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Abstract

Animals change the way they walk depending on the type of terrain or how fast they
move. Taking inspiration from nature, it is reasonable to think that robots should
change their locomotion patters, also called "gaits", depending on their environment or
the objectives of their tasks. Recently, a discrete event system (DES) model description
for legged locomotion has been developed, this model is based on events, where the
events describe each leg touch down and liftoff. By describing the relation between the
touchdown and lift-off events of the different legs a gait is generated. This DES model
can be described in the max-plus linear algebra as a linear model. Gait switches are
simply done by changing system matrices, the max-plus algebra then ensures that the
robot remains stable during the gait switch by forcing some of the legs to move slower
over the ground. By doing this, the order in which the legs move can be changed to that
of the new gait, while ensuring enough legs are on the ground to avoid falling. However,
very little research has been done on the optimization of these gait switches. The goal
of this thesis is to find optimal gait switches using the max-plus linear model. An
optimal gait switch in this thesis is considered as a gait transition where the difference
in speed of the legs on the ground during the gait switch is as small as possible.

In order to find the optimal gait switches the steady state behaviour of the gaits created
with this model are analyzed. This is done by looking at the properties of the matrix
that describes the gait. These properties are the eigenvalue and the eigenvector, which
represent the cycle time and order in which the events happen. First an eigenvalue
and eigenvector are found for the system. Then, by proving that the matrix is irre-
ducible and that the critical graph of that matrix consists of a single strongly connected
subgraph one can show that this eigenvalue and eigenvector are unique. This in turn
means the steady state behaviour for these gaits is uniquely defined.

The steady state behaviour between different gaits can then be analysed by comparing
the eigenvectors of the gaits. The difference between the eigenvectors can then be used
as a measure of optimality. By minimizing the difference between the eigenvectors an
optimal gait switch is found.
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The gait switch is further optimized by manipulating the time the legs stay in the air
according to the difference in the two eigenvectors. Using this method “perfect” gait
switches can be obtained, where the speed of the legs on the ground during the gait
switch is the same for all legs. For this to work however it is required that the legs on
the ground move at the same speed for both gaits. This means the perfect gait switches
are only possible if the robot is moving at the same speed in both gaits. Which in turn
means the robot will not speed up when using only “perfect” gait switches.

Non-zero acceleration is achieved by manipulating the clock the robot is using for the
timing. By introducing a virtual clock, that has a non-linear relation with the real
clock, that determines the timing of the robot, the robot will speed up relative to the
real clock, while the timing relative to the virtual clock does not change. By doing so
the robot speeds up without having to change the gait parameters.
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Chapter 1

Introduction

1-1 Background

Mankind has always used tools to complete tasks they otherwise could not, or would
take much more effort. These tools started very simple, but in time became more and
more complex machines. Robots are an example of these complex machines. Nowadays
robots are used in situations where the task is impossible to complete for humans
or are too dangerous such as search and rescue operations, space exploration, bomb
disposal operations, reconnaissance, and many more operations. As the complexity
of these operations increases the capabilities of the robot also has to increase. For
example a robot that is used for search and rescue operations has to be able to move
over many different types of terrains. Each type of terrain requires the robot to move
slightly different. It needs to be able to switch from one locomotion pattern to another.
Locomotion patterns are often called gaits in literature.

If legs are used to move this act of moving is called legged locomotion. Legged locomo-
tion and gaits for all sorts of animals have been researched; from the smallest insects[2]
to the largest mammals and reptiles use legs to move. The number of legs these an-
imals have can be as low as two, like humans, or up to hundreds for insects like the
millipede. Besides the number of legs, many other factors determine the locomotion
pattern[5], such as the size and shape of the animal, and many more factors. The gaits
of horses have been extensively researched[7], but also the energetics of these gaits and
their transitions[11].

These animals have inspired a lot of different models for legged locomotion for the use in
robotics[9]. It has also lead to many different kind of robots, such as the human inspired
biped(two legged) walking robots Leo and Flame[8] developed at the Delft University
of Technology, or quadruped(four legged) robots suchs as the Sony AIBO[10] and the
BigDog[16] or hexapod(six legged) robots such as the RHex[17] and its DCSC derivative
[13][15] and robots with even more legs.
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2 Introduction

One of the challenges that remains in legged locomotion is how to switch from one gait
to another without causing unstable behaviour and how to optimize that gait switch.
Animals can do this naturally[11][5], when they adapt their motion to the surface they
are walking on, or when they turn, or any other change in their locomotion. Robots
need to be programmed. This can be done in several ways. One way is to continuously
make small changes to the gaits in such a way that all those small changes result in the
desired new gaits[4][3]. This however is a long and complicated process.

Recent developments in legged locomotion using discrete event system (DES)[13][15]
have shown promising results especially with gait switches. The events of such a system
are the lift-off and touch down moments of the legs. A locomotion pattern can then be
described by the synchronization constraints of these events. These constraints can be
written as the maximum of multiple events each with different offsets added to them.
Since it only uses the max and addition operators these constraints can be written as
linear max-plus algebra equations. This thesis will therefore focus on optimizing gait
switches for the max-plus linear model description developed by Lopes et al.[13][15]

1-2 Problem statement

The main goal for this thesis is:

Determine the optimal gait switches for the max-plus linear model for a hexapod
robot.

In order to reach this goal several several steps need to be taken first. In order to
determine an optimal gait switch it is neccesary to know how the robot behaves when
it is using those gaits. Therefore the steady state behaviour of all gaits needs to
determined first. After the steady state behaviour has been determined, this needs to
be used to determine the optimal gait switches, but in order to do that a method to
quantitatively define the optimality of a gait needs to be defined. This method then
needs to be applied to all possible gait switches in order to determine the optimal gait
switches. The final part of thesis will be about new gait switching methods that can
be used to further improve these gait switches.

This results in the following subgoals:

• Analyze the steady state behaviour of the gaits

• Develop a method that quantitatively defines the optimality of a gait switch and
use this to determine the optimal gait switches

• Develop new methods for switching gaits

B Kersbergen Master of Science Thesis



1-3 Contribution 3

1-3 Contribution

The max-plus model and its control structure are based on the work of Lopes et al.
[13][15]. In collaboration with Lopes et al. two more conference papers on this subject
have been submitted for publication [14][12] and two journal papers are being written.
My contribution to these papers is the proof of the unique eigenvalue in chapter 4 and
the development of new gait switching methods which improve the gait switches, as
presented in chapter 5.

1-4 Outline

The structure of this thesis is as follows; in chapter 2 the basics of max-plus linear
algebra are explained, in chapter 3 the basics of legged locomotion and the max-plus
linear model are presented, in chapter 4 the steady state behaviour of the gaits created
with max-plus linear model is analyzed, in chapter 5 the steady state behaviour is used
to find the optimal gait switches and determine new gait switching methods. Finally in
chapter 6 the thesis will be concluded with a discussion of the research done, conclusions
will be drawn and recommendation for future research will be made.
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Chapter 2

Max-plus linear algebra

2-1 Introduction

In this chapter the mathematical principles of max-plus algebra will be explained. This
chapter is based on the books of Bacelli et al.[1] and Heidergott et al.[6]. Starting
with the most basic concepts and definitions in section 2-2. In section 2-3 Matrices
and vectors for max-plus algebra will be introduced. In section 2-4 graphs in max-
plus algebra will be explained. Eigenvectors and -values are explained in section 2-5.
In section 2-6 the mathematical concepts for solving max-plus linear equations are
presented. Section 2-7 deals with max-plus linear (MPL) systems. In section 2-8 these
MPL systems are expanded to switching max-plus linear (SMPL).

2-2 Constants and operators

First a few constants need to be defined before the rest of the theory can be explained.

These constants are ε
def
= −∞ and e

def
= 0. ε is called the zero-element and e is called the

one-element in max-plus algebra. The set Rmax is defined as R ∪ {ε}, where R is the
set of real numbers.

Next the two basic operators ⊕ and ⊗ will be defined. For the elements a, b ∈ Rmax

the ⊕ and ⊗ operators are defined as

a⊕ b
def
= max(a, b) (2-1)

and
a⊗ b

def
= a+ b (2-2)

The reason ε is called the zero-element is

a⊕ ε = ε⊕ a = a (2-3)

a⊗ ε = ε⊗ a = ε. (2-4)

Master of Science Thesis B Kersbergen



6 Max-plus linear algebra

From the following it is clear that e is the one-element

a⊗ e = e⊗ a = a. (2-5)

Max-Plus algebra is denoted by

Rmax = (Rmax,⊕,⊗, ε, e).

In max-plus algebra the ⊗ operator has priority over the ⊕ operator just like in con-
ventional algebra, where × has priority over +. This means that for the elements
a, b, c, d ∈ Rmax

a⊕ b⊗ c⊕ d = a⊕ (b⊗ c)⊕ d.

2-3 Matrices and vectors

Matrices and vectors for max-plus algebra will be introduced in this section. The set of
n×m matrices for max-plus algebra is denoted by R

n×m
max , where n,m ∈ N and n,m 6=

0. The element aij of a matrix A ∈ R
n×m
max is the element on the ith row and jth column,

where i ∈ {0, . . . , n} and j ∈ {1, . . . ,m}. Another way to notate the same element is
[A]ij. The matrix A looks like

A =









a11 a12 · · · a1m
a21 a22 · · · a2m
...

...
. . .

...
an1 an2 · · · anm









(2-6)

Matrices can be added up in max-plus algebra in a similar way to that of the matrix
addition in standard algebra. For the matrices A,B ∈ R

n×m
max , the sum is denoted by

A⊕B and defined as

[A⊕B]ij = aij ⊕ bij (2-7)

= max(aij, bij),

for i, j ∈ N, i, j 6= 0, i ≤ n and j ≤ m.

For A ∈ R
n×m
max and β ∈ Rmax, β ⊗ A is defined as

[β ⊗ A]ij = β ⊗ aij (2-8)

for i, j ∈ N, i, j 6= 0, i ≤ n and j ≤ m.

For matrices C ∈ R
n×l
max and D ∈ R

l×m
max , the matrix product C ⊗D is defined as

[C ⊗D]ik =
l⊕

j=1

cij ⊗ djk (2-9)

= max
j
{cij + djk}
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2-4 Graphs 7

where i, j, k ∈ N, i, j, k 6= 0, i ≤ n, j ≤ l and k ≤ m.

Next the two matrices E(n,m) and E(n,m) are defined.

[E(n,m)]ij
def
= ε (2-10)

E(n,m) is the n×m matrix defined by

[E(n,m)]ij
def
=

{

e for i = j
ε otherwise

(2-11)

If n = m then E(n, n) is called the n× n identity matrix.

The transpose of the matrix A ∈ R
n×m
max , denoted by A>, is defined as

[A>]ij = aji (2-12)

Which is the same as the transpose in standard algebra.

The matrix power is defined as

A⊗k
def
= A⊗ A⊗ · · · ⊗ A
︸ ︷︷ ︸

k times

, (2-13)

where A ∈ R
n×n
max .

If each row of a matrix A ∈ R
n×m
max has at least one element different from ε then matrix

A is called regular.

A matrix A ∈ R
n×n
max with aij = ε, for 1 ≤ i ≤ j ≤ n, is called strictly lower triangular.

If aij = ε, for 1 ≤ i < j ≤ n then A is called lower triangular. If A> is (strictly) lower
triangular then A is (strictly) upper triangular.

Vectors are defined as elements of Rnmax
def
= R

n×1
max. The ith element of a vector x ∈ R

n
max

is denoted by xi. It can also be written as [x]i. The ith column of the identity matrix
E(n, n) is denoted by ei and it is called the ith base vector of Rnmax. There is also a unit
vector in R

n
max. This vector is denoted by u and has all elements equal to e.

2-4 Graphs

A graph G is a representation of a finite set of nodes N and a set of arcs (or edges),
D⊂ N × N , which represents the connections between the nodes. When the set of
arcs is ordered it means that there is a distinction between the arcs (i, j) and (j, i). If
i, j ∈ N , (i, j) 6∈ D and (j, i) ∈ D then there exists an arc from node j to node i but
not from node i to node j. This arc (j, i) is called an incoming arc at i and an outgoing
arc at j. This means that ordered arcs have a direction, that is why a graph with an
ordered set of arcs is called a directed graph. If all the arcs (i, j) ∈ D of the directed
graph G have a weight w(i, j) then G is called a weighted directed graph. Because the
only type of graph that is of interest is the weighted directed graph the other types of
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8 Max-plus linear algebra
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Figure 2-1: Graph G(Aex)

graphs will not be discussed. Therefore weighted directed graphs will be referred to as
graphs.

For any matrix A ∈ R
n×n
max a graph can be drawn, this graph is called the communication

graph and is denoted by G(A). The set of nodes of the graph is denoted by N (A) and
the set of arcs is denoted by D(A) ⊂ N (A) × N (A). A pair (i, j) ∈ N (A) × N (A) is
an arc of the graph if aji 6= ε. aji is the weight of the arc (i, j).

As an example consider the matrix

Aex =






1 2 ε
ε ε 0
4 3 2




 .

The graph G(Aex) is shown in Figure 2-1

A path from node i to node j is a sequence of arcs denoted by p = ((ik, jk) ∈ D(A) :
k ∈ {1, . . . ,m} where i = i1, jk = ik+1 for k < m and jm = j. The path has
length m, denoted as |p|1 = m. If i = j or in other words if the end node is the
same as the starting node the path is called a circuit. The circuit is called elementary
if, restricted to that circuit, all the nodes of the circuit only have one ingoing and
one outgoing arc. If there are several paths from i to j of length m they can be
viewed as a set denoted by P (i, j;m). The weight of a path in G(A) is defined as
the the sum of the weights of the arcs that make up the path. Formally stated, for
p = ((i1, i2), (i2, i3), · · · , (im, im+1)) ∈ P (i, j;m) with i = i1 and j = im+1, the weight
of p, denoted by |p|w, is defined as

|p|w =
m⊗

k=1

aik+1ik (2-14)

The average weight of a path p is given by |p|w/|p|1. When dealing with circuits the
length, weight and average weight are defined similarly as paths, however the average
circuit weight is called the circuit mean.

Paths in G(A) can be combined in order to construct a new path. For example let
p = ((i1, i2), (i2, i3)) and q = ((i3, i4), (i4, i5)) be two paths in G(A). Then,

p ◦ q = ((i1, i2), (i2, i3), (i3, i4), (i4, i5))
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2-4 Graphs 9

is a path in G(A) as well. The operation ◦ is called the concatenation of paths.

Using the powers of the matrix A the maximal weight of a path of length k from node
i to node j can be found. The following definition shows how.

[A⊗k]ji = max{|p|w : p ∈ P (i, j; k)}, (2-15)

where A ∈ R
n×n
max , k ≥ 1 and [A⊗k]ji = ε if P (i, j; k) is empty.

Similarly the maximum weight of any path from node i to node j can be defined as

A+ def
=
∞⊕

k=1

A⊗k (2-16)

where A ∈ R
n×n
max .

If graph G(A), where A ∈ R
n×n
max , only has circuits with a circuit mean of e or less, then

k in 2-16 can be limited to n.

A+ =
∞⊕

k=1

A⊗k = A⊕ A⊗2 ⊕ · · · ⊕ A⊗n (2-17)

In some cases the infinity sum in 2-17 can also be limited to a value k = m if A is
nilpotent. That is if A⊗m = E . Such a case is discussed in section 2-4.

Next a few more concepts and definitions are given regarding graph theory. Consider
a graph G = (N ,D), where N is the set of nodes and D the set of arcs, with nodes i,
j ∈ N . If there is a path from i to j then j is reachable from i, denoted as iRj. If for
all nodes i, j ∈ N , j is reachable from i then the graph G is called strongly connected.
Consider a matrix A ∈ R

n×n
max and its graph G(A), if the graph G(A) is strongly connected

then A is irreducible. When a matrix is not irreducable it is reducible. If iRj and jRi,
in words if there exists a path from i to j and from j to i, or if i is j then node j
communicates with node i and visa versa, this is denoted as jCi and iCj respectively.
When a graph G = (N ,D) is not strongly connected, not all nodes communicate with
each other. This does not mean there are no subsets of nodes which are strongly
connected. Graph G can be devided into these subsets of nodes. The subsets can not
communicate with each other, if they do they both should belong to a larger subset
containing all nodes of the two communicating subsets. These subsets will be denoted
as N1, N2, · · · , Nq and N can de devided into these subsets as N1 ∪ N2 ∪ · · · ∪ Nq,
where Nr, r ∈ {1, . . . , q}. Each subset of nodes Nr also has a corresponding subset
of arcs Dr, r ∈ {1, . . . , q}, only arcs that have a starting node and ending node in
Nr are in Dr. The combination of Nr and Dr is a subgraph of G denoted as Gr=
(Nr,Dr), r ∈ {1, . . . , q}. The subgraph Gr = (Nr,Dr) is called a maximal strongly
connected subgraph (m.s.c.s.) of graph G if Dr 6= ∅. The set of nodes that contains
node i and communicates with eachother is defined as

[i]
def
= {j ∈ N : iCj} (2-18)

This means that if i ∈ Nr then [i] = Nr, for r ∈ {1, . . . , q}. One special subgraph is the
graph which only has one node i and that node does not communicate with any other
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10 Max-plus linear algebra

node. This means that [i] = {i} and that arc set is empty. Eventhough the subset is
not strongly connected it is still referred to as an m.s.c.s.
Using the previous definitions and concepts the reduced graph can be introduced.

G̃ = (Ñ , D̃), where (2-19)

Ñ = {[i1], · · · , [iq]}

([ir], [is]) ∈ D̃ for r 6= s

there also has to exist an arc (k, l) ∈ D for some k ∈ [ir] and l ∈ [is]. Consider the
reducable matrix A ∈ R

n×n
max and its graph G(A). A can be written in the upper block

triangular form. Some relabeling of the nodes in G(A) might be necessary.

A =












A11 A12 · · · · · · A1q

E A22 · · · · · · A2q

E E A33
. . .

...
...

...
. . . . . . · · ·

E E · · · E Aqq












, (2-20)

where Arr is the matrix represented by the subgraph Gr = (Nr,Dr) for 1 ≤ r ≤ q and
where Asr, for 1 ≤ s ≤ r ≤ q, is a matrix of appropriate size which has finite elements
corresponding to arcs from a node in [ir] to a node in [is] where the values corresponds
to the weights of the arcs. This form of matrix A is a normal form of A.

