
European Conference on Computational Fluid Dynamics
ECCOMAS CFD 2006

P. Wesseling, E. Oñate and J. Périaux (Eds)
c© TU Delft, The Netherlands, 2006

ANALYSIS OF A HYBRID P-MULTIGRID METHOD FOR
THE DISCONTINUOUS GALERKIN DISCRETISATION OF

THE EULER EQUATIONS

Koen Hillewaert♠, Jean-François Remacle†, Nicolas Cheveaugeon‡,
Paul-Emile Bernard∗ and Philippe Geuzaine♣

♠,♣ CENAERO, CFD-MP group
Av. J. Mermoz 30, B6041 Gosselies, Belgium

http://www.cenaero.be
♠ koen.hillewaert@cenaero.be
♣ philippe.geuzaine@cenaero.be

†,‡ UCL, Unité du Génie Civil et Environnemental
Bâtiment Vinci, Place du Levant 1, B1348 Louvain-La-Neuve, Belgium

http://www.gce.ucl.ac.be
† remacle@gce.ucl.ac.be

‡ cheveaugeon@gce.ucl.ac.be

∗ UCL, Unité de Mécanique Appliquée
Bâtiment Euler, Av. G. Lemâıtre 4, B1348 Louvain-La-Neuve, Belgium

http://www.mema.ucl.ac.be
∗ bernard@mema.ucl.ac.be

Key words: Discontinuous Galerkin Finite Element Method, p-Multigrid, h-Multigrid,
Implicit Solvers

Abstract.
An elegant yet practical framework for the application of p- and h-Multigrid for DGFEM

is first presented and analysed theoretically.
After that a hybrid implicit-explicit p-Multigrid iteration strategy for the discretisation

of the steady Euler equations with the discontinuous Galerkin finite element method is
presented and investigated experimentally. The implicit strategy consists of an inexact
damped Newton iteration, using an ILU(0)-preconditioned matrix-free GMRES method
for the solution of the linear system. The size of the ILU preconditioner grows very fast
with interpolation order. As a result the method becomes impractical already for moderate
orders of interpolation. Therefore it is embedded in a FAS p-Multigrid iteration scheme.
In this framework, the implicit solver is used only on the lowest order interpolation space,
while on the higher order levels a Runge-Kutta local timestepping method is used. The
fast convergence of the solution on the lowest order levels speeds up the convergence of
the mainly explicit multilevel iterations considerably with respect to a purely explicit p-
Multigrid solver.

1



K. Hillewaert, J.-F. Remacle and N. Cheveaugeon

1 INTRODUCTION

The Discontinuous Galerkin Finite Element Method (DGFEM) has recently become
the topic of intense research for the computation of hyperbolic and elliptic problems.
This interest is due to the combination of an arbitrary order of accuracy with data and
algorithmic locality. Since the interpolation functions are defined independently in each
element the mass matrix has a block-diagonal structure and may be inverted directly. The
method can be easily parallelized because DGFEM stencils do not grow in size with in-
creasing order. The interpolation functions are not restrained by continuity requirements
and can hence be chosen freely, allowing easy implementation of e.g. spectral interpola-
tion bases. Another consequence is the inherent capability of the method to handle h-
and p-adaptation.

In Computational Fluid Dynamics the method has become fashionable for the com-
putation of unsteady flows, especially when accurate solutions are needed, such as direct
or large eddy simulation of turbulence and the computation of shock propagation. It has
however not yet experienced a similar interest for the computation of steady flows. On
one hand the accuracy requirements are not seen to be as critical as for unsteady compu-
tations. On the other hand DGFEM still has some evident drawbacks, mainly in terms
of computational efficiency. First and foremost an efficient iteration method to attain the
steady state is still lacking. Moreover the computation of the residual and such are still
quite computationally intensive tasks. Another problem concerns the stabilisation of the
method in case of solution discontinuities.

Recent papers of Fidkowski et al.5 and Hartmann6 have demonstrated that in terms of
CPU time for a given precision it is better to increase DGFEM interpolation order rather
than mesh resolution, at least for smooth solutions. Hence it is possible that higher-
order DGFEM method may in time grow to be more efficient than a state-of-the-art finite
volume solver for steady computations, especially if combined with h- and p- adaptation.
Another advantage is that accurate results can be obtained with — by today’s standards
— very coarse meshes, which relaxes the requirements for the mesh generators (which
often are not parallellized and are hence limited in mesh size) and diminishes the memory
overhead related to storage of mesh topology.

