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ABSTRACT 
Liquefaction induced by earthquakes has shown to have potential devastating influence on seismic performance of 
anchored quay walls. Therefore, measures to mitigate liquefaction are commonly part of the design of quay walls in 
seismically active regions. Such mitigation measures are costly. Moreover, these measures are difficult to implement for 
existing structures in operation. For these reasons, proper tools that can accurately predict the effects of liquefaction on 
anchored quay walls are valuable for engineering purposes. Numerical tools like finite element analysis can potentially 
replace simplified code based methods, such as the Mononobe-Okabe method. However, performance of numerical 
models that account for liquefaction and pore pressure accumulation is crucial towards the use of numerical tools for this 
purpose. Initial stress states influence both the liquefaction resistance of the soil as well as the performance of the 
constitutive model. This study proposed a new calibration procedure  in order to deal with the influence of static shear 
and overburden stress in the model. Zones around the structure with specific corresponding stress states are defined for 
which the stress state dependent constitutive model behaviour is calibrated based on laboratory results and 
literature.This study evaluates the performance of finite element calculations with the UBC3D-PLM soil constitutive 
model based on a reported case study of two quay walls in Akita Port, Japan for the 1983 Nihonkai Chubu earthquake. It 
also evaluates to what extent Mononobe-Okabe calculations with code-based corrections for liquefaction effects could 
reproduce the observed performance of the Akita Port quay walls. The results shown by the analysis employing the new 
developed calibration procedure indicate good correspondence with observations in the field. On the other hand, 
Mononobe-Okabe methods including corrections for liquefaction effects give a poor fit to the observed behaviour. The 
response indicates that dynamic analysis with the UBC3D-PLM model using the proposed calibration procedure is 
capable to give insight in effects of excess pore pressures on the seismic performance of an anchored quay wall. This 
study mainly only focussed on liquefaction triggering as a function of stress state and the post-liquefaction stress-strain 
behaviour predicted by UBC3D-PLM was only evaluated at a basic level.  
 
 
 
1 INTRODUCTION 

 
The simplified pseudo-static Mononobe-Okabe method 
(Mononobe et al 1929, Okabe 1926) is often prescribed in 
design codes to provide seismic earth pressures on 
retaining structures based on the peak ground 
acceleration (PGA). This method was originally developed 
to estimate dynamic earth pressures against gravity walls, 
but is commonly applied in the design of anchored quay 
walls. Modifications to the original method that account for 
the effects of excess pore pressures are available and 
included in design codes (e.g. Eurocode 8). 

The pseudo-static Mononobe-Okabe method generally 
yields conservative estimates of bending moments and 
anchor forces (Gazetas et al. 2015). Limitations of the 
modified method (with inclusion of excess pore pressure 
ratio) became evident in the evaluation of the case history 
of anchored quay walls at Akita Port hit by the Nihonkai 
Chubu Earthquake 1983 (Iai et al. 1993). Overestimation 
of the passive resistance and underestimation of anchor 

capacity led to exaggerated bending moment distributions 
and an overestimation of the displacements.  

Numerical models can potentially replace the 
simplified code based methods, such as the Mononobe-
Okabe method. Prediction of liquefaction is however still a 
challenging task and the quality of constitutive soil models 
that account for liquefaction and pore pressure 
accumulation is crucial towards the use of numerical tools 
for engineering purposes. Validation of well-documented 
case histories is of great importance in implementing 
these sophisticated models in design practice. 

Thishis paper evaluates the performance of the 
effective stress UBC3D-PLM (Galavi et al. 2013) 
constitutive material model to account for liquefaction 
effects. The model is an extension of the two dimensional 
UBCSAND model (Puebla et al. 1997, Beaty and Byrne 
1998) and is implemented in PLAXIS finite element 
software.  

After a brief description of the constitutive model, this 
paper presents the effects of varying initial stress states 
and loading conditions on the model performance in a by 



 

model element test. Both undrained cyclic direct simple 
shear (DSS) tests and undrained cyclic triaxial tests are 
modeled and effects of varying initial vertical effective 
stress (σ’v0), lateral earth pressure coefficient (K0) and 
initial static shear stresses (α) on modeled soil behavior 
are analyzed and compared with experimental laboratory 
data. Modifications to model parameters are required to 
improve the model performance for specific initial stress 
states, with focus on obtaining an accurate fit of the 
amount of cycles to liquefaction. This paper employed the 
well-documented case history of two anchored quay walls 
in Akita Port from the 1983 Nihonkai Chubu Earthquake to 
validate the capabilities of the UBC3D-PLM model at a 
global scale (Iai et al. 1993). A calibration methodology is 
developed to calibrate the model locally and deal with the 
influence of varying static shear and overburden stress 
around the structure. Finally a dynamic analysis with the 
calibrated model (as function of local stress state) is 
performed and numerical results are analyzed and 
compared to observed performance of the anchored quay 
walls in Akita Port.  
 
