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We study the distribution of transmission eigenvalues of a quantum point contact with nearby impurities. In
the semiclassical case(the chemical potential lies at the conductance plateau) we find that the transmission
properties of this system are obtained from the ensemble of Gaussian random reflection matrices. The distri-
bution only depends on the number of open transport channels and the average reflection eigenvalue and
crosses over from the Poissonian for one open channel to the form predicted by the circuit theory in the limit
of large number of open channels.
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I. INTRODUCTION

A quantum point contact(QPC) is one of the reference
systems of mesoscopic physics. The experimental discovery
of conductance quantizaton1 triggered further research which
contributed much to our modern understanding of nano-
science. QPC is a constriction defined in a 2DEG by gates.
The width of the constriction can be changed by the voltage
applied to these gates. In the adiabatic regime, if the distance
between the gates changes slowly compared to the wave-
length of an electron, the theoretical description is readily
obtained.2,3 The two-dimensional motion of an electron con-
fined between the gates is equivalent toone-dimensional
scattering of an electron at a potential barrier. The height of
the barrier is different for different transport channels. Semi-
classically, the electron is fully transmitted if its energy ex-
ceeds the top of the barrier in a given channel, and is fully
reflected otherwise. Thus, semiclassical transmission eigen-
values of a QPC are strongly degenerate: One has a finite
number of transmission eigenvalues equal to one and an in-
finite number of transmission eigenvalues equal to zero. This
picture would manifest experimentally in the precise quanti-
zation of conductance as a function of gate voltage.

In real experiments, this degeneracy is lifted. A brief
glance at any of many available experimental studies shows
that conductance does not rise in ideal steps. The question
whether the transmission eigenvalues are degenerate is also
important for a number of other reasons. For instance, if a
QPC is prepared in a superconducting material, discrete sub-
gap (Andreev) states develop.4 These states describe quasi-
particles localized around QPC. The number of these states
equals the number of transport channels, and their energies
are expressed via transmission eigenvaluesTn, En

=DÎ1−Tn sin2 w /2, with D andw being the superconducting
gap and the phase difference across the QPC. If the transmis-
sion eigenvalues are degenerate, the Andreev levels are also
degenerate. Thus, any small perturbation would lift this de-
generacy and produce a number of states with very close
energies. Such a perturbation would then drastically affect
properties of the system.

An obvious candidate for this degeneracy lifting is quan-
tum tunneling across the top of the barrier. Indeed, for a
given energy there is a range of gate voltages whenone

transport channel has a transmission eigenvalue between
zero and one—a partially open channel. All other transmis-
sion eigenvalues are also modified by the quantum tunneling:
They get an exponentially small correction. Thus, quantum
tunneling leads to the rounding of the conductance steps as a
function of gate voltage, but only provides exponentially
small splitting of Andreev states.

In this paper, we study how the degeneracy of transmis-
sion eigenvalues is lifted by the scattering on impurities,
which are always present in and around the QPC. Properties
of a disordered QPC have been investigated(see Refs. 5–9),
mostly in relation to the disorder smearing of conductance
steps or evolution of conductance fluctuations in ballistic re-
gime. In contrast to the previous literature, we investigate the
case when the conductance of the QPC is only slightly modi-
fied by the impurities, or, in other words, the impurity-related
splitting of transmission eigenvalues is much less than one.
This regime is realized for low concentration of impurities.
In this situation we can disregard quantum effects like reso-
nant tunneling through impurity states or Kondo effect.

Our main result is that in this regime, reflection ampli-
tudes are Gaussian distributed with zero average and second-
order correlation function which does not depend on the
channel index. This provides us with a new class of random
matrix theory. The results for the distribution function of
transmission eigenvalues are universal—they only depend on
the number of transport channels and on the average reflec-
tion eigenvalue. All other information can be extracted from
these two parameters.

