23

#CPUs- Method User Time in seconds
2 - Metis 284.370
2 - Simple 294.648
4 - Metis 291.381
4 - Simple 293.413

Table 2.6: Execution time running reconstructPar

#CPUs-Method Speed up - Execution Time Speed up - Wall Time
2 - Metis 2.147 2.140
2 - Simple 2.043 2.033
4 - Metis 3.040 3.020
4 - Simple 3.161 3.082

Table 2.7: Measured speed up using multiple CPUs compared to the execution time of
1 CPU

communication. 4 CPUs are used and only the information for the Host is recorded.
From the table the conclusion can be made that all kernels are computational intensive
and that communication plays a small role in it. A study of each of the kernels will be
given now.

4 CPU's. Recorded on Host CPU. Methis Decomposition used. 
Function Computation Communication (and other) 
Smooth 91.20 % 8.80 % 
residual 99.87 % 0.13 % 
Amul 99.85 % 0.14 % 
 

Table 2.8: Relative time spent in communication and computation
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2.7.6.1 smooth

/***** Computational intensive part of the smooth function *****/

register scalar curPsi;
register label fStart;
register label fEnd = ownStartPtr[0];

for (register label cellI=0; cellI<nCells; cellI++)
{

// Start and end of this row
fStart = fEnd;
fEnd = ownStartPtr[cellI + 1];

// Get the accumulated neighbour side
curPsi = bPrimePtr[cellI];

// Accumulate the owner product side
for (register label curFace=fStart; curFace<fEnd; curFace++)
{

curPsi -= upperPtr[curFace]*psiPtr[uPtr[curFace]];
}

// Finish current psi
curPsi /= diagPtr[cellI];

// Distribute the neighbour side using current psi
for (register label curFace=fStart; curFace<fEnd; curFace++)
{

bPrimePtr[uPtr[curFace]] -= lowerPtr[curFace]*curPsi;
}

psiPtr[cellI] = curPsi;
}

The smooth function smoothes the error and residual norms over time and tries to
improve the accuracy of the solver. The smooth function can be divided into 2 sections,
a part that communicates with other processor to exchange boundary information with
neighbour processing nodes, and a part that does the actual computation. The commu-
nication cannot be accelerated in hardware and therefore the concentration will be on
the computational part. The box contains the computational part of the code part of
the smooth function. It contains 3 loops that possibly could be unrolled. The 2 inners
loops are similar in nature and can be unfolded to a three based model. The outerloop
needs more investigation: the line curPsi = bPrimePtr[cellI] could depend on a previous
iteration, since bPrimePtr is updated after its being read from.
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2.7.6.2 limitFace

template<>
inline void cellLimitedGrad<scalar>::limitFace
(

scalar& limiter,
const scalar& maxDelta,
const scalar& minDelta,
const scalar& extrapolate

)
{

if (extrapolate > maxDelta + VSMALL)
{

limiter = min(limiter, maxDelta/extrapolate);
}
else if (extrapolate < minDelta - VSMALL)
{

limiter = min(limiter, minDelta/extrapolate);
}

}

template<class Type>
inline void cellLimitedGrad<Type>::limitFace

(
Type& limiter,
const Type& maxDelta,
const Type& minDelta,
const Type& extrapolate

)
{

for(direction cmpt=0; cmpt<Type::nComponents; cmpt++)
{

cellLimitedGrad<scalar>::limitFace
(

limiter.component(cmpt),
maxDelta.component(cmpt),
minDelta.component(cmpt),
extrapolate.component(cmpt)

);
}

}

In Appendix B.2, the specific type of the template class for the LimitFace is Vector.
The Vector consist of 3 components each direction containing a double. The function
can be parallelized by calculating all the upper and lower limits for each component of
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the class Type in parallel.

2.7.6.3 Amul

register const label nCells = diag().size();
for (register label cell=0; cell<nCells; cell++)
{

TpsiPtr[cell] = diagPtr[cell]*psiPtr[cell];
}

register const label nFaces = upper().size();
for (register label face=0; face<nFaces; face++)
{

TpsiPtr[uPtr[face]] += upperPtr[face]*psiPtr[lPtr[face]];
TpsiPtr[lPtr[face]] += lowerPtr[face]*psiPtr[uPtr[face]];

}

The Amul functions consist of a communicational and a computational part. The
performance as a consequence of irregular memory pattern accesses results in low perfor-
mance. On top of that, its current format allows a low degree of parallelism. Different
sparse matrix formats will be analyzed in the next chapter.

2.7.6.4 residual

The residual function is similar to the Amul function, but in stead of a matrix vector
multiplication unit, a vector minus matrix vector multiply unit is performed here. Since
it is nearly the same as the Amul, we do the analysis for the Amul function and extract
this kernel from the Amul kernel.

2.8 Conclusion

In the first part of this chapter, a number of aspects of the OpenFOAM CFD tool are
described. In particular, the focus is on the SimpleFoam solver. The Navier-Stokes
equations describe motion of fluids in space. The mesh, representing the computational
grid, is read by the CFD tool through files together with properties of the solvers, the
discrete operators and timing options. The files presented here form the basis for the
profiling in the next chapter. Finally, the decomposition methods are described that
support multiple CPU nodes to decrease simulation execution time in solving the grid.

The second part described the profiling process. The best way to profile applica-
tions on the Itanium processor is to use specific additional hardware instrumentation
for profiling, like Instruction Point (or Program Counter) sampling. The SimpleFoam
solver has been profiled on 1, 2 and 4 CPUs with a mesh containing over 6 million cells.
Two different decomposition methods have been analyzed and compared. The Metis
decomposition method was found to be superior over the Simple method since it was
able to reduce the communication cost and lead to faster execution times. The total
percentage of the most important kernels found during profiling on 1, 2 and 4 CPUs are
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# CPUs Decomposition method CPU-node Total % of kernels

1 None Host 36.852

2 Metis Host 32.784

Slave-1 34.214

2 Simple Host 32.116

Slave-1 34.880

4 Metis Host 25.120

Slave-1 25.618

Slave-2 25.350

Slave-3 25.549

4 Simple Host 25.490

Slave-1 27.254

Slave-2 26.263

Slave-3 26.014

Table 2.9: Summary of the most important kernels of Table 2.10 from the profiling
report. The contribution of these kernels is reported in percentages compared to the
total application time. Each active node, being the host or slave is included.

summarized in Table 2.9. The table contains for each active CPU, the host or slaves,
the sum percentage of the main kernels reported in Tables B.1, B.2 and B.3.

Table 2.10 summarizes for each kernel the feasibility to be implemented in hardware.
In the table arguments are given for the selected hardware candidates. The Amul,
residual and smooth functions, are the most important kernels and as a consequence of
timing issues, only the Amul and residual kernel will be investigated in the next chapter.
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Function Type of 
bottleneck

Description Hardware 
implementation?

Implemented 
in this thesis 
in hardware?

smooth MEM-CPU Smooth the error and 
residual norms over 
time and improving 
accuracy of the solver.

Yes, contains for loops 
with lots of multiply-add 
instructions that with 
unrolling could possibly 
lead to faster execution 
time in hardware.

No

grad_1 Not 
investigated

-- Possibly, complexity to 
understand the C++ 
structures and translate to 
the hardware for this 
function falls outside the 
time of this thesis.

No

limitFace CPU Limit Face values. Yes, its a relative small 
function. The functions 
grad_1 and grad_2 include 
a call to this function.

No

grad_3 Not 
investigated

-- Possibly, complexity to 
understand and generate 
the hardware for this 
function falls outside the 
time of this thesis.

No

Amul MEM-CPU A sparse matrix vector 
multiplication with 
irregular memory 
access patterns.

Yes, Investigation of 
different storage formats, 
possibly allow 
performance increase.

Yes

residual MEM-CPU A sparse matrix vector 
multiply-add operation 
with irregular memory 
access patterns.

Yes, the same reasons as 
for the Amul.

Yes

Table 2.10: Candidates for potential hardware implementation



Analysis of the Sparse Matrix
Dense Vector product 3
In the previous chapter, the kernels of the OpenFoam CFD toolbox have been summarized
by executing the SimpleFoam solver. In this chapter, we are concentrating on one of
these kernels, the sparse matrix dense vector multiplication. The associated functions
are the Amul and residual functions. These functions are analyzed in order to select
an appropriate format scheme suitable for hardware implementation. The remaining
part of the organization of this chapter is as follows. Section 3.1 defines the SMVP.
Subsequently, in Section 3.2 the sparse storage format in OpenFOAM is analyzed. Next,
different formats are investigated in Section 3.3 to study for better formats suited for
hardware. A conversion scheme from the OpenFOAM format to this new format is
presented in Section 3.3.8. Finally, this chapter ends with a conclusion in Section 3.4.

3.1 Definition of Sparse Matrix Dense Vector product

Mathematically, the dense matrix vector product Ab =c with sizes A M × N , b and c
N × 1, can be written as:

ci =
N−1∑
x=0

ai,x · bx (3.1)

where ai,x is the i-th column on row x of matrix A, bx is the x-th index of the input
vector b and ci the i-th index of vector c. The operation can be extended by initializing
c.

ci = ci +
N−1∑
x=0

ai,x · bx (3.2)

A dense matrix can be transformed into a sparse matrix when all its zeros are elim-
inated. However this requires additional arrays that store the locations of the non-zero
elements. In cases of extreme sparse matrices significant memory space can be saved
and zero multiply instructions can be avoided.

Storing a matrix in a sparse format becomes more efficient compared to storing
the whole matrix, when the overhead in accessing the index arrays to obtain the non-
zero values included with these non-zero calculations is faster then calculating the full
dense matrix vector multiplication. On top of that, memory can be saved in case the
non-zero elements present a small fraction of the original matrix. Different common
storage formats used for sparse matrices employ all the same basic techniques, a (multi-
dimensional) array to store the non-zero values and additionally one or multiple arrays
storing the locations of these non-zeros.

29
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3.2 The OpenFoam Sparse Matrix Storage format

The computation space is divided by means of a mesh in small segments. To solve this
computational grid, the physical equations need to be linked to the grid and translated
into matrix form. In this section, a description of properties of the mesh, the matrix
description and the relation between the two are described. A special relation between
the mesh and the matrices used in the solvers exist and is described in Section 3.2.1.
Section 3.2.2 describes the properties of the matrices created in OpenFOAM.

3.2.1 From Mesh to Matrix

Mesh Description All meshes in OpenFoam are considered 3D. A single layer of
cells must be used to create 2D cells with an empty front and back. A mesh is defined
by:

• List of vertices. Each vertex describes a point in 3D place, consisting out of an x,
y and z-coordinate.

• List of faces. Each face is constructed out of vertices. The ordering of these faces
define the face normal using the right hand rule.

• List of cells. Each cell is determined in terms of faces. An example of a cell is
depicted in Figure 3.1.

• List of boundary patches. A patch contains a group of faces on the boundary of
the mesh.

All internal faces are stored in a list, ordered by the cell index they belong to. Each
face has an owner and a neighbour cell. The owner of the cell has the face normal
pointing out of the cell for that particular face. The order of the faces in the list is
stored in increasing neighbour cell label order, i.e. the face between cell 1 and 3 comes
before the face between cell 1 and 5. The boundary faces, which do not have neighbour
cells, are stored in the same list after the internal faces.

Matrix description OpenFoam uses a column row storage format for each non-
zero entry of the matrix. Each matrix can be divided into 3 parts:

• A diagonal list of scalars (SP or DP floating point numbers), representing the
diagonal values of the matrix.

• An upper list of scalars, representing the non-zero elements of the upper matrix.

• A lower list of scalars, representing the non-zero elements of the lower matrix.

And only the non-zero elements are stored. Consider as an example the following
matrix:
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Polyhedral Cell Definition

Nomenclature

• A polygonal face is defined by a list of vertex labels. The ordering of vertex labels
defines the face normal (orientation) using the right-hand rule

• A polyhedral cell is defined by a list of face labels that bound it

• Cell centre is marked by P , face centre and face interpolates by f , face normal sf

and neighbouring cell centre by N

• Face centre and cell volume are calculated using a decomposition into triangles or
pyramids

0

3

1

2

4

5

triangle
t2

t1

t0

f

P

Vy

z

x

N

d

sf

f

r

Polyhedral Mesh Handlingin OpenFOAM – p.4/13

Figure 3.1: Definition of a cell in OpenFOAM [16]


d(0) 0 0 u(0) 0
0 d(1) 0 u(1) 0
0 0 d(2) 0 u(2)

l(0) l(1) 0 d(3) u(3)
0 0 l(2) l(3) d(4)

 =


1 0 0 6 0
0 2 0 7 0
0 0 3 0 8
10 11 0 4 9
0 0 12 13 5

 (3.3)

In the left matrix, the values are represented by the diagonal, upper and lower entries
list indices denoted by d, u and l respectively. The right side contains the values of these
lists. The full matrix is not stored in OpenFOAM, but the compressed format is instead
of it used. The diagonal entries are in general non-zero and are stored in the diagonal list.
For the off-diagonal entries, the lists upper and lower have references to the indices by 2
additional coordinate lists called upperAddr and lowerAddr. The upper elements have
the lowerAddr list as row-coordinates and upperAddr as column-coordinate, while for
the lower elements the upperAddr list is stored as row-coordinate and lowerAddr as the
column-coordinate. The Diagonal, Lower, Upper, vector b and c arrays are independent,
i.e they have no common shared elements.
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The matrix in Eqn. 3.3 is stored as follows:

Diagonal = [1, 2, 3, 4, 5]
Upper = [6, 7, 8, 9]
Lower = [10, 11, 12, 13]

UpperAddr = [3, 3, 4, 4]
LowerAddr = [0, 1, 2, 3]

Relation between Mesh and Matrices The size of the Diagonal list equals the
number of cells the mesh consists of. The sizes of the Upper and Lower lists equal the
number of internal faces of the mesh. The upper matrix contains values belonging to
the owners of faces and the lower matrix contains values belonging to the neighbour
cells. Off-diagonal matrix element contain a non-zero value if a face is shared between
an owner and neighbour cell on that position (in the mesh). If for example cell 0 and
cell 3 sharing a face, non-zero values will be created at the matrix coordinates (0,3) and
(3,0). The owner cell must have a lower cell number then the neighbour cell.

All the solvers, except for the Algebraic Multigrid Solvers store agglomeration of cells
in stead of the owner-neighbour relation. These types of solvers create a hierarchy of
coarse matrices and a sparse matrix product for different sizes is performed. The residual
kernel is not affected by this.

3.2.2 Matrix properties

The matrices created have the following properties:

• The matrices are square.

• A non-zero diagonal stored separately.

• Elemental positions are symmetric.

• Upper and lower entries have mutually transposed coordinates.

• The lowerAddr list is sorted.

• The matrices are very sparse.

The following formula expresses the density of the non-zeros of the matrix in terms
of cells and number of faces.

diagonalsize + uppersize + lowersize

diagonal2size

∗ 100% =
nCells + 2 ∗ nFaces

nCells2
∗ 100% (3.4)

where diagonalsize equals the size of the Diagonal vector, lowersize the size of the Lower
vector, uppersize the size of the Upper vector, nCells the number of cells of the matrix
and nFaces, the number of internal faces of the matrix. Given the mesh with the
properties summarized in Table 2.2 where nCells = 6.858.424 and nFaces = 16.029.396,
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the percentage of non-zero entries for the matrix belonging to this mesh equals 8, 27 ∗
10−5%.

Figure 3.2 shows the non-zero entries for a matrix belonging to a smaller mesh, more
specific, the PitzDaily case described in the OpenFOAM Programmers Guide. The
matrix has 12225 nCells and 24170 nFaces.
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Figure 3.2: Non-zero entries for the pitzDaily case

3.2.3 Analysis of the sparse matrix calculation using the OpenFOAM
matrix storage format

For convenience the matrix of Figure 3.3 is repeated here. The instructions that perform
the sparse matrix vector products will be analyzed now.

1 0 0 6 0
0 2 0 7 0
0 0 3 0 8
10 11 0 4 9
0 0 12 13 5




b0

b1

b2

b3

b4

 =


c0

c1

c2

c3

c4

 (3.5)
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The fragment in the box below represents the computational part of the Amul kernel,
with a small modification in the symbol names.

for (register label cell=0; cell<nCells; cell++)
{

c[cell] = Diagonal[cell]*b[cell];
}

for (register label face=0; face<nFaces; face++)
{

c[upperAddr[face]] += Lower[face]*b[lowerAddr[face]];
c[lowerAddr[face]] += Upper[face]*b[upperAddr[face]];

}

The SMVP consists of 2 loops, in the first loop the diagonal matrix of the matrix
times the vector is calculated. The second loop calculates contribution of the SMVP for
the non-diagonal elements and are summed to the values of the first loop.

Analyzing the first loop, the following instructions for the matrix of Eqn. 3.3 are
obtained:

Iteration 0: c[0] = Diagonal[0]*b[0] => A[0,0] * b[0]
Iteration 1: c[1] = Diagonal[1]*b[1] => A[1,1] * b[1]
Iteration 2: c[2] = Diagonal[2]*b[2] => A[2,2] * b[2]
Iteration 3: c[3] = Diagonal[3]*b[3] => A[3,3] * b[3]
Iteration 4: c[4] = Diagonal[4]*b[4] => A[4,4] * b[4]

The hardware unit can execute several of these instructions in parallel, since the input
vector b, the output vector c and Diagonal lists are not sharing any values. Depending
on the area and bandwidth these type of instructions are easily scalable when more area
and memory bandwidth are available.

Unrolling the second for-loop of the vector-matrix product of the same matrix A,
results in:

Iteration 0: c[3] += Lower[0]*b[0] => A[3,0] * b[0]
c[0] += Upper[0]*b[3] => A[0,3] * b[3]

Iteration 1: c[3] += Lower[1]*b[1] => A[3,1] * b[1]
c[1] += Upper[1]*b[3] => A[1,3] * b[3]

Iteration 2: c[4] += Lower[2]*b[2] => A[4,2] * b[2]
c[2] += Upper[2]*b[4] => A[2,4] * b[4]

Iteration 3: c[4] += Lower[3]*b[3] => A[4,3] * b[3]
c[3] += Upper[3]*b[4] => A[3,4] * b[4]

For each Upper and Lower value, the coordinates in the original matrix are obtained
through the lowerAddr and upperAddr lists to be able to acquire the correct elements
of b and c and to store the result on the correct location c. The instructions cannot be
executed all at once in parallel anymore due to read-write dependencies. The dependent
instructions are summed in Figure 3.3 for this matrix.
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Iteration 0: c[3] += Lower[0]*b[0] = A[3,0] * b[0]
Iteration 1: c[3] += Lower[1]*b[1] = A[3,1] * b[1]
Iteration 3: c[3] += Upper[3]*b[4] = A[3,4] * b[4]

Iteration 2: c[4] += Lower[2]*b[2] = A[4,2] * b[2]
Iteration 3: c[4] += Lower[3]*b[3] = A[4,3] * b[3]

Figure 3.3: Read-Write dependencies in the OpenFoam Spare Matrix Vector Product at
c[3] and c[4]

As a consequence of the read-write dependencies we can conclude that this format is
not suited for hardware execution, since its not scalable with memory bandwidth. The
dependent instructions need to be executed in order to ensure correct results. Therefore
an investigation for a number of different sparse matrix formats will be analyzed in
Section 3.3.