In this paper we investigate an efficient iteration strategy that embeds an implicit
solver into a p-Multigrid framework, exploiting its efficiency while limiting the memory
footprint and algorithmical cost by using explicit solvers on the finest levels.

The paper is organized as follows. First DGFEM is reviewed briefly. After that we
discuss and analyse a general framework for p- and h-Multigrid for DGFEM. In the next
section we discuss a number of p-Multigrid strategies. In the last section we discuss and
compare several iteration strategies for DGFEM to the p-Multigrid method.

2



K. Hillewaert, J.-F. Remacle and N. Cheveaugeon

2 THE DISCONTINUOUS GALERKIN FINITE ELEMENT METHOD

Suppose we want to approximate the solution u to the following unsteady convection
problem on the domain D:

L (u) = f (1)

where we have defined the residual operator L () as:

L (α) = ∇ · ~F (α) (2)

Figure 1: DGFEM interpolation space

The Discontinuous Galerkin Finite Element
Method (DGFEM) approximates the solution
u in the broken or discontinuous interpolation
space Up that is spanned by shape functions
φp

i . Each of these functions φp
i is defined on one

element V only of a tesselation V of D. The ap-
proximate solution up is as such discontinuous
across element boundaries.

up =
∑

i

up
i φ

p
i , φ

p
i ∈ Up (3)

The expansion coefficients up
i are found by re-

quiring that the approximate solution up satis-
fies the following weak formulation of the equa-
tions (1):

(ψp,L (up)) = (ψp, f) , ∀ψp ∈ Up (4)

where the inner product in the broken space Up has been defined as:

(αp, βp) =

∫
D
αp βp dV , ∀αp, βp ∈ Up (5)

Considering that any ψp ∈ Up is a linear combination of the shape functions φp
i , and that

any shape function φp
i is supported and continuous on one element V of V only we can

rewrite (4) as: ∫
D
φp

j

(
∇ · ~F (up)

)
dV = 0 , ∀φp

j ∈ Up∮
∂V

φp
j

(
~F (up) · ~n

)
dS −

∫
V

∇φp
j · ~F (up) dV = 0

(6)

Since the data are discontinuous, the boundary flux ~F (up) · ~n is not defined. We replace
it by a numerical flux function H that depends on the solution from both sides:∮

∂V

φp
j (H (up

+, u
p
−, ~n)) dS −

∫
V

∇φp
j · ~F (up) dV = 0 (7)

3



K. Hillewaert, J.-F. Remacle and N. Cheveaugeon

3 MULTIGRID FOR DGFEM

h-Multigrid methods for DGFEM have been presented and analysed by Bastian et al.2

and van der Vegt et al.;11 p-Multigrid methods by Helenbrook et al.,7 Fidkowski et al.5

and Luo et al.9

In this section we present and analyse an elegant yet practical framework for both
h- and p-Multigrid applied to DGFEM. Most of this section is an adaptation of the
framework for analysis that has been summarised in chapters 2 and 6 in the classical
textbook by Wesseling.12

Consider now another interpolation space U q which is coarser then Up in some way.
In case of p-Multigrid, the space U q is based on the same tesselation V as U q, while the
order of interpolation is lower; for h-Multigrid the interpolation is of the same order, but
is based on a different, less resolved tesselation.

3.1 The two-level FAS cycle

The classical two-level FAS cycle12 may then be redefined for a non-linear finite element
method as follows:

1. Perform a number of iterations on level p, leading to solution up′

2. Restrict the current solution up′ to uq ′ in U q by a suitable operator T qp :

uq ′ = T qp
(
up′) (8)

3. solve the following defect correction equation in U q exactly:(
φq

i ,L (uq)− L
(
uq ′) + L

(
up′)) = 0 ∀φq

i ∈ U q (9)

4. Prolongate the correction uq − uq ′ in Up by a suitable operator T pq

up = up′ + T pq
(
uq − uq ′) (10)

