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1
INTRODUCTION

P OROUS rock formations below the earth surface, in some instances, contain oil or
natural gas or a combination of both along with water. Such rock formations are

called oil or gas reservoirs and are typically several meters thick and several square kilo-
meters wide. Visualization of these rock formations is impossible thus knowledge about
the structure and properties of such extensive formations is very limited. Traditionally
exploitation of such reservoirs is done through a system of wells which are drilled into
the reservoir. Information obtained from these wells is used to develop knowledge about
the reservoir formation. Usually, due to economic viability the number of wells drilled
into any formation is few and these wells are sparsely spaced. Thus information from
such a system of wells is at best very ‘local’ in nature, hence very little or no informa-
tion is known about the properties of the reservoir between the wells with any degree
of certainty. This lack of knowledge is, by consequence, transferred to the models gen-
erated to represent these reservoir formations. As a result of this the reservoir models
produce responses which are often inaccurate or not comparable to the responses ob-
tained from the real reservoir. With the advent of technologies it is now technologically
and economically feasible to accurately measure and monitor the responses, e.g. phase
rates, from a system of wells. Integration of these dynamic responses into the model by
adjusting the uncertain model parameters so as to minimize the mismatch between the
model responses and actual field measurements is a well-considered inverse problem,
called ‘history matching’ in the petroleum engineering world and ‘data assimilation’ in
the weather forecasting community. In essence the objective of history matching is to
employ measurement data to improve knowledge about the model properties so as to
enhance the predictability of a model to accurately forecast the production response of
a real reservoir.

1
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2 1. INTRODUCTION

1.1. HISTORY MATCHING
History matching is the process of conditioning reservoir models to the available field
observations, such as pressure data, production data, time-lapse seismic data, etc., by
adjusting model parameters. The most common data type for history matching is pro-
duction data, which is a time series of measurements of flow rate or pressure from pro-
duction or injection wells. The production data has some characteristics that make the
history matching more challenging than other inverse problems (Oliver and Chen, 2011):

1. These observations are made at a limited number well locations.

2. The measurements can be repeated frequently, which can result in a large amount
of data for a field, but its information content is often relatively low.

3. The relationships between the observed data and the model parameters are gen-
erally nonlinear.

Traditionally history matching is performed manually on upscaled reservoir models by
adjusting parameters using a trial and error method. Subsequently, manual history match-
ing can be involved with personal judgment and bias, which can result in artificial dis-
continuities with no geological realism (Datta-Gupta and King, 2007). As an alternative
computer-assisted history matching techniques can be used to reduce human bias and
judgments. These techniques aim to minimize a predefined mismatch objective func-
tion to update the parameters of a numerical model such that the simulated response
is more accurate compared with observed data and hopefully gives better predictions
of the future system response. Among the different algorithms available to solve this
parameter estimation problem, gradient-based optimization is considered to be an effi-
cient method; see Oliver et al. (2008). In this method gradients of the mismatch objective
function with respect to the uncertain parameters are calculated. Methods that use nu-
merical gradients, e.g. finite difference gradients, are easy to implement but are compu-
tationally inefficient, especially since the number of model parameters is usually in the
order of magnitude of 106 to 108. On the other hand, methods that use analytical gra-
dients are computationally more beneficial. Adjoint-based gradient calculation requires
a single forward simulation in conjunction with a single backward simulation to calcu-
late the gradient of any objective function. Thus the gradient calculated with the adjoint
technique is independent of the number of optimization variables and the adjoint tech-
nique is therefore computationally the most efficient method to solve high-dimensional
optimization problems.

1.2. ILL-POSEDNESS OF HISTORY MATCHING PROBLEMS
History matching problems are almost always ill-posed due to the large number of un-
certain parameters and limited available observed data (Oliver et al., 2008; Shah et al.,
1978). This ill-posedness results in many possible combinations of reservoir parameters,
which result in equally good matches to the historical data but may provide different
forecasts. A classic way to restore well-posedness is regularization through introducing
additional information. This can be done by, e.g., specifying a strong spatial correlation,
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zonation, expansion of parameters in terms of a limited number of basis functions, pe-
nalizing deviations from a prior model, or a combination of these methods. Penalizing
deviations from a prior model forms a natural consequence of applying a Bayesian ap-
proach to updating an uncertain prior, using uncertain data, to obtain a less uncertain
posterior (Oliver et al., 2008; Tarantola, 2005). The penalty term makes the problem well-
posed, restricts the parameter updates to values that keep the posterior values not too
far from the prior values, and generally increases the smoothness of the results. Krym-
skaya et al. (2010) have shown that the information content of the updated model comes
mostly from a priori knowledge and to a much lesser extent from the observations.

1.3. UNDER-MODELLING OR UNKNOWN UNKNOWNS
Geo-modeling is the process of populating a reservoir model with properties such as
permeabilities, porosities etc., which is a highly uncertain procedure. The uncertainty
arises from a lack of knowledge about the reservoir and many times, more importantly,
from interpretations of uncertain data sources such as seismic, well logs, core data, etc.
Interpretation of any data source is always subject to uncertainty and creativity which
can lead to significant bias in the model descriptions. This uncertainty is propagated
through a set of models used during the development phase of an oil field. Thus un-
expected flow-relevant features that are not captured in the reservoir model may be
present in reality. This is known as ‘under-modeling’. In such scenarios penalizing de-
viations from a prior model can be undesirable since it leads to solutions that stay close
to the prior. Therefore if a feature is missing in the prior there is almost no chance
to capture it since the updated parameters are constrained by incorrect prior knowl-
edge that usually originates from interpretation errors of geological data. On the other
hand, attempts to estimate all uncertain parameters from production data without reg-
ularization typically lead to very high or low parameter values that have little or no ge-
ological realism. Joosten et al. (2011) introduced the ‘model maturation’ concept and
showed through a set of numerical experiments that unrealistic parameter values may
have added value. In this thesis we focus on the application of unregularized history
matching in finding ‘unknown unknowns’ and on investigating the theoretical aspects
of such unrealistic parameter updates.

1.4. RESEARCH OBJECTIVES
In this thesis we want to show that unregularized history matching may sometimes be
used to improve our understanding about the reservoir by identifying problematic ar-
eas in the reservoir models or be seen as a way to correct for incorrect interpretations of
geological data. In a wider perspective, it is crucial to determine why and under which
conditions there is relevant information hidden in the results of unregularized ill-posed
inverse problems, since the unrealistic parameter updates can be also caused by the ill-
posed nature of the problem. For example if the unrealistic parameters arise in a loca-
tion or a direction, which does not have a significant influence on the flow in a reservoir
it is not reliable to be used as an indicator for under-modelling. Therefore it is essential
to investigate the effect of different flow- relevant features on dynamic behaviour of a
reservoir such that we can rely on unrealistic parameter updates to indicate problematic
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areas of our existing reservoir models. Therefore, the main objectives of this research is
to

“Investigate the relevant information in the dynamic response of a reservoir system and
the possibility of identification of unexpected flow-relevant features that are not captured
in the ensemble of prior reservoir models.”

For this purpose we will

• Extend the work of Van Essen et al. (2010) to investigate the effect of ill-posedness
of history-matched models on reservoir performance prediction.

• Investigate the possibility of model deficiency detection during unregularized pa-
rameter updating of subsurface reservoir models.

• Investigate the identifiability of location and magnitude of flow barriers in slightly
compressible flow using dynamic data.

• Investigate the possibility of updating of static parameters (structural models) us-
ing dynamic data (production and time-lapse seismic data) in a ‘big loop’ ap-
proach, in which parameter updates are performed in the static model in an in-
tegrated reservoir modeling workflow.

1.5. THESIS OUTLINE
Below is an executive summary of the different chapters included within this thesis.

1.5.1. EFFECT OF ILL-POSEDNESS OF HISTORY-MATCHED MODELS ON PRO-
DUCTION PREDICTIONS: CHAPTER 2

The main goal of history matching is to produce reservoir models that predict future
reservoir performance with more confidence. Ill-posedness of history matching prob-
lems can result in many possible reservoir models that produce the same history but
different forecast. Van Essen et al. (2010) have proposed a method to determine lower
and upper bounds on the predicted production or any other economic objective from
history-matched reservoir models through a hierarchical optimization procedure. In this
thesis we apply this method to a more realistic reservoir to investigate the effect of ill-
posedness of history-matched models on predicted reservoir performance. Moreover,
we investigate how this method can be used to indicate the added value of alternative
data sources such as time-lapse seismic.

1.5.2. UNDER-MODELING DETECTION: CHAPTER 3
Presence of significant flow-relevant features, e.g. faults or high permeable channels,
can strongly affect the dynamic behavior of a reservoir. Therefore, in the case of ‘under-
modeling’, when these features are not captured in the prior, constraining the parameter
updates to the prior information is unfavorable. In such a scenario integration of dy-
namic data without any constraint may help us to detect these flow-relevant features. In
this chapter we investigate under which conditions there may be relevant information
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hidden in the results of unregularized ill-posed inverse problems by conducting several
numerical twin experiments. Moreover to investigate the findings of these numerical ex-
periments, we perform a quantitative identifiability analysis of the examples using the
SVD of a dimensionless output sensitivity matrix.

1.5.3. IDENTIFIABILITY OF FLOW-RELEVANT FEATURES: CHAPTER 4
Due to the ill-posedness of history matching problems it is essential to understand which
parameters can be estimated with reasonable accuracy from the available data. It is
well-known that in incompressible flow only averaged properties of a reservoir can be
estimated from production data. On the other hand, from a systems and control the-
ory perspective, the transient response of a dynamic system contains information about
dynamics-related properties of a system. Consequently, including compressibility ef-
fects (leading to a transient response) can result in a more accurate reservoir parameter
estimation than just considering the steady-state response. However certain parameters
have a more significant effect on this transient response. Consequently, by investigating
the effect of different parameters on the dynamic behavior we can understand which pa-
rameters are more identifiable from the available data. On the other hand, the presence
of noise in the data may reduce the identifiability of such parameters and can result in
unrealistic parameter estimates. Hence, it is important to also investigate the effect of
noise on the identifiability of different parameters. In this chapter we extend the classic
analysis by including compressibility effects and use two approaches to investigate the
identifiability of location and magnitude of flow barriers:

1. A twin-experiment with synthetic production data for use with a time-domain pa-
rameter estimation technique,

2. A transfer function formalism in the form of bilaterally coupled four-ports allowing
for an analysis in the frequency domain.

Using semi-analytical solutions based on the transfer function formalism we are able to
visualize the objective function space and also to investigate the (structural) identifia-
bility of different parameters. These theoretical results appear to support the empirical
findings of the second chapter of this thesis, where we have shown that unregularized
gradient-based history matching in reservoir models occasionally leads to useful results
in the form of model parameter updates having unrealistic magnitudes but indicating
the correct location of model deficiencies.

1.5.4. STRUCTURAL MODEL UPDATING USING DYNAMIC DATA: CHAPTER

5
Another source of unfavorable history matching results could result from addressing a
wrong uncertainty in the parameter estimation process. In traditional history matching
only gridblock parameters are considered to be uncertain, and adjusted to reproduce
historical dynamic behavior of a reservoir, while structural parameters of the reservoir
model are usually fixed during this process. However the actual uncertainty could be
in structural reservoir parameters, such as reservoir thicknesses. This often leads to un-
likely or even unfeasible property updates and possibly to a poor predictive capability
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of the model. In those cases it may be expected that updating of the structural param-
eters will improve the quality of the history match. In this chapter we use a gradient-
based history matching method to update structural properties of the static model using
a ‘Big Loop’ workflow. In the Big Loop workflow the static model and dynamic model are
coupled, such that dynamic outcomes can be used to improve the static model. Sub-
sequently, this improved static model is used to improve the dynamic simulation and
economic evaluations. The method is tested on a 3D synthetic model, where time-lapse
seismic data as well as production data have been used to update the depth of the reser-
voir’s bottom horizon.



2
EFFECT OF ILL-POSEDNESS OF

HISTORY-MATCHED MODELS ON

PRODUCTION PREDICTIONS

T HE main goal of history matching is to produce reservoir models, which predict fu-
ture reservoir performance with more confidence. Ill-posedness of history matching

problems can result in many possible reservoir models which produced the same history
but different forecast. Van Essen et al. (2010) proposed a method to determine lower and
upper bounds to the predicted production or any other economic objective from history-
matched reservoir models. The method consists of two steps: 1) Performing a traditional
computer-assisted history match of a reservoir model with the objective to minimize the
mismatch between predicted and observed production data through adjusting the grid
block permeability values of the model. 2) Performing two optimization exercises to
minimize and maximize an economic objective over the remaining field life, for a fixed
production strategy, by manipulating the same grid block permeabilities, however with-
out significantly changing the mismatch obtained under step 1. This is accomplished
through a hierarchical optimization procedure that limits the solution space of a sec-
ondary optimization problem to the (approximate) null-space of the primary optimiza-
tion problem. We apply this method to a more realistic reservoir to investigate the effect
of ill-posedness of history-matched models on predicted reservoir performance. We also
investigated how this method can be used as a means to assess the cost effectiveness of
acquiring different data types to reduce the uncertainty in the expected NPV.

This chapter is from, Van Essen, G.M., Kahrobaei, S., van Oeveren, H., Van den Hof, P.M.J. and Jansen, J.D., 2016.
Determination of Lower and Upper Bounds of Predicted Production from History-Matched Models. Accepted
for publication in Computational Geosciences.
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2. EFFECT OF ILL-POSEDNESS OF HISTORY-MATCHED MODELS ON PRODUCTION

PREDICTIONS

2.1. INTRODUCTION

It is well-known that assimilation of production data into reservoir models is an ill-posed
problem; see e.g. Watson et al. (1984), Tavassoli et al. (2004) or Oliver et al. (2008). This is
mainly because generally the number of uncertain model parameters largely supersedes
the number of measurements. Moreover, the measurements are strongly correlated be-
cause they originate from a relatively small number of sources: the wells. As a result, they
contain less information about the true value of the model parameters than could be ex-
pected based solely on the number of data points. A relevant question in view of the pur-
pose of large-scale, physics-based reservoir models is how much the long-term predic-
tions can vary because of the ill-posedness of the assimilation problem. In other words,
what may be the economic consequences of the lack of information about the reser-
voir in the measurements? In most practical circumstances, this question is addressed
by constructing and history-matching low and high case models, besides the nominal
model. Alternatively, a set of model realizations can be used in a data-assimilation algo-
rithm to obtain an entire collection of predictions, as is the case with ensemble Kalman
filter (EnKF) methods, see, e.g., Evensen (2009) and Aanonsen et al. (2009) . However, in
either way the resulting history-matched models are heavily influenced by the prior in-
formation that went into the data-assimilation process. Hence, properly answering the
question stated above requires either some (heuristic) method to translate static geo-
logical properties to flow behavior or economic performance, or requires many forward
simulation runs to obtain a proper low or high case prior model. These methods may
be either unreliable or impractical to provide a good measure of the economic conse-
quences of the lack of knowledge about the true field. In this chapter a method intro-
duced by Van Essen et al. (2010) is used to search for lower and upper bounds on pre-
dicted production (or any other economic objective) over the remaining life of a field,
using a history-matched model. The method consists of two steps: 1) Performing a tra-
ditional computer-assisted history match of a reservoir model with the objective to min-
imize the mismatch between predicted and observed production data through adjust-
ing the permeability values of the model. 2) Performing two optimization exercises to
minimize and maximize an economic objective over the remaining field life, for a fixed
production strategy, by manipulating the same grid block permeabilities, however with-
out significantly changing the mismatch obtained under step 1. To achieve this we make
use of the fact that history matching through adjusting grid block parameters is an ill-
posed problem such that many combinations of parameter values may result in (nearly)
identical mismatch values.

2.2. PROBLEM DEFINITION

The problem of determining a history-matched model that provides either a lower or
an upper bound on the predicted economic performance over the life of a reservoir is
essentially a multi-objective optimization problem. For a general overview of multi-
objective optimization, see, e.g., Marler and Arora (2004). The first objective is to find a
certain realization of model parameters that minimizes the error between the measured
and simulated production data, which can be expressed through a quantitative objec-
tive function J , e.g. mean square difference. The second objective relates to finding a
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set of parameter values that – for a certain future production strategy – minimizes or
maximizes some economic cost function V , e.g. net present value (NPV). However, the
multiple objectives are not of the same importance; priority lies with obtaining a good
history-match, while determining a lower or upper bound on predicted economic per-
formance serves as secondary objective. To that end, the multi-objective optimization
problem may be cast into a hierarchical optimization problem, as presented in Haimes
and Li (1988) and more recently specifically for oil production optimization in Van Essen
et al. (2011), Chen et al. (2012) and Fonseca et al. (2014). In this structure, optimization of
a (secondary) economic cost function V is constrained by the requirement that the (pri-
mary) quantitative history-matching cost function J must remain close to its minimal
value Jmin. This requires solving the following two (hierarchical) optimization problems,

Jmin
∆= min

m
J (m, ū) , (2.1)

s.t . gk+1 (ūk ,xk ,xk+1,m) =0, k = 0, . . . ,K −1, x0 = x̄0, (2.2)

ck+1 (ūk+1,xk+1,m) ≤0, (2.3)

and
max

m
V (m, ū) or min

m
V (m, ū) , (2.4)

s.t . gk+1 (ūk ,xk ,xk+1,m) =0, k = 0, . . . ,K −1, x0 = x̄0, (2.5)

ck+1 (ūk+1,xk+1,m) ≤0, (2.6)

J (m)− Jmin ≤ ε, (2.7)

where ū is the fixed control vector (input vector), x is the state vector (typically grid
block pressures and saturations), g is a vector-valued function that represents the sys-
tem equations, x0 is a vector of the initial conditions of the reservoir, the subscript k
indicates discrete time, and K is the total number of time steps. The vector of inequality
constraints c relates to the capacity limitations of the wells. The term ε is an arbitrary
small value compared to Jmin. In order to solve the secondary optimization problem,
given in equation (2.4) to equation (2.7), first a (single) optimal solution to the primary
optimization problem equation (2.1) to equation (2.3) is required to determine Jmin. The
optimal solution to the primary problem m∗

1 can serve as feasible initial guess for the
secondary problem. Note that the second optimization problem is also solved in terms
of m, while the values of the control ū remain unchanged. The search space of the sec-
ondary problem is constrained by the null-space of the primary objective function at a
value of Jmin, through inequality constraint equation (2.7). In other words, the redun-
dant degrees of freedom (DOF) of the primary problem are the DOF of the secondary
problem. The motivation for using the constraint equation (2.7) is actually twofold. If ε
is arbitrarily small (or even equal to 0) the parameter space that remains is actually the
null space within the parameter space, which can be substantial because of the generally
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ill-posed nature of the inverse history-matching problem. Any changes of the model pa-
rameters within that null-space will have no effect on the value of the used quantitative
history-match quality indicator, i.e. the objective function J . For ε> 0 the corresponding
parameter space that satisfies equation (2.7) can be given the interpretation of a param-
eter uncertainty set, with a clear statistical interpretation, in the case of Gaussian noise
disturbances on the data. The statistical uncertainty set then results from a hypothesis
test based on the so-called likelihood ratio test, and is characterized by level sets of the
likelihood function J (m). See e.g. Quinn et al. (2005) for the case of nonlinear mod-
els, and den Dekker et al. (2008) for linear models. This implies that under appropriate
noise conditions, we can, for every value of ε > 0, connect a probability level to the pa-
rameter uncertainty set defined by equation (2.7), and thus account for the variability of
the history-matched parameters in the subsequent secondary economic optimization
problem.