3.3 Analysis of different sparse matrix representations

In this section a conversion, from the currently addressing mode (lowerAddr and upper-
Addr), to a new matrix representation will be investigated. The OpenFOAM format is
not sufficient enough, since it lacks scalability. A couple of different matrix formats are
analyzed in this section. The criteria to compare the formats are scalability, the number
of memory accesses and the required memory to store the matrix. Here scalability means
the convenience of exploiting parallelism in such a way that when multiple hardware pro-
cessing units are available, dividing the matrix A is trivial if more memory bandwidth
is available, for example by dividing the matrix in rows. A distinction between storage
needed for the indexing and values is made, since some schemes include storage of zero
values.

3.3.1 Current Format: (A modification of COO)

The Coordinate (COO) storage format is perhaps the simplest format and most flexible
format which can be used to store sparse matrices. Assuming we have an N x N matrix
A = [aij ] containing the non-zero entries, the COO format is created as follows: For
each non-zero entry, the row and column coordinates are stored besides its value. All
the arrays equal in length equal to the number of non-zeros of the matrix.

• values The array with values is created by taking all the non-zeros elements of the
original matrix, there is no specific order required.

• col Each value col[k] holds the column coordinate of the non-zero element aij

stored in values[k].

• row Each value row[k] holds the row coordinate of the non-zero element aij stored
in values[k].
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By taking advantage of the symmetric elemental positions, the diagonal entries can
be stored in a separate array, the row and column indexes of the lower half or the upper
half of the original matrix have to be stored. This modified storage format is used in the
OpenFOAM toolbox. Figure 3.4 contains an example of a matrix in the COO format
together with its OpenFoam format.

 

 1   0    0   6   0
 0   2    0   7   0
 0   0    3   0   8
10 11   0   4   9
 0   0   12 13  5

  

values = [ 1, 6, 2, 7, 3, 8, 10, 11, 4, 9, 12, 13, 5]
     row = [ 0, 0, 1, 1, 2, 2,  3,   3, 3, 3,    4,   4, 4]
     col  = [ 0, 3, 1, 3, 2, 4,  0,   1, 3, 4,    2,   3, 4]

COO-format

Diagonal = [1, 2, 3, 4, 5] Upper = [6, 7, 8, 9]
Lower = [10, 11, 12, 13] 
row = [3, 3, 4, 4] col = [0, 1, 2, 3]

OpenFOAM format

Original matrix

Figure 3.4: The COO and OpenFoam sparse storage format

Table 3.1 contains a summary of the criteria regarding the required minimal mem-
ory space and the number of memory instructions for the OpenFOAM format directly
retrieved from the code on page 34.

Parallelism No, memory accesses can be random
Storage Index col, row: 2nFaces

Storage Value values : nCells + 2nFaces

Loads 2nCells + 6nFaces

Stores nCells + 2nFaces

Memory accesses 3nCells + 8nFaces

Table 3.1: Properties of executing an SMVM with the OpenFOAM storage format

3.3.2 Compressed Row Storage

The CRS, also referred as Compressed Sparse Row (CSR) in the literature, is one of the
most or the most used sparse matrix storage format. It’s a general format which can be
used to store any matrix. First a 1-dimensional vector values is constructed that contains
all the values of the non-zero elements aij of matrix A, taken in a row-wise fashion from
the matrix. No specific ordering is required for the non-zero elements within a row,
however the assumption is made here an order of increasing column coordinate.

• values = [vk] where 0 < k < Nz, vk = aij where aij is the k-th element of A for
which holds aij != 0 and 0 ≤ i, j < N
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 values = [ 1, 6, 2, 7, 3, 8, 10, 11, 4, 9, 12, 13, 5]
       col = [ 0, 3, 1, 3, 2, 4,   0,   1, 3, 4,   2,   3, 4]
row_ptr = [ 0, 2, 4, 6, 10, 13]

CRS-format

 

 1   0    0   6   0
 0   2    0   7   0
 0   0    3   0   8
10 11   0   4   9
 0   0   12 13  5

  

Original matrix

 
  

Figure 3.5: The CRS sparse storage format

• Secondly, a 1-dimensional vector col = [ck] of length equal to the length of values
is constructed that contains the original column positions of the corresponding
elements in values. Thus, ck = j where 0 < k < Nz, j is the column position of the
k-th element of matrix A for which holds aij != 0 and 0 < i, j < N

• Last, an array row ptr = [rm] of length N+1 is constructed. rm+1-rm denotes
the length of row m of matrix A and r0 = 0. Each element in vector row ptr is
therefore a pointer to the 1st non-zero element of each row in vectors values and
col.

Figure 3.5 shows the CRS format for the example matrix. The code to perform the
SMVM for the CRS format is written out in the box below.

// Compressed Row Storage format
int p = 0;
int q = 0;

for (i=0;i<N;i++)
{

p = q;
q = row_ptr[i+1];
int c0 = 0;

for (j=a; j<b; j++)
c0 += values[j]*b[col[j]];

c[i] = c0;
}

Analyzing the above code, Table 3.2 contains the memory cost for this storage format.
Memory accesses and memory space can be reduced if the diagonal is stored sepa-

rately. This format is called the Modified Sparse Row (MSR) format. The code contains
a small modification which is the initializing of the temporary variable c0 used to accu-
mulate the row sum. Figure 3.6 shows the MSR format for the example matrix.
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Parallelism Yes, row-wise
Storage Index row ptr, col : 2nCells + 2nFaces

Storage Value values : nCells + 2nFaces

Loads 4nCells + 6nFaces

Stores nCells

Memory accesses 5nCells + 6nFaces

Table 3.2: Properties of executing an SMVM with the CRS format

// Modified Sparse Row format
int p = 0;
int q = 0;

for (i=0;i<N;i++)
{

p = q;
q = row_ptr[i+1];

int c0 = diag[i]*b[i];

for (j=a; j<b; j++)
c0 += values[j]*b[col[j]];

c[i] = c0;
}

values = [ 6, 7, 8, 10, 11, 4, 9]
col =  [ 3, 3, 4, 0, 1, 4, 2, 3]
row_ptr = [ 0, 1, 2, 3, 6, 8]
diag = [ 1, 2, 3, 4, 5]

MRS-format

 

 1   0    0   6   0
 0   2    0   7   0
 0   0    3   0   8
10 11   0   4   9
 0   0   12 13  5

  

Original matrix

Figure 3.6: The MSR sparse storage format

Due to the symmetry of the matrix, its only required to store the indexes of the
strictly upper matrix or lower matrix. Storing the diagonal separate, and only the upper
or lower matrix in CRS format is called the Symmetric Sparse Skyline format (SSS).
The SSS for the example matrix is shown in Figure 3.7.
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values = [ 6, 7, 8, 10, 11, 4, 9]
col =  [ 3, 3, 4, 4]
row_ptr = [ 0, 1, 2, 3, 4]
diag = [ 1, 2, 3, 4, 5]

 

 1   0    0   6   0
 0   2    0   7   0
 0   0    3   0   8
10 11   0   4   9
 0   0   12 13  5

  

SSS-formatOriginal matrix

Figure 3.7: The CRS sparse storage format

// Symmetric Skyline format
for (i=0;i<nRows;i++)
{
c[i] = diag[i]*b[i];
}

for (i=0;i<nRows;i++)
{

a = b;
b = row_ptr[i+];

for (j=a;j<b;j++)
{

c[i] += Upper[j]*b[col[j]];
c[col[j]] += Lower[j]*b[i];

}
}

The advantage of the SSS scheme its efficiency in required memory space, however
at the same time it destroys the parallelism in a similar way as the OpenFOAM format.

3.3.3 Jagged Diagonal Storage

The JDS format is a very useful format when calculating matrix vector products on
parallel and vector processors. The format can be constructed in the following way:

• First, all the nonzero elements are shifted to the left side of the matrix maintain-
ing the order within a row, the zeros stay on the right side. While doing this,
each original column coordinate is stored as well in an 1-dimensional array col.
Figure 3.8 depicts this.

• Second, the rows are permuted in such a way that they lead to decreasing row
sizes. The permutations are stored in perm.

• Finally, the resulting vertical vectors created in the second step are stored in a linear
array value and and the indexes of the starting point of each vertical column are
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stored in Ind. The vertical vectors at the left side are larger or equal to the once
the right side, the size of the Ind is denoted as Nz,col.

// Jagged Diagonal format
int p = ind[0];
int q = ind[0];

for (i=0; i < nz_col ; i++)
{

q = p;
p = ind[i+1];

for ( j=0; j < p-q; j++)
{

c[j] = c[j] + value[q+i] * x[col[q+i]];
}

}

 

 1   6   0   0   0
 2   7   0   0   0
 3   8   0   0   0
10 11  4   9   0
12 13  5   0   0

  

Original matrix

step 1

 

 0   3   0   0   0
 1   3   0   0   0
 2   4   0   0   0
 0   1   3   4   0
 2   3   4   0   0

  

step 2

Shifted values Column indices

 

10 11  4   9   0
12 13  5   0   0
 1   6   0   0   0
 2   7   0   0   0
 3   8   0   0   0

  
 

 0   1   3   4   0 
 2   3   4   0   0
 0   3   0   0   0
 1   3   0   0   0
 2   4   0   0   0

  

Permuted values Permuted indices

step 3

values = [10,12, 1, 2, 3, 11, 13, 6, 7, 8, 4, 5, 9]      
      col = [  0,  2, 0, 1, 2,   1,   3, 3, 3, 4, 3, 4, 4]

      Ind = [0,5, 10, 12]
   perm = [3, 4, 0, 1, 2] 

JDS-format

 

 1   0    0   6   0
 0   2    0   7   0
 0   0    3   0   8
10 11   0   4   9
 0   0   12 13  5

  

Figure 3.8: The JDS sparse storage format

Table 3.3 summarizes the cost executing the SMVP with the JDS format.

3.3.4 Diagonal Format, Diagonal Storage Format, Compressed Diago-
nal Storage (DIA ,DSF, CDS)

When the sparse matrix contains a lot of zero diagonals, the non-zero diagonals can
be compressed very efficiently. The DIA format stores the non-zero diagonals only and
can be constructed from the original matrix by creating a matrix values and an array
distance and a parameter ndiag. The matrix values has size ndiag × N and stores all
the values of the non-zero diagonal in the original matrix. The offset, measured from
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Parallelism Yes, vertical columns allow parallel execution
Storage Index perm, col, jd ptr: 2nCells + 2nFaces

Storage Value values : nCells + 2nFaces

Loads 4nCells + 8nFace

Stores nCells + 2nFaces

Memory accesses 5nCells + 10nFaces

Table 3.3: Summary of the cost executing the SMVM with the JDS format

the main diagonal, for each non-zero diagonal is stored in the distance vector. Since
the matrices are positional symmetric only the offsets for the upper (or lower) triangular
part of the matrix are necessary to be stored.

distance = [-3, -2, -1, 0, 1, 2, 3]

values = 

DIA-format

 

 * 
 *
 *
10
 0 

  

 * 
 *
 0
11
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 * 
 0
 0
 0
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 3
 4
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 0 
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 0
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 1   0    0   6   0
 0   2    0   7   0
 0   0    3   0   8
10 11   0   4   9
 0   0   12 13  5

  

Original matrix

Figure 3.9: The DIA sparse storage format

Table 3.4 shows the contribution of the 15 most important diagonals. The table
has to be read as follows: The first column specifies the offset, or distance from the
main diagonal. Since the matrix is symmetric the upper half have positive and lower
half negative offsets. The next 2 columns show for each diagonal, with the distance
to the main diagonal given in the first column, the number of zeros and non-zeros on
that diagonal. The third column includes the extra zeros to make the matrix values a
rectangular matrix. The 4th column shows the cumulative sum of the non-zeros so far
and the last column shows the cumulative sum in percentages of the total amount of
non-zeros.

This format will be not be analyzed further due to the following reasons:

• To many diagonals are needed to store this matrix, 36% of the non-zero of the
whole matrix are stored for example in 15 diagonals.

• Each diagonal itself contains a lot of zero’s which are included in the DIA format.

• A total of 2.452.421 diagonals (not shown in the table) are required to stored the
whole matrix in DIA format, included with the main diagonal (with offset 0). The
memory requirement to store the matrix values with size N by 2.452.421 is not an
option to consider.
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Distance No. non-zeros No of zeros Cum Sum nz Cum freq % 

0 6.858.424 0 6.858.424 17.62 

(-) 2 1.356.056 5.502.368 9.570.536 24.59 

(-) 4 697.619 6.160.805 10.965.774 28.18 

(-) 1 538.902 6.319.522 12.043.578 30.95 

(-) 6 316.874 6.541.550 12.677.326 32.58 

(-) 3 284.139 6.574.285 13.245.604 34.04 

(-) 8 168.433 6.689.991 13.582.470 34.90 

(-) 5 147.049 6.711.375 13.876.568 35.66 

 

Table 3.4: Contribution of the main diagonals for the DIA format for the profiled mesh

The Ellpack-Itpack (ELL) is a generalization of the diagonal storage format and is
intended for matrices with a limited maximum number of non-zeros per diagonal. Since
this is not the case, this format will be discarded as well.

3.3.5 Block Sparse Row

In the BSR format the matrix is considered to consist of small dense square blocks.
Zeros inside the dense block are treated as non-zero values with the value zero. The
BSR format can be seen as a simple generalization of the Row Compressed Storage. The
dimension of each small dense block is denoted by Bdim. The total of nonzero blocks
equals Nz,block = Nz

N2
block

and the matrix dimension becomes NBSR = N
Bdim

. The BSR
format is constructed as follows:

values = [ 1, 0, 0, 2, 0, 6, 0, 7, 0, 0, 10, 11, 3, 0, 0, 
4, 8, 14, 9, 15, 12, 13, 17, 18, 5, 16, 19, 20 ]      
col =  [ 0, 1, 0, 1, 2, 1, 2]
brow_ptr = [ 0, 2, 5, 7]

BRS-format

 

 1   0   0   6   0   0
 0   2   0   7   0   0
 0   0   3   0   8  14
10 11  0   4   9  15
 0   0  12 13  5  16
 0   0  17 18 19 20

  

Original matrix

Figure 3.10: The BSR sparse storage format

• Each block of size Bdim × Bdim that contains a non-zero value is stored in a row
wise fashion. Within a block, each element is again stored in a row wise fashion.
All the values are stored in an array values of length Nz,block ×B2

dim.

• Second, a 1-dimensional vector col of length equal to the length of Nz,block is con-
structed that contains the column positions of the corresponding non-zero blocks in
values. The column positions of the upper left coordinate of each block are stored.
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• Last, a vector brow ptr = [rm] of length NBSR+1 is constructed. rm+1-rm de-
notes the length of row m of matrix and r0 = 0. Each element in the array
brow ptr is therefore a pointer to the 1st non-zero block of each row in vectors
values and col.

Figure 3.10 shows this format for Bdim = 2.

// BSR-format with block sizes of 2
q = brow_prt[0] // =0;

for (i=0;i<N_bsr;i++)
{

p = q;
q = brow_ptr[i+1];
for (j=p;j<q;j++)
{

j0 = col[j];
b0=b[j0<<1];
b1=b[j0<<1 +1];

j1 = j<<2;
c0 += values[j1 + 0]*b0 + values[j1 + 2]*b1;
c1 += values[j1 + 1]*b0 + values[j1 + 3]*b1;

}

y[2*i] = c0;
y[2*i+1] = c1;

}

Ideally, if all blocks are filled with B2
dim = 4 non-zero elements, this format will lead

to better results then for CRS. The two reasons for this are:

• Less index positions have to be loaded from the array col, at the slight cost of
more run-time index calculations, which can be done in parallel.

• Less elements of vector x have to be loaded, to be precise, only half of the indexes,
compared to CRS storage format.

The drawback is that possible extra zeros can be included and therefore multiplica-
tions with zeros. To analyze this cost, the BSR format for the profiled matrix is created
with Nz,block. Table 3.5 shows the results for Bdim = 2.

The extra zero-values included to form small dense blocks is very bad, since 68% zero
multiply-add instructions are included. The advantage or losses gained by the auxiliary
position matrix can be calculated and compared to storage formats that do not include
storage of zeros.

As a consequence of storing zero values, this scheme needs more loads then in the
CRS/MSR format as can be seen from Table 3.6. The expectation is that using a larger
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NBSR = N
2 3 429 212

Nz,block 30 635 142
Average ratio zeros within a block 0.68
Average zeros within a block 2.72

Table 3.5: Matrix properties for Bdim = 2 for the BSR format

Parallelism Yes, Bdim rows simultaneously
Storage Index brow ptr: Nz,block+1 = 30 635 143

col: => Nz,block = 30 635 142
Storage Value values: B2

dim ×Nz,block = 122 540 568
Loads 1 + NBSR + 7×NBSR ×Nz,block = 217 875 207
Stores nCells = 6 858 424
Memory accesses 224 733 631

Table 3.6: Summary of the cost executing the SMVM with the BSR format

Bdim more zeros will and the performance will only decrease. In a similar way like in
the Skyline Sparse Skyline storage format, it is possible to store the blocks on the main
diagonal blocks separately in addition with the block coordinates for the strict upper
part of the original matrix. In this way memory storage space can be reduced.

3.3.6 Block Based Compression Storage (BBCS)

The last sparse format scheme discussed here is the Block Based Compression Storage
format. The BSR is a relative new format and proposed by [22]. The BBCS format can
be obtained as follows:

• The N × N matrix is vertically cut in dn
s e vertical blocks, denoted by Am, where

0 < m < dn
s e − 1

• Each non-zero element aij , s×m < j < s× (m + 1) and 0 ≤ i < N , is stored in a
row wise fashion within its vertical block.

The advantage of this scheme, in computing Ax, is that the values of A and vector x
both can both be streamed. Each Am block can be multiplied with a fraction of vector
x, namely x[s×m : s× (m+1)]. These values can be kept close to the executional units.
Each value of A is needed only once and therefore they can be streamed as well.