5. Perform a number of additional iterations on level p to smooth the corrected solu-
tion.

3.2 Definition of transfer operators

3.2.1 Solution transfer operators

Both the prolongation and restriction operators for the solution are based on the L2 or
Galerkin projection. Let us consider a solution ua ∈ Ua and its projection T baua = ub ∈ U b

ua =
∑

i

ua
i φ

a
i , φ

a
i ∈ Ua

T baua = ub =
∑

j

ub
jφ

b
j , φ

b
j ∈ Ua

(11)

4



K. Hillewaert, J.-F. Remacle and N. Cheveaugeon

Orthogonalising the difference ua−ub to the space U b defines the following set of equations
for the expansion coefficients ub

i∑
i

(
φb

k, φ
b
j

)
ub

j =
∑

j

(
φb

k, φ
a
i

)
ua

i , ∀φb
k ∈ U b (12)

The solution transfer operator T ba has the discrete or matrix equivalent Tba defining the
transfer between the expansion vectors ua = [ua

1...u
a
n]T and ub = [ub

1...u
b
m]T

ub = Tba · ua =
(
Mbb

)−1 ·Mba · ua (13)

where
Mab

ij =
(
φa

i , φ
b
j

)
(14)

3.2.2 Residual transfer operator

The “restriction” of the residual vector follows directly from the weighted defect cor-
rection equation 9. Conventionally one goes the other way around: first a restriction
operator is defined for the residual vector, and then - in the best of cases - the coarse
grid operator is found by applying the discrete transfer operators to the fine grid operator
(Galerkin coarse grid approximation or GCGA) or - more frequently - one uses the same
discretisation technique on the coarse representation (Discrete coarse grid approximation
or DCGA). The forcing term contains the “restricted” residual

(φq
i ,L (up)) (15)

To compute this term explicitly we would need to redefine routines for weighting all
terms of the residual defined in Up with shape functions in U q. Fidkowski5 developed this
residual restriction operator for nested spaces by using the correspondance between the
shape functions. This approach may be generalised to non-nested spaces in the following
way. First we expand the residual function L (up) in Up using L2 projection:

L (up) ≈
∑

i

lpiφ
p
i∑

i

lpi
(
φp

i , φ
p
j

)
≈

(
φp

j ,L (up)
)

= rp
j

(16)

This projection requires the mass matrix and the Galerkin weighted residual defined on
space Up, both of which are already available. The “restricted residual” is then computed
as:

(φq
i ,L (up)) ≈

(
φq

i ,
∑

rp
i φ

p
i

)
(17)

We find the following matrix operator connecting the vector containing Galerkin weighted
residuals for space Up to the restricted residuals in space U q

T̃qp = Mqp · (Mpp)−1 (18)

5



K. Hillewaert, J.-F. Remacle and N. Cheveaugeon

Notice that in the case of an orthonormal set of shape functions, the restriction operators
for solution and residual coincide.

One sees that all transfer operators necessitate the multiplication of vectors with the
inverse of the mass matrices and hybrid mass matrices. The inversion of the mass matrix
is in practice only feasible for discontinuous interpolation spaces such as used by DGFEM,
since in this case the mass matrix is block-diagonal. Obviously this continues to hold for
h-Multigrid on non-conforming meshes.

3.3 Convergence analysis for linear problems and nested interpolations

Suppose we have a linear operator, then we may rewrite the discretised equations as
follows:

Lp · up = fp (19)

where

Lp
ij = (φp

i ,L
(
φp

j

)
)

fp
i = (φp

i , f)
(20)

Suppose furthermore that the interpolation space U q is nested into Up, ie. every shape
function in U q is exactly represented in Up :

φq
i = αqp

ij · φ
p
j , ∀φ

q
i ∈ U q (21)

This is for instance the case for any hierarchy of Lagrangian interpolation bases defined
on the same tesselation, in the case of p-Multigrid, or for equal order interpolations on
nested meshes which are found by regular cell divisions in the case of h-Multigrid. Since
the mapping is exact, we may find the corresponding projection matrices αqp by any
consistent mapping method (eg. L2 projection):

αqp =
(
Mqp · (Mpp)−1) = T̃qp = (Tpq)T (22)

3.3.1 Approximation of the operator on the coarser level

We can now show that the above choice of restriction and prolongation operators are
“compatible” to the coarse grid operator. We find:

Lq
ij =

(
φq

i ,L
(
φq

j

))
= αqp

ik · (φ
p
k,L (φp

l )) · α
qp
jl

Lq = αqpLp (αqp)T

= T̃qp · Lp ·Tpq

(23)

This means that in this case the application of the same discretisation on the coarser
level (DCGA) results in a discrete operator that coincides with the Galerkin Coarse Grid
Approximation (GCGA).

