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Real-Time Tendon Strain Estimation of Rotator-Cuff Muscles during
Robotic-Assisted Rehabilitation

Irene Beck1, Italo Belli1,2, Luka Peternel1, Ajay Seth2 and J. Micah Prendergast1,∗

Abstract— In this research, we propose a novel method to
estimate and monitor rotator cuff tendon strains during active
robotic-assisted rehabilitation. This is a significant step forward
from our previous work which estimated these tendon strains
during passive exercises (i.e., no muscle activity). Physiother-
apists adopt a cautious approach to rehabilitation treatment
to prevent (re-) injury given the limited available information
about the shoulder’s internal condition. By leveraging a robotic
device and a musculoskeletal model, our approach provides
quantitative information on the risk of re-injury by monitoring
the strains of the rotator cuff tendons during shoulder move-
ments with the application of external loads. Muscle strains
depend on the shoulder kinematic state and muscle activations,
which makes it crucial to obtain physiologically realistic joint
kinematics to estimate real-time muscle function. To obtain the
strains, we utilize our muscle redundancy solver that incor-
porates constraints on model accelerations, the glenohumeral
joint reaction forces, and active muscle dynamics. Using this
algorithm along with force and pose data from a collaborative
robotic arm, we demonstrate the ability to update our tendon
strain estimates based on muscle activation during robotic-
assisted rehabilitation exercises. The findings of our research
pave the way for establishing improved therapy that considers
the risk of injury to individual muscles and explores a broader
and more personalized range of motion. By providing phys-
iotherapists with valuable quantitative information on rotator
cuff tendon strains, our method empowers them to optimize
rehabilitation protocols and deliver more personalized and
effective care. In addition, the system and method presented
here comprise a tool capable of offering new insights into the
relationship between the rotator cuff muscles, external forces,
and shoulder kinematics.

I. INTRODUCTION

The shoulder complex is one of the most common sites
for musculoskeletal disorders [1], with 70% of shoulder
complaints attributed to disease or injury to the rotator cuff
(RC) muscle-tendon units [2]. Tearing of the rotator cuff
tendons results primarily in pain, loss of strength and a
restricted range of motion of the upper limb, which may
affect the ability to perform work and/or activities of daily
living [3]. The likelihood of RC tears also increases with
age, with over 50% of people aged 60 or older suffering
from one or more RC tears [4], [5]. In addition, repetitive
overhead activities during work, or competitive sports also
increase the risk of RC tears [6]–[8].

Conventional treatment of RC tears requires intensive re-
habilitation via physiotherapy. This rehabilitation may follow
surgical repair in the case of severe tears, but is the standard
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of treatment for all RC injuries. Effective rehabilitation
after surgery is necessary to prevent shoulder joint stiffness,
regain range of motion and limit the risk of re-tearing [9].
Regardless of the treatment type, RC rehabilitation is time-
intensive with significant improvement occurring after twelve
weeks [10] and many patients are instructed to continue
home exercises for as long as six months to a year [11],
[12].

Due to the complexity of the shoulder joint and a lack
of quantitative insight into the risks of re-tear, the exercises
used in conventional RC rehabilitation are typically highly
conservative and comprised of single-degree-of-freedom mo-
tions even when assisted by an experienced physiotherapist
[13]. It is likely that this limited range of motion during
rehabilitation may delay recovery, whereas moving through
a larger range of motion could result in expedited recovery
[14], [15]. Additionally, current rehabilitation techniques
are demanding for physiotherapists who must physically
manipulate many patients per day and who are limited to
assisting one patient at a time [16]. Finally, treatment of
the rotator cuff is often inadequate, leaving patients with
persistent symptoms [17], inhibiting the patient’s ability to
work and perform daily activities in the long term.

Robotic systems can serve to address many of the limi-
tations of conventional physiotherapy — providing a means
for physiotherapists to treat more patients and to customize
rehabilitation to a patient’s specific needs. Several robots
and exoskeletons exist for the rehabilitation of the upper
limb [18]–[21]. Robotic devices can provide high-intensity,
repetitive exercises that target specific injuries/joints [22],
[23]. Additionally, a robotic system can leverage its sensing
capabilities to measure joint positions, velocities, accelera-
tions, and torques [24] and provide force feedback. These
metrics can be monitored objectively and reliably throughout
a rehabilitation program to assess the patient’s progress [16].