The Am blocks are stored as a sequence of 6-tuple bits in the following way [22]:

1. Value: specifies the value of a non-zero aij matrix element if the Zero-Row Flag
equals 0. Otherwise it denotes the number of subsequent block rows within a
vertical block with zero matrix elements.

2. Column position: Specifies the matrix element column number within the block.
Thus for a matrix element aij within a vertical block Am it is computed as j mod
m.
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3. End-Of-Row Flag (EOR): is 1 when the current data entry describes the last
non-zero element of the current row block and 0 otherwise.

4. Zero-Row Flag (ZR): is 1 when the current block row contains no nonzero value
and 0 otherwise. When this flag is set the V alue field denotes the number of
subsequent block rows that have no non-zero values.

5. End-Of-Block Flag (EOB): when 1 it indicates that the current matrix element
is the last non-zero one within the VB.

6. End-Of-Matrix Flag (EOM): is only one at the last entry of the last vertical
block of the matrix.

The width of a 6-tuple entry equals log2(s) + 5 where log2(s) equals the size of each
column coordinate and where the 5 remaining flags require all 1 bit. To map the tuples
efficiently on memory, we investigate this format for s = 8 and s = 2048 so that the
tuples can be stored in a char and short integer respectively.

The indexes needed to store the V alues array and 6-tuples within a vertical block
equals on average c + avg col × s = c + avg row ∗ s where avg col the average number
of non-zeros per column for the entire matrix, which equals the average number of non-
zeros per row. The value c represent the average additional entries for each block where
the Zero-Flag is non-zero. The storage required for the full matrix can be calculated
now as: n

s × {c + avg row × s}.
The loads and store that are required are:

• To operate in parallel, the start index each vertical block must be known in advance,
this requires an addition amount of loads, dn

s e.

• Each element of Am, has to be multiplied with an element of x. For the matrix Nz

(equal to nCells+2nFaces) values are required to be accessed, while for x nCells
loads are necessary.

• Each result of a row×vector multiplication within a vertical block has to update
results in loading and storing in y. The worst case scenario would be 2×length(y)×
nblocks = 2×n× n

s , which occurs when all blocks at least have a non-zero on each
row. However this is certainly not the case. We try to analyze it by summing up
all the non-zero rows for each block and multiplying it with 2, shown in Table 3.7.

• Last, for each block c 6-tuples and c offsets entries of load instruction are required
to determine the next non-zero row within a block. These are the values where ZR
For the total matrix n

s × c entries are required.

Table 3.7 summarizes all the properties for the matrix in its BBCS form.

3.3.7 Comparing the formats - Choosing the best Hardware Candidate
format

Table 3.8 summarizes the results of the different formats. From the table the conclusion
can be made that the SSS storage is the most efficient storage format, however difficult
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Memory Accesses
Size of vertical block Am s = 8 s = 2048
Loads for block-pointers 857.303 3.349
Loads for all aij and x[j] 77.834.432 77.834.432
Load-Store for temporay y 2× 33.072.553 = 66.145.106 2× 26.916.017 = 53.832.034
Value of c 19.16 3349
Load c (ZR = 1) 2× c× dn

s e = 32.851.851 2× c× dn
s e = 22.430.530

Total Memory accesses 177.688.692 154.100.345
Storage
Storage type of 6-tuple char (8 bits) short int (16 bits)
Amount of 6-tuples 55.377.434 50.165.032
Amount of V alues 55.377.434 50.165.032
Block pointers dn

s e+ 1 = 857.304 dn
s e = 3350

Other
percentage of ZR = 1 29.7% 28.8%

Table 3.7: Matrix properties for the BBCS format for s = 8 and s = 2048

to implement in hardware to avoid dependencies and hardly scalable with bandwidth
and area increase.

The MRS format requires the least amount of memory operations and storage consid-
ering a format which is scalable. Therefore this format will be chosen to be implemented
in hardware.

3.3.8 Sparse matrix conversion: From OpenFoam format to MRS/CRS

The best solution is to rewrite the toolbox for MRS support. In this case no convertions
between the matrices is required. But for fast proto-typing and verification we convert
the matrix during run-time. An algorithm to convert the current OpenFOAM format to
the MRS format in O(n) time, where n the matrix dimension will be presented in this
section. To obtain the MRS/CRS format the following steps have to be executed.

• Step 1 The row ptr array is initialized with 0 for MRS and 1 for CRS.

• Step 2 each index of row ptr will be filled with its size.

• Step 3 The row ptr is constructed by adding summing up previous row sizes to
the current index.

• Step 4 Filling the col array with the correct coordinates.

• Step 5 Restoring the row ptr array.

Figure 3.11 shows these intermediate steps. On the left side code is written to obtain
the values and on the right side the values in the arrays of these steps are applied.

The CRS format is included due to the current status of the implementation in the
next chapter.
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Format Parallelism Memory Accesses Storage  - Values 

               - Indexes 

Current No 3 nCells + 7 nFaces - Minimal (nCells + 2 nFaces) 

- 2 nFaces 

CRS Yes, row-wise 5 nCells + 6 nFaces - Minimal 

- 2 nCells + 2 nFaces 

MRS Yes, row-wise 4 nCells + 6 nFaces  - Minimal 

- nCells + 2 nFaces 

SSK No 4 nCells + 9 nFaces  - Minimal 

- nCells + nFaces 

JDS Yes, vertical columns 5 nCells + 10 nFaces  - Minimal 

- 5 nCells + 10 nFaces 

DIA Yes, diagonal-wise Too many zeros included - Too many zeros 

  included 

BSR Yes, multiple row-wise 179.2% compared to CRS - 170%    compared to CRS 

- 133.8% compared to CRS 

BBCS Yes, vertical blocks For s = 8 

117% compared to MRS 

 

For s = 2048 

106.5 % compared to MRS 

For s = 8 

-  142%    compared to MRS 

-  37.8%   of MRS 

For s = 2048 

-  129%    compared to MRS 

-  64.5%   of MRS  

 

Table 3.8: Analysis of several Sparse Matrix Storage Formats

3.4 Conclusion

In this chapter, the OpenFOAM SMVP has been extensively examined. The kernel
seemed not appropriate for parallel extension and therefore different formats were an-
alyzed. The criteria to compare them were scalability with increasing bandwidth, the
number of memory accesses and the required storage space. The MSR was found to be
the best. A conversion algorithm in O(n) time between the OpenFOAM format and the
MSR format is also given. In the next chapter a description of the start of the hardware
unit for the MSR format is given.
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Step 1: Initialize row_ptr

// row_ptr  
for (i=0; i<n+1; i++)
  row_ptr[i]=0; // 1 for CRS here

 

 1   0    0   6   0
 0   2    0   7   0
 0   0    3   0   8
10 11   0   4   9
 0   0   12 13  5

Original matrix

Diag = [ 1, 2, 3, 4, 5]
values = [ ]
row_ptr = [ 0, 0, 0, 0, 0, 0]
col  = [ ]

MSR-format

Step 2: Store row sizes of row

for (i=0; i<upper_size; i++)
{
  row_ptr[row[i]] = row_ptr[row[i]]+1;
  row_ptr[col[i]] = row_ptr[col[i]]+1;
}

 Diag = [ 1, 2, 3, 4, 5]
values = [ ]
row_ptr = [ 1, 1, 1, 3, 2, 0]
col  = [ ]

MSR-format

Step 3: Create row_ptr

int k= 0;
int p = 0;

for(i=0; i<nrow+1; i++)
{
  p = crs_row[i];
  crs_row[i] = k;  
  k = k + p; 
}

 Diag = [ 1, 2, 3, 4, 5]
values = [ ]
row_ptr = [ 0, 1, 2, 3, 5, 7]
col  = [ ]

MSR-format

Step 4: Fill in col and values 

for(k=0; k<upper_size; k++)
{
  i = row[k];
  j = col[k];
 
  id = row_ptr[i];
  values[id] = Upper[k];
  crs_col[id] = j;
  row_ptr[i] = id + 1;
 
  id = crs_row[j];
  values[id] = Lower[k];
  crs_col[id] = i;
  row_ptr[j] = id + 1;
 }

 Diag = [ 1, 2, 3, 4, 5]
values = [ 6, 7, 8, 9, 10, 11, 12, 13 ]
row_ptr = [ 1, 2, 3, 5, 7, 7]
col  = [ 3, 3, 4, 0, 1, 2, 3]

MSR-format

Diagonal = [1, 2, 3, 4, 5] 
Upper = [6, 7, 8, 9]
Lower = [10, 11, 12, 13] 
row = [3, 3, 4, 4] col = [0, 1, 2, 3]

OpenFOAM format

Step 5: Shift forward row_ptr

for(k=nrow; k>0;k--)
  row_ptr[k] = row_ptr[k-1];
row_ptr[0]=0;

 values = [ 1, 6, 2, 7, 3, 8, 4, 9, 10, 11, 5, 12, 13]
row_ptr = [ 0, 2, 4, 6, 10, 13]
col  = [ 0, 3, 1, 3, 2, 4, 0, 1, 2, 3]

CRS-format

 Diag = [ 1, 2, 3, 4, 5]
values = [ 6, 7, 8, 9, 10, 11, 12, 13]
row_ptr = [ 0, 1, 2, 3, 5, 7]
col  = [ 3, 3, 4, 0, 1, 2, 3]

MSR-format

Figure 3.11: Conversion between OpenFoam format and MRS/CRS



A hardware Accelerator for the
SMVM 4
In the previous chapter analysis showed that the Modified Sparse Row format is probably
the most suited format to accelerate FVM matrices in hardware. This chapter continues
with the development of a hardware accelerator for the SMVP suited for matrices in
the FVM area. First, an overview of the RASC reconfigurable hardware platform is
given. Next, the hardware unit is described. Finally, this chapter ends with a conclusion
regarding the designed hardware unit.

4.1 The Hardware Platform

The hardware platform that is targeted is the Altix-450 machine. The same system
environment used to profile the SimpleFoam solver. The Altix supports multiple re-
configurable hardware units which can be integrated into the server with low latency
cost and high bandwidth. Section 4.1.1 introduces the RASC-core. Next, Section 4.1.2
describes the design options that the RASC-core provide to integrate the Customized
Computing Unit into the system environment.

4.1.1 Introduction to the RASC-core

The Altix machines have the ability to be extended with RASC-blades. RASC stands for
Reconfigurable Application-Specific Computing. Each RASC-blade uses FPGA technol-
ogy as co-processor of the CPU. The RASC hardware module is based on an Application-
Specific Integrated Circuit (ASIC) called TIO. TIO attaches to the Altix system NUMA-
link interconnect directly. Figure 4.1 depicts the organization of the RASC Hardware
Blade.

To be able to reach high performances, the FPGAs are connected with a NUMAlink
fabric making them a peer to the CPU with high bandwidth and low latency. Using the
Direct Memory Access (DMA) streams, a bandwidth from main memory to the FPGAs
up to 6.4 GB/s per FPGA can be reached. The 6.4 GB/s bandwidth consist out of 3.2
GB/s in both directions, from main memory to FPGA and vice versa. These features
enable both extreme performance and scalability.

The RASC algorithm FPGA is a Xilinx Virtex 4 LX200 part (XC4VLX200-FF1513-
10). It is connected to an SGI Altix system via the Scalable System Port (SSP) on the
TIO ASIC and configured with a bitstream through the FPGA loader.

4.1.2 Implementation Options

The RASC Core Services allow users to configure a number of options. These options
are:

49
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14 007-4718-004

1: RASC Introduction

memory resources with 10 synchronous static RAM dual in-line memory modules
(SSRAM DIMMs).

Figure 1-6 RASC Blade Hardware

For legacy systems, optional brick packaging is available for the latest RASC hardware.

RASC Software Overview

Figure 1-7 shows an overview of the RASC software.
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Figure 4.1: RASC Hardware Blade [13]

• Algorithm clock rate

• Optional supplemental clock

• Stream DMA

• Memory configurations

• Algorithmic Defined Registers

• Algorithmic Debug Registers

• Synthesis tool option

The algorithm clock rate can be set to 50 MHz, 100 MHz or 200 MHz. The last
mentioned frequency is the clock rate at which the Altix Core Services outside the
FPGA run. An optional supplemental clock can be used to allow the CCU running
on a different frequency then the algorithmic clock. This clock is generated by a Digital
Clock Manager (DCM). The designer is responsible to transfer data among 2 different
clock domains. A maximum of 4 DMA streams in each direction can be picked, from
FPGA to main memory and vice versa. The streams directly transfer data from memory
to the FPGA. The bandwidth of 3.2 GB/s in each direction is shared among the streams.
A selection between three setups for the memory configuration of the external FPGA
memory can be chosen:

• SRAMS disabled, no external memory can be used.
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RASC FPGA Design Integration

007-4718-004 53

Figure 3-11 Instance Hierarchy of the RASC FPGA Design

The Algorithm / Core Services interface as defined in the section entitled “Algorithm /
Core Services Block Interface” on page 28, consist of the input and output signals defined
for the module alg_block_top.

FPGA Clock Domains

This section describes the clock domains within the RASC Field Programmable Gate
Array (FPGA), with a focus on the algorithm clock domain used by the Algorithm Block
logic. There are two major domains: core clock and algorithm clock. However, the two
domains are not completely asynchronous. They may either both be 200 MHz and phase
aligned, or the algorithm clock can have a 50, 66, or 100 MHz and the clocks will be phase
/ edge-aligned (that is, a rising edge of the algorithm clock will correspond to a rising
edge of the core clock).

acs_core.v

sram_io.v

sram_clk_gen.v

ssp_io.v

ssp_clk_gen.v

virtual_pins.v

mux64to1_rtl.v

rst_rep_delay.v

alg_block_top.v

acs_top.v
user_space_wrapper.v

Figure 4.2: RASC file overview [13]

• A configuration with 3 logical SRAMS, in which the first two banks contain 128
bits wide data and the latter 64 bits data.

• A configuration with 5 physical SRAMS. In this configuration all banks contain 64
bits equal bandwidth.

There are up to 64 Algorithmic Defined Registers (ADR) available and there are registers
available for debugging purposes. The ADRs are used to store function arguments inside
the FPGA. The Algorithmic Debug Registers are used to debug the application in real
time with gdbfpga. The gdbfpga tool supports monitoring up to 64 signals which can
be traced in real hardware. In the last option, selection the synthesis tool, Xilinx or
Synplify must be specified.

4.2 Hardware Design

The hardware-unit is build out of two key components called the Host and Processing
Element. The Host is responsible for loading data from memory and providing this data
in a correct way to the PE(s). The task of the processing element is to perform the
calculation on the data provided by the host. This section is continued by explaining
the designs for the Host and the PE components.
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PE 0

PE 1

PE 2

PE 3
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Row-wise partitioning Column-wise partitioning Pipelinable stripes

Figure 4.3: Matrix divide strategies
1526 IEEE TRANSACTIONS ON MAGNETICS, VOL. 43, NO. 4, APRIL 2007

Fig. 1. SMVM pipeline is a fully pipelined 1-D linear array processor network.

Fig. 2. Typical sparsity pattern for FE matrices [9].

fed into the pipeline horizontally from the same side. Each PE
therefore, simultaneously computes a partial summation of

(1)

where is the partially accumulated summation from a
prior computation.

IV. PIPELINABLE STRIPES

Striping is particularly suitable for FE matrices due to their
special sparsity patterns. Melhem [8] establishes that FE ma-
trices, when using specific mesh numbering techniques, can be
covered by a number of stripes independent of the size of the
problem. In other words, the number of stripes the FE matrices
can have is bounded by a constant that is independent of the di-
mension of the matrix . Since each PE is required to process a
stripe, this implies that the computational resources needed by
the SMVM pipeline does not indefinitely increase as the size
of the FE matrix increases. For large FE matrices therefore,
the SMVM pipeline scales well in terms of computational and
memory resource requirements. Fig. 2 shows the typical FE ma-
trix sparsity pattern for two example matrices.

A. Increasing-Order Stripes

To ensure correct operation of the SMVM pipeline, the stripe
elements have to be ordered in an increasing order with respect
to both row and column indices. Increasing-order stripes can
fall into four distinct categories which are increasing order (IO),
strictly increasing order (SIO), strict-columns increasing order
(SCIO), and strict-rows increasing order (SRIO). To formulate
these categories, we start by defining a stripe as an ordered
set of elements taken from the sparse matrix A as follows:

where

TABLE I
STRIPE CATEGORIES

Fig. 3. Stripe formations. Pipelinable (SRIO) stripes generate the optimal
number of stripes required for fully pipelinable hardware implementations.
(a) Straight-diagonal stripes (seven SIO stripes). (b) Jagged-diagonal stripes
(four SIO stripes). (c) Staircase stripes (three IO stripes). (d) Pipelinable stripes
(three SRIO stripes).

Table I outlines the different striping categories.
Fig. 3 shows a basic example of the four increasing-order

stripe formations. The pipelinable stripes belong to the SRIO
striping category which is expected to produce a lower number
of stripes than the straight-diagonal [5] or the jagged-diagonal
striping formations [6]. This is due to the fact that the condi-
tion required for forming SRIO is less restrictive than the con-
dition required for forming jagged-diagonals or straight-diago-
nals. Therefore, each SRIO stripe can contain on average more
elements than the jagged-diagonal or straight-diagonal stripe
which reduces the overall SRIO stripe count.

In contrast, staircase striping may produce a lower number
of stripes; however, they prevent the use of pipelined FPUs.
This is because the IO or SCIO stripe may contain more than
one element from the same row which creates a feedback line
around the FPUs in the PE impeding the overall computational
throughput of the SMVM pipeline. Amongst the previously
mentioned striping formations, the pipelinable stripe formation

Authorized licensed use limited to: Technische Universiteit Delft. Downloaded on May 14, 2009 at 05:21 from IEEE Xplore.  Restrictions apply.

Figure 4.4: SMVM pipeline of the design in [7]

4.2.1 Strategy of dividing work among processing Elements

Before presenting the hardware unit, this section explains the approach how the work is
divided among the Processing Elements. The ability exist to group the data of matrix
A into the following ways:

1. Vertical slicing of the matrix. A vertical block will be assigned to each processing
element that becomes free.

2. Horizontal slicing of the matrix. Assigning the work of one or multiple rows to a
Processing Element.

3. Creating stripes. By grouping multiple non-zeros into stripes.

Figure 4.3 contains the dividing methods. The first method is implemented in [28].
The last method is implemented in [7]. Creating stripes is not applicable for the matri-
ces generated from meshes constructed out of prisms, pyramids and similar structures.
Section 5.4 explains this in more detail. Due to the extremely sparse matrices, we be-
lieve that option one or two is the best method to proceed on. In the next chapter, the
different methods and results are compared more in detail.