The paper is organized in the following way. In Sec. II we
treat a disordered QPC in the adiabatic approximation. In
Sec. III we introduce the scattering matrix and show that in
the expansion up to the second order in disorder potential
closed channels do not contribute to the properties of trans-
mission eigenvalues of open channels. Section IV finalizes
the quantum-mechanical calculation of reflection coefficient
and conductance of a disordered QPC. We then turn to the
classical(Boltzmann equation) consideration, which facili-
tates the consideration of the diffusive regime(Sec. V).

In Sec. VI we discuss noise properties of disordered QPC.
Finally, Sec. VII is devoted to the distribution function of
transmission eigenvalues. For one open transport channel,
we calculate this distribution function analytically by per-
forming the disorder averaging directly. In the limit of large
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number of open channels, we obtain the distribution function
by means of the circuit theory,10 which presents a disordered
QPC as a pure QPC and a diffusive resistor connected in
series. For intermediate numbers of open channels, we per-
form a numerical simulation based on random matrix theory.

II. MODEL OF QPC WITH IMPURITIES

We describe the QPC as a constriction between two infi-
nitely high walls2 separated by the distancedsxd (Fig. 1). A
more physical model would take into account that the trans-
verse profile is not sharp.3 Since in this paper we employ
semi-classical approximation(do not discuss the rounding of
conduction steps), the results do not depend on the details of
the potential profile. For this reason, we use the simpler
model. The Schrödinger equation,

F−
"2

2m
¹2 + Vsx,ydGcsx,yd = Ecsx,yd, s1d

is supplemented by the boundary conditions,

csx,y = ± dsxd/2d = 0.

Here

Vsx,yd = o
i

vsx − xi,y − yid,

with v being the single impurity potential, and the sum is
taken over impurity positions.

If the width of the constrictiondsxd changes smoothly, we
can employ the adiabatic approximation and separate the
transverse motion,

csx,yd = o
n

fnsxdwn
sxdsyd.

The transverse wave functionswn
sxdsyd that satisfy the bound-

ary conditions are

wn
sxdsyd =Î 2

dsxd
sinF np

dsxdSy +
dsxd

2
DG .

Substituting this into Eq.(1) and disregarding the terms con-
taining the derivatives ofdsxd, we obtain aone-dimensional
equation for the longitudinal wave function,

F−
"2

2m

d2

dx2 + ensxd − EGfnsxd = − o
m

Vnmsxdfmsxd, s2d

with the channel-dependent effective potential barrier

ensxd =
"2p2n2

2md2sxd
,

and the matrix element of the disorder potential,

Vnmsxd =E
−dsxd/2

dsxd/2

dywn
sxdsydVsx,ydwm

sxdsyd.

Equation(2) is the generalization of the equations previously
written in Refs. 2 and 3 to the case of disordered QPC.

In the semiclassical[Wentzel–Kramers–Brillouin(WKB)
approximation, in the absence of disorder, for each transport
channel, electrons with the energies above(below) the top of
the barrier are perfectly transmitted(reflected). This approxi-
mation breaks down if the energy of an electron coincides
with the top of the barrier. In this paper, we do not consider
this case. The wave function of an ideally transmitted elec-
tron is

fn
s0dsxd =Îpns`d

pnsxd
expF i

"
Ex

pnszddzG , s3d

with the channel-dependent momentum

pnsxd = f2msE − ensxddg1/2.

III. CORRELATORS OF THE SCATTERING
MATRIX ELEMENTS

We proceed by introducing the scattering matrix,

Ŝ= S r̂ t̂

t̂T r̂8
D ,

which is unitary,Ŝ†Ŝ=1, due to the current conservation re-
quirement. At zero temperature, conductance of the system is
expressed via Landauer formula,

G = GQTrt̂†t̂ = GQo
n

Tn,

whereTn (of interest in this paper) are the eigenvalues of the
matrix t̂†t̂, and GQ=e2/p" is the conductance quantum.
Without impurities, the matrixt̂†t̂ is diagonal, with the ele-
ments describing the transmission of an electron in the same
open transport channel equal one and all others equal zero. In
this case, the conductance isG0=GQN, with N being the
number of open transport channels.