The concept of the cyclicity of a graph G is defined for the strongly connected and the
not strongly connected graphs. The cyclicity of a graph G is denoted by σG. For a
strongly connected graph G the cyclicity σG is defined as the greatest common divisor
of the lengths of all elementary circuits in G. If G consists of only one node and no

self-loop then σG
def
= 1.

For a not strongly connected graph G the cyclicity σG is defined as the greatest common
multiple of the cyclicities of all the m.s.c.s.’s of G.

The nodes to which node i is connected can be devided into the (direct) predecessors
and the (direct) successors. The direct predecessors and all predecessors are denoted
by π(i), π+(i) respectively. The direct successors and all successors are denoted by
σ(i), σ+(i) respectively. The names already imply the meaning of those sets, but the
formal definitions are

π(i)
def
= {j ∈ {1, . . . , n} : (j, i) ∈ D}, (2-21)

π+(i)
def
= {j ∈ {1, . . . , n} : jRi}, (2-22)

σ(i)
def
= {j ∈ {1, . . . , n} : (i, j) ∈ D}, (2-23)

σ+(i)
def
= {j ∈ {1, . . . , n} : iRj}, (2-24)

further the set π∗(i)= {i} ∪ π+ and the set σ∗(i)= {i} ∪ σ+
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2-5 Eigenvalues and -vectors

Just like in conventional algebra square matrices in max-plus algebra have eigenvalues
and -vectors. The definition of eigenvalues and -vectors is quite similar

A⊗ v = µ⊗ v,

where A ∈ R
n×n
max , v ∈ R

n
max and has at least one finite element and µ ∈ Rmax. Here

µ is called an eigenvalue of A and v an eigenvector of A associated with eigenvalue
µ. Square matrices may have more than one eigenvalue. The eigenvectors are never
unique. If v is an eigenvector then a ⊗ v is an eigenvector too, where a ∈ R. The
set of eigenvectors associated with an eigenvalue span a vector space in the max-plus
sense, called the eigenspace. The eigenspace associated with eigenvalue µ is denoted by
V (A, µ). If it is clear that the eigenvalue of A is unique the eigenspace can be denoted
as V (A) and the eigenvalue as λ(A).
Given a matrix A ∈ R

n×n
max with finite eigenvalue µ, there exists a circuit γ in G(A) such

that

µ =
|γ|w
|γ|1

This means that one of the circuit means is an eigenvalue of A, however it does not
state from which circuit. To be able to determine which circuit mean is an eigenvalue
of A first some concepts need to be defined. A circuit p in G(A) is called critical if its
circuit mean is maximal. This maximal circuit mean is denoted by λ and defined as

λ = max
p∈C(A)

|p|w
|p|1
, (2-25)

where C(A) is the set of all elementary circuits in G(A). If C(A) = ∅ then λ = −∞.

The critical graph of A, denoted by Gc(A) = (N c(A),Dc(A)), is the graph corresponding
to the nodes and arcs that make up the critical circuits in G(A). A node i ∈ N c(A) will
sometimes be called a critical node and a subpath of a critical circuit will sometimes
be called a critical path.

Now matrix Aλ will be defined as follows

[Aλ]ij = aij − λ, (2-26)

where λ is defined as in 2-25. Matrix Aλ will sometimes be called the normalized
matrix. By definition the maximum circuit mean of Gc(Aλ) is zero. Using this 2-16 can
be used to find A+

λ , this should be read as (Aλ)
+. From this it follows that

∀η ∈ N c(A) : [A+
λ ]ηη = e = 0. (2-27)

This means that every node of the critical graph is in a circuit and that every circuit
of the critical graph has weight zero, since λ is substracted from all elements. Next A∗λ
is defined as

A∗λ
def
= E ⊕ A+

λ =
⊕

k≥0

A⊗kλ , (2-28)
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12 Max-plus linear algebra

where A∗λ should be read as (Aλ)
∗. Finally let [B].k denote the kth column of a matrix

B.

Now if A is irreducible and v ∈ R
n
max is an eigenvector of A associated with finite

eigenvalue µ and has at least one finite element, then all elements have to differ from
ε. It can even be stated that if A is irreducible that it only has one eigenvalue. That
eigenvalue is denoted by λ(A), it is finite and equal to the maximal circuit mean of the
circuits in G(A). In other words

λ(A) = max
p∈C(A)

|γ|w
|γ|1
, (2-29)

Using these concepts and definitions the following can be stated. Consider the commu-
nication graph G(A) of matrix A ∈ R

n×n
max and let it have a finite maximal circuit mean

λ. Then λ is an eigenvalue for the matrix A and the column [A∗λ].η is an eigenvector of
A associated with λ, for any node η in Gc(A). For nodes i, j belonging to Gc(A) there
exists a ∈ R such that

a⊗ [A∗λ]i = [A∗λ]j (2-30)

if and only if i and j belong to the same m.s.c.s. of the critical graph.

If Gc(A) consists of only one m.s.c.s. Then equation (2-30) will hold for any node i, j
that belong to the critical graph. This means that the column associated with those
nodes are equal to each other, except for a max-plus multiplication, which in turn
means the eigenvector is unique.

2-6 Solving linear equations

In this section a method for solving linear max-plus equations is discussed.

Using 2-16 and 2-28 A∗ can be defined for any matrix A ∈ R
n×n
max as follows

A∗
def
= E ⊕ A+ =

⊕

k≥0

A⊗k (2-31)

The A∗ matrix can be used to solve the linear max-plus equation x = A⊗ x⊕ b, where
A ∈ R

n×n
max , b ∈ R

n
max if the communication graph G(A) has maximum circuit mean less

than or equal to e. The solution to the equation is x = A∗ ⊗ b. This solution is unique
if the circuit weights in G(A) are negative.

This however only works for square matrices. For non square linear max-plus equations
the following equation is considered: A⊗ x = b. This does not always have a solution.
But there is always a greatest solution to the max-plus inequality A ⊗ x ≤ b, where
A ∈ R

m×n
max and b ∈ R

m
max. This solution is called the principal solution and is denoted

by x∗(A, b) and is defined as

[x∗(A, b)]j = min{bi − aij : 1 ≤ i ≤ m}, (2-32)

for j ∈ {1, . . . , n}.
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2-7 Max-plus linear systems

In this section max-plus linear (MPL) systems will be discussed. MPL systems are, as
the name suggest systems that are linear in max-plus algebra. They are discrete event
systems where the events are synchronized, there are no concurrent events and there
are no choices to be made that determine the order of events.
These systems are described by

x(k) = A(k)⊗ x(k − 1)⊕B(k)⊗ u(k),
y(k) = C(k)⊗ x(k),

(2-33)

where A ∈ R
n×n
max , B ∈ R

n×m
max and C ∈ R

p×n
max, where m is the number of inputs, n is

the number of states and p is the number of outputs. Here k is the event counter, the
matrices A, B and C often indicate the sum of maximizations of transport times, or
internal process times, etc. x(k + 1) indicates when the internal events happen for the
(k + 1)th time, u(k) indicates when the inputs become available for the kth time and
y(k) indicates when the output events happen for the (k)th time.

In these systems the state-vector is often the output. This means that y(k) = x(k)
therefore it is often left out of the equation and the rest is rewritten as

x(k) = A(k)⊗ x(k − 1)⊕B(k)⊗ u(k). (2-34)

This form is called the explicit model as it only depends on the known values x(k− 1),
u(k). The implicit form has the following format

x(k) = A0(k)⊗ x(k)⊕ A1(k)⊗ x(k − 1)⊕B0(k)⊗ u(k). (2-35)

If the matrices A0(k), A1(k), and B0(k) are carfefully constructed such that A∗0 exists,
which means A0 is either nilpotent or has average circuit mean of e or less, then A∗0 ⊗
A1 = A, A∗0B0(k) = B(k) and 2-35 can be rewritten into 2-34.

2-8 Switching max-plus linear systems

This section introduces an extension to the MPL-systems: The SMPL-systems. The
switching applies to the mode of operation of the discrete event system (DES). The
mode is denoted by l(k) ∈ {1, · · · , nm} for step k. Switching the mode of operation
means the system matrices are replaced by others. An SMPL system is described by

x(k) = A`(k) ⊗ x(k − 1)⊕B`(k) ⊗ u(k),
y(k) = C`(k) ⊗ x(k),

(2-36)

If the output is equal to the state-vector this can be rewritten into the explicit model

x(k) = A`(k) ⊗ x(k − 1)⊕B`(k) ⊗ u(k), (2-37)

where A`(k) and B`(k) are the system matrices for mode `(k). The switching makes it
possible for the structure of the system to change, which means the order of events
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14 Max-plus linear algebra

can change. The switching of modes is controlled by a switching mechanism. This
mechanism is represented by the switching variable z(k) which may depend on the
previous state-vector x(k− 1), the previous mode `(k− 1), the input variable u(k) and
a control variable v(k):

z(k) = φ(x(k − 1), `(k − 1), u(k), v(k)) ∈ R
nz
max, (2-38)

where R
nz
max is partitioned in nm subsets Z(i), i = 1, · · · , nm. The set to which z(k)

belongs determines what mode the system will be in. In other words, if z(k) ∈ Z(i),
then `(k) = i.

The implicit model is described by

x(k) = A
`(k)
0 (k)⊗ x(k)⊕ A`(k)1 (k)⊗ x(k − 1)⊕B`(k)0 (k)⊗ u(k). (2-39)

For this model it also applies that it can be rewritten into the explicit model of 2-37 if the

matrices A
`(k)
0 (k), A

`(k)
1 (k) and B

`(k)
0 are properly constructed. Again A

∗,`(k)
0 (k) for each

mode `(k) has to exist such that A
∗,`(k)
0 (k)⊗A`(k)1 (k) = A`(k), A

∗,`(k)
0 (k)⊗B`(k)0 = B`(k).

An important property of SMPL-systems is the maximum growth rate[18] denoted by

λ. Consider an SMPL-system with matrices A
l(k)
β , with [A

l(k)
β ]ij = [Al(k)]ij − β. The

maximum growth rate λ of the SMPL system is the smallest β for which there exist
a max-plus diagonal matrix P = diag(p1, . . . , pn) with finit diagonal elements pi, such
that

[P ⊗ Al(k)β ⊗ P
⊗−1]ij ≤ 0,∀i, j, l, k (2-40)

Here the inverse of P , denoted by P⊗−1 is equal to P⊗−1 = diag(p1, . . . , pn). The
maximum growth rate λ is finite. The upper bound of λ is equal to max[Al(k)]∀i, j, l, k.
Finally the maximum growth rate for a max-plus linear system is equivalent to the
largest eigenvalue of the matrix A.

The idea of SMPL systems in the event-driven domain is parallel to that of piece-wise-
affine (PWA)-systems in the time-driven domain. Just like with PWA-system analysis,
where the properties of the linear subsystems are analyzed to derive the properties of
the PWA-system, the properties of the MPL-subsystems can be used in the analysis of
the properties of the SMPL-system.
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Chapter 3

Legged locomotion using max-plus

linear systems

3-1 Introduction

This chapter deals with the basics of legged locomotion as discussed in section 3-2,
where both continuous time and discrete event system (DES) based legged locomotion
is explained. In section 3-3 the control structure that is used for the DES legged
locomotion is described. Of which the max-plus gait scheduler is discussed in more
detail in section 3-4 and in the final section 3-5 the supervisory control is explained.

3-2 Basics of legged locomotion

3-2-1 Continuous time legged locomotion

Before getting into the details of a complete legged locomotion model, a single leg is
considered. The end effector of the leg is its foot. The foot moves in a periodic motion
which consists of two phases; an aerial phase, called flight or swing and a ground phase,
called stance. During swing the foot moves through the air back to the start of the
trajectory. During stance the foot is used to exert force on the floor which then causes
the robot to move. This periodic motion can be mapped onto a circle, where the phase
of the circle represents the position of the foot as shown in Figure 3-1.

In most cases of legged locomotion more than one leg is considered. In order to achieve
locomotion the legs need to be synchronized, which means the foot trajectories need
to be synchronized. This can be done using a central pattern generator (CPG) such
as a network of phase oscillators as discussed in chapter 2.3 of Holmes et al.[9] and
used in Zhang et al.[19]. In the simplest model one oscillator is linked to each leg
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16 Legged locomotion using max-plus linear systems

Figure 3-1: Periodic motion of a foot during locomotion and its abstract phase representation.

to generate periodic foot trajectories of constant angular velocity. By comparing the
phase of the oscillators and using a controller to force a phase difference between them
a locomotion pattern or gait is created. A gait is a cyclic motion pattern that produces
the locomotion.

Consider the mapped circular motions for legs i, for i ∈ {1, . . . , n}, that are traversed
with a constant velocity ωi . This is denoted by

φ̇i = ωi, for i ∈ {1, . . . , n},

where n is the number of legs.

These legs can then be coupled by a function fi(φ1, . . . , φn). This results in the following
notation for φi

φ̇i = ωi + fi(φ1, . . . , φn), for i ∈ {1, . . . , n}, (3-1)

The function fi works as feedback, returning the phase difference to its desired value.
The trajectory that the legs now follow is called a limit cycle and the function fi is
used to make the limit cycle stable.

As an example, consider two legs that should have a 180◦ phase difference and have
the same velocity (ω1 = ω2). This could then be forced by the following equations:

φ̇1 = ω1 + w ∗ sin(φ1 − φ2) (3-2)

φ̇2 = ω1 + w ∗ sin(φ2 − φ1) (3-3)

where w ∈ R
+ is a weight that has to be determined based on the highest acceptable

deviation from the set phase difference.
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Figure 3-2: V̇ for the different values of the error e.

The error term e is then defined by

e = φ1 − φ2 + π

This error term is stable according to Lyapunov’s stability criterion. This can be
checked by taking

V = e2 > 0 ∀x 6= 0, V = 0 for x = 0

V̇ = 2eė = −2e× sin(e) ≤ 0 for − π ≤ e ≤ π

V̇ is shown in Figure 3-2. The reason for only evaluating e over the given interval is
because the motion is cyclic and has period 2π.

3-2-2 Discrete event system based legged locomotion

The periodic motion of the foot can also be described as a DES. A DES is based
on events. In the case of legged locomotion these events happen periodically. Such a
period is called a cycle and k denotes what cycle the robot is currently in. The events
that happen during the periodic motion of the foot are the touchdown event and lift-off
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18 Legged locomotion using max-plus linear systems

time

i

t1(k-1) l1(k) t1(k)

l2(k-1) t2(k-1) l2(k) t2(k)

τ∆ τf τg

ii

Figure 3-3: Time evolution of a bipedal gait. The hatched rectangles represent the leg stance

and the solid thick vertical lines represent the lift off events.

event. The touchdown event is the moment the foot touches the ground for the first
time in the cycle. The touchdown event in cycle k is denoted by t(k). The lift-off event
is the moment the foot lifts off the ground. The lift-off event in cycle k is denoted by
l(k). Now that the events have been defined the relation between these events can be
defined.

Consider a single leg i, i ∈ {1, . . . , n}, where n is the number of legs of the robot. For
the leg i the time instance it touches down is equal to the time instance it lifted off the
ground for the last time plus the time it stayed in flight, denoted by τf .

ti(k) = li(k) + τf , (3-4)

The time instance leg i lifts off is equal to the time it touched down the last time plus
the time it stayed in stance denoted by τg. This can then be written as:

li(k) = ti(k − 1) + τg, (3-5)

t(k − 1) has been chosen as the touch down time of the previous cycle, that way the
equations 3-4 and 3-5 can be used iteratively.

As an example consider a two legged robot with legs 1 and 2, with touchdown events
t1 and t2 and lift-off events l1 and l2 respectively. These legs need to be synchronized
as shown in Figure 3-3.

The synchronization of the legs is achieved by enforcing constraints on the firing order
of the events of the two legs. In order to get the legs synchronized as shown in Figure
3-3, leg 1 can only lift off τ∆ seconds after leg 2 touched down and τg seconds after leg
1 has touched down the last time. For leg 2 the relationship is as follows: leg 2 can
only lift off τ∆ seconds after leg 1 touched down and τg seconds after leg 2 has touched
down. This can be written as:

t1(k) = l1(k) + τf

t2(k) = l2(k) + τf

l1(k) = max(t1(k − 1) + τg, t2(k − 1) + τ∆)

l2(k) = max(t2(k − 1) + τg, t1(k) + τ∆)
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3-3 Control Structure 19

Figure 3-4: Block diagram of control structure for a legged robot.

This can be rewritten in max-plus algebra as

t1(k) = l1(k)⊗ τf
t2(k) = l2(k)⊗ τf
l1(k) = t1(k − 1)⊗ τg ⊕ t2(k − 1)⊗ τ∆
l2(k) = t2(k − 1)⊗ τg ⊕ t1(k)⊗ τ∆

, (3-6)

which is linear in max-plus algebra. This DES only determines the synchronization
between the legs, in order to get the robot moving a complete control structure is
needed, which is discussed in the next section.

3-3 Control Structure

The control structure discussed in this section is shown in Figure 3-4.

• At the top of the control structure stands the supervisory control. This part of
the control structure determines when to switch gaits and what gait it should
switch to.

• Just below that is the max-plus gait scheduler. The max-plus gait scheduler
creates the sequence of events based on the gait chosen in the supervisory control.

• The sequence of events is then used to create a continuous-time reference trajec-
tory in the continuous time scheduler. It does this by taking a collection p of the
state vector x(k) ∈ R

2n
max and the time instant τ∈ R

+, derived from the internal
clock of the robot and maps it into a piecewise linear trajectory. Symbolically
this is represented by:

θref : R+ × (R2n
max)p → (S1)n

The actual piecewise linear equation is defined by:

θref,i(τ) :=







θl(ti(k2i−1)− τ) + (θt + 2π)(τ − li(k2i))

ti(k2i−1)− li(k2i)
if τ ∈ [li(k2i), ti(k2i−1)]

θt(li(k2i + 1)− τ) + θl(τ − ti(k2i−1))

li(k2i + 1)− ti(k2i−1)
if τ ∈ [ti(k2i−1), li(k2i + 1)]

(3-7)
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20 Legged locomotion using max-plus linear systems

x(k) Full state vector of the touch down and lift off events.

ti(k) Touch down time for leg i at iteration k.

li(k) Lift off time for leg i at iteration k.

i Index for legs.