When more bandwidth is available more processing elements can be placed. The data
from matrix A must be divided and streamed into the different processing elements.
To do this sectioning matrix A can be divided vertically (in groups of columns) or
horizontally (in groups of rows). To complete the analysis, the striping method is also
included.
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• Pre-processing

– Horizontal sectioning does not require any changes to the CRS/MRS format.

– Vertical sectioning requires extra preprocessing to contain the format for the
vertical slices. For each vertical slice the new CRS/MSR format must be
calculated.

– The striping methods requires more pre-processing then the previous two
methods. The matrix must be divided in stripes which can be pipelined and
feed through the execution unit. Figure 4.4 depicts the method described
in [7]. In a linear array pipeline architecture, matrix elements are fed to the
PEs from the top, while the vectors are horizontally fed in to the pipeline.

• Size of b

– The horizontal sectioning requires that the whole vector b should be available
to all processing elements.

– Vertical sectioning requires only subparts of b available to the processing
elements.

– In the striping method only the active elements are fed into the pipelines.

• Final result

– With row-sectioning each row that is processed contains immediately its final
result.

– With Vertical sectioning, rows results are obtained by summing up all the
resulting temporary values of the vertical slices. Since the matrix sizes can be
huge (over 1 million), the FPGA does not contain enough memory to store
the temporary results for the slices. Accessing high-latency off-chip memory
and doing additions with high latency adder is a complex task.

– For the pipeline array, the temporary row results are streamed through the
PEs and the full cost for the SMVM is obtained.

A similar implementation with vertical slices, can be found in [28]. In general it could
be said that the sparser the matrix the lower the peak performance. The sparsest matrix
tested by the authors contained a non-zero ratio of 0,04% with a peak performance of
20% only. A performance of 350 MFLOPS using a bandwidth of 8 GB/s. In addition, the
authors did not include the final addition of the temporary vectors. They assume that
these additions are summed up on the GPP CPU. To include full cost, we implement
the row-wise partitioning strategy.

4.2.2 Design strategy

The following design strategy is taken to design the SMVM:

• Design of smaller components of the CCU (The SMVM kernel).

• Verification of each subcomponent by testing it separately.
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• Integration of the subcomponents into larger units.

• Verification of the CCU unit in simulation.

• Automated test generation to test Modelsim simulations and real hardware execu-
tion.

• Connecting the CCU to the RASC-services environment.

• Including specific signals from the design to the RASC debug interface for debug
and verification purposes.

• Verification of the design with 1 and 2 PEs in real hardware.

• Automated test generation for multiple PEs for simulation verification and perfor-
mance estimations.

4.2.3 Processing Element(s)

The computations that are involved in a sparse matrix vector product are similar as
in the dense full matrix vector product, with the exception that large parts are zero
and therefore the zero computations are excluded. The non-zero computations from any
sparse matrix format are similar and the Processing Element (PE) is designed in a way
capable of accepting any pairs of values of A and b.

The core of the processing element is the multiply-add unit. To compute the rows,
many designs [28], [23] implement adder trees to accumulate row results. The task of
this circuit is to sum up all partial products and to reduce it into one final value. The
adder reduction trees consume a huge amount of slices on the FPGA. In our design,
the adder trees are avoided by accumulating the sum of each row in time. Since there
is a latency of 8 cycle for the addition, different rows utilize the same resource unit
simultaneously. By creating 8 slots, each cycle 1 slot have access to the multiply add
unit. Thus, the multiply-add unit is used to calculate different rows simultaneously.
We assume significant resources can be saved if this approach is used. To handle the
complexity of the design, temporary results will be stored in BRAM (FPGA on chip
memory) for the different rows that are active at the same time, to avoid multiplexers
required for switching between the inputs to the multiply add unit. The multiply add
core is being reused from the design in [26]. The total latency for the multiply add unit
is 11 cycles.

Considering the Processing Elements as a black box, the inputs and outputs of this
component are shown in figure 4.5. There are 2 global signals, the clock (clk) and the
reset (rst) signal. Further, 3 group of signals can be seen on the left side, where the first
group is related to the row information, the second group to data from the matrix A
and vector b and the last group accepts data from vector c, if enabled. Data from the
matrix A and vector b must enter in pairs and be valid at the same time.

Row information includes the row size, its index, the pid (processing ID) to which
the row belongs too, and for which slot (denoted by block index) its targeted. To hide
memory latency, the memory operations overlap with data computations. This requires
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Figure 4.5: Overview of the Organization inside a PE

a second memory and the block switch signals denotes which of the 2 memory is used to
store data on and which is being used for computation.

On the right side of the figure two groups of outputs can be seen. The first groups
handles the slots that came free, so new rows can be loaded in that spot. The second
group returns the final row result and its index. The latency to push data in the pipeline
is 11 cycles, so we take the 8 slots.

The data feed to this unit comes from 3 memories. The first memory contains the
elements of A, the second memory the elements of b, and the third memory the elements
of vector c. To handle the complexity, 3 units called Input controller, Info Table and
Load controller are responsible for filling data to the multiply-add unit. Each of them
will be discussed now.

The Input Controller: The tasks of the Input Controller is to accept the rows,
update the information of this row in the component Info Table by storing the row size,
the index of the current row and to state that the slot is valid. In addition, it writes
the accepted values of A, b and c in the correct locations. The memory addresses are
generated by combining the slot index, the offset of the current element with respect to
the current row. The addresses of these locations are composed by the block index and a
counter that keeps track of the number of elements of the current row currently written
to memory. Figure 4.7 shows a timing diagram for the Input Controller.

When enable row is high, all related row information like the row index, row size,
block index and the block switch is registered inside this component. Each cycle when
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Figure 4.6: IO ports of the component Input Controller

the value of enable ab is high, the pairs data a and data b are stored in memory A and
B. Later on, the address indices are explained. A counter keeps track when all the row
elements are read in and compares this with the row size. When the element of vector c
is read in, a boolean is raised to store this. In case Ab is calculated (β = 0), the value
zero must be written for each new row, to clean up row results of previous calculations.
When all elements of the row are read in, the valid signal to the component Info Table
is raised.

The Info Table: This component can be seen as a table that stores all the infor-
mation related to the rows. It keeps track of the row size in each slot, the current element
of the row that is processed and forwards this data to the Load Controller. Further, it
administrates whether the slots are used to fill with data (communication) or processing
(computation). Each memory used to realize this is explained below:

• row index Two Simple Dual Port memories 32 bits wide (width can be specified
in a configuration file), both 8 entries, store the row index of the matrix. The
write port to these memories are controlled by the Input Controller which updates
old values when new rows are accepted. The read requests to this memories are
coming from the Load Control, which needs the values for block that has access
to the Floating Point unit. Only 1 of the 2 memories is forwarded to the output,
depending on the active signal for the current requested block.
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Figure 4.7: Timing Diagram of the Input Controller of the Processing Element

• row size The memories which contain the row sizes for each slot are constructed
in the same way as for the row index. Requests are coming from the Load Control
unit and new values are updated by the Input Control unit when new rows are
accepted. The active bit for the requested block selects between the output value
of 2 Dual Port SRAMs, the one that is currently used for computations. The
widths of the memory depend on the largest row size specified in the configuration
file.

• current index Since each row starts at a different time, due to different row
lengths, we need to know how many elements already are processed of this row.
The current index keeps tracks of this. Only 1 Simple Dual port is in this case
needed of width 32 bits containing 8 entries. The request (block rqst) and updates
(block upd) signals are both connected to the Load controller. The memory is
initially reset to zero and the load controller is responsible for the correct usage
and resetting the value.

• valid For each slot, a valid bit is stored that administrates if that particular slot
contains valid row data. The Input Control unit set the valid values high when new
rows are accepted and the load controller invalidates them when a row is finished
its computations. 2 Simple Dual Port memories of 1 bit wide containing 8 entries
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Figure 4.8: Organization of the component Info Table

store the valid bits for each slot. The valid bit is updated when a new row is
accepted from the input controller or when its invalidated (denoted by the valid
signal) by the load controller.

• active An active bit for each slot is stored to keep track of which part of the
memory is doing computation and which part is being filled by the Host controller.
The size of the register is 8 bits. Initially, all the slots with block switch value zero
are active and the valid bit for each slot is initially set to zero.

The total cost generating hardware for this component is using only 162 slices for
the Virtex-4 LX200 device running at a maximum frequency of 250 MHz. The memory
address widths that are used are 32 bits wide. In a configuration file this address width
can be adjusted. This component can be improved further by combining memories that
are split in 2 Simple Dual ports for the mentioned memories into 1 Simple Dual port.
This saves some address wires and multiplexers. The approach to take is similar as
storing the values of matrix A and vector b in the memories A and B.

The Load Controller: The load controller is based on 1 bit up counter that
generates the addresses for the Info Table unit. If a non-valid row has access to the
multiply add unit, the Floating Point unit will be disabled. If a valid row is returned, a
row address for the Memories A, B and C will be generated, based on the switch value
for the current block, its address and the value of the current index. The multiply add
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Figure 4.9: Organization of the component Load Control

unit will be enabled (madd en). If the current index equals the size of the current active
row, also row en will be set high, which signals that the computations for the row are
finished. This signal is passed together with the index of the row (row index) through
the Floating Point unit to the output of the Processing Element. Since, its determined
here, when a row finished its computations, this component also controls the signals to
state which slots became free.

Memory A, B, C: Memory A is used to store the active row elements of matrix
A, while memory B does this for elements of vector b. Last, Memory C is used to store
initial values of the vector c and stores also the temporary row results. Rows of the
matrix are assigned to empty slots.

Memory A is depicted in Figure 4.10. The Input Controller stores elements on the
correct addresses by combining the active signal (block switch), slot id (block index) and
the row offset. The load controller generates the address to read the data and the output
of the memory is forwarded directly to the Multiply-Add unit.

Memory A, consist out of 2*row length*8 entries. The number 2 represents here one
memory for buffering and the other one for active computations for each slot. The factor
8 here is due to 8 available slots. The row length can be specified in a configuration file
and denotes the maximal row length of each slot. If the maximal row length equals 6
as in the profiled mesh for example, the total memory size for A will be 96 DP floating
numbers. Memory B is composed exactly in the same way as memory A.

Memory C contains 2 True Dual Port memories as can be seen in Figure 4.11. The
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Figure 4.10: Organization of Memory A inside the PE

host stores a new element of c in the correct memory, according to the value of the
active (block switch) signal and slot id (block switch). The Multiply Add unit is reading
temporary results from the correct memory address and stores the new temporary result
in it. A simple Look Up Table (LUT) forwards the wr address to the correct memories
with its writes control signals (not shown in the figure). The output multiplexor that
selects output data c between the 2 memories is controlled by the rd addr signal from
the Multiply Add unit. Each slot contains 1 element only for this component. It is
possible that both wr addr coming from the Input Controller and Load Controller are
active at the same time in the same memory, but it is not possible that they write to
the same address. This memory can be improved by removing one of the memories.
Only one memory is required that stores data from the Input Controller. The second
memory, used by the Multiply-Add core can be removed, if intermediate results are
directly looped back into the multiply-add unit. Extra logic must be designed for this
to select between the initial value from the memory and the intermediate results. This
signal can be provided by the Load Control, since it can easily determine if the first
element of the row is processed.
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Figure 4.11: Organization of Memory C inside the PE

The multiply add unit: The input and output ports and the connections to other
components of the Multiply Add unit is shown in Figure 4.12. The Multiply-add unit
operates on data from the Memories A, B and C. The load controller enables the multiply
add unit with the enable signal each time when valid data is fed into the multiply add
pipeline. The multiply add unit operates in the first 3 cycles on data a and data b only.
Data c is not required yet, and therefore addr c is also forwarded into the pipeline. At
the 3rd cycle an access to memory C is requested, to load the correct element of initial
vector c or a temporary row result. The outputs of the multiply add unit is the result
after 11 cycles. This result is stored back in the Memory C or forwarded to the output
of the PE if row valid is high. The signal row valid equals the row enable signal delayed
with 11 cycles. Similarly, row value is the 11 cycle latency signal of id row. The data
path of the multiply-add unit of [26] has been modified to include index support and
valid row values (the final value of a row).

Table 4.1 summarizes the frequencies and required number of slices for each of the
units inside the PE. The slices are the occupied slices, which contain logic and rout-
ing. The table does not include the cost of the 9 DSP48 18 × 18 bit multipliers, the
DSP48 multiplier are basic blocks of the Floating Point multiplier. The multiply-add
core contributes most the total cost of the PE.

4.2.4 Host

The host contains the memory controller and is responsible for providing the data to
the processing elements in the correct way (see input of Input controller). The Host is
constructed from 2 smaller components, one responsible for generating memory addresses
and the other to provide the data to the processing elements.
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Figure 4.12: Input and output ports of the Multiply Add unit and its connections to
other components

Component slices frequency (MHZ)
Input Controller 95 265
Info Table 162 252
Load Controller 84 449
Multiply Add 1,414 159
Processing Element 2,140 156

Table 4.1: Area cost and frequency analysis of the each component of the Processing
Element

An implementation of the Host with 5 memory banks In this design each array
that is required to do the CRS SMVM is stored in a separate memory. Doing this
higher bandwidth can be achieved compared to using 1 memory. The design contains
two subcomponents: called the front-side and back-side.

front side The front side is responsible for generating the addresses and storing
the data in FIFOs. Data is stored in FIFOs for the following reasons:

• 13 cycles latency from the FPGA to main memory (SRAM) on the RASC core.

• The convenience to read data from the FIFOs is simpler.

All the addresses to the main memory are generated with counters except for the loading
vector b. Loading elements from b is determined by its column coordinate.

The buffer control is designed to prevent buffer overflow. The FIFO sizes are 16
units large and the memory loads are requested each cycle when the number of elements
inside the FIFO equals 3 or less. An additional requirement is implemented when entries
of vector b are requested, which is that the FIFO holding the column coordinates must
have valid data. The latency to travel data from the input to output of the FIFOs is 1
cycle. Memory request start as soon as the start signal goes high.
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Figure 4.13: Organization of the front-side and back-side of the Host controller

back-side The back-side has 4 tasks:

• A Finite State Machine (FSM) controlling data coming out of the FIFOs from the
front side. It provides data to the input of the PE compliant to the inferface of the
Input Controller. Each time a new row is read in, the enable row signal is asserted.
Elements of matrix A and vector b must enter in pairs. The FSM assures no buffer
underflow for the data inside the FIFOs, to avoid data loss.

• Modifying the values of A and c, according to the values of α and β. With them,
αAb+βc is computed in the right way. The supported values for α are {−1, 1} and
for β {−1, 0, 1}. Several bits of the floating point numbers α and β are inspected,
and accordingly, the sign bits of data a and data c could be reversed. In case β is
zero, it is not required to load entries of the memory for elements of c. The value
of data c will stay zero.

• Keep track when the done signal must be raised. The done signal is raised when
all the results are written back to memory.

• An FSM controlling the empty slots of the PE. Initially, 16 slots are free. The first
16 slots are assigned manually. The ordering of slots that became free coming from
the PE, which depend on the row length, are stored into a FIFO. When this FIFO
contains valid data and a new row is detected, data can be forwarded to the next
empty slot, residing inside the PE.
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An implementation of the Host with 1 memory bank In this design all the
arrays, A , b, c, col, row are stored in 1 memory. The design is similar to the one with
5 memories, except that the front side contains an arbiter to arbitrate which values are
loaded.

4.3 Connecting the design to the RASC-services

Besides external memory, the SRAMS, the RASC-core provides the ability to use
streams. These streams have been included to increase the bandwidth to obtain higher
performance. The design is targeted to achieve a maximal input bandwidth of 11.2 GB/s
at a frequency of 200 MHz. Since the design is not routing on 200 MHz, a supplemen-
tal clock for the CCU of 100 MHz is required. This is not implemented in this thesis.
Currently, 2 PEs are routed as depicted in Figure 4.14. It inclused 2 DMA streams and
uses an input bandwidth of 5.6 GB/s. Due to limitations of the SRAM sizes (8 MB per
SRAM), the following conditions must hold, N < 1000000 and Nz < 2000000, for suc-
cessive computations. The number of processing elements can be doubled to 4 running
running at a frequency of 100 MHz if the algorithmic clock is set to 200 MHz. This
is future work. The figure does not contain the controllers that control the bandwidth
from the memory banks to the PEs. Different components are designed to control this
with the following functionality:

• mem load a: The elements of matrix A are streamed through the DMA streams
directly into the FPGA from main memory. This component interfaces between
the host of the PE and the RASC-core. The data width of the stream equals 128
bits and is converted to a 64 bit output. The streams behave in a similar way as
FIFOs.

• mem load b: This component is responsible for loading the elements of vector
b. When new column coordinates are available, new elements of vector b are
requested. Further, this unit is responsible for the buffer overflow control.

• mem load c: This component is responsible for loading the elements of vector
c. Since both PEs share the same memory (SRAM 4) an arbitration is taken
place between request from both PEs. Further, this unit controls the FIFO buffer
overflow for both PEs and keeps track which received data belongs to which PE.

• mem load row: This unit does similar work as the mem load c component, but with
extra control converting two row values stored in 64 bit format, into to separate 32
bit values. Since addresses are 32 bits, it might be possible that the first element
of the the PE could reside in the upper or lower half of the 64 value. This unit
selects the correct output depending on the start address.

• mem load col: This unit does exactly the same work as the mem load row unit.

An overview of how the RASC software layers is depicted if Figure 4.15. The ap-
plication communicates with the FPGA from the RASC Core Services library space.
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Figure 4.14: Design of the SMVP including 2 DMA-streams

The Core Services include all the functions required to communicate from the appli-
cation to the FPGA, which includes data transfer from main memory to the SRAMS
in both directions, streaming of data to the FPGA and sending and receiving function
arguments through the Algorithmic Defined Registers and Algorithmic Debug Registers.
The limitations and a more detail descriptions of the library functions are described in
Appendix D.

4.4 Combining Dense with Sparse Matrix Vector multipli-
cation

In this section, we combine 2 processing elements of the following designs:

• The processing element of the dense matrix vector multiplication design in [26].

• The processing element of the sparse matrix vector multiplication design presented
in Section 4.2.3.

Figure 4.16 shows a design that contains the integration of the 2 PEs. Memories A
of both designs are combined into 1 memory in which the size is specified in the config-
uration file. The maximum value between the two values is selected. The address and
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data inputs between both designs are multiplexed and controlled with the sparse/dense
input signal.

The dense design does not require memory B, but a register is used to store values
of vector b. Currently, data b is both forwarded to this register (dense case) and the
memory B (sparse case) and a multiplexers selects the desired signal. Later, this can be
improved by storing this element at index 0 of memory B. This saves the register and
avoids multiplexing between 2 64 bit signals (output of memory and register). A smaller
multiplexer is required to select between address 0 for the dense case and the address
normally used for the sparse case.