2.3. METHODOLOGY
In Van Essen et al. (2011), the primary optimization problem is attacked using a gradient-
based search algorithm. (Note that in that study the optimization variables were the in-
puts u, while here they are the model parameters m.) The gradients are obtained using
a system of adjoint equations which is solved backwards in time once, regardless of the
number of optimization parameters (see Jansen (2011) for an overview of adjoint-based
optimization in porous media flow, and Kraaijevanger et al. (2007) for the specific imple-
mentation used in this study.). Subsequently, the secondary optimization problem was
also attacked using a gradient-based search algorithm. However, the secondary prob-
lem was executed with the addition of projecting the search direction onto a second-
order approximation of the null-space with respect to the optimality constraint defined
in equation (2.7). The second-order approximation was explicitly determined through
a forward difference scheme using first-order information obtained with the adjoint.
Unfortunately, using this approach the number of forward and backward simulations
is proportional to the number of optimization parameters. Hence, for the assimilation
of production data this method is in most cases computationally infeasible. In Van Essen
et al. (2011), also an alternative method is introduced to solve the hierarchical optimiza-
tion problem without explicitly calculating the null-space with respect to equation (2.7).
It uses an ‘on-off’ type weighted objective function with weighting functionsΩ1 andΩ2:

W =Ω1(J ) · J +Ω2(J ) ·V , (2.8)

whereΩ1 andΩ2 are ‘switching’ functions of J and V that take on values of 1 and 0 (‘on’
and ‘off’) or vice versa,

Ω1 (J ) =
{

1 if J − Jmin > ε
0 if J − Jmin ≤ ε , Ω2 (J ) =

{
0 if J − Jmin > ε
1 if J − Jmin ≤ ε , (2.9)

here, ε is the threshold value as defined in inequality constraint equation (2.7). The gra-
dients of W with respect to the model parameters m for iteration n +1 is then simply,

∂W

∂m

∣∣∣∣
n+1

=Ω1 (Jn) · ∂J

∂m

∣∣∣∣
n+1

+Ω2 (Jn) · ∂V

∂m

∣∣∣∣
n+1

. (2.10)
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Solving the secondary optimization problem sequentially, using W as defined in equa-
tion (2.8), gives improving directions for either V or J . With each iteration, the value of
V either increases while the value of J decreases or the other way around, as the solu-
tion moves to and from the feasible region with respect to inequality constraint equation
(2.7). If there exist redundant DOF with respect to the primary problem, improvement
of V is possible while satisfying equation (2.7) and convergence of the hierarchical opti-
mization will occur in a ‘zig-zag’ fashion, as schematically represented in Figure 2.1.

Figure 2.1: Schematic representation of the iterative process of solving a hierarchical optimization problem
using a weighted objective function, as described by equation (2.8). The process converges towards a final
solution in a zigzag-fashion, moving into and out of the feasible region bounded by the optimal solutions of
the primary objective function. (After Van Essen et al. 2011).

To improve convergence speed, as presented above and in Van Essen et al. (2011), a
small adaptation to the switching algorithm can be made. By projecting the gradients
of secondary objective function V onto the first-order approximation of the null-space
of the primary objective function J , the resulting update of m will keep J closer to Jmin.
Mathematically this becomes,

∂Ṽ

∂m = ∂V

∂mP⊥ = ∂V

∂m
(
I−P||

)= ∂V

∂m

I−
∂J
∂m

T ∂J
∂m

∂J
∂m

∂J
∂m

T

 , (2.11)

where we use the convention that the derivative of a scalar with respect to a vector is a
row vector. P|| is a matrix that projects ∂V /∂m on ∂J/∂m and (∂V /∂m)P⊥ is the orthog-
onally complementary projection which ensures that the step towards the secondary
objective function is taken in a direction (near-)parallel to the ‘ridge’ in the primary ob-
jective function. Inserting equation (2.11) in equation (2.8) gives an alternative switching
search direction d for solving the hierarchical optimization problem,

dn+1 =Ω1 (Jn) · ∂J

∂m

∣∣∣∣
n+1

+Ω2 (Jn) · ∂V

∂m

∣∣∣∣
n+1

I−
∂J
∂m

∣∣∣T

n+1

∂J
∂m

∣∣∣
n+1

∂J
∂m

∣∣∣
n+1

∂J
∂m

∣∣∣T

n+1

 . (2.12)
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The switching algorithm using the projected gradient d was used in the following exam-
ple to illustrate the performance of the method.

2.4. PRIMARY AND SECONDARY OBJECTIVE FUNCTIONS

Two different reservoir models are used in this chapter with the goal of determining
lower and upper bounds on the expected economic performance over the remaining life
of the field by changing the permeability field, while the model stays compliant with his-
toric data over the history matching period. Consequently the primary objective func-
tion, J (m), is defined as data mismatch between observations and simulated data:

J (m) = (d−h (m))T P−1
d (d−h (m)) , (2.13)

where m is a vector of unknown model parameters, d is a vector of data (measurements),
h is a vector valued-function that relates the model parameters to the model outputs (i.e.
the simulated data), and Pd is a covariance matrix of data errors.

The secondary objective function, V , is of an economic type, generally NPV,

V =
K∑

k=1


Npr od∑

j=1

[
rw p · (yw p, j

)
k + ro ·

(
yo, j

)
k

]−Ni n j∑
j=1

[
rwi ·

(
ywi , j

)
k

]
(1+b)

tk
τt

∆tk

, (2.14)

where yw p, j is the water production rate of well j , yo, j is the oil production rate of well j ,
ywi , j is the water injection rate of well j , rwi , rw p and ro are water injection costs, water
production costs and oil revenue respectively, ∆tk is the time interval of time step k in
days, b is the discount rate for a reference time τt , and Ni n j and Npr od are the number
of injection and production wells.

2.5. EGG MODEL EXAMPLE

In this example, we consider a three-dimensional oil reservoir model, introduced in
Van Essen et al. (2009). The reservoir model consists of 18,553 active grid blocks, as de-
picted in Figure 2.2, and has dimensions of 480× 480× 28 m. Its geological structure
involves a network of fossilized meandering channels of high permeability. The average
reservoir pressure is 40.0 MPa. All remaining geological and fluid properties used in this
example are presented in Table 2.1. The reservoir model contains eight injection wells
and four production wells. The near-wellbore flow is modeled using a Peaceman well
model.
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Figure 2.2: Three-dimensional oil reservoir model with eight injection and four production wells, after Van
Essen et al., 2009. Its geological structure involves a network of fossilized meandering channels of high perme-
ability in a low-permeability background.

Table 2.1: Geological and fluid properties for the example

Variable Parameters Value Unit

ϕ Porosity 0.2 -
ρo Oil density 800 Kg/m3

ρw Water density 1000 Kg/m3

co Oil compressibility 1×10−10 1/Pa
cw Water compressibility 1×10−10 1/Pa
µo Dynamic oil viscosity 5×10−3 Pa.s
µw Dynamic water viscosity 1×10−3 Pa.s
pc Capillary pressure 0 Pa

During the first 1.5 years of production from the reservoir, the bottomhole pressures of
the producers are kept at a constant value of 39.5 MPa. During that time, the injection
rates of all eight injectors are prescribed to fluctuate monthly with a uniform probability
distribution around an average value of 5.52×10−4 m3/s (300 bbl/day) and a maximal
offset ±9.2× 10−4 m3/s (50 bbl/day). Monthly production measurements are taken of
the flowing bottomhole pressures of the eight injectors and the oil and water rates of the
four producers, on top of which no noise is superimposed. Thus, the total number of
measurements is 288.

In this example historic data are available over the first 1.5 years of production and lower
and upper bounds on expected economic performance are determined over the remain-
ing life of the field – from 1.5 to 6.0 years – by changing model properties (gridblock per-
meabilities), while the model stays compliant with historic data over the first 1.5 years
of production. In this example the water injection costs rwi , the water production costs
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rw p and the oil revenue ro are assumed constant at values of 0 $/m3, -1 $/m3 and 9 $/m3

respectively. The discount rate, b, in this example is zero. The upper and lower bounds
of the NPV can only be determined for a given (fixed) control strategy. In this example,
a reactive control approach is used that is evaluated on a field level. All injection wells
are assumed to continuously operate on their average injection rate of 5.52×10−4 m3/s
and the production wells on their fixed bottomhole pressure of 39.5 MPa. The instant
that the field watercut exceeds 0.90, all wells are shut-in. Note that this threshold is re-
lated to the ratio between oil revenue ro and water production costs rw p . To determine
the history-matched models that provide the lower and upper bound on NPV for the
remaining producing life, two hierarchical optimization procedures are initiated. They
terminate when the feasible updates no longer result in a significant change in NPV. Fig-
ure 2.3 depicts the measured production data, along with the simulated production data
originating from the final lower and upper bound model, resulting from the hierarchical
optimization method. It shows that the errors between measured and simulated bot-
tomhole pressures of the injectors and fractional flow rates of the producers are very
small for both the lower and upper bound models. Thus, the condition that the updated
models maintain a good history match is met. However, in Figure 2.4 it can be observed
that the permeability fields of both models are quite different. These differences have
a large impact on the predicted production data given the assumed reactive production
strategy, as can be observed in Figure 2.5. Moreover the change in permeability in the
near-well areas around the injectors has a strong effect on the pressure response of the
injectors. Finally, Figure 2.6 shows the actual lower and upper bounds on predicted NPV
over time, in terms of NPV for the entire producing reservoir life (6 years), and in terms
of incremental NPV for just the remaining (future) producing reservoir life (4.5 years). It
can be observed that the upper and lower bounds of the incremental NPV are 63% above
and below their average value.



2.5. EGG MODEL EXAMPLE

2

15

Figure 2.3: Measured production data of the first 1.5 years of production from the (synthetic) 3D reservoir,
along with the simulated production data originating from the lower and upper bound models.

Figure 2.4: Permeability fields of the lower bound 3D reservoir model (a) and upper bound 3D reservoir model
(b) determined after the first 1.5 years of production.
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Figure 2.5: Measured production data of first 1.5 years of production from the (synthetic) 3D reservoir, along
with the simulated production data for the remaining 4.5 years of production until the end of the field’s life,
originating from the lower and upper bound models.

Figure 2.6: NPV over time for the lower and upper bound reservoir models. The plot on the left shows both
the historic (first 1.5 year) and future (from 1.5 to 6 years) increase in NPV over time. The plot on the right side
only shows the incremental NPV for the remaining (future) 4.5 years of production.
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2.6. BRUGGE MODEL EXAMPLE
In the second experiment we use data from the Brugge benchmark workshop organized
in 2009 (Peters et al., 2010, 2013). In the original bench mark study, the ‘truth’ case used
to generate the data was not disclosed and therefore, in this work we use a new ‘truth’
honouring all well logs, geological descriptions distributions of geological model param-
eters, porosity/permeability relations and the geological structure of the Brugge field.
Figure 2.7 depicts the new ‘true’ Brugge permeability field, which is used to generate
synthetic data. Blue and red bars in Figure 2.7 represent injectors and producers respec-
tively. The fluid properties and Corey exponents used in this example are given in Table
2.2.

Figure 2.7: Permeability field with 11 injection wells and 20 production wells. The blue surface indicates the
oil-water contact.

The reservoir model consists of 60,048 active grid blocks, and has dimensions of 3 km
×10 km×80 m. It contains 11 injection wells located near the rim of the oil-water con-
tact at a depth of 1678 m from the surface and 20 production wells, as depicted in Figure
2.7. Wells are located in the grid block centers, and we use a standard Peaceman well
inflow model. During the first 10 years of production (the history matching period) all
production wells are constrained to a minimum pressure of 4.9 MPa and a maximum
liquid rate of 3.7×10−3 m3/s and all injection wells operate at a constant water flow rate
of 7.4×10−3 m3/s. Moreover, production wells are shut-in individually if the water frac-
tion in the produced liquid is above 90%. After the history matching period (10 years),
closed wells are reopened. Wells are drilled according to the time scheme presented in
the Brugge workshop (Peters, et al., 2009).

2.6.1. HISTORICAL DATA
In this example historical data are available over the first 10 years of production and
lower and upper bounds on expected economic performance are determined over the
remaining life of the field – from 10 to 30 years – by changing the permeability field,
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Table 2.2: Fluid properties and Corey exponents for the Brugge field example.

Variable Parameters Value Unit

ρo Oil density 897 Kg/m3

ρw Water density 1000 Kg/m3

co Oil compressibility 10.3×10−10 1/Pa
cw Water compressibility 4.35×10−10 1/Pa
µo Oil viscosity 1.29×10−3 Pa.s
µw Water viscosity 0.32×10−3 Pa.s
Swc Connate water saturation 0.266 -
Sor Residual oil saturation 0.15 -
k0

r w End point water rel perm 0.6 -
k0

r o End point oil rel perm 0.4 -
nw Water Corey exponent 3 -
no Oil Corey exponent 5 -

while the model stays compliant with historic data over the first 10 years of production.
Time-lapse seismic data as well as production data are used as historic data. Production
data consist of periodic measurements of water and oil rates in the producers. Inde-
pendent measurement errors are generated from Gaussian distributions with zero mean
and standard deviations equal to 10% percent of the original measurements. Negative
production rates, after the addition of noise, are reset to zero. Because the measurement
errors are independent, the error covariance matrix is diagonal.

2.6.2. MULTI-OBJECTIVE OPTIMIZATION SETTINGS
Using equation (2.13) as the primary objective function and equation (2.14) as the sec-
ondary objective function two hierarchical optimization procedures are conducted to
determine the history-matched models that provide the lower and upper bounds on NPV
for the remaining producing life. The procedures are terminated when the feasible up-
dates no longer result in a significant changes in objective function value. The starting
point for the assisted history matching process (primary objective function) is selected
randomly out of 104 available prior models in the Brugge data set. The prior model is
iteratively conditioned to historical data by adjusting the horizontal gridblock perme-
ability values. In this experiment the water injection cost rwi , the water production cost
rw p and the oil revenue ro are assumed constant at values of 5 $/bbl, -5 $/bbl and 80
$/bbl respectively. The discount rate, b, is set to 10%.

2.6.3. RESULTS: HISTORY MATCHING BASED ON PRODUCTION DATA
In this example, history matching is performed based on production data. We constrain
the search space of the secondary problem by choosing the threshold value of equation
(2.7) as 0.5% of the minimum of the primary objective function.
Figure 2.8 depicts the historical data and the lower and upper bounds of water produc-
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tion in the first eight producers as an example of the typical ranges of the bounds. The
history matching and forecasting periods are separated by a dashed line. Blue and red
colours represent the lower and upper bounds of oil and water production. Figure 2.9
depicts the injection pressures in the first four injectors. Unlike in the results for the pre-
vious example, depicted in Figure 2.5, there is no jump in the pressures at the beginning
of the forecasting period because they have already reached their maximum allowable
values. Figure 2.10 depicts the historical data and the lower and upper bounds for the
cumulative oil and water production of the entire field.

Figure 2.8: Historical and predicted water production over 30 years of production for the first eight producers
for the Brugge field example.
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Figure 2.9: Historical and predicted injection pressures over 30 years of production for the first four injectors
for the Brugge field example.

Figure 2.10: Historical and predicted cumulative oil production (left) and water production (right) over 30
years of production.

As can be seen in Figure 2.10 the lower bound and upper bound models produce the
same history but different forecast. Moreover Figure 2.11 depicts the economic perfor-
mance (NPV) of the upper and lower bound models over time for the entire production
life, including the history and the prediction. In this experiment the incremental NPV of
the upper bound model is 19.5% higher than the incremental NPV of the lower bound
model.
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Figure 2.11: NPV over time for the lower and upper bound reservoir models. The plot on the left shows both
the historic (first 10 years) and future (from 10 to 30 years) increase in NPV over time. The plot on the right side
only shows the incremental NPV for the remaining (future) 20 years of production.Note that the right figure is
a blown-up version of a part of the left one.

Figure 2.12: Difference between the lower and upper bound permeability fields for Brugge field example. All
permeability values are expressed as the natural logarithm of permeability in mD.

Figure 2.12 shows the differences between the lower and upper bound permeability fields
for all nine layers of the field. It can be observed in Figure 2.12 that the permeability
fields of both models are different, especially in the producing layers. These differences
have an impact on the predicted production data while they result in the same produc-
tion history, as can be observed in Figure 2.10. We note that although the permeability
values away from the wells are more likely to be in the null space (i.e. to have room for
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variation), they also have less of an effect on the output in the wells. Apparently the op-
timization algorithm did not produce significant changes in these values because that
would not have changed the resulting NPV. Computation of these result required 200
pairs of forward and backward (adjoint) simulations, where each pair took, on average,
786 s.

2.6.4. EFFECT OF DATA TYPE
In the previous section we obtained the lower and upper bound models based on pro-
duction data. In order to investigate the effect of data type on the upper and lower bound
models, two more experiments are conducted based on different data types. In the pre-
vious experiment the upper and lower bound models are obtained based on interpreted
time lapse seismic data (saturation maps) and production data. The saturation maps
are generated by simulating the “truth” and adding independent measurement errors by
sampling from a Gaussian distribution with zero mean and standard deviations equal to
10% percent of the simulated saturation values. As before, we constrain the search space
of the secondary problem by choosing the threshold value of equation (2.7) as 0.5% of
the minimum of the primary objective function. The second experiment involves as-
similation of both time-lapse seismic and production data while also prior information
is added to the primary objective function as a regularization term. Figure 2.13 shows
the incremental NPV difference between the lower and upper bound models obtained
using different data types. As can be seen in Figure 2.13, the incremental NPV difference
decreases by adding more information.

Figure 2.13: Difference between the upper bound and lower bound incremental NPV values for models ob-
tained based on different data types.

2.6.5. EFFECT OF THRESHOLD VALUE
In this section we investigate the effect of the threshold value, ε, in equation (2.7). We
constrain the search space of the secondary problem to different extents by choosing a
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range of threshold values varying between 0.15% and 1.5% of the minimum of the pri-
mary objective function. Interpreted time-lapse seismic data (saturation maps) and pro-
duction data formed the historical data, and two hierarchical multi-objective optimiza-
tions were conducted to find the lower and bounds for the reservoir model for different
threshold values. Figure 2.13 shows the incremental NPV difference between the upper
and the lower bound models versus the threshold value ε.

Figure 2.14: Incremental NPV difference between the upper bound and the lower bound model for different
epsilon values.

Figure 2.15 depicts how the primary and secondary objective functions change for differ-
ent values of ε. Figure 2.14 and Figure 2.15 show that as the threshold value in equation
(2.7) increases the difference between the lower and upper model values of incremental
NPV increases also. However, the effect is not very large and even for the lowest thresh-
old value (ε= 0.15%), a difference of approximately 17% in incremental NPV is obtained.

We note that the lower and upper bounds have been obtained by a gradient-based opti-
mization technique which may have resulted in local rather than global optima. Lower
lower bounds and higher upper bounds may therefore exist. We also note that both
the red and the blue curves can be interpreted as parts of (approximate) Pareto curves.
Points on a Pareto curve are at the boundary of the feasible set of solutions in the bi-
objective space, and recently several studies have been performed to characterise a full
Pareto curves for bi-objective flooding optimization; see, e.g., Liu and Reynolds (2014).
Such a curve gives the decision maker the opportunity to select between competing ob-
jectives, i.e. to achieve a large value of the secondary objective function at the price of
a strong drop in the primary objective function value, or a somewhat smaller secondary
objective function value without losing much of the primary objective function value.
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Figure 2.15: Secondary objective function value versus its corresponding primary objective function value,
both expressed as incremental NPV.