To treat the effect of disorder, it is more convenient to

FIG. 1. (a) Layout of a disordered QPC.(b) An equivalent cir-
cuit representing a disordered QPC as a clean QPC and a diffusive
resistor in series.
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investigate the matrixr̂†r̂, with the eigenvalues(reflection
eigenvalues) Rn=1−Tn. In the following, we calculate the
correction to the transmission eigenvalueRn due to disorder.
For this purpose, we consider the perturbation expansion of
the reflection matrixr̂ up to the second order in the disorder
potential,

r̂ = r̂ s0d + r̂ s1d + r̂ s2d.

Let us now separate open and closed channels,

r̂ = Sr̂oo r̂oc

r̂co r̂cc
D ,

where the submatricesrab, a ,b=o,c describe reflection
from/to channels of different type(o and c stand for open
and closed). The reflection eigenvalues are found from the

secular equation, detsr̂†r̂ −R1̂d=0, or, equivalently,

detS r̂oo
† r̂oo + r̂co

† r̂co − R1̂ r̂oo
† r̂oc + r̂co

† r̂cc

r̂oc
† r̂oo + r̂cc

† r̂co r̂oc
† r̂oc + r̂cc

† r̂cc − R1̂
D = 0. s4d

We now expand this equation in powers of the disorder po-
tential. Foropen channels, the reflection eigenvaluesR are
expected to be of the second order in disorder. We use now
the identity

detSA B

C D
D = detsA − BD−1CddetD,

and expand the first determinant taking into account that
r̂oc

s0d= r̂co
s0d= r̂oo

s0d=0. The terms of zeroth order in the disorder
potential cancel, sincer̂cc

s0d†r̂cc
s0d=1. Terms of the first order do

not appear, and in the second order one has detsr̂oo
s1d†roo

s1d

−R1̂d=0. Thus, closed channels have no effect on transmis-
sion of open channels. In the rest of the paper, we drop the
subscriptoo and operate only with the quantities related to
open channels.

Elements of the matrixr̂ are random quantities. In the
next Section, we characterize their statistical properties. We
show that they are Gaussian distributed with zero average.
Thus, it is enough to specify the correlation functions

kr̂ i j
* s1dr̂kh

s1dl,

where the average is performed with respect to disorder. We
show that the only nonzero correlator iskur ij

s1du2l, which is the
probability for an electron coming in the open channeli to be
scattered to the open channelj . As a matter of fact, the result
does not depend on the indicesi and j . We then relate this
reflection probability with the correction to the conductance.

Thus, the set of eigenvaluesRn describingopen channels
is obtained by diagonalizing thefinite-sizerandom matrix
r̂†r̂. This matrix is Gaussian, and depends only on one
parameter—average reflection coefficient. This novel ran-
dom matrix theory in later Sections provides a novel distri-
bution of transmission eigenvalues.

IV. SCATTERING MATRIX APPROACH

To calculate the correction to the reflection amplitudes we
consider the Green’s functions of Eq.(2),

F−
"2

2m

d2

dx2 + ensxd − EGGnsx,x8d = − dsx − x8d.

Solving this equation, we find the Green’s functions for open
channels,

Gnsx,x8d =
i"

mÎpnsxdpnsx8d
expF i

"
UE

x

x8
dzpnszdUG . s5d

The formal solution of Eq.(2) takes the form

fnsxd = fn
s0dsxd +E dx8Gnsx,x8do

m

Vnmsx8dfmsx8d, s6d

with fn
s0d being the solutions in the absence of disorder[Eq.