So far, Memories C of both designs have not been integrated together. Efforts have
been focused to integrate the controllers (the LUT in figure 4.11) for the sparse and dense
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case, which turns to be a complex task. In Figure 4.16 it will be simpler by multiplexing
all in and outputs of the combined memory, in a similar way as for the combined Memory
A.

The dense multiply-add unit has been modified for the sparse multiply-add unit by
appending signals specifically used for row identification and final result identification
for the sparse design. The dense case does not require this signals and in the combined
PE only sparse related components like the Load Controller are connected to it.

So far, we have verified the combined processing elements using 1 mixed PE capable
of computing both the Sparse and Dense Vector matrix product. The combined PE
requires the same amount of cycles as for the case when the sparse or the dense case is
executed separately. The CCU Core component of the dense design has been modified
in such a way that the host controller has been included to provide the data for the
sparse design. Depending whether a sparse or dense case matrix vector multiplication is
used, one of the memory controllers, host control for the sparse design and the Load ctrl
and Store ctrl for the dense design, gain access to the main memory.

4.5 Conclusions

In this chapter, the design methodology is described developing the SMVM hardware
unit. The platform and architectural choices have been discussed. The Processing Ele-
ments of the SMVM design are low cost in terms of area. Next, the Processing Elements
of the presented SMVM unit and the PE of the dense design in [26] have been integrated
together. In the next chapter performance analysis for both units is performed.
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Design evaluation:
Performance Analysis and test
results 5
The previous chapter described the SMVM kernel. This chapter continues with perfor-
mance analysis for the hardware accelerator. The performance of the hardware unit will
be compared with current literature and software performance. Finally, conclusions for
the efficiency of the design and the impact of the overall performance of the SMVM unit
for the OpenFOAM toolbox are discussed.

5.1 Symbols

The symbols used in this chapter are summarized in Table 5.1.

Symbol Meaning

N The dimension of the matrix N by N , and vector b c both N by 1
Nz The number of non-zero entries in the given matrix
B Bandwidth in words (1 word equals 8 Bytes)
P Performance in operations

s
PE Processing Element

NPE Number of PEs
fop The operating frequency
γ The ratio between non-zeros and total entries of matrix

Table 5.1: List of symbols used in the analysis

5.2 Theoretical limitations

5.2.1 Number of processing elements

The quantity of PEs that can be placed and routed depends on the availability of the
amount of hardware resources and bandwidth. Current FPGA technology, contain abun-
dant hardare resources. Therefore, it is very likely that the number of PEs is limited by
the available bandwidth. The more bandwidth available, the more processing elements
can be placed in order to keep the bandwidth utilized. Since each PE is working inde-
pendently, meaning incoming data from main memory is not shared between the PEs,
due to row splitting. We calculate the bandwidth for 1 PE and scale this up to NPE .

To obtain high resource utilization, the multiply-add unit inside the PE must be
occupied as much as possible in each cycle. Considering 1 PE, the total amount of
matrix operations equals 2Nz operations and can be finished in Nz cycles if 1 PE is
used. This requires that all the data from main memory must be loaded in this amount

69
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of cycles. We assume here that computations and communications overlap and that the
computation time is zero. Assuming memory addresses of 32 bits width, (5.1) describes
the relation between number of processing elements minimal required to use the complete
bandwidth. Given the number of PEs, (5.2) describes the minimal bandwidth required
to keep all PEs working continuously. The assumption is made in these formulas that
the work is divided equally among the Processing Elements.

NPE,sparse
=

⌈
NzB

fop

(
5
2Nz + 5

2N
)⌉

=
⌈

2NzB

5fop (Nz + N)

⌉
(5.1)

Bsparse =

⌈
fopNPE(5

2Nz + 5
2N)

Nz

⌉
=

⌈
5fopNPE(Nz + N)

2Nz

⌉
(5.2)

The formulas can be obtained by analyzing the cost of the memory accesses to the
arrays in Table 5.2. The table contains for each array in the first column, the data width
and the total memory accesses to main memory for this array. Each element of vector
c is accessed twice, the first time to load the initial value, and second time to store the
row result in.

Array data width (words) Number of accesses
A 1 Nz

b 1 Nz

c 1 2N
row 0.5 N + 1
col 0.5 Nz

Total 1 5
2Nz + 5

2N

Table 5.2: Load cost analysis of arrays performing a SMVM

5.2.2 Performance of the SMVM hardware unit

The performance for the hardware sparse matrix vector multiply unit can be limited by:

• The amount of available computational resources, the number of PEs.

• The bandwidth, the higher the bandwidth the more data can be processed in
parallel.

Equation (5.3) contains the formula in which the performance is limited by the num-
ber of PEs. Equation(5.4) shows this formula when the performance is limited by the
bandwidth.

Psparse = 2NPE
fop (5.3)

Psparse =
2NzB

5
2Nz + 5

2N
=

4NzB

5 (Nz + N)
(5.4)
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The former formula can be explained as follows: Each PE has 1 multiply-add unit
and therefore can execute 2 operation per cycle. Multiplying this with the operating
frequency results in the maximum performance.

In the case when the bandwidth limits the performance, the performance is limited
by 5.4. Here, the assumption is made that enough processing elements are available.
The formula is calculated by Toper

Tload
, where Toper the total amount of operations equal to

2Nz and Tload the total time needed to load all data from main memory, which equals
5(Nz+N)

2B .
The performance in (5.4) is an approximation of the performance limitation. In

reality, the performance will be lower due to the following overheads:

• There are some clock cycles latency between the arrival of the data from main
memory and the arrival of the data to the multiply-add unit. There is also some
latency between the outputs of the multiply-add unit and the main memory.

• After the last memory element is loaded, at least the last row still need to be fully
computed.

To verify equations (5.3) and (5.4), two designs, one with 1-memory bank and one
with 5-memory banks are tested. The designs are explained in Section 4.2.4. Since the
design with 5-memory banks is also verified in hardware, a hardware counter is included
to verify the numbers. The design with 1 memory, tests (5.4) since bandwidth limits
the performance. The required bandwidth for 1 PE is slightly overdimensioned with 5
memory banks and is liable to (5.3).

N Nz (5.4) 1-mem Efficiency (%)
1000 3000 10000 10055 99.5
1000 30000 77500 77775 99.6

10000 30000 100000 100055 99.9
10000 49997 149993 150065 ≈100.0

Table 5.3: Measured vs analytical number of execution cycles for different cases in sim-
ulation, with a bandwidth limitation, predicted by (5.4) using 1 memory bank.

N Nz (5.3) 5-mem (HW) Efficiency (%)
1000 3000 3000 3064 97.9
1000 30000 30000 30280 99.1

10000 30000 30000 30064 99.8
10000 300000 300000 300280 99.9
10000 49997 49997 50303 99.4

Table 5.4: Measured vs analytical number of execution cycles for different cases in hard-
ware, with a resource limitation, predicted by (5.4) using 5 memory banks.

Tables 5.3 and 5.4 summarize simulation and hardware results for some matrices
which non-zeros are generated in a random pattern. The first two columns obtain for
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both tables the matrix sizes. For Table 5.3, the 3rd column contains the number of cycles
derived from (5.4). The 4th column contains simulation result using a bandwidth of 8
Bytes/cycle = 1 word/cycle. The estimated cycles can be calculated by:

cycles =
2Nz

P
(5.5)

with P the performance, in which the bandwidth B specified in words/cycle in (5.4).
The last column contains the efficiency of the design, which is calculated by ratio of
the expected cycles and the measured number of cycles. For Table 5.4, the 3rd column
contains the number of cycles derived from (5.3). The 4th column contains hardware
cycle results. The last column shows the efficiency of the design.

5.2.3 Dense vs Sparse Matrix Vector Multiplication

The integrated dense and sparse matrix-multiply unit allows users to select between a
Dense Matrix Matrix Multiplication, a Sparse Matrix Vector Multiplication and a Dense
Matrix Vector Multiplication using the same hardware, without (complete) reconfigu-
ration. The question rises, under what conditions we should perform a Dense Matrix
Vector Multiplication or a Sparse Matrix Vector Multiplication. In this section, an es-
timation is given for this. Moreover, a discussing of the number of processing elements
given a fixed bandwidth for both designs is also provided.

The decision rule can be made by comparing the execution time for both designs.
Assuming both designs have enough processing elements and performance is limited by
the bandwidth, the following equations determine the executing time for the sparse and
dense matrices given N and Nz.

texecution =
totaloperations

P
(5.6)

texec,sparse =
5(Nz + N)

2B
(5.7)

texec,dense =
N2

B
(5.8)

The performance for the dense matrix vector product is limited by 2B [26] and the
number of operations required are 2N2. By combining (5.7) and (5.8), we derive the
following relation for N and Nz:

Nz = 0, 4N(N − 2, 5) (5.9)

N = 1, 25 +

√
5
2
Nz + 1, 252 (5.10)

Equation (5.11) states the ratio of non-zeros in a matrix. By substituting (5.9) for
Nz in (5.11) we obtain (5.12).

γ =
Nz

N2
(5.11)

γ = 0, 4− 1
N

(5.12)
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Figure 5.1: Boundary condition, where the performance for the SMVM equals the
DMVM.

Figure 5.1 depicts the boundary condition in which the sparse and dense case equal
in performance, given equal bandwidth for increasing N (matrix size) on the x-axis. The
y-axis contains the density of the matrix. We conclude the following from our analysis:

Considering large matrices, the executing time will be faster for
the dense matrix vector design when 40% or more of the matrix
is filled.

The previous discussion assumed enough processing power to keep up with the band-
width. The discussion continues by considering the number of processing elements re-
quired to do the SMVM and DMVM matrix multiplications.

The number of processing elements required for the sparse case is written in (5.1).
The number of processing elements for the dense matrix vector multiply hardware unit
is harder to calculate since it depends for example on the local memory sizes [5]. There-
fore we assume the circumstance where the bandwidth is matched with the number of
processing elements for the dense hardware unit. That is:

NPEdense
≤ 2B = 2fopP (5.13)

From this formula, the number of processing elements can be calculated by

NPEdense
=

B

f
(5.14)

Combining (5.1) with (5.14) and assuming equal bandwidth for both designs, the
ratio between the number of processing elements for sparse and dense equals

NPEsparse

NPEdense

=
5
2Nz + 5

2N

Nz
=

5(Nz + N)
2Nz

(5.15)
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Figure 5.2: Ratio of the number of processing elements for dense and sparse increasing
the average row length and considering equal bandwidth

Figure 5.2 shows graphically the formula in (5.15). Two observations can be made
from this figure:

• NPEsparse < NPEdense
. The Dense Matrix Vector Multiplication (DMVM), does

not include auxillary index arrays, that need to be loaded to compute the product.
This means that given an equal bandwidth, more data can be processed in the
DMVM relatively to the SMVM. Therefore, the DMVM always requires equal or
more PEs for the same bandwidth.

• By increasing Nz
N , the average row length, the overhead of loading the index vectors

becomes less. This explains the decreasing line in Figure 5.2.

Equation (5.12) assumed equal bandwidth, and enough processing elements. It does
not include however the available number of PEs. The discussion above proved that the
dense case needs more PEs considering equal and fully used bandwidth. If we define D
as the bandwidth required to match the work for NPE,dense processing element and S
the for the NPE,sparse, we can separate the following three cases for the condition were
NPE = NPE,dense = NPE,sparse:

• B < D < S
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– Psparse = (5.4) = 4NzB
5(Nz+N) (limited by bandwidth)

– Pdense = 2B (limited by bandwidth)

– γ = (5.12) = 0.4− 1
N

• D ≤ B < S

– Psparse = (5.4) = 4NzB
5(Nz+N) (limited by bandwidth)

– Pdense = (5.14) = 2fopNPE (limited by NPE)

– γ = 2BN2
5fopNPE

− 1
N

• B ≥ S > D

– Psparse = (5.3) = 2fopNPE (limited by NPE)

– Pdense = (5.14) = 2fopNPE (limited by NPE)

– γ = 1

From the three different cases we can conclude the following. In case the performance
is limited by the bandwidth for both designs, it is more performance efficient to perform
a DMVM in case approximately 40% or more of the matrix is filled. In the case where
the bandwidth for the DMVM design is machted or overdimensioned and the bandwidth
for the SMVM is underdimensioned, the equation 2BN2

5fopNPE
− 1

N determines the boundary
where the sparse and dense design will equal perform. Last, when both designs are
overdimensioned, its always more attractive to perform a SMVM, unless Nz = N2. In
this special case, when the matrix is a dense matrix, the designs perform equally.

5.3 Experimental results

In this section the performances in software and in hardware are compared. The perfor-
mance for the Amul and Residual kernels in both software and hardware are measured.
Next, the performance for the hardware design using benchmark matrices from different
fields is presented in Section 5.3.2.

5.3.1 Software Performance measurements

Measuring the performance for the Amul and Residual kernel Figure 5.3 is obtained. The
plot shows the performance for a different number of matrices obtained from the profiled
mesh in section 2.7.4 by assigning different weight factors to the decomposition process.
The x-axis show the number of cells for the decomposed subparts of the original mesh,
which equals N . Except for the mesh containing 12225 cells, which is the PitzDaily case.
Since the performance also depends on Nz, Table 5.5 contains a list of all N , Nz pairs
that have been used for the measurements in addition with the average row length. The
Itanium-2 9130M is used for the software experiments and contains 16 kB L1 data cache,
256 kB L2 data cache and 4 MB L3 data cache. The machine operates on a frequency
of 1669 MHz, with the Front Side Bus (FSB) operating on a frequency of 667 MHz.
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N Nz
Nz
N

12225 60565 4,95
47432 265608 5,60
95980 533754 5,56

192543 1099929 5,71
479463 2742493 5,72
958962 5487204 5,72

1920905 10959649 5,70
3429833 19328609 5,70
3428591 19569045 5,71
3499094 19697870 5,62
6522469 37007189 5,67

Table 5.5: A list of the different matrix sizes which are measured for performance in
software.
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Figure 5.3: The performance in software measured on the Itanium-2 processor
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5.3.2 Hardware Performance measurements

Three matrices out of the list of Table 5.5 are also profiled in hardware for the designs
with 1 and 2 PE elements. Further the design with 2 PEs has been extended to CCUs
containing 4 and 8 PEs elements by instantiating multiple components of the 2 PEs.
Table 5.6 reports the performances measured in hardware and software for the different
cases for one and two PEs and Table 5.7 for four and eight PEs.

Number of Processing elements
matrix 1 2

N Nz
Nz
N HW cycles P SIM cycles P

12225 60565 4.95 60640 199.8 30359 399.0
47432 265608 5.60 265704 199.9 132905 399.7

958962 5487204 5.72 5487438 200.0 2743733 400.0

Table 5.6: Hardware performance measurements, with P the performance in MFLOPS,
for 1 and 2 PEs.

Number of Processing elements
matrix 4 8

N Nz
Nz
N SIM cycles P SIM cycles P

12225 60565 4.95 15216 796 7647 1584
47432 265608 5.60 66494 798.9 33285 1596

958962 5487204 5.72 131933 799.9 686009 1599.7

Table 5.7: Hardware performance measurements, with P the performance in MFLOPS,
for 4 and 8 PEs.

In Tables 5.6 and 5.7, HW cycles denote the cycles required to finish the full compu-
tation directly retrieved from hardware. Since there is no bitstream generated for all the
different cases, also software simulations are included. Simulation results are denoted
with SIM cycles. For the hardware the design is routed at a frequency of 100 MHz and
The peak performance for the cases are 200 MFLOPS, 400 MFLOPS, 800 MFLOPS and
1600 MFLOPS for the CCUs respectively with 1, 2, 4 and 8 PEs. The bandwidth for
the benchmarks in Table 5.10 are as follows:

• The design with 1 PE is provided with an Input bandwidth of 2.4 GB/s and Output
bandwidth of 800 MB/s.

• The design with 2 PEs Input Bandwidth of 4.8 GB/s and Output Bandwidth of
800 MB/s.

• The design with 4 PEs Input Bandwidth of 9.6 GB/s and Output Bandwidth of
1.6 GB/s.

• The design with 8 PEs Input Bandwidth of 19.2 GB/s and Output Bandwidth of
3.2 GB/s.
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These bandwidths are used to calculate c = Ab. In case c = Ab + c is computed an
additional bandwidth for the residual kernel of 400 MB/s is used per processing element,
without additional cost in terms of cycles. The Virtex FPGA inside the RASC-core is
connected to a maximal input and output bandwidth of 11.2 GB/s. Using this FPGAs
in the RASC architecture, at least 4 PEs can be placed on the FPGA running at full
speed, since bandwith is not limiting the performance. When the design is operating at
a frequency of 100 MHz, a performance of 800 MFLOPS can be expected in hardware.
In software, the performance is fluctuating between 370 MFLOPS and 109 MFLOPS.
Thus, a kernel speedup for the SMVM kernel between 2.16 and 7.3 can be achieved per
FPGA. Since the rows are divided horizontally the matrices can be easily divided and
extended to more FPGAs.

5.3.3 General Benchmarks for the SMVP unit

Besides the hardware measurements from the matrices constructed out of the profiled
mesh, other matrices are benchmarked in this section. The matrices are from different
application fields and can be found in Table 5.8. In the table, eight matrices from
the University of Florida Sparse Matrix Collection [3] are included with its dimension,
number of non-zeros and the minimal and maximal elements per row. The performance
in software is measured with the tool Optimized Sparse Kernel Interface (OKSI) for
these matrices and the results are obtained in Table 5.9. OSKI [24], is a collection
of low-level C primitives, that provide automatically tuned computational kernels on
sparse matrices. OSKI has a BLAS-style interface, providing basic kernels like sparse
matrix-vector multiply. The current implementation targets cache-based superscalar
uniprocessor machines. The tool has been compiled with the Intel 10.1.015 release with
the optimization level -O3. This optimization flag enables aggressive optimization for
code speed. The performance results obtained in hardware are summarized in Table 5.10,
for 1, 2, 4 and 8 processing elements respectively.

