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Summary

Bubble columns - structures or stability?
Wouter Harteveld

The aim of the present investigation is to get an improved understanding of the hydrodynamics

of the gravity driven bubbly flow that can be found in a bubble column reactor. Special attention

has been paid to the large scale structures that can be found in these flows, since these structures

have a strong impact on the performance of a bubble column reactor (e.g., mixing, mass and

heat transfer).

Particular interest has been paid to the factors leading to their creation: are the large scale

fluctuations due to the inherently unstable interplay of the gas distribution and gravity, and what

is the role of imperfections in the gas injection? To answer these questions, a special sparger with

559 needles has been constructed for a bubble column with 15 cm diameter that can provide

both very uniform and non-uniform gas injection. The performance of and bubble formation

process at this sparger have been studied in detail, revealing the importance of bubble-bubble

interaction processes for the bubble diameter.

Hydrodynamics

With the very uniform gas injection obtained with this sparger, very homogeneous flow was

obtained in which no large scale structures could be detected, up to the superficial gas velocity

where instability sets in. For increasing levels of contamination, increasingly high critical voidages

up to 55% have been obtained at which the first vortical structures appear. Several indications

have been found which indicate that the onset to a flow with large dynamic structures is caused

by the reversal of the direction of the lift force. Wall peaking was found for the void fraction

in the case of homogeneous flow, it disappears when instability is approached. The horizontal

bubble diameter observed around the onset of instability agrees well with the critical diameter

suggested by Tomiyama et al. (2002) for which the lift coefficient changes sign. For increasing

levels of contamination, coalescence near the sparger decreases, smaller bubbles result and the

flow is stable up to higher voidages.

Sufficiently large non-uniformities in the gas injection create an entrance region with dy-

namic vortical cells. The strength of the associated liquid velocity fluctuations quickly dampens

for higher positions in the column, until a bulk region is found with uniform properties. For

Ug<0.05 m/s, the size and nature of this entrance region mainly depend on the gas injection

pattern, and less on the void fraction. A data set has been generated for both a cylindrical and

pseudo-2D bubble column to allow more refined validation studies of numerical work.
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In addition, the strength of fluctuations due to pseudo-turbulence has been studied, as well

as the turbulent properties of the flow to get a better understanding of the cascade process at

scales larger than the bubble diameter. For this purpose, power spectra of the liquid velocity

signal have been determined. These suffer from power added by the pseudo-turbulence obscuring

the turbulent cascade process of the larger structures. Various techniques have been compared

to reduce the influence of the local fluctuations. Removal of velocity samples obtained close to

the bubbles only gives partial improvement, a fit of the autocorrelation function gives somewhat

better results, but both require careful interpretation. The results show a power law slope close

to -5/3 at intermediate frequencies for large dynamic structures both due to instability of the

flow and due to non-uniform gas injection.

Measurement techniques

The study of the hydrodynamics required the improvement and evaluation of several measure-

ment techniques. This work is summarized below.

Optical fiber probes are used for the measurement of the void fraction. A study shows that for

the gas-liquid transition, the so-called Low-Level-Criterion should be used. Various error sources

causing the underestimation of the void fraction are determined by studying video images of the

piercing of bubbles. Errors due to the blinding, crawling and drifting effect are quantified. For

the bubble velocity and size, a four point optical fiber probe is used. A study into its accuracy

shows, via the analysis of both artificial piercing simulations and simplified experiments, that

the major error sources are the bubble shape oscillations and probe-bubble interactions (drifting

and deformation). For the data processing, the importance of curvature correction is shown.

The inaccuracy for individual bubble velocity measurements (magnitude and direction) is quite

high, but for ensembles of bubbles the averages are reasonably accurate.

The signal processing of Laser Doppler Anemometry (LDA) velocity time series is evaluated

and improved. In order to deal properly with the random sampling and gaps in the data due to

bubbles, the slotting technique and time-series analysis present no particular problems. The use

of reconstruction techniques produces significant biases due to a double low-pass filter operation

redistributing high-frequency power to low frequencies. The filters have a cut-off frequency that

is lower than that based on theory for single phase flow, and can produce power-law slopes close

to -5/3 in the absence of turbulence.

For the processing of the electronic LDA signals, a dual burst wavelet LDA processor has been

developed, tested and applied to both single phase and bubbly flows. The use of this processor

results in 50% smaller dead times, strong reduction of multiple validation, more accurate Doppler

frequency and arrival time estimates, and provides much more insight in the data processing and

on how to optimize the LDA technique. Smaller bias problems are obtained for the velocity

moments compared to a commercial burst processor, the comparison suggests that the accuracy

of the results of the latter processor can be improved by removal of multiple validation, the use

of a coincidence window and velocity bias correction. The advantages of the wavelet processor

for the estimation of power spectra are limited, due to the size of the measurement volume.
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Samenvatting

Bellenkolommen - structuren of stabiliteit?
Wouter Harteveld

Het doel van het huidige onderzoek is een beter begrip te krijgen van de hydrodynamica van

de zwaartekracht gedreven bellenstroming, die in een bellenkolomreactor aanwezig is. Hierbij is

vooral aandacht besteed aan de grootschalige structuren die in deze stromingen gevonden kunnen

worden, omdat deze structuren een grote invloed hebben op de prestaties van een bellenkolom-

reactor (bv. menging, en stof- en warmteoverdracht).

In het bijzonder is er gekeken naar de factoren die tot vorming van deze structuren leiden:

worden deze veroorzaakt door de inherent onstabiele wisselwerking van de gasverdeling en de

zwaartekracht, en wat is de rol van onvolmaaktheden in de gasinjectie? Om deze vragen te beant-

woorden is er een speciale begasser gebouwd, bestaande uit 559 naalden voor een bellenkolom met

15 cm diameter. Deze begasser kan zowel zeer uniforme begassing als niet-uniforme begassing

leveren. De prestaties van de begasser zijn in detail bestudeerd, samen met het belvormingspro-

ces. Hierbij is het belang van bel-bel wisselwerkingen voor de beldiameter duidelijk geworden.

Hydrodynamica

De zeer uniforme gasinjectie, die de begasser levert, resulteert in een zeer homogene stroming,

waarin geen grootschalige structuren ontdekt kunnen worden. Dit blijft het geval totdat de su-

perficiële gassnelheid bereikt wordt waarbij instabiliteit optreedt en het transitieregime betreden

wordt. Voor een toenemende vervuilingsgraad worden steeds hogere kritieke gasfracties voor

transitie bereikt. Een maximale kritieke gasfractie van 55% wordt uiteindelijk gevonden. Ver-

schillende aanwijzingen zijn gevonden die aangeven dat de verandering van een homogene stro-

ming naar een met grootschalige structuren wordt veroorzaakt door het omkeren van de richting

van de liftkracht. Wandpieken in de gasfractie zijn gevonden voor het geval van homogene stro-

ming. De pieken verdwijnen zodra de stroming bijna instabiel wordt. De horizontale beldiameter,

die wordt gemeten rond het punt waar de stroming instabiel wordt, komt overeen met de kri-

tieke diameter zoals gesuggereerd door Tomiyama et al. (2002), waarbij de liftcoëfficiënt negatief

wordt. Voor toenemende vervuilingsgraad neemt de hoeveelheid coalescentie bij de begasser af,

met als gevolg kleinere bellen en een stroming die stabiel is tot een hogere gasfractie.