6



K. Hillewaert, J.-F. Remacle and N. Cheveaugeon

3.3.2 Two-level cycle convergence analysis

A consequence of Eq. (23) is that we may reorganise the defect correction equation as

T̃qp
(
Lp ·

(
up′ + Tpq ·

(
uq − uq ′))− fp

)
= 0 (24)

Eq. (24) explicitly states that the residual vector in the space Up after prolongation of the
coarse level correction is in the nullspace of the residual restriction matrix. This means
that another two-level iteration starting from the corrected solution will no longer lead
to any correction, avoiding limit-cycles due to multigrid. Notice that the choice of the
solution restriction operator is not of importance for the linear case; obviously it remains
important for the non-linear case.

Now we can adapt the two-grid analysis from Wesseling12 . The error vector ep is
defined as the difference between the current solution vector up and the final solution up∗,
and satisfies the following equation:

Lpep = Lpup − fp = rp (25)

The defect correction equation now becomes:

T̃qp
(
Lp ·

(
ep′ + Tpq ·

(
uq − uq ′))) = 0 (26)

The error ep after one two-level iteration now becomes

ep =
(
Ip −Tpq · (Lq)−1 · T̃qp · Lp

)
· ep′ (27)

We may now decompose the error ep′ into a smooth component ep′
S belonging to the range

of Tpq, and a rough part ep′
S belonging to the kernel of (Tpq)T = T̃qp and orthogonal to

the range of Tpq.

ep′
S =

(
Tpq ·

(
T̃qpTpq

)−1

· T̃qp

)
· ep′

ep′
R =

(
Ip −Tpq ·

(
T̃qpTpq

)−1

· T̃qp

)
· ep′

(28)

we find that the error after the coarse grid correction only depends on the rough or high
order part of the initial error

ep =
(
Ip −Tpq · (Lq)−1 · T̃qp · Lp

)
· ep′

R (29)

This does not mean however that the resulting error is outside of the range of Tpq, or
- otherwise stated - is entirely made up of “rough” components, this in contrast to the
residual.

7



K. Hillewaert, J.-F. Remacle and N. Cheveaugeon

3.3.3 Correspondence of eigenspaces

In the case of finite difference type discretisations, the eigenspace of the discretised
operator consists of Fourier modes. When applying h-Multigrid to these methods a clear
distinction may be found between fine and coarse grid eigenmodes, since ’coarse’ eigen-
modes are ’fine’ eigenmodes as well.

For higher-order DGFEM, the eigenspace of the discrete operator on the coarse and
the fine representation is different. Therefore - in our opinion - a Fourier analysis7 to
determine convergence rate is not applicable. If an exploitable correspondance between
the eigenvector spaces of the fine and the coarse level operators could be found, we could
split up the eigenspace into rough and smooth modes, and quantify the ideal efficiency
of the method. We have not yet been able to find such a decomposition for p-Multigrid
DGFEM, but are currently working on this issue.

3.4 Multigrid strategies

p

p−1

p−2

p−3

W−cycleV−cycle Full Multigrid

post−smoothing
pre−smoothing

Figure 2: Multigrid strategies

The two-grid algorithm requires an accurate solve of the defect correction equation.
This may still be untractable, and hence a number of strategies exploiting the two-grid
cycle are possible.12 Two types of strategies have been studied (see Fig. 2):

• V- and W-cycles consist in replacing the exact solution of the defect correction equa-
tion on the coarse level by a recursive application of the two-grid cycle. Depending
on the number of two-cycle solves per defect correction we distinguish v-cycles and
w-cycles. We define our multigrid cycling strategy by the following parameters

– number of coarser levels

– number of pre- and post-smoothing steps (or accuracy) for each level

– number of subcycles

– smoother type for each level

Typically we visit all available levels.