2.7. DISCUSSION

In this chapter we used gridblock permeabilities as history matching parameters. How-
ever the proposed method could equally well be applied using other parameters, e.g.
porosities, fault multipliers or aquifer strength. Moreover, other data types than the
production data and interpreted time-lapse seismic that we used could be assimilated.
We note that the use of gradients with respect to the history matching parameters is an
important ingredient in our method. This implies that we need a technique to com-
pute those gradients. We used an adjoint method, which is computationally very effi-
cient. However it is, in theory, also possible to implement our method using approx-
imate gradients obtained with e.g. the simultaneous perturbation stochastic approxi-
mation (SPSA) technique, see Spall (1998), or ensemble optimization (EnOpt); see Chen
et al. (2009) for the basics of the method and Fonseca et al. (2014) for an implementa-
tion in hierarchical optimization. The latter (EnOpt) approach also allows for the inclu-
sion of uncertainty in the reservoir models; see Fonseca et al. (2015). We note that our
method has theoretical links to the use of level sets to relax the primary objective func-
tion constraint in hierarchical optimization as discussed in the last paragraph of Sec-
tion 2.2. Moreover, we note that other weak-constrained optimization methods could
be applied to solve the hierarchical optimization problem. The current implementation
has shown to be robust in various applications using both adjoint-based and ensemble-
based techniques (Van Essen et al., 2011; Chen et al., 2012; Fonseca et al., 2014). The
determination of lower and upper bounds of future production using different types of
data, as performed in the Brugge example, can be interpreted as a means to assess the
cost effectiveness of acquiring different data types to reduce the uncertainty in the ex-
pected NPV. It is tempting to interpret this as a way to assess the value of information
(VOI) of those measurements but because we do not know the statistical properties of
the forecasted NPV we can not draw conclusions about the change in expected value
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of those forecasts and therefore our method does not truly provide the VOI. (For de-
tailed information about the the concept of VOI see Bratvold et al. (2009) or Eidsvik et al.
(2015).)

2.8. CONCLUSIONS
In this chapter, we applied a hierarchical optimization method to determine lower and
upper bounds on predicted production from history-matched models. We conclude
that:

• The non-uniqueness of history matched models implies that future production
can only be predicted within bounds.

• The non-uniqueness implies the presence of remaining degrees of freedom after
history matching (i.e. after solving the primary optimization problem) which can
be used to determine lower and upper bounds on future production through solv-
ing two secondary optimization problems.

• The method proposed in this chapter provides a way to gain more insight in the
possible economic consequences of the lack of information in historic data. These
consequences can be represented by total production, ultimate recovery, (incre-
mental) NPV or any other economic measure.

• The method is not limited to historic production data. Alternative data sources,
e.g. time-lapse seismic data, can be used to determine the impact on the predicted
economic performance. Hence, this method may also play a role in the quantifi-
cation of the value of information.

• Introducing more data sources, e.g. time-lapse seismic or prior information, re-
sults in smaller differences in economic performance (incremental NPV) between
the lower and upper bound models.
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UNDER-MODELING DETECTION

I T is well known that parameter estimation of large-scale numerical models for porous-
media flow in subsurface oil- and gas reservoirs is an ill-posed inverse problem. The

classic solution to this problem is to regularize the unknowns, e.g. by penalizing devia-
tions from a prior model. Attempts to estimate all uncertain parameters from oil produc-
tion data without regularization typically lead to unrealistically high parameter values.
However, it has been suggested by Joosten et al. (2011) that the application of unregu-
larized reservoir parameter estimation may still add value, because it, sometimes, gives
an indication of the location of significant missing features in the model. As a first step
to investigate this suggestion we conduct numerical experiments and apply regularized
parameter estimation as well as unregularized parameter estimation to update uncer-
tain parameters in a simple two-dimensional reservoir model that contains a major de-
ficiency in the form of a missing high- or low-permeability feature. The results show
that depending on the noise level in the data, it may indeed be possible to localize the
position of such a model deficiency, but generally not the correct magnitude, using an
unregularized objective function for history matching purposes. Moreover, we investi-
gate the effect of measurement noise on the results of unregularized history matching.
Next, to investigate these findings, we perform a quantitative identifiability analysis of
the examples using the SVD of a dimensionless output sensitivity matrix. The results
of this identifiability analysis indicate that the closer a flow-relevant model deficiency is
located to a production well, the higher the chance to detect it. We conclude that, for
the examples considered, the application of unregularized reservoir parameter estima-
tion indeed provides a means to identify the presence and location of significant model
deficiencies such that it can improve our understanding about the reservoir model.

Part of this chapter is from, Kahrobaei, S., Mansoori, M., Joosten, G.J.P., Van den Hof, P.M.J. and Jansen, J.D.,
2014. Hidden Information in Ill-Posed Inverse Problems. Proc. ECMOR XIV.
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3.1. INTRODUCTION

3.1.1. NUMERICAL RESERVOIR SIMULATION

Most oil or gas reservoirs consist of relatively thin slabs of porous rock buried at depths of
hundreds to thousands of meters. They are typically in the order of tens of meters thick
and cover several square kilometers (Jansen et al., 2008). Generally, the well locations
are accurately known, but the reservoir boundaries and its internal geological structure
are much more uncertain. The subsurface is very heterogeneous, and the parameters
relevant to flow are correlated at different length scales, but often over distances smaller
than the inter-well spacing. As a consequence, the uncertainty in the model parame-
ters is very large. During the design phase of an oil field development it is customary to
capture this uncertainty by constructing multiple subsurface reservoir models to sim-
ulate the multi-phase fluid flow for different geological ‘realizations’. Nevertheless, un-
expected flow-relevant features may be present in reality that are not captured in the
ensemble of reservoir models, and the purpose of this chapter is to investigate to what
extent it is possible to identify such model deficiencies.

3.1.2. RESERVOIR PARAMETER ESTIMATION

Estimating reservoir parameters from measured data is usually an ill-posed inverse prob-
lem due to the large number of parameters and limited available data. The ill-posed na-
ture of the inverse problem leads to numerical instabilities in the estimated parameters
(Shah et al., 1978; Leo et al., 1986). The classic solution to this problem is to regularize the
unknowns by introducing additional information. Using prior information is considered
as one of the most common solutions for ill-posed nature of the history matching prob-
lems. In this approach a term is added to a mismatch objective function to penalize de-
viations from certain prior information. Therefore, such a penalty term, which restricts
the parameter updates to values not too far from the prior values, can be unfavorable in
case of wrong prior knowledge. On the other hand, attempts to estimate all uncertain
parameters from production data without regularization typically lead to unrealistically
high or low parameter values. It is also well known that the estimated parameter values
in such unregularized ill-posed problems are extremely sensitive to noise in the data.

3.1.3. MODEL MATURATION

Joosten et al. (2011) have introduced the ‘model maturation’ concept and have shown
that sometimes the application of unregularized reservoir parameter estimation still ap-
pears to have added value. They have shown that localized unrealistic parameter val-
ues can be used as an indicator of model errors (or ‘under-modeling’) in the underlying
reservoir model. The objective of this chapter is to investigate some of the theoretical
aspects of model maturation, i.e. to determine why and under which conditions there is
relevant information hidden in the results of unregularized ill-posed inverse problems.

3.1.4. APPROACH

In our approach to investigate the model maturation concept we use ‘twin experiments’
in which computer-assisted history matching of one or more priors (i.e. reservoir mod-
els) is performed using synthetic data, generated with the aid of a ‘synthetic truth’ (i.e.
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another reservoir model). The synthetic truth has a significant flow-relevant feature (e.g.
a flow barrier or a high permeability streak) which is missing in the prior models.

3.2. OBJECTIVE FUNCTION
In a Bayesian framework, reservoir history matching can be formulated as a minimiza-
tion problem. The underlying assumption is usually that the prior model can be char-
acterized by mean values and a covariance matrix of the uncertain parameters (Oliver
et al., 2008). The objective function J then consist of a quadratic mismatch term and a
term that penalizes deviations of the parameters from their prior mean values:

J (m) = (d−h (m))T P−1
d (d−h (m))︸ ︷︷ ︸

data mismatch term

+ (m−m̄)T P−1
m (m−m̄)︸ ︷︷ ︸

regularization term

, (3.1)

where m is a vector of unknown model parameters and m̄ a vector of the prior estimate
of values, d is a vector of data (measurements), h is a vector-valued function that relates
the model parameters to the model outputs (i.e. the simulated data, which has a size of
number of measurement points times number of measurement times), and Pd and Pm

are covariance matrices of data errors and model parameters respectively. In this study
measurements data vector, d, consists of the oil and water rates in the four producers of
the ’true’ reservoir, which are measured each 30 days for 1500 days.

The unregularized objective function does not contain the regularization term:

J (m) = (d−h (m))T P−1
d (d−h (m)) . (3.2)

Minimization of the objective function is achieved by adjustment of the model param-
eters m, usually subject to constraints on their values. Various numerical techniques
are available to perform this minimization, the most efficient one being gradient-based
minimization where the gradient is computed using the adjoint method (Oliver et al.,
2008). For the present study we use Shell in-house reservoir simulator with adjoint func-
tionality to calculate the gradients of the objective function (Kraaijevanger et al., 2007).
We use the limited-memory Broyden Fletcher Goldfarb Shanno (LBFGS) method to min-
imize the objective function (Gao and Reynolds, 2006).

3.3. EXPERIMENTAL RESULTS

3.3.1. RESERVOIR MODEL
As a first step we use a simple 2D reservoir model to investigate the model maturation
concept. The reservoir is a horizontal square, divided in 21 × 21 = 441 grid blocks of size
33.33 m × 33.33 m × 2 m. It is produced with a centrally located water injection well
and four production wells in the corners. From a control perspective, the system inputs
are the (constant) water rate in the injector and the (constant) bottomhole pressures
(i.e. the constant pressures at the bottom of the wells) in the producers which are all as-
sumed to be known. The outputs then consist of the bottomhole pressure in the injector,
which is assumed to be unknown, and the oil and water rates in the producers, which are
assumed to be measured with random measurement errors. The model parameters of
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interest for our study are the 441 grid block permeabilities, i.e. the inverse resistances
to flow with units mD (1 mD = 9.87×10−16m2). The porosity of the reservoir is 0.3, the
initial water saturation is 0.2, and the initial reservoir pressure is 30 MPa. The four pro-
ducers, located at the corners, are operated at constant bottomhole pressures of 25 MPa,
without rate constraints, and the water injector at the center at a constant water flow rate
of 0.002 m3/s, without pressure constraints. Oil and water viscosities are µo = 1.5×10−3

Pa s, µw = 1× 10−3 Pa s, oil, rock and water compressibilities are co = 1.0× 10−9 Pa−1,
cw = 1.0×10−10 Pa−1, and cr = 1.0×10−10 Pa−1, and relative permeabilities are described
with Corey exponents no = nw = 2, connate water saturation Swc = 0.2, residual oil satu-
ration Sor = 0.2, and end-point relative permeabilities k0

r o = 0.9 and k0
r w = 0.6. Produc-

tion is simulated for 1500 days, corresponding to 1.47 moveable pore volumes injected.
Wells are located in the grid block centers, and we use a standard Peaceman well in-
flow model with a well bore radius rw = 0.10 m. The uncertainty in the permeability
field is represented with an ensemble of 500 model realizations. The ensemble members
are generated by unconditioned sequential Gaussian simulation from a lognormal dis-
tribution with a mean of 300 mD and a standard deviation of 100 mD, and a spherical
variogram with a nugget of 0.001 and a range of 1000 meters. (For general background
information on these geostatistical concepts see, e.g., Caers (2005).) One of the ensemble
members is chosen as the ‘synthetic truth’ after adding a flow-relevant feature, i.e. a flow
barrier or a high-perm streak. The mean and covariance of the prior are calculated based
on the remaining 499 realizations. The maximum permeability of the true permeability
field is 492 mD, the minimum is 205 mD and the average is 387 mD. The synthetic truth
is used to generate synthetic historical data in the form of measured oil and water rates
in the producers. Independent measurement errors are generated from Gaussian distri-
butions with zero mean and a standard deviation equal to 10% percent of the original
measurements. Negative production rates, after the addition of noise, are reset to zero.
Because the measurements errors are independent, the error covariance matrix is diag-
onal. The permeabilities of those grid blocks that contain wells are not updated in the
minimization process to avoid localization of the updates in just the well grid blocks. We
performed different sets of ‘twin experiments’, using four ‘truth cases’, each containing
different flow-relevant features, and the two objective functions represented in equation
(3.1) and equation (3.2).

3.3.2. EXPERIMENT # 1: TRUTH CASE WITH A FLOW BARRIER | REGULAR-
IZED OBJECTIVE FUNCTION

In this experiment the truth contains a flow barrier in the form of a partially sealing
fault, which separates production well prod2 in the bottom-right corner from the rest
of the field. The presence of this barrier results in a lower oil production and later water
breakthrough in well prod2 compared to the other wells. Figure 3.1 depicts the true per-
meability field with the well locations. The black line represents the sealing fault, which
is modelled by means of a dimensionless seal factor 0 ≤ σ ≤ 1 modifying the inter-grid
block transmissibilities T according to

Te f f =σT, (3.3)

where the transmissibility T is a scaled harmonically averaged permeability of the neigh-
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boring grid blocks.

Figure 3.1: True permeability field with well locations for experiment #1. Permeability values are expressed as
the natural logarithm of permeability in mD. The black line represents a partially sealing fault.

The fault in the truth is not present in the prior model, which means that we regularize
our solution with wrong prior information. We use the regularized objective function,
given by equation (3.1), and minimize it by adjustment of the permeability in each grid
block. After 137 iterations the objective function mismatch is reduced to about one third
of its original value and, because no further reduction occurs, the minimization process
is stopped. Figure 3.2 depicts the prior and updated permeability fields. The updated
permeability field stays close to the prior and does not show any unphysical updates.
Some small adjustment of the permeability close to well prod2 is visible, but any sign of
the flow barrier is absent. Figure 3.3 depicts the oil and water rates in the four producers
for the truth, the prior, and the updated model.

Figure 3.2: Prior permeability field (left), and updated permeability field (right) for experiment #1.

These experiments show that in an under-modeling situations, where an unexpected
flow-relevant feature is not captured in the reservoir model, penalizing deviations from
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Figure 3.3: Data match in the producers for experiment #1. Black dots indicate the measured oil and water
rates. Solid and dashed red lines are the oil and water rates of the prior model. Solid and dashed blue lines are
the oil and water rates of the updated model.

a prior model can be undesirable since it leads to the solutions that stay close to the
prior. In the other words, if a feature is missing in the prior there is almost no chance to
capture it since the updated parameters are constrained by an incorrect prior knowledge
that usually originates from interpretation errors of geological data.

3.3.3. EXPERIMENT # 2 - TRUTH CASE WITH A FLOW BARRIER | UNREGU-
LARIZED OBJECTIVE FUNCTION

In this experiment we use the same truth as in experiment #1 (see Figure 3.1), but we
use the unregularized objective function given by equation (3.2). Different permeability
fields, randomly chosen from the ensemble of 499 members, were used as starting values
for the iterative minimization procedure. In addition, the mean of the ensemble, i.e.
the same model that was used as prior in experiment #1, was also chosen as one of the
starting models. The minimizations converged in about 200 to 300 iterations, in which
the objective function mismatch reduced with three orders of magnitude. Figure 3.4
shows four different starting models and their updates after history matching. In all four
cases a low permeable band, with permeabilities between 1 to 10 mD is visible in the
updated permeability fields. This low permeable band is apparently generated in order
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to match the production for well prod2, which is separated from the other wells through
the partially sealing fault in the truth case. The low-permeable band, which has very low
permeability values compared to other part of the fields, is apparently indicating that
something is missing in our starting models. I.e., in this example, the unrealistic updates
resulting from history matching with an unregularized objective function indeed seem
to give an indication for under-modeling. Figure 3.5 depicts the oil and water rates in the
four producers for the truth, the prior, and the updated model. As can be seen in Figure
3.5, the simulated data for the updated model match the historical data near-perfectly.
In the next two experiments we will only use the unregularized objective function given
by equation (3.2).

Figure 3.4: Different models used as starting values for the minimization procedure (left), and the updated
models (right) for experiment #2. The starting model in the top row is the ensemble average.
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Figure 3.5: Data match in the producers for experiment #2. Black dots indicate the measured oil and water
rates. Solid and dashed red lines are the oil and water rates of the prior model. Solid and dashed blue lines are
the oil and water rates of the updated model.

3.3.4. EXPERIMENT # 3 - CAPTURING THE POSITION OF A FLOW BARRIER
In this experiment the partially sealing fault in the truth case has a different location than
in the previous experiments and is located closer to the well prod2. Figure 3.6 depicts the
true permeability field together with the location of the fault. Just like in experiment #2,
the updated permeability field is obtained by minimization of the unregularized objec-
tive function given by equation (3.2). Figure 3.7 shows the starting model and its update
after history matching. It can be seen that the low permeable band is now generated
closer to well prod2, as is the location of the fault in the synthetic truth. In terms of data
mismatch the flow rates in the wells are matched near-perfectly. This example indicates
that apparently the production information in the wells also carries some information
about the location of the flow barrier.

3.3.5. EXPERIMENT #4: TRUTH CASE WITH A HIGH-PERMEABILITY STREAK

| REGULARIZED OBJECTIVE FUNCTION
In this experiment the truth case contains a high-permeable streak in the vicinity of pro-
duction well prod2 in the bottom-right corner of the field. Figure 3.8 depicts the true
permeability field with the well locations. The grid blocks with a red color indicate the
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Figure 3.6: True permeability field with well locations for experiment #3. Permeability values are expressed as
the natural logarithm of permeability in mD. The black line represents a partially sealing fault.

Figure 3.7: Starting permeability field (left) and updated permeability field (right) for experiment #3.

high-perm streak with a permeability of 10000 mD.
The high-perm streak in the truth case is not present in the prior model, which means
that we regularize our solution with wrong prior information. We use the regularized
objective function, given by equation (3.1), and minimize it by adjustment of the per-
meability in each grid block. After 310 iterations the objective function mismatch is re-
duced to about one third of its original value and, because no further reduction occurs,
the minimization process is stopped. Figure 3.9 depicts the prior and updated perme-
ability fields. The updated permeability field stays close to the prior and does not show
any unexpected updates. Some small adjustment of the permeability close to well prod2
is visible, but a clear sign of the high-perm streak is absent. Figure 3.10 depicts the oil
and water rates in the four producers for the truth, the prior, and the updated model.
Again these experiments show that in an under-modeling situations, where an unex-
pected flow-relevant feature is not captured in the reservoir model, penalizing devia-
tions from a prior model can be undesirable since it leads to solutions that stay close to
the prior. In the other words, if a feature is missing in the prior there is almost no chance
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Figure 3.8: True permeability field with well locations for experiment #4. Permeability values are expressed as
the natural logarithm of permeability in mD.

Figure 3.9: Prior permeability field (left), and updated permeability field (right) for experiment #4.

to capture it since the updated parameters are constrained by incorrect prior knowledge
that usually originates from interpretation errors of geological data.