Voldoende grote inhomogeniteiten in de gasinjectie creëren een ingangsgebied met dynamische

wervelstructuren. De sterkte van de geassocieërde vloeistofsnelheidsfluctuaties neemt snel af voor

posities hoger in de kolom, totdat een bulkgebied gevonden wordt met uniforme eigenschappen.

Voor Ug<0.05 m/s hangen de grootte en het type van dit ingangsgebied voornamelijk af van

het begassingspatroon en minder van de gasfractie. Een dataset is gecreëerd voor zowel een
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cilindrische als een pseudo-2D bellenkolom voor meer verfijnde validatiestudies van numeriek

werk.

Verder is de sterkte onderzocht van de fluctuaties als gevolg van pseudo-turbulentie, evenals

de turbulentie-eigenschappen van de stroming om een beter idee te krijgen van het cascade

proces op schalen groter dan de beldiameter. Om deze reden zijn vermogensspectra bepaald van

het vloeistofsnelheidssignaal. Deze spectra hebben last van extra vermogen toegevoegd door de

pseudo-turbulentie. Dit extra vermogen verdoezelt het turbulente cascade-proces van de grotere

structuren. Verschillende technieken zijn vergeleken, die de invloed van lokale fluctuaties kun-

nen verminderen. Het verwijderen van snelheidsrealisaties verkregen vlakbij de bellen geeft

slechts een gedeeltelijke verbetering. Een fit van de autocorrelatiefunctie geeft wat betere

resultaten, maar beide technieken vereisen een zorgvuldige interpretatie. De resultaten tonen

een power law helling in de buurt van -5/3 rond het gebied van 1 tot 10 Hz, voor stromingen

met grootschalige dynamische structuren zowel veroorzaakt door instabiliteiten in de stroming

als door niet-uniforme gasinjectie.

Meettechnieken

De studie van de hydrodynamica vereist het verbeteren en evalueren van verschillende meet-

technieken. Dit werk is hieronder samengevat.

Optische glasvezelprobes zijn gebruikt voor de metingen van de gasfractie. Een studie laat

zien dat het zogenaamde Low-Level-Criterion moet worden gebruikt voor de gas-vloeistof over-

gang. Verschillende foutenbronnen voor de onderschatting van de gasfractie zijn bepaald door

het bestuderen van videobeelden van het aanprikken van bellen. Onnauwkeurigheden veroor-

zaakt door het ’blinding’, ’crawling’ en ’drifting’ effect zijn gekwantificeerd. Voor de belsnelheid

en belgrootte is een vierpuntsglasvezelprobe gebruikt. Een studie naar diens nauwkeurigheid

laat zien, via de analyse van zowel artificiële aanpriksimulaties als versimpelde experimenten,

dat de belangrijkste foutenbronnen de belvormoscillaties en de probe-bel interacties (’drifting’

en vervorming) zijn. Voor de dataverwerking is het belang van correctie van de belkromming

aangetoond. De onnauwkeurigheid van individuele belsnelheidsmetingen (grootte en richting) is

vrij groot, maar voor grotere groepen bellen zijn de gemiddelden redelijk nauwkeurig.

De signaalverwerking van Laser Doppler Anemometrie (LDA) snelheidstijdsreeksen is geëva-

lueerd en verbeterd. De slotting-techniek en tijdsreeksanalyse hebben geen bijzondere problemen

met het willekeurig samplen van en de gaten in de data veroorzaakt door de bellen. Het ge-

bruik van reconstructietechnieken produceert echter significante structurele afwijkingen als gevolg

van een dubbele laagdoorlaatfilteroperatie, die vermogen bij hogere frequenties herverdeelt naar

lagere frequenties. Deze filters hebben een afkapfrequentie, die lager ligt dan verwacht op basis

van theorie voor éénfasestromingen, en kunnen power-law hellingen opleveren in de buurt van

-5/3, zelfs als er helemaal geen turbulentie aanwezig is.

Voor de verwerking van electronische LDA signalen is een overlappende burst wavelet LDA

processor ontwikkeld, getest en toegepast op zowel éénfasestromingen als bellenstromingen. Het

gebruik van deze processor resulteert in 50% kortere dode tijden, een sterke afname van meer-

voudige validatie, meer nauwkeurige Doppler-frequentie- en aankomsttijdschatters en levert veel

meer inzicht in de dataverwerking en hoe de LDA techniek moet worden geoptimaliseerd. De tech-

niek levert kleinere problemen met structurele afwijkingen voor de snelheidsmomenten vergeleken

xiv



met een commerciële burstprocessor. De vergelijking suggereert dat de nauwkeurigheid van de

commerciële processor kan worden verbeterd door het verwijderen van meervoudig gevalideerde

metingen, het gebruik van een coïncidentievenster en correctie voor de structurele afwijking

in de snelheid. De voordelen van het gebruik van de waveletprocessor voor de schatting van

vermogensspectra zijn beperkt door de grootte van het meetvolume.
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1. Introduction

1.1. Bubbly flow

1.1.1. Motivation

Gas-liquid bubbly flows are encountered in a large variety of applications in industry. These

vary from air-lift reactors in the bio-industry, nuclear boiling water reactors, the use of the gas-

lift technique for underground oil recovery, CO2 sequestration in the ocean, to bubble column

reactors in the petro-chemical industry (e.g. for the oxidation of butane or toluene). Bubble

column reactors are frequently used due to their simple construction with no moving parts, which

make their construction and maintenance cheap, and for their simplicity of operation and good

mass and heat transfer. However, the hydrodynamic behavior of bubble columns is very complex,

making a detailed description generally not feasible. Consequently, scale-up of bubble column

reactors is difficult, and usually based on empirical relations. Despite several decades of research,

their behavior is still far from well understood. Design, scale up, fine tuning and use of bubble

columns would all strongly benefit from a better understanding of the hydrodynamics of this

two-phase flow.

1.1.2. Flow regimes and vortical structures

Classically (e.g. Zahradnik et al. (1997)), the following regimes are identified for the hydrody-

namic behavior (Figure 1.1):

• The homogeneous regime is characterized by a narrow bubble size distribution and ra-

dially uniform void fraction distribution. Bubble-bubble interaction is minor and liquid

recirculation takes place in between the bubbles: no large scale circulation exists.

• The transition regime. If the gas flow rate is increased, the void fraction increases and

the flow becomes unstable. The homogeneous behavior disappears. Instead, the bubble

size distribution widens and the radial void fraction distribution is not homogeneous any

more. The void fraction near the center of the bubble column is larger than the average

void fraction, and large vortical structures appear with a size comparable to the column

diameter. These large scale structures contribute to the large scale circulation in the bubble

column with up flow in the center and down flow near the wall.

• The heterogeneous (churn-turbulent) regime exists for even higher gas throughput, when

coalescence and breakup reach an equilibrium. It is marked by a wide bubble size distri-

bution: the bubble diameter can vary an order of magnitude. The degree of mixing in the

flow is very strong.
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homogeneous
regime

transitional
regime

heterogeneous
regime

Figure 1.1.: Classical picture of flow regimes that occur in bubble columns for increasing super-
ficial gas velocity Ug.