8



K. Hillewaert, J.-F. Remacle and N. Cheveaugeon

• Full multigrid (FMG) or Nested Iteration starts with iterations on the coarsest
representation. After that we successively refine the representation. Using the
hitherto available coarser levels one performs a number of v- or w-cycles. Depending
on the strategy a prespecified number of cycles is done, or until a desired level of
convergence has been reached. After that the solution is prolongated to the next
finer level. When finally reaching the target order, one continues v- or w-cycling
until full convergence.

4 HYBRID ITERATION STRATEGY

4.1 Elementary iterative methods

On the one hand, we use a local time-step variant of the classical 4-step Runge-Kutta
method, which is fairly often used owing to the classical application of DGFEM to time-
accurate integration. This method has a minimal impact on memory footprint, but is
extremely slow to converge.

On the other hand we have implemented the ’matrix-free’ Newton-Krylov-ILU scheme,
which is fairly often used in finite volume methods3,8 and has only recently been applied
to DGFEM.1,10 In this method the discretised non-linear set of equations is solved using
Newton iterations. The resulting linear system at each Newton step is iteratively solved
with a Krylov subspace iteration method. In this case we use the classical combination
of GMRES with ILU(0) as preconditioner; the matrix-vector product needed in GMRES
is provided by finite difference. Furthermore we add a pseudo-time derivative at each
iteration step n: (

ψp,
(up,n − up,n−1)

∆τn
+∇ · ~F (up,n)

)
= 0 , ∀ψp ∈ Up (30)

The pseudo-time step ∆τn is chosen locally to conform to a given CFL number, and
thus provide the “locally optimal” diagonal dominance for the linear solution as well as a
sufficient underrelaxation to avoid non-linear excursions. As the solution converges, the
need for stabilisation diminishes. Therefore the CFL number is updated following each
Newton update, inversely proportional to a power α of the current reduction of the L2

norm of the residual ε:

CFLn = max

(
CFL0 ·

(
‖ε0‖2

‖εn‖2

)α

, CFLmax

)
(31)

The main advantage of the Newton method is its computational efficiency. Its main draw-
back for high-order DGFEM is the impressive memory footprint. The elementary blocks
composing the preconditioning matrix increase quadratically in size with the number of
unknowns per element/face. If p is the polynomial order, then the number of unknowns
per element grows like p2 in 2 and p3 in 3 dimensions. Then, the number of elements
in each block of the ILU grows like p4 resp. p6. Hence a matrix preconditioner becomes
quite impractical even for relatively low orders.

9



K. Hillewaert, J.-F. Remacle and N. Cheveaugeon

4.2 Hybrid p-Multigrid

Multigrid convergence hinges upon the convergence of the lowest frequency(order) er-
rors, which are no longer converted to high frequencies by coarsening. Hence, to obtain
ideal multigrid convergence, we need in theory to solve the coarsest level exactly at each
cycle, or in multigrid terminology, we need a smoother that is also effective on long-wave,
low frequency errors. On the finer levels the smoother may only be efficient on the rough
parts of the residual.

On the one hand, we know that the Newton-Krylov implicit solver is highly effective
in removing errors, more or less independent of frequency content, but the storage needed
for the ILU preconditioner only remains reasonable on the coarsest levels of interpolation.
On the other hand the Runge-Kutta scheme does a reasonable job at removing higher
order or rough parts of the residual but has only a very small memory footprint.

Combining the above reflections we may conclude that the combination of a Newton
iterator on the coarsest level with Runge-Kutta or equivalently simple smoothers on the
finer levels may be very competitive. If we furthermore consider that extremely coarse
meshes are used to represent the solution, we may conclude that a p-Multigrid method
using the implicit scheme on the coarsest level will be very memory-efficient with respect
to conventional CFD codes. Another advantage is that the classical slope-limiter for
DGFEM4 is not easily integrated into an implicit iteration method.