(2) with the zero right-hand side.] In the first order inV, we
obtain

fnsxd = fn
s0dsxd + o

m
E dx8Gnsx,x8dVnmsx8dfm

s0dsx8d. s7d

Substituting Eqs.(3) and (5) into Eq. (7), we find

rnm=E
−`

`

dx8
i"

mÎpnsx8dpmsx8d

3expF i

"
Ex8

dzspnszd + pmszddGVnmsx8d. s8d

For the Gaussian distribution of disorder, the reflection am-
plitudesrnm are also Gaussian distributed. This distribution is
fully characterized by the pair correlation function. If the
impurities are not located in the constriction, the momenta
pnsxd and pmsxd in Eq. (8) can be replaced by their values
taken atx→`, which is pF independently of the channel
index. The impurity averaging is straightforward. As antici-
pated, all the averages of the typekr̂ i j

* r̂khl turn to zero due to
the oscillating behavior, except for the termkurnmul2,

kurnmu2l =
ni

"2vF
2

L

d
uṽspdu2 S1 +

dnm

2
D , s9d

where ṽspd is the Fourier transform of the single impurity
potential with the momentum transfer 2kF, andni is the con-
centration of impurities per unit area.

The correction to the conductance reads

kdGl = − GQ o
n,m=0

N

kurnmu2l,

and in the case of large number of open channelsN can be
written as

kdGl . −
e2ni

p"3vF
2

L

d
uṽspdu2N2. s10d

For further reference, we identify the average reflection
eigenvalue kRl by means of Landauer formula,kdGl
=−GQNkRl,
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kRl =
ni

"2vF
2

L

d
uṽspdu2N.

The correlation function of the reflection amplitudes can then
be expressed via only one parameterkRl,

kurnmu2l =
1

N
kRl S1 +

dnm

2
D . s11d

V. BOLTZMANN EQUATION

In this Section we analyse transport properties of a disor-
dered QPC in the framework of the Boltzmann equation.
This approach allows for an extension of the analysis to the
diffusive case, when the mean free path becomes much
smaller than the length of the system. In this case the second-
order perturbation expansion breaks down, and the treatment
of previous Sections can not be applied any more.

We model the system as a two-dimensional disordered
wire between ideal reservoirs. To take into account the con-
striction, we recall that without disorder, in the quantum
treatment only the channels with low index are ideally trans-
mitting (open). In the language of classical physics, these
channels correspond to electronic modes propagating with
small incident anglea (Fig. 2). To implement this feature in
our model, we assume that all electrons propagating with
angles smaller(larger) then a0!1 are perfectly transmitted
through the cross-sectionx=0 (to model the position of
QPC). Electrons with higher angles are reflected from this
cross-section. The Boltzmann equation reads

v · =r fsr,pd = Iffg, s12d

where fsr ,pd is the distribution function of electrons, and
Iffg is the collision integral,11

Iffg =
2pni

"
E d2p8

s2p"d2ffsr,p8d − fsr,pdg

3uṽsp − p8du2dsesp8d − espdd.

Since only electrons with energies betwenEF and EF+eV,
with V being the applied voltage, contribute to the net cur-
rent, the absolute value of the momentump is fixed to lie at
the Fermi surface. We are only interested in the angular de-

pendence of the distribution function,fsx,ad. The Boltz-
mann equation(12) is supplemented by the boundary condi-
tions,

H fsx,ad = 1, cosa . 0, x , 0

fsx,ad = 0, cosa , 0, x . L,

which state that electrons coming from the reservoirs are in
thermal equilibrium. To take into account reflection of elec-
trons at the QPC, we introduce the further boundary condi-
tion,

fs0,ad = fs0,p − ad, ucosau , cosa0.

The distribution function does not depend on the trans-
verse coordinatey, and we thus rewrite Eq.(12) as

vF cosa ]x fsx,ad =
nim

2p "2 E da8 cosa8 uṽsa − a8du2

3ffsx,ad − fsx,a8dg. s13d

We solve now Eq.(13) in the two limiting cases of low and
high impurity concentration. The first case corresponds to the
consideration of previous Sections based on the scattering
approach. The second one, instead, allows us to investigate
the diffusive regime.