This classification is not unique: not all authors distinguish the transition regime, some include

it in the churn-turbulent regime (e.g. Groen (2004)). The hydrodynamic behavior of bubble

columns changes due to the appearance of large scale coherent vortical structures. These struc-

tures have a strong impact on the performance of a bubble column reactor (e.g. mass and heat

transfer, mixing), and have therefore received a lot of of attention over the years (overviews can

be found in Mudde (2005) and Joshi et al. (2002)). The level of understanding of the nature

of these structures has gradually increased. Where initial investigators considered a single cir-

culation cell for the mean flow, this concept was later replaced with that of multiple stacked

circulation cells with a steady-state character (e.g. Joshi and Sharma (1979)). Later investi-

gations (e.g. Franz et al. (1984) and Chen et al. (1994)) showed that, in fact, the flow field

is formed by a meandering vortical plume surrounded by circulation cells with a very dynamic

character, which are constantly moving through the column in a chaotic fashion.

Knowledge of the regime of operation and therefore of the large structures in the flow is crucial.

The hydrodynamic behavior is dependent on a large number of parameters (e.g. geometry, liquid

properties, sparger type). If a sparger with only a few holes is used (e.g. Ruzicka et al. (2001)),

the heterogeneous regime is found for all superficial gas velocities: behavior according to the

homogeneous regime is not observed. For spargers with small and closely spaced orifices, the

homogeneous regime is typically reported for superficial gas velocities below 0.04 m/s (e.g. Wild

et al. (2003)). The behavior suggests that the presence of a wide bubble size distribution implies

the heterogeneous regime. The opposite is, however, not generally true (Mudde (2005)): a

narrow bubble size distribution does not imply homogeneous flow. The large-scale circulation

and vortical structures have been found at low superficial gas velocities (Mudde et al. (1997a),

Mudde and Van den Akker (1999), Yuan et al. (1993), Franz et al. (1984) and Chen et al. (1994)),

even though several of these authors used spargers that were claimed to provide uniform gas

injection (e.g. Mudde and Van den Akker (1999) used a porous plate sparger). Various authors

report non-uniform gas distribution also for moderate gas fractions (Kumar et al. (1997), Yuan

et al. (1993) and Chen et al. (1994)). Chen et al. (1994), even distinguish an additional (’vortical
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spiral flow’) regime for superficial gas velocities in the range of 0.02-0.05 m/s. Consequently,

characteristics of the behavior corresponding to the heterogeneous regime have been found for

conditions where a homogeneous flow is expected based on the classical picture of the regimes.

It is not clear, whether these large-scale fluctuations are due to the inherently unstable interplay

of the gas distribution and gravity, or to small imperfections in the aeration pattern. This needs

further clarification.

Similarly, large vortical structures were reported in numerical (Computational Fluid Dynam-

ics) investigations, both for non-uniform and uniform gas sparging conditions (e.g. Lapin and

Lübbert (1994), Sokolichin et al. (1997)). Variation of parameters in the simulation (such as

models for the turbulence and the interaction forces, or numerical issues) has an important in-

fluence on the presence of coherent structures in the result, such as the grid size (Lapin and

Lübbert (1994)), the discretization scheme (Sokolichin et al. (1997)), and the implementation of

the added mass and/or the lift force (e.g. Monahan et al. (2005), Mudde and Simonin (1999)

and Sokolichin et al. (2004)). In many of these studies, correct prediction of the presence of

vortical structures is used as an indicator which models should be included. Therefore, the use

of experimental data with well-defined conditions, such as carefully controlled aeration, is very

important for making the correct choices.

In addition, the modeling of turbulence of the continuous phase in bubble columns is still an

unresolved problem (Sokolichin et al. (2004)). It is not yet clear how the turbulence is modified

by the bubbles at scales larger than the bubble diameter (e.g. Lance and Bataille (1991), Mudde

et al. (1997a)) and how the pseudo-turbulence introduced by the gas phase influences the flow.

Modeling would clearly benefit from additional insight in these processes.

1.1.3. Scope

The main objective in the present thesis is to determine the behavior of dynamic large scale

structures in bubble columns. The work aims at answering the question whether large-scale

fluctuations are due to the inherently unstable interplay of the gas distribution and gravity, or

due to small imperfections in the aeration pattern. This is done via an experimental approach.

Special attention is paid to the influence of the gas injector. The properties of the flow for very

uniform gas injection are investigated, and the influence of non-uniformities in the gas injection

on the presence of the large structures is determined. This way, a data set is created for a well-

defined geometry that provides an interesting test case for numerical work. The investigation

tries to find which factors determine the creation of the vortical structures, i.e. the instability of

the flow.

In addition, the turbulent properties of the flow are investigated in order to get a better

understanding of the cascade process of structures at scales larger than the bubble diameter.

Moreover, the pseudo-turbulence introduced by the bubbles is studied to get a better idea of the

strength of the fluctuations in the liquid velocity due to the local ’stirring’ by the bubbles.

To accomplish the above, the present work pays a lot of attention to the application of

measurement techniques to bubbly flows. In order to determine the hydrodynamical properties,

reliable and accurate measurement techniques are required. The optical accessibility of bubble

columns is, however, quite poor, and the flow is sensitive to disturbances. For this reason, the

accuracy of optical probe techniques for the measurement of bubble properties is studied, and,
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when possible, improved. In addition, the application of Laser Doppler Anemometry (LDA) to

bubbly flows is investigated, and improved. The suitability of signal processing techniques for

the determination of turbulence power spectra from LDA signals obtained in bubbly flows is

evaluated and improved when possible.

1.2. Bubbly flow research at the Kramers Laboratorium

Gas-liquid and gas-liquid-solid bubbly flows have received a lot of attention in the research

programme of the Kramers Laboratorium voor Fysische Technologie of the Delft University of

Technology. Frijlink (1987) studied gassed suspension reactors. Later, Bakker (1992) investigated

stirred gas-liquid dispersions, and Venneker (1999) studied these dispersions for pseudoplastic

liquids. Van den Berg (1996) studied the interplay of the various time scales in bubbly flow.

Groen (2004) investigated the hydrodynamics of bubble columns, his studies were followed by

several publications on the topic of bubble columns and air-lift loop reactors, e.g. Mudde and Van

den Akker (1999) and Mudde and Saito (2001). Numerical work on the topic of bubbly flows

using the two-fluid formalism was performed by Lathouwers (1999) and Oey (2005). Finally,

Guet (2004b) investigated ways to improve the gas-lift technique for underground oil recovery,

and currently a follow-up project on this topic is being performed by Michael Descamps.

1.3. Project

The present project ’Hydrodynamics of gravity driven bubbly flows’ was funded by the Stichting

Fundamentele Onderzoek der Materie (FOM), and was part of the Dispersed Multiphase Flow

program (work group FOM-D-35, project number 99MFS12).

1.4. Outline

Measurement techniques and setup

Chapter 2 discusses gas injection in bubble columns and presents the bubble column and the

special gas injector that has been created for this study allowing for the investigation of the flow

for both very uniform and non-uniform gas injection conditions. Chapter 3 discusses the accuracy

of the use of single glass fiber probes for the measurement of void fractions. In chapter 4 the

application of the four point optical fiber probe for the measurement of 3D bubble velocities and

the bubble chordal length is studied, with special attention for the accuracy of this technique.

Next, in chapter 5 the estimation of turbulence power spectra from LDA signals obtained in

bubbly flows is studied. The chapter deals with signal processing techniques and first evaluates

techniques to deal with gaps in the data introduced by bubbles and random sampling, and,

second, how to deal with fluctuations due to the local flow around the bubbles. Chapter 6

considers the dual burst wavelet LDA processor that has been developed in this project to

provide more accurate processing of LDA signals and assesses its performance when applied to

bubbly flows.
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Hydrodynamics

Before discussing the hydrodynamics of the bubble column, the bubble formation process at the

sparger is discussed in section 2.3. Chapter 7 discusses the hydrodynamics of the bubble column:

the stability of the flow, pseudo-turbulence, the influence of non-uniformities on the flow for both

a cylindrical and a pseudo-2D column, and, finally, the turbulence power spectra that have been

obtained.
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2. Uniform and non-uniform gas injection in
bubble columns

One of the major goals of the present study is to determine the influence of the sparger on the

hydrodynamics in the bubble column, with special attention for large scale vortical structures.