5 COMPARISON OF ITERATIVE STRATEGIES

(a) Coarse resolution (b) Fine resolution

Figure 3: Mesh details for the flow around the NACA0012 airfoil

To compare the iteration strategies presented in this paper we compute the inviscid
flow of air around the NACA0012 airfoil. The angle of attack is 2o and the Mach number
is 0.3. The chord has been rescaled to avoid the truncation of the airfoil at the trailing
edge. The free-stream boundary is located at 30 chords from the leading edge. The mesh
size on the airfoil varies quadratically, from 0.01 at the leading edge, over 0.08 at midchord
to 0.02 at the trailing edge. At the free-stream boundary the grid size is 20. The coarse
mesh is obtained by doubling those sizes. The details of the meshes near the airfoil are
shown in Fig.3. The coarse mesh contains in total 157 nodes, the fine mesh 622 nodes.

10



K. Hillewaert, J.-F. Remacle and N. Cheveaugeon

At all explicit levels use 10 Runge-Kutta pseudo-time iterations for both pre- and post-
smoothing sweeps, with CFL = 2. The implicit Newton-Krylov solver starts out with
CFL0 = 5; the exponent α = 0.5. 30 Krylov vectors are used, without restart. The initial
CFL number CFL0 for the Newton-Krylov scheme is updated following each multigrid
cycle, by using the same rationale as in (31), but now using the ratios of fine grid residual
norms. If the Runge-Kutta and Newton-Krylov method are used outside of the multigrid
framework, the same parameters are applied.

The computed Mach number isolines for interpolation orders 1 and 4 on the coarse and
on the fine mesh are compared in Fig.4.

(a) p=1, coarse (b) p=4, coarse

(c) p=1, fine (d) p=4, fine

Figure 4: Mach number distribution

11



K. Hillewaert, J.-F. Remacle and N. Cheveaugeon

In Fig. 5 we compare performance of three full multigrid strategies in terms of CPU
time. All strategies use fully explicit w-cycles and are compared to the standard w-
cycle. Residuals are always computed using the solution projected onto the highest order
representation. The first strategy, labeled “w-fmg1” only uses one cycle per level during
the nested iteration. The second one (“w-fmg2”) converges 4 orders of magnitude for each
refinement. The last one (“w-fmg3”) converges each level to machine accuracy. We see
that w-fmg1 and w-fmg2 have more or less the same performance as the w-cycle. W-fmg3
performs much worse. From a given resolution onward the low order solution we obtain
generates the same higher-order error. All the time spent in improving the low order
solution any further is then lost. At least for this case, we have nothing to gain from
FMG. The only advantage we may reasonably expect from FMG is an increased stability.

0 2000 4000 6000 8000
1e-06

0.001

1

1000

1e+06

L
2(e

)

w-cycle
w-fmg-1
w-fmg-2
w-fmg-3

(a) order=2, fine mesh

0 10000
1e-06

0.001

1

1000

1e+06
L

2(e
)

w-cycle
w-fmg-1
w-fmg-2
w-fmg-3

(b) order=3, fine mesh

Figure 5: Comparison of FMG strategies, fine mesh

In Figs. 6 and 7 we compare the convergence rates of the different iteration strategies
in terms of number of multigrid cycles (if applicable) and CPU time for orders 2, 3 and
4 on the coarse and the fine mesh respectively. The strategies included in this study are:

• fully explicit v-cycle (labeled “v-cycle”)

• fully explicit w-cycle (labeled “w-cycle”)

• v-cycle with implicit coarsest level (labeled “v-cycle-i0”)

• w-cycle with implicit coarsest level (labeled “w-cycle-i0”)

• Runge-Kutta pseudo-timestepping (labeled “Runge-Kutta”)

• Newton-Krylov-ILU (labeled “Newton-Krylov”)