In the case of rehabilitation of RC tears, monitoring
the subject’s muscle tension is of interest to prevent (re-
)tearing of the tendons. The nature of the RC as deeper
(below superficial) muscles, combined with the soft-tissue
structures of the glenohumeral (GH) joint, makes lab-based
motion-capture and electromyography (EMG) measurements
impractical for evaluating the function of RC muscles. Mus-
culoskeletal modeling, in combination with robotic mea-
surements, could provide a physiotherapist with quantitative
information on the biomechanics of the shoulder complex
and RC muscles.

In our previous work, we developed a method to link
musculoskeletal modeling to robotic rehabilitation by captur-20
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Fig. 1: Workflow for active robotic-assisted shoulder rehabilitation that provides quantitative insights into the risk of re-injury. The experimental data (left)
is obtained via motion capture using optical markers or shoulder joint estimates during a human-robot interaction. The experimental data is processed to
obtain the joint trajectories and external forces. The Rapid Muscle Redundancy solver (center) is used to estimate muscle activations from a musculoskeletal
model for a given (measured) trajectory. The estimated muscle activations are validated against experimental EMG data and used to compute rotator cuff
tendon strains. These strains are visualized in ”strain maps” (bottom right) and are used to visualize the internal biomechanics of the shoulder during
rehabilitation.

ing the relationship between the tendon strains and shoulder
state in the form of “strain maps” [25]. These strain maps
are an intuitive representation of the RC tendon strains and
can be used to minimize the risk of re-injury of the RC
tendons while maximizing the range of motion. We recently
implemented strain maps to enable a subject to perform
robotic-assisted exercises while being protected from poten-
tially dangerous poses [26] in real-time. A major limitation
of these maps however, is that they do not incorporate
muscle activation into the muscle-tendon strain estimates.
This restricts the use of these maps to passive motions
(i.e., no external forces) in which the weight of the arm is
supported entirely by the robot or a physical therapist and
thus limits the use of this tool to early-stage rehabilitation.

To address this limitation, we have developed a novel
active strain maps approach that accounts for muscle con-
tributions in various shoulder states (i.e., shoulder joint
coordinates and external forces) as sensed by a collaborative
robotic manipulator. We exploit our recently developed open-
source Rapid Muscle Redundancy (RMR) solver [27] to
estimate shoulder muscle activity. The proposed method then
transforms these muscle activity estimates into our estimates
of tendon strain for all of the RC tendons and creates active
strain maps. Finally, we integrate these active strain maps
with our robotic physical therapy (PTbot) system using the
Kuka LBR iiwa 7 robotic arm. We demonstrate the use of
these active maps with the collaborative robot during several
conventional shoulder exercises.

II. METHODS

The methodology is divided into five subsections. Sec-
tion II-A gives an overview of the musculoskeletal shoul-
der model that is leveraged to obtain information on the
internal biomechanics of the shoulder during rehabilitation.
Section II-B provides a summary of the muscle redundancy
problem and how we solve for muscle activations, while

Scapula

Glenoid Fossa

Humerus

Humeral Head

(c) Glenohumeral Joint

(b) Rotator cuff muscles(a) Musculoskeletal model

Anterior view Posterior view

Infraspinatus

Teres MinorSupraspinatus

Subscapularis

Fig. 2: An overview of the thoracoscapular model. (a) The musculoskeletal
shoulder model, and in red, all the actuating muscles. (b) The rotator cuff
complex, the four rotator cuff muscles are represented by eight muscle
elements; Infraspinatus - green, supraspinatus - yellow, subscapularis - red,
teres minor - blue. (c) The glenohumeral joint, detailing the relation between
the humeral head and the glenoid fossa of the scapula.

considering active muscle dynamics and the GH joint sta-
bility. Section II-C shows the validation of the Python-
RMR solver. Section II-D explains how our PTbot system is
controlled to provide safe physiotherapy. Section II-E details
the experimental design incorporating the active strain maps
with the PTbot system. The proposed method is outlined as
a block diagram in Figure 1.

