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Statistics of transmission eigenvalues for a disordered quantum point contact
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We study the distribution of transmission eigenvalues of a quantum point contact with nearby impurities. In
the semiclassical cagéhe chemical potential lies at the conductance plateai find that the transmission
properties of this system are obtained from the ensemble of Gaussian random reflection matrices. The distri-
bution only depends on the number of open transport channels and the average reflection eigenvalue and
crosses over from the Poissonian for one open channel to the form predicted by the circuit theory in the limit
of large number of open channels.
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[. INTRODUCTION transport channel has a transmission eigenvalue between
zero and one—a partially open channel. All other transmis-

A quantum point contactQPQ is one of the reference Sion eigenvalues are also modified by the quantum tunneling:
systems of mesoscopic physics. The experimental discoverihey get an exponentially small correction. Thus, guantum

of conductance quantizatbtriggered further research which tunneling leads to the rounding of the conductance steps as a
contributed much to our modern understanding of nanofunction of gate voltage, but only provides exponentially

science. QPC is a constriction defined in a 2DEG by gatesMall splitting of Andreev states. ,

The width of the constriction can be changed by the voltage . In th's paper, we s_tudy how the degen_eracy O.f transmis-
applied to these gates. In the adiabatic regime, if the distancalol €igenvalues is lifted by the scattering on impurities,

between the gates changes slowly compared to the Wavg\{hlch are always present in and around the QPC. Properties

. TSR . Of a disordered QPC have been investigatst Refs. 59
le&%z ?};f_‘_}helfﬁr?&}ﬁhﬁ ithr?olﬂ:’r;['ct"i"l nde?crr:ptlfan tlrs nrea(i'[ymostly in relation to the disorder smearing of conductance
obtained: € two ensional motion ot an electron co steps or evolution of conductance fluctuations in ballistic re-
fined between the gates is equivalent doe-dimensional

. ; ; X ime. In contrast to the previous literature, we investigate the
scattering of an electron at a potential barrier. The height 9Fase when the conductance of the QPC is only slightly modi-

the barrier is different for different transport channels. Semifieq by the impurities, or, in other words, the impurity-related
classically, the electron is fully transmitted if its energy ex-gpjitting of transmission eigenvalues is much less than one.
ceeds the top of the barrier in a given channel, and is fullyrhis regime is realized for low concentration of impurities.
reflected otherwise. Thus, semiclassical transmission eigeiin this situation we can disregard quantum effects like reso-
values of a QPC are strongly degenerate: One has a finitgant tunneling through impurity states or Kondo effect.
number of transmission eigenvalues equal to one and an in- Our main result is that in this regime, reflection ampli-
finite number of transmission eigenvalues equal to zero. Thisudes are Gaussian distributed with zero average and second-
picture would manifest experimentally in the precise quanti-order correlation function which does not depend on the
zation of conductance as a function of gate voltage. channel index. This provides us with a new class of random
In real experiments, this degeneracy is lifted. A briefmatrix theory. The results for the distribution function of
glance at any of many available experimental studies showsansmission eigenvalues are universal—they only depend on
that conductance does not rise in ideal steps. The questicdhe number of transport channels and on the average reflec-
whether the transmission eigenvalues are degenerate is algon eigenvalue. All other information can be extracted from
important for a number of other reasons. For instance, if ahese two parameters.
QPC is prepared in a superconducting material, discrete sub- The paper is organized in the following way. In Sec. Il we
gap (Andreey states develof.These states describe quasi- treat a disordered QPC in the adiabatic approximation. In
particles localized around QPC. The number of these stateSec. Il we introduce the scattering matrix and show that in
equals the number of transport channels, and their energiglse expansion up to the second order in disorder potential
are expressed via transmission eigenvaludg, E, closed channels do not contribute to the properties of trans-
=AV1-T,sir’ ¢/2, with A and ¢ being the superconducting mission eigenvalues of open channels. Section IV finalizes
gap and the phase difference across the QPC. If the transmifiie quantum-mechanical calculation of reflection coefficient
sion eigenvalues are degenerate, the Andreev levels are aland conductance of a disordered QPC. We then turn to the
degenerate. Thus, any small perturbation would lift this de<classical(Boltzmann equationconsideration, which facili-
generacy and produce a number of states with very closttes the consideration of the diffusive regiggec. V).
energies. Such a perturbation would then drastically affect In Sec. VI we discuss noise properties of disordered QPC.
properties of the system. Finally, Sec. VIl is devoted to the distribution function of
An obvious candidate for this degeneracy lifting is quan-transmission eigenvalues. For one open transport channel,
tum tunneling across the top of the barrier. Indeed, for ave calculate this distribution function analytically by per-
given energy there is a range of gate voltages whea forming the disorder averaging directly. In the limit of large
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? W)= -2 {”_77< @)}
e (y) = d(x)sm a0 y+— |-