 
2 UBC3D-PLM CONSTITUTIVE MODEL 
 
The UBC3D-PLM constitutive material model uses the 
Mohr-Coulomb yield criterion and distinguishes a primary 
and secondary yield surface. The primary yield surface 
uses an isotropic hardening law, while the secondary yield 
surface evolves according to a simplified kinematic 
hardening rule, where the maximum reached mobilized 
friction angle (φmob) defines the transition between primary 
and secondary loading.  

The elastic behaviour in the model is governed by the 
stress dependent elastic bulk modulus (K) and elastic 
shear modulus (G): 
 

K = K
e

B  PA  (p / pref)
me

         [1] 
 

G = K
e
G  PA  (p / pref)

ne
        [2] 

 
where K

e
B and K

e
G are respectively the bulk and the shear 

modulus numbers at a reference stress level, PA is the 
atmospheric pressure (same as pref, the reference stress 
level), p is the mean effective stress and me and ne 
define the rate of stress dependency. The model predicts 
elastic behaviour during unloading stage. The plastic 
shear strain increment is given by: 
 

δγ
p
 = (1 / G*) δ sin ϕmob      [3] 

 
G* = K

p
G (p’ / p)

np
 (1 - (sin φmob / sin φpeak) RF)

2
   [4] 

 
in which K

p
G is the plastic shear modulus number, np is 

the plastic shear modulus exponent, φpeak is the peak 
friction angle and RF is the failure ratio. A non-associated 
plastic flow rule is formulated, which is based on Drucker-
Prager’s law (1952) and Rowe’s stress dilatancy theory 
(1962): 
 

dε
p

v =sin Ψm dγ
p
      [5] 

 

sin Ψm = sin φmob - sin φcv     [6] 
 
where dε

p
v is the volumetric strain increment, Ψm is the 

mobilized dilation angle and φcv is the phase 
transformation friction angle, defining contractive or 
dilative soil behaviour. 

For the K
p
G term distinction is made between primary, 

secondary and post-liquefaction loading and it is 
described as follows: 
 

K
p
G = K

p
G,primary f(nrev, fachard, facpost)    [7] 

 
where K

p
G,primary is the input value for the plastic shear 

modulus number, adopted during primary loading. To 
capture the effects of soil densification during secondary 
loading, the K

p
G is formulated as a function of the amount 

of stress reversals from loading to unloading and vice 
versa (nrev). To calibrate the densification rule the fachard 
parameter is introduced to control the amount of 
hardening of the secondary yield surface. Larger values of 
fachard lead to less development of excess pore pressures 
and a larger liquefaction resistance, thus to a higher 
number of cycles to liquefaction. Once the stress path 
reaches the failure line, the plastic shear modulus 
gradually decreases as a function of the generated plastic 
deviatoric strain. The stiffness degradation is limited by 
facpost value. The larger this value is, the higher the post-
failure stiffness is. 
 
 
3 VALIDATION OF UBC3D-PLM MODEL  
 
3.1 Model parameters 
 
The analysis validates the UBC3D-PLM model by 
comparing the results of numerically simulated element 
tests to experimental data.  The in-situ stress conditions 
during dynamic loading are reproduced in direct simple 
shear and triaxial tests with varying initial conditions (K0 
and initial static shear) and loading conditions 
(axial/lateral, compression/extension). This simplified 
modeling still serves as a standard model for liquefaction 
potential evaluation (Kokusho 2015). Liquefaction 
resistance curves are available of both Ohama Sand and 
Gaiko Sand, based on undrained cyclic triaxial tests with 
consolidation pressure of 98 kPa performed in the 
laboratory (Iai et al. 1993).  

Initial input model parameters for the UBC3D-PLM 
model are derived based on the calibration method by 
Beaty and Byrne (2011) and Makra (2013) and the 
method by Souliotis and Gerolymos (2016). Based on the 
measured SPT blow-count the relative density of the sand 
deposit is estimated according to the relationship by 
Skempton (1986). These initial parameter sets are 
calibrated by fitting the numerically obtained CSR-Nliq 
curve with liquefaction resistance curve from laboratory 
tests, aiming at a fit of the amount of cycles until 
liquefaction for a given loading condition. The input value 
for the plastic shear modulus number (K

p
G) and the 

densification factor (fachard) are adjusted since these 
values largely define the development of excess pore 
pressure, where the fachard is introduced in the model to 



 

control the densification rule. The 
input parameters for both Ohama Sand and Gaiko Sand 
are presented in Table 1. 
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Ohama No.2 Wharf (Iai et al. 1993)
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undrained cyclic triaxial lateral extension test, a neutral 
condition to the loading conditions in an undrained cyclic 
direct simple shear test and the passive condition to the 
loading conditions in an undrained cyclic triaxial lateral 
compression test. The distribution of the static shear 
stress ratio (α) is used to determine the initial static shear 
stress conditions in the element test. Combining both 
distributions (K0 and α) translated to element tests leads 
to the zoning as presented in Figure 5. 