3.3.6. EXPERIMENT #5 - TRUTH CASE WITH A HIGH-PERM STREAK | UN-
REGULARIZED OBJECTIVE FUNCTION

In this experiment we use the same truth as in experiment #4 (see Figure 3.8), but we use
the unregularized objective function given by equation (3.2) for history matching pur-
poses. Figure 3.11 shows the starting model and its updates after 268 iterations in the
minimization process. The permeability of the red strip in the updated model in Fig-
ure 3.11 is between 2000 to 8000 mD. The high-permeable streak, which has very high
permeability values compared to other part of the fields, is apparently indicating that
something is missing in our starting models. I.e., also in this example, the unrealistic up-
dates resulting from history matching with an unregularized objective function indeed
seem to give an indication for under-modeling. Figure 3.12 depicts the oil and water
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Figure 3.10: Data match in the producers for experiment #4. Black dots indicate the measured oil and water
rates. Solid and dashed red lines are the oil and water rates of the prior model. Solid and dashed blue lines are
the oil and water rates of the updated model.

rates in the four producers for the truth, the prior, and the updated model.

Figure 3.11: Starting permeability field (left) and its update (right) for experiment #5.
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Figure 3.12: Data match in the producers for experiment #5. Black dots indicate the measured oil and water
rates. Solid and dashed red lines are the oil and water rates of the prior model. Solid and dashed blue lines are
the oil and water rates of the updated model.

3.3.7. EXPERIMENT #6 - CAPTURING THE POSITION OF A HIGH-PERM STREAK
In this experiment the high-perm streak in the truth case has a different location than in
experiment #5 and is located closer to the well inj1. Figure 3.13 depicts the true perme-
ability field together with the location of the high-perm streak.
Figure 3.14 shows the starting model and its updates after minimization process. The
permeability of the red strip in the updated model in Figure 3.14 is 1000 to 3000 mD. Ex-
periment #5 and experiment #6 indicate that, for these examples, the use of unregular-
ized parameter estimation makes it possible to capture the position of a high permeable
streak, although the estimated permeability values are not accurate.

3.4. EFFECT OF MEASUREMENT ERRORS
In this set of experiments we investigate the effect of increased measurement errors on
the updated parameters. Four truth cases are used to generate synthetic data: two differ-
ent fault locations (experiment #2 and experiment #3) and two different high-permeable
streak locations (experiment #5 and experiment #6). Figure 3.15 shows the experiment
results based on the measurements generated with the truth case from experiment #2.
The left column of Figure 3.15 depicts the true and prior permeability fields. The right
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Figure 3.13: True permeability field with well locations for experiment #6. Permeability values are expressed
as the natural logarithm of permeability in mD.

Figure 3.14: Starting permeability field (left) and its update (right) for experiment #6.

column of Figure 3.15 depicts the updated permeability fields for measurements with
measurement errors with standard deviations of 10%, 15%, 20% and 25% of the origi-
nal measured values. It is clear from Figure 3.15 that increasing error levels lead to in-
creasingly worse permeability estimates. For the 25% case the updated model contains
completely spurious bands of low-permeability values. Note that these experiments are
repeated using different noise realizations and they end up with the same behavior.
Figure 3.16 depicts the experimental results based on the measurements generated with
the truth case from experiment #3, which has a partially sealing fault closer to well prod2.
The left column of Figure 3.16 depicts the true and prior permeability fields and the right
column of this figure depicts the updated permeability fields for measurements with
measurements having standard deviations of 10%, 15%, 20% and 25% of the original
measured values. By comparing Figure 3.15 and Figure 3.16, it can be seen that when
the fault is closer to the producer it is possible to capture it, even at higher noise levels
compared to the case in which the fault is further away from the producer. Note that
these experiments are repeated using different noise realizations and they end up with



3

40 3. UNDER-MODELING DETECTION

Figure 3.15: Truth and prior permeability field (left) and its updates (right) for different measurement errors.

the same behavior.

Figure 3.16: Truth and prior permeability field (left) and its updates (right) for different measurement errors.

Figure 3.17 shows the experiment results based on the measurements generated with the
truth case from experiment #5, which has a high-perm streak closer to well prod2. The
left column of Figure 3.17 shows truth and prior permeability fields and the right column
of this figure shows the updated permeability fields for measurements with measure-
ment errors with standard deviations of 10%, 15%, 20% and 25% of the original measured
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values. Different noise realizations are used to repeat these experiments, which result in
the same behavior.

Figure 3.17: Truth and prior permeability field (left) and its updates (right) for different measurement errors.

Figure 3.18 shows the experiment results based on the measurements generated with
the truth case from experiment #6, which has a high-perm streak in the vicinity of well
inj1. The left column of the Figure 3.18 shows truth and prior permeability fields. The
right column of this figure shows the updated permeability fields for measurements with
measurement errors with standard deviations of 10%, 15%, 20% and 25% of the original
measured values. As can be seen in Figure 3.18, increasing error levels lead to increas-
ingly worse permeability estimates. Note that these experiments are repeated using dif-
ferent noise realizations and they end up with the same behavior.
By comparing Figure 3.17 and Figure 3.18, it can be seen that when the high-perm streak
is closer to the producer it is possible to capture it, even at higher noise levels compared
to the case in which the streak is further away from the producer. Note that we only mea-
sure outputs in the producers and not in the injector.

From the experiments described in this section it can be inferred that when a flow-
relevant feature is located closer to a producer, the feature can still be retrieved in a
history matching process with a higher noise level.

3.5. IDENTIFIABILITY
The system-theoretical analysis of the presence of information in measured data is cen-
tered around the concept of identifiability. Roughly speaking the notion of identifiabil-
ity can refer to the question whether parameter changes can be observed in the model
output signal (Zandvliet et al., 2008; Van Doren, 2010). Watson et al. (1984) and Datta-
Gupta et al. (1997) address identifiability in steady-state (incompressible) two-phase
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Figure 3.18: Truth and prior permeability field (left) and its updates (right) for different measurement errors.

flow and the authors conclude that identifiability of reservoir properties is limited to
average properties between wells. However, we consider (slightly) compressible flow
and time-varying well rates, and it is well known from classical well testing (pressure
transient analysis), and from related methods such as pulse testing or interference test-
ing, that information about the distance between wells and flow-relevant features (e.g.
reservoir boundaries or sealing faults) is sometimes present in the data, although to a
limited extent due to the diffusive nature of pressure transients; see e.g. Grader and
Horne (1988) and Ahn and Horne (2010). Zandvliet et al. (2008) and Van Doren (2010)
address identifiability in reservoir systems from a system-theoretical point of view. The
authors conclude that the number of identifiable parameters in a reservoir model based
on input-output measurements in wells is very limited, and, moreover, can only be iden-
tified if the input is ‘sufficiently exciting’. However, using a singular value decomposition
(SVD) of the sensitivity matrix ∂h (m)/∂m, they also show that it is sometimes possible to
identify large-scale flow-relevant features, as captured by the first SVD basis functions.
In this study we first use a dimensionless sensitivity matrix Ψ in order to analyze the
sensitivity of system output (oil and water rates in the wells) to the system parameters
(grid block permeabilities) and characterize the identifiability of different flow-relevant
features in different locations. Moreover, we show how presence of noise in the measure-
ments can affect the history matching results using SVD analysis. The sensitivity matrix,
Ψ, is defined as

Ψ=Γm
∂h(m)T

∂m P− 1
2

d , (3.4)

where h(m) represents system output (oil and water rates in the wells), m is the param-
eter vector (grid block permeabilities) and Pd is the covariance matrix of the noise that
is supposed to act on the measured output. Γm is a scaling matrix which is chosen as
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Γm = diag
(

m1 · · · mn
)

(3.5)

where the elements mi represent the grid block permeabilities of the model (Van Doren,
2010). In our case scaling can play an important role and can possibly influence the
identifiable parameter space, since the magnitudes of the physical parameters differ by
several orders of magnitudes (background permeabilities and feature permeabilities).
By analyzing the sensitivity matrix we are able to investigate if a feature is identifiable
from measured outputs. Moreover by comparing the sensitivity matrices of different
model structures with different flow-relevant features we can investigate to what extent
the measured outputs are sensitive with respect to a feature location.
Figure 3.19 depicts the sensitivity of the output from well prod2 with respect to the gird-
block properties for two different permeability fields with different fault locations (ex-
periments #2 and #4). As can be seen from Figure 3.19 the measured output of well
prod2 is quite sensitive to a flow barrier (a partially sealing fault), i.e., together with the
given input it makes the feature identifiable. Moreover, it can be concluded from Figure
3.19 that the input-output combination for this system is more sensitive to a flow barrier
when the barrier is closer to a producer. This confirms our results in section 3.4 where
we have shown that it is possible to capture the location of barrier even with higher noise
levels in the measured data when it is closer to the producer.

Figure 3.19: Elements of sensitivity matrix,Ψ, of well prod2 output with respect to the grid block permeabilities
for two different models with different fault locations.

Figure 3.20 depicts the sensitivity of the output from well prod2 with respect to the grid
block properties for two different permeability fields with different high-permeable streak
locations (experiment #5 and #6). As can be seen from Figure 3.20 the measured output
of well prod2 is quite sensitive to presence of a high-permeable streak, i.e., together with
the given input it makes the feature identifiable. Moreover, it can be concluded from 3.20
that the input-output combination for this system is more sensitive to a high-permeable
streak when the streak is closer to a producer. This confirms our results in section 3.4
where we have shown that it is possible to capture the location of a high-permeable
streak even with higher noise levels in the measured data when it is closer to the pro-
ducer.
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Figure 3.20: Elements of sensitivity matrix,Ψ, of well prod2 output with respect to the grid block permeabilities
for two different models with different high-permeable streak locations.

Next, it can be shown how the presence of noise in the measurements can affect the pa-
rameter estimation using an SVD analysis of sensitivity matrix P−1/2

d h′(m), where h′(m)
is the sensitivity of system output with respect to uncertain parameters (Rodrigues, 2006).

A linear approximation for h(m) around m can be expressed as follows,

h (m) 'h (m0)+h′ (m0)δm, (3.6)

where m0 is the initial guess in the parameter space, δm = (m−m0) and h′ (m0) is the
sensitivity matrix calculated at m0. By replacing equation (3.6) in our unregularized ob-
jective function given by equation (3.2), we can find an approximation to our objective
function,

J (m) ' [(
h (m0)+h′ (m0)δm

)−d
]T P−1

d

[(
h (m0)+h′ (m0)δm

)−d
]

. (3.7)

Equation (3.7) can be rewritten as follows,

J (m) '
(
P− 1

2
d h′ (m0)δm−P− 1

2
d r0

)T (
P− 1

2
d h′ (m0)δm−P− 1

2
d r0

)
, (3.8)

where r0 is defined as,
r0 =d−h (m0) . (3.9)

The problem of minimizing equation (3.8) is an under-determined linear least-squares
problem and it can be shown that its solution can be expressed in terms of the singular
value decomposition of P−1/2

d h′(m0) (Golub and Van Loan, 2012; Nocedal and Wright,
2006):

The derivative of equation (3.8) can be written as,

∂J (m)

∂m = 2P− 1
2

d h′ (m0)

(
P− 1

2
d h′ (m0)δm−P− 1

2
d r0

)
. (3.10)
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The optimum of equation (3.8) can be found by choosing a δm which makes equation
(3.10) zero, i.e.,

δm∗ =
(
P− 1

2
d h′ (m0)

)−1

P− 1
2

d r0. (3.11)

Pseudo inverse of the first term of equation (3.11) can be computed by use of singular
value decomposition,

VS−1UT =
(
P− 1

2
d h′ (m0)

)−1

. (3.12)

Substituting equation (3.12) in equation (3.11) results in,

δm∗ =VS−1UT P− 1
2

d r0, (3.13)

where S is the matrix of singular values, U is the matrix of left singular vectors and V
is the matrix of right singular vectors of P−1/2

d h′(m0) . Equation (3.13) shows that the
largest singular values and corresponding singular vectors contain the most relevant in-
formation about the solution, since small singular values tend to amplify noise in the
measurements (Hanke and Hansen, 1993; Rodrigues, 2006). In other words, as the sin-
gular values decrease the effect of noise on the solution increases.

Figure 3.21 shows first 97 singular values of the sensitivity matrix P−1/2
d h′(m0) for the

truth case of experiment #1 with different noise level. As can be seen from Figure 3.21,
as the noise level increases the singular values decrease and therefore the solution to the
parameter estimation problem becomes more sensitive to noise. This analysis confirm
our findings in section 3.4.

3.6. ALTERNATIVE FORMULATIONS FOR HISTORY MATCHING
Regularization in inverse problems refers to a process of introducing additional infor-
mation in order to solve an ill-posed problem. This information is usually of the form
of a penalty for complexity, such as restrictions for smoothness or bounds on the vector
space norm. The main goal of regularizing ill-posed inverse problems is to constrain our
solutions to avoid misleading by features that appear in the model, which are not es-
sential in matching the observations (Constable et al., 1987). In conventional reservoir
parameter estimation the solution of the inverse problem is usually constrained using
regularization based on prior geostatistical knowledge of the reservoir to make the prob-
lem solvable. This approach can be promising if the prior information of the reservoir
geology is reliable. On the other hand, as it is shown in section 3.3.2, in the case of inac-
curate or wrong prior information, the dynamic data cannot be used much to interfere
model discontinues (e.g. sealing fault or high-channel) itself. In that sense the param-
eter search space is limited to a wrong prior knowledge and we do not adequately use
the information that dynamic data carries about the reservoir parameters. Moreover,
smoothing the solutions as a structural regularization constraint can be useful in a reser-
voir with gradual heterogeneity, whereas in a reservoir with sudden discontinuities more
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Figure 3.21: First 97 singular values of sensitivity matrix for the truth case of experiment #1 with different noise
level.

sophisticated regularization methods have to be used (Li and Jafarpour, 2010). Conse-
quently, proper selection of a regularization method is essential in reservoir parameter
estimation problems. Alternatively, it is also possible to reduce the number of uncertain
parameters by reparametrization of the problem in such a way that adjustments to the
model variables are made in a much lower dimensional space (Oliver and Chen, 2011).

Previously in this section we have shown that penalizing deviations from a prior model
in Bayesian framework can be misleading, when we have a wrong prior information. But
there are different alternatives to restore well-posedness. The objective of this section
is to investigate the possibility of finding "unknown unknowns" by applying different
history matching formulations. In this section two alternative objective functions are
used for parameter estimation purposes. First, we investigate the possibility of under-
modeling detection using the discrete cosine transform as a parameterization technique
as proposed by Li and Jafarpour (2010). Secondly, we use a regularized objective func-
tion using total variation regularization to investigate to possibility of detecting under-
modeling.
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3.6.1. DISCRETE COSINE TRANSFORM (DCT)
Li and Jafarpour (2010) proposed a method for reservoir parameter estimation by formu-
lating the solution in a compressive basis. They used compression transform techniques
such as the discrete cosine and wavelet transforms for a compact representation of the
most significant information in geological formations. In this section we reformulate our
objective function in terms of reduced order transformed parameter space using DCT as
the sparse bases. Consequently the unregularized objective function in transformed pa-
rameter space can be written as,

J (z) = [
(d−h (Φz))T P−1

d (d−h (Φz))
]

, (3.14)

where z is the vector of the expansion coefficients, which represent physical model pa-
rameter vector m in a subspace defined by the basis functionΦ,

mn×1 =Φn×nzn×1. (3.15)

If the parameter m has a sparse representation in Φ, then m can be approximated by
only s << n out of n terms in the basis function (Khaninezhad and Jafarpour, 2014). In
this case equation(3.15) can be written as,

mn×1
∼=Φn×szs×1. (3.16)

Note that in this study we do not use a regularization term in our formulation in order to
only investigate the possibility of under-modeling detection in reduced order parameter
space.

3.6.1.1. NUMERICAL EXPERIMENTS

Numerical twin experiments are conducted to test the effect of DCT reparameterization
on reservoir parameter estimation in the presence of a missing geological feature (seal-
ing fault). The truth case with a flow barrier as described in section 3.3 is used to generate
historical data. Again the flow barrier is missing in our starting model. For parameter es-
timation purposes we try to minimize equation (3.14). Two different experiments are
conducted using 49 and 100 basis elements (out of 441).

The left picture of Figure 3.22 shows the updated permeability field, which is obtained
by minimizing equation (3.14) and using 49 basis elements. The right picture of Figure
3.22 shows the updated permeability field using 100 basis elements.
As can be seen from Figure 3.22 in both cases a low permeable band is visible in the
updated permeability fields.

3.6.2. TOTAL VARIATION REGULARIZATION
Total variation regularization is defined as integral of the absolute gradient of the signal.
Total variation term penalizes highly oscillatory solutions while allowing jumps in the
regularized solution (Vogel, 2002). For a discrete parameter space, m of size of Nx ×
Ny where Nx is the number of gridblocks in the X direction and Ny is the number of
gridblocks in Y direction, the total variation in two dimensions can be defined as,
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Figure 3.22: Updated permeability field using 49 basis functions (left), updated permeability field using 100
basis functions (right).

R(m) =
Nx∑
i=1

Ny∑
j=1

√
|mi+1, j −mi , j |2 +|mi , j+1 −mi , j |2. (3.17)

Subsequently the objective function with a total variation regularization term can be
written as,

J (m) = (d−h (m))T P−1
d (d−h (m))+αR(m). (3.18)

where α is a regularization parameter that balances the weight given to the regulariza-
tion term and the data misfit term. In this study we use numerical perturbation to cal-
culate the derivative of the regularization term.

3.6.2.1. NUMERICAL EXPERIMENTS

Numerical twin experiments are conducted to test the effect of total variation regular-
ization on reservoir parameter estimation in the presence of a missing geological feature
(sealing fault). The truth case with a flow barrier as described in section 3.3 is used to
generate historical data. Again the flow barrier is missing in our starting model. For pa-
rameter estimation purposes we try to minimize equation (3.18). Figure 3.23 shows the
updated permeability field after minimization process.
As can be seen in Figure 3.23 the low permeable band is better preserved in the updated
permeability field compared to the other regularization methods.

3.7. CONCLUSIONS
In this chapter several twin experiments were conducted and unregularized parameter
estimation were applied to update uncertain parameters in a simple 2D reservoir model
that contained a major flow-relevant deficiency in the form of a missing high- or low-
permeability feature. We found that, for these examples,

• Updating in a Bayesian framework results in updates close to the prior, without
any indication of the missing feature.
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Figure 3.23: Updated permeability field using total variation regularization.

• Updating without regularization enables us to identify the presence and the loca-
tion of the missing flow-relevant feature in the model, but not the correct magni-
tude.

• The identifiability of the presence and location deteriorates with increasing noise
levels in the data.

• When the flow-relevant feature is located closer to the producer its presence and
location seem to become more identifiable.

Next, to investigate these findings, we performed a quantitative identifiability analysis of
the examples using a dimensionless sensitivity matrix in order to analyze the sensitivity
of the system output (in the form of total flow rates in the wells) to the system parameters
(the grid block permeabilities). From the results we conclude that

• The output of these examples is more sensitive to a flow-relevant feature when the
feature is closer to a producer.

• As the noise level increases the singular values of the corresponding sensitivity
matrix decrease and the parameter estimation solutions become more dominated
by noise.

Moreover, discrete cosine transform (DCT) reparameterization and total variation reg-
ularization have been used to restore well-posedness in reservoir parameter estimation
problems. We have shown that when penalizing the deviations from a prior model can
be misleading in an under-modeling situations these two alternative methods are able
to restore a missing flow-relevant feature.