A. Nondiffusive regime

For low impurity concentration, we replace the function
fsx,a8d in the rhs of Eq.(13) with the distribution function
of the pure system. The remaining differential equation is
readily solved, yielding for the distribution function atx=0
and with the direction of propagationucosau.cosa0,

fs0,ad = 5 1, cosa . 0

−
a0Lnimuṽsadu2

vFp "3 cosa
, cosa , 0.

Now we calculate the current density, j
=sensEFdvF /2pdeda cosafs0,ad, with nsEFd being the den-
sity of states at the Fermi energy. Only the angles
ucosau.cosa0 contribute, and we obtain the conductance,

G = e2vFnsEFdF2a0 − 2a0
2 nim

2p"3vF
Luṽspdu2Gd, s14d

where we have taken into account thata0!1. The second
term represents the correction to the conductance due to im-
purity scattering. Relating the number of open channels to
the critical anglea0, a0=2Np /kF d, we find that this correc-
tion is identical to Eq.(10), which we obtained from the
scattering matrix approach in the limiting caseN@1.

B. Diffusive regime

For high impurity concentration, we introduce the trans-
port relaxation timet, defined as11

FIG. 2. Disordered QPC modeled classically. Electrons with the
anglea lower than the critical anglea0 are transmitted through the
cross-sectionx=0, others are reflected from this cross section.
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t−1 =
nim

2p "3E
0

2p

dauṽsadu2s1 − cosad.

In the linear regime, the collision integral takes the form

Iffg=−sf − f̄d /t, wheref̄ is the distribution function averaged
over the angles,

f̄ =
1

2p
E

0

2p

dafsad.

Solution of the Boltzmann equation in this case is given by

fsx,ad = S pl

2La0
+ 1D−1S1 −

x

L
+

l

L
cosaD ,

with l =vFt being the mean free path,l !L. Calculating the
current, we find that the conductance is

G =
e2vFn sEFdd

2p
S 1

2a0
+

L

pl
D−1

. s15d

Identifying the conductance of the diffusive region,

GD =
e2vFn sEFdld

2L
,

and of the clean QPC,

GQPC=
e2vFn sEFdd

2p
2a0 = GQN,

we see that Eq.(15) represents a series addition of the con-
ductances of the clean QPC and a diffusive resistor.

VI. NOISE

In a two-terminal system, zero-temperature shot noise12

can be expressed in terms of reflection eigenvalues in the
following way,

S =
e3uVu
p " Ko

n

Rns1 − RndL .

In a clean QPC, all transmission eigenvalues in the semiclas-
sical regime are either zero or one, and the current is
noiseless.13 Quantum tunneling away from the conductance
steps only brings exponentially small contribution. Thus, we
expect a drastic effect of disorder on the shot noise of a QPC.
Indeed, up to the second order in the disorder potential, one
writes

S = −
2e3uVu

p "
o
n

dRn = − 2euVudG = 2eGQNuVukRl. s16d

Equation(16) corresponds to the notion of Poissonian stream
of reflected particles, which is, indeed, expected in the case
of good transmission.

VII. DISTRIBUTION FUNCTION

Now, we turn to the calculation of the distribution func-
tion of transmission eigenvalues,

rsTd = Ko
n

dsT − TndL ,

where the sum is taken over all open channels, and disorder
averaging is performed. The distribution function is normal-
ized so that its integral is the number of open channelsN. For
a clean QPC,rsTd=Nds1−Td.

We first consider the case of one open channel and per-
form the disorder averaging directly. Then, we obtain ana-
lytical results in the limiting case of very large number of
channels based on the circuit theory: A disordered QPC is
presented as a clean QPC connected in series with a diffusive
resistor. For intermediate values ofN, we were not able to
obtain analytical results. Instead, we perform a simulation
based on the notion of random reflection matrices.