Substituting this into Eq(1) and disregarding the terms con-
taining the derivatives ofl(x), we obtain aone-dimensional
equation for the longitudinal wave function,

ﬁZ d2
|:— %d_xz + €4(X) — E:| Pn(x) = - 2 Vom(X) (X)), (2)

with the channel-dependent effective potential barrier
h2m2n?
2mdi(x)’

and the matrix element of the disorder potential,

€n(X) =

dx)/2
FIG. 1. (a) Layout of a disordered QPb) An equivalent cir- Vim(X) :J dyqof]X)(y)V(x,y)(p&‘)(y).
cuit representing a disordered QPC as a clean QPC and a diffusive -d(x)/2

resistor in series. Equation(2) is the generalization of the equations previously
written in Refs. 2 and 3 to the case of disordered QPC.
number of open channels, we obtain the distribution function |n the semiclassicgWentzel-Kramers—BrillouifWKB)
by means of the circuit theofj,which presents a disordered approximation, in the absence of disorder, for each transport
QPC as a pure QPC and a diffusive resistor connected iBhannel, electrons with the energies abdwelow) the top of
series. For intermediate numbers of open channels, we pethe barrier are perfectly transmittéflected. This approxi-
form a numerical simulation based on random matrix theorymation breaks down if the energy of an electron coincides
with the top of the barrier. In this paper, we do not consider
Il. MODEL OF QPC WITH IMPURITIES :his case. The wave function of an ideally transmitted elec-
ron is
We describe the QPC as a constriction between two infi-
nitely high wall¢ separated by the distandéx) (Fig. 1). A Oor _ | Pn(®) i X
: - dn (X) =\ - ex Pn(2)dz|, 3
more physical model would take into account that the trans- Pn(X) h
verse profile is not sharhSince in this paper we employ .
semi-classical approximatiaiio not discuss the rounding of With the channel-dependent momentum
conduction stepsthe results do not depend on the details of Pa(X) = [2M(E - €,(x))]V/2.
the potential profile. For this reason, we use the simpler
model. The Schrédinger equation,

52 lll. CORRELATORS OF THE SCATTERING
- EnVZ +V(X,y) |4xy) = Ed(Xy), (1) MATRIX ELEMENTS

We proceed by introducing the scattering matrix,
is supplemented by the boundary conditions, P y ucing g IX

P(x,y= £d(x)/2) =0. S= (Ar At )
i i
Here A
which is unitary,S'S=1, due to the current conservation re-
V(XY) = 2 v(X= %Y = Vi), quirement. At zero temperature, conductance of the system is
[ expressed via Landauer formula,

with v being the single impurity potential, and the sum is G=GoTr't=GoX, Ty,
taken over impurity positions. n

If the width of the constrictiom(x) changes smoothly, we

can employ the adiabatic approximation and separate th\é’her.et“r(Of mterest_ln this paperare the eigenvalues of the
transverse motion, matrix ', and Go=e€*/=fi is the conductance quantum.

Without impurities, the matrix't is diagonal, with the ele-
Wx,y) = D ¢>n(X)<p§1X)(y)- ments describing the transmission of an electron in the same
n open transport channel equal one and all others equal zero. In
this case, the conductance &=GgN, with N being the
The transverse wave functioaéf)(y) that satisfy the bound- number of open transport channels.
ary conditions are To treat the effect of disorder, it is more convenient to
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investigate the matrix'f, with the eigenvaluegreflection h2 d? ) ,
eigenvalues R,=1-T,. In the following, we calculate the T omdy +€n(X) — E |Gn(x,X') = = 8(x = X').
correction to the transmission eigenvaRgdue to disorder.
For this purpose, we consider the perturbation expansion dolving this equation, we find the Green’s functions for open
the reflection matrix up to the second order in the disorder channels,
X7
f dzp,(2) } . (5

potential,
Bn(X) = o (x) + J dX' Gn(X,X') 2 Vo X ) in(X'),  (6)

i7i [
F=fO+7D+7@, Gr(X,X') = ———— exp[ -~
MVPR(X)Pn(X’) h

Let us now separate open and closed channels,

~A (rOO rOC)
r= ~ ~ 1
r.CO rCC

where the submatrices,s; «,8=0,c describe reflection
and closess The reflecion eigenvalues are found from the i1 ¢ Deing the soluions in the absence of disortey