A. Musculoskeletal Shoulder Model and Strain Maps

We leveraged the thoracoscapular musculoskeletal shoul-
der model [28] and the open-source simulation software
OpenSim [29] to estimate rotator cuff muscle forces and
tendon strains during shoulder exercises. This model, fea-
turing Nq = 7 degrees of freedom (DoFs) and actuated by
Nm = 33 muscle bundles, is designed to provide high fidelity
and accurate representation of the shoulder complex by de-
coupling the movement of the humerus from the scapula. The
complete shoulder kinematics are represented by 4 joints:
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Fig. 3: Interpreting tendon strain from the visualization of strain maps. This
example considers the infraspinatus inferior; it includes nine strain maps for
a combination of three different axial rotations and three muscle activation
levels. The individual maps include the plane of elevation and shoulder
elevation on the x- and y-axis, respectively. The columns represent the strain
maps for increasing muscle activation a of the infraspinatus inferior (a =
0.0, a = 0.2, and a = 0.4). The rows show strain maps for selected axial
rotation angles (AR = -22◦, AR = -2◦, and AR = 18◦).

the scapulothoracic [30], glenohumeral, acromioclavicular,
and sternoclavicular joints. Of particular interest in our study
are the 4 rotator cuff muscles: infraspinatus, subscapularis,
supraspinatus, and teres minor, which span and stabilize the
glenohumeral joint. The glenohumeral joint is represented
as a three DoFs gimbal joint (Figure 2) and the rotator
cuffs primarily affect the direction of the glenohumeral joint
reaction force. The strain in the rotator cuff tendons is a
measure of (re-)tearing risk [25], [26]. Muscle strains are
dependent on the shoulder state and muscle activations,
which must be accurately and reliably estimated.

Computing the RC tendon strains from the musculoskele-
tal model directly is computationally expensive and only
provides individual strain values in numerical form, which
would be difficult to interpret on its own during rehabili-
tation. Instead, we chose to enumerate RC muscle strains
into a simple yet comprehensive and intuitive view of the
possible strain landscape we call “strain map” [25], [26]
that enable the physiotherapist to see where they are going in
terms of increasing or decreasing strain. Strain maps provide
the user with a high-resolution visualization of the tendon
strain in the joint space. Different combinations of strains
can be utilized depending on the patient’s injury and progress
during therapy. For example, the strain maps of all rotator
cuff muscle elements can be combined into a single strain
map by taking the maximum strain for each pose. A strain
map may also be visualized for a single muscle (element) to
ensure that strains are safe during rehabilitation of a specific
injury with a known muscle-tendon location (i.e., a surgical
repair of supraspinatus).

Since the rotator cuff muscles only span the GH joint, we
consider the 3 shoulder DoFs as the state x of our model,
consisting of the following Euler angles; plane of elevation
(PE), shoulder elevation (SE), and axial rotation (AR):

x = [ PE, SE, AR ] . (1)

The range of shoulder DoFs was constrained within the
physiological limits of −20◦ ≤ PE ≤ 160◦, 0◦ ≤ SE ≤
144◦, and −90◦ ≤ AR ≤ 100◦. Rotator cuff tendon strain
estimations were pre-computed from the musculoskeletal
model for each combination of x at 4◦ intervals and muscle
activation in 0.005 activation level intervals.

To visualize the four-dimensional space for a physiothera-
pist, the strain maps were divided into two-dimensional lay-
ers/maps with the plane of elevation and shoulder elevation
on the x- and y-axis, respectively. The axial rotation and
muscle activation are fixed for every two-dimensional map.
For real-time visualization purposes, the 2D map is updated
if axial rotation of muscle activation is changed, as shown
in Figure 3.

B. Muscle Activation Estimation

A fundamental estimate used by our strain calculation is
the muscle activation level required during shoulder move-
ments. Due to the redundancy in muscle elements compared
to the DoFs of the model, there are infinite solutions for
combinations of muscle activations for any given move-
ment/loading condition. To determine a unique solution we
turn to optimization and employ the rapid muscle redundancy
(RMR) solver [27]. RMR solves for individual muscle activa-
tions that generate observed estimates of joint accelerations
such that the sum of muscle effort is minimized. The model
computes muscle forces that account for musculotendon
passive forces, muscle activation dynamics and glenohumeral
joint stability to estimate physiologically realistic muscle
activations in real-time.