Number Kind of matrix Matrix N Nz min max
1 Structural problem dwt 162 162 1182 2 9
2 subsequent 2D/3D problem fs 680 2 680 2424 1 8
3 Power Network problem gemat12 4929 33044 2 44
4 acoustics problem k3plates 11107 378927 15 58
5 semiconductor device problem wang3 26064 177168 4 7
6 optimization problem jnlbrng1 40000 199200 4 5
7 Thermal problem epb3 84617 463625 3 6
8 Optimization problem cont-300 180895 988195 2 6

Table 5.8: Properties of benchmarked matrices[3]

The software results heavily depend on the cache. The results for the sparsest ma-
trices, like jnlbrng1, epb3 and cont-300 report similar performances as for the optimized
cache improvement instructions for the OpenFOAM benchmarks. However, OSKI re-
ports low performances for small cases and high results for denser matrices like k3plates.
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matrix P
1 75
2 99
3 291
4 465
5 315
6 267
7 271
8 278

Table 5.9: Software Benchmark results for the matrices in Table 5.8, with P the perfor-
mance in MFLOPS

Number of Processing elements
matrix 1 2 4 8

HW cycles P SIM cycles P SIM cycles P SIM cycles P
1 734 183 734 322 - - - -
2 2534 191 1368 352 723 671 - -
3 34485 192 17565 376 8881 744 4642 1425
4 379825 199.5 190956 397 95553 793 47973 1580
5 177253 199.9 88678 399.6 44384 798 22243 1593
6 199416 199.8 99838 399 50072 797 25023 1592
7 463910 199.9 231937 399.8 116016 799 58065 1597
8 988908 199.9 494807 399.4 247747 798 124128 1592

Table 5.10: Hardware Benchmark results in MFLOPS for the matrices in Table 5.8

For this matrix a performance of 465 MFLOPS is achieved, but this matrix contains at
least 15 non-zeros per row is much denser then the matrices that are targeted in the
OpenFOAM CFD toolbox. Figure 5.4 shows a graphical representations of the bench-
mark results. On the x-axis the matrix number are displayed. The y-axis contain the
performances in MFLOPS for all the measured cases.

5.4 Related Work

In this section, a summary is given of the literature of the research so far on the SMVM
product. Section 5.4.1 presents techniques to accelerate the kernel on General Purpose
Processors, while Section 5.4.2 is focused on the research for FPGA based designs. Fi-
nally, this section ends with a conclusion in Section 5.4.3.

5.4.1 General Purpose Sparse matrix products

Different proposals to improve the sparse matrix-vector multiplication on general purpose
processors have been made. Some researchers focus on the exploitation of parallelism of
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Figure 5.4: Benchmark results using, 1, 2, 4 and 8 PEs and software results

SMVM using multiple machines, while others focus on code and data structure reorga-
nization.

Exploitation of parallelism In [25], a hybrid programming model is proposed
to parallel execution of the SMVM on clusters of multiprocessor shared-memory nodes.
The sparse matrix format that is investigated is the Jagged Diagonal storage. However,
it is shown that this is not the best format to be implemented in hardware. In [20]
the average communication cost is calculated in hypercubic networks for the SMVM.
Routing the hypercubes on FPGA-based designs is complex. In [8] the authors present
a design based on a linear array of processing elements based on a special cover of the
non-zeros of the matrix, the staircase.

Code and data structure reorganization The authors of [21] propose a method
to pack contiguous nonzero elements into dense blocks to reduce the number of load
instructions. A reordering algorithm to increase the sizes of the dense blocks within the
matrix is also proposed by them. Sparsity [9] tries to improve performance by means of
loop transforming, register and cache blocking. However, little improvement is achieved
for very irregular structures. OSKI [24], is a collection of low-level C primitives that
provide automatically tuned computational kernels on sparse matrices, for use in solver
libraries and applications.

5.4.2 FPGA-based designs

Due to increasing bandwidth, computational resource and available On-Chip memory
on FPGAs, Floating Point designs become more popular for hardware implementations.
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In [27] and [5], a floating-point dense matrix multiplication is implemented. In [7] a sparse
matrix vector multiplication is performed in which data from the matrix is converted to
“pipelinable vertical nonzero stripes”. The input vector is streamed in and the stripes are
multiplied by the corresponding vector elements. The design performs well if the number
of stripes are bounded. Moreover, the peak performance is high when the ordering of
the pipelined stripes and the vector stream are matched. The matrices in OpenFOAM
are not bounded by a fixed number of stripes and therefore the design in [7] is not suited
for it. On top of that matrices constructed from meshes build out of prisms, pyramids
and tetrahedrons will lead to many vertical strips. The vertical strips will lead to a
low resource utilization, since the streaming vector has to be stalled each time the same
element of the vector is required. In [4] the authors arrange PEs in a bidirectional ring
to compute y = Aib. The proposed design significantly saves I/O bandwidth due to
local storage of the matrix and intermediate results. This limits the input matrix sizes.

So far, to our best knowledge, the closest work regarding the SMVM kernel for
matrices in the Final Volume Method (FVM) found are the floating point sparse matrix
vector multiplication designs implemented in [28] and [23].

The design in [28] has the following drawbacks:

• Currently, only simulation of the design are made. Our design is also verified in
hardware.

• The sparser the matrices, the lower the peak performance (to 20% of peak). The
FVM method involves matrices that are much sparser then the test matrices used
there.

• Requires high on chip memory for huge matrices. It is possible to section the
matrix in vertical slices as they propose and implement. However, they do not
include the cost of the additions of the final partial sums.

• The design contains huge adder reduction trees, which depend on different parame-
ters. For a banwidth of 8 GB/s the total number of slices equals 16931 (51% of the
device Virtex 2 Pro XC2VP125) and for a bandwidth of 14.4 GB/s the required
number of slices for the reduction trees only equals 23856 (73% of the device). The
full cost of our design for 8 PEs in terms of area equals 22774 slices (25% of total)
for the Virtex-4 LX200 device.

The design in [23] has the following disadvantages:

• Currently, only simulation of the design are made.

• The authors have an improved version of the adder tree reduction circuit by re-
moving some of the adders and inserting FIFOs. The adder tree does not depend
on parameters. Our design does not require adder trees.

• The authors section the matrix in groups of rows, and each group of row is also
sectioned vertically. This enables them to use efficiently the bandwith and to
compute the full SMVM cost.
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Proposal (Dis)-advantage Solution
[28] [23] Simulation Only our design is verified in hardware.
[28] Partial result Our design and [23] obtain full SMVM results.
[28] [23] Bandwith requirement Currently, our design is not using the

bandwith optimally, while the designs
in [28] [23] do.

[28] [23] Peak Performance Our design always performs close to
peak performance (high efficiency).
The design in [28] reports low efficiency in
terms of performance.
The design in [23] reports higher efficiency
in terms of performance, but lower then ours
Table 5.12 contains more details.

[28] [23] Adder trees Our design does not require adder trees

Table 5.11: Advantages and disadvantages for our closest work regarding the SMVM
unit

Ref Peak MFLOPS Actual MLOPS B (GB/s) Area fmax - fact (MHz)
[23] 1584 86%-98% 13.2 24129 N.A - 165
[28] 2880 30%-75% 14.4 *23856 200 - 165
[28] 1600 20%-79% 8.0 *16613 200 - 165
[4] 2240 33%-66% N.A N.A 140 - 140
[7] 1760 17.4%-86.4% 8.0 ** N.A - 110

Ours 1600 98.7%-100% 22.4 22700 156 - 100

* denotes area cost for reduction tree only.
** Area cost for this design equals 30% of logic resources and 40% internal RAM of the
Stratix S80

Table 5.12: Performance results for the SMVM of Related Work

Table 5.11 shows all the advantageous and disadvantages of our closest work com-
pared to our design. Table 5.12 shows performance results for all related work. Elements
in the table that contain a N.A (not available) were not found in the presented papers.
In the table, for each design, the peak performance in MFLOPS, actual performance in
MFLOPS, required bandwidth in GB/s, area in terms of slices, the maximal frequency
and the actual frequency in MHz are summarized. The design in [4] is the peak perfor-
mance per FPGA. For 1 FPGA they obtain an average of 66% of the peak performance.
They also simulated 16 FPGAs to calculate the SMVM kernel. The average peak per-
formance for 16 FPGA is 33% of the peak performance. By including more FPGAs
the total On-Chip memory increases and larger matrices can be simulated. The authors
in this paper implemented an iterative SMVM solver, which consist of multiple matrix
vector products.
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5.4.3 Conclusions Related work

Current proposals for sparse matrix vector multiply units focus primarily on matrices
from the Finite Element Method. In the Finite Volume Method (FVM) the matrices that
are involved are usually much sparser, which results in significant performance decrease.
So far, no literature has been found that implemented a single SMVM multiplication
design without reduction trees. Besides the matrix vector multiplication kernel, Open-
FOAM contains a similar kernel which computes c = -Ab + c. The hardware unit should
be able to compute this kernel as well. By controlling α (-1) and β (+1), we are able to
do this for our kernel.

5.5 Design comparison

The presented design for the SMVM kernel in the previous chapter is very efficient and
does not require huge adder trees. The performance efficiency for the presented design is
close to peak performance if the matrix input sizes are reasonable large. For the closest
work, the differences of the designs will be compared in depth. First we analyze design
presented by L. Zhuo and V. Prasanna in [28]. They report a peak performance of 1.6
GFLOPS when the bandwidth equals 8 GB/s, and a performance of 2.88 GB/s when
the bandwidth equals 14.4 GB/s. This bandwidth is the input bandwidth only for the
matrix. The output bandwidth for this design is not included in their analysis. It is
likely that the authors obtained these numbers by dividing the number of operations
by the total load cost. The number of operations equals 2Nz. Similar, as in Table 5.2,
the total load cost equals 5

4Nz + 5
4N . the difference with our design is that they do not

included the initial value c, they use 16 bits wide addresses and they load the vector b
locally first. The performance for their design can be written as:

P =
2Nz

tload
=

2NzB
5
4Nz + 5

4N
≤ 1.6B (5.16)

Here, they made the assumption that Nz >> N and the bandwidth is specified in
words/s. This assumption does not hold when the matrices are very sparse. Considering
a bandwidth of 8 GB/s (1 GWords/cycle) the 1.6 GFLOPS is obtained. The computation
time is discarded since its overlapped with communication. However, the authors do
not include the cost of the output bandwidth, since its negligible (given Nz >> N)
compared to the bandwidth required to load the matrix A . The output bandwidth
for the design depends on the number of elements and is at least higher compared our
presented design. In [28] temporary results are streamed out, while in our design only
final row results are streamed out. Comparing the input bandwidth only and assuming
for both designs a peak performance of 1.6 GFLOPS, the design in [28] requires much
less bandwidth, 8 GB/s versus 19.2 GB/s in our design. Our design always performs
near optimal performances and for the design in [28] this depends on the type of matrix.
Considering an input bandwidth of 8 GB/s, their performance is between 20%and 78%
for the test matrices they presented. If we compare their design with a more fairly equal
bandwidth: 9.2 GB/s using 4 PEs for our design and achieving a performance around
800 MFLOPS. We still outperform their design in case of 7 out of the 11 cases they
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presented. Their design reports lower performance results for sparser matrices, this can
be explained by the adder trees that they use which must be filled with zero if no data
is available. The sparsest matrix contained a nonzero density of 0.04% which is much
higher then the matrices we target. The results for sparser matrices will lead to further
lower performances in [28].

The second design which we want to compare is the design in [23]. It will be harder
to compare with this design, since the authors did not include any absolute performance
numbers. The authors take a similar approach as our design by dividing the matrix
in horizontal stripes. They divide the horizontal stripes further into vertical stripes
to reduce the address width to 16 bits. The vertical splitting allows to reduce the
bandwidth. The matrices that they benchmarked reported peak performances between
86% for a density of non-zeros of 0.01% and a peak performance of 98% when the density
is 0.5%. The reduction circuit in this design is improved compared to the design in [28]
since they reduce the number of adders from 16 to 13 for each processing element. In our
design no reduction circuit is used. In their paper they claim that they report similar
performances as in the design of L. Zhuo and V. Prasanna [28].

Comparing our design with already available literature, the conclusion can be made
that the design requires more bandwidth compared to other designs. In the next section
we identify the causes for this more specifically and how to improve it. However, the
design reports higher performances compared to similar bandwidths for extremely sparse
matrices.

5.5.1 Future design improvements

To improve the design, the latency of the circuit must be improved as much as possible.
Although the effect on large matrices is minimal, submatrices due to sectioning of the
original matrix might be influenced more. The reasons why there is more bandwidth
required for our design are the following:

1. We assume the worst case load, which is for example a diagonal matrix times a
vector. This requires for each processing element a load operation from the row
array. The matrices that we consider are so small that the inequality of the right
hand side of (5.16) does not hold.

2. Vector b is considered Off-Chip. This requires a lot extra number of loads de-
pending on the density of the matrix. Currently, the number of loads for matrix b
equals Nz while the minimal could be N .

3. Currently, no vertical sectioning is implemented. Therefore, reducing the address
widths to 16 bits is not possible, unless small matrices are considered.

If all the 3 issues are included in the design, the bandwidth can be reduced by a factor

of:
5
2
Nz+ 5

2
N

5
4
Nz+ 13

4
N

= 10Nz+10N
5Nz+13N . In case Nz equals N a factor decrease of 1.11 bandwidth can

be achieved. In case Nz >> N the bandwidth can be theoretically be reduced by a
factor of 2. To improve the first issue, the memory which contains the row results can be
shared with multiple processors. From typical matrices in the FVM method, in which
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the matrices contain at least 4 elements per row, 1 memory bank can be shared among
4 PEs, without lose of performance. The second and third issues can be improved by
supporting vertical sectioning, next to row sectioning, similarly build in [23].

Another idea to reduce bandwidth is to consider huge On-Chip memory blocks which
store vector b. By first streaming all the elements of the vector b prior to execution,
a lot of bandwidth can be saved. However, additional cycles are wasted filling these
matrices. Further the possibility exist to investigate whether cache is an option to store
b in. Consecutive rows usually contain a similar pattern of non-zeros as in the previous
rows.

5.6 Integrating the matrix vector multiply kernel into
OpenFOAM

In this section, the hardware unit for the SMVM kernel will be integrated into the
OpenFoam application. In Section 5.6.1, it is explained how OpenFOAM is connected
to the hardware unit. Subsequently, Section 5.6.2 discusses the overall performance
increase for the whole application.

5.6.1 Hardware connection to OpenFoam

To enable the hardware the user must have the ability to decide which CPU-nodes have
an FPGA accelerator. This input can be provided in the new fpgaDict file located in the
system folder. Figure 2.2 shows the structure of the input files.

5.6.1.1 fpgaDict

An extra file is created to simplify the control to access the FPGAs. When SimpleFoam
is executed, it reads out the content of this file. The user has the ability to specify for
each kernel on each node for which kernel hardware is enabled.

An example file is shown in Figure 5.5. The first keyword which can be seen there
is fpga enabled. The values for fpga enabled here must be yes, y, no or n. This is a
global keyword and enables or disables all the FPGAs. The keyword numberofProcs
tells how many CPU nodes are being used, this does not have to be the amount of
available FPGAs. Next, the bitstream file names for each node is specified. If they are
all equal, its sufficient to only put 1 element in the list. The rest of the files contain
specific information for the kernels. In the current file only one kernel has been placed
called matmul (Amul and residual kernels) and it is enabled for node 0 and node 2. The
file could be extended by making a global list of CPU-nodes assuming they all have the
same hardware kernels and we can give them the same bitstream names. Additional
files have been included to the toolbox to support communication with the hardware
platform, fpga init.h is responsible for setting up the communication with the FPGAs
on the specified nodes and fpga close.h terminates the connections to the FPGAs.

Figure 5.6 shows the execution of the SimpleFOAM in software with new available
hardware units. The application starts in the normal way, with additional procedures
that initialize the hardware. If the hardware is not available or an error occurs during



86 CHAPTER 5. DESIGN EVALUATION: PERFORMANCE ANALYSIS AND
TEST RESULTS

// * * * * * * * * * * * fpgaDict file: hardware control * * * * * * *
* * * * //

fpga enabled y;
numberofProcs 4;

bit stream names
(

sparsetest
sparsetest2

);

matmul
{

enabled y;

cpu nodes
(

0
2

);
};
// ********************************************************************* //

Figure 5.5: The fpgaDict file

initialization, the hardware unit will be disabled. The kernels enabled for hardware
will be executed on the hardware platform. When all the CPU nodes are finished in
the computations, the connection to the FPGAs are terminated on the relevant nodes.
Since node 0 and node 2 have hardware accelerators, these nodes can execute larger
sparse matrix vector products in the same time for the nodes that do not contain an
FPGA. In Section 5.6.2, we define the performance of the matrix vector products for the
OpenFOAM application as 270 MFLOPS. Using 4 PEs, a speedup of a factor of 3 can be
obtained. Since the design always reaches close to peak performance, nodes that contain
an FPGA could have matrix sizes with 3 times more non-zeros, which approximates 3
times larger matrices, since the distribution of zeros per row is similar. With the Metis
decomposition process, exact weights can be specified to partition the original mesh in
submeshes with desired sizes.

5.6.1.2 Problems with RASC-core services

A number of problems were encountered using and calling the SMVM kernel inside
OpenFOAM. We were able to open and close the FPGAs on different nodes with MPI
enabled. However, trying to execute the matmul kernel from inside OpenFOAM failed.
Each time the matmul kernel was accessed in hardware the application crashed, while
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Figure 5.6: An example of how FPGAs are accessed on different CPU nodes using MPI

the kernel is working stand alone. With strace, a tool for tracing system calls and signals,
the signals during runtime where intercepted and directed to the screen. At some point
in time, once the hardware is being used 3 child threads. One of the child threads is
abruptly terminated and kills it parent process as well. The comparison of the results
of tracing the stand alone version and the version inside OpenFOAM did not resulted
in any valuable knowledge. SGI provided some test examples that use the FPGA. Their
example, alg6 crashes as well (for smaller sizes it works fine). We believe that the signal
interventions between the OpenFOAM MPI library and RASC library are responsible
for this problem.

5.6.2 Applicational Speedup for the SimpleFoam solver using the hard-
ware SMVM benefits from SMVM-kernel

The profiling results showed the sparse matrix vector multiplication contributed to 8%
of the total execution time. According to Amdahls law: 1

(1−p)+ p
N

, the speedup is limited
by the serial part of the program. In the formula p presents the parallel fraction of the
application, 1 − p the serial part and N the number of processing nodes the program is
accelerated over.
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Considering a kernel speed up between 2.16 and 7.3 for 4 PEs and a parallel part
p equal to 0.077 (sum of relative % of the residual and Amul kernels from the profiling
report), according to Amdahls law the application speed up S is limited to: 1.043 ≤
S ≤ 1.071. Thus, an overall application acceleration due to the SMVM between 4.3%
and 7.1% can be expected. If we consider the Amul performance to be 210 MFLOPS
and for the residual kernel 270 MFLOPS in Figure 5.3, the application speed up S will
be: 1

(1−p0−p1)+
p0
N0

+
p1
N1

= 1
(1−0.075)+p0 270

800
+p1 210

800

=1.055. Table 5.13 provides the details of

the exact fractions for each pi and Ni. Table 5.14 shows the efficiency of application
speed up, equal to 97.7%, compared to the theoretical limitation. When more PEs are
considered, for example by using multiple FPGAs this efficiency can be increased more.

kernel name i pi Ni

Residual 0 0.041 800/270 = 2.96
Amul 1 0.036 800/210 = 3.81

Table 5.13: Fraction of the execution time of the SMVM kernels and the kernel speedup
in hardware.