] . 9 ] (2) with the zero right-hand sideln the first order inVv, we
secular equation, dgii—R1)=0, or, equivalently, obtain

at & at o 2 P at &
Foofoot Feolco ™ R1 Fooloct Feol ce _
de( o ' 3 =0. (4 B3 = $0(x) + f X G} X Won(X) 6O (X). (7)

~ ~t 2 At A ~ -
Focloo T el co lodloct rzcrcc_ R1

The formal solution of Eq(2) takes the form

We now expand this equation in powers of the disorder POSubstituting Egs(3) and(5) into Eq.(7), we find
tential. Foropen channelsthe reflection eigenvalueR are

expected to be of the second order in disorder. We use now s i
the identity rnm:f X — e
—o0 my pn(x )pm(x )

A B\ _ o o
de(c D)‘de‘A BDTC)detD, Xexp{é f dz(pn(z)+pm<z>>]vnm<x'>. ®

and expand the first determinant taking into account that ] o . )
fgoc):fg%)gg%):o_ The terms of zeroth order in the disorder FOr the Gaussian dlstrlbut!on of d!sorder, the rgfleptlop am-
potential cancel, sinct ?T?(c?zl- Terms of the first order do  Plitudesr, are_also Gaussian _dlstrlbuteq. This d|s_tr|but|on is
not appear, and in the second order one haﬁfﬁét(l) fully qharacterlzed by the pair correlatl_on function. If the
- % impurities are not located in the constriction, the momenta
-R1)=0. Thus, closed channels have no effect on transmisy (x) and p,(x) in Eq. (8) can be replaced by their values
sion of open channels. In the rest of the paper, we drop thgyken atx— e, which is pe independently of the channel
subscriptoo and operate only with the quantities related tojngex. The impurity averaging is straightforward. As antici-
open channels. . - pated, all the averages of the tyffef,,) turn to zero due to
Elements of the matrix are random quantities. In the the oscillating behavior, except for the teffr, )2
next Section, we characterize their statistical properties. We ’ nme

show that they are Gaussian distributed with zero average. n L. Som
Thus, it is enough to specify the correlation functions (Irnnd® = WH'U(W)F (1 +7) 9
* ~ vF
<rij(1)rﬂ1)>,

wherev () is the Fourier transform of the single impurity
where the average is performed with respect to disorder. Wgptential with the momentum transfek2 andn; is the con-
show that the only nonzero correlator(jq(jl)|2>, which is the  centration of impurities per unit area.
probability for an electron coming in the open chanintel be The correction to the conductance reads
scattered to the open changeAs a matter of fact, the result
does not depend on the indicesind j. We then relate this N
reflection probability with the correction to the conductance. (6G) == Gq > (Iram®,
Thus, the set of eigenvalu&, describingopen channels nm=0
is obtained by diagonalizing thnite-sizerandom matrix  5nd in the case of large number of open chanhekzan be
'f. This matrix is Gaussian, and depends only on ON&yritten as
parameter—average reflection coefficient. This novel ran-
dom matrix theory in later Sections provides a novel distri- en L. -
bution of transmission eigenvalues. (6G) = - ﬂ-ﬁ3v§a o(m)[*N?. (10

IV. SCATTERING MATRIX APPROACH For further reference, we identify the average reflection

To calculate the correction to the reflection amplitudes weeigenvalue (R) by means of Landauer formula(dG)
consider the Green’s functions of E@), =-GoN(R),
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y « } y pendence of the distribution functiori(x,«). The Boltz-
x y y mann equatiori12) is supplemented by the boundary condi-
% x tions,
X x X
x ) ) d f(x,)=1, cosa>0,x<0
x X XX f(x,)=0, cosa<0,x>1L,
X x X
* x x which state that electrons coming from the reservoirs are in
thermal equilibrium. To take into account reflection of elec-
o - trons at the QPC, we introduce the further boundary condi-
tion,
FIG. 2. Disordered QPC modeled classically. Electrons with the
anglea lower than the critical angleg are transmitted through the f(0,a) =f(0,7 - @), |cosa| < cosag.

cross-sectionx=0, others are reflected from this cross section. N, .
The distribution function does not depend on the trans-

verse coordinatg, and we thus rewrite Eq12) as

(R)= Iv (m)N.