The present chapter discusses gas injection in bubble columns. First, a short literature overview

is presented, followed by a discussion of the bubble column and the gas injector used for the

present investigation. Next, the bubble formation at a single needle is studied followed by a

discussion of interaction effects that are observed when multiple needles are used.

2.1. Gas injection in bubble columns

For the application of bubble columns in industry, different design parameters of interest are

found which can give conflicting optimal designs (see e.g. Deckwer (1992)). For instance, a

large gas-liquid interfacial area is required when the chemical reaction rate is high and the gas-

liquid mass transfer rate is limiting. This may be achieved by a higher void fraction and a

smaller bubble size. This means that the liquid circulation intensity is reduced, lowering the

heat transfer coefficient and possibly the mass transfer coefficient for solids.

The type of gas injector that is used has a major influence on the bubble size, gas distribution,

void fraction and liquid circulation intensity. The variety in design parameters has, therefore,

led to a wide variety in gas injectors. The influence of the sparger on the flow is found to be

generally smaller for airlift loop reactors than for bubble columns (Snape et al. (1995)).

Gas may be dispersed through pores or holes; a wide variety in number, size and distribution

is found. The simplest configuration is a single orifice or tube which produces bubbles with a

wide bubble size distribution: the gas is introduced in the form of a ’jet’. Larger numbers of

orifices are encountered in drilled tubes, perforated plate spargers, porous plate spargers, flexible

spargers and needle spargers. Drilled tubes (e.g. Tang and Heindel (2004) and Yu and Kim

(1991)) and perforated plates (e.g. Kumar et al. (1997)) are commonly used in industry, with

hole diameter typically in the range of 1 to 5 mm. These plates have a free area typically in

the range of 0.5% to 5%. The bubble size typically gets smaller when smaller holes and larger

numbers of holes are used. Porous plate spargers are often used for investigations in laboratories

(e.g. Groen (2004), Mouza et al. (2005), Camarasa et al. (1999)) and provide small bubbles

and generally more uniform gas injection than perforated plate spargers. Due to problems with

clogging they are rarely used for process gas dispersion.

A flexible sparger (e.g. Rice and Howell (1986), Hebrard et al. (1999), Poulsen and Iversen

(1999)) is a thin, elastic (usually rubber) membrane, stretched over a hoop. Holes are drilled

or punctured in it. On increase of the pressure, the membrane expands and the holes increase

in size. Flexible spargers are used if uniformly sized small bubbles are desired (e.g. in waste
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water treatment). They have the advantage of self-cleaning properties and do not suffer from

the clogging problems that rigid spargers have during periods when the aeration is stopped.

However, the spargers cannot be used under conditions of high temperature and pressure, and,

in addition, the bubble formation process at flexible spargers is less well understood than that at

rigid spargers (Loubière and Hébrard (2003), Rice and Howell (1986), Geary and Rice (1991)).

Needle spargers are thus far not widely used, probably due to the large construction effort

involved. Garnier et al. (2002) considered 271 hollow needles for the injection of bubbles in a

small airlift reactor, with the goal of producing a monodisperse injection with a void fraction

distribution which is as uniform as possible.

Due to its impact on the bubble column performance, the gas injector has been the subject

of many studies to investigate its influence on the hydrodynamics and other properties. Several

comparative studies have been published in which various spargers were compared for their

influence on the hydrodynamics. Hills (1974) investigated the influence on the hydrodynamics

of an increasing number of orifices in a perforated plate: for an increasing number of orifices,

reduced liquid circulation and flatter void fraction profiles are obtained. Other investigations

show that for perforated plates, a decrease in hole diameter, a decrease in the height-to-diameter

ratio, and a reduction in the coalescing nature give an increase in the critical hold up for the

transition to the heterogeneous regime. This is for instance shown by Thorat et al. (1998) and

Thorat and Joshi (2004), who compare 22 different sieve plate geometries, but also by Drahos

et al. (1991), Zahradnik et al. (1997) and Ruzicka et al. (2001). These latter authors showed

how the homogeneous regime disappears if a perforated plate with larger hole diameter is used.

Wilkinson et al. (1992) found that the influence of the sparger design on the hold up is small if

the holes in the sparger are smaller than 1-2 mm and if care is taken to prevent maldistribution

on the sparger. Veera and Joshi (1999) provide an overview of many sparger types presented

in the literature and investigate the influence of the free area and hole diameter with five sieve

plate spargers, including a single orifice sparger, on the void fraction profile that is obtained at

various heights in the column. Haque et al. (1986) study the optimum gas sparger design for

low height-to-diameter ratio bubble columns with respect both to minimum mixing time and

maximum void fraction. Bhavaraju et al. (1978) discuss design procedures for gas injectors,

focusing on the bubble sizes that are produced. Polli et al. (2002) investigated the bubble size

distribution in the sparger region for various perforated plate and perforated ring type spargers.

Dhotre et al. (2004) and Ranade and Tayalia (2001) used CFD simulations to simulate the effect

of the sparger. Dhotre et al. (2004) consider the same spargers as Veera and Joshi (1999), Ranade

and Tayalia (2001) the single and double ring tube spargers considered by Haque et al. (1986).

Several authors considered various methods to determine how the flow regime transitions

change for different sparger types. Most authors make use of pressure signals. For instance,

Drahos et al. (1992a) considered the fractal behavior of pressure signals, Drahos et al. (1991)

autoregressive and spectral analysis of pressure signals. Lin et al. (2001) used chaotic time series

analysis to find flow transitions as a function of the sparger type: two porous plate spargers and

two perforated plate spargers were compared. Vial et al. (2000) and Vial et al. (2001) used the

latter techniques in combination with statistical analysis and time-frequency analysis of pressure

signals for the comparison of a porous plate sparger, multiple orifice sparger and a single orifice

nozzle. The use of LDA for the investigation of flow patterns was considered by Kulkarni (2005b)

in order to distinguish the behavior of single point and multi-point spargers.
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2.2. The controlled sparger

2.2.1. Introduction

Chapter 1 mentions that the influence of the gas sparger on the hydrodynamics, in particular the

presence of large scale structures, is still poorly understood. In order to investigate the influence

further, a special gas injector is required that can provide well-defined very uniform gas injection

as well as non-uniform gas injection in well-known patterns. This way, not only the influence on

the flow can be studied, but also sparger characteristics are obtained that can be implemented in

Computational Fluid Dynamics (CFD) models more easily and accurately. The present section

discusses the requirements for the sparger and describes the sparger and bubble column that

have been actually constructed.

2.2.2. Demands for gas injection

• The sparger should enable very uniform gas injection. This means:

– The amount of gas injected per unit time and area is independent of the position on

the sparger.

– The bubble size that is injected is independent of the position on the sparger.

• The sparger should enable non-uniform gas injection in well-controlled patterns. This

means:

– The sparger is divided in groups, to which specified flow rates can be set.

• The sparger should be relatively easy to model.

– A lot of gas injection points are used, consequently one can model the gas injection

as a uniform inlet for each grid cell.