θt Leg touchdown angle.

θl Leg lift off angle.

τ Current time instant.

τf Time leg spends in flight (swing).

τg Time leg spends on the ground (stance).

τ∆ Double stance time

kj Index function for each state vector element.

Table 3-1: State variables and gait parameters

This is for θt<θl, which have been defined in 3-1. The function θref take a p-
collection of events since it is not necessary for the intervals [li(k2i), ti(k2i−1)] and
[ti(k2i−1), li(k2i+1)] to overlap for all legs. The event indices {kj} ∈ N

8 are chosen
for each leg such that the time τ lies in the proper interval

• The last part of the control structure is the robot itself, where a PD controller is
used to force the legs to follow the reference trajectory.

Since this thesis is about switching gaits using switching max-plus linear (SMPL) sys-
tems, only the max-plus gait scheduler and the supervisory control will be discussed in
more detail.

3-4 Max-plus gait scheduler

The symbols that are used in this subsection and the following one are defined in Table
3-1.

Consider the relations written down in equation 3-4 and 3-5 and let the state vector
for an n-legged robot be defined by

x(k) = [t1(k) · · · tn(k)
︸ ︷︷ ︸

t(k)

l1(k) · · · ln(k)
︸ ︷︷ ︸

l(k)

]>

The system equations can then be written as an implicit model as described by equation
2-39 and repeated here for convenience

x(k) = A
`(k)
0 (k)⊗ x(k)⊕ A`(k)1 (k)⊗ x(k − 1)⊕B`(k)0 (k)⊗ u(k), (3-8)

the term B
`(k)
0 (k)⊗ u(k) can be left out since there is no input u(k).

The system equations then take the form of
[

t(k)
l(k)

]

=

[

E τf ⊗ E
E E

]

⊗

[

t(k)
l(k)

]

⊕

[

E E
τg ⊗ E E

]

⊗

[

t(k − 1)
l(k − 1)

]

(3-9)
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3-4 Max-plus gait scheduler 21

Two E matrices were added to the A1 matrix which adds the requirement that the
current touchdown event does not happen before the previous touchdown event and
the current lift-off event does not happen before the previous lift-off event. Next the
leg synchronization as described in equation 3-6 are added to this equation by adding
the matrices P and Q, which will be explained after this. The resulting implicit model
is then defined as:

[

t(k)
l(k)

]

=

[

E τf ⊗ E
P E

]

⊗

[

t(k)
l(k)

]

⊕

[

E E
τg ⊗ E ⊕Q E

]

⊗

[

t(k − 1)
l(k − 1)

]

(3-10)

This model can be rewritten as explicit model by using the solution of the the max-plus
linear equation x(k) = B ⊗ x(k) ⊕ c, which is x = B∗ ⊗ c. Substitute B for A0 and c
for A1 ⊗ x(k − 1), this results in

x(k) = A∗0 ⊗ A1 ⊗ x(k − 1)

x(k) = A⊗ x(k − 1), (3-11)

where A = A∗0 ⊗ A1 is called the system matrix, A∗0 has to exist in order to be able
to solve this. A∗0 exists if P is nilpotent. The proof of this can be found in Lopes et
all.[15].

Next the process of building the matrices P and Q will be explained. Before the process
of building these matrices can be explained a new way of notating the order of events
has to be introduced.

Consider an n-legged system and let L1, . . . , Lm be sets of integers such that
m⋃

p=1

Lp = {1, . . . , n}

∀i 6= j, li ∩ lj = ∅.

Lp is considered to contain the indices of a set of legs that recirculates simultaneously.
Define rp = #Lp. A gait G is defined as an ordering relation of groups of legs:

G = L1 ≺ L2 ≺ · · · ≺ Lm. (3-12)

Equation 3-12 states that the set of legs Li will lift off and touch down simultaneously,
they precede the lift off of the set of legs Li + 1. The set of legs Li + 1 lift off once all
legs in the set Li have touched down and have been on the ground for at least τ∆.

As an example consider a hexapod robot. A hexapod can have three different types of
gaits, assuming the number of legs in each set is the same, these are the tripod gait;
which is a gait of two sets of three legs, the quadruped gait; which consists of three sets
of two legs, and the quintuped gait; which consists of six sets of one leg. The names
of these gaits are derived from the minimum number of legs that are on the ground.
Since only one set of legs can be in flight at the same time, the minimum number of
legs for a tripod gait is three, for a quadruped gait four and for a quintuped gait five.
Examples of these gaits are:

Gtripod = {1, 4, 5} ≺ {2, 3, 6}

Gquadruped = {1, 4} ≺ {5, 2} ≺ {3, 6}

Gquintuped = 1 ≺ 4 ≺ 5 ≺ 2 ≺ 3 ≺ 6
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22 Legged locomotion using max-plus linear systems

Using this notation a systematic way of generating matrices P and Q in equation 3-10
is possible. Consider the gait G as defined in equation 3-12 then ∀j ∈ {1, . . . ,m− 1},
∀p ∈ Lj + 1 and ∀q ∈ Lj

[P ]p,q = τ∆. (3-13)

and ∀p ∈ L1 and ∀q ∈ Lm
[Q]p,q = τ∆, (3-14)

where all other entries of P and Q are ε.

By placing τ∆ at these positions in P the lift-off of the legs of set Li,∀i ∈ {2, . . . ,m}
are forced to happen τ∆ after the legs of set Li−1 touch down. This results in an overlap
of the stance of the two sets of τ∆. The position of τ∆ in Q enforces that the lift-off of
the legs of set L1 in the current cycle happens τ∆ after the legs of set Lm touch down
in the previous cycle. This ensures that there is an overlap of τ∆ of the stance of the
two sets. This way the synchronization of the full cycle is enforced.

As an example consider the gait G = {1, 3} ≺ {2, 4}. The matrices P and Q are

P =








ε ε ε ε
τ∆ ε τ∆ ε
ε ε ε ε
τ∆ ε τ∆ ε








Q =








ε τ∆ ε τ∆
ε ε ε ε
ε τ∆ ε τ∆
ε ε ε ε








3-5 Supervisory Control

In Lopes et al.[15] there is no autonomous supervisory control yet. The gaits to switch to
are selected by hand at times chosen by the person controlling the robot. Some results
on gait switching are presented in the papers of Lopes et al.[13][15] though; Using the
notation presented in section 3-4 an ordered pairs such as {1} ≺ {2} ≺ {3} ≺ {4} ≺
{5} ≺ {6} and {4} ≺ {5} ≺ {6} ≺ {1} ≺ {2} ≺ {3} result in different synchronization
matrices P and Q but are equal up to an ’event shift’ in the state variables. For
quintuped gaits for a hexapod this means there are 5! = 120 different gaits and a total
of 6! = 720 different gait parameterizations. Switching from ’structurally’ different gait
classes, for example from a tripod to quadruped gait, different transitions will occur
based on the different gaits chosen from these classes. This can result in different
stance times for each of the legs while switching gaits, this can cause problems such
as unwanted turning of the robot and slipping of the legs. It is therefore important
to find the optimal gait to switch to. Where optimal refers to minimizing the stance
velocity variation of the legs that are on the ground at the same time. The ’optimal’
gait to transition to can be found by looking for the gait which steady state behaviour
’resembles’ the most with that of the current gait. This is done by looking at gaits that
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3-5 Supervisory Control 23

Figure 3-5: Gait switch from {1, 4, 5}, {2, 3, 6} to {1, 4}, {5, 2}, {3, 6}. The gray blocks represent

the stance and the white blocks represent the flight of the legs.

are in ’structurally’ different gait classes but where the ordering in the legs is as similar
as possible. Such as a gait switch from {1, 4, 5} ≺ {2, 3, 6} to ≺ {1, 4} ≺ {5, 2} ≺ {3, 6}
which is shown in Figure 3-5. There is no mathematical proof these switches are indeed
the optimal transitions, but extensive simulation results corroborate this hypothesis.
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Chapter 4

Steady state behaviour

4-1 Introduction

In section 4-2 of this chapter the structure of the system matrices, that are made with
the method discussed in section 3-4, is found using similarity transformations. This
section is based on the work of Lopes et al. [14]. In section 4-3 the structure of the
matrix is used to proof that the eigenvector and eigenvalue are unique under certain
conditions. In the final section of this chapter, section 4-4, conclusions are drawn about
the steady state behaviour of this class of matrices.

4-2 Matrix structure

Before the general structure of the matrices, discussed in section 3-4, is analyzed, the
function needs to be defined. [ transforms a gait into a vector of integers:

[ : {[L1]1, . . . , [L1]i1} ≺ . . . ≺ {[Lm]1, . . . , [Lm]im} 7→ [[L1]1, . . . , [L1]i1 , [lm]1, . . . , [Lm]im ]>,

it is assumed here that the ordering of equation 3-12 is represented as a set of sets. As
an example consider the gait G = {1, 4, 5} ≺ {2, 3, 6}, then [(G) = [1, 4, 5, 2, 3, 6]>.

A gait Ḡ is called a normal gait if the elements of [(Ḡ) are sorted in such a way that
they are strictly increasing from [[(Ḡ)]1 to [[(Ḡ)]n, where n is the number of legs of
the robot (which is also the number of elements of [(Ḡ)).

For any gait G a similarity matrix C can be defined that transforms the system matrix
A of G into the system matrix Ā of the normal gait Ḡ. This similarity matrix has the
following structure:

C =

[

C̄ E
E C̄

]

, (4-1)
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26 Steady state behaviour

where ∀i, j ∈ 1, . . . , n:

[C̄]i,j =

{

e if [[(G)]i = j
ε otherwise

(4-2)

The structure of C is such that

C ⊗ C> = C> ⊗ C = E

The similarity transformation can be seen as redefining the numbering of the legs in
order to get a highly structured matrix Ā, which makes analysis of the matrix much
easier. Ā can be obtained using the following similarity transformation

Ā = C ⊗ A⊗ C>. (4-3)

Before the structure of this matrix can be discussed the structure ’normal’ counter-
parts of P and Q need analysed. These ’normal’ counterparts can be obtained via the
following similarity transformation:

P̄ = C̄ ⊗ P ⊗ C̄> (4-4)

Q̄ = C̄ ⊗Q⊗ C̄> (4-5)

P̄ and Q̄ have the following structure:

P̄ =














E · · · E
τ∆ ⊗ 1r2×r1 E
E τ∆ ⊗ 1r3×r2 E
...

. . . . . . . . .
...

E · · · E τ∆ ⊗ 1rm×rm−1 E














, (4-6)

Q̄ =

[

Er1×(n−rm) τ∆ ⊗ 1r1×rm

E(n−r1)×(n−rm) E(n−r1)×(rm)

]

, (4-7)

where [1]ij = e, ∀i ∈ {1, . . . , n}, ∀j ∈ {1, . . . ,m}, where 1n×m ∈ R
n×m
max and where m is

the total number of sets of legs.

Replacing P and Q for P̄ and Q̄ in equation 3-10 gives the matrices Ā0 and Ā1. A
closed form solution can be found for Ā0

∗
by observation of the structure of Ā0:

Ā0
∗

=
2×m−1⊕

k=0

Ā0
⊗k

the sum is limited to (2×m − 1) elements due to the structure of the matrix Ā0 and
its powers, which have the following structure:

Ā0
⊗k

=










E τ

⊗ k+1
2

f ⊗ P̄⊗
k−1

2

τ
⊗ k−1

2
f ⊗ P̄⊗

k+1
2 E



 if k is odd




τ
⊗ k

2
f ⊗ P̄

⊗ k
2 E

E τ
⊗ k

2
f ⊗ P̄

⊗ k
2



 if k is even
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4-2 Matrix structure 27

Because P̄ has a subdiagonal block structure, P̄⊗l = E ,∀l ≥ m, which means that

Ā0
⊗k

= E ,∀ ≥ (2×m). The resulting matrix Ā0
∗

has the following structure

Ā0
∗

=

[

W τf ⊗W
W̄ W

]

where

W = (τf ⊗ P̄ )∗ (4-8)

=
m−1⊕

k=0

(τf ⊗ P̄ )⊗k, (4-9)

this sum of powers is limited to the power of (m− 1) again because of the structure of
P̄ .

W =














Er1 · · · E
τδ ⊗ 1r2×r1 Er2
τ⊗2
δ ⊗ 1r3×r1 τδ ⊗ 1r3×r2 Er3

...
. . . . . . . . .

...

τ
⊗(m−1)
δ ⊗ 1rm×r1 · · · τ⊗2

δ ⊗ 1rm×rm−2 τδ ⊗ 1rm×rm−1 Erm














,

(4-10)
where τδ = τf ⊗ τ∆ and

W̄ = τ∆ ⊗














E · · · E
1r2×r1 E
τδ ⊗ 1r3×r1 1r3×r2 E

...
. . . . . . . . .

...

τ
⊗(m−2)
δ ⊗ 1rm×r1 · · · τδ ⊗ 1rm×rm−2 1rm×rm−1 E














, (4-11)

Using Ā0
∗

and Ā1 an expression for Ā can be found:

Ā = Ā0
∗
⊗ Ā1

=

[

W τf ⊗W
W̄ W

]

⊗

[

E E
τg ⊗ E ⊕ Q̄ E

]

=

[

W ⊕ τf ⊗ τg ⊗W ⊕ τf ⊗W ⊗ Q̄ τf ⊗W
W̄ ⊕ τg ⊗W ⊕W ⊗ Q̄ W

]

(4-12)

Now define

V = W ⊗ Q̄ (4-13)

=









Er1×(n−rm) τ∆ ⊗ 1r1×rm

Er2×(n−rm) τ∆ ⊗ τδ ⊗ 1r2×rm
...

...

Erm×(n−rm) τ∆ ⊗ τ
⊗(m−1)
δ ⊗ 1rm×rm









(4-14)
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28 Steady state behaviour

and since µ⊗W ≥ W for any µ ≥ 0 equation 4-12 can be simplified to

Ā =

[

τf ⊗ (τg ⊗W ⊕ V ) τf ⊗W
τg ⊗W ⊕ V W

]

. (4-15)

By inspecting the structure of Ā it is clear that rows and columns n−rm to n are non-ε
and thus any node can reach any other node via the nodes associated to these rows and
columns. This means Ā is irreducible and thus only has one unique eigenvalue.

As an example of this transformation consider the gait G = {1, 3} ≺ {2, 4}, with
τδ= τ∆ ⊗ τf and τγ= τg ⊗ τf , the matrices P,Q and A are as follows:

P =








ε ε ε ε
τ∆ ε τ∆ ε
ε ε ε ε
τ∆ ε τ∆ ε








Q =








ε τ∆ ε τ∆
ε ε ε ε
ε τ∆ ε τ∆
ε ε ε ε








A =


















τγ τδ ε τδ τf ε ε ε
τγ ⊗ τδ τγ ⊕ τ

⊗2
δ τγ ⊗ τδ τ⊗2

δ τf ⊗ τδ τf τf ⊗ τδ ε
ε τδ τγ τδ ε ε τf ε

τγ ⊗ τδ τ⊗2
δ τγ ⊗ τδ τγ ⊕ τ

⊗2
δ τf ⊗ τδ ε τf ⊗ τδ τf

τg τ∆ ε τ∆ e ε ε ε
τg ⊗ τδ τg ⊕ τ∆ ⊗ τδ τg ⊗ τδ τ∆ ⊗ τδ τδ e τδ ε
ε τ∆ τg τ∆ ε ε e ε

τg ⊗ τδ τ∆ ⊗ τδ τg ⊗ τδ τγ ⊕ τ∆ ⊗ τδ τδ ε τδ e


















The matrix C̄ that is obtained is:

C̄ =








e ε ε ε
ε ε e ε
ε e ε ε
ε ε ε e








The matrix C is then:

C =

















e ε ε ε ε ε ε ε
ε ε e ε ε ε ε ε
ε e ε ε ε ε ε ε
ε ε ε e ε ε ε ε
ε ε ε ε e ε ε ε
ε ε ε ε ε ε e ε
ε ε ε ε ε e ε ε
ε ε ε ε ε ε ε e
















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The normal matrices P̄ and Q̄ are then:

P̄ =








e ε ε ε
ε ε e ε
ε e ε ε
ε ε ε e







⊗








ε ε ε ε
τ∆ ε τ∆ ε
ε ε ε ε
τ∆ ε τ∆ ε







⊗








e ε ε ε
ε ε e ε
ε e ε ε
ε ε ε e








>

=








ε ε ε ε
ε ε ε ε
τ∆ τ∆ ε ε
τ∆ τ∆ ε ε








Q̄ =








e ε ε ε
ε ε e ε
ε e ε ε
ε ε ε e







⊗








ε τ∆ ε τ∆
ε ε ε ε
ε τ∆ ε τ∆
ε ε ε ε







⊗








e ε ε ε
ε ε e ε
ε e ε ε
ε ε ε e








>

=








ε ε τ∆ τ∆
ε ε τ∆ τ∆
ε ε ε ε
ε ε ε ε








Inserting P̄ and Q̄ into equation 3-10 results in the following normal matrices Ā0 and
Ā1:

Ā0 =

















ε ε ε ε τf ε ε ε
ε ε ε ε ε τf ε ε
ε ε ε ε ε ε τf ε
ε ε ε ε ε ε ε τf
ε ε ε ε ε ε ε ε
ε ε ε ε ε ε ε ε
τ∆ τ∆ ε ε ε ε ε ε
τ∆ τ∆ ε ε ε ε ε ε

















Ā1 =

















e ε ε ε ε ε ε ε
ε e ε ε ε ε ε ε
ε ε e ε ε ε ε ε
ε ε ε e ε ε ε ε
τg ε τ∆ τ∆ e ε ε ε
ε τg τ∆ τ∆ ε e ε ε
ε ε τg ε ε ε e ε
ε ε ε τg ε ε ε e

















From this Ā∗0 can be found using the powers of Ā0:

Ā⊗0
0 = E,

Ā⊗1
0 = Ā0,
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Ā⊗2
0 =

















ε ε ε ε ε ε ε ε
ε ε ε ε ε ε ε ε
τδ τδ ε ε ε ε ε ε
τδ τδ ε ε ε ε ε ε
ε ε ε ε ε ε ε ε
ε ε ε ε ε ε ε ε
ε ε ε ε τδ τδ ε ε
ε ε ε ε τδ τδ ε ε

















Ā⊗3
0 =

















ε ε ε ε ε ε ε ε
ε ε ε ε ε ε ε ε
ε ε ε ε τf ⊗ τδ τf ⊗ τδ ε ε
ε ε ε ε τf ⊗ τδ τf ⊗ τδ ε ε
ε ε ε ε ε ε ε ε
ε ε ε ε ε ε ε ε
ε ε ε ε ε ε ε ε
ε ε ε ε ε ε ε ε

















and

Ā⊗4
0 = E .