ﬁ22d

nm ~
vg cosa A, f(X,a) = Py J da’ cosa’ [v(a-a’)?

The correlation function of the reflection amplitudes can then
be expressed via only one parame{ey, X[f(x, @) = f(x,a")]. (13
(ol = 1<R> (1 +%)_ (11) We solve now Eq(13) in the two limiting cases of low and
nm N 2 high impurity concentration. The first case corresponds to the

consideration of previous Sections based on the scattering

approach. The second one, instead, allows us to investigate
V. BOLTZMANN EQUATION the diffusive regime.

In this Section we analyse transport properties of a disor-
dered QPC in the framework of the Boltzmann equation. A. Nondiffusive regime
This approach allows for an extension of the analysis to the
diffusive case, when the mean free path becomes muc o : Lo .
smaller than the length of the system. In this case the secon (-X’;’ ) in the rhs of E_qh'(m) W'th fche g!?ftrlbutl_o? funct|_on .
order perturbation expansion breaks down, and the treatmeﬂ{ 1 € pure syst_em._ € remaining |_erent|a _equat|on IS
of previous Sections can not be applied any more. readlly solved,_ yleIFi|ng for the d|s_tr|but|on function at0

We model the system as a two-dimensional disordere@d With the direction of propagatidnosa| > cosa,
wire between ideal reservoirs. To take into account the con-

For low impurity concentration, we replace the function

striction, we recall that without disorder, in the quantum 1, cosa >0

treatment only the channels with low index are ideally trans- f(0,0) =y agLnmv(a)|?

mittin i ; -—————, cosa<O0.
g (open. In the language of classical physics, these veh® cosa

channels correspond to electronic modes propagating with

small incident anglex (Fig. 2. To implement this feature i Now  we  calculate  the  current  density, j
our model, we assume that all electrons propagating With- (ey(E.)v:/27) [ da cosaf(0,a), with v(Eg) being the den-
angles smalletlargep then oy<<1 are perfectly transmitted sity of states at the Fermi energy. Only the angles

through the cross-sectior=0 (to model the position of |c554|>cosay, contribute, and we obtain the conductance,
QPO. Electrons with higher angles are reflected from this

cross-section. The Boltzmann equation reads

G =€ve(Ep)| 2ap— 2 L 2ld, (14
v -V £(r,p) = I[f], (12) vrrEr)| 200~ “°2wﬁ3 [o(m) (14
where f(r,p) is the distribution function of electrons, and where we have taken into account thaj<1. The second
I[f] is the collision integrak; term represents the correction to the conductance due to im-
20 2,/ purity scattering. Relating the number of open channels to
I[f]=—— f sLF(r.p") — f(r,p)] the critical anglexy, ap=2Nm/ked, we find that this correc-
(27h) tion is identical to Eq.(10), which we obtained from the
x[5(p-p")|28(e(p’) - e(p)). scattering matrix approach in the limiting case> 1.

Since only electrons with energies betwEp and Ex+eV,
with V being the applied voltage, contribute to the net cur-
rent, the absolute value of the momentpris fixed to lie at For high impurity concentration, we introduce the trans-
the Fermi surface. We are only interested in the angular deport relaxation timer, defined a%

B. Diffusive regime
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2
LI J daf5 (@)A1 - cosa). p(T) = <E AT=To) >
27Tﬁ 0 n

In the linear regime, the collision integral takes the formWhere Fhe sum s taken over a_II open channel_s, a_nd disorder
N e N . averaging is performed. The distribution function is normal-
I[f]==(f-f)/ 7, wheref is the distribution function averaged i,aq so that its integral is the number of open chanNeEor
over the angles, a clean QPCp(T)=N&(1-T).
— 1 (% We first consider the case of one open channel and per-
f= —f daf(a). form the disorder averaging directly. Then, we obtain ana-
2mJo lytical results in the limiting case of very large number of
channels based on the circuit theory: A disordered QPC is
presented as a clean QPC connected in series with a diffusive
1 x resistor. For intermediate values Nf we were not able to
1) \1-y +cosel, obtain analytical results. Instead, we perform a simulation
based on the notion of random reflection matrices.