We conclude that, for the examples considered, the application of unregularized reser-
voir parameter estimation provides a means to identify the presence and location of
significant model deficiencies, in line with the ‘model maturation’ concept proposed in
Joosten et al. (2011). Further analysis, using larger-scale models and more complex flow-
relevant features, will be required to determine the limits of validity of this concept.
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IDENTIFIABILITY OF

FLOW-RELEVANT FEATURES

C LASSIC identifiability analysis of flow barriers in incompressible single-phase flow
reveals that it is not possible to identify the location and permeability of low-perm

barriers from production data (well bore pressures and rates), and that only averaged
reservoir properties in-between wells can be identified. We extend the classic analy-
sis by including compressibility effects. We use two approaches: 1) a twin-experiment
with synthetic production data for use with a time-domain parameter estimation tech-
nique, and 2) a transfer function formalism in the form of bilaterally coupled four-ports
allowing for an analysis in the frequency domain. We investigate the identifiability, from
noisy production data, of the location and the magnitude of a low-permeable barrier to
slightly-compressible flow in a one-dimensional configuration. We use an unregularized
adjoint-based optimization scheme for the numerical time-domain estimation, using
various levels of sensor noise, and confirm the results using the semi-analytical transfer
function approach. Both the numerical and semi-analytical results show that it is pos-
sible to identify the location and the magnitude of the permeability in the barrier from
noise-free data. By introducing increasingly higher noise levels the identifiability grad-
ually deteriorates, but the location of the barrier remains identifiable for much higher
noise levels than the permeability value. The shape of the objective function surface, in
normalized variables, indeed indicates a much higher sensitivity of the well data to the
location of the barrier than to its magnitude. These theoretical results appear to support
the empirical finding that unregularized gradient-based history matching in large reser-
voir models, which is well known to be a severely ill-posed problem, may lead to useful
results in the form of model parameter updates having unrealistic magnitudes but indi-
cating the correct location of model deficiencies.

This chapter is from, Kahrobaei, S., Mansoori, M., Joosten, G.J.P., Van den Hof, P.M.J. and Jansen, J.D., 2015.
Identifiability of Location and Magnitude of Flow Barriers in Slightly Compressible Flow. Accepted for publi-
cation in SPE Journal.
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4.1. INTRODUCTION

Estimating reservoir parameters from measured data is an ill-posed inverse problem due
to the large number of parameters and the limited available data (Shah et al., 1978; Oliver
et al., 2008). Consequently, it is important to understand which parameters can be esti-
mated with reasonable accuracy from the available data. This aspect can be addressed
as determining the identifiability of the parameters. From a systems and control the-
ory perspective, the transient response of a dynamic system contains information about
dynamics-related properties of a system. Consequently, including compressibility ef-
fects (leading to a transient response) can result in a more accurate reservoir parameter
estimation than just considering the steady-state response. The pressure behavior of
a slightly-compressible single-phase fluid in a reservoir can be described accurately by
the diffusivity equation. Theoretically, the transient pressure response of every point
in a reservoir to, e.g., a step or impulse input may contain information about reservoir
boundaries and reservoir heterogeneities (Grader and Horne, 1988; Van Doren, 2010).
However certain parameters have a more significant effect on this transient response
than others, and in many cases a unique identification of parameters is not possible.
Subsequently, by investigating the effect of different parameters on the dynamic behav-
ior we can understand which parameters are more identifiable from the available data.
On the other hand, presence of noise in the data may hamper the identifiability of such
parameters and can result in unrealistic parameter estimates (Dogru et al., 1977). Hence,
it is important to also investigate the effect of noise on identifiability of different param-
eters.

Identifiability of reservoir heterogeneity has been studied by many authors both from
a classic well testing and from a systems and control perspective; see, e.g., Stallman
and Brown (1951), Watson et al. (1984), Yaxley (1987), Grader and Horne (1988), Feitosa
et al. (1994), Oliver (1996), Van Doren et al. (2008), Zandvliet et al. (2008), Ahn and Horne
(2010) and Van Doren (2010). The concept of identifiability as used in systems and con-
trol theory can loosely refer to the question whether parameter changes can be observed
in the model output signal (Van Doren, 2010). Moreover, the concept of structural iden-
tifiability is, loosely speaking, concerned with the question whether it is possible to in-
fer the magnitude of model parameters at all from input-output data, assuming an op-
timally chosen, ‘persistently exciting’ input. For a more precise, mathematical defini-
tion of (structural) identifiability as applied to porous media flow, see Van Doren (2010).
Stallman and Brown (1951) analyzed the pressure response of a constant-rate well and
presented a log-log type curves for constant pressure boundaries as well as imperme-
able linear boundaries. Watson et al. (1984) investigated the identifiability of estimates
of two-phase reservoir properties in history matching. They concluded that for single-
phase incompressible flow, only the harmonic average of the permeability distribution
is identifiable and subsequently the presence of the saturation distribution is essential
to identify the absolute permeability spatial distribution. Yaxley (1987) investigated the
effects of a partially communicating linear fault on transient pressure behavior. Grader
and Horne (1988) and Ahn and Horne (2010) considered (slightly) compressible flow and
used well testing related methods such as interference testing and pulse testing to inves-
tigate the detectability of reservoir heterogeneities. They showed that there is sometimes
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information about the distance between wells and flow-relevant features (e.g. reservoir
boundaries, impermeable subregions or permeability distribution) in the data, although
to a limited extent due to the diffusive nature of pressure transients.

The objective of this chapter is to investigate the identifiability of location and magni-
tude of a flow barrier in slightly compressible single-phase flow by analyzing the effect
of this heterogeneity on dynamical behavior of the flow. The motivation stems from a pa-
per by Joosten et al. (2011) who showed that sometimes the application of unregularized
reservoir parameter estimation still appears to have added value. They argued, based on
numerical examples, that localized unrealistic parameter values can be used as an in-
dicator of model errors in the underlying reservoir model, a concept which they named
“model maturation”. In a follow-up study, Kahrobaei et al. (2014) showed that the appli-
cation of unregularized reservoir parameter estimation may sometimes indeed give an
indication of the location of significant missing features in the model. In this chapter we
further analyze this phenomenon by addressing the identifiability of flow-relevant fea-
tures. In particular, we apply two approaches to study the possibility of detecting a low-
permeable barrier from the observations (outputs of the system). In the first approach
we conduct three different twin-experiments with synthetic production data contami-
nated with different noise levels in the time domain. In our twin experiments an un-
regularized parameter estimation is applied to update uncertain parameters (grid block
permeabilities) in a one-dimensional (1D) reservoir model that contains a major defi-
ciency in the form of a missing low permeability feature. In the second approach we
develop an analytical method to explain our time-domain findings. In this approach we
consider flow through porous media as a linear system and develop a method that gives
an analytical expression for the dynamic characteristics of the system as a function of
the system’s geometric properties, heterogeneity etc. in the frequency domain. This so-
lution is obtained based on a transfer function formalism applied to a series of bilaterally
coupled porous media models.

4.2. TIME-DOMAIN TWIN EXPERIMENTS

We perform three ‘twin experiments’. They all use the same ‘truth model’ to generate
synthetic data, but the resulting data are contaminated with different noise levels. The
first experiment involves the assimilation of noise-free production data, while in the last
two experiments we assimilate noisy production data.

4.2.1. SYNTHETIC TRUTH

Consider one-dimensional single-phase flow of a slightly compressible fluid through a
porous medium. The domain has a homogenous permeability distribution with a low
permeable barrier in between. The size of the reservoir is 500 m × 50 m × 2 m, which is
divided into 50 grid blocks. Fluid compressibility is 1×10−7 Pa−1 and fluid viscosity is
1×10−3 Pa s. The reservoir is produced with an injector at the left side and a producer at
the right side. A low-permeable barrier with a width of 30 m, is located at 350 m from the
injector. The background permeability is 300 mD and the permeability of the barrier is
0.1 mD. The reservoir has a uniform porosity of 0.2. The initial pressure is 300 MPa. The
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producer is operating at a bottomhole pressure of 250 MPa and the injector at a constant
flow rate of 0.002 m3/s. The reservoir is simulated for 1000 days and we measure the
flow rates in the producer on a daily basis. Figure 4.1 shows the permeability field of the
reservoir with its low permeable barrier.

Figure 4.1: Permeability field of a one-dimensional homogenous reservoir model with a low-permeable bar-
rier. Permeability values are expressed as the natural logarithm of permeability in mD. The blue and orange
dots indicate the injector and the producer respectively.

4.2.2. STARTING RESERVOIR MODEL
The low-permeable barrier in the reservoir is missing in the starting model. All remain-
ing parameters in the starting model are identical to those of the ‘truth’ case. Figure 4.2
depicts the uniform permeability field of the starting model with a constant permeability
of 300 mD.

Figure 4.2: Permeability field of the starting model. Permeability values are expressed as the natural logarithm
of permeability in mD. The blue and orange dots indicate the injector and the producer respectively.

For parameter estimation purposes we try to minimize an unregularized mismatch ob-
jective function, given by equation (3.2). Minimization of the objective function is achieved
by adjustment of the model parameters m. For the present study we use an in-house
reservoir simulator with adjoint functionality to calculate the gradients of the objective
function (Kraaijevanger et al., 2007). We use the limited-memory Broyden Fletcher Gold-
farb Shanno (LBFGS) method to minimize the objective function (Gao and Reynolds,
2006).

4.2.3. EXPERIMENT #1: PARAMETER ESTIMATION BASED ON NOISE-FREE

MEASUREMENTS
In the first twin experiment, parameter estimation is performed starting from the uni-
form reservoir model, depicted in Figure 4.2, based on perfect (noise-free) production
data. Figure 4.3 shows the updated permeability field after parameter estimation. For
this experiment the covariance matrix is chosen as an identity matrix.
Table 4.1 lists the grid block numbers and corresponding permeability values of the low
permeable barrier in the ‘truth’ case and the updated model (Figure 4.1 and Figure 4.3
respectively).
As can be seen in Table 4.1, the grid block numbers and the grid block permeabilities
of the low permeable barrier in the updated model are exactly the same as those in the
‘truth’ case.
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Figure 4.3: Updated permeability field of the 1D reservoir model for experiment #1. Permeability values are
expressed as the natural logarithm of permeability in mD.

Table 4.1: Grid block numbers and permeabilities of the low permeable barrier in the ‘truth’ and the updated
model.

Model GB. No. Permeability [mD]

36 0.1
Truth parameters 37 0.1

38 0.1

36 0.1
Updated parameters 37 0.0997

38 0.1

4.2.4. EXPERIMENT #2: PARAMETER ESTIMATION BASED ON NOISY MEA-
SUREMENTS: HIGH SIGNAL TO NOISE RATIO

In second twin experiment parameter estimation is performed starting from the same
reservoir model as experiment #1 but based on noisy production data. Errors are gener-
ated by sampling from a Gaussian distribution with zero mean and a standard deviation
equal to 1 m3/day. Negative production rates, after the addition of noise, are reset to
zero. It is assumed that the measurements were affected by independent noise, which
results in a diagonal covariance matrix with equal-magnitude elements for the observa-
tion errors. The same covariance matrix was used in the objective function defined by
equation (3.2). Figure 4.4 depicts the updated permeability field after parameter estima-
tion based on noisy data (with known covariance).

Figure 4.4: Updated permeability field of the 1D reservoir model for experiment #2. Permeability values are
expressed as the natural logarithm of permeability in mD.

Table 4.2 lists the grid block numbers and corresponding permeability values of the low
permeable barrier in the ‘truth’ case and the updated model for experiment #2.
As can be seen in Table 4.2, in the experiment with noisy measurements the positions
of the low-permeable barriers in the ‘truth’ case and the updated model are exactly the
same but the permeability value of the corresponding grid blocks in the updated model



4

56 4. IDENTIFIABILITY OF FLOW-RELEVANT FEATURES

Table 4.2: Gridblock numbers and permeabilities of the low permeable barrier in the ‘truth’ and the updated
model.

Model GB. No. Permeability [mD]

36 0.1
Truth parameters 37 0.1

38 0.1

36 0.1036
Updated parameters 37 0.1206

38 0.08

are not as accurate as those obtained in the noise-free experiment.

4.2.5. EXPERIMENT #3: PARAMETER ESTIMATION BASED ON NOISY MEA-
SUREMENTS: LOW SIGNAL TO NOISE RATIO

In the third twin experiment the amount of error in the data is increased in comparison
with experiment #2. In this case, the errors are generated from a Gaussian distribution
with zero mean and a standard deviation equal to 10 m3/day using the same approach
as in the previous experiment. Figure 4.5 depicts the updated permeability field of the
1D reservoir model after parameter estimation.

Figure 4.5: Updated permeability field of the 1D reservoir model for experiment #3. Permeability values are
expressed as the natural logarithm of permeability in mD.

Table 4.3 lists the grid block numbers and corresponding permeability values of the low
permeable barrier in the ‘truth’ case and the updated model for experiment #3.
As can be seen in Table 4.3, by increasing the noise level in the measurements, the posi-
tions of the grid blocks with the lowest permeabilities in the updated model and the truth
case are still identical, but the permeability values of those grid blocks are now signifi-
cantly different. The harmonic average over all gridblocks based on true permeability
distribution is 1.65, and for the noise-free experiment, the low-level noise experiment
and the high-level noise experiment they are 1.65, 1.66 and 1.30 respectively. We note
that the deviation of our estimates from the true values is caused by random noise in the
measurements. Different realizations of the measurement noise are used, in which in
all of results the gridblock with lowest permeability magnitude is in the location of the
barrier (gridblock 36, 37 and 38). The mean and the standard deviation of the harmonic
average over these three gridblocks based on 10 different noise realizations are 0.08 and
0.0035 mD respectively.
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Table 4.3: Gridblock numbers and permeabilities of the low permeable barrier in the ‘truth’ and the updated
model.

Model GB. No. Permeability [mD]

36 0.1
Truth parameters 37 0.1

38 0.1

36 0.026
Updated parameters 37 19.15

38 89.6

4.3. TRANSFER FUNCTION REPRESENTATION
To further analyze the behavior that was observed in our 1D twin-experiments in the
time-domain, we conduct 1D experiments using a transfer function formalism to char-
acterize the identifiability of the location and magnitude of model deficiencies (absence
of flow barriers). We use a two-port network approach which results in a lumped pa-
rameter representation of our system (Carslaw and Jaeger, 1959). The structure of the
1D initial-boundary value problem allows for the input to output representation of the
system in terms of pressure and flow rate at two points in the spatial domain, mapped
by a linear transformation.

4.3.1. MODEL DESCRIPTION
The 1D reservoir model that was described in section 4.2.1 can be considered as a system
that consists of three blocks. The total length of the domain and the length of the middle
block are known. The length of the first block of the domain is unknown, resulting in an
unknown position of the middle block. Note that length of the third block is a function of
the length of the first block, since the total length of the domain is constant. The middle
block works as a barrier to flow from point 1 to point 4; see Figure 4.6.

L 

La Lb Lc

1 2 3 4

Figure 4.6: Schematic representation of two one-dimensional domains separated by a low permeable barrier.

4.3.2. GOVERNING EQUATIONS
The pressure behavior of a slightly-compressible single-phase fluid in a reservoir can be
described by the diffusivity equation. The pressure diffusion equation for linear flow
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between two points can be written as

∂p (x, t )

∂t
= η∂

2p (x, t )

∂x2 , (4.1)

in which η is defined as hydraulic diffusivity,

η= k

ϕµct
, (4.2)

where k is permeability, ϕ is porosity, µ is viscosity and ct is total compressibility. More-
over, the flow rate for linear flow can be written as

q (x, t ) =−A
k

µ

∂p (x, t )

∂x
, (4.3)

where A is the surface area.
Note that wells in Figure 4.6 are to be imagined as (infinite conductivity) fractures fully
penetrating a channel of constant cross-section A, and that skin, wellbore storage and
near-well radial flow convergence are neglected.

4.3.3. DIMENSIONLESS VARIABLES
To transform equation (4.1) and equation (4.3) into dimensionless equations, the follow-
ing dimensionless variables are defined:

• Dimensionless length:

ξ= x

L
, (4.4)

where L is total constant length of the first and the last blocks of Figure 4.6.

• Dimensionless pressure:

π= p −pi

p̂
, (4.5)

where p̂ is pressure at the outlet boundary and pi is initial pressure.

• Dimensionless time:

τ= kt

µctϕL2 . (4.6)

Using these dimensionless variables, we can rewrite equations (4.1) and (4.3) in dimen-
sionless form:

∂π

∂τ
= ∂2π

∂ξ2 , (4.7)

θ =−α∂π
∂ξ

, (4.8)
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where θ is dimensionless flow rate defined as

θ = q

q̂
, (4.9)

and α is a dimensionless number defined as

α= Akp̂

Lµq̂
, (4.10)

in which q̂ is the flow rate at the inlet boundary.

In this study equation (4.7) and equation (4.8) will be applied in three different regions
of constant permeability.

4.3.4. TRANSFER FUNCTION DERIVATION
In order to find input-output relations of the system depicted in Figure 4.6, first the trans-
fer functions of each block are derived and then they are coupled together to obtain
transfer functions that describe the entire system. In the next subsection we derive the
transfer functions for the first block of the system depicted in Figure 6. Similar deriva-
tions would apply to the other blocks as well.

4.3.4.1. INPUT-OUTPUT RELATIONS OF ONE BLOCK OF THE SYSTEM

By applying a Laplace transform to equation (4.7) we obtain

∂2

∂ξ2Π (ξ, s)− sΠ (ξ, s) = 0. (4.11)

Equation (4.11) has a solution of the form

Π (ξ, s) =C1eξ
p

s +C2e−ξ
p

s . (4.12)

Moreover, equation (4.8) can also be written in the Laplace domain as follows:

Θ (ξ, s) =−αC1
p

seξ
p

s +αC2
p

se−ξ
p

s , (4.13)

where functions C1 and C2 can be determined by requiring the solution to satisfy the
boundary conditions which are chosen as flow rate at the left side and pressure at the
right side of the block, i.e.,: Θ(ξ, s) = Θ(ξ1, s) at ξ= ξ1 and Π(ξ, s) = Π(ξ2, s) at ξ= ξ2 .
Consequently, solving for C1 and C2 leads to:

C1 = 1

Λ (s)+Λ−1 (s)
Π (ξ2, s)− 1

α
p

s

Λ−1 (s)

Λ (s)+Λ−1 (s)
Θ (ξ1, s) , (4.14)

C2 = 1

Λ (s)+Λ−1 (s)
Π (ξ2, s)+ 1

α
p

s

Λ (s)

Λ (s)+Λ−1 (s)
Θ (ξ1, s) , (4.15)

in which
Λ (s) = eξ2

p
s . (4.16)
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At the boundaries we have the following output variables:

Π (ξ1, s) =C1 +C2, (4.17)

Θ (ξ2, s) =−αC1
p

sΛ (s)+αC2
p

sΛ−1 (s) . (4.18)

Inserting values of C1 and C2 from equations (4.14) and (4.15) in equations (4.17) and
(4.18) gives the final solutions:

Π (ξ1, s) = 2

Λ (s)+Λ−1 (s)
Π (ξ2, s)+ 1

α
p

s

Λ (s)−Λ−1 (s)

Λ (s)+Λ−1 (s)
Θ (ξ1, s) , (4.19)

Θ (ξ2, s) =αps
Λ−1 (s)−Λ (s)

Λ (s)+Λ−1 (s)
Π (ξ2, s)+ 2

Λ (s)+Λ−1 (s)
Θ (ξ1, s) . (4.20)

Subsequently Θ (ξ2, s) and Π (ξ1, s) can be written as a function of the boundary condi-
tions: [

Θ (ξ2, s)
Π (ξ1, s)

]
=

[
A11 A12

A21 A22

][
Θ (ξ1, s)
Π (ξ2, s)

]
, (4.21)

where Ai j are the transfer functions of the first block, which explain the input-output
relations as a function of model parameters. These transfer functions can be derived as

A11 = 2

eξ2
p

s +e−ξ2
p

s
= 1

cosh
(
ξ2
p

s
) , (4.22)

A12 =α
p

s
e−ξ2

p
s −eξ2

p
s

eξ2
p

s +e−ξ2
p

s
=−αps tanh

(
ξ2
p

s
)

, (4.23)

A21 = 1

α
p

s

eξ2
p

s −e−ξ2
p

s

eξ2
p

s +e−ξ2
p

s
= 1

α
p

s
tanh

(
ξ2
p

s
)

, (4.24)

A22 = 2

eξ2
p

s +e−ξ2
p

s
= 1

cosh
(
ξ2
p

s
) . (4.25)

In this way we can derive the transfer functions for each block of our system.