Ā∗0 is then

Ā∗0 = E ⊕ Ā0 ⊕ Ā
⊗2
0 ⊕ Ā

⊗3
0

=

















e ε ε ε τf ε ε ε
ε e ε ε ε τf ε ε
τδ τδ e ε τf ⊗ τδ τf ⊗ τδ τf ε
τδ τδ ε e τf ⊗ τδ τf ⊗ τδ ε τf
ε ε ε ε e ε ε ε
ε ε ε ε ε e ε ε
τ∆ τ∆ ε ε τδ τδ e ε
τ∆ τ∆ ε ε τδ τδ ε e
















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With Ā∗0 the system matrix Ā can be found:

Ā = Ā∗0 ⊗ Ā1

=

















e ε ε ε τf ε ε ε
ε e ε ε ε τf ε ε
τδ τδ e ε τf ⊗ τδ τf ⊗ τδ τf ε
τδ τδ ε e τf ⊗ τδ τf ⊗ τδ ε τf
ε ε ε ε e ε ε ε
ε ε ε ε ε e ε ε
τ∆ τ∆ ε ε τδ τδ e ε
τ∆ τ∆ ε ε τδ τδ ε e

















⊗ . . .

















e ε ε ε ε ε ε ε
ε e ε ε ε ε ε ε
ε ε e ε ε ε ε ε
ε ε ε e ε ε ε ε
τg ε τ∆ τ∆ e ε ε ε
ε τg τ∆ τ∆ ε e ε ε
ε ε τg ε ε ε e ε
ε ε ε τg ε ε ε e

















= C ⊗ A⊗ C>

Which results in:

Ā =


















τγ ε τδ τδ τf ε ε ε
ε τγ τδ τδ ε τf ε ε

τγ ⊗ τδ τγ ⊗ τδ τγ ⊕ τ
⊗2
δ τ⊗2

δ τf ⊗ τδ τf ⊗ τδ τf ε
τγ ⊗ τδ τγ ⊗ τδ τ⊗2

δ τγ ⊕ τ
⊗2
δ τf ⊗ τδ τf ⊗ τδ ε τf

τg ε τ∆ τ∆ e ε ε ε
ε τg τ∆ τ∆ ε e ε ε

τg ⊗ τδ τg ⊗ τδ τg ⊕ τ∆ ⊗ τδ τ∆ ⊗ τδ τδ τδ e ε
τg ⊗ τδ τg ⊗ τδ τ∆ ⊗ τδ τg ⊕ τ∆ ⊗ τδ τδ τδ ε e


















which as expected has the structure of matrix Ā of equation 4-15.
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4-3 Unique steady state behaviour

4-3-1 Existance

Consider the following assumptions, which, in practice, are always satisfied;
A1 τf , τg > 0
A2 τγ ≤ τ

⊗m
δ

theorem 1 : If assumption A1 is satisfied then the matrix A defined by equations 3-10,
3-11 has a unique eigenvalue λ = τ⊗mδ ⊕ τγ, where τδ = τ∆ ⊗ τf and τγ = τg ⊗ τf and
an eigenvector v defined by

∀j ∈ {1, . . . ,m},∀q ∈ Lj : [v]q = τf ⊗ τ
⊗j−1
δ

[v]q+n = τ⊗j−1
δ

and let [v̄]q = [v]q+n for all j and q ∈ Lj. If assumption A2 is also satisfied, then this
eigenvector is unique.

Proving that λ is an eigenvalue of A and v is one of its associated eigenvectors can be
done by replacing x(k− 1) with v and x(k) by λ⊗ v in equation 3-10 and show that it
holds.

λ⊗

[

τf ⊗ v̄
v̄

]

= λ⊗

[

E τf ⊗ E
P E

]

⊗ v ⊕

[

E E
τg ⊗ E ⊕Q E

]

⊗ v

=

[

E λ⊗ τf ⊗ E
λ⊗ P ⊕ τg ⊗ E ⊕Q E

]

⊗

[

τf ⊗ V̄
V̄

]

This results in the following two expressions:

λ⊗ τf ⊗ v̄ = τf ⊗ v̄ ⊕ λ⊗ τf ⊗ v̄ (4-16)

λ⊗ v̄ = τf ⊗ (λ⊗ P ⊕ τg ⊗ E ⊕Q)⊗ v̄ ⊕ v̄ (4-17)

Eventhough τ∆ can be negative λ > 0, because τγ > 0, therefore equation 4-16 always
holds. This means only equation 4-17 needs to be checked if it always holds. Equation
4-17 can be simplified, due to τγ > 0, to:

λ⊗ v̄ = τγ ⊗ v̄ ⊕ τf ⊗ (λ⊗ P ⊕Q)⊗ v̄ (4-18)

Let τ∆ ⊗ P0 = P and τ∆ ⊗Q0 = Q, this means all entries of P and Q are either e or ε.
Since λ = τ⊗mδ ⊕ τγ and τδ = τf ⊗ τ∆ equation 4-18 can be rewritten as:

(τ⊗mδ ⊕ τγ)⊗ v̄ = τγ ⊗ v̄ ⊕ τδ ⊗ ((τ⊗mδ ⊕ τγ)⊗ P0 ⊕Q0)⊗ v̄ (4-19)

The proof that equation 4-19 holds is split up into two parts.

• First part of the proof consists of showing that equation 4-19 holds for the elements
[(τ⊗mδ ⊕ τγ) ⊗ v̄]p, ∀j ∈ {1, . . . ,m − 1} and ∀p ∈ Lj+1. Since all elements [Q0]p,.
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are ε according to equation 3-14, because p /∈ L1, and [v̄]p = τ⊗jδ , ∀p ∈ Lj+1:

[(τ⊗mδ ⊕ τγ)⊗ v̄]p = τγ ⊗ τ
⊗j
δ ⊕ τδ ⊗ [(τ⊗mδ ⊕ τγ)⊗ P0]p,. ⊗ v̄ ⇔

(τ⊗mδ ⊕ τγ)⊗ τ
⊗j
δ = (τγ)⊗ τ

⊗j
δ ⊕ τδ ⊗

⊕

q∈Lj

(τ⊗mδ ⊕ τγ)⊗ [P0]p,q ⊗ v̄q ⇔

(τ⊗mδ ⊕ τγ)⊗ τ
⊗j
δ = (τγ)⊗ τ

⊗j
δ ⊕ τδ ⊗ (τ⊗mδ ⊕ τγ)⊗ τ

⊗j−1
δ ⇔

(τ⊗mδ ⊕ τγ)⊗ τ
⊗j
δ = (τ⊗mδ ⊕ τγ)⊗ τ

⊗j
δ

This shows that equation 4-19 holds for the elements [(τ⊗mδ ⊕ τγ)⊗ v̄]p.

• The second part of the proof consists of showing that equation 4-19 holds for the
elements [(τ⊗mδ ⊕ τγ)⊗ v̄]p, p ∈ L1. Since all elements of [P0]p,. are ε, according to
equation 3-13, and [v̄]p = e when p ∈ L1:

[(τ⊗mδ ⊕ τγ)⊗ v̄]p = (τγ)⊗ [v̄]p ⊕ τδ ⊗ [Q0]p,. ⊗ v̄ ⇔

τ⊗mδ ⊕ τγ = τγ ⊕ τδ
⊕

q∈Lm

[Q0]p,q ⊗ [v̄]q ⇔

τ⊗mδ ⊕ τγ = τγ ⊕ τδ ⊗ τ
⊗m−1
δ ⇔

τ⊗mδ ⊕ τγ = τ⊗mδ ⊕ τγ

This shows that equation 4-19 also holds for the elements [(τ⊗mδ ⊕τγ)⊗ v̄]p, p ∈ L1

Combining these two parts shows that equation 4-19 holds.
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4-3-2 Uniqueness

In the previous subsection it was shown that the unique eigenvalue of this class of
matrices is equal to λ = τγ⊕ τ

⊗m
δ , where m is the total number of sets of legs, and that

there was at least one eigenvector v associated to this eigenvalue. In this section it will
be shown that if τγ ≤ τ

⊗m
δ this eigenvector is unique up to a max-plus multiplication

with a scalar. That means that if λ is an eigenvector then a ⊗ λ, for a ∈ R is also an
eigenvector. This can be proven with the theory explained at the end of section 2-5
which is repeated here for convenience:

Consider the communication graph G(A) of matrix A ∈ R
n×n
max and let it have a finite

maximal circuit mean λ. Then λ is an eigenvalue for the matrix A and the column
[A∗λ].η is an eigenvector of A associated with λ, for any node η in Gc(A). For nodes i, j
belonging to Gc(A) there exists a ∈ R such that

a⊗ [A∗λ]i = [A∗λ]j (4-20)

if and only if i and j belong to the same maximal strongly connected subgraph (m.s.c.s.)
of the critical graph.

If Gc(A) consists of only one m.s.c.s., then equation (4-20) will hold for any node i, j
that belong to the critical graph. This means that the column associated with those
nodes are equal to each other, except for a max-plus multiplication, which in turn
means the eigenvector is unique.

This means that in order to proof that the eigenvector is unique it is sufficient to show
that the critical graph Gc(A) consists of a single strongly connected subgraph. The
critical graph consists of all circuits with maximal average weight: λ. This means there
are three cases that need to be considered:

• τγ = τ⊗mδ = λ

• τ⊗mδ < τγ = λ

• τγ < τ
⊗m
δ = λ

In order to show that the critical graph Gc(A) consists of a single strongly connected
subgraph the ’normal’ matrix Ā is used and the graphs will be reduced using the node
reductions shown in Figure 4-1. Since all paths, of length one, between two sets of
nodes have the same weight, circuits that follow the same path through the sets of
touchdown/lift-off nodes, but using different nodes of those sets, have the same weight.
Thus only one of those circuits needs to be looked at.
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Figure 4-1: Node reductions in the graph of the system matrix Ā. Each subfigure represents the

groups of nodes with their equivalent weigh arcs, and the resulting simplified lumped nodes. Top

left, lumped paths from all nodes of the sets tLp to all nodes of the set tLq . Top right, lumped

paths from all nodes of the sets tLp to all nodes of the set lLq , the same figure applies for the

paths from lLp to tLq with τa = τ∆ ⊗ τ
⊗(q−p)
δ . Middle left, lumped paths from all nodes of

the sets tLm to all nodes of the set lLm , excluding the paths between tLmi and lLmi , ∀i ∈ Lm.

Middle right, lumped paths from all nodes of the sets lLp to all nodes of the set lLq . Bottom

left, lumped paths for all nodes of the set tLm , excluding self loops. Bottom left center, lumped

nodes for all of the self loops of the sets tLp , for the set tLp the weight of the self loops is equal

to λ. Bottom right center, lumped nodes for all circuits between touchdown and lift-off nodes of

the same leg. Bottom right, lumped nodes for all self loops of the sets lLp
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• In the first case, where τ⊗mδ = τγ = λ, the circuits of the graph of Ā can be split
up in different groups:

– The self loops of the touchdown and lift-off nodes; of which the self loops
of the touchdown nodes have a weight of λ and the self loops of the lift-off
nodes have average circuit weight of 0. Since these self loops are of length
one, the weight of the circuit is equal to the average weight which means the
self loops of the touchdown nodes will be in the critical graph.

– The circuits between the touchdown and lift-off nodes of the same leg; which
have average weight τγ

2
.

– The paths p, of length one, between the nodes of set Lm have a weight of

|p|w = τ⊗mδ ,

so a circuit that consists of only these paths has an average weight of

|p|w
|p|1

=
τ
⊗(m⊗r)
δ

r
= τ⊗mδ = λ,

where r is the number of paths of length one. Because the average weight of
the circuits is equal to λ these circuits are also in the critical graph.

– The circuits that have not yet been considered all have to go through at least
one of the nodes of set m. This is because there are no paths from nodes of
set Li to Li−1, ∀i ∈ {2, . . . ,m− 1}. The only paths from nodes of set Lj to
any of the previous sets Lj−k, k ∈ {1, . . . , j− 1} is for the set of nodes tLj for
j = m. This means the circuit can be split up into two paths: The path from
a node of set Li to tLm and the path back from tLm to Li. First only circuits
of which all nodes are touchdown nodes will be considered. The path q from
a node of the set tLm to tLi has a weight |q|w of

|q|w = τ⊗iδ .

To find the weight of the path r from tLi to tLm first take a look at the weight
of the path between the sets tLp and tLq as shown in Figure 4-1, which is

τγ ⊗ τ
⊗(p−q)
δ ,

If you take the path from node tLi to tLj and from there to tLk the total
weight of this path of length two is

τγ ⊗ τ
⊗(i−j)
δ ⊗ τγ ⊗ τ

⊗(j−k)
δ = τ 2

γ ⊗ τ
⊗(i−k)
δ ,

which shows that it does not matter what value j is, only that the length of
the path matters and the starting and ending node. By expanding this to a
path of r ∈ {1, . . . ,m − 1 − i} length, the weight of the path s from tLi to
tLm is:

|s|w = τ⊗rγ ⊗ τ
⊗(m−i)
δ ,
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where r is the length of the path.

By combining the two paths q and s a circle starting at node tLi is made with
the following weight:

|s ◦ q|w = τ⊗rγ ⊗ τ
⊗m
δ

The average weight is then

|s ◦ q|w
|s ◦ q|1

=
τ⊗rγ ⊗ τ

⊗m
δ

r + 1
=
τ⊗(r+1)
γ

r + 1
= τγ = λ

The combination of these circuits that belong to the critical graph include all
paths between all touchdown nodes. If you write

Ā =

[

A1 A2

A3 A4

]

, (4-21)

where A1 = τf ⊗ (τg ⊗W ⊕ V ), A2 = τf ⊗W , A3 = τg ⊗W ⊕ V and A4 = W .
Then all elements of A1 belong to the critical graph.

Now define A > B as:

[A]ij > [B]ij,∀[B]ij 6= ε, i, j ∈ {1, . . . , n}, (4-22)

where A,B ∈ R
n×n
max .

Using this definition the following holds true: A1 > A3 > A2 > A4. This means
that replacing one of the touchdown nodes for a lift-off node of the same set of
legs, in one of the circuits discussed before, results in the average weight of the
new circuit being less than that of the original circuit, therefore only the circuits
between touchdown nodes are in the critical graph. For this case the critical graph
Gc(Ā) is equal to the graph G(A1) as shown in the middle graph of Figure 4-2. In
this case the graph consists of a single strongly connected subgraph, which means
the eigenvector is unique for this case.

• In the second case, where τ⊗mδ < τγ = λ, it is clear that only circuits which consist
of path with weights that are any combination of τg and τf , but not τδ should be
considered. This limits the possible circuits to the self loops of the touchdown
nodes and the circuits between touchdown and lift-off nodes of the same set. But
the average weight of the circuits between touchdown and lift-off is τγ/2. Thus
the only circuits that are in the critical graph are the self loops of the touchdown
nodes. Which is shown in the top of Figure 4-2. In this case the critical graph
does not consist of a single strongly connected subgraph, but of n subgraphs and
thus there are n max-plus linearly independant eigenvectors.

• In the third case, where τγ < τ
⊗m
δ = λ, the same applies as for the second case,

but this time for weights that are any linear combination of τδ. The only paths
that satisfy this condition are the paths of the set tLm . All single length paths of
this set have a weight of τ⊗mδ , thus any circuit consists of solely these paths will
have an average weight of τ⊗mδ = λ and are in the critical graph. These are the
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only circuits in the critical graph. This is shown in the bottom graph of Figure
4-2. For this case the critical graph also consists of a single strongly connected
subgraph, which means the eigenvector is also unique for this case.

In practice the second case never happens because the designer of the gaits choses the
values for τf , τg and τ∆ in such a way that τγ = τ δ

⊗m. The reason for this is that there
are no advantages when chosing them differently. There is no difference in steady state
behaviour between case one and three and in case two the steady state behaviour is
not uniquely defined, which makes it very challenging to find optimal gait switches.
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Figure 4-2: Critical graphs of the system matrix Ā for top: τ⊗mδ < τγ = λ; center: τγ = τ⊗mδ =
λ; and bottom: τγ < τ

⊗m
δ = λ.
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[Ā
]5
,5

[Ā
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[Ā
] 7
,2

[Ā
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[Ā]2,3
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Figure 4-3: Graph of the matrix Ā.

As an example consider the normal matrix Ā of gait G = {1, 3} ≺ {2, 4} that was
found in the previous section, repeated here for convenience:

Ā =


















τγ ε τδ τδ τf ε ε ε
ε τγ τδ τδ ε τf ε ε

τγ ⊗ τδ τγ ⊗ τδ τγ ⊕ τ
⊗2
δ τ⊗2

δ τf ⊗ τδ τf ⊗ τδ τf ε
τγ ⊗ τδ τγ ⊗ τδ τ⊗2

δ τγ ⊕ τ
⊗2
δ τf ⊗ τδ τf ⊗ τδ ε τf

τg ε τ∆ τ∆ e ε ε ε
ε τg τ∆ τ∆ ε e ε ε

τg ⊗ τδ τg ⊗ τδ τg ⊕ τ∆ ⊗ τδ τ∆ ⊗ τδ τδ τδ e ε
τg ⊗ τδ τg ⊗ τδ τ∆ ⊗ τδ τg ⊕ τ∆ ⊗ τδ τδ τδ ε e


















The graphs G(Ā) is shown in Figure 4-3.

This graph can be reduced, using the reductions shown in Figure 4-1, to the graph in
Figure 4-4.