A. One open channel

For one open channel, we perform a “brute force” disor-
der averaging. The reflection probability isR= ur u2, where we
have suppressed the channel indices. In its turn, the reflection
amplituder is related to the potentialV by Eq. (8), with m
=n=1. It is a complex quantity, and we first calculate the
distribution function of the transmission amplitude, defined
as

Psrd = kdsResr − rfVgdddsImsr − rfVgddl.

Representing delta-functions as integrals, we write explicitly

Psrd =KE
−`

` dv1dv2

s2pd2 exphiv1 RefrfVg − rg

+ iv2 ImfrfVg − rgjL . s17d

Performing the averaging with the Gaussian distribution

P̃fVg, and introducing the short-hand notation

rfVg =E drFsrdVsrd,

we obtain

Psrd =E
−`

` dv1dv2

s2pd2 expH−
1

2
E dr1dr2fv1 ReFsr1d

+ v2 Im Fsr1dgkVsr1dVsr2dlfv1 ReFsr2d

+ v2 Im Fsr2dg − iv1 Rer − iv2 Im rJ .

Now we use Eq.(8) and disregard the terms containing rap-
idly oscillating functions. Calculating the integrals overdv1
anddv2, we finally obtain

Psrd =
1

pkur u2l
expS−

ur u2

kur u2lD . s18d

SincedR=2ur udur u=p−1d Red Im r, we can rewrite Eq.(18)
in terms of the reflection eigenvalue,
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rsRd =
1

kRl
expS−

R

kRl
D ; rsTd = rs1 − Rd. s19d

Thus, for one channel the reflection eigenvalue is Poisson
distributed. This result is actually not surprising. Indeed,
both real and imaginary parts ofr are linearly related to the
potential V. This means they are both Gaussian with zero
average. Moreover, from Eq.(8) it follows that they have the
same dispersion, and we arrive to the Gaussian distribution
for r (18) and Poisson distribution forR (19). These distri-
butions areuniversal: All the information about the type and
amplitude of disorder is encoded in only one number, which
is the average reflection eigenvaluekRl.

B. Circuit theory

If the numberN of open channels is largesG@GQd, we
can calculate the distribution functionrsTd analytically by
means of the circuit theory developed by one of the
authors.10 To this purpose, we represent a disordered QPC as
a clean QPC connected in series to a diffusive conductor
(Fig. 1). Such a point of view, to our knowledge, was first
adopted in Ref. 8 for investigation of conductance fluctua-
tions. The input parameters are the conductances of both
circuit elements(connectors), GQPC andGD. Each connector
is subject to a phase differencef, which generates the
pseudo-currentIsfd. The relationIsfd is determined by the
distribution function of transmission eigenvalues,

rsTd =
1

2pGQ

1

TÎ1 − T
ReFISp + 2i arccosh

1
ÎT

DG .

In our case, the current-phase relations are

• Diffusive conductor:Isfd=GDf
• Quantum point contactIsfd=2GQPCtansf /2d

The circuit theory shows how these two elements can be
combined to get the distribution function of the entire circuit.
To this purpose, we introduce the phases:f in the left reser-
voir; zero in the right reservoir, andu (to be calculated) in
the point(node) separating the QPC and diffusive conductor.
Thus, the QPC is subject to the phase differencef−u, and
the diffusive conductor to the phase differenceu. The
pseudo-current must be conserved, from which we get the
following equation foru,

GDu = 2GQPCtanssf − ud/2d. s20d

After solving this equation, we find the pseudo-current
Isfd=GDusfd, and eventually the distribution function.