The performance of the UBC3D-PLM model is 
evaluated for both undrained cyclic direct simple shear 
tests and undrained cyclic triaxial tests for different initial 
conditions and loading levels. Adjustments to model 
parameters K

p
G and fachard are suggested to the initial 

parameter set depending on the type of element test and 
initial conditions to improve the model performance for 
specific loading conditions and sand type. Since zones 
are defined around the structure corresponding to loading 
conditions of these typical element tests with known initial 
conditions, the model of the system can be calibrated 
locally for each zone based on the knowledge of the 
performance of the model for the element tests. In Figure 
6 the zones defined in the finite element around the 
anchored quay wall are presented. Each soil zone has a 

unique material parameter set calibrated for the loading 
conditions in that zone. To prevent numerical issues as a 
result of the presence of initial static shear stresses a post 
liquefaction factor (facpost) of 1.0 is adopted in all model 
parameter sets. 

 
4.3 Numerical modeling 
 
The seismic response of the typical cross section of the 
anchored quay wall at Ohama No.2 Wharf is analysed by 
dynamic nonlinear time history analysis using PLAXIS 2D 
software. For the upper two soil layers the UBC3D-PLM 
model is adopted, with model parameters as presented in 
Table 1 and zone specific calibrated K

p
G and fachard. The 

HSsmall constitutive model is assigned to other soil 
layers, as these are considered to be non-liquefiable. The 
model parameters are presented in Table 2, for sands 
based on relationships by Brinkgreve et al. (2010).  

Both the sheet pile wall and the anchor wall are 
modeled as elastic plate elements. Interface elements are 
defined connecting the walls to the soil mesh. The 
connecting tie-rod is modeled as a node-to-node anchor 
(elastic spring) with an out of plane spacing of 2.0 meters. 
 

 
 

 
Figure 5. Overview element tests with initial conditions corresponding to existing loading conditions in the field 
 
 
Table 2. Model parameters HSsmall model for static soil behavior and dynamic soil behavior of non-liquefiable layers  
 

Layer 

[-] 

 Dr 

[%] 

E50,ref 

[kPa] 

Eoed,ref 

[kPa] 

Eur,ref 

[kPa] 

m 

[-] 

K0,nc 

[-] 

RF 

[-] 

G0,ref 

[kPa] 

γ0.7 

[-] 

1 Ohama Sand 40 2.40E4 2.40E4 4.80E4 0.58 0.50 0.95 8.72E4 3.60E-4 

2 Gaiko Sand  60 3.60E4 3.60E4 7.20E4 0.51 0.50 0.93 10.08E4 1.60E-4 

3 Sand 85 5.10E4 5.10E4 10.02E4 0.43 0.36 0.89 11.76E4 1.40E-4 

4 Clay \ 2.00E4 2.00E4 4.00E4 0.55 0.54 0.92 7.50E4 1.65E-4 

5 Sand 65 2.70E4 2.70E4 5.40E4 0.56 0.46 0.94 9.06E4 1.60E-4 

6 Sand 70 4.20E4 4.20E4 8.40E4 0,48 0.40 0.91 10.76E4 1.40E-4 



 

 

Figure 6. Finite element mesh with
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5 CONCLUSIONS 
 
This paper presented the capability of the UBC3D-PLM 
soil constitutive model for predicting the seismic response 
of an anchored quay wall including liquefaction effects. It 
is also highlighted that the pseudo-static Mononobe-
Okabe methods including corrections for liquefaction 
effects are concluded to yield a poor fit to the observed 
behaviour. This study investigates the capabilities of the 
model to reproduce experimental data of element tests for 
varying initial stress states and loading conditions. Model 
parameters obtained with correlations by Beaty & Byrne 
(2011) and Makra (2013) and Souliotis & Gerolymos 
(2016) did not provide accurate results for the considered 
types of sand. Targeted adjustments to the model 
parameters are proposed leading to reasonable fit of the 
amount of cycles to liquefaction predicted by the model 
with experimental data and empirical relationships for 
different initial stress states and loading conditions. 
Calibrating the model for these element tests with specific 
initial stress states is crucial for accurate prediction of the 
liquefaction potential, in particular, for purpose of the new 
proposed calibration method.  

The case history of an anchored quay wall in Akita 
Port that suffered severe damage and outward horizontal 
displacement during the Nihonkai Chubu Earthquake in 
1983 as a result of the occurrence of liquefaction in the 
backfill has been analysed by means of a numerical 
simulation using the UBC3D-PLM. Using the proposed 
methodology with locally calibrated zones based on 
insights in the model behaviour to liquefaction for different 
stress states, satisfactory results were found. Observed 
failure behaviour and residual displacement are in 
reasonable agreement with observations in the field and 
insight is obtained in the development of excess pore 
pressures, showing the validity of the proposed 
methodology of locally calibration of the model.  
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