In order to proof the uniqueness of the eigenvector first consider the case τγ = τ⊗2
δ = λ.

The eigenvalue is equal to the maximum average circuit weight, which means any circuit
with average circuit weight λ is in the critical graph.

• The self loops of the touchdown nodes are either τγ = λ or τγ ⊕ τ
⊗2
δ = λ. This

means these self-loops are in the critical graph.

• The self loops of the lift off nodes are e, which means they are not in the critical
graph.

• The circuits between the touchdown and lift-off nodes of the same leg; which have
average weight τγ

2
, which means these circuits are not in the critical graph.
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Figure 4-4: Reduced graph of the matrix Ā, where t1, t2 ∈ tL1
, t3, t4 ∈ tL2

, l1, l2 ∈ lL1
and

l3, l4 ∈ lL2
.

• Next consider the circuits made with the nodes of set tL2 , (not including the self
loops), these circuits consists of paths of length one and of weight τ⊗2

δ . Which
means the average circuit weight is also τ⊗2

δ = λ. This means these circuits are
also in the critical graph

• The only circuits that have not been considered yet have in common that at least
one node is of the set tL2 as can be seen from the graph in Figure 4-4, where all
the paths that have not been considered yet lead to tL2 and only from tL2 back to
the other sets.

– Considered the circuits from tL1 to tL2 and back, these have a total weight of
τγ ⊗ τ

⊗2
δ = 2× λ and a length of two, which means the average weight is λ.

Which in turn means these circuits are in the critical graph as well.

– Consider the circuits from lL1 to tL2 and back, these have a total weight of
τ⊗2
δ = λ and a length of two, which means the average weight is λ

2
, therefore

these circuits are not in the critical graph.

– Next consider the circuits of length three from tL1 to lL1 to tL2 and back to
tL1 , these circuits have a total weight of τγ ⊗ τ

⊗2
δ = 2× λ, which means the

average circuit weight is 2×λ
3

which means these are not in the critical graph
either.

– Next consider the circuits of length three from tL1 to lL2 to tL2 and back to
tL1 , these circuits have a total weight of τγ ⊗ τ

⊗2
δ = 2× λ, which means the

average circuit weight is 2×λ
3

which means these are not in the critical graph
either.

– Finally consider the circuits of length four, from tL1 to lL1 to lL2 to tL2 and
back to tL1 . These circuits have a total weight of τγ ⊗ τ

⊗2
δ = 2 × λ, which
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tL1
tL2

lL1
lL2

τ
γ

τγ ⊕ τ
⊗2
δ

τ
⊗

2
δ

τγ ⊗ τδ

τδ

Figure 4-5: Critical graph of the matrix Ā, for the case τγ = τ⊗2
δ = λ. t1, t2 ∈ tL1

, t3, t4 ∈ tL2
,

l1, l2 ∈ lL1
and l3, l4 ∈ lL2

.

means the average circuit weight is λ
2

which means these are not in the critical
graph either.

The critical graph Gc(Ā) for this case is shown in Figure 4-5. It is clear that this critical
graph consists of a single strongly connected subgraph. This means the eigenvector is
unique for this case.

In the second case, where τ⊗2
δ < τγ = λ, it is clear that the circuits with their weights

being a combination of τδ and τγ, which were in the critical graph, are now no longer
in the critical graph since τ⊗2

δ < τγ. Therefore in this case only the circuits that
had average weight λ in the previous case and had paths with only weights being a
combination of τf and τg are now in the critical graph. The only circuits that satisfy
this condition are the self loops of the touchdown nodes. The critical graph for this
case is shown in Figure 4-6. In this case the critical graph consists of four strongly
connected subgraphs, which means there is more than one eigenvector.

In the third case, where τγ < τ
⊗2
δ = λ, only the circuits of the first case that have

average weight λ and consist of paths with weights consisting of τf and τ∆ are in the
critical graph. The circuits that satisfy these conditions are the circuits made with the
paths between the touchdown nodes of set tL2 . The critical graph for this case is shown
in Figure 4-7. In this case the critical graph consists of a single strongly connected
subgraph as well, which in turn means the eigenvector is unique.

To show what this means for the steady state behaviour consider the gait G = {1, 3} ≺
{2, 4} with gait parameters as shown in Table 4-1 The steady state behaviour of the
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tL1
tL2

lL1
lL2

τ
γ

τγ

Figure 4-6: Critical graph of the matrix Ā, for the case τ⊗2
δ < τγ = λ. t1, t2 ∈ tL1

, t3, t4 ∈ tL2
,

l1, l2 ∈ lL1
and l3, l4 ∈ lL2

.

tL1
tL2

lL1
lL2

τ
⊗2
δ

τ
⊗

2
δ

Figure 4-7: Critical graph of the matrix Ā, for the case τ⊗2
δ < τγ = λ. t1, t2 ∈ tL1

, t3, t4 ∈ tL2
,

l1, l2 ∈ lL1
and l3, l4 ∈ lL2

.
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Table 4-1: Gait parameters for gait G = {1, 3} ≺ {2, 4}

Case τf τ∆ τg λ

τγ = τ⊗2
δ 0.6 0.2 1.0 1.6

τ⊗2
δ < τγ 0.6 0.0 1.0 1.6

τγ < τ
⊗2
δ 0.6 0.2 0.5 1.6

first and last case are the same with cycle time: λ = 1.6 and eigenvector

v1 =

















0.6
1.4
0.6
1.4
0.0
0.8
0.0
0.8

















The steady state behaviour of the second case is not uniquely defined; the cycle time
is unique with λ = 1.6, but the eigenvector is not unique. The structure of one of the
eigenvectors can be found using theorem 1. This eigenvector is

v2 =

















0.6
1.2
0.6
1.2
0.0
0.6
0.0
0.6

















Now the robot will be initialized at v1 and v2 for all three cases. The behaviour of the
robot for the first case is shown in Figure 4-8, the top figure shows the behaviour when
initialised at v1 and the bottom at v2. When initialized with v1 the robot is already
in its steady state behaviour, so this behaviour is just repeated every cycle. When
initialized with v2 the robot first forces the legs of L2 to stay on the ground longer,
that way the lift-off events happen at the same time as they would when the robot was
initialized with v1, after that the robot is in its steady state behaviour and repeats it
every cycle. The reason for its unique steady state behaviour can be derived from the
requirements the max-plus system is based on: the flight time has to be equal to τf ,
the double stance time has to be at least τ∆ and the ground time at least τg. As can
be seen from the figure, these conditions are exactly satisfied if τγ = τ⊗2

δ

The behaviour of the robot for the second case is shown in Figure 4-9, the top figure
shows the behaviour when initialized with v1 and the bottom with v2. It is clear from
the values of τf , τ∆ and τg, and the derived values of τδ and τγ that both the behaviour
initialized by v1 and v2 satisfy the conditions put up by the max-plus model. It is
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clear that because τγ > τ
⊗2
δ there is room in the synchronization conditions for a small

change in the touchdown and lift-off events of some of the legs.

For the third case the behaviour is shown in Figure 4-10. The top figure shows the
behaviour when initialised with v1 and the bottom with v2. When looking at the values
of τf , τ∆ and τg, and the derived values of τδ and τγ it is clear that τg is too small
to be able to satisfy the synchronization conditions put up by the max-plus model.
The max-plus model solves this by increasing the stance time to the minimum required
time, which is the same as τg of the first case. Therefore this system has the same
steady state behaviour of the system in the first case. The response to the initialisation
with v2 is slightly different than that of the system in the first case; the stance time is
already larger than τg, therefore the stance time can be decreased to reach steady state
faster, this is done for legs 1 and 3 in the first cycle. After that the system is in the
same steady state behaviour as when it was initialized with v1.
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Figure 4-8: Steady state behaviour of the robot using G = {1, 3} ≺ {2, 4} and τγ = τ⊗2
δ , top:

when initialized with v1, bottom: when initialized with v2. The dashed boxes represent the stance

time and the empty space in between represents the flight time.
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Figure 4-9: Steady state behaviour of the robot using G = {1, 3} ≺ {2, 4} and τγ > τ
⊗2
δ , top:

when initialized with v1, bottom: when initialized with v2. The dashed boxes represent the stance

time and the empty space in between represents the flight time.
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Figure 4-10: Steady state behaviour of the robot using G = {1, 3} ≺ {2, 4} and τγ < τ
⊗2
δ ,

top: when initialized with v1, bottom: when initialized with v2. The dashed boxes represent the

stance time and the empty space in between represents the flight time.
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4-4 Conclusion

In this chapter it has been proven that any gait, made with the method discussed in
section 3-4, has a unique eigenvalue λ = τ⊗mδ ⊕ τγ . In practice the values for τf , τg and
τ∆ are chosen in such a way that λ = τγ = τ δ

⊗m. In this case the critical graph of the
gait consists of a single strongly connected subgraph, which means the eigenvector is
also uniquely defined. The eigenvector has the following structure:

∀j ∈ {1, . . . ,m},∀q ∈ Lj : [v]q = τf ⊗ τ
⊗j−1
δ

[v]q+n = τ⊗j−1
δ

The steady state behaviour of the robot is now mathematically and uniquely defined.
This opens up the possibility of defining and implementing optimal gait transitions
which is the subject of the next chapter.
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Chapter 5

Gait switching

5-1 Introduction

This chapter uses the knowledge gained about the steady state behaviour of the gaits
as discussed in the previous chapter to find a mathematical method to determine the
optimal gait to switch to. In the second section this mathematical method is explained.
In section 5-3 this method is applied to a hexapod robot. In section 5-4 a model is
discussed that has a constant stance time. In section 5-5 a model is discussed that has
different, but fixed values for the flight time for each of the legs and how these values
for the flight time can be found. In section 5-6 a method is discussed that enables
the robot to accelerate or decelerate without changing the gait parameters. Finally in
section 5-7 a conclusion is drawn about the use of chosen mathematical method and
the different models that were used.

5-2 Optimal Gait switching

Consider a gait G1, with flight-time τf1 , ’double stance’-time τ∆1 and ground-time τg,
and where the legs are divided into m1 sets:

G1 = L1 ≺ L2 ≺ · · · ≺ Lm1 , (5-1)

where each set of legs can consist of multiple legs and the total number of legs is equal
to n. Assume for this gait that

τ⊗m1
δ1

= τγ1 ,

where τδ1 = τf1 ⊗ τ∆1 and τγ1 = τf1 ⊗ τg, then the eigenvector of this gait has the
following structure:

∀j ∈ {1, . . . ,m1},∀q ∈ Lj : [v]q = τf1 ⊗ τ
⊗j−1
δ1

[v]q+n = τ⊗j−1
δ1
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And consider another gait G2 with flight-time τf2 , ’double stance’-time τ∆2 and ground-
time τg, and where the legs are divided into m2 sets:

G2 = L1 ≺ L2 ≺ · · · ≺ Lm2 , (5-2)

Assume for this gait that
τ⊗m2
δ2

= τγ2 ,

where τδ2 = τf2 ⊗ τ∆2 and τγ2 = τf2 ⊗ τg, then the eigenvector of this gait has the
following structure:

∀j ∈ {1, . . . ,m2},∀q ∈ Lj : [v]q = τf2 ⊗ τ
⊗j−1
δ2

[v]q+n = τ⊗j−1
δ2

A gait switch is considered optimal if the variation of the velocities at which the legs
move while on the ground is a small as possible. This means that the variation in
the time spent on the ground should be as small as possible. This can be achieved
by switching from a gait G1 to a gait G2 where the difference in the timing of the
touchdown (and lift-off) events is as small as possible, this difference can be found
by subtracting the eigenvector of G2 from the eigenvector of G1. This leads to the
following definition of an optimal gait switch: An optimal gait switch from G1 to a gait
G2 minimizes the value of τdiff as defined in equation 5-3.

τdiff = (tvG2
− tvG1

)−min(tvG2
− tvG1

), (5-3)

where tvG2
are the touchdown times of eigenvector vG2 , and tvG1

are the touchdown
times of eigenvector vG1 . Since the touchdown and lift-off events of a single eigenvector
are equal up to a timeshift of τf only the touchdown or lift-off events need to be
considered.

In order to find the optimal gait switch it is neccesary to look into the effects of such
a gait switch on the events of the legs. When switching from G1 to a gait G2 legs will
move from a set Li in gait G1 to a set Lj in gait G2. This results in a change of the
timing of the events for that leg:

The touchdown event of a leg in the set Li in gait G1 happens at

tLi = τf1 ⊗ τ
⊗(i−1)
δ1

(5-4)

and the touchdown moment of a leg in Lj in gait G2 happens at

tLj = τf2 ⊗ τ
⊗(j−1)
δ2

. (5-5)

Moving a leg from Li to Lj results in a change of the touchdown (and lift-off) event of:

tLj − tLi = τf2 ⊗ τ
⊗(j−1)
δ2

− τf1 ⊗ τ
⊗(i−1)
δ1

, (5-6)

In order to find the optimal gait transition, a combination of these set changes from
Li in gait G1 to a set Lj in gait G2, that minimizes the maximum of τdiff needs to be
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found. The maximum of τdiff can be minimized by minimizing the maximum absolute
deviation of these set changes from the average change of these set changes.

By adding up all the possible changes: for i ∈ {1, . . . ,m1} and j ∈ {1, . . . ,m2} and
dividing them by the total number of possible changes: m1 ×m2, the average change
in the timing of the events of the legs is computed. This average is:

τ
⊗(m1×m2)
f2

⊗ τ
⊗

(m2−1)×m1×m2
2

δ2
− (τ

⊗(m1×m2)
f1

⊗ τ
⊗

(m1−1)×m1×m2
2

δ1
)

m1 ×m2

, (5-7)

which can be simplified to:

τf2 ⊗ τ
⊗
m2−1

2
δ2

− (τf1 ⊗ τ
⊗
m1−1

2
δ1

). (5-8)

Subtracting equation (5-8) from equation (5-6) results in the deviation from this average
which is

τ
⊗
m1+1−2×i

2
δ1

− τ
⊗
m2+1−2×j

2
δ2

(5-9)

This means that a gait switch for which the subset of all the possible changes, has the
lowest maximum value for equation 5-9, is an optimal gait switch.

In the next section these equations are used to find the optimal gait switches for a
hexapod robot.

5-3 Optimal gait switches of a hexapod

5-3-1 Gaits and their parameters

A hexapod has three gaits that are commonly used, assuming the number of legs are
equally divided over the sets:

G1 = L1 ≺ L2 (5-10)

G2 = L1 ≺ L2 ≺ L3 (5-11)

G3 = L1 ≺ L2 ≺ L3 ≺ L4 ≺ L5 ≺ L6 (5-12)

with the parameters as shown in Table 5-1.

Table 5-1: Gait parameters

Gait τf τ∆ τg

G1 τf1 τ∆1
τg

G2 τf2 τ∆2
τg

G3 τf3 τ∆3
τg

G1 is called the tripod gait, G2 is called the quadruped gait and G3 is called the
quintuped gait. All possible gait switches between these gaits and the optimal gait
switches will be determined next.
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5-3-2 Tripod to quadruped gait switch

Consider the switch from G1 to G2, the possible changes in the order of the legs are:

{L1} → {L1} = τf2 − τf1
{L1} → {L2} = (τδ2 + τf2)− τf1
{L1} → {L3} = (2× τδ2 + τf2)− τf1
{L2} → {L1} = τf2 − (τδ1 + τf1)

{L2} → {L2} = (τδ2 + τf2)− (τδ1 + τf1)

{L2} → {L3} = (2× τδ2 + τf2)− (τδ1 + τf1)

The average change is then:

(τδ2 + τf2)− (
τδ1
2

+ τf1)

The deviation from this average is:

{L1} → {L1} =
τδ1
2
− τδ2

{L1} → {L2} =
τδ1
2

{L1} → {L3} =
τδ1
2

+ τδ2

{L2} → {L1} = −(
τδ1
2

+ τδ2)

{L2} → {L2} = −
τδ1
2

{L2} → {L3} = −
τδ1
2

+ τδ2

The two switches with the largest absolute deviation are: {L1} → {L3} and {L2} →
{L1} with an absolute deviation of |

τδ1
2

+ τδ2|. If you leave these out the maximum
deviation is less and the gait switch is still possible. Thus the optimal gait switch from
G1 to G2 consists of all combination of gaits that only use the following changes in the
order of the legs

{L1} → {L1}

{L1} → {L2}

{L2} → {L2}

{L2} → {L3}

As an example of a gait switch from G1 to G2, the parameters of table 5-2 are used
and for gait G1 the following gait is used

G1 = {1, 4, 5} ≺ {2, 3, 6},

which is the only tripod gait possible, not counting its time shifted alternative:

{2, 3, 6} ≺ {1, 4, 5}.
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Table 5-2: Gait parameters for G1, G2 and G3

Gait τf τ∆ τg

G1 1 0 1
G2 0.5 0 1
G3 0.2 0 1

Possible optimal gait switches from {1, 4, 5} ≺ {2, 3, 6}, to a gait with the structure of
G2, are:

{1, 4} ≺ {5, 2} ≺ {3, 6}

{1, 4} ≺ {5, 3} ≺ {2, 6}

{1, 4} ≺ {5, 6} ≺ {2, 3}

{1, 5} ≺ {4, 2} ≺ {3, 6}

{1, 5} ≺ {4, 3} ≺ {2, 6}

{1, 5} ≺ {4, 6} ≺ {2, 3}

{4, 5} ≺ {1, 2} ≺ {3, 6}

{4, 5} ≺ {1, 3} ≺ {2, 6}

{4, 5} ≺ {1, 6} ≺ {2, 3}

By adding the restriction that only legs on opposite sides (left and right) can be in the
same set and those legs cannot be both at the front, middle or back of the robot either,
this will result in the least stable gaits being removed from this list, the list of optimal
gaits to switch to reduces to:

G21 = {1, 4} ≺ {5, 2} ≺ {3, 6}

G22 = {4, 5} ≺ {1, 6} ≺ {2, 3}

The values of τdiff for these two gaits are shown below:

τdiff1→21 =













0.5
0.0
0.5
0.5
1.0
0.5













, τdiff1→22 =













1.0
0.5
0.5
0.5
0.5
0.0













,

which both have a maximum value of 1.0. The value for τdiff for a non-optimal gait
switch to, for example