4.3.4.2. INPUT-OUTPUT RELATIONS OF THE ENTIRE SYSTEM

By coupling the transfer functions of the three blocks we can derive the input-output
relations for the entire system. Figure 4.7 depicts the coupled model in block diagram
representation for our 1D reservoir model, where we used the letters A, B and C to indi-
cate the three consecutive blocks of Figure 4.6.
Each block of Figure 4.7 has an input-output relation in the form of equation (4.21). Con-
sequently, by performing matrix multiplications, we can find the transfer functions that
represent the input-output relations for the entire system. The matrix form of the input-
output relations can be written as[

Θ (ξ4, s)
Π (ξ1, s)

]
=

[
S11 S12

S21 S22

][
Θ (ξ1, s)
Π (ξ4, s)

]
, (4.26)
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Figure 4.7: Coupled model in block diagram representation for the model depicted in Figure 4.6.

where the elements Si j are given by

S11 =− A11B11C11

C21 (B12 + A12B11B22 − A12B12B21)+ A12B21 −1
, (4.27)

S12 =− [C12 − A12C12B21 +C11C22B12 −C12C21B12+
A12C11C22B11B22 − A12C11C22B12B21 − A12C12C21B11B22 + A12C12C21B12B21]×

[A12B21 +C21B12 + A12C21B11B22 − A12C21B12B21 −1]−1 ,
(4.28)

S21 =− [A21 + A11 A22B21 − A12 A21B21 − A21C21B12+
A11 A22C21B11B22 − A11 A22C21B12B21 − A12 A21C21B11B22 + A12 A21C21B12B21]×

[A12B21 +C21B12 + A12C21B11B22 − A12C21B12B21 −1]−1 ,
(4.29)

S22 =− A22C22B22

A12 (B21 +C21B11B22 −C21B12B21)+C21B12 −1
, (4.30)

where Ai j , Bi j and Ci j are the transfer functions of the three consecutive blocks of Figure
4.6. Consequently the block diagram of the system (Figure 4.7) can be simplified to the
configuration depicted in Figure 4.8.
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Figure 4.8: Modified block diagram representation for the model depicted in Figure 4.6.
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4.4. EFFECT OF LOCATION AND MAGNITUDE OF BARRIER ON

DYNAMIC SYSTEM OUTPUT
In the time-domain twin-experiments we have used flow rates in the injector and pres-
sures in the producer as inputs, and flow rates in the producer as outputs. Therefore, we
can simplify the configuration depicted in Figure 4.8 in such a way that the single output
of our system,Θ (ξ4, s) , is influenced by two inputs: Θ (ξ1, s) and Π (ξ4, s). Consequently
the input-output relation of the system is described by the transfer functions S11 and S12

only; see Figure 4.9.

S11

S12

++ Θ(ξ4,s)

Π(ξ4,s)

Θ(ξ1,s)

Figure 4.9: Input-output relation in the reservoir system.

With the aid of equation (4.26) we can now write an expression for the system output as
follows:

Θ (ξ4, s) =Θ (ξ1, s)S11 +Π (ξ4, s)S12. (4.31)

Because we have used step inputs in the time-domain twin-experiments, the dimen-
sionless form of our inputs in the Laplace domain can be written as

Θ (ξ1, s) = 1

s
, (4.32)

Π (ξ4, s) = 1

s
. (4.33)

By substituting equation (4.32) and equation (4.33) in equation (4.31) the output of the
system can be written as

Θout =Θ (ξ4, s) = 1

s
S11 + 1

s
S12 = 1

s
(S11 +S12) . (4.34)

Note that all the variables, and therefore the transfer functions, are dimensionless. At
this stage we can replace s in equation (4.34) with jωD , where j is the imaginary unit
and ωD is dimensionless frequency. The dimensionless sampling frequency is defined
according to sampling dimensionless time in our time-domain experiments. This will
result in a frequency response description of our system. Now we are able to investigate
the effect of location and magnitude of the middle block (the flow barrier) on the out-
put of our system. To perform a sensitivity analysis and a parameter estimation, which
are presented in the next sections, we define a ‘truth’ case, with parameters listed in
Table 4.4. The ‘truth’ parameters are equivalent to the parameters of the time-domain
‘truth’ case. Moreover, in our experiments the dimensionless frequency range is chosen
between 0.6 and 600. The analytical ‘truth’ case is used to generate synthetic measure-
ments for parameter estimation purposes in section 4.5.
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Table 4.4: Truth parameter values

Parameters Magnitude Unit

La/L = ξ2 −ξ1 0.7 -
Lb/L = ξ3 −ξ2 0.06 -

αa , αc 0.75 -
αb 0.0025 -

4.4.1. EFFECT OF LOCATION OF A FLOW BARRIER
In this case we vary the location (ξ2) of the middle block of the system, while the perme-
ability magnitude of that block is fixed at a small value (αb = 0.0025), and evaluate the
corresponding output of the system using equation (4.34). Figure 4.10 depicts the ampli-
tude of the frequency response for different middle block positions at different frequen-
cies. The dashed line in 4.10 is the amplitude of the frequency response in the absence
of the flow barrier.
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Figure 4.10: Amplitude of the frequency response for different barrier position and a fixed low barrier perme-
ability magnitude.

As can be seen in Figure 4.10, the output of the system is quite sensitive to the location
of the middle block when it has smaller magnitudes. In the other words, the location of
the low permeable barrier significantly affects the output of our system. Moreover, it can
be concluded from Figure 4.10 that as the barrier location is closer to the producer it has
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more effect on the output.

4.4.2. EFFECT OF PERMEABILITY MAGNITUDE OF A FLOW BARRIER
In this case we vary the permeability magnitude (αb) of the middle block of the sys-
tem while its location is fixed (ξ2 = 0.7). Subsequently we evaluate the corresponding
frequency response of the system for different values of the middle block’s permeabil-
ity magnitude. Figure 4.11 depicts the frequency response for these cases. The dashed
line in Figure 4.11 is the amplitude of the frequency response in the absence of the flow
barrier.
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Figure 4.11: Amplitude of the frequency response for different barrier permeability magnitude and fixed loca-
tion.

It can be clearly seen that as the permeability magnitude of the middle block increases
i.e., as the resistance to flow decreases, the frequency response of the system becomes
less sensitive to the magnitude variations.

4.5. PARAMETER ESTIMATION IN THE FREQUENCY DOMAIN
In this section we try to estimate uncertain parameters using frequency responses ob-
tained from the transfer function of the system. In this study the location (ξ2) and mag-
nitude (αb) of the middle block are considered as unknown parameters; see Figure 4.6.
We try to estimate these parameters by minimizing a mismatch objective function de-
fined as

V = (Θobser ved −Θout (α,ξ))T P−1
Θ (Θobser ved −Θout (α,ξ)) , (4.35)
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where Θobser ved is the ‘truth’ output vector, which is generated using ‘truth’ parameters
and equation (4.34) at different frequencies by replacing s with jω. Vector Θout is the
simulated output. The starting model parameters are identical to the ‘truth’ parame-
ters except for the middle block location and magnitude. PΘ is the measurement er-
ror covariance matrix, which is chosen as an identity matrix in this study. Note that the
derivative of the objective function can be calculated analytically and we use the limited-
memory Broyden Fletcher Goldfarb Shanno (LBFGS) method to minimize the objective
function. Moreover, since the data vectors (observed and model output) consist of com-
plex numbers we can make our data real-valued by considering them as 2D data points,
i.e. having real and imaginary parts (Blom and Van den Hof, 2010). Following this ap-
proach, we define an augmented data vector by stacking the real and imaginary parts of
the complex-valued vectors.

4.5.1. EXPERIMENT #1: NOISE-FREE PARAMETER ESTIMATION
In the first experiment we use noise-free measurements for parameter estimation pur-
poses. Equation (4.35) is minimized by adjustment of the location and the magnitude of
the middle block. The minimization converges in 15 iterations. The truth, starting and
estimated parameter values for this experiment are listed in Table 4.5.

Table 4.5: Model parameters for experiment #1

Parameters Truth value [-] Starting value [-] Estimated value [-]

ξ2 0.7 0.4 0.7
αb 0.0025 0.75 0.0025

It can be concluded from Table 4.5, similar to experiment #1 in time-domain, that in case
of noise-free measurements we are able to retrieve the location and the magnitude of a
low-perm barrier with 100% accuracy.

4.5.2. NOISE EFFECT ON ESTIMATION OF LOCATION AND MAGNITUDE OF

A LOW-PERMEABLE BARRIER
In presence of noise, equation (4.34) can be written as:

Θout = 1

jω
(S11 +S12)+ν, (4.36)

where ν represents noise in the frequency domain. Note that in our experiments noise
only affects the output.

4.5.2.1. EXPERIMENT #2: HIGH SIGNAL TO NOISE RATIO

In this experiment we generate white noise from the same distribution as used in section
4.2.4 for the high signal to noise ratio experiment in the time domain, and use a Fourier
transform to transform the noise to the frequency domain. Subsequently, we perform
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parameter estimation based on this noisy data. The minimization converges in 14 iter-
ations. Ten different noise realizations are used to calculate the mean and the standard
deviation for estimated parameters.The truth, starting, mean and standard deviation of
the estimated parameter values for this experiment are listed in Table 4.6.

Table 4.6: Model parameters for experiment #2

Parameters Truth val. [-] Starting val. [-] Mean est. val. [-] Stand. dev. [-]

ξ2 0.7 0.4 0.69 0.009
αb 0.0025 0.75 0.0023 0.0003

It can be concluded from Table 4.6, similar to the experiment #2 in the time domain, that
for a low amount of noise the location and the magnitude of the low perm barrier can be
still retrieved with an acceptable accuracy.

4.5.2.2. EXPERIMENT #3: LOW SIGNAL TO NOISE RATIO

In this experiment we increase the amount of noise in the data. Noise is generated from
the same distribution as used in section 4.2.5 for the low signal to noise ratio experi-
ment in the time domain. A Fourier transform is used to transform the noise into the
frequency-domain. Subsequently, we perform parameter estimation based on this noisy
data. The minimization converges in 11 iterations. The truths, starting and mean value
of the estimated parameter values for this experiment are listed in Table 4.7. Moreover,
ten different noise realizations are used to calculate the standard deviation for estimated
parameters.

Table 4.7: Model parameters for experiment #3

Parameters Truth val. [-] Starting val. [-] Mean est. val. [-] Stand. dev. [-]

ξ2 0.7 0.4 0.73 0.03
αb 0.0025 0.75 1×10−5 3.7×10−8

It can be interpreted from Table 4.6 and Table 4.7, that as the noise increases, the accu-
racy of the estimation of the magnitude parameter becomes worse while the location of
the barrier is still accurate. Also these results confirm our twin experiment results in the
time domain.

4.6. VISUALIZATION OF THE OBJECTIVE FUNCTION
In this section we consider the objective function, expressed in equation (4.35), which
is a function of transfer functions S11 and S12 and plot it as a function of our two un-
certain parameters (location and magnitude of the barrier) in an attempt to visualize



4.7. STRUCTURAL IDENTIFIABILITY

4

67

the objective function shape and its spatial dependence on the two parameters. Figure
4.12 depicts the objective function surface in the two-variable space. The red dot in the
Figure 4.12 indicates the minimum of the objective function (‘truth’ parameters).

Figure 4.12: Objective function space. The red dot indicates the minimum.

If we zoom in on the vicinity of the minimum of Figure 4.12, we observe that the surface
also displays a varying magnitude with a minimum in the αb direction, see Figure 4.13.
Figure 4.12 and Figure 4.13 clearly show that our objective function is more sensitive to
the barrier location than to the barrier magnitude, which means that, for the presently
chosen input-output configuration and input signals, the barrier location has a higher
possibility to be estimated correctly from noisy data than the permeability magnitude.
This behavior was indeed observed in our parameter estimation results when the amount
of noise in the data was increased.

4.7. STRUCTURAL IDENTIFIABILITY
The question as to whether parameters can be uniquely identified from measured data
can be considered in two ways. The first approach considers identifiability, i.e. the
question whether or not for a specific input-output combination we can distinguish a
change in any of the parameters (Van Doren, 2010). Such an identifiability analysis was
performed in the previous sections where we considered a specific input-output config-
uration with specific inputs and measurement errors. The second approach considers
(local) structural identifiability., i.e. the question whether or not we can distinguish a
change in any of the parameters at all from input-output data, assuming an optimally
chosen, ‘persistently exciting’ input (Glover and Willems, 1974; Van den Hof et al., 2009).
Such a structural identifiability analysis is performed in this section by considering the
properties of the parameterized transfer functions, which were derived in section 4.3.
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Figure 4.13: Zoomed in objective function space. The red dot indicates the minimum.

To this end we investigate the sensitivity of transfer functions S11 and S12 with respect
to our uncertain parameters (barrier location and barrier magnitude) around the truth
parameters. Because the parameters have different orders of magnitude, scaling will in-
fluence the identifiable parameter space. Here we scale the sensitivity vectors by the
truth parameters:

αb = α̃b

αb,tr ue
, (4.37)

∂S

∂α̃b
=αb,tr ue

∂S

∂αb
, (4.38)

where S is the system transfer function, α̃b is the scaled magnitude variable and αb,tr ue

is the truth case magnitude.

Figure 4.14 depicts the sensitivity of the system transfer functions with respect to barrier
location and barrier magnitude. It can be clearly seen that the system transfer functions
are more sensitive to the barrier location than to the barrier magnitude for all frequen-
cies considered. This result confirms the findings from the previous sections and, more-
over, implies that the difference in identifiability between location and magnitude is not
data-dependent but is a structural property of the system.

4.8. DISCUSSION
The time-domain examples presented in this chapter are based on experimental results
for a model in which only spatially varying permeabilities are parameterized, while the
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Figure 4.14: Sensitivity of transfer functions with respect to barrier location and barrier magnitude.

frequency domain examples use a model where a structured physics-based approach is
applied in terms of location of the barrier, and magnitude of its permeability. We note
that there exist techniques to represent the transient response to spatially varying het-
erogeneities in the Laplace domain with the aid of transformed variables but we did not
pursue these (Levitan and Crawford, 2002). In our study the frequency domain approach
uses more prior knowledge (the barrier is parameterized) than the time-domain ap-
proach (where all permeabilities are estimated separately). Secondly the first approach
is really experiment-driven, while the second approach has to the capacity to say some-
thing about identifiability independent of the particular experimental data that is used.
Moreover, the frequency domain approach could be used to analyze in which particular
frequency region the sensitivity of the parameters is largest and to design an experiment
by picking, e.g., a sinusoidal signal of that (maximum sensitive) frequency. Similar ideas
have been discussed in the well testing community since the early 1970’s, for purposes
of “harmonic testing”; see, e.g., Hollaender et al. (2002) and references therein.
We note that we could have used the pressure in the injector as an additional output.
However, in practice, wellbore pressures in injectors seem to be less frequently avail-
able for history matching studies than wellbore (or tubing head) pressures in producers.
Moreover, pressures in injectors are strongly influenced by the near-wellbore effects of
induced fractures which makes their value for reservoir-wide information inference lim-
ited. A similar argument could be made for pressures in the producers, which we used
as known inputs, because they may be influenced by the near-wellbore effects of for-
mation damage (“skin”). We expect that including the injector pressure in our analysis
(i.e. adding transfer function S21 and S22 to Figure 4.9) would improve the identifiabil-
ity whereas leaving out the producer pressure from the inputs (i.e. removing transfer
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function S12 and only keeping S11 in Figure 4.9) will deteriorate the identifiability.

4.9. CONCLUSIONS
• The frequency-domain analytical solution makes it possible to investigate the ef-

fect of different parameters on the dynamic behavior of the system.

• It is possible to estimate location and magnitude of a flow barrier from noise-free
measurements in slightly compressible single-phase flow.

• When the noise level in the data is increased, the location of the barrier remains
relatively more identifiable than its permeability magnitude.

• The presence of noise in the data results in unrealistic permeability magnitude
estimates.

• Visualization of the objective function space in the frequency-domain illustrates
that the dynamic output of our system is more sensitive to the barrier location
than to barrier magnitude

• A structural identifiability analysis using the transfer function approach shows
that the difference in identifiability between location and magnitude is not data-
dependent but is a structural property of the system.



5
STRUCTURAL MODEL UPDATING

USING DYNAMIC DATA

I N spite of large uncertainties in the actual reservoir structure, structural parameters
of a reservoir model are usually fixed during history matching and only the flow prop-

erties of the model are allowed to vary. This often leads to unlikely or even unfeasible
property updates and possibly to a poor predictive capability of the model. In those
cases it may be expected that updating of the structural parameters will improve the
quality of the history match. Preferably such structural updates should be implemented
in the static (geological) model, and not just in the dynamic (flow) model. In this chap-
ter we use a gradient-based history matching method to update structural properties
of the static model. We use an adjoint method to efficiently compute the derivatives
of the data mismatch with respect to grid block porosities in the dynamic model and
convert the corresponding volume changes to structural updates (layer thicknesses) in
the static model. The underlying assumption is that the uncertainties in the layer thick-
ness are much larger than the uncertainty in the porosities. This method is suitable for
structural updating of large scale reservoir models using production data and/or time-
lapse seismic or other spatially distributed data. The method is tested on a 3D synthetic
model, where time-lapse as well as production data have been used to update depth
of the reservoir’s bottom horizon. We obtained significant improvements in the history
match quality and the predictive capability of the model.