12



K. Hillewaert, J.-F. Remacle and N. Cheveaugeon

0 50 100 150 200

0.001

1

1000

1e+06

L
2(e

)

v-cycle
w-cycle
v-cycle-i0
w-cycle-i0

(a) Number of cycles, order=2
0 500 1000 1500 2000 2500 3000

0.001

1

1000

1e+06

L
2(e

)

v-cycle
w-cycle
v-cycle-i0
w-cycle-i0
Runge-Kutta
Newton-Krylov

(b) CPU time, order=2

0 50 100 150 200

0.001

1

1000

1e+06

L
2(e

)

v-cycle
w-cycle
v-cycle-i0
w-cycle-i0

(c) Number of cycles, order=3
0 1000 2000 3000 4000

0.001

1

1000

1e+06

L
2(e

)

v-cycle
w-cycle
v-cycle-i0
w-cycle-i0
Runge-Kutta
Newton-Krylov

(d) CPU time, order=3

0 50 100 150 200

0.001

1

1000

1e+06

L
2(e

)

v-cycle
w-cycle
v-cycle-i0
w-cycle-i0

(e) Number of cycles, order=4
0 1000 2000 3000 4000 5000 6000

0.001

1

1000

1e+06

L
2(e

)

v-cycle
w-cycle
v-cycle-i0
w-cycle-i0
Runge-Kutta
Newton-Krylov

(f) CPU time, order=4

Figure 6: Comparison of iteration strategies, coarse mesh

13



K. Hillewaert, J.-F. Remacle and N. Cheveaugeon

0 100 200 300 400 500

0.001

1

1000

1e+06

L
2(e

)

v-cycle
w-cycle
v-cycle-i0
w-cycle-i0

(a) Number of cycles, order=2
0 2000 4000 6000 8000

0.001

1

1000

1e+06

L
2(e

)

v-cycle
w-cycle
v-cycle-i0
w-cycle-i0
Runge-Kutta
Newton-Krylov

(b) CPU time, order=2

0 100 200 300 400 500

0.001

1

1000

1e+06

L
2(e

)

v-cycle
w-cycle
v-cycle-i0
w-cycle-i0

(c) Number of cycles, order=3
0 5000 10000 15000 20000

0.001

1

1000

1e+06

L
2(e

)

v-cycle
w-cycle
v-cycle-i0
w-cycle-i0
Runge-Kutta
Newton-Krylov

(d) CPU time, order=3

0 100 200 300 400 500

0.001

1

1000

1e+06

L
2(e

)

v-cycle
w-cycle
v-cycle-i0
w-cycle-i0

(e) Number of cycles, order=4
0 5000 10000 15000 20000 25000 30000

0.001

1

1000

1e+06

L
2(e

)

v-cycle
w-cycle
v-cycle-i0
w-cycle-i0
Runge-Kutta
Newton-Krylov

(f) CPU time, order=4

Figure 7: Comparison of iteration strategies, fine mesh

14



K. Hillewaert, J.-F. Remacle and N. Cheveaugeon

We see that the v-cycles have the same rate of convergence per cycle irrespective of
the finest-level interpolation order, i.e. we attain textbook multigrid efficiency. We see
this behaviour only for v-cycles since the number of passes on each level of this strategy is
independent of the finest-level interpolation order. The number of cycles however is very
dependent on the grid size. This is to be expected, since the maximum stable timestep is
proportional to the grid size. If we had used a classical multigrid method, using coarser
grids instead of decreasing order, we would have convergence rates per cycle independent
of mesh size. A combination of p- and classical multigrid could provide both order and
grid size independent convergence rates.

We note that in any configuration (fully or partly explicit) w-cycles have a higher
asymptotic convergence rate per cycle, almost in a constant ratio to the number of coarser
level sweeps. Since the extra work is mostly confined to the coarser levels we can sometimes
see a better performance in terms of CPU time.

The application of the Newton-Krylov strategy as the smoother on the coarsest level
tends to speed up v-cycles considerably, both in number of cycles and CPU time. For w-
cycles the effect is most marked in the early stages, where the convergence rate seems to be
dominated by low frequency errors. After an initial transient however we find asymptotic
convergence rates that are similar to the ones for the fully explicit cycles. A possible
explanation is that w-cycles, as they concentrate most of the workload on the coarser
levels, smooth out the low-frequency error more effectively. Consequently this strategy,
especially in the partly implicit case, would be dominated by the convergence of higher
frequencies only in the last stage of convergence. V-cycles would tend to keep a balanced
“broad-band” error, and maintain efficiency on all levels up to the end.

Finally we also note that in all cases the implicit Newton-Krylov scheme converges
first. However as order and number of DOFs increases, the multigrid scheme becomes a
viable competitor, even when we use a poor smoother such as Runge-Kutta, and this for
a fraction of the memory.