G23 = {1, 4} ≺ {3, 6} ≺ {2, 5},
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Figure 5-1: Gait switches from G1 to G2. Top, optimal gait switch from {1, 4, 5} ≺ {2, 3, 6}
to {1, 4} ≺ {5, 2} ≺ {3, 6}. Middle, optimal gait switch from {1, 4, 5} ≺ {2, 3, 6} to {4, 5} ≺
{1, 6} ≺ {2, 3}. Bottom, non-optimal gait switch from {1, 4, 5} ≺ {2, 3, 6} to {1, 4} ≺ {3, 6} ≺
{2, 5}. The gray blocks represent the stance and the white blocks represent the flight of the legs.

is:

τdiff1→23 =













0.5
0.5
0.0
0.5
1.5
0.0













,

which has a maximum value of 1.5. These three gait switches are shown in Figure 5-1,
where you can see that a larger value for [τdiff]i results in a longer stance time for leg i
during the gait switch which happens in the fourth and fifth cycle.
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5-3-3 Quadruped to quintuped gait switch

Consider the switch from G2 to G3, the possible changes in the order of the legs are:

{L1} → {L1} = τf3 − τf2
{L1} → {L2} = (τδ3 + τf3)− τf2
{L1} → {L3} = (2× τδ3 + τf3)− τf2
{L1} → {L4} = (3× τδ3 + τf3)− τf2
{L1} → {L5} = (4× τδ3 + τf3)− τf2
{L1} → {L6} = (5× τδ3 + τf3)− τf2
{L2} → {L1} = τf3 − (τδ2+τf2

)

{L2} → {L2} = (τδ3 + τf3)− (τδ2 + τf2)

{L2} → {L3} = (2× τδ3 + τf3)− (τδ2 + τf2)

{L2} → {L4} = (3× τδ3 + τf3)− (τδ2 + τf2)

{L2} → {L5} = (4× τδ3 + τf3)− (τδ2 + τf2)

{L2} → {L6} = (5× τδ3 + τf3)− (τδ2 + τf2)

{L3} → {L1} = τf3 − (2× τδ2+τf2
)

{L3} → {L2} = (τδ3 + τf3)− (τf2 + 2× τδ2)

{L3} → {L3} = (2× τδ3 + τf3)− (2× τδ2 + τf2)

{L3} → {L4} = (3× τδ3 + τf3)− (2× τδ2+τf2
)

{L3} → {L5} = (4× τδ3 + τf3)− (2× τδ2 + τf2)

{L3} → {L6} = (5× τδ3 + τf3)− (2× τδ2 + τf2)

The average change is then:

(2.5× τδ3 + τf3)− (τδ2 + τf2)
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The deviation from this average is:

{L1} → {L1} = τδ2 − 2.5× τδ3
{L1} → {L2} = τδ2 − 1.5× τδ3
{L1} → {L3} = τδ2 − 0.5× τδ3
{L1} → {L4} = τδ2 + 0.5× τδ3
{L1} → {L5} = τδ2 + 1.5× τδ3
{L1} → {L6} = τδ2 + 2.5× τδ3
{L2} → {L1} = −2.5× τδ3
{L2} → {L2} = −1.5× τδ3
{L2} → {L3} = −0.5× τδ3
{L2} → {L4} = 0.5× τδ3
{L2} → {L5} = 1.5× τδ3
{L2} → {L6} = 2.5× τδ3
{L3} → {L1} = −(τδ2 + 2.5× τδ3)

{L3} → {L2} = −(τδ2 + 1.5× τδ3)

{L3} → {L3} = −(τδ2 + 0.5× τδ3)

{L3} → {L4} = −τδ2 + 0.5× τδ3
{L3} → {L5} = −τδ2 + 1.5× τδ3
{L3} → {L6} = −τδ2 + 2.5× τδ3

In order to get an equal number of legs in all of the six sets, at least six changes in
the order of the legs are needed, which can be devided into two changes per set of legs
of G2. The combination of those six changes, that has the lowest maximum absolute
deviation, is:

{L1} → {L1}

{L1} → {L2}

{L2} → {L3}

{L2} → {L4}

{L3} → {L5}

{L3} → {L6}

As an example of a gait switch from G2 to G3, the parameters of table 5-2 are used
and for gait G2 the following gait is used:

G2 = {1, 4} ≺ {5, 2} ≺ {3, 6}.
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The gaits with the structure of G3 that are optimal to switch to are:

1 ≺ 4 ≺ 5 ≺ 2 ≺ 3 ≺ 6

1 ≺ 4 ≺ 5 ≺ 2 ≺ 6 ≺ 3

1 ≺ 4 ≺ 2 ≺ 5 ≺ 3 ≺ 6

1 ≺ 4 ≺ 2 ≺ 5 ≺ 6 ≺ 3

4 ≺ 1 ≺ 5 ≺ 2 ≺ 3 ≺ 6

4 ≺ 1 ≺ 5 ≺ 2 ≺ 6 ≺ 3

4 ≺ 1 ≺ 2 ≺ 5 ≺ 3 ≺ 6

4 ≺ 1 ≺ 2 ≺ 5 ≺ 6 ≺ 3

The values of τdiff will be calculated for

G31 = 1 ≺ 4 ≺ 5 ≺ 2 ≺ 3 ≺ 6

G32 = 4 ≺ 1 ≺ 2 ≺ 5 ≺ 6 ≺ 3

The values for τdiff are:

τdiff2→31 =













0.2
0.3
0.0
0.4
0.1
0.2













, τdiff2→32 =













0.4
0.1
0.2
0.2
0.3
0.0













,

which have a maximum value of 0.4. Now consider the non-optimal switch to

G33 = 1 ≺ 3 ≺ 5 ≺ 2 ≺ 4 ≺ 6

The values for τdiff for this switch is

τdiff2→33 =













0.8
0.9
0.0
1.6
0.7
0.8













,

which has a maximum value of 1.6.

These three gait switches are shown in Figure 5-2, where you can see that a larger value
for [τdiff]i results in a longer stance time for leg i during the switch which happens in
the fourth and fifth cycle.
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Figure 5-2: Gait switches from G2 to G3. Top, optimal gait switch from {1, 4} ≺ {5, 2} ≺ {3, 6}
to 1 ≺ 4 ≺ 5 ≺ 2 ≺ 3 ≺ 6. Middle, optimal gait switch from {1, 4} ≺ {5, 2} ≺ {3, 6} to

4 ≺ 1 ≺ 2 ≺ 5 ≺ 6 ≺ 3. Bottom, non-optimal gait switch from {1, 4} ≺ {5, 2} ≺ {3, 6} to

1 ≺ 3 ≺ 5 ≺ 2 ≺ 4 ≺ 6. The gray blocks represent the stance and the white blocks represent the

flight of the legs.
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5-3-4 Quintuped to quadruped gait switch

Consider the switch from G3 to G2, the possible changes in the order of the legs are:

{L1} → {L1} = τf2 − τf3
{L1} → {L2} = (τδ2 + τf2)− τf3
{L1} → {L3} = (2× τδ2 + τf2)− τf3
{L2} → {L1} = τf2 − (τδ3+τf3

)

{L2} → {L2} = (τδ2 + τf2)− (τδ3 + τf3)

{L2} → {L3} = (2× τδ2 + τf2)− (τδ3 + τf3)

{L3} → {L1} = τf2 − (2× τδ3+τf3
)

{L3} → {L2} = (τδ2 + τf2)− (τf3 + 2× τδ3)

{L3} → {L3} = (2× τδ2 + τf2)− (2× τδ3 + τf3)

{L4} → {L1} = τf2 − (3× τδ3 + τf3)

{L4} → {L2} = (τδ2 + τf2)− (3× τδ3 + τf3)

{L4} → {L3} = (2× τδ2+τf2
)− (3× τδ3 + τf3)

{L5} → {L1} = τf2 − (4× τδ3 + τf3)

{L5} → {L2} = (τδ2 + τf2)− (4× τδ3 + τf3)

{L5} → {L3} = (2× τδ2 + τf2)− (4× τδ3 + τf3)

{L6} → {L1} = τf2 − (5× τδ3 + τf3)

{L6} → {L2} = (τδ2 + τf2)− (5× τδ3 + τf3)

{L6} → {L3} = (2× τδ2 + τf2)− (5× τδ3 + τf3)

The average change is then:

(τδ2 + τf2)− (2.5× τδ3 + τf3)
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The deviation from this average is:

{L1} → {L1} = 2.5× τδ3 − τδ2
{L1} → {L2} = 2.5× τδ3
{L1} → {L3} = 2.5× τδ3 + τδ2
{L2} → {L1} = 1.5× τδ3 − τδ2
{L2} → {L2} = 1.5× τδ3
{L2} → {L3} = 1.5× τδ3 + τδ2
{L3} → {L1} = 0.5× τδ3)− τδ2
{L3} → {L2} = 0.5× τδ3)

{L3} → {L3} = 0.5× τδ3) + τδ2
{L4} → {L1} = −(0.5× τδ3 + τδ2)

{L4} → {L2} = −0.5× τδ3
{L4} → {L3} = −0.5× τδ3 + τδ2
{L5} → {L1} = −(1.5× τδ3 + τδ2)

{L5} → {L2} = −1.5× τδ3
{L5} → {L3} = −1.5× τδ3 + τδ2
{L6} → {L1} = −(2.5× τδ3 + τδ2)

{L6} → {L2} = −2.5× τδ3
{L6} → {L3} = −2.5× τδ3 + τδ2

In order to get an equal number of legs in all of the six sets, at least six changes in
the order of the legs are needed, which can be devided into two changes per set of legs
of G2. The combination of those six changes, that has the lowest maximum absolute
deviation, is:

{L1} → {L1}

{L2} → {L1}

{L3} → {L2}

{L4} → {L2}

{L5} → {L3}

{L6} → {L3}

As an example of a gait switch from G3 to G2, the parameters of table 5-2 are used
and for gait G3 the following gait is used:

G3 = 1 ≺ 4 ≺ 5 ≺ 2 ≺ 3 ≺ 6.

The gait with the structure of G2 that is optimal to switch to is:

G21 = {1, 4} ≺ {5, 2} ≺ {3, 6}

B Kersbergen Master of Science Thesis



5-3 Optimal gait switches of a hexapod 63

The values for τdiff are:

τdiff3→21 =













0.2
0.1
0.4
0.0
0.3
0.2













,

which have a maximum value of 0.4. It is interesting to note that adding τdiff3→21 to
τdiff2→31 results in a vector with all values equal to 0.4. This can be explained by the
fact that this represents a gait switch from G2 to G3 and back to G2, which means
that the events should happen in the same order as they started in, which is the case
since all values of τdiff are 0.4. The value of 0.4 means that compared to the case where
the robot stayed in G2, there is a timeshift of 0.4.

Now consider the non-optimal switch to

G23 = {1, 4} ≺ {3, 6} ≺ {2, 5}

The values for τdiff for this switch is

τdiff3→23 =













0.5
0.9
0.2
0.3
1.1
0.0













,

which has a maximum value of 1.1.

These two gait switches are shown in Figure 5-3, where you can see that a larger value
for [τdiff]i results in a longer stance time for leg i during the switch which happens in
the fourth and fifth cycle.

5-3-5 Quadruped to tripod gait switch

Consider the switch from G2 to G1, the possible changes in the order of the legs are:

{L1} → {L1} = τf1 − τf2
{L1} → {L2} = (τδ1 + τf1)− τf2
{L2} → {L1} = τf1 − (τδ2 + τf2)

{L2} → {L2} = (τδ1 + τf1)− (τδ2 + τf2)

{L3} → {L1} = τf1 − (2× τδ2 + τf2)

{L3} → {L2} = (τδ1 + τf1 − (2× τδ2 + τf2))

The average change is then:

(
τδ1
2

+ τf1)− (τδ2 + τf2)
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Figure 5-3: Gait switches from G3 to G2. Top, optimal gait switch from 1 ≺ 4 ≺ 5 ≺ 2 ≺ 3 ≺ 6
to {1, 4} ≺ {5, 2} ≺ {3, 6}. Bottom, non-optimal gait switch from 1 ≺ 4 ≺ 5 ≺ 2 ≺ 3 ≺ 6 to

{1, 4} ≺ {3, 6} ≺ {2, 5}. The gray blocks represent the stance and the white blocks represent

the flight of the legs.

The deviation from this average is:

{L1} → {L1} = τδ2 −
τδ1
2

{L1} → {L2} = τδ2 +
τδ1
2

{L2} → {L1} = −
τδ1
2

{L2} → {L2} =
τδ1
2

{L3} → {L1} = −(τδ2 +
τδ1
2

)

{L3} → {L2} = −τδ2 +
τδ1
2

The two switches with the largest absolute deviation are: {L1} → {L2} and {L3} →
{L1} with an absolute deviation of |τδ2 +

τδ1
2
|. If you leave these out the maximum

deviation is less and the gait switch is still possible. Thus the optimal gait switch from
G2 to G1 consists of all combination of gaits that only use the following changes in the
order of the legs

{L1} → {L1}

{L2} → {L2}

{L2} → {L2}

{L3} → {L2}
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As an example of a gait switch from G2 to G1 consider the following gait:

G2 = {1, 4} ≺ {5, 2} ≺ {3, 6},

Possible optimal gait switches from {1, 4, 5} ≺ {2, 3, 6}, to a gait with the structure of
G2, are:

{1, 4, 5} ≺ {2, 3, 6}

{1, 4, 2} ≺ {5, 3, 6}

Of these two possible gaits only G11 = {1, 4, 5} ≺ {2, 3, 6} is a proper tripod gait. The
values of τdiff for the switch from G2 to G1:

τdiff2→11 =













0.5
1.0
0.5
0.5
0.0
0.5













,

which has a maximum value of 1.0. The value for τdiff for a non-optimal gait switch to,
for example

G12 = {2, 3, 6} ≺ {1, 4, 5},

is:

τdiff2→12 =













2.0
0.5
0.0
2.0
1.5
0.0













,

which has a maximum value of 2.0. These two gait switches are shown in Figure 5-4,
where you can see that a larger value for [τdiff]i results in a longer stance time for leg i
during the gait switch which happens in the fourth and fifth cycle.
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Figure 5-4: Gait switches from G2 to G1. Top, optimal gait switch from {1, 4} ≺ {5, 2} ≺ {3, 6}
to {1, 4, 5} ≺ {2, 3, 6}. Bottom, non-optimal gait switch from {1, 4} ≺ {5, 2} ≺ {3, 6} to

{2, 3, 6} ≺ {1, 4, 5}. The gray blocks represent the stance and the white blocks represent the

flight of the legs.

5-3-6 Tripod to quintuped gait switch

Consider the switch from G1 to G3, the possible changes in the order of the legs are:

{L1} → {L1} = τf3 − τf1
{L1} → {L2} = (τδ3 + τf3)− τf1
{L1} → {L3} = (2× τδ3 + τf3)− τf1
{L1} → {L4} = (3× τδ3 + τf3)− τf1
{L1} → {L5} = (4× τδ3 + τf3)− τf1
{L1} → {L6} = (5× τδ3 + τf3)− τf1
{L2} → {L1} = τf3 − (τδ1+τf1

)

{L2} → {L2} = (τδ3 + τf3)− (τδ1 + τf1)

{L2} → {L3} = (2× τδ3 + τf3)− (τδ1 + τf1)

{L2} → {L4} = (3× τδ3 + τf3)− (τδ1 + τf1)

{L2} → {L5} = (4× τδ3 + τf3)− (τδ1 + τf1)

{L2} → {L6} = (5× τδ3 + τf3)− (τδ1 + τf1)

The average change is then:

(2.5× τδ3 + τf3)− (
τδ1
2

+ τf1)
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The deviation from this average is:

{L1} → {L1} =
τδ1
2
− 2.5× τδ3

{L1} → {L2} =
τδ1
2
− 1.5× τδ3

{L1} → {L3} =
τδ1
2
− 0.5× τδ3

{L1} → {L4} =
τδ1
2

+ 0.5× τδ3

{L1} → {L5} =
τδ1
2

+ 1.5× τδ3

{L1} → {L6} =
τδ1
2

+ 2.5× τδ3

{L2} → {L1} = −(
τδ1
2

+ 2.5× τδ3)

{L2} → {L2} = −(
τδ1
2

+ 1.5× τδ3)

{L2} → {L3} = −(
τδ1
2

+ 0.5× τδ3)

{L2} → {L4} = −
τδ1
2

+ 0.5× τδ3

{L2} → {L5} = −
τδ1
2

+ 1.5× τδ3

{L2} → {L6} = −
τδ1
2

+ 2.5× τδ3

In order to get an equal number of legs in all of the six sets, at least six changes in
the order of the legs are needed, which can be devided into two changes per set of legs
of G2. The combination of those six changes, that has the lowest maximum absolute
deviation, is:

{L1} → {L1}

{L1} → {L2}

{L1} → {L3}

{L2} → {L4}

{L2} → {L5}

{L2} → {L6}

As an example of a gait switch from G1 to G3, the parameters of table 5-2 are used
and for gait G1 the following gait is used:

G1 = {1, 4, 5} ≺ {2, 3, 6}.

The gaits with the structure of G3 that are optimal to switch to are any combination
of the left and right column of table 5-3: The values of τdiff will be calculated for

G31 = 1 ≺ 4 ≺ 5 ≺ 2 ≺ 3 ≺ 6

G34 = 5 ≺ 4 ≺ 1 ≺ 6 ≺ 3 ≺ 2
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Table 5-3: Optimal quintuped gaits to switch to from {1, 4, 5} ≺ {2, 3, 6}

1 ≺ 4 ≺ 5 2 ≺ 3 ≺ 6
1 ≺ 5 ≺ 4 2 ≺ 6 ≺ 3
4 ≺ 1 ≺ 5 3 ≺ 2 ≺ 6
4 ≺ 5 ≺ 1 3 ≺ 6 ≺ 2
5 ≺ 1 ≺ 4 6 ≺ 2 ≺ 3
5 ≺ 4 ≺ 1 6 ≺ 3 ≺ 2

The values for τdiff are:

τdiff1→31 =













0.4
0.0
0.2
0.6
0.8
0.4













, τdiff1→34 =













0.8
0.4
0.2
0.6
0.4
0.0













,

which have a maximum value of 0.8. Now consider the non-optimal switch to

G33 = 1 ≺ 3 ≺ 5 ≺ 2 ≺ 4 ≺ 6

The values for τdiff for this switch is

τdiff1→33 =













0.8
0.4
0.0
1.6
0.2
0.8













,

which has a maximum value of 1.6.