The solver’s inputs are biomechanical joint trajectories
and external forces/torques acting on the subject (e.g. at
the interface between robot and subject). Muscle activations
are estimated by solving a nonlinear optimization problem
at each time instant tk of the human motion, minimizing
the biological muscle effort expressed as a weighted sum of
squared muscle activations ak ∈ RNm :

min
a(·),c(·)

Nm∑
i=1

wia
2
i,k +

Nq∑
j=1

vjc
2
j,k (2a)

subject to

Aacc,k

[
ak

ck

]
= q̈exp,k − q̈pass,k acc. matching (2b)

FGH = AF,k

[
ak

ck

]
+ F0,k ∈ C GH stability (2c)

∀ i ∈ Nm :

li,k ≤ ai,k ≤ ui,k activation dyn.(2d)

Because the model is a simplified version of reality, reserve
actuators were added to the model to account for model
discrepancies like muscles being slack or too stretched (as
recommended in [31]) and their control levels ck ∈ RNq

were also included in the objective function (2a). The rel-
ative weights (penalties) wi and vj were set to 1 and 10,
respectively, to promote the engagement of the muscles over
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the reserve actuators, which capture modeling errors.
Constraints are used to guide the solver towards physiolog-

ically realistic solutions. First, we ensure that the simulated
joint accelerations match the experimental data (q̈exp,k),
by means of a linear equality constraint (2b) where we
account purely for the active muscle contribution, subtracting
from q̈exp,k the influences of gravity and passive muscle
forces at the given shoulder pose, collectively lumped in
q̈pass,k. Element Aacc,k(j, i) of Aacc,k ∈ RNq×(Nm+Nq)

represents the influence of a single activation of actuator
i on the acceleration of coordinate j. Secondly, a stability
constraint (2c) is enforced on the joint reaction force FGH

at the glenohumeral joint. The direction of the FGH was
constrained to be within a circular approximation of the
glenoid fossa C, to ensure the stability of the GH joint. The
last set of constraints (2d) ensures physiological activation
and deactivation rates, as muscle’s force generation and
relaxation are dependent on the calcium ion concentrations.
The dimensionless muscle activations can range between 0
and 1, where a value of 0 indicates no contraction of the fiber
(no activation), and a value of 1 represents maximum muscle
contraction and thus force generation (full activation).

C. Implementation of a streaming Python-RMR solver

To facilitate the integration of the RMR solver with the
proposed active strain map method and a robotic system, the
original implementation of the solver in MATLAB [27] was
re-implemented in Python with a few important distinctions.
The solver makes use of the Sequential Least Squares Pro-
gramming (SLSQP) method from the Scipy.minimize library
[32]. In addition, the Python implementation accommodates
real-time applications by allowing for streaming pose and
external forces data, which enabled us to take measurements
from the robotic manipulator and compute muscle activity at
approximately 5Hz such that the strain maps can be updated
during an exercise based on estimated muscle activations. We
tested the Python-RMR implementation against the original
to verify our muscle activation estimates.

Muscle activations estimated with the RMR solver in
MATLAB and Python were compared to the experimental
EMG data. The activation was averaged over the three
repetitions for each task. The muscle activation estimations
were compared during three motions; abduction, flexion, and
shrugging for both an unloaded and 2 kg load condition. To
capture differences across the dataset, mean absolute errors
(MAE) were computed. The MAE values for MATLAB and
Python against EMG-based activations were found to be
≤ 0.17, with most values ≤ 0.10. For the majority of the
activation estimations, the errors against EMG data were
the same in the MATLAB and Python implementations. The
differences in MAE values between MATLAB and Python
were ≤ 0.02. Figure 4 included the mean and standard
deviation of muscle activations for selected muscles during a
loaded flexion task. The results from the experimental EMG
data and the MATLAB and Python RMR implementation
demonstrate that the Python-RMR solver produces results
nearly identical to the MATLAB implementation, with only
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Fig. 4: Muscle activation of selected muscles during a loaded flexion motion.
The estimations are shown for MATLAB (green) and Python (pink) and are
displayed as the mean over three repetitions of the motion (bold lines),
with a shaded ±1 SD. Additionally, the muscle activations from filtered
experimental EMG data are displayed in gray (±1 SD).

minor differences. Finally, we computed the average frame
processing frequency of the Python-RMR solver to be ap-
proximately 5 Hz.