– The bubble size distribution should be narrow, allowing for modeling of a monodis-

perse bubble ensemble for conditions where coalescence and breakup are relatively

unimportant. Consequently, coalescence near the sparger should be limited.

– Preferably, the bubble size should not vary strongly with the superficial gas velocity.

– The amount of gas that is injected in each part of the sparger should be known.

– The local amount of gas that is injected should be independent of time and the flow

inside the bubble column, such that feedback can be ignored.

• The bubble size should be in the range of 3-5 mm since we are interested in obtaining the

homogeneous regime.

• The gas injection for adjacent needles should be as uncorrelated as possible. Correlations

may introduce time scales in the flow that are strongly determined by the specific sparger

geometry. We are less interested in behavior that is specific only to one geometry.
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No sparger geometry is available in the literature that satisfies the above demands. Especially

the possibility to use well-controlled patterns is new. The choice was made to construct the

sparger based on a large number of needles, which allows an easy subdivision in groups, very

similar properties for all the openings, large pressure drop and uniform distribution. Special

efforts were made in order to comply with the above requirements as much as possible. The next

paragraph gives a description of the bubble column and the needle sparger. Subsequent sections

describe the bubble formation at the needle sparger.

2.2.3. Description of the bubble column and sparger

Two bubble columns, each with a needle sparger, have been used for the work in the present

thesis. The first is a cylindrical bubble column, the second a rectangular pseudo-2D column.

The present section describes the bubble columns and spargers.

Cylindrical column

The cylindrical bubble column, that has been used, has a 15.0 cm inner diameter (R=0.075 m)

and was filled with tap water. It is shown in Figure 2.1. The column wall is made of PMMA,

and has a height of 2.0 m. A rectangular vessel filled with water is built around the column for

the Laser Doppler Anemometry experiments to allow also for the measurement of the tangential

liquid velocity component. It has dimensions 0.31 m x 0.20 m x 0.30 m (height x width x depth),

is constructed from PMMA and can be displaced in height to allow LDA measurements at

various heights. The bubble column is placed in a frame, which allows careful vertical alignment:

misalignment results in circulation loops in the flow (e.g. Rice and Littlefield (1987), Rice et al.

(1990), Ityokumbul (1993) and Tinge and Drinkenburg (1986)). At the bottom of the bubble

column, the special needle bubble distributor is placed. It consists of 559 stainless steel needles

glued in the bottom plate which is constructed of PVC. The needles have lengths of 20 cm,

inner diameters 0.8 mm, the exits extend 5 mm above the bubble column bottom. The needles

are placed in a triangular pattern, with a distance between the needle centers of 6 mm (Figure

2.2(a)). This picture also shows the direction of the second velocity component v. The first

velocity component, u, is the axial velocity component.

In order to provide both uniform and non-uniform gas injection in well-defined patterns, the

needles are connected in groups of 18 pieces. The flow system used to distribute the air to these

groups is shown in Figure 2.3. The main gas stream is split into 7, 11 or 31 channels feeding

the various groups, the number is depending on the operation mode of the bubble column.

Eleven electronic mass flow meters (VP Instruments VPFlowmate with range 0-5 slm) were used

in combination with metering valves to obtain accurate control over the flow to the groups.

Upstream of each group a ’group needle’ (with an inner diameter of 0.6 mm and length of

10 cm) is placed in order to obtain very uniform gas distribution over the channels to the needle

groups. Due to the large pressure drop over these needles the flow rates to the various groups are

independent and the volume available for pressure fluctuations is strongly reduced. This way,

the flow to the various areas of the sparger should be independent of the hydrodynamics inside

the bubble column. In order to obtain a narrow bubble size distribution and uniform aeration,

the flow rate through the needles is limited between 1 ml/s and 3 ml/s. At lower flow rates water

may enter some of the needles and uniformity is no longer guaranteed. At the higher flow rates
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Figure 2.1.: Bubble column setup with sparger details. 1: needles, 2: hoses from group distributor
to needles, 3: group distributors, 4: group needles, 5: rectangular vessel, 6: sparger.
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Figure 2.2.: Top view of the needle sparger for the cylindrical (a) and pseudo-2D (b) bubble
column. For low superficial gas velocities only the black filled needles are used. The
arrows show the position from which the LDA and void fraction profiles are obtained.
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Figure 2.3.: The system used to provide the bubble column with air.

the bubble formation mechanism changes and coalescence starts to play a larger role: the bubble

size distribution widens. Section 2.3 and 2.4 discuss the bubble formation process in more detail.

In addition, at the larger flow rates the pressure drop in the network feeding the needles becomes

large and further increase of the flow rate is no longer possible if the group needles are present.

This is caused by the high pressure drop over the group needles, combined with the long hoses

that are employed in the setup: hose type ’G1’ (see Figure 2.3) has a length of 3 m and inner

diameter of 4 mm, hose type ’G2’ a length of 5 m and an inner diameter of 4 mm and hose type

’N’ a length of 0.5 m and an inner diameter of 2 mm.

Therefore, only a limited range of void fractions can be investigated if all needles are used

at the same time. For void fractions α > 15% (superficial gas velocity beyond 0.03 m/s) all

needles are used in 31 groups. For the range 5% < α < 12% (superficial gas velocity 0.015 m/s

- 0.027 m/s) one third of the needles is used in 11 groups: 187 needles, again in a triangular

pattern (the black filled needles in Figure 2.2(a)). An example of the bubble formation in this

mode is shown in Figure 2.4. The use of different numbers of needles has the advantage that

the differences in the flow rates through the needles for high and low superficial gas velocities

are reduced. The bubble diameter increases with this flow rate, so the differences in the bubble

diameters are also reduced. For the superficial gas velocities beyond 0.055 m/s, the group needles

were removed: at these flow rates the pressure drops in the hoses connecting the flow meters with

the group distributors (denoted by ’G1’ and ’G2’ in Figure 2.3) have become large enough to

ensure independent operation of the groups. This way, superficial gas velocities up to 0.10 m/s

are possible.

The groups are shown in Figure 2.2(a). In the case that 187 needles are used, one central

group of 7 needles and 10 groups of 18 needles forming half rings are used. If all 559 needles are

used, there are one central group of 19 needles and 30 groups of 18 needles forming one sixth of

a ring. Since only 11 flow meters are available for the experiments, a switching panel was used

to allow the measurement of the flow rate of 31 channels (Figure 2.3). The same panel allowed
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Figure 2.4.: Picture showing bubble formation with one third of the needles in operation.

the series connection of the flow meters to provide a regular calibration to compensate for the

effects of drift (e.g. temperature) in the meters. Finally, the bubble column has to be operated

with care to prevent water from entering the needles. Therefore, it is slowly filled with water

from a supply near the bottom at a sufficiently large gas flow rate.

Figure 2.2(a) shows the lines over which experiments were performed in the bubble column:

LDA experiments were performed over the line y=0, most void fraction measurements over the

line x=0 (a small number over the line y=0).

Rectangular pseudo-2D column

The rectangular column dimensions are a 50% scaled-down version of those used by Becker et al.

(1994). The column has a width of 24.3 cm (R2D=0.122 m, hydraulic diameter 0.069 m), a depth

of 4.0 cm (Rdepth=0.020 m) and a height of 99 cm. The sparger for this column is made of 95

needles, again placed in a triangular pattern with distance between the needle centers of 1.04 cm

(Figure 2.2(b)). This is almost the same pattern that is used in the cylindrical column when 187

needles are employed. Seven needle groups are created: one central group of 11 needles and six

groups of 14 needles. LDA experiments are done from the front (probe aligned with the y-axis),

such that the distance that has to be covered by the laser beams into the bubbly flow is short.