These three gait switches are shown in Figure 5-5, where you can see that a larger value
for [τdiff]i results in a longer stance time for leg i during the switch which happens in
the fourth and fifth cycle.
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Figure 5-5: Gait switches from G1 to G3. Top, optimal gait switch from {1, 4, 5} ≺ {2, 3, 6}
to 1 ≺ 4 ≺ 5 ≺ 2 ≺ 3 ≺ 6. Middle, optimal gait switch from {1, 4, 5} ≺ {2, 3, 6} to 5 ≺ 4 ≺ 1 ≺
6 ≺ 3 ≺ 2. Bottom, non-optimal gait switch from {1, 4, 5} ≺ {2, 3, 6} to 1 ≺ 3 ≺ 5 ≺ 2 ≺ 4 ≺ 6.

The gray blocks represent the stance and the white blocks represent the flight of the legs.
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5-3-7 Quintuped to tripod gait switch

Consider the switch from G3 to G1, the possible changes in the order of the legs are:

{L1} → {L1} = τf1 − τf3
{L1} → {L2} = (τδ1 + τf1)− τf3
{L2} → {L1} = τf1 − (τδ3+τf3

)

{L2} → {L2} = (τδ1 + τf1)− (τδ3 + τf3)

{L3} → {L1} = τf1 − (2× τδ3+τf3
)

{L3} → {L2} = (τδ1 + τf1)− (τf3 + 2× τδ3)

{L4} → {L1} = τf1 − (3× τδ3 + τf3)

{L4} → {L2} = (τδ1 + τf1)− (3× τδ3 + τf3)

{L5} → {L1} = τf1 − (4× τδ3 + τf3)

{L5} → {L2} = (τδ1 + τf1)− (4× τδ3 + τf3)

{L6} → {L1} = τf1 − (5× τδ3 + τf3)

{L6} → {L2} = (τδ1 + τf1)− (5× τδ3 + τf3)

The average change is then:

(
τδ1
2

+ τf1)− (2.5× τδ3 + τf3)

The deviation from this average is:

{L1} → {L1} = 2.5× τδ3 −
τδ1
2

{L1} → {L2} = 2.5× τδ3 +
τδ1
2

{L2} → {L1} = 1.5× τδ3 −
τδ1
2

{L2} → {L2} = 1.5× τδ3 +
τδ1
2

{L3} → {L1} = 0.5× τδ3)−
τδ1
2

{L3} → {L2} = 0.5× τδ3) +
τδ1
2

{L4} → {L1} = −(0.5× τδ3 +
τδ1
2

)

{L4} → {L2} = −0.5× τδ3 +
τδ1
2

{L5} → {L1} = −(1.5× τδ3 +
τδ1
2

)

{L5} → {L2} = −1.5× τδ3 +
τδ1
2
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{L6} → {L1} = −(2.5× τδ3 +
τδ1
2

)

{L6} → {L2} = −2.5× τδ3 +
τδ1
2

In order to get an equal number of legs in all of the six sets, at least six changes in
the order of the legs are needed, which can be devided into two changes per set of legs
of G2. The combination of those six changes, that has the lowest maximum absolute
deviation, is:

{L1} → {L1}

{L2} → {L1}

{L3} → {L1}

{L4} → {L2}

{L5} → {L2}

{L6} → {L2}

As an example of a gait switch from G3 to G1, the parameters of table 5-2 are used
and for gait G3 the following gait is used:

G3 = 1 ≺ 4 ≺ 5 ≺ 2 ≺ 3 ≺ 6.

The gait with the structure of G1 that is optimal to switch to is:

G11 = {1, 4, 5} ≺ {3, 6, 2}

The values for τdiff are:

τdiff3→11 =













0.4
0.8
0.6
0.2
0.0
0.4













,

which has a maximum value of 0.8.
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Figure 5-6: Gait switches from G3 to G1. Top, optimal gait switch from 1 ≺ 4 ≺ 5 ≺ 2 ≺ 3 ≺ 6
to {1, 4, 5} ≺ {2, 3, 6}. Bottom, non-optimal gait switch from 1 ≺ 4 ≺ 5 ≺ 2 ≺ 3 ≺ 6 to

{2, 3, 6} ≺ {1, 4, 5}. The gray blocks represent the stance and the white blocks represent the

flight of the legs.

Now consider the non-optimal switch to

G12 = {2, 3, 6} ≺ {1, 4, 5},

The values for τdiff for this switch is

τdiff3→12 =













2.0
0.4
0.2
1.8
1.6
0.0













,

which has a maximum value of 2.0.

These two gait switches are shown in Figure 5-6, where you can see that a larger value
for [τdiff]i results in a longer stance time for leg i during the switch which happens in
the fourth and fifth cycle.

5-4 ’Constant stance time’-model

The current max-plus model is written in such a way that the real flight time is equal to
τf and if there are disturbances or when switching gaits the stance times are extended
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time

i

t1(k-1) l1(k) t1(k)

l2(k-1) t2(k-1) l2(k) t2(k)

τ∆ τf τg

ii

Figure 5-7: Time evolution of a bipedal gait. The hatched rectangles represent the leg stance

and the solid thick vertical lines represent the lift off events.

to compensate for the disturbances or to switch to a new gait. This is because the
synchronization constraints are put on the lift-off event. By putting the synchronization
constraints on the touchdown event instead of the lift-off event the model forces the
stance time to be equal to τg and adjusts the flight time to compensate for disturbances
or to switch gaits. The model that is composed from these equations is called the
’constant stance time’-model.

The touchdown events of the original model are described as

t(k) = τf ⊗ l(k)

the lift-off events are described as

l(k) = P ⊗ t(k)⊕ (τg ⊗ E ⊕Q)⊗ t(k − 1)

From this description it is clear that the touchdown events only depend on the lift-off
events, that the time difference is exactly τf and that the lift-off events depend on the
touchdown events of the previous cycle with a time difference of τg, but also on all the
synchronization constraints defined by P and Q.

These synchronization constraints can also be added to the touchdown events, then the
lift-off events would only depend on the touchdown events of the previous cycle and
the time difference would be exactly τg, which means the stance time is always τg.

Consider the example of Figure 3-3. The figure is repeated here as Figure 5-7. In order
to get the legs synchronized as shown in Figure 3-3, leg 1 can only lift off τg seconds
after leg 1 has touched down the last time. Leg 1 can only touch down τf seconds
after leg 1 has lifted off and τγ seconds after leg 2 has touched down. For leg 2 the
relationship is as follows: leg 2 can only lift off τg seconds after leg 2 has touched down,
it can only touch down τf seconds after leg 2 has lifted off and τγ seconds after leg 1
has touched down. This can be written as:

t1(k) = l1(k)⊗ τf ⊕ t2(k − 1)⊗ τγ
t2(k) = l2(k)⊗ τf ⊕ t1(k)⊗ τγ
l1(k) = t1(k − 1)⊗ τg
l2(k) = t2(k − 1)⊗ τg

, (5-13)
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Figure 5-8: Gait switch from {1, 4} ≺ {5, 2} ≺ {3, 6} to 1 ≺ 4 ≺ 5 ≺ 2 ≺ 3 ≺ 6 using the

’constant ground time’-model

Figure 5-9: Gait switch from 1 ≺ 4 ≺ 5 ≺ 2 ≺ 3 ≺ 6 to {1, 4} ≺ {5, 2} ≺ {3, 6} using the

’constant ground time’-model

This can be extended to any number of legs n. The statevector for an n-legged robot
is defined as

x(k) = [t1(k) · · · tn(k)
︸ ︷︷ ︸

t(k)

l1(k) · · · ln(k)
︸ ︷︷ ︸

l(k)

]>

The system equations can then be written as an implicit model as shown in equation
5-14

[

t(k)
l(k)

]

=

[

Pc τf ⊗ E
E E

]

⊗

[

t(k)
l(k)

]

⊕

[

Qc ⊕ E E
τg ⊗ E E

]

⊗

[

t(k − 1)
l(k − 1)

]

, (5-14)

where Pc= P ⊗ τf and Qc= Q⊗ τf and where the matrices P and Q are defined as in
equations 3-12 and 3-13.

For some switches this model works well as can be seen in Figure 5-8, where a switch
from {1, 4} ≺ {5, 2} ≺ {3, 6} to 1 ≺ 4 ≺ 5 ≺ 2 ≺ 3 ≺ 6 is shown. The values for
the gaits are those of Table 5-2 The switch back from 1 ≺ 4 ≺ 5 ≺ 2 ≺ 3 ≺ 6 to
{1, 4} ≺ {5, 2} ≺ {3, 6} however does not work as well, as can be seen in Figure 5-9,
where in the third cycle legs 2, 3, 5 and 6 are in the air at the same time. Leaving the
robot standing on only legs 1 and 4.

Eventhough this model does not give the desired results, it has inspired the design of
a new model which is discussed in the next section.
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5-5 ’Multiple flight time’-model 75

5-5 ’Multiple flight time’-model

5-5-1 The model

As was shown in section 5-3 even the optimal gait switches have different stance times
during a gait switch. The time the legs spend on the ground longer than desired is
equal to τdiff as defined in section 5-2. The ’multiple flight time’-model changes the
flight time of each leg in order to compensate for the change of events of each leg,
which are also represented by τdiff.

The gait switch is defined as a switch from G1 to G2. It is assumed that τg is the
same for both gaits. Furthermore it is assumed that τ⊗m1

δ1
= τγ1 ,where τfG1

, τ∆G1
and

τg are the gait parameters of G1 and m1 is the number of sets of G1. Finally it is also
assumed that τ⊗m2

δ2
= τγ2 , where τfG2

, τ∆G2
and τg are the gait parameters of G2 and

m2 is then number of sets of G2.

The ’multiple flight time’-model is described in equations 5-15 and 5-16.
[

t(k)
l(k)

]

=

[

E R
P E

]

⊗

[

t(k)
l(k)

]

⊕

[

E E
τg ⊗ E ⊕Q E

]

⊗

[

t(k − 1)
l(k − 1)

]

(5-15)

where

R =










τf1 ε . . . ε

ε τf2
. . . ε

...
. . . . . .

...
ε ε . . . τfn










. (5-16)

By forcing the legs, that would normally stay on the ground longer, to stay in flight
longer for the same amount of time the gait switch can be achieved without the legs
having different stance times. However increasing the flight time of legs can result in
an instable state of the robot as was seen in the previous section. Instead of increasing
the flight time for the legs that would normally stay on the ground longer, the flight
time for the other legs is decreased. This results in the same relative timing difference
between the legs, without causing instability.

However this method does have its limitations. Because the flight time is decreased
instead of increased the maximum relative timing difference that can be achieved in
one cycle is limited to the value of τf . That is if one or more legs stays in the air for
τf seconds and others 0 seconds, however a flight time of zero seconds is impossible.
There is a minimum time the legs have to stay in the air due to mechanical limitations
which is denoted by τfmin . The real maximum relative timing difference is thus

τf − τfmin .

This can be slightly extended by using some of the knowledge of the gaits and optimal
switches. The timing between the legs in the first and last set of the gait is τg − τ∆
for all gaits, which means that during the gait switch from G1 to G2, this will only
change from τg − τ∆1 to τg − τ∆2 , which means there is at least a doublestance time of
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min(τ∆1 , τ∆2) between all legs during the switch. Furthermore the timing between set
Li and Li+1is τδ, where i ∈ {1, . . . ,m−1}. This means that during the gait switch it is
allowed to increase τf to τδ as long as τ∆ = 0. The maximum relative timing difference
is then:

τδ − τfmin .

In most cases however τdiff > τf + τ∆− τfmin . This problem can be solved by letting the
gait switch take two cycles. The first cycle using the model in equation 5-15 for gait G1

and the second cycle using the same model for gait G2. By doing this the maximum
relative difference that can be achieved is:

τδ1 + τδ2 − τfmin . (5-17)

Now if max(τdiff) ≤ τδ1 + τδ2− τfmin the gait switch can be optimized using the model of
equation 5-15 in such a way that all legs have a stance time of exactly τg even during
the gait switch.

Consider that the gait switch is started after cycle k the state vectors that follows are
determined as follows:

x(k + 1) = AG1 ⊗ x(k) (5-18)

x(k + 2) = AS1 ⊗ x(k + 1) (5-19)

x(k + 3) = AS2 ⊗ x(k + 2) (5-20)

x(k + 4) = AG2 ⊗ x(k + 3) (5-21)

where AS1 is the matrix derived from equations 5-15 and 5-16 with matrix R= RS1,
τ∆S1

and τg and AS2 is the matrix derived from equations 5-15 and 5-16 with matrix
R = RS2, τ∆S2

and τg.

Matrices RS1 and RS2 and the values τ∆S1
and τ∆S2

are determined using the following
method:

• First check if max(τdiff + 2× τfmin) ≤ τδG1
+ τδG2

, if this is the case continue, if it
is not the case then this method cannot perfectly optimize the gait switch.

• Then determine τdiff.

• Check if τδG1
> τδG2

, if this is the case then

– Determine RG1 using the following equation:

[RS1]jj = min([τdiff]j + τfmin , τδG1
),∀j ∈ {1, . . . , n}

– If [RS1]jj − τfmin ≥ τ∆G1
,∀j ∈ {1, . . . , n} then

τ∆S1
= τ∆G1

RS1 = RS1 − τ∆1
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– If this is not the case then

τ∆S1
= 0

RS1 = RS1.

– If [RS1]jj = max([τdiff ]j + τfmin),∀j ∈ {1, . . . , n} then

[RS2]jj = τfG2
,∀j ∈ {1, . . . , n}

τ∆S2
= τ∆G2

– If this is not the case then

[RS2]jj = τδG2
+ ([τdiff]j + τfmin − [RG1 ]jj)− . . .

max([τdiff]j + τfmin − [RG1 ]jj),∀j ∈ {1, . . . , n}

∗ If [RS2]jj − τfmin ≥ τ∆G2
,∀j ∈ {1, . . . , n} then

τ∆S2
= τ∆G2

RS2 = RS2 − τ∆2

∗ If this is not the case then

τ∆S2
= 0

RS2 = RS2.

• If this is not the case then:

– Determine RG2 using the following equation:

[RS2]jj = min([τdiff]j + τfmin , τδG2
),∀j ∈ {1, . . . , n}

– If [RS2]jj − τfmin ≥ τ∆G2
,∀j ∈ {1, . . . , n} then

τ∆S2
= τ∆G2

RS2 = RS2 − τ∆2

– If this is not the case then

τ∆S2
= 0

RS2 = RS2.

– If [RS2]jj = max([τdiff ]j + τfmin),∀j ∈ {1, . . . , n} then

[RS1]jj = τfG1
,∀j ∈ {1, . . . , n}

τ∆S1
= τ∆G1
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– If this is not the case then

[RS1]jj = τδG1
+ ([τdiff]j + τfmin − [RG2 ]jj)− . . .

max([τdiff]j + τfmin − [RG2 ]jj),∀j ∈ {1, . . . , n}

∗ If [RS1]jj − τfmin ≥ τ∆G1
,∀j ∈ {1, . . . , n} then

τ∆S1
= τ∆G1

RS1 = RS1 − τ∆1

∗ If this is not the case then

τ∆S1
= 0

RS1 = RS1.

In the next subsection this method of gait switching will be applied to several optimal
gait switches, as found in section 5-3.

5-5-2 Application

Consider the gaits:

G1 = {1, 4, 5} ≺ {2, 3, 6} (5-22)

G2 = {1, 4} ≺ {5, 2} ≺ {3, 6} (5-23)

G3 = 1 ≺ 4 ≺ 5 ≺ 2 ≺ 3 ≺ 6 (5-24)

with the gait parameters of Table 5-2.

The gaits have the following eigenvectors:

vG1 =



























1.0
2.0
2.0
1.0
1.0
2.0
0.0
1.0
1.0
0.0
0.0
1.0



























, vG2 =



























0.5
1.0
1.5
0.5
1.0
1.5
0.0
0.5
1.0
0.0
0.5
1.0



























and vG3 =



























0.2
0.8
1.0
0.4
0.6
1.2
0.0
0.6
0.8
0.2
0.4
1.0



























There are six possible gait switches: from G1 to either G2 or G3, from G2 to either
G1 or G3 and from G3 to either G1 or G2.
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The τdiff for these gait switches are:

τdiffG1→G2
=













0.5
0.0
0.5
0.5
1.0
0.5













, τdiffG1→G3
=













0.4
0.0
0.2
0.6
0.8
0.4













, τdiffG2→G1
=













0.5
1.0
0.5
0.5
0.0
0.5













,

τdiffG2→G3
=













0.2
0.3
0.0
0.4
0.1
0.2













, τdiffG3→G1
=













0.4
0.8
0.6
0.2
0.0
0.4













, τdiffG3→G2
=













0.2
0.1
0.4
0.0
0.3
0.2













.

Using τdiffG1→G2
the matrices RS1 and RS2 and the values τ∆S1

and τ∆S1
are found for

the gait switch from G1 to G2:

RS1 =













0.6 ε ε ε ε ε
ε 0.1 ε ε ε ε
ε ε 0.6 ε ε ε
ε ε ε 0.6 ε ε
ε ε ε ε 1.0 ε
ε ε ε ε ε 0.6













, RS2 =













0.4 ε ε ε ε ε
ε 0.4 ε ε ε ε
ε ε 0.4 ε ε ε
ε ε ε 0.4 ε ε
ε ε ε ε 0.5 ε
ε ε ε ε ε 0.4













and
τ∆S1

= 0, τ∆S2
= 0.

Using τdiffG1→G3
the matrices RS1 and RS2 and the values τ∆S1

and τ∆S1
are found for

the gait switch from G1 to G3:

RS1 =













0.5 ε ε ε ε ε
ε 0.1 ε ε ε ε
ε ε 0.3 ε ε ε
ε ε ε 0.7 ε ε
ε ε ε ε 0.9 ε
ε ε ε ε ε 0.5













, RS2 =













0.2 ε ε ε ε ε
ε 0.2 ε ε ε ε
ε ε 0.2 ε ε ε
ε ε ε 0.2 ε ε
ε ε ε ε 0.2 ε
ε ε ε ε ε 0.2













and
τ∆S1

= 0, τ∆S2
= 0.