Estimated speedup Theoretical limitation Efficiency
formula S = 1

(1−
P

i pi)+
P

i
pi
N

T= 1
1−

P
i pi

S
T ∗ 100%

value 1.055 1.08 97.7%

Table 5.14: Efficiency of the application speedup S relative to the theoretical limit

5.7 Conclusion

In this chapter, analysis for the hardware version of the SMVM kernel are presented.
The design can be build out of multiple units scalable with the available bandwidth.
More over, the design is integrated with the dense vector multiplication in [26] which
reports the highest performance for dense sparse matrix vector multiplication. The
processing elements are very area efficient by adding the accumulations of rows in time
in stead of using adder trees. Besides software simulations, the design has been verified
by automated test generations of over 1000 test matrices in hardware for 1 and 2 PE
elements. Test results show that the performance reaches near peak performance as
predicted with the formulas. However, the unit as it currently is requires too much
bandwidth compared to other designs, since the elements of the vector b are loaded
multiple times from main memory. Considering 4 PEs a speedup between 2.16 and 7.3
is achieved. Considering 8 PEs simulation show a maximal speedup of 14.6 compared
to the Itanium 2 processor. An application speed up can be reached between 4.3% and
7.1% due to the SMVM kernel only, using 4 PEs. If we estimate the performance for the
Amul kernel as 210 MFLOPS and for the residual kernel 270 MFLOPS an applicational
speed up of approximately 5.5% can be obtained.
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This chapter presents the conclusions that could be drawn from the performed research.
Section 6.1 presents a summary of this thesis, organized per chapter. The objectives
and whether they have been met for this thesis are discussed in Section 6.2. Finally,
recommendations for future work are proposed in Section 6.3.

6.1 Summary

In this thesis, a design for the double precision IEEE-754 Floating Point Sparse Matrix
dense Vector Multiplication (SMVM) has been proposed. This kernel is not limited by
assumptions on the input format and is designed for the Compressed Row Storage format.
The kernel is targeted at the Silicon Graphics Inc. Altix 450 machine RASC-Core which
contains a high throughput low-latency connection between traditional supercomputers
and reconfigurable hardware. The Altix machine consist of multiple high performance
GPPs, namely the Itanium 2 9130m .

In Chapter 2, various aspects of the OpenFOAM CFD tool were described. In par-
ticular, the focus was on the SimpleFoam solver, which is one of the many solvers Open-
FOAM supports. The SimpleFoam application is based on the Navier-Stokes equations,
which describe motion of fluids in space and time. The mesh, representing the compu-
tational grid, is read in through files into the CFD tool, along with the properties of the
grid solvers, the descritized mathematical operations and several timing options. These
input files presented in this chapter formed the basis for the profiling. Four different
decomposition methods have been described that support solving grids using multiple
CPU nodes, to decrease the modeling time. The second part of this chapter described
the profiling of SimpleFoam. The best way to profile applications on the Itanium proces-
sor is to use specific additional hardware instrumentation for profiling, like Instruction
Point (or Program Counter) sampling. The SimpleFoam solver has been profiled on 1, 2
and 4 CPUs with a mesh containing over 6 million cells, which is considered a realistic
input. Two different decomposition methods have been analyzed and compared. The
Metis decomposition method was found to be superior over the Simple method, since it
was able to reduce the communication cost and lead to faster execution times. In this
chapter the most important kernels have been identified and a small description of the
key kernels was given.

In Chapter 3, the Openfoam Sparse Matrix Vector Multiplication (SMVM) kernel
was extensively analyzed. The kernel seemed not appropriate for parallel extension and
therefore different formats were analyzed. The criteria to compare them were scalability
with increasing bandwidth, the number of memory accesses and the required storage
space. The MSR was found to be the best. A conversion algorithm in O(n) time between
the OpenFOAM format and the MSR format was also given.
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In Chapter 4, the design methodology was described developing the SMVM hardware
unit. The platform and architectural choices have been discussed. The area cost of
the Processing Elements of the presented SMVM design is low. Last, the Processing
Elements of the presented SMVM unit and the PE of the dense design in [26] have been
integrated together.

In Chapter 5 analysis for the hardware version of the SMVM kernel were presented.
The design contained multiple processing units scalable with the available bandwidth.
More over, the design was integrated with the dense vector multiplication in [26] which
reports the highest performance for dense sparse matrix vector multiplication. The
processing elements are very area efficient by adding the accumulations of rows in time
in stead of using adder trees. Besides software simulations, the design has been verified
by automated random test generations using over 1000 test matrices in hardware for
1 and 2 PE elements. Test results showed that the performance reaches near peak
performance, which verifies the presented formulas. However, the unit as it currently
is, requires too much bandwidth compared to other designs, since the elements of the
vector b are loaded multiple times from main memory. Considering 8 PEs, simulations
suggest a maximal speedup of 14.6 compared to the Itanium 2 processor. An application
speed up can be reached between 4.3% and 7.3% due to the SMVM kernel only, if 4 PEs
are used. If we estimate the performance for the Amul kernel as 210 MFLOPS and for
the residual kernel 270 MFLOPS an application speed up of approximately 5.5% can be
obtained using four PEs only.

6.2 Objectives Coverage

The main thesis goals defined in Section 1.2.2 were:

1. Profile the SimpleFoam solver and identify the time critical kernels.

2. Design hardware CCU units supporting these kernels.

3. Integrate the CCU kernels into the SGI RASC system and accelerate OpenFOAM.

4. Integrate the sparse matrix vector product, being one of the identified critical
kernels, with the dense matrix vector product implementations proposed in [26].

Objective 1: This objective was fully achieved. Profiling with the histx script devel-
oped by SGI identified the kernels of the OpenFOAM application for the SimpleFOAM
solver accurately.
Objective 2: Currently, only a hardware unit is developed for the sparse matrix vector
product. Different matrix formats were investigated and the best format found was the
MSR format. Yet, the hardware unit supports the CRS format only, and this must be
extended to the MRS format. The difference between the two formats its the storage
of the main diagonal. The hardware unit performs close to peak performance for each
CCU if reasonable input matrix sizes are considered.
Objective 3: This objective was not completely met. Although the stand alone version
for the SMVM kernel is working in hardware, connecting the SMVM to OpenFOAM
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failed due to problems mentioned in Section 5.6.1, very likely due to signal interference
between OpenFOAM and the RASC-core unit.
Objective 4: For the last objective, we modified the dense PE in such a way that its also
capable of computing the sparse matrix vector multiplication. Simulations verified the
PEs working for both sparse and dense matrix vector multiplications. The unit is also
capable of computing dense by dense matrices.

6.3 Future work

The following proposes some future research directions. The recommended future work
for this thesis is divided in several sections.

Sparse Matrix Vector Multiplication:

• Considering the MSR format, besides the CRS format. This format can reduce
the bandwidth. The MSR format stores the main diagonal separately and there
for no column coordinates have to be loaded to obtain its column coordinate. In
OpenFOAM, the diagonal is assumed to contain non-zero values and the MSR
could lead to better performance results.

• Extending the SMVM design from two to four PEs and using more FPGAs. In
hardware currently only two Processing Elements are included into the design. Due
to routing issues a lot of effort is spend on routing these two PEs. By increasing
the number of PEs higher performances can be achieved.

• The most important thing to be improved for the design is reducing the current
bandwidth. If the matrix is sliced in vertical slices, the vector b can be stored in
local memory, which allows using 16 bit wide addresses. The most bandwidth can
be saved due to accesses to vector b.

Mixed Dense and Sparse Matrix Vector Multiplication:

• Improving and reducing the are cost further for this design. Area can be reduced
if the register that stores the element of b in the dense PE is stored in the memory
for the sparse PE at index zero. Further, memory c for both the sparse and dense
design can be shared. This can also improve the frequency of the combined PE.

• Hardware verification of the design. So far, only software simulations in ModelSim
have verified correct working.

OpenFOAM:

• Currently, problems occurred while connecting OpenFOAM to the RASC Core
Services. The problems in the SGI design environment must be identified more
specifically and a solution must be found for this.
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• Integrating other kernels like the smooth function into hardware. The Gauss-Seidel
smoother is the next important kernel for this application. It is already written in
C-style coding and mapping the functions to hardware is straight forward.

• Due to problems with the RASC-core, only simulation performances are included
in the analysis for application speed up. The impact and behavior of utilizing
FPGAs for several computing nodes, but not all nodes, must be still investigated.
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Abbreviations

ASIC - Application Specific Integrated Circuit

ADR - Algorithmic Defined Register

BBCS - Block Based Compression Storage

BSR - Block Sparse Row

CCU - Customized Computing Unit

CDS - Compressed Diagonal Storage

CRS - Compressed Row Storage

COO - Coordinate Format

CPU - Central Processing Unit

CFD - Computation Fluid Dynamics

DIA - Diagonal Format

DCM - Digital Clock Manager

DMA - Direct Memory Access

DMVM - Dense Matrix Vector Multiplication

DSF - Diagonal Storage Format

FEM - Finite Element Method

FIFO - First In First Out

FSB - Front Side Bus

FLOPS - Floating Point Operations per Second

FSM - Finate State Machine

FPGA - Field Programmable Gate Array

FVM - Finite Volume Method

GFLOPS - Giga Floating Point Operations per Second

GPP - General Purpose Processor

JDS - Jagged Diagonal Storage

MRS - Modified Row Sparse

MFLOPS - Mega Floating Point Operations per Second

OpenFOAM - Open Field Operation and Manipulation

RASC - Reconfigurable Application Specific Computing

SMVM - Sparse Matrix Vector Multiplication

SGI - Silicon Graphics Inc

VHDL - VHSIC Hardware Description Language

VHSIC - Very High Speed Integrated Circuit
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SimpleFoam code A
A.1 Imported headers

setrootcase: It verifies the arguments being parsed from the command line (MORE!).
createTime: This creates a time object called runTime, it keeps track of all timing
information, e.g collapsed CPU Time, start time, stop time etc.
createMesh: Creates the mesh
createFields: Creates the pressure p, velocity U, the flux φ and constructs the turbulence
and transport models
initContinuityErrs: Defines and initialize the scalar cumulativeContErr to 0.
continuityErrs.H : Calculates and prints the continuity errors.

A.2 Body code

Line 1: The scalar field p of the previous iteration must be stored, since it’s needed
for under-relaxation. Under-relaxation controls the changes of certain variables due to
non-linearity. Given a under-relaxation factor α, and a general variable γ, the under-
relaxation control can be described by

γ = γold + α ∗∆γ

where 0 < α < 1 and γ could be the pressure, velocity, speed or any of the under-
relaxation factors specified in fvSolution file.

line 2: The prediction equation for the momentum is set up. line 3: Under-relaxation
adjustment for the speed line 4: Solve the momentum predictor

∇ ·U +∇ ·R = −∇p (A.1)
R = νeff∇U (A.2)

line 4: Update the boundary conditions for p
The rest of the code computes the flux:

φ = S ·Uf = S ·
{

(
H(U)

ap
)f −

(∇p)f

(ap)f

}
(A.3)
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Profiling Commands and
Results B
B.1 Commands

To run the SimpleFoam solver on 1 CPU the following command must be used: simple-
Foam . <casename>
To profile the application using one CPU with the histx profiler, the following command
can be used:

> histx -e timer@N -k -f -o <pattern> simpleFoam . case04m | tee <filedump>

Here histx takes the following arguments:

• -e, this option tells histx which source of events to use. A sample is recorded each
time N additional user+system ticks have been accumulated.

• -k, tells histx to also record samples when running in the kernel at privilege level
0. Off by default. This option only has meaning when using the Itanium PMU
event source.

• -f, tells histx to produce a report for any processes fork()ed from the initial process.
This is required for profiling when multiple processing nodes are involved.

• -o, tells histx to write it’s per-thread report to a file with path given by <pattern>.

• with the tee command everything is dumped to a the file <filedump>.

The commands to start the profiling on 2 CPUs is as follows: mpirun -np 2 histx -e timer@2
-k -f -o filename.log simpleFoam . case04m -parallel | tee screen.log

• here simpleFoam takes an extra argument parallel, to instruct the program telling
that the mesh is being executed on multiple nodes

• np is an argument of mpirun and denotes the number of processors used.

By default, the histx report is written to a file named pattern.< command >.<PID>,
in this case filename.log.simpleFoam.<PID>. Since 2 processors are used 2 files are
created. The next step is to use iprep to create a useful report from the raw ip sampling
reports produced by histx.

> iprep filename.log.simpleFoam.< PID > | c++filt | tee <filedump>

The c++filt command demanges the C++ symbols from the report and the profiling
report is stored in filedump.
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B.2 OpenFOAM functions

These functions here are the functions that are being identified as kernels by the profiler.

smooth src/OpenFOAM/matrices/lduMatrix/smoothers/GaussSeidel/GaussSeidelSmoother.C
libOpenFOAM.so : Foam :: GaussSeidelSmoother :: smooth(Foam :: wordconst&, Foam ::
Field < double > &, Foam :: lduMatrixconst&, Foam :: Field < double > const&, Foam ::
FieldF ield < Foam :: Field, double > const&, Foam :: UPtrList < Foam ::
lduInterfaceF ieldconst > const&, unsignedchar, int)

grad 1 /src/finiteVolume/finiteVolume/gradSchemes/limitedGradSchemes/cellLimitedGrad/
cellLimitedGrad.C
libfiniteV olume.so : Foam :: fv :: cellLimitedGrad < Foam :: V ector < double >>::
grad(Foam :: GeometricF ield < Foam :: V ector < double >, Foam :: fvPatchF ield, Foam ::
volMesh > const&)const

limitFace src/finiteVolume/finiteVolume/gradSchemes/limitedGradSchemes/cellLimitedGrad/
cellLimitedGrad.C
libfiniteV olume.so : Foam :: fv :: cellLimitedGrad < Foam :: V ector < double >>::
limitFace(Foam :: V ector < double > &, Foam :: V ector < double > const&, Foam ::
V ector < double > const&, Foam :: V ector < double > const&)

grad 2 src/finiteVolume/finiteVolume/gradSchemes/limitedGradSchemes/cellLimitedGrad/
cellLimitedGrad.C
libfiniteV olume.so : Foam :: fv :: cellLimitedGrad < double >:: grad(Foam ::
GeometricF ield < double, Foam :: fvPatchF ield, Foam :: volMesh > const&)const

residual /src/OpenFOAM/matrices/lduMatrix/lduMatrix/lduMatrixATmul.C
libOpenFOAM.so : Foam :: lduMatrix :: residual(Foam :: Field < double > &, Foam ::
Field < double > const&, Foam :: Field < double > const&, Foam :: FieldF ield <
Foam :: Field, double > const&, Foam :: UPtrList < Foam :: lduInterfaceF ieldconst >
const&, unsignedchar)const

Amul /src/OpenFOAM/matrices/lduMatrix/lduMatrix/lduMatrixATmul.C
libOpenFOAM.so : Foam :: lduMatrix :: Amul(Foam :: Field < double > &, Foam ::
tmp < Foam :: Field < double >> const&, Foam :: FieldF ield < Foam :: Field, double >
const&, Foam :: UPtrList < Foam :: lduInterfaceF ieldconst > const&, unsignedchar)const

grad 3 src/finiteVolume/finiteVolume/gradSchemes/gaussGrad/gaussGrad.C
libfiniteV olume.so : Foam :: fv :: gaussGrad < double >:: grad(Foam :: GeometricF ield <
double, Foam :: fvsPatchF ield, Foam :: surfaceMesh > const&)

grad 4 src/finiteVolume/finiteVolume/gradSchemes/gaussGrad/gaussGrad.C
libfiniteV olume.so : Foam :: fv :: gaussGrad < Foam :: V ector < double >>::
grad(Foam :: GeometricF ield < Foam :: V ector < double >, Foam :: fvsPatchF ield, Foam ::
surfaceMesh > const&)

MPI
libmpi.so : MPI SGI shared progress
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interpolate src/finiteVolume/interpolation/surfaceInterpolation/surfaceInterpolationScheme/
surfaceInterpolationScheme.C
a.out : Foam :: surfaceInterpolationScheme < Foam :: V ector < double >>::
interpolate(Foam :: GeometricF ield < Foam :: V ector < double >, Foam ::
fvPatchF ield, Foam :: volMesh > const&, Foam :: tmp < Foam :: GeometricF ield <
double, Foam :: fvsPatchF ield, Foam :: surfaceMesh >> const&)

B.3 Profiling Results

The application is profiled on 1, 2 and 4 CPUs. The results are summarized in the
tables B.1 B.2 and B.3
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1 CPU. No Decomposition
Function CPU usage% cum. CPU usage %

smooth 23.111 23.111

grad_1 8.706 31.817

limitFace  6.385 38.202

grad_2 4.472 42.674 

residual 3.877 46.550

Amul 3.479 50.029 

2 CPU's. Methis Decomposition
Function Host CPU usage% Host cum. CPU usage% Slave CPU usage% Slave cum. CPU usage

%

smooth 19.287  19.287  20.144 20.144

grad_1 9.272  28.559  9.941 30.086

limitFace  6.352  34.911  6.741 36.827

grad_2 4.064  38.975  4.346 41.173

grad_3 3.682  42.657  3.809 44.982

residual 3.649  46.307  3.742 48.724

Amul 3.496  49.803  3.587 52.311

2 CPU's. Simple Decomposition
Function Host CPU usage% Host cum. CPU usage% Slave CPU usage% Slave cum. CPU usage

%

smooth 19.260 19.260 21.166 21.166

grad_1 8.804 28.064 9.677 30.793

limitFace  6.099 34.163 6.566 37.360

grad_2 3.837 38.000 4.381 41.741

grad_3 3.554 41.554 3.750 45.491

Amul 3.523 45.077 3.714 49.206

residual 3.234 48.311 3.434 52.639

Table B.1: Profiling using 1 and 2 CPUs, both with Metis and simple decomposition
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4 CPU's. Methis Decomposition

Function Host CPU usage% Host cum. CPU usage%

smooth 13.093 13.093

grad_1 6.826 19.919

MPI 5.111 25.031

limitFace  4.440 29.470

residual 4.097 33.567

grad_3 4.045 37.612

grad_4  3.522 41.134 

Amul 3.490 44.624

Function Slave 1 CPU usage% Slave 1 cum. CPU usage%

smooth 13.134 13.134

grad_1 7.849 20.983

limitFace  4.848 25.830

residual 4.170 30.000

grad_3 4.104 34.105

grad_4 3.596 37.700

Amul 3.529 41.230

MPI 3.499 44.729

Function Slave 2 CPU usage% Slave 2 cum. CPU usage%

smooth 13.100 13.100

grad_1 7.380 20.481

limitFace  4.672 25.153

grad_3 4.272 29.425

residual 4.103 33.528

MPI 3.840 37.368

grad_4 3.560 40.928

Amul 3.520 44.448

Function Slave 3 CPU usage% Slave 3 cum. CPU usage%

smooth 13.211 13.211

grad_1 7.429 20.703

limitFace  4.648 25.388

grad_3 4.247 29.634

residual 4.172 33.807

grad_4 3.538 37.344

Amul 3.518 40.862

MPI 3.221 44.083

Table B.2: Profiling results, for using 4 CPUs. Metis decomposition
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4 CPU's. Simple Decomposition

Function Host CPU usage% Host cum. CPU usage%

smooth 13.341 13.341

grad_1 7.585 20.926

limitFace 4.635 25.561

grad_3 4.145 29.706

residual 3.985  33.691

grad_4 3.592 37.283

Amul 3.529 40.812

interpolate 3.099 43.911

Function Slave 1 CPU usage% Slave 1 cum. CPU usage%

smooth 14.122 14.122

grad_1 8.920 23.042

limitFace 5.275 28.318

residual 4.145 32.463

grad_3 4.130 36.593

Amul 3.712 40.305

grad_4 3.607 43.912

interpolate 3.501 47.413

Function Slave 2 CPU usage% Slave 2 cum. CPU usage%

smooth 13.712 13.712

grad_1 7.614 21.325

limitFace 4.782 26.108

grad_3 4.349 30.456

residual 4.135 34.591

grad_4 3.663 38.255

Amul 3.634 41.889

MPI 3.267 45.156

Function Slave 3 CPU usage% Slave 3 cum. CPU usage%

smooth 13.259 13.259

grad_1 8.459 21.718

limitFace 5.099 26.817

grad_3 4.244 31.061

residual 4.089 35.150

grad_4 3.720 38.870

Amul 3.567 42.446

interpolate 3.331 45.777

Table B.3: Profiling results, for using 4 CPUs. Simple decomposition



Decomposition reports C
This appendix chapter contains the decomposition reports for the simple and Metis
decomposition methods for targetting 4 processors.