Glass fiber probe experiments were performed over the line y=0.

Construction

In order to ensure that the needles had very similar lengths, diameters and openings, the needles

were cut to the appropriate length and mechanically deburred in the factory. In addition, the

needles were handled carefully during construction to prevent buckling which would dramatically

affect the pressure drop. The length of the needle which extends from the bottom plate into the

liquid is very similar for all needles (inaccuracy much smaller than 1 mm) to prevent static

pressure differences at the exits of the needles that can translate to somewhat different flow

rates.
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Figure 2.5.: Bubble formation frequency fluctuations due to liquid circulation for two pressures.

Performance of the sparger components

Tests have been performed to evaluate the performance of the sparger and its separate compo-

nents. The individual bubbling frequencies are compared for small and high flow rates. At small

flow rates the bubbling frequency is a good indicator for the flow rate changes. Variations in the

bubbling frequencies around the mean are within a band of 3%, indicating a good accuracy. In

addition, tests are performed to compare the group needles. A needle is placed at the bottom of

a tube filled with water, the water flows out through the tube. The time is determined which the

liquid column with a height of 2.0 m requires in order to drop 0.5 m in height. Differences are

around 0.3%, i.e. the needle diameters are very similar and very similar flow rates and pressure

drops to the groups are obtained.

2.3. Bubble formation at a single needle - the influence of
bubble-bubble interactions

2.3.1. Motivation

Understanding the behavior of the bubbles, with the formation process as an important element,

is of key importance for the study of bubble columns. The size of the bubbles can have a

strong effect on the hydrodynamical behavior. The size is strongly influenced by the conditions

at which the bubble column is operated, e.g. the number of active needles, the gas injection

pattern, the superficial gas velocity and the flow regime. In order to investigate this relationship

better, the bubble formation process is studied in more detail. Quite surprising behavior was

found in the presence of large scale vortical structures at the sparger. The present section

discusses this behavior. If the needle sparger is operated in the presence of large scale vortical

structures, a strongly fluctuating liquid velocity is present at the needles. This influences the
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Figure 2.6.: Variation of mean and standard deviation σf of bubble formation frequency with
pressure for a needle in a flow with varying liquid velocities.

bubble formation process, and, consequently, the bubble size that is produced. The bubble

formation in the presence of a fluctuating liquid velocity is studied by aerating a bubble column

with a small group of 17 needles (with the same properties as the needle sparger), placed in

the center of the bottom of the 15 cm diameter bubble column. A liquid height of 20 cm is

used, this way a dynamic liquid circulation loop is obtained with a typical timescale for the

liquid velocity fluctuations of 1 second. The bubble formation process has been studied with

the use of high speed video recordings. It is quite difficult to obtain an accurate estimate of the

fluctuating bubble size from the images. Therefore, instead, the bubble formation frequency was

determined via the autocorrelation function of the intensity of the pixels at the location of the

bubble formation. The flow rate through the group of needles was set by varying the pressure

p in the chamber volume before these needles: no flow meter was available at the time for the

relevant range of flow rates. Figure 2.5 shows this time-dependent bubbling frequency for two

different pressures. For only a small increase in the pressure, the magnitude of the fluctuations

strongly drops. Figure 2.6 shows the mean and standard deviation of the bubbling frequency

for various pressures p. For p<0.15 bar the frequency increases with p. For p ≈ 0.2 bar the

standard deviation shows a strong peak, for higher pressures the standard deviation drops and

slowly increases, the mean of the frequency is more or less constant.

Obviously, the strong frequency fluctuations are accompanied by strong bubble size fluctua-

tions, since the pressure drop over the needle has a considerable magnitude. These fluctuations

occur at very relevant flow rates: if all 559 needles are used, these occur around a superficial gas

velocity of 0.035 m/s. For this reason, the phenomenon is studied in more detail. Since the use

of multiple needles is not essential for the understanding of the behavior, the bubble formation

at a single needle is studied.

The bubble formation at a needle or at an orifice has been the subject of a wide range of

studies. Many studies have presented experimental results and modeled the bubble formation
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with simplified models based on force balances, which were gradually extended to incorporate

additional effects, e.g. Davidson and Schüler (1960a,b); Ruff (1972); la Nauze and Harris (1972);

Wraith (1971); Oguz and Prosperetti (1993). These models generally assume a simplified bubble

shape (e.g. spherical) and an empirical criterion for the detachment of the bubble. In addition,

the role of the chamber volume, that strongly determines the time-dependent flow through the

orifice or the needle, was studied by various authors, e.g. Ramakrishnan et al. (1969); Satya-

narayan et al. (1969); Khurana and Kumar (1969); Park et al. (1977). More complicated bubble

shapes without empirical criteria for the detachment were considered by Oguz and Prosperetti

(1993); Oguz and Zeng (1997); Longuet-Higgins et al. (1991); Hooper (1986); Pinczewski (1981).

Despite the large amount of literature available, no previous report of the presented phenomenon

could be found. For this reason, the bubble formation has been investigated in more detail with

experiments and a modeling study to get a better idea of the physical phenomena responsible

for the behavior.

2.3.2. Experimental setup

The bubble formation has been studied in a series of experiments in the setup shown in Figure 2.7.

The water container has a horizontal cross-section of 0.18 m x 0.35 m and is filled with tap water

of at least several days old. The needle dimensions correspond to those used in the needle bubble

column sparger. A 20 cm long needle made of stainless steel extends 5 mm from the bottom,

the water height above the needle tip is 20 cm. The inner diameter of the needle is 0.8 mm,

the outer diameter 1.3 mm. Air is fed to the needle through a chamber with a volume that can

be varied by changing the liquid level in it. Volumes Vc ranging from 0.2 ml-75 ml are possible
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with an accuracy of about 0.1 ml. Air is fed to the chamber through a needle of 0.2 m length,

with 0.8 mm inner diameter, in which an iron wire is placed with slightly smaller diameter. A

large pressure drop with order of magnitude of 0.4 bar results. Consequently, a constant gas flow

to the chamber results. For experiments with virtually constant flow conditions, the chamber

is removed and the narrow needle is almost directly connected to the bubbling needle, giving a

chamber volume of around 0.02 ml.

A high speed digital video-camera is used to record the bubble-formation. Frame rates up

to 900 Hz at 256x256 resolution are possible. Direct measurement of the bubble size from the

video images is inaccurate, therefore the bubble volume is determined from the ratio of the gas

flow rate and the bubbling frequency: Vb = Φ/f . The bubbling frequency f was determined

from the video recordings by determining the number of bubble detachments over a period of

about 1 second. This way, in the case of coalescence, the bubbling frequency before coalescence

is determined. The air flow rate Φ has been determined at the exit of the needle in the period

between the video recordings. This has been done using a volumetric method: a volumetric

flask has been used to collect the bubbles released from the needle, and the time required to

fill a well-known volume is determined. Flow rates, that have been studied, are in the range of

0-3 ml/s.
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2.3.3. Bubble formation at a single needle: observations

The variation of the equivalent bubble diameter deq with the gas flow rate is shown in Figure 2.8

for a number of chamber volumes. A few characteristics draw the attention. First, the diameters

for Vc=0.02 ml are very scattered in the range Φ =1-1.5 ml/s. Second, there is a quick decrease

in diameter around Φ = 1.2 ml/s for Vc ≥ 1 ml. Third, for low gas flow rates, the bubble size

increases with the chamber volume, for higher gas flow rates there is little difference. The first

point will now be discussed before studying the more interesting second and third observations

in more detail.