Using τdiffG2→G1
the matrices RS1 and RS2 and the values τ∆S1

and τ∆S1
are found for

the gait switch from G2 to G1:

RS1 =













0.4 ε ε ε ε ε
ε 0.5 ε ε ε ε
ε ε 0.4 ε ε ε
ε ε ε 0.4 ε ε
ε ε ε ε 0.4 ε
ε ε ε ε ε 0.4













, RS2 =













0.6 ε ε ε ε ε
ε 1.0 ε ε ε ε
ε ε 0.6 ε ε ε
ε ε ε 0.6 ε ε
ε ε ε ε 0.1 ε
ε ε ε ε ε 0.6












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and

τ∆S1
= 0, τ∆S2

= 0.

Using τdiffG2→G3
the matrices RS1 and RS2 and the values τ∆S1

and τ∆S1
are found for

the gait switch from G2 to G3:

RS1 =













0.3 ε ε ε ε ε
ε 0.4 ε ε ε ε
ε ε 0.1 ε ε ε
ε ε ε 0.5 ε ε
ε ε ε ε 0.2 ε
ε ε ε ε ε 0.3













, RS2 =













0.2 ε ε ε ε ε
ε 0.2 ε ε ε ε
ε ε 0.2 ε ε ε
ε ε ε 0.2 ε ε
ε ε ε ε 0.2 ε
ε ε ε ε ε 0.2













and

τ∆S1
= 0, τ∆S2

= 0.

Using τdiffG3→G1
the matrices RS1 and RS2 and the values τ∆S1

and τ∆S1
are found for

the gait switch from G3 to G1:

RS1 =













0.2 ε ε ε ε ε
ε 0.2 ε ε ε ε
ε ε 0.2 ε ε ε
ε ε ε 0.2 ε ε
ε ε ε ε 0.2 ε
ε ε ε ε ε 0.2













, RS2 =













0.5 ε ε ε ε ε
ε 0.9 ε ε ε ε
ε ε 0.7 ε ε ε
ε ε ε 0.3 ε ε
ε ε ε ε 0.1 ε
ε ε ε ε ε 0.5













and

τ∆S1
= 0, τ∆S2

= 0.

Using τdiffG3→G2
the matrices RS1 and RS2 and the values τ∆S1

and τ∆S1
are found for

the gait switch from G3 to G2:

RS1 =













0.2 ε ε ε ε ε
ε 0.2 ε ε ε ε
ε ε 0.2 ε ε ε
ε ε ε 0.2 ε ε
ε ε ε ε 0.2 ε
ε ε ε ε ε 0.2













, RS2 =













0.3 ε ε ε ε ε
ε 0.2 ε ε ε ε
ε ε 0.5 ε ε ε
ε ε ε 0.1 ε ε
ε ε ε ε 0.4 ε
ε ε ε ε ε 0.3













and

τ∆S1
= 0, τ∆S2

= 0.

Using these matrices and the model as described in the previous section results in the
following gait switches as shown in Figure 5-10 (done in the following order: G3 ⇒
G2 ⇒ G1 ⇒ G2 ⇒ G3 ⇒ G1 ⇒ G3)
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Figure 5-10: Gait switches using the multiple τf -model with the following order for the gaits:

G3 ⇒ G2 ⇒ G1 ⇒ G2 ⇒ G3 ⇒ G1 ⇒ G3. The gray blocks represent the stance and the

white blocks represent the flight of the legs.

5-6 ’Time’ manipulation

5-6-1 Constant acceleration

The current max-plus model for the gaits of the robot results in a constant velocity,
which is determined by the time the legs stay on the ground (τg) and the touchdown
and lift-off angles. If the touchdown and lift-off angles are fixed the only possibility to
speed up or slow down the robot is by changing the value of τg and adjusting the values
for τf and τ∆ accordingly. This however results in new gaits for which the optimal gait
transitions need to be determined and the velocity would instantly change once a leg
is in the next cycle, instead of gradually increasing.

The timing of the robot is based on τ which is by default equal to t, which is the
real time. By manipulating the relation between τ and t the robot can accelerate or
decelerate.

In order to get a constant acceleration

τ = α× (t)2, (5-25)

where α is the constant that determines the acceleration.

This can be proven by first looking at the distance s the robot travels and taking the
derivative with regards to time twice.

s(τ) = v̄ × τ,

where v̄ is a the distance one leg pushes the robot forward divided by the time the leg
takes to do that: τg.

s(t) = v̄ × α× t2 (5-26)

The first derivative of s is the velocity v:

v(t) = 2v̄ × α× t, (5-27)

The second derivative of s is the acceleration a:

a(t) = 2v̄ × α. (5-28)
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There are ofcourse some limitations to the velocity and acceleration the robot can
achieve. The physical limitations will be determined by the maximum acceleration
and velocity that can be achieved. This will mean there will be minimum values for
the flight time and the ground time. This in turn mean that different gaits will have
different limitations when considering the maximum velocity. For a gait with six sets of
legs the flight time is at most 0.2× τg. For a gait with three sets of legs the maximum
flight time is already much bigger: 0.5× τg and for a set of two legs it is at most equal
to τg.

When using the multiple flight time-model to achieve an optimal gait switch there are
some limitations:

max(τdiff + 2× τfmin) ≤ τδG1
+ τδG2

, (5-29)

where τδG1
, τδG2

are the values for τδ for the starting gait G1 and ending gait G2 of the
gait switch

τfmin is determined by a physical limitation, which is constant relative to t, this means
τfmin has to increase at the same rate as dτ

dt
, since τfmin is relative to τ . That has as a

result that the gait switches have to be done before the robot reaches a certain speed
and equation (5-29) no longer holds. If minimum value for τf , relative to t is denoted
by τfp and the maximum value for τfmin for which equation (5-29) is satisfied is denoted
by τfq then

dτ

dt
≤
τfq
τfp
,

by filling in the derivative this turns into

2α× t ≤
τfq
τfp
, (5-30)

Assuming that t ≥ 0 the state vectors denoted in relation to τ can be denoted in
relation to t by using the inverse of equation (5-25).

t =

√
τ

α
(5-31)

5-6-2 Application

In order to apply the previous section α and τfpneed to be defined.

α = 0.1

τfp = 0.1

Consider the gaits denoted by G1, G2 and G3, the gait switches from G1 to G2 and
from G2 to G3 and their values for τdiff as defined in section 5-4. By looking at the
values of τdiff and for the gait switch from G1 to G2, τfmin ≤ 0.15 in order to satisfy
equation (5-29). For the gait switch from G2 to G3 it is τfmin ≤ 0.25.
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Figure 5-11: Sequence of state vectors for a hexapod robot. Top: time relative to τ , bottom:

time relative to t. The gray blocks represent the stance and the white blocks represent the flight

of the legs.

Applying equation (5-30) gives bounds for the time at which the gait switches can
happen: For the gait switch from G1 to G2

t ≤ 7.5,

τ ≤ 0.1× 7.52 = 5.625

this means the leg which has τf = τfmin has to have touched down before that time and
for the gait switch from G1 to G3.

t ≤ 12.5,

τ ≤ 0.1× 12.52 = 15.625

This results in the following sequence of gaits: First three cycles of G1, then two cycles
for the switch, then five cycles of G2, then 2 cycles for the second switch, then the rest
of the cycles G3. This is shown in the Figure (5-11)

5-7 Conclusion

The goal of this chapter was to address the problem of mathematically defining an
optimal gait switch and then finding it. With the use of the knowledge of the steady
state behaviour it was possible to determine the measurement of optimality τdiff for a
gait switch from a gait G1 to a gait G2 :

τdiff = (tvG2
− tvG1

)−min(tvG2
− tvG1

),
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where tvG2
are the touchdown times of eigenvector vG2 , and tvG1

are the touchdown
times of eigenvector vG1 . This measurement was then used to find optimal gait switches
for a hexapod robot.

The gait switch is defined as a switch from G1 to G2. It is assumed that τg is the
same for both gaits. Furthermore it is assumed that τ⊗m1

δ1
= τγ1 ,where τfG1

, τ∆G1
and

τg are the gait parameters of G1 and m1 is the number of sets of G1. Finally it is also
assumed that τ⊗m2

δ2
= τγ2 , where τfG2

, τ∆G2
and τg are the gait parameters of G2 and

m2 is then number of sets of G2.

A set of gaits for which all gait switches between the gaits in the set are optimal is:

G1 = {1, 4, 5} ≺ {2, 3, 6}

G2 = {1, 4} ≺ {5, 2} ≺ {3, 6}

G3 = 1 ≺ 4 ≺ 5 ≺ 2 ≺ 3 ≺ 6

An attempt was made to further improve the gait switches by rewriting the model into
the form of

[

t(k)
l(k)

]

=

[

P τf ⊗ E
E E

]

⊗

[

t(k)
l(k)

]

⊕

[

Q E
τg ⊗ E E

]

⊗

[

t(k − 1)
l(k − 1)

]

.

This however caused instable behavior for some gait switches, which lead to the aban-
donment of this model.

It did however inspire a different model. A model where each leg has its own flight
time: [

t(k)
l(k)

]

=

[

E R
P E

]

⊗

[

t(k)
l(k)

]

⊕

[

E E
τg ⊗ E ⊕Q E

]

⊗

[

t(k − 1)
l(k − 1)

]

where

R =










τf1 ε . . . ε

ε τf2
. . . ε

...
. . . . . .

...
ε ε . . . τfn










.

τdiff was used to determine the values for the diagonal elements of R. As long as

max(τdiff) ≤ τδ1 + τδ2 − τfmin ,

and τg is the same for both gaits this model can be used to generate gait switches that
have a constant stance time during that gait switch.

The requirement that τg is the same for both gaits means the robot cannot change
speeds without disrupting the optimal gait switches. Therefore a new method was
developed to increase the speed without changing the gait parameters. This method
manipulates τ , which is the clock of the robot. By default τ = t, where t is the real
time, but by rewriting that into

τ = α× (t)2,

the robot accelerates at a constant acceleration.
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Chapter 6

Conclusions and recommendations

The main focus of this thesis is switching of gaits on a legged robot using a max-plus
linear model for the gait generation. The research can be split up in to two parts;
The analysis of the steady state behaviour of the gait generated by the model and the
optimization of the gait switches using the knowledge gained from the analysis of the
steady state behaviour.

6-1 Steady state analysis

In order to analyze the steady state behaviour of all possible gaits it was necessary
to derive a general structure of the matrices that describe the gaits. This was done
by a lengthy but straight forward calculation of a general matrix. The steady state
behaviour is determined by two matrix properties: the eigenvalue and the eigenvector.
The eigenvalue represents the cycle time, which is the time it takes for the periodic
motion of the gait to repeat, the eigenvector represents the order in which the legs
touchdown and lift-off and the time between them. From the structure it was possible
to determine that the matrices are irreducible, which means the eigenvalue is unique.
The eigenvalue λ = τγ ⊕ τ

⊗m
δ . By analyzing the critical graph of the general matrix it

was determined that if τγ ≤ τ
⊗m
δ , which means λ = τ⊗mδ , then the eigenvector is also

unique and has the following structure:

∀j ∈ {1, . . . ,m},∀q ∈ Lj : [v]q = τf ⊗ τ
⊗j−1
δ

[v]q+n = τ⊗j−1
δ

and let [v̄]q = [v]q+n for all j and q ∈ Lj. That means that if τγ ≤ τ
⊗m
δ the steady state

behaviour is known and uniquely defined.
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6-2 Optimization of the gait switches

With the knowledge of the steady state behaviour a quantitative measure for the opti-
mality of a gait switch from G1 to a gait G2 could be defined. This quantative measure
is the maximum of τdiff which is defined as:

τdiff = (tvG2
− tvG1

)−min(tvG2
− tvG1

),

where tvG2
are the touchdown times of eigenvector vG2 , and tvG1

are the touchdown
times of eigenvector vG1 . τdiff is equal to the time each leg stays on the ground longer,
therefore the maximum of this represents the maximum difference between the time
the legs stay on the ground.

With the use of τdiff the optimal gait switches for a hexapod robot were determined.
One group of gaits, consisting of a tripod, quadruped and quintuped gait, that result
in optimal gait switches when switching to one of the other gaits in the group is:

Gtripod = {1, 4, 5} ≺ {2, 3, 6}

Gquadruped = {1, 4} ≺ {5, 2} ≺ {3, 6}

Gquintuped = 1 ≺ 4 ≺ 5 ≺ 2 ≺ 3 ≺ 6

A different method for gait switching using a special model that is only used during
these gait switches has been developed. Using these methods “Perfect” gait switches
can be achieved. The method creates two new matrices AS1 and AS1 which have
specific flight times for each leg, these flight times are chosen in such a way that they
compensate for the difference in events as found by τdiff. The gait switch from G1 to
G2 then happens as follows.

x(k + 1) = AG1 ⊗ x(k) (6-1)

x(k + 2) = AS1 ⊗ x(k + 1) (6-2)

x(k + 3) = AS2 ⊗ x(k + 2) (6-3)

x(k + 4) = AG2 ⊗ x(k + 3) (6-4)

where the kth cycle is the cycle where the gait switch is initiated. Using this method
gait switches can be perfected, but there are some limitations; max(τdiff) has to be less
or equal to τδ1 + τδ2 − τfmin , where τfmin is the minimum flight-time that is physically
possible, and τg has to be the same for both gaits. This means the robot cannot change
its speed.

This problem can be circumvented by manipulating the clock the robot is using for
the timing. By introducing a clock τ , that has a quadratic relation to the real time t:
τ = a× t2, where a determines the acceleration of the robot. The robot will speed up
relative to the real time t, while the timing relative to the virtual clock τ is the same
as it would normally be, if the clock τ was not present. By doing so the robot speeds
up without having to change the gait parameters.
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6-3 Discussion and recommendations

With the methods presented in this thesis it is possible to optimize the gait switches in
such a way that all legs have the same stance time, even during the gait switch. While
this does limit the gait switches to gaits with the same value for τg the robot can still
accelerate by manipulating the clock the robot is using for the timing. While these
methods have not been tested on the robot, there should not be any major problems
implementing them, since these methods are based on the principles of switching max-
plus linear (SMPL) systems which have already been implemented on the robot, the
only difference are the system matrices. The only thing that remains is to adjust the
programming to incorporate the methods and then test the programming on the robot.
This was not possible during the period this research was done because the robot was
not in a working condition.

The limitations of the hardware, such as the minimum flight time, the maximum accel-
eration and velocity, which are needed for some of the methods are not exactly known
yet, but these can be determined by simple experiments on the robot or they can be
determined from the analysis of a model of the robot.

There is still plenty of research left to be done, all with their own challenges:

• Gaits with aerial phases have not been considered yet, while all of these methods
should work for gaits with aerial phases, there are some issues that need to be
solved before aerial phases can be introduced, such as determining the minimum
velocity needed for an aerial phase and what gait parameters are needed in order
to get a gait with a proper aerial phase.

• Another subject of interest is the power consumption of the different gaits at dif-
ferent velocities; what gait is the most energetically efficient at different velocities,
and use that to automatically switch gaits when speeding up or slowing down the
robot.

• A subject of interest that is not that closely related to the rest is the implemen-
tation of a max-plus model for modular robots, where robots consist of modules
that can connect to each other to form larger robots and where each individual
module is a working robot in it self.
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Glossary

List of Acronyms

MPL max-plus linear

SMPL switching max-plus linear

PWA piece-wise-affine

CPG central pattern generator

DES discrete event system

m.s.c.s. maximal strongly connected subgraph

List of Symbols

λ Unique eigenvalue

µ Eigenvalue

ωi Angular velocity

π(i) Direct predecessors of node i

π∗(i) All predecessors of node i plus the node itself

π+(i) All predecessors of node i

σ(i) Direct successors of node i

σ∗(i) All successors of node i plus the node itself

σ+(i) All successors of node i

σG Cyclicity of the graph

τ Time instant

τδ Sum of the flight and double stance time

τγ Sum of the flight and stance time
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92 Glossary

τdiff Measure for the difference between two eigenvectors

τfp Minimum value for the flight time, relative to t

τfq Maximum allowed value for the flight time, relative to τ

τfmin Minimum flight time

τ∆ Double stance time

τf Flight time

τg Stance time

θref,i Reference trajectory

θl Lift-off angle

θt Touchdown angle

E Max-plus zero matrix

ε The zero-element of max-plus algebra

Ḡ Normal form of the gait

Ā Normal form of the system matrix

P̄ Normal form of the matrix P

Q̄ Normal form of the matrix Q

v̄ Distance traversed by one leg per cycle

R Set of real numbers

Rmax Set of numbers used for max-plus algebra

G Gait

C Connected

D Set of arcs

Dc Arcs of the critical graph

Dr Subset of arcs

G Graph

Gc Critical graph

Gr Subgraph

N Set of nodes

N c Nodes of the critical graph

Nr Subset of nodes

R Reachable

Rmax Max-plus algebra

D̃ Set of arcs belonging to the reduced graph

G̃ Reduced graph

Ñ Set of nodes belonging to the reduced graph

a Acceleration of the robot

A(k) State matrix

Aλ Normalized matrix
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AS1 System matrix for the first cycle of the gait switch using ’multiple flight
time’-model

AS2 System matrix for the second cycle of the gait switch using ’multiple flight
time’-model

B(k) Input matrix

C Similarity transformation matrix

C(k) Output matrix

E Max-plus identity matrix

e The one-element of max-plus algebra

kj Index function for each state vector element

li(k) Lift-off event

Lp Set of legs

P Synchronization matrix P

Pc Synchronization matrix Pc for the ’constant stance’-time model

Q Synchronization matrix Q

Qc Synchronization matrix Qc for the ’constant stance’-time model

R Matrix with multiple values for the flight time for the ’multiple flight time’-
model

s Distance traversed

t Real time

ti(k) Touchdown event

u(k) Input

v Eigenvector

v Velocity of the robot

v(k) Control variable

x(k) Statevector

y(k) Output

z(k) Switching variable

i Number of the leg

p Number of the set of legs
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