Solution of the Boltzmann equation in this case is given by

f(x,a) = (J

ag

with |=vg7 being the mean free path<L. Calculating the
current, we find that the conductance is

G= ezl)':V (EF)d
2w

A. One open channel

-1

(i ¥ L) _ (15) For one open channel, we perform a “brute force” disor-
209 der averaging. The reflection probabilityRs=|r|?, where we

have suppressed the channel indices. In its turn, the reflection

Identifying the conductance of the diffusive region, amplituder is related to the potentil by Eq. (8), with m

vev(Ep)ld =n=1. It is a complex quantity, and we first calculate the
D~ 2L , distribution function of the transmission amplitude, defined
as

and of the clean QPC,
P(r) =(s(Re(r —r[V]))s(Im(r —r[V]))).

_ eZUFV(EF)d _
Gaopc= o 2ap= GoN, Representing delta-functions as integrals, we write explicitly
we see that Eq15) represents a series addition of the con- _ “ dwdw, .
ductances of the clean QPC and a diffusive resistor. Pr) = _. (2m)? expliw, REr[V] -r]
VI. NOISE +iw, IM[r[V] - r]}>. (17)

In a two-terminal system, zero-temperature shot Adise
can b? expressed in terms of reflection eigenvalues in thperforming the averaging with the Gaussian distribution
following way, ‘P[V], and introducing the short-hand notation

3
8:M<E Rn<1—Rn>>.
mh \ ",

In a clean QPC, all transmission eigenvalues in the semiclas- .
sical regime are either zero or one, and the current idve obtain

noiseles$? Quantum tunneling away from the conductance * dodo 1

steps only brings exponentially small contribution. Thus, we  P(r) = 122 exp) - > J dridr,y[ w; ReF(rq)

r[v] :f drE(r)V(r),

2
expect a drastic effect of disorder on the shot noise of a QPC. = (2m)
\I/Cgteeid, up to the second order in the disorder potential, one + wy IM F(r ) JV(r)V(r) [0y ReF(r,)
23|V +w,IMF(ry)]-iw;Rer —iw Imr}.
S:—#E SR, = - 26]V|0G = 2eGoN|VI(R). (16) 2 2 ' 2
T n

Now we use Eq(8) and disregard the terms containing rap-

Equation(16) corresponds to the notion of Poissonian streamdly oscillating functions. Calculating the integrals owks,
of reflected particles, which is, indeed, expected in the casgnddw,, we finally obtain

of good transmission.

1 rf?
P(r) =T exp(— %) (18)
VII. DISTRIBUTION FUNCTION (|r[*) (Ir%
Now, we turn to the calculation of the distribution func- SincedR=2|r|d|r|=#"'d Red Imr, we can rewrite Eq(18)
tion of transmission eigenvalues, in terms of the reflection eigenvalue,
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1 R 05 S R B m—
W= o~ D) am=pa-r. a9
Thus, for one channel the reflection eigenvalue is Poisson ‘
distributed. This result is actually not surprising. Indeed, N
both real and imaginary parts ofare linearly related to the g;g : L T

average. Moreover, from E¢B) it follows that they have the
same dispersion, and we arrive to the Gaussian distribution
for r (18) and Poisson distribution fdR (19). These distri-
butions areuniversal All the information about the type and
amplitude of disorder is encoded in only one number, which
is the average reflection eigenval(i®).

potential V. This means they are both Gaussian with zero

N'(R/<R>)"? p(R/<R>)
[=F=]
no

B. Circuit theory

-~
Seo
-~

If the numberN of open channels is larggs> Gg), we —_—
can calculate the distribution functign(T) analytically by M E——
means of the circuit theory developed by one of the
authors'® To this purpose, we represent a disordered QPC as | /At
a clean QPC connected in series to a diffusive conductor ~ f  NIteeel
(Fig. 1. Such a point of view, to our knowledge, was first
adopted in Ref. 8 for investigation of conductance fluctua- 0.0 ) 3 M
tions. The input parameters are the conductances of both R/<R>
circuit elementgconnectors Gopc and Gp. Each connector o ] ) ]
is subject to a phase differencg, which generates the FIG. 3. The distribution function of reflection eigenvalyg®)

pseudo-current(¢). The relationl (¢) is determined by the for 1, 5, 20, and 50 open_channels. It is cal_cula}ted using an en-
distribution function of transmission eigenvalues samble of 18 random matrices. The dashed line is the expression