D. Robotic Control and Interaction

The strain maps need input about the shoulder state vector
x and any external forces/torques acting on the subject
during the therapy to retrieve the internal biomechanics of
the shoulder joint. We leveraged the KUKA LBR iiwa,
a 7-DoFs industrial collaborative robot certified for safe
physical human-robot interaction. A 3D-printed plastic brace
is used as a rigid interface between the robot and the
human arm, and the subject was instructed to minimize the
displacement of their shoulder during the interaction with
the robot (Figure 5). In such a way, the shoulder state x
and its time derivative ẋ can be uniquely obtained from
the current pose of the robot’s end-effector. The potential
discomfort to the subject is reduced by leveraging gravity
compensation for both the robot and the arm brace, and
interaction forces at the human-robot interface are estimated
from the joint torques [33]. Data from the torque sensors and
the joint angles were collected at 200Hz, and subsequently
used as input for the RMR solver for the muscle activation
and tendon strain estimations. During our experiments, the
robot was controlled with a Cartesian impedance controller:

Fimp = K(xee − xee) +D(ẋee − ẋee) . (3)
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Fig. 5: An overview of the coordinate systems of the setup: The shoulder
frame has its origin in the center of the glenohumeral joint (green). The
glenohumeral joint DoFs (PE, SE, and AR) are shown in red. The elbow
frame (blue) has an origin in the center of the elbow. The elbow frame
origin coincides with that of the robot’s end-effector frame (pink).

where Fimp ∈ R6 is the vector of interaction forces and
torques at the end-effector. The robot’s end-effector reference
and actual pose are xee and xee, respectively. K, D ∈ R6×6

are the desired stiffness and damping matrices in Cartesian
space. The positional and rotational stiffness of K are pre-
scribed, and D is obtained using the double diagonalization
design method [34]. By setting different positions of xee at
the beginning of the experiment, the robot mimics the effect
of elastic bands during rehabilitation exercises (Figure 6).

E. Experimental setup

To test the integration of the muscle redundancy solver
with the PTbot system we conducted an experiment to
determine RC tendon strain during four different exercises.
One healthy individual was considered as a subject for the
following experiments. They were seated in a normal chair
and, after the robot was moved to its initial position, wore
the custom arm brace. The subject performed four differ-
ent movements based on common rehabilitation exercises;
forward flexion, extension, abduction, and adduction (see
Figure 6). They were free to move in space but instructed to
make 1-DoF movements. For forward flexion and extension,
axial rotation and plane of elevation were kept at around
−90◦ and 90◦, respectively. In the case of abduction and
adduction, axial rotation and plane of elevation were kept
at around 0◦. To ensure the subject’s safety, their movement
was restricted within a limited ROM. For all cases, shoulder
elevation was instructed to be limited between 30◦ and 80◦.

The Cartesian impedance controller of the robot was
leveraged to mimic elastic bands commonly used in reha-
bilitation exercises. By increasing the positional stiffness, a
larger external force acted on the elbow; thus, more effort
was required from the subject to move along the trajectory.
The four movements were all executed for three different
positional stiffness values: Kpos = 10, 30, and 50 N/m.
The rotational stiffness was kept constant throughout the
experiments. The stiffness value Krot was set to 50 Nm/rad.

xee

xee

xee

xee

(a)

(d)(b)

(c)

Fig. 6: The four motions as performed during the experiment with (a)
abduction, (b) adduction. (c) forward flexion, (d) extension. The start
position of each motion was set as the reference pose for the robot xee

(pink), and the subject made one continuous motion as indicated in black.
The arrows indicate the direction of the motion.

To allow for the estimation of shoulder joint angles based
on the robot joint angles, the subject was instructed not to
move their torso. During the experiments with the robot, we
only obtained information on the GH joint coordinates and
thus assumed that the scapula was not moving during the
muscle activation estimation. The shoulder state and external
force data were post-processed to estimate the muscle acti-
vations and the tendon strains and generate the strain maps.

All the computations were run on an HP ZBook Studio
G3 with an Intel i7-6700HQ processor and 8GB RAM.

III. RESULTS

In this section, we show the resulting muscle activations
and tendon strains from the conducted experiments with a
robotic device for a set of motions and show the effect of
external forces on the muscle activations and, subsequently,
the tendon strains (III-A). Finally, we show the resulting
strain maps, which now represent active model-based tendon
strain estimations during human-robot interaction in III-B.