6 CONCLUSIONS

First the framework for the application of multigrid to DGFEM has been presented
and analysed. After this an efficient hybrid p-Multigrid iteration strategy for DGFEM
has been presented and compared to standard iteration strategies. Even using very simple
smoothers, the hybrid p-Multigrid method proves to be a performant option in terms of
CPU time whilst drastically reducing memory footprint and code complexity.

7 ACKNOWLEDGMENTS

CENAERO is funded by the Walloon Region and the structural funds ERDF and ESF
(EP1A122030000102).

Grids and visualisations were generated with Gmsh (http://www.geuz.org/gmsh), one-
dimensional graphs with Grace (http://plasma-gate.weizmann.ac.il/Grace).

15



K. Hillewaert, J.-F. Remacle and N. Cheveaugeon

REFERENCES

[1] Bassi, F. and Rebay, S. GMRES discontinuous Galerkin solution of the compress-
ible Navier-Stokes equations Discontinuous Galerkin methods: theory, computation
and applications, Lecture Notes in Computational Science and Engineering, vol 11,
Springer-Verlag (2000).

[2] Bastian P. and Reichenberger, V. Multigrid for higher order discontinuous Galerkin
finite elements applied to groundwater flow, Technical report SFB 359, Interdiszi-
plinäres zentrum für Wissenschaftliches Rechnen, Universität Heidelberg (2000).

[3] Brown, P.N. and Saad, Y. Hybrid Krylov methods for nonlinear systems of equations.
SIAM Journal on Scientific and Statistical Computing, 11(3):450–481 (1990).

[4] Cockburn, B. and Shu, C.-W. The Runge-Kutta Discontinuous Galerkin Method for
conservation laws V : multidimensional systems, Journal of Computational Physics,
141:199–224 (1998).

[5] Fidkowski, K.J. and Darmofal, D.L. Development of a higher-order solver for aero-
dynamic computations, 42nd AIAA Aerospace Sciences Meeting and Exhibit, Reno,
Nevada, 2004 (paper 2004-0436).

[6] Hartmann, R., Adaptive discontinuous Galerkin methods with shock-capturing for
the compressible Navier-Stokes equations, to be published in International Journal
for Numerical Methods in Fluids.

[7] Helenbrook, B.T., Mavriplis, D. J. and Atkins, H. A Analysis of p-multigrid for con-
tinuous and discontinuous finite element discretizations, 16th AIAA Computational
Fluid Dynamics Conference, Orlando, Florida, 2003 (paper 2003-3989).

[8] Keyes, D.E. and Venkatakrishnan, V. Newton-Krylov-Schwarz methods: interfacing
sparse linear solvers with nonlinear applications, Zeitschrift für Angewandte Mathe-
matik und Mechanik, 76:147–150 (1996).

[9] Luo, H., Baum, J.D. and Löhner, R. A p-Multigrid discontinuous Galerkin Method
for the compressible Euler equations on unstructured grids, Finite Elements for Flow
Problems, Swansea, 2005.

[10] Rasetarinera, P. and Hussaini, M.Y. An efficient implicit discontinuous spectral
Galerkin method. Journal of Computational Physics 172:718–738 (2001).

[11] van der Vegt, J.J.W. and van der Ven, H., Space time discontinuous Galerkin finite
element method with dynamic grid motion for inviscid compressible flows: I. General
formulation, Journal of Computational Physics 182:546-585 (2002).

[12] Wesseling G. An introduction to multigrid methods, John Wiley and Sons (1991).

16


	INTRODUCTION
	THE DISCONTINUOUS GALERKIN FINITE ELEMENT METHOD
	MULTIGRID FOR DGFEM
	The two-level FAS cycle
	Definition of transfer operators
	Solution transfer operators
	Residual transfer operator

	Convergence analysis for linear problems and nested interpolations
	Approximation of the operator on the coarser level
	Two-level cycle convergence analysis
	Correspondence of eigenspaces

	Multigrid strategies

	HYBRID ITERATION STRATEGY
	Elementary iterative methods
	Hybrid p-Multigrid

	COMPARISON OF ITERATIVE STRATEGIES
	CONCLUSIONS
	ACKNOWLEDGMENTS