(22) valid in the limit N— .
1 1 1
p(M=—"—"— Re|:|(7r+ 2i arccosh?)} .
207G TV1-T T

o0
wno

GD 1 /
—= VI -T, (21

p(T) =
In our case, the current-phase relations are
- for T>T,, T,;=1-4Gqopd Gp, and zero forT <T.. For fur-
+ Diffusive conductori(¢$)=Gp¢ ther comparison with the simulation results, we calculate the
* Quantum point contadt(¢) =2Gqgpctan(¢/2) average reflection coefficiefiR)=Ggpd/ Gp<1 and rewrite

The circuit theory shows how these two elements can bé\he distribution function21) as

combined to get the distribution function of the entire circuit. N 1 4(R)

To this purpose, we introduce the phas¢sn the left reser- p(R) = > -1

- ; : ; . mRY1-R R

voir; zero in the right reservoir, and (to be calculatedin
the point(node separating the QPC and diffusive conductor.We see that in the limiting casé> 1 only channels with the
Thus, the QPC is subject to the phase differegieed, and  transmission close to perfect exist: Reflection eigenvalues
the diffusive conductor to the phase differende The can only be lower than{®), which is a small number. This
pseudo-current must be conserved, from which we get thg in contrast to the one-channel case, where all values of the

(22)

following equation foré), reflection coefficient are permitted. To demonstrate the cross-
B over between these two limiting cases, we perform a numeri-
Gp0=2Ggpctan((¢ - 0)/2). (20) cal simulation for the intermediate number of open transport

channels.

After solving this equation, we find the pseudo-current
I()=Gp6(¢), and eventually the distribution function.

Equation(20) cannot be solved analytically for an arbi- C. Intermediate case

trary relation betweerGp and Gop, and we restrict our- For any number of open channels, the matrix elements of
selves to the case of low impurity concentratioB,  the reflection matrixr,, are random quantities with Gauss-
> Ggpc We obtain ian distribution. They are zero on average, uncorrelated, and
characterized by the dispersidn,.?). Equation(9) shows
_ p-m (¢p—m?  4Ggpc that this dispersion is with the factor of 3/2 greater for diag-
2 4 Gp onal elements that for nondiagonal elements, and otherwise

does not depend amandm. Then, the problem has only two
and the distribution function follows, parameters—the number of open transport chanNeland
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the dispersion of matrix elements of the reflection matrix.oped a quantum-mechanical theory, and a classical calcula-
The latter parameter is related to the average reflection etion based on the Boltzmann equation. For low impurity con-
genvalue. centration, classical and quantum-mechanical results are
Thus, we model the reflection matrix as a Gaussian ranidentical; additionally, classically one can treat the diffusive
dom matrix with independent elements,. Both real and regime, to find that the conductance of a disordered QPC is
imaginary part ofr,,,, are taken to be Gaussian distributed given as a series resistance addition. We stress that although
with the same dispersiotindependent om and m). The the results fokR) are model dependent, as carefully investi-
simulation involves 1®matrices. Results for 1, 5, 20, and 50 gated previously by Glazman and Jongahe form of the
channels are plotted in Fig. 3. For better comparison with Eqdistribution function only useéR) as a parameter, but does
(22), we multiply the distribution function witiR'/2, so that  not depend on specific model any more. It can be regarded as
it tends to a constant value &—0. For one channel, the 3 result of the novel random matrix theory with Gaussian
simulation result perfectly reproduces the Poisson distribureflection matrices.
tion (19), whereas for 50 channels it is in a good agreement The results we derive in this paper can also apply to the
with Eg. (22). For 5 and 20 channels, the simulations revealcase of break-junctions which also have shown conductance
an intermediate picture, with a tail at Iarﬁi—:' Oscillations in quantizatiorﬂ:4v15|n these devices an atomic quantum contact
the distribution function, pronounced for 5, 20, and 50 chan{APC) is formed by breaking a fine wire and bringing back
nels, are related to the Wigner—Dyson correlations of eigenthe fracture surfaces using a piezo-electric element to control

values of Gaussian random matrices. the distance at atomic level.
Experimental confirmation of our results could come from
VIIl. CONCLUSIONS experiments on APC, where the statistics of the conductance

has been measuré®lor from semiconducting QPC. In the

The main result of our paper is the distribution function of - :
. . : latter case, the statistics can be generated by applying top
reflection eigenvalues of a disordered QPC. We have show ates on the 2DEG far from the QPC region or by applying

that for one open _ch_ar_mel, one obtains Poisson distributio n external magnetic field.
and in the limit of infinitely many channels only very small
reflection eigenvalues are allowed. We also performed nu-
merical simulations for thg |ntermed|ate regime. In all the ACKNOWLEDGMENT
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