This chapter is from, Kahrobaei, S., Van Essen, G.M., Van Doren, J.F.M., Van den Hof, P.M.J. and Jansen, J.D.,
2013. Adjoint-Based History Matching of Structural Models Using Production and Time-Lapse Seismic Data.
Proc. SPE RSS13.
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5.1. INTRODUCTION

The objective of history matching is to improve the predictive capacity of a reservoir sim-
ulation model through adjusting the model parameters until the simulated data match
the historical data as closely as possible. In spite of large uncertainties in the reservoir
structure, in many cases the structural model parameters are fixed during the history
matching process and only the flow-related properties (e.g. permeability, porosity and
net-to-gross ratio) of the model are allowed to vary. This often leads to either a poor
history match or unlikely (or even unfeasible) parameter updates. Structural uncer-
tainties can significantly affect various aspects of the reservoir model such as reservoir
bulk volume and well positions and subsequently affect the predictive capability of the
model (Thore et al., 2002; Seiler et al., 2010). Consequently, updating of the structural
reservoir parameters by assimilation of production data and time-lapse seismic data has
the potential to improve the quality of history matched models considerably. In typ-
ical computerized modeling workflows, the static (geological) model is built based on
seismic interpretations, logs, cores, outcrop data, and geological insight. Subsequently,
because the static model contains millions of grid cells, it is upscaled to a coarser grid
during export to the dynamic (reservoir flow) model for flow simulations. Thereafter,
a set of flow-related uncertain reservoir model parameters is identified and then up-
dated using historical data. There are different disadvantages associated with this work-
flow. Most importantly, because of the sequential nature of the approach, the history
matched reservoir models are often inconsistent with static data and display geologi-
cally unrealistic features. Furthermore, in this workflow, modeling is typically based on
‘low, medium and high cases’ of static reservoir parameters related to stock tank oil ini-
tially in place (STOIIP), which are generated before quantifying the dynamic outcomes,
such that the flow-related uncertainties are not necessary adequately captured. A re-
lated issue is that the geological models and the upscaled flow models often contain
many details that are irrelevant to the flow response. In contrast, a ‘Big Loop’ approach
can be used to avoid the disadvantages of the traditional modeling workflow. The Big
Loop approach is an integrated reservoir modeling workflow in which parameter up-
dates are performed in the static model. Not only does this ensure more realistic up-
dates, it also facilitates incorporating knowledge from different subsurface disciplines.
Moreover, systematic criteria can be derived that help to determine which level of geo-
logic model detail is flow-relevant or business-decision-relevant. Several authors have
proposed such an integrated workflow (Chierici, 1992; Caers, 2003; Hamman et al., 2003;
Gross et al., 2004; Hoffman et al., 2005; Suzuki and Caers, 2006; Elrafie et al., 2009; Seiler
et al., 2009; Kaleta et al., 2012). In this chapter we do not employ a full Big Loop work-
flow, but, instead, we focus on updating some of the structural aspects of the static
model. Such an approach to update structural parameters has been addressed in sev-
eral studies before (Rivenæs et al., 2005; Suzuki et al., 2008; Schaaf et al., 2009; Seiler
et al., 2010; Skjervheim et al., 2012). Rivenæs et al. (2005) generated various fault pat-
terns and ran streamline simulations for the entire set of realizations. Next they per-
formed model selection (rather than history matching) by ranking of the models based
on the mismatch between simulated and measured production data. Suzuki et al. (2008)
built a large set of models that covered a wide range of possible structural interpreta-
tions, and subsequently used stochastic search methods to find those realizations that
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matched the historical production data. Schaaf et al. (2009) presented a workflow that
updates both geological and simulation models at the same time using two different op-
timization methods. Synthetic historical production data were assimilated in their work-
flow. The results showed a reduction in the objective function value (i.e. the averaged
mismatch between historic and simulated data) but the data match was relatively poor.
Seiler et al. (2010) proposed a method to handle structural uncertainties in the reservoir
model and presented a history matching workflow for updating structural model param-
eters with the ensemble Kalman filter (EnKF) through assimilating production data. To
represent structural uncertainty an ensemble of top and bottom reservoir horizons were
generated around a base-case representing the most-likely interpretation. The vertical
positions of points at the top and bottom horizons were considered as the uncertain
parameters which were included in an augmented state vector and updated using the
EnKF method. Skjervheim et al. (2012) introduced an integrated workflow in the form of
a consistent modeling chain from depth conversion to flow simulation. They also rep-
resented the uncertainty with an ensemble of realizations and used various ensemble-
based assisted history matching methods such as the ensemble smoother and the EnKF.
Leeuwenburgh et al. (2011) also demonstrated the feasibility of an integrated work flow
for structural parameter updating using the EnKF. Although, the EnKF is an efficient
method for structural surface updating, it has a number of drawbacks. The ensemble
and ensemble size in the EnKF need to be selected carefully such that uncertainty is suf-
ficiently captured. In addition, to avoid high computational costs, a relatively small en-
semble is generally chosen, i.e., the number of ensemble members (typically hundred)
is small compared to the number of unknown parameters (typically in the order of the
number of grid blocks). The assimilation of large amounts of data (e.g. as resulting from
time-lapse seismic) with relatively small ensembles could lead to spurious correlations
which may lead to unphysical updates of state variables and/or model parameters, see
e.g. Aanonsen et al. (2009) or Oliver and Chen (2011). Gradient-based history matching
is an alternative for structural updating, which does not suffer from these drawbacks.
In the studies cited above, only production measurements were assimilated in the his-
tory matching workflow. Production data provide localized spatial information about
the area around the well locations and only very limited and averaged information about
the regions in-between the wells. Consequently, the production data often contain in-
sufficient information for history matching of large-scale structural parameters. On the
other hand, time lapse seismic data can provide information on the areal distribution of
pressure and saturation changes due to fluid production or injection. Hence, assimila-
tion of time-lapse seismic data to estimate the structural parameters can result in more
reliable results, see, e.g., Gosselin et al. (2001) or Van Essen et al. (2012). In this chapter
we propose an assisted history matching workflow for structural parameter updating by
assimilating time-lapse seismic data and/or production data with a gradient-based his-
tory matching method. The methodology is explained in the next section. Thereafter we
present and discuss the results of three ‘twin experiments’ in which the method is tested
with the aid of synthetic data.
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5.2. METHODOLOGY

5.2.1. ADJOINT METHOD FOR HISTORY MATCHING OF STRUCTURAL MOD-
ELS

Gradient-based history matching is an iterative procedure in which the update of the
uncertain parameters is determined with the aid of the gradient vector (i.e. the vector
of derivatives) of the mismatch objective function with respect to the uncertain param-
eters. Typically many iterations are required, and therefore it is essential to choose an
efficient way to calculate the gradients. The gradients can be calculated either analyti-
cally or numerically. Methods that use numerical gradients are easy to implement but
are computationally inefficient, especially when there is a large number of parameters.
In the most time-consuming, deterministic, numerical variety one reservoir simulation
is required for each uncertain parameter. In stochastic numerical approaches, this num-
ber can be somewhat reduced but still becomes prohibitively large for realistically sized
reservoir models. On the other hand, methods that use analytical gradients, and in par-
ticular the adjoint method, are computationally much more efficient. The computa-
tional cost of the adjoint method depends on the number of objective functions and not
on the number of variables, because this method provides the gradients of a given ob-
jective function with respect to all implemented variables by running a small number of
simulations. Hence, among the existing methods for calculating gradients, the adjoint
method is the most efficient one. The major disadvantage of the method is the signifi-
cant amount of programming that is required to implement it in a reservoir simulation
code. The adjoint method was first used for history matching by Chen et al. (1974) and
Chavent et al. (1975), and thereafter refined by many authors. For detailed overviews,
see the book of Oliver et al. (2008) or the review paper by Oliver and Chen (2011). In this
study we propose to use the adjoint-method in a Big Loop approach for history matching
of structural parameters.

5.2.2. WORKFLOW

We use an in-house reservoir simulator with adjoint-functionality (Kraaijevanger et al.,
2007). The simulator can provide the gradient of a mismatch function with respect to
grid block parameters (e.g. permeabilities or porosities). However, in order to use gra-
dient information for structural parameter updating we need to integrate static and dy-
namic modeling. To this end we use a Big Loop workflow in which the in-house dynamic
simulator is coupled to commercial geological modeling software (Kaleta et al., 2012).
In this workflow all the uncertain parameters are defined in the static domain. After
constructing one or more static realizations these are exported to the dynamic domain
for reservoir flow simulation, typically after an upscaling step (although the latter is not
needed for the example described below). If there is a significant mismatch between the
dynamic simulation results and the historical data, the gradients of the mismatch ob-
jective function with respect to dynamic grid block parameters are then used to update
the static model parameters as will be discussed in detail below. The workflow is shown
schematically in Figure 5.1.
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Figure 5.1: Workflow for gradient-based history matching of structural parameters in the static model. Note:
upscaling is not performed in our examples.

5.2.3. PARAMETERIZATION
Structural uncertainties may result from different sources such as migration, picking,
and time-to-depth conversion errors (Thore et al., 2002). Here we assume that the depths
of the top and bottom reservoir horizons are the major uncertainties in the static model,
which results in an uncertainty in reservoir thickness. Moreover, in this study the top
surface of the reservoir is fixed such that the uncertainty in reservoir thickness is due to
the uncertainty in the reservoir bottom depth only. Hence, the reservoir bottom depth is
used as history matching parameter. Unfortunately, gradients with respect to grid block
heights are not available from our simulator, but gradients with respect to grid block
porosity can be interpreted as indications of where the reservoir volume, and thus the
bottom depth, needs to be adapted.

5.2.4. MISMATCH OBJECTIVE FUNCTION
We apply the following objective function to represent the mismatch between historical
and simulated data:

J (ϕ) = (d−h (ϕ))T Pd
−1 (d−h (ϕ)) , (5.1)

where d is a vector of measured data, h(ϕ) is a vector of simulated data, ϕ is a vector of
grid block porosities, and Pd is a square positive semi-definite matrix of weight factors
which is often chosen as the measurement error covariance matrix. We aim to assimilate
production measurements as well as time-lapse seismic data, where we assume that the
time lapse seismic results are available in the form of interpreted saturations. Hence,
we use two different objective functions: one defined as the mean squared difference
between observed and simulated production data, and one defined as the mean squared
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difference between observed (i.e. interpreted) and simulated grid block saturations. The
gradient of the objective function is defined as the column vector containing the partial
derivatives of J with respect to the components of the uncertain grid block porosities:

∇Jϕ =
(
∂J

∂ϕ

)T

=
[
∂J

∂ϕ1

∂J

∂ϕ2

∂J

∂ϕ3
· · · ∂J

∂ϕn

]
, (5.2)

where n is the number of grid blocks in the dynamic reservoir model.

5.2.5. STRUCTURAL MODEL UPDATING
The gradient of the objective function is calculated by the adjoint method in the dynamic
simulator. Subsequently this gradient information is used to update the position of the
reservoir bottom horizon by converting the gradient with respect to porosities to a gra-
dient with respect to bottom depths defined as

∇Jb =
(
∂J

∂b

)T

=
[
∂J

∂b1

∂J

∂b2

∂J

∂b3
· · · ∂J

∂bm

]
, (5.3)

where b is a vector of reservoir bottom depths, and m is the number of grid blocks in the
bottom layer of the reservoir model. Using partial derivative of the pore volume of each
gridblock with respect to porosity and depth, the relation between the gradients is given
by

∂J

∂bi
= ∂J

∂ϕi

ϕi

∆hi
, i = 1, · · · ,m, (5.4)

where ∆hi is the height of grid block i , and ϕi is the porosity of that gridblock. Note that
in our implementation we only use the porosity gradients for the bottom layer of grid
blocks such that n = m.

We use a simple steepest descent method to update the bottom depth values, i.e. the
vertical coordinates (with positive axis pointing downwards) at the centers of the grid
blocks in the bottom layer of the reservoir model:

b j+1 =b j +β
(
∂J

∂b

)T

j
, (5.5)

where the positive scalar β is a fixed step length, and j is an iteration counter. The reser-
voir thickness at the grid blocks corresponding to the well locations is assumed to be
known, such that the gradients in those grid-blocks are zero.

5.3. RESULTS AND DISCUSSIONS

5.3.1. TWIN EXPERIMENTS
We perform three ‘twin experiments’, using the same ‘truth’ case (used to generate syn-
thetic data) but two different uncertain prior models. The first two experiments involve
the assimilation of production data, while in the last one we assimilate time lapse seis-
mic data.
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5.3.1.1. TRUTH CASE

The ‘truth’ case represents a simple three dimensional reservoir with three layers: an im-
permeable shale layer in between permeable top and bottom zones; see Figure 5.2. The
average reservoir thickness is 65 m, the average depth is 4100 m, the water-oil-contact
is located at 4085 m and the STOIIP is 1.14×108 bbl. The initial water saturation is 0.1
and the initial reservoir pressure is 40 MPa at the top perforations. The top zone and the
bottom zone have a constant permeability of 500 mD and 650 mD and a constant poros-
ity of 0.15 and 0.2 respectively. Corey-type relative permeabilities are used for relperms.
The fluid properties and Corey exponents are given in Table 5.1. Eight injectors and four
producers, perforated over the entire height of the producing layers, are located in the
field. Figure 5.2 shows the permeability field of the ‘truth’ case together with injector and
producer locations. The reservoir model contains three layers of grid blocks with a total
number of grid blocks equal to 3888.

Figure 5.2: The ‘truth’ case permeability field. Seven injectors are placed around the field and one in the
center. Four producers are located in central part of the field. The transparent plane indicates the cross section
corresponding to Figure 5.4 and Figure 5.5

At the start of production the injectors operate at a constant flow rate of 300 m3/day and
the producers at a bottomhole pressure of 39 MPa at the top perforations, i.e. 1 MPa be-
low the reservoir pressure. This ‘truth’ case is used to create synthetic production data
over a period of 12 years. The measurements (oil rate, water rate per well) are taken
monthly. After eight years of production one seismic survey is conducted. Interpreted
time-lapse seismic data is represented as saturation changes per grid block. Figure 5.3
shows the oil saturation in the bottom layer of the truth model after eight years of pro-
duction. No measurement errors are added to the data.
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Table 5.1: Fluid properties and Corey exponents

Variable Parameters Value Unit

ρw Water density 1009 Kg/m3

ρo Oil density 880 Kg/m3

µw Water viscosity 1×10−3 Pa.s
µo Oil viscosity 4×10−3 Pa.s

Swc Connate water saturation 0.2 -
Sor Residual oil saturation 0.1 -
k0

r w End point water rel perm 0.9 -
k0

r o End point oil rel perm 0.8 -
nw Water Corey exponent 3 -
no Oil Corey exponent 4.75 -

Figure 5.3: Oil saturation in the bottom layer of the ‘truth’ case after 8 years of production.

5.3.1.2. PRIOR MODELS

In this study, the true bottom horizon is assumed to be unknown. The bottom horizon
of the prior models is obtained by stochastic manipulation of the bottom horizon of the
‘truth’ case. Two different prior models are chosen: prior #1 represents a reservoir struc-
ture that is relatively close to the truth case, and prior #2 a structure that displays signif-
icant differences compared to the truth. All remaining parameters in the prior models
are chosen identical to those of the ‘truth’ case and assumed to be known. Figure 5.4 and
Figure 5.5 show cross sections of the prior models and the ‘truth’ for prior #1 and prior
#2 respectively. The blue line represents the bottom of the ‘truth’ case, the red line repre-
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sents the bottom of the prior model, and the black line represents the top of the bottom
layer (i.e. the bottom of the shale layer).

Figure 5.4: A cross section of the ‘truth’ case and prior #1. This prior is close to the truth. Red represents the
bottom of the prior model, blue represents the bottom of the truth, and the black represents the bottom of the
shale layer.

Figure 5.5: A cross section of the truth model and the prior #2. This prior is significantly different from the
truth. Red represents the bottom of the prior model, blue represents the bottom of the truth, and the black
represents the bottom of the shale layer.

5.3.2. EXPERIMENT #1: ASSIMILATION OF PRODUCTION DATA STARTING

FROM PRIOR #1

In the first twin experiment the history match is performed starting from prior #1 by
assimilating production data. We do not use any scaling of the data. After some trial and
error we selected a step size β = 7.5×10−4 m2, while a relative convergence of 0.005 is
used a stopping criterion. Figure 5.6 shows the convergence of the objective function
after eleven iterations.

Figure 5.7 depicts a cross section of bottom horizons of the ‘truth’ case (blue), the prior
model (red) and the updated model (green) after eleven iterations. Figure 5.8 depicts the
prior and updated residual maps of the bottom horizon, where the residual is defined
as the difference in depth between the ‘truth’ and the model. The colors represent the
residuals (in m) and the contour lines indicate the shape of the true bottom horizon
(without scale). The black line indicates the cross section corresponding to Figure 5.7. In
this experiment, which starts from a prior that is close to the truth, updating the reservoir
bottom depth by assimilation of production data leads to an improved posterior.
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Figure 5.6: Mismatch objective function for experiment #1

Figure 5.7: Cross section through the bottom layer of the reservoir for experiment #1. Blue represents the truth,
red represents prior #1, and green represents the updated model.

Figure 5.8: Prior (left) and updated (right) residual maps for experiment #1. Colors represent the residuals in
m. Contour lines indicate the true bottom depth (without scale).

5.3.3. EXPERIMENT #2: ASSIMILATION OF PRODUCTION DATA STARTING

FROM PRIOR #2
Experiment #2 involves the assimilation of production data starting from prior #2 which
is further from the truth than prior #1. With a step length β= 7.5×10−6 m2, the objective
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function converged after 50 iterations but did not show a large drop in value; see Figure
5.9. Note that the small increase in the objective function value in 21st iteration is due
to the fact that we used a fixed step length without line search. The updated model does
not show a good match with the truth; see Figure 5.10. The same message is conveyed
by Figure 5.11 which depicts the prior and updated residual maps of the bottom hori-
zon. Except for minor changes close to some of the well locations (myprod3, myprod4
and myinj4), the updated model has not changed significantly with respect to the prior
model. This example illustrates that production data often do not contain enough in-
formation to reduce uncertainties in areas that are not in the immediate vicinity of the
wells, and that the results of history matching using production data are dependent on
the quality of the prior model.
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Figure 5.9: Mismatch objective function for experiment #2.

Figure 5.10: Cross section through the bottom layer of the reservoir for experiment #2. Blue represents the
truth, red represents prior #2, and green represents the updated model.

5.3.4. EXPERIMENT #3: ASSIMILATION OF TIME-LAPSE SEISMIC DATA START-
ING FROM PRIOR #2

Just like experiment #2, experiment #3 starts from the ‘poor’ prior #2, but now involves
the assimilation of time-lapse seismic data instead of production data. The step length
is chosen as β= 3.5 and after 30 iterations the value of the objective function is reduced
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Figure 5.11: Prior (left) and updated (right) residual maps for experiment #2. Colors represent the residuals in
m. Contour lines indicate the true bottom depth (without scale).

by a factor of ten; see Figure 5.12.
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Figure 5.12: Mismatch objective function for experiment #3.

Figure 5.13 depicts the prior and updated depths of the bottom horizon and Figure 5.14
the corresponding residual maps. In contrast with the previous example, history match-
ing of the bottom horizon by assimilation of time-lapse seismic data results in an accept-
able mismatch objective function value as well as a good match between the updated
model and the truth.
Figure 5.15 depicts the oil flow rates of each of the four production wells during 15 years
of production for experiment #3. Production starts in 2004 and after eight years, in 2012,
a time lapse seismic survey is conducted and the interpreted results are assimilated. The
curves thereafter represent predictions of the future oil production. It can be observed
that not only the simulated oil flow rates of the updated model are in a good agreement
with the measured rates, but that also the predicted flow rates are much closer to the
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Figure 5.13: Cross section through the bottom layer of the reservoir for experiment #3. Blue represents the
truth, red represents prior #2, and green represents the updated model.

Figure 5.14: Prior (left) and updated (right) residual maps for experiment #3. Colors represent the residuals in
m. Contour lines indicate the true bottom depth (without scale).

truth than those simulated with the prior model.

5.4. DISCUSSION

In this study the uncertain parameters are updated without constraints. Moreover, the
objective function does not contain a term that penalizes deviations from the prior pa-
rameter values, as is required in a Bayesian framework (see e.g. Oliver et al. (2008)). Such
a penalty term makes the problem well posed, restricts the parameter updates to values
that keep the posterior values not too far from the prior values, and generally increases
the smoothness of the results. Assimilation of production data to update the bottom
depth of prior #2 showed that production data do not provide sufficient information for
reliable updates away from the wells whereas time lapse seismic provides much more
spatially distributed information, leading to improved updates and improved predic-
tions. Similar conclusions, but then for updating flow properties instead of structural
properties have been reported before, see e.g. Walker and Lane (2007).
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Figure 5.15: Oil flow rates of each of the four production wells for experiment #3. Red curves represent the
rates of the prior model simulation, blue curves represent the rates of the updated model, and black curves
represent the true rates. The vertical dashed line indicates the moment that the history match is performed.