Equation(20) cannot be solved analytically for an arbi-
trary relation betweenGD and GQPC, and we restrict our-
selves to the case of low impurity concentration,GD
@GQPC. We obtain

Isfd = GDFf − p

2
+Îsf − pd2

4
+

4GQPC

GD
G ,

and the distribution function follows,

rsTd =
GD

2pGQ

1

TÎ1 − T
ÎT − Tc, s21d

for T.Tc, Tc=1−4GQPC/GD, and zero forT,Tc. For fur-
ther comparison with the simulation results, we calculate the
average reflection coefficientkRl=GQPC/GD!1 and rewrite
the distribution function(21) as

rsRd =
N

2pkRl
1

1 − R
Î4kRl

R
− 1. s22d

We see that in the limiting caseN@1 only channels with the
transmission close to perfect exist: Reflection eigenvalues
can only be lower than 4kRl, which is a small number. This
is in contrast to the one-channel case, where all values of the
reflection coefficient are permitted. To demonstrate the cross-
over between these two limiting cases, we perform a numeri-
cal simulation for the intermediate number of open transport
channels.

C. Intermediate case

For any number of open channels, the matrix elements of
the reflection matrix,rnm are random quantities with Gauss-
ian distribution. They are zero on average, uncorrelated, and
characterized by the dispersionkurnmu2l. Equation(9) shows
that this dispersion is with the factor of 3/2 greater for diag-
onal elements that for nondiagonal elements, and otherwise
does not depend onn andm. Then, the problem has only two
parameters—the number of open transport channelsN, and

FIG. 3. The distribution function of reflection eigenvaluesrsRd
for 1, 5, 20, and 50 open channels. It is calculated using an en-
samble of 106 random matrices. The dashed line is the expression
(22) valid in the limit N→`.
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the dispersion of matrix elements of the reflection matrix.
The latter parameter is related to the average reflection ei-
genvalue.

Thus, we model the reflection matrix as a Gaussian ran-
dom matrix with independent elementsrnm. Both real and
imaginary part ofrnm are taken to be Gaussian distributed
with the same dispersion(independent onn and m). The
simulation involves 106 matrices. Results for 1, 5, 20, and 50
channels are plotted in Fig. 3. For better comparison with Eq.
(22), we multiply the distribution function withR1/2, so that
it tends to a constant value atR→0. For one channel, the
simulation result perfectly reproduces the Poisson distribu-
tion (19), whereas for 50 channels it is in a good agreement
with Eq. (22). For 5 and 20 channels, the simulations reveal
an intermediate picture, with a tail at largeR. Oscillations in
the distribution function, pronounced for 5, 20, and 50 chan-
nels, are related to the Wigner–Dyson correlations of eigen-
values of Gaussian random matrices.

VIII. CONCLUSIONS

The main result of our paper is the distribution function of
reflection eigenvalues of a disordered QPC. We have shown
that for one open channel, one obtains Poisson distribution,
and in the limit of infinitely many channels only very small
reflection eigenvalues are allowed. We also performed nu-
merical simulations for the intermediate regime. In all the
cases, the results are universal in the sense that they only
depend on the number of open transport channels and on the
average reflection coefficientkRl. To calculatekRl, we devel-

oped a quantum-mechanical theory, and a classical calcula-
tion based on the Boltzmann equation. For low impurity con-
centration, classical and quantum-mechanical results are
identical; additionally, classically one can treat the diffusive
regime, to find that the conductance of a disordered QPC is
given as a series resistance addition. We stress that although
the results forkRl are model dependent, as carefully investi-
gated previously by Glazman and Jonson,7 the form of the
distribution function only useskRl as a parameter, but does
not depend on specific model any more. It can be regarded as
a result of the novel random matrix theory with Gaussian
reflection matrices.

The results we derive in this paper can also apply to the
case of break-junctions which also have shown conductance
quantization.14,15In these devices an atomic quantum contact
(APC) is formed by breaking a fine wire and bringing back
the fracture surfaces using a piezo-electric element to control
the distance at atomic level.

Experimental confirmation of our results could come from
experiments on APC, where the statistics of the conductance
has been measured,16 or from semiconducting QPC. In the
latter case, the statistics can be generated by applying top
gates on the 2DEG far from the QPC region or by applying
an external magnetic field.
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