Coalescence

For small chamber volumes (Vc < 0.75 ml) coalescence occurs occasionally for flow rates in

the range of 1-1.5 ml/s. This causes the bubble diameter to deviate from the value without

coalescence. In Figure 2.8 smaller sizes are observed. This is due to the fact that the bubble

frequency and size, before coalescence takes place, are determined, and the coalescence results

in earlier detachment. Additionally, since the bubble frequency was determined over a limited

number of bubbles and the coalescence occurs randomly, scatter is seen in the plots in Figure 2.8

for the range of 1-1.5 ml/s. This explains why the bubble diameters with Vc = 0.02 ml deviate

from the values for larger Vc. For the small chamber volumes, there is an almost constant gas

flow through the needle. Consequently, there is no delay time in between the formation of two

bubbles (the period during which pressure builds up in the chamber volume before a new bubble

can start growing). Bubble growth commences immediately after detachment of the previous

bubble, and the previous bubble has traveled only a very small distance when the next bubble

starts growing. Additionally, the flow rate in the earliest stages of bubble growth is larger than

in the case of larger chamber volumes, resulting in higher velocities for the top of the growing

bubble. The collisions between the bubbles are stronger and last for a longer period, making

the chance of rupture of the film between the bubbles bigger. Therefore, the smallest volumes

have larger probabilities of coalescence than bigger volumes and for the sparger a not too small

volume should be used. For chamber volumes larger than 0.75 ml, coalescence is observed mainly

at gas flow rates above 2.6 ml/s. At lower gas flow rates coalescence is very rare.

Bubble formation: observations of interaction effects

To investigate the origin of the sharp decrease in the bubble size occurring at flow rates close

to 1.2 ml/s, the bubble formation process is studied by tracking the height of the top and the

base of the growing bubble and the last bubble that has detached. From these results also the

distance between the bubbles is known. Results are shown in Figures 2.9 and 2.10 for Vc = 3 ml.

Video recordings of the bubble formation process are shown in Figure 2.11.

When the results are inspected, it is observed that the bubble formation process is quite

different for flow rates below 1.20 ml/s (Fig. 2.11(a) and (b)) and flow rates above 1.20 ml/s

(Fig. 2.11(c)), this will be explained further in the text. When the gas flow rate is increased,

the bubbling frequency increases and the delay time decreases. As a result, the distance between

the bubble base of the departing bubble and the top of the growing bubble becomes smaller

(Fig. 2.9). When the distance gets sufficiently small (in the order of 1 mm) interaction with
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Figure 2.11.: Bubble growth process for (a) 0.9 ml/s, (b) 1.1 ml/s and (c) 1.2 ml/s gas flow rate
(Vc =3 ml).



22 Chapter 2. Uniform and non-uniform gas injection in bubble columns

the previously formed bubble starts to influence the final bubble size. When the delay time has

become very short, the departing bubble will start to block the growing bubble. With increasing

frequency, the blocking time will increase. The blocking time can extend to the part of the

formation process when the upward forces would be larger than the downward forces had the

blocking bubble not been there. In this stage, the bubble would have lifted off while remaining

connected to the needle with a neck, leading to an earlier detachment. Instead, bubble lift

off starts later, the bubble formation can last longer and the bubble may reach a larger size.

For flow rates below 1.20 ml/s bubble growth continues for a while when the distance between

the two bubbles has started increasing (Fig. 2.11(b) t > 18 ms). For flow rates higher than

1.20 ml/s, however, the bubble detaches almost immediately after the instant when the distance

starts increasing (Fig 2.10 and 2.11(c)). This is most likely caused by an extra force that acts on

the growing bubble when the distance between the bubbles is small and the previously formed

bubble tries to get away from the growing bubble: the departing bubble tries to pull the growing

bubble away from the needle.

The bubble formation at higher flow rate is often modeled as inertia and/or drag-dominated

in literature (e.g. Davidson and Schüler (1960a) and Davidson and Schüler (1960b)). In the

current investigation it is found that the bubble formation for the higher flow rates is indeed

inertia and drag-dominated, but here the inertia and drag of the previously formed bubble are

dominating, not those of the growing bubble. This was not found in literature. The importance

of the consideration of bubble-bubble interaction is clear.

The bubble sizes for flow rates above 1.2 ml/s are virtually independent of the chamber

volume (Fig 2.8). For lower flow rates, the bubble size increases with the chamber volume. This

agrees with trends reported in literature (e.g. Khurana and Kumar (1969); Park et al. (1977)).

For a larger chamber volume the delay time in between the bubble formations increases and

extra air is stored in the chamber. The conditions in the chamber tend more towards constant

pressure for the larger chamber sizes. Therefore, the flow rate is higher during bubble growth

and bubbles grow larger. For the higher flow rates there is no delay time and the differences

between the bubble sizes produced with different chamber volumes disappear.

Figure 2.12 and Figure 2.13 show results for the bubble diameter for different needle diameters

and for water-glycerol mixtures with higher viscosities µl up to 13 mPas. Whereas the needle used

for the experiments for Figure 2.8 was originating from the same batch used for the construction

of the needle bubble column sparger, the needles for the Figures 2.12 and 2.13 were manually

cut, and consequently their openings had different shapes. The differences in the results for the

0.8 mm needle show that reproducibility is difficult. The lengths of the needles with different

needle diameters were chosen to get similar pressure drops as in the case of the 0.8 mm needle.

The results show that the discontinuity for the bubble diameter also occurs for the different needle

diameters, but the magnitude of the discontinuity is somewhat smaller for the larger diameter,

and the flow rate at which the discontinuity occurs increases with the diameter. The latter effect

is due to the fact that a larger needle diameter leads to larger bubbles and consequently the

bubbling frequency at which interaction effects start to play a role is only achieved at a higher

flow rate. The increase in viscosity leads to a decrease in the magnitude of the discontinuity:

for µl ≈ 13 mPas the discontinuity has disappeared. This effect is probably due to the different

nature of the attraction by the departing bubble: in the case of a higher viscosity the attraction

will not be limited to small distances between the bubbles and the sharp decrease in the diameter
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is smeared over a larger range in flow rates.

2.3.4. Bubble formation model

The previous section discussed that bubble-bubble interaction effects are probably responsible

for the effects leading to the strong bubble frequency fluctuations that are observed. The flow

rate at which the fluctuations are observed, matches exactly with the flow rate at which the

discontinuity in the bubble size is found. Next, a modeling study is performed to check whether

we can recapture such a size discontinuity by including the bubble-bubble interaction effects, and

to find out if it is possible to get rid of this discontinuity since a narrow bubble size distribution

is preferred.

In the literature on bubble formation, bubble-bubble interactions and effects due to the wake

of the bubble have been considered in several studies, but generally for different conditions than

encountered here. For instance, in most cases bubble-bubble contact will lead to coalescence

(Kyriakidis and Kastrinakis (1997)) and not to blocking. The low-pressure region under the

bubble has been considered for studies of pairing and weeping. Pairing is the generation of a

second bubble which quickly joins the previous bubble (McCann and Prince (1971), Zhang and

Shoji (2001)), weeping is the flow of liquid through the needle or orifice to the gas chamber volume

(e.g. Zhang and Tan (2000), McCann and Prince (1969)). Snabre and Magnifotcham (1998)

consider the drag reduction due to the presence of the bubble stream. Chuang and Goldschmidt

(1970) do consider the wake of the previous bubble for the assistance in the detachment.