A. Muscle activation and tendon strain estimation

The resulting muscle activation and tendon strains for the
experiments performed with the Kuka LBR iiwa robotic arm
are presented below. Two of the motions are shown, each
with a different rotator cuff muscle highlighted. Figure 7
shows the resulting muscle activation and tendon strain of
the infraspinatus inferior and infraspinatus superior during
extension. A single extension was performed for three dif-
ferent robot stiffness values (K = 10 N/m, K = 30
N/m, and K = 50 N/m). By increasing the stiffness,
the magnitude of the external force also increases. During
extension, the infraspinatus superior is not activated for any
of the modalities. The infraspinatus inferior is recruited less
when the stiffness is increased, and the infraspinatus inferior
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tendon strain also reduces with higher stiffness. A peak at
the end of the motion with medium stiffness can be seen in
the infraspinatus inferior muscle activation and tendon strain.
The supraspinatus muscle bundles are highlighted during a
single abduction motion, again for all three stiffness values
(Figure 8). Both the supraspinatus anterior and posterior bun-
dles were activated during the abduction task. The estimated
muscle activation increased with a higher positional stiffness
of the robot, which also resulted in a higher tendon strain.

B. Strain maps during active rotator cuff rehabilitation

Using strain maps, we visualized the tendon strains during
a single abduction motion with medium positional robot
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Fig. 9: An example of strain maps visualizing tendon strain at five instances
(t1 − t5) during a single abduction motion with a medium stiffness (K=30
N/m). The strain maps are shown for the a) subscapularis inferior (SSCI),
b) infraspinatus superior (ISS), and c) the maximum strain of all rotator cuff
muscles. For the complete movement, (d) the shoulder pose and e) selected
rotator cuff tendon strains are shown.

stiffness. A subset of the resulting strain maps is shown
in Figure 9. They represent the strain distribution for five
instances in time throughout the motion. An example of
strain maps is shown for subscapularis inferior (SSCI),
infraspinatus superior (ISS), and the maximum strain of all
rotator cuff muscles. These maps exhibit varying shapes
as the shoulder pose and muscle activation levels change
throughout the motion, resulting in a shift of low and high-
strain zones. Notably, the two individual muscle elements
experience high strains at different shoulder poses.

IV. DISCUSSION

In this study, we developed a method for the real-time con-
sideration of external forces during robotic shoulder physical
therapy. This is a significant step beyond our previous
contributions which could not account for the RC tendon
strains induced due to muscle activity and instead assumed
the patient was always passive during the exercises.

The inclusion of muscle activation in the tendon strain
estimator provides more physiologically realistic estimates,
allowing for a larger range of rehabilitation applications.
This is particularly important in later stages of rehabilitation
where a patient may begin to apply greater forces (resistance
training), but may still be important in earlier stages if for
example the patient is simply supporting the weight of their
own arm. In general, the stabilizing role of the RC muscles
makes their activation (and thus the tendon strains) quite
difficult to predict. Providing accurate estimates of how the
activations and strains will be induced, even during fully
assisted motions, is a critical step for safe robotic assistance
during rehabilitation.

To prevent injury and improve rehabilitation outcomes, it
is critical for a robotic PT to understand how a patient should
or should not move during rehabilitation. In the case of RC

Authorized licensed use limited to: TU Delft Library. Downloaded on January 08,2024 at 14:41:17 UTC from IEEE Xplore.  Restrictions apply. 



injuries, this requires insight into the RC muscle recruitment
patterns and the impact these have on RC strains. The active
strain maps presented here are unique in their ability to make
these estimates in real-time and offer opportunities to develop
new novel rehabilitation exercises tailored to the patient. In
the simplest case of early-stage rehabilitation (where avoid-
ing re-tear following surgery is crucial), a physiotherapist
can choose the robot’s stiffness and trajectory such that the
strains in the damaged muscles are below a certain threshold.
For example, in the case of an injured infraspinatus, a higher
stiffness during extension was observed to reduce the strains.
Conversely, during the later stages of rehabilitation, a phys-
iotherapist may desire to prioritize strengthening a specific
muscle or recruit compensatory muscles to compensate for
an injured one. The combination of a customizable robotic
device and the solver presents an intriguing opportunity to
design and evaluate novel rehabilitation exercises for various
rotator cuff disorders. This approach allows for exploring and
establishing tailored rehabilitation protocols, providing valu-
able insights for improving patient recovery and outcomes.