5.5. CONCLUSIONS
In this chapter we proposed a new method for updating uncertain structural reservoir
parameters by combining static and dynamic reservoir models in a ‘Big Loop’ history
matching workflow using gradient-based history matching. In particular we assumed
the parameters defining the bottom horizon of the static reservoir model to be uncertain
and updated them by assimilation of production data or time-lapse seismic data using
the adjoint method. We tested the method on three simple 3D synthetic examples in
which the bottom depth was the only uncertain parameter while the measurements were
assumed to be error free. We conclude that for these examples:

• The adjoint method is a computationally efficient method for history matching of
the structural model parameters.

• Gradients of the mismatch objective function with respect to grid block porosities
can serve as an acceptable approximation for gradients with respect to bottom
depths and can thus be used to update the reservoir thickness, or in case of uncer-
tain porosities, the product of porosity and reservoir thickness.
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• Production data contain mostly localized information from the near-well bore area
and are therefore of limited value to update structural reservoir parameters in ar-
eas away from the wells. As a result the updated results are strongly dependent on
the prior model.

• Time-lapse seismic data (in the form of interpreted saturations) contain much
more spatially distributed information and are therefore a much better source
of information to update structural reservoir parameters in areas away from the
wells.

• Updating the structural parameters of the static reservoir model significantly im-
proves the predictive capacity of the correspondingly updated dynamic reservoir
model.





6
CONCLUSIONS

I N this chapter we first provide general conclusions and observations from this thesis
followed by specific conclusions of each chapter of the thesis.
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6.1. GENERAL CONCLUSIONS
One of the key elements of history matching using the Bayesian framework is “regular-
ization” which essentially aims to find an updated model constrained to the prior in-
formation. In reality it is highly likely that this prior knowledge is incorrect due to the
presence of a large number of uncertainties. In this thesis we show that updating mod-
els constrained by the prior knowledge may lead to suboptimal results in the presence of
incorrect prior knowledge. To solve this problem, in this thesis we show that using an un-
regularized update during the history matching procedure leads to unrealistic updates of
the model parameters. While these unrealistic updates may seem undesirable, we show
in this thesis that these unrealistic parameter updates can actually provide very signif-
icant information about flow relevant features present in reality which were missing in
the prior knowledge. The information content from these unrealistic parameter updates
obtained using dynamic flow data is used to improve the fundamental understanding
of the static/geological model by incorporating the ‘missing’ geological/structural fea-
tures. In this way, through a multi-disciplinary approach, we are able to improve the
understanding of our reservoir, and the associated updated reservoir models will be able
to provide more robust results within a decision making context. The information con-
tent in dynamic data can be investigated within a theoretical framework using a transfer
function formalism which has been introduced and investigated in detail in this thesis.
This transfer function formalism provides a new and unique perspective to assess the
identifiability of different parameters and provides insights into the physical character-
istics of a system. Through this transfer function formalism we have shown that we are
able to identify the position of the ‘missing’ features using dynamic data. We have shown
that the location of the ‘missing’ feature has a more pronounced effect on the data com-
pared to the magnitude of the ‘missing’ feature. For the examples considered in this
thesis we have shown that the transfer function formalism provides a theoretical expla-
nation for the behavior observed for unregularized history matching. In addition to us-
ing unregularized updates during history matching we have also investigated the impact
of a variety of different regularization techniques. These regularization techniques aim
to restore well-posedness in the problem. These techniques are also able to retrieve the
‘missing’ features which were non-existent in the prior knowledge and provide smoother
parameter updates compared to the unregularized updates. In this thesis, building on
an earlier work, we have shown the impact of non-uniqueness of history matched model
due to the inherent ill-posedness in such inverse problems which provides a methodol-
ogy to determine upper and lower bounds on future production predictions. Such upper
and lower bounds for the predictions give vital insights into possible consequences for
a variety of objectives, economic or recovery based. This information can play a role in
the quantification of the value of information through history matching. The specific
conclusions of each chapter of this thesis are provided in the following sections.

6.2. CHAPTER TWO: EFFECT OF ILL-POSEDNESS OF HISTORY-
MATCHED MODELS ON PRODUCTION PREDICTIONS

In this chapter, we applied a hierarchical optimization method, proposed by Van Essen
et al. (2010), to determine lower and upper bounds on predicted production to inves-
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tigate the effect of ill-posedness of history-matched models on reservoir performance
prediction. We conclude that:

• The non-uniqueness of history matched models implies that future production
can only be predicted within bounds.

• The non-uniqueness implies the presence of remaining degrees of freedom after
history matching (i.e. after solving the primary optimization problem) which can
be used to determine lower and upper bounds on future production through solv-
ing two secondary optimization problems.

• The method proposed in this chapter provides a way to gain more insight in the
possible economic consequences of the lack of information in historic data. These
consequences can be represented by total production, ultimate recovery, (incre-
mental) NPV or any other economic measure.

• The method is not limited to historic production data. Alternative data sources,
e.g. time-lapse seismic data, can be used to determine the impact on the predicted
economic performance. Hence, this method may also play a role in the quantifi-
cation of the value of information.

• Introducing more data sources, e.g. time-lapse seismic or prior information, re-
sults in smaller differences in economic performance (incremental NPV) between
the lower and upper bound models.

6.3. CHAPTER THREE: UNDER-MODELING DETECTION
In this chapter several twin experiments were conducted and unregularized parameter
estimation was applied to update uncertain parameters in a simple 2D reservoir model
that contained a major flow-relevant deficiency in the form of a missing high- or low-
permeability feature. We found that, for these examples,

• Updating in a Bayesian framework results in updates close to the prior, without
any indication of the missing feature.

• Updating without regularization enables us to identify the presence and the loca-
tion of the missing flow-relevant feature in the model, but not the correct magni-
tude.

• The identifiability of the presence and location deteriorates with increasing noise
levels in the data.

• When the flow-relevant feature is located closer to the producer its presence and
location seem to become more identifiable.

Next, to investigate these findings, we performed a quantitative identifiability analysis of
the examples using a dimensionless sensitivity matrix in order to analyze the sensitivity
of the system output (in the form of total flow rates in the wells) to the system parameters
(the grid block permeabilities). From the results we conclude that
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• The output of these examples is more sensitive to a flow-relevant feature when the
feature is closer to a producer.

• As the noise level increases the singular values of the corresponding sensitivity
matrix decrease and the parameter estimation solutions become more dominated
by noise.

Moreover, discrete cosine transform (DCT) reparameterization and total variation reg-
ularization have been used to restore well-posedness in reservoir parameter estimation
problems. We have shown that while penalizing the deviations from a prior model can
be misleading in an under-modeling situations other alternative methods are able to re-
store a missing flow-relevant feature.

We conclude that, for the examples considered, the application of unregularized reser-
voir parameter estimation provides a means to identify the presence and location of
significant model deficiencies, in line with the ‘model maturation’ concept proposed in
Joosten et al. (2011). Further analysis, using larger-scale models and more complex flow-
relevant features, will be required to determine the limits of validity of this concept.

6.4. CHAPTER FOUR: IDENTIFIABILITY OF FLOW-RELEVANT

FEATURES
In this chapter we have investigated the possibility of detecting the location and the mag-
nitude of flow barriers in a 1D reservoir for slightly compressible single-phase flow from
the observations (outputs) under different noise conditions. To this end we have con-
ducted different twin-experiments in the time domain and the frequency domain. For
the latter we have developed an analytical expression for the dynamical characteristics
of the system as a function of system properties based on a transfer function formalism
in the form of bilaterally coupled porous media models. We conclude that:

• The frequency-domain analytical solution makes it possible to investigate the ef-
fect of different parameters on the dynamic behavior of the system.

• It is possible to estimate location and magnitude of a flow barrier from noise-free
measurements in slightly compressible single-phase flow.

• When the noise level in the data is increased, the location of the barrier remains
relatively more identifiable than its permeability magnitude.

• The presence of noise in the data results in unrealistic permeability magnitude
estimates.

• Visualization of the objective function space in the frequency-domain illustrates
that the dynamic output of our system is more sensitive to the barrier location
than to barrier magnitude

• A structural identifiability analysis using the transfer function approach shows
that the difference in identifiability between location and magnitude is not data-
dependent but is a structural property of the system.
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6.5. CHAPTER FIVE: STRUCTURAL MODEL UPDATING USING

DYNAMIC DATA
In this chapter we proposed a new method for updating uncertain structural reservoir
parameters by combining static and dynamic reservoir models in a ‘Big Loop’ history
matching workflow using gradient-based history matching. In particular we assumed
the parameters defining the bottom horizon of the static reservoir model to be uncertain
and updated them by assimilation of production data or time-lapse seismic data using
the adjoint method. We tested the method on three simple 3D synthetic examples in
which the bottom depth was the only uncertain parameter while the measurements were
assumed to be error free. We conclude that for these examples:

• The adjoint method is a computationally efficient method for history matching of
the structural model parameters.

• Gradients of the mismatch objective function with respect to grid block porosities
can serve as an acceptable approximation for gradients with respect to bottom
depths and can thus be used to update the reservoir thickness, or in case of uncer-
tain porosities, the product of porosity and reservoir thickness.

• Production data contain mostly localized information from the near-well bore area
and are therefore of limited value to update structural reservoir parameters in ar-
eas away from the wells. As a result the updated results are strongly dependent on
the prior model.

• Time-lapse seismic data (in the form of interpreted saturations) contain much
more spatially distributed information and are therefore a much better source
of information to update structural reservoir parameters in areas away from the
wells.

• Updating the structural parameters of the static reservoir model significantly im-
proves the predictive capacity of the correspondingly updated dynamic reservoir
model.
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SUMMARY

Subsurface reservoir models, which are used to simulate and predict the fluid flow through
the porous media below the earth surface, are associated with uncertainties. These un-
certainties in the reservoir models, which result from limited knowledge about the reser-
voir and also from interpretation errors, may lead to responses which are often inaccu-
rate or not comparable to the responses obtained from the real reservoir. This discrep-
ancy can significantly affect long-term predictions and decisions. Therefore it is essen-
tial to constantly improve and correct the reservoir models by integration of dynamic re-
sponses from the real reservoir field. The objective of this process, which is called history
matching, is to employ measurements to improve knowledge about the model proper-
ties so as to enhance the predictability of a model to accurately forecast the production
response of a real reservoir. Due to a large number of uncertain parameters and limited
available data, history matching problems are ill-posed, which results in many possible
combinations of reservoir parameters. A most common way to restore well-posedness
in history matching problems is to regularize the problem by adding an extra term to
the objective function, which penalizes deviation from a prior model. This regulariza-
tion term constrains the parameters values to values not too far from the prior model.
In an under-modeling situation, where some unexpected features are not captured in
the prior reservoir model due to interpretation errors of geological data, such a penalty
term is undesirable since the updated parameters are constrained by an incorrect prior
knowledge. In such scenarios integration of dynamic data of a reservoir system without
any regularization can be more insightful. Unregularized integration of dynamic data
may result in unrealistic parameter updates, but these unrealistic parameters may com-
pensate for a flow-relevant feature that is not modeled. Therefore, it can serve as a tool
to indicate the geological interpretation errors. In this thesis the relevant information
in the dynamic response of a reservoir system and the possibility to identify unexpected
flow-relevant features that have not been modeled are investigated.

Chapter 2 employs a hierarchical optimization procedure, proposed by Van Essen et al.
(2010), to show the ill-posed nature of history-matched models by determining lower
and upper bounds of the predicted production. This chapter illustrates through a de-
tailed set of numerical experiments the impact of ill-posedness inherently present in
history matching problems, which can result in reservoir models that equally match the
historical data but provide different forecasts. Additionally, chapter 2 investigates how
this method can be used to indicate the added value of alternative data sources such as
time-lapse seismic.

Chapter 3 provides a numerical experimental analysis which aims to investigate the in-
formation content in unregularized ill-posed inverse problems. Different flow-relevant
features are considered in different locations under different noise conditions to inves-
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tigate their influence on the dynamic of a reservoir system. This chapter shows that
integration of dynamic data without any constraint may be helpful to detect some flow-
relevant features that are not captured in the prior model. Chapter 3 also provides a
quantitative identifiability analysis to further analyse the numerical findings. Moreover,
different alternative formulations rather than penalizing deviations from a prior model
are used to restore well-posedness and to capture the missing features. Chapter 3 illus-
trates that the discrete cosine transform reparameterization and total variation regular-
ization are able to retrieve missing features in the reservoir models.

Chapter 4 explores the conditions under which a flow barrier can be determined from
the dynamic response of a reservoir system. Both numerical and analytical techniques
are employed to address this question. Chapter 4 develops an analytical method based
on a transfer function formalism of a series of bilaterally coupled porous media mod-
els. This has been done by using the Laplace transforms of the diffusivity equation and
Darcy’s law and therefore the analytical input/output relations of the system are derived
through sets of transfer functions. The frequency response of the system makes it pos-
sible to investigate the effect of the barrier location and the barrier permeability on the
system output. Chapter 4 also provides a structural identifiability analysis, which makes
it possible to investigate whether or not we can distinguish a change in any of the pa-
rameters at all without considering a specific input-output configuration.

Chapter 5 considers another source of unfavorable history matching results, which is
addressing a wrong uncertainty in the parameter estimation process. Chapter 5 pro-
vides an approach in which parameter updates are performed in the static model rather
than the dynamic model in an integrated reservoir modeling workflow. In this chapter
historical dynamic data of a reservoir is employed to update structural parameters of the
reservoir. Moreover, chapter 5 investigates the effect of different data types on the qual-
ity of structural parameter updating.

The results from this thesis provide a quantitative analysis along with a new transfer
function-based analytical formulation to assess the impact of unregularized history match-
ing of realistic reservoir models for different data types and geological attributes.



SAMENVATTING

Modellen van ondergrondse reservoirs die gebruikt worden om vloeistofstroming in po-
reuze media te simuleren en voorspellen worden geassocieerd met onzekerheden. Deze
onzekerheden worden veroorzaakt door een beperkte kennis over het reservoir en fou-
ten in de interpretatie daarvan, waardoor het stromingsgedrag vaak inaccuraat is of niet
met de daadwerkelijk gemeten stroming overeenkomt. Deze discrepantie kan op de
lange termijn een grote invloed hebben op voorspellingen en beslissingen. Het is daarom
essentieel om reservoirmodellen constant te verbeteren en te corrigeren door de dyna-
mische respons van het daadwerkelijke reservoir erin te integreren. Het doel van dit
proces, de zogenaamde ‘history matching’, is om de meetgegevens te gebruiken ten-
einde de kennis van gemodelleerde eigenschappen te verbeteren waardoor het model
de vloeistofstroming in het reservoir preciezer kan voorspellen. Door het grote aantal
onzekere parameters en beperkte meetgegevens zijn problemen met history matching
slecht gedefinieerd, waardoor oplossingen bestaan uit meerdere mogelijke combinaties
van reservoirparameters. De gebruikelijke manier om dit soort problemen beter te de-
finiëren is door een extra term aan de doelfunctie toe te voegen waarmee het afwijken
van een voorgaand model tegengegaan wordt. Deze zogenaamde regularisatieterm be-
perkt de parameters tot waarden die niet teveel afwijken van het eerdere model. Bij si-
tuaties waarin het model een oversimplificatie van de werkelijkheid is en onverwachte
geologische reservoireigenschappen niet of verkeerd gemodelleerd worden is een regu-
larisatieterm onwenselijk omdat hij parameters beperkt tot waarden die uit incorrecte
voorgaande kennis voortvloeien. In zulke gevallen kan integratie van dynamische reser-
voirmetingen zonder regulatieterm tot betere inzichten leiden. Deze ongeregulariseerde
integratie van dynamische metingen kan resulteren in onrealistische aanpassingen van
de parameters, maar die kunnen ook gegenereerd worden om een niet-gemodelleerde
eigenschap die relevant is voor vloeistofstroming te compenseren. Het kan daarom ge-
bruikt worden als een manier om de fouten in de geologische interpretatie op te merken.
Dit proefschrift behandelt de achtergrond van de dynamische productierespons van een
reservoirsysteem en de mogelijkheid om de onverwachte en niet-gemodelleerde eigen-
schappen die relevant zijn voor vloeistofstroming te identificeren.

Hoofdstuk 2 gebruikt een hiërarchische optimalisatiemethode, zoals ontwikkeld door
Van Essen et al. (2010), om het slecht gedefinieerde karakter van history matching mo-
dellen aan te tonen. Het hoofdstuk illustreert middels een aantal numerieke experimen-
ten hoe dit kan resulteren in verschillende reservoirmodellen die even goed voldoen aan
de historische reservoirgegevens. Verder onderzoekt het hoofdstuk hoe deze methode
gebruikt kan worden om de toegevoegde waarde van alternatieve gegevensbronnen zo-
als timelapse seismiek aan te tonen.

Hoofdstuk 3 behandelt een numeriek-experimentele analyse die de verborgen informa-
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tie in ongeregulariseerde en slecht gedefinieerde inverse problemen onderzoekt. Ver-
schillende eigenschappen die relevant zijn voor vloeistofstroming worden in overweging
genomen op uiteenlopende locaties en met verschillende ruiscondities om hun invloed
op het dynamische gedrag van een reservoirsysteem te onderzoeken. Dit hoofdstuk
toont aan dat onbeperkte integratie van dynamische gegevens kan helpen bij het de-
tecteren van eigenschappen die relevant zijn voor vloeistofstroming, maar die niet voor-
komen in eerdere modellen. Het hoofdstuk geeft ook een kwantitatieve identificeerbaar-
heidsanalyse om de uitkomsten van de numerieke experimenten verder te analyseren.
Verder worden alternatieve formuleringen voor het beter definiëren van reservoirmo-
dellen en het meenemen van ontbrekende eigenschappen gebruikt. Dit hoofdstuk laat
zien dat herparametrisatie van de discrete cosinustransformatie en regularisatie van de
totale variatie de ontbrekende eigenschappen in een reservoirmodel kunnen herstellen.

Hoofdstuk 4 verkent de omstandigheden waaronder een stromingsbarrière kan worden
herleid uit de dynamische respons van een reservoirsysteem. Zowel numerieke als ana-
lytische technieken worden ingezet om deze vraag te beantwoorden. Het hoofdstuk ont-
wikkelt een analytische methode gebaseerd op transferfunctieformalisme van een se-
rie bilateraal-gekoppelde modellen van poreuze media. Dit is gedaan met een Laplace-
transformatie van de diffusiviteitsvergelijking en de Wet van Darcy, waardoor de analyti-
sche invoer/uitvoer-relaties van het systeem afgeleid worden middels reeksen van trans-
ferfuncties. De frequentierespons van het systeem maakt het mogelijk het effect van de
locatie en permeabiliteit van de stromingsbarrière op de systeemuitvoer te onderzoe-
ken. Het hoofdstuk geeft ook een structurele identificeerbaarheidsanalyse die het mo-
gelijk maakt om te onderzoeken of er een verandering in het systeem te onderscheiden
is zonder een specifieke invoer/uitvoer configuratie in acht te nemen.

Hoofdstuk 5 behandelt een andere bron van onwenselijke history matching resulta-
ten die een verkeerde onzekerheid in het parameterinschattingsproces in ogenschouw
neemt. Het hoofdstuk stelt een geïntegreerde werkwijze voor waarin parameteraanpas-
singen worden uitgevoerd in het statische- in plaats van in het dynamische reservoir-
model. In dit hoofdstuk worden de historische dynamische gegevens van een reservoir
gebruikt om structurele parameters van het reservoir aan te passen. Verder onderzoekt
dit hoofdstuk de invloed van verschillende gegevenstypen op de kwaliteit van deze aan-
passing.
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