First, the general idea behind the model is discussed. Next, details of the model are described,

paying particular attention to the interaction effects.

Model setup

A full theoretical analysis of the bubble growth, motion and liquid motion as well as the inter-

action with the previously formed bubble would be very complicated. Therefore, a simplified

bubble formation model is studied which contains all the major effects. A quite common method

in literature (e.g. Ruff (1972) or Zhang and Shoji (2001)) is to consider bubble formation in

several stages, modeling the equation of motion of the bubble with a force balance and to check

for detachment with an empirical criterion. This approach is followed here as well.

The simplified model considers the following situation (see Figure 2.14). A bubble is growing

on top of a vertical, thin-walled cylindrical needle with inner radius Rn. The needle extends

5 mm into the liquid (water). Gas is fed to the needle from a chamber with volume Vc containing

gas (air) with pressure pc and gas mass mc. A constant gas mass flow φM,c is feeding the chamber

and a time dependent gas mass flow φM,b feeds the bubble via the needle.

The model should be able to predict the effect of the chamber volume, i.e. the study of both

constant flow conditions and intermediate conditions. This is handled by including models for

the dynamic gas flow through the needle and the pressure fluctuations in the chamber.

Oguz and Prosperetti (1993) show that the bubble detaches from the needle when the distance

zb from its center to the needle tip is approximately equal to the bubble radius Rb plus the needle

radius Rn. This is used as the detachment criterion in the model. So, in order to model the

detachment, the motion of the bubble has to be tracked. This is done by considering the force
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balance over the bubble. To study the influence of bubble-bubble interactions, the corresponding

forces are incorporated in the force balance. This also requires tracking of the last bubble that

has detached.

The growth and motion of the bubble is modeled in stages, similar to Khurana and Kumar

(1969), see Figure 2.15, which also shows the forces acting on the bubble. Stage 1 represents

the delay time: pressure in the chamber has to build up before the rapid bubble growth can

commence, see Figure 2.18. The bubble grows slowly from an almost flat surface to a hemisphere

with the same radius as the needle. Once the pressure in the chamber is large enough, above

pc,min, the bubble can grow further: stage 2 is entered. During stage 2, the bubble grows as a

sphere with its base attached to the needle. Upward and downward forces are balanced. Once

upward forces become larger than the downward forces, stage 3 is entered. In stage 3, the bubble

base starts to rise. The bubble continues growing, gas flows to the bubble through a neck that

connects it with the needle. When the base of the bubble has traveled a distance equal to the

needle radius, the bubble detaches and stage 4 is obtained: the bubble is no longer growing and

leaves the needle. Before discussing the stages in more detail, the forces acting on the bubble

will be discussed.

Forces

Several forces are taken into account (shown in Figure 2.15). For stages 2 and 3 these are the

forces caused by buoyancy, Fb, surface tension, Fσ, liquid inertia by virtual mass, d
dt(Mbvb), (Mb

is the virtual mass, vb the velocity of the center of the bubble), bubble-bubble interactions, Fb−b

and drag, Fd. For stage 4 only the buoyancy, liquid inertia and drag forces play a role. The force

exerted due to the bubble mass and via the gas momentum give negligible contributions.
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Buoyancy force

The buoyancy force for a bubble with volume Vb that has detached (stage 4) is given by

Fb4 = ρlgVb. Here ρl is the density of the liquid and g the acceleration due to gravity. When

calculating the buoyancy force for stages 2 and 3, however, a small correction has to be made for

the fact that the bubble is not surrounded by liquid at the position of the tube mouth in stages

2 and 3 (Chesters (1977)):

Fb2,3 = ρlgVb + πR2
n(2σ/Rb − g2Rbρl) (2.1)

with σ the surface tension. The surface tension force Fσ = 2πRnσcosθ (θ is the contact angle)

increases during stage 2 until it reaches a maximum value of Fσ,max = 2πRnσ, which it keeps

during stage 3. The change with time of the contact angle during stage 2 is determined by the

force balance, but is actually not relevant for the model.

Virtual mass

The virtual mass of the bubble is given by:

Mb = CAρlVb (2.2)

with the added mass coefficient CA equal to 1
2(1 + 3

8(Rb/zwall)
3 +O(Rb/zwall)

5) (Lamb (1932)).

zwall is the distance from the center of mass of the bubble to the wall (bottom). For a 4 mm

diameter bubble with zwall = 7 mm, we get CA = 0.50: the wall plays a negligible role, so we

simply use the value 0.5. Furthermore, the liquid inertia force can be rewritten as:

d

dt
(Mbvb) = Mb

dvb

dt
+ vb

dMb

dt
= Mb

dvb

dt
+ vbCA

ρl

ρb
φM,b (2.3)
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with ρb the density of the gas in the bubble which is assumed constant, a reasonable assumption

in the later stages of the bubble formation when the virtual mass becomes important.

Bubble-bubble interaction force

The bubble-bubble interaction force, Fb−b, is the force acting on the growing bubble, exerted

by the last bubble that has detached. This force comes into play for high bubble formation

frequencies. Two types of interaction are modeled. First, if the last bubble has not had the time

to move away far enough from the needle, it can block the growing bubble and exert a downward

force, Fblock (Fig. 2.16, left). This way the blocking can result in larger bubbles. Second, if the

leading bubble has traveled somewhat further and it is moving away from the growing bubble, it

is no longer blocking the growing bubble. Instead, it exerts an upward force Fw (see Figure 2.16,

center) and accelerates the departure of the growing bubble. This is caused by the low-pressure

region in between the bubbles. The presence of this upward force can lead to smaller bubble

sizes. Fw only considers the upward force that is present for small distances between the bubbles.

The effect of the long range drag reduction and liquid circulation induced by the bubble plume

leading to a higher terminal velocity is included in the drag force. Combining the forces Fblock

and Fw we get Fb−b = Fblock − Fw with direction downwards.

In the model, blocking is present whenever the distance between the base of the upper spheri-

cal bubble and top of lower spherical bubble is less than, or equal to, zero (i.e. there is ’overlap’).

In reality, overlap will not occur due to deformation. The blocking force is only taken into ac-

count implicitly with a kinematic criterion by keeping the base of the growing bubble attached

to the needle as long as the previous bubble is blocking its path. In other words, as long as the

blocking continues, the formation remains in stage 2. The reacting force on the leading bubble

is neglected in the model.
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A model is required for the extra upward force Fw for the case of two bubbles with a small

distance in between, the trailing bubble fixed in position, and the leading bubble accelerating

away. In the literature, considerable attention has been paid to the interaction of two bubbles,

frequently with special attention for conditions relevant for coalescence. For example, the case

of bubbles rising in line has been studied extensively (e.g. Ruzicka et al. (2000a), Katz and

Meneveau (1996), Zhang and Fan (2003), Harper (1997), and Bhaga and Weber (1980)). Most of

this work concerns, however, the interaction of bubbles at distances of at least several diameters,

and for developed flow. Zhang and Shoji (2001) and Chuang and Goldschmidt (1970) model the

drag force reduction for the growing bubble with an average upward velocity due to the wake

that is experienced by the growing bubble. This velocity is proportional to the power -2/3 of the

axial distance. This way, a force with a long range is obtained, which is quite unrealistic for a

bubble which has just started