C.1 Metis report

/*-----------------------------------------------------------------*\
| ========= | |
| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
| \\ / O peration | Version: 1.4.1 |
| \\ / A nd | Web: http://www.openfoam.org |
| \\/ M anipulation | |
\*-----------------------------------------------------------------*/

Exec : decomposePar . case04m
Date : Aug 26 2008
Time : 14:54:21
Host : smaug
PID : 25788
Root : /opt/data/homes/mtaouil
Case : case04m
Nprocs : 1
Create time

Time = 0
Create mesh

Calculating distribution of cells
Selecting decompositionMethod metis

Finished decomposition in 32.564 s

Calculating original mesh data

Distributing cells to processors
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Distributing faces to processors

Calculating processor boundary addressing

Distributing points to processors

Constructing processor meshes

Processor 0
Number of cells = 1715464
Number of faces shared with processor 2 = 6885
Number of faces shared with processor 1 = 5946
Number of faces shared with processor 3 = 549
Number of processor patches = 3
Number of processor faces = 13380
Number of boundary faces = 82738

Processor 1
Number of cells = 1713283
Number of faces shared with processor 0 = 5946
Number of processor patches = 1
Number of processor faces = 5946
Number of boundary faces = 90936

Processor 2
Number of cells = 1714303
Number of faces shared with processor 0 = 6885
Number of faces shared with processor 3 = 6981
Number of processor patches = 2
Number of processor faces = 13866
Number of boundary faces = 83589

Processor 3
Number of cells = 1715374
Number of faces shared with processor 2 = 6981
Number of faces shared with processor 0 = 549
Number of processor patches = 2
Number of processor faces = 7530
Number of boundary faces = 85262

Number of processor faces = 20361
Max number of processor patches = 3
Max number of faces between processors = 13866
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Processor 0: field transfer
Processor 1: field transfer
Processor 2: field transfer
Processor 3: field transfer

End.

C.2 Simple report

Exec : decomposePar . case04m
Date : Aug 27 2008
Time : 13:26:59
Host : smaug
PID : 29331
Root : /opt/data/homes/mtaouil
Case : case04m
Nprocs : 1
Create time

Time = 0
Create mesh

Calculating distribution of cells
Selecting decompositionMethod simple

Finished decomposition in 32.672 s

Calculating original mesh data

Distributing cells to processors

Distributing faces to processors

Calculating processor boundary addressing

Distributing points to processors

Constructing processor meshes

Processor 0
Number of cells = 1689323
Number of faces shared with processor 2 = 6870
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Number of faces shared with processor 1 = 12659
Number of faces shared with processor 3 = 15
Number of processor patches = 3
Number of processor faces = 19544
Number of boundary faces = 81187

Processor 1
Number of cells = 1739889
Number of faces shared with processor 0 = 12659
Number of faces shared with processor 3 = 1172
Number of processor patches = 2
Number of processor faces = 13831
Number of boundary faces = 92545

Processor 2
Number of cells = 1739889
Number of faces shared with processor 3 = 14206
Number of faces shared with processor 0 = 6870
Number of processor patches = 2
Number of processor faces = 21076
Number of boundary faces = 79193

Processor 3
Number of cells = 1689323
Number of faces shared with processor 2 = 14206
Number of faces shared with processor 1 = 1172
Number of faces shared with processor 0 = 15
Number of processor patches = 3
Number of processor faces = 15393
Number of boundary faces = 89600

Number of processor faces = 34922
Max number of processor patches = 3
Max number of faces between processors = 21076

Processor 0: field transfer
Processor 1: field transfer
Processor 2: field transfer
Processor 3: field transfer

End.



Problems, Bugs and other
issues using the RASC Core
Services D
The latest RASC release, RASC 2.20 still contains bugs and other issues. In this chapter
the problems faced during this thesis using the RASC-core are being described here.

D.1 Error in Configuration Tool script

SGI provided a Configuration Tool in which the user can specify which services are being
used from the Core Services. Using this script (alg def tool.tcl) to generate 5 SRAMS
results in an error in the ngdbuild phase. The error is probably due to a bug in ISE
tool and is dependable of the order the design files are being compiled. To fix this, the
alg def tool.tcl script must be replaced. SGI is already aware of this error and a fix is
available for it (but officially not yet released).

D.2 Improper functionality of fpgastep of gbdfpga

The fpgastep for debugging purposes to stop the FPGA at certain points is not working
correctly on 50 MHz and 100 MHz. The error can easily made visible if a counter is
being debugged and the stepflag is set always high. SGI is contacted about this problem
and a patch has been made available. This patch is not officially released.

D.3 Improper functionality of Debug tool with multi-
buffering and streams

The debug tool SGI provided for the FPGA, gdbfpga seems not to work with the example
alg12 strm they provided. Without multi-buffering the debug tool is working fine.

D.4 Claim of data transfer with dynamic memory sizes to
SRAM is not working

In the RASC UserGuide SGI claims data can be transferred to the SRAMS as long as its
128 Byte aligned. However this is not the case. Only fixed sizes to SRAM can be send,
with the size specified prior executing the application. This can decrease performance
since at runtime zero padding might be necessary.
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D.5 Transfer of data seems not working for all sizes

During testing the SMVM, the application seemed to crash when specific sizes for SRAM
were allocated while for other sizes it worked. Testing a matrix with N=1024 and
Nz=5110 failed in transferring the data when the SRAM size for A is taken 5110 words
(1 word = 8 Bytes). This is a multiple of 128 Bytes and should work. However if the
size overdimensioned to 8096 words the algorithm seems to work fine.

D.6 Error with algorithmic version number

This error seems not so important but this error influences the entire system. On top of
that it was very hard to track this error. The user has to specify an algorithmic version
with the design. If the algorithmic version contains a zero behind the . as in 10.0,
the devmgr server crashes. The FPGAs become invisible (using the devmgr -i option)
and querying the algorithms in the registry (devmgr -q) results in a quantization packet
error. The FPGAs can not be accessed anymore until the design is updated (devmgr -u
) with a different version, like 10.1 for example. SGI might be not aware of this problem.

D.7 Incorrect memory allocation using DIRECT IO

If the design is using direct memory for faster transfer times, the allocation of is handled
by the void *rasclib huge alloc(long size) function. According to the documentation, the
size argument is rounded up to the next 128B cacheline. However it is found that this
function is not allocating memory for small array sizes. Using gdb, allocating memories
for different arrays resulted sometimes in the same pointer. The following allocations
are requested:

#define N_size 32
#define Nz_size 32
mat_row = (unsigned long *) rasclib_huge_alloc ((N_size+1)* sizeof(unsigned long));
mat_col = (unsigned long *) rasclib_huge_alloc (Nz_size * sizeof(unsigned long));
mat_A = (double *) rasclib_huge_alloc (Nz_size * sizeof(double));
mat_B = (double *) rasclib_huge_alloc (N_size * sizeof(double));
mat_C = (double *) rasclib_huge_alloc (N_size * sizeof(double));

The requests result in the following addresses:

(gdb) print mat_row
$4 = (long unsigned int *) 0x8000000000000000
(gdb) print mat_col
$5 = (long unsigned int *) 0x8000000000004000
(gdb) print mat_A
$1 = (double *) 0x8000000000008000
(gdb) print mat_B
$2 = (double *) 0x8000000000008000
(gdb) print mat_C
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$3 = (double *) 0x8000000000008000

It can be clearly seen that allocation of the addresses are not correct, since different
arrays map to the same memory locations. If N size and Nz size are changed to a larger
size, like 16384, the allocation is working properly.

D.8 Incorrect functionality using DMA streams with non-
power of 2 stream sizes

When the DMA streams are used to transfer data from main memory to FPGA the
applications fails execution for stream sizes non-equal to powers of 2. Currently, in
the SMVM design this is avoided by sending additional zeros to fill next power of 2.
The done signal (alg done) for the SMVM design is not depending on this stream size.
However, the behavior of the application is unknown when the alg done flags is raised
while data, the additional zeros, are still being transferred to the FPGA. Multi-buffering
is not considered here.

D.9 Recommendation to improve routing issues

Without additional work, the Xilinx PAR requires a lot of effort to route the SGI wrap-
pers. As a simple test case, a circuit has been synthesized containing 1 adder which add
two values from SRAM 0 and SRAM 1 and store these in SRAM 2 using the memory
configuration with 5 SRAMS at a frequency of 50 MHz. The 2 unused SRAMS have
been disabled with the Configuration Tool. After the route phase, the trace tool reports
that the frequency could not be met.

The following options can improve the routing of the design:

• Place a register for all the connections between the Custom Computing Unit (CCU)
and the RASC-core (this is also being advised by the SGI Support Team)

• In the <project name>.scr file in the implementation folder, change the value of
the keyword equivalent register removal to NO. With equivalent register removal
equivalent register at the RTL Level can be removed. Due to critical timing near
the I/O boundary, the design routes better with this option. Since the global
switch is changed, the affect of this may be unwanted on the CCU. To avoid this,
a local override must be placed in the CCU (see Xilinx documentation to do this).

• The reset signal can suffer from high loads. To avoid this the reset signal can be
routed through a global line.

Using these guidelines, the design of the Sparse Matrix Vector Product could be
routed on 100 MHz using 5 SRAMS and 2 DMA Input Streams.
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CD-ROM contents and
Userguide E
This appendix gives the reader an overview of the contents of the CD-ROM accompanying
my thesis.

E.1 CD content

Figure E.1 contains the folders inside the CD-ROM.

. <Thesis >
|– VHDL

|– CCU 1PE Contains the design files for CCU with 1 PE
|– CCU 2PE Contains the design files for CCU with 2 PEs
|– CCU mixed Contains the design files for CCU with mixed PEs
|– CCU 2 4 8PE Contains the design files for CCU with 2,4 and 8 PEs

|– OpenFOAM
|– Profiling Contains several subfolder with profiling results
|– SimpleFoam Modification of SimpleFoam application to support hardware
|– lduMatrix Files changed in lduMatrix folder in OpenFoam

|– Matrix Generation Contains several files to generate automated tests and
matrices.

|– BenchMarks Includes files to automatic generate matrices from the UF
Tim Davis collection for the OSKI tool

|– Altix Designs CCU with 1 and 2 PE with automated makefiles for the
RASC-core

Figure E.1: Organization of the file directory structure on the CD belonging to this
thesis

In the remainder of this Appendix chapter we describe each folder briefly.

E.2 VHDL

The VHDL folder contains 4 subfolders with the developed designs. CCU 1PE contains
the design for 1 PE. CCU 2PE contains the design for 2 PEs, specifically build for the
RASC-core since it uses DMA streams. The CCU mixed folder contains the file for the
mixed Dense and Sparse Matrix Vector Multiplication. The last folder, CCU 2 4 8PE,
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contains CCUs with 2, 4, and 8 PEs, but with optimized testbenches that do not require
memories to simulate the memory banks on the RASC-Core. In stead of using memories,
data is directly read in from files.

E.3 OpenFOAM

The OpenFOAM folder contains the 3 following subfolders:

• Profiling. The profiling folder contains all the profiling reports and timing mea-
surements for the OpenFOAM tool running the simpleFoam solver, using Metis
and Simple decomposition for 1, 2 or 4 CPUs on the Altix machine.

• SimpleFoam. This folder contains the files that reserves FPGA from the
SimpleFoam solver application. The fpga init.h reads the file fpgaDict de-
picted in Figure 5.5 and fpga close.h disconnects the FPGA. Further the
SimpleFoam.C file has been changed to include these files at the right
time. All these files must be places into the ../OpenFOAM/OpenFOAM-1.4.1-
taouil/applications/solvers/incompressible/simpleFoam folder.

• lduMatrix. The lduMatrix folder contains the adjustments made so far to support
the hardware directly from OpenFoam. Further, it includes fpga.c and fpga.h used
as the library to connect OpenFOAM to the RASC-Core. Last, cycles.h is a file
that has been used for cycle time estimations in software to obtain the percentage
of kernels that is spend in communication and computation (see Table 2.8).

E.4 Matrix Generation

In the folder Matrix Generation 3 files can be found:

• generate test.c This file generates a matrix. The Number of rows can be specified
by N and together with the minimal and maximal number of nonzero per rows.
Each row length is generated randomly between the boundaries. Several files are
created with random files for matrix A, vector b and c and the column coordinates.

• stream 2pe test gen.c This file does the same but automatic splits the mapping
on the memory banks according to Figure 4.14. The outputs are generated for
hardware testing purposes.

• divmat generic size.c This files generates test matrices suited for the CCU with
multiple PEs for simulating multiple PEs from files. The input should be a valid
matrix in CRS format, and the output will be a decomposed matrix in several
sections depending on the number of PEs. The files can be read in simulation in
the VHDL/CCU 2 4 8PE folder. Several options can be specified in this file like
an automatic balanced partitioning.
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E.5 Benchmarks

The folder Benchmarks contains 3 Files:

• crs format from dia.m This file converts matrices from the OpenFOAM format to
the CRS format.

• crs format.m This file downloads a matrix from the The University of Florida
Sparse Matrix Collection and converts this to the CRS format

• benchmarkOSKI.c This file uses the OSKI library to compute the Sparse Matrix
Vector Multiplication in optimized software kernels.

E.6 Small UserGuide to use the Altix Designs

In this section a small user guide is given that describes the fast usage of the hardware
design for the Altix machine. To be able to understand how everything works precisely,
the user is adviced to read the SGI altix manual “Reconfigurable Application Specific
Computer User’s Guide” [13].

Currently, the latest RASC-software is called ia32 rc100 22 dev env.tar.gz and can
be found at the following path, /usr/share/rasc/ia32 dev env/ on the Altix machine.
This file must be extracted on the users personal computer (not on the Altix). Next,
the RASC environment variable must point to the folder where the file is extracted. For
a tcsh shell this can be done by the linux command:

$ setenv RASC <folder location>.

The next step is to download the contents of the Altix Designs on the CD-ROM to the
correct locations where the file ia32 rc100 22 dev env.tar.gz is extracted, the $(RASC)
environment variable. In the Altix Designs two folders can be found, an implementations
folder and an alg core folder. The contents of the implementations folder must be copied
to $(RASC)/implementations and the content of the alg core folder must be copied
to $(RASC)/design/alg core folder. They both contain two folders called sparse and
sparse stream, where the first design contains the CCU for 1 PE and the latter for 2
PEs.

Now the folders are copied to its correct path, the Xilinx ISE tool and Python2.4
must be made visible on the command line. If they are included, go to the
$(RASC)/implementations/<design name> folder, where design map is one of the
present designs (sparse or sparse stream), and run from their make. This will auto-
matically compile all files and generate a bitstream. This can take several hours. Do
this for both designs.

After the bitstream is generated it has to be included to the RASC registry on the
Altix machine. The devmgr command does this. To upload the bitstream for the design
with 1 PE enter the following command from the $(RASC)/implementations/sparse
folder:
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$ devmgr -a -n "sparse\_matrix" -b ./rev/sparse.bin -c user\_space.cfg
-s core\_services.cfg

This adds the file to the registery. Similar, go to the path
$(RASC)/implementations/sparse stream and type the command:

$ devmgr -a -n "sparse\_stream" -b ./rev/sparse\_stream.bin -c user\_space.cfg
-s core\_services.cfg

Now both streams are included to the registry with names sparse stream and
sparse matrix. This can be verified with the command:

devmgr -q

The last step to do is to compile the C-file sparse mat.c located in
$(RASC)/implementations/<design name>. The following commands compile and ex-
ecute the file:

$ cc -c sparse_mat.c
$ cc -o sparse_mat sparse_mat.o -lrasc -lm;
$ ./sparse_mat <N> // used for 1 PE
$ ./sparse_mat <Ndiv> <N> // used for 2 PEs

N represent here the matrix size, and Ndiv, the row index where the matrix is cut.
In case the design with 2 PES (sparse stream) is used, Ndiv must be specified. The first
PE computes the first Ndiv rows and the second PE the last N-Ndiv rows. Inside the
C-file, the user must specify the locations of the files that store the input matrix, what
type of connection is used between CPU and FPGA (DIRECT IO or BUFFERED IO)
and which arrays are transferred to the FPGA.In the folder Matrix Generation on the
CD-ROM files are included, which can be used to generate random test examples for
both 1 and 2 PEs.