The addition of muscle activation also adds substantial
complexity to the strain mapping problem. While passive
strain maps can be fully known beforehand, active maps rely
on external forces applied by the patient which are largely
unpredictable. Real-time map updates based on these external
forces are thus required to correctly reflect the tendon strains
during active exercises. It is thus uncertain how the strain
space will evolve in each subsequent time step. For clinical
implementation, further investigation is required to enable
real-time updates of active strain maps while incorporating
the previously identified safe and unsafe strain zones [26].
We expect to leverage tools such as model predictive control
in future studies as we incorporate this complexity into our
PTbot system. Additionally, the 5 Hz update speed of the
Python-RMR solver is fast enough for the speed of most
rehabilitation exercises, since human movement frequencies
are typically within the range of 0 to 10 Hz [35]. We
will improve this in the future via dedicated hardware and
software.

Finally, although the object of this work is focused on
robotic rehabilitation, the results also demonstrate the po-
tential for this system to provide important insights to a
human PT during physical therapy exercises. In the shoulder
extension experiment for example, we observed a decreased
engagement of the infraspinatus inferior as a response to
the larger external forces applied to the subject (Figure 7).
Notably, the tendon strains are highly dependent on changes
in shoulder pose even under low muscle activity, as observed
in the infraspinatus superior.

An opposing muscle response to external forces was
observed in Figure 8, where the supraspinatus superior and
supraspinatus inferior were activated more for higher forces.
While the rotator cuff muscles are the primary stabilizers
of the glenohumeral joint they also assist in the motions of
the shoulder joint. The recruitment shown in Figure 8 of
the supraspinatus during abduction aligns with our intuition
around shoulder biomechanics for the changing external

forces. Because the supraspinatus assists the deltoids in ab-
duction, increased recruitment of both muscles was expected
for increased antagonistic external forces. This recruitment
can be seen clearly in Figure 8 in response to the increased
stiffness of the robot.

The infraspinatus is known as the primary external rotator
of the humeral head, so engagement during the extension
motion, with a 90◦ external rotation of the humerus, is
in line with these expectations. In contrast, we expected
larger external forces to destabilize the glenohumeral joint
and, thus, a higher engagement of the rotator cuff muscles,
which was not the case for the infraspinatus inferior during
extension. This may be explained by an observed increase
in latissimus dorsi muscle activation, which helps depress
the humerus inside the glenohumeral joint, and requires less
stabilizing efforts from the infraspinatus.

These observations demonstrate the ability of this system
to provide improved understanding not merely for our PTbot
but clear and useful insights for physical therapists as we be-
gin to link musculoskeletal modeling with real-time sensing
and control.

V. CONCLUSION

In this work, we developed active strain maps, a novel
functional representation of rotator cuff tendon strains in
response to pose, movements and external forces on the arm.
These active maps are a significant step forward from our
earlier passive strain maps as they offer the ability to improve
the accuracy of estimated RC tendon strains by considering
the effect of muscle activation during motions and under
load. We demonstrate the use of these active strain maps via
our robotic physical therapy system PTbot – conducting four
conventional RC therapy exercises under varying loading
conditions. By connecting this active strain map framework
with our PTbot system we can provide physiotherapists with
safe and unsafe ROM during rehabilitation, and the ability
to visualize quantitative information on tendon strain during
assisted or unassisted and even resisted exercises. These
active maps can be generated for every muscle element
separately or can be used to represent the maximum strain
experienced by all the rotator cuff muscles. Using this tool
we expect to enable improved robotic perception of the
RC tendon strains during robotic rehabilitation for use in
the planning of custom exercises and for protecting patients
during motions. Finally, strain maps paired with our PTbot
system provide a novel and useful feedback tool for assisting
human physiotherapists, who can receive real-time visual
feedback of RC tendon strain during rehabilitation exercises
and can thus leverage the different active strain maps and
robot control settings to deliver therapy for specific injuries
over a large ROM while reducing the risk re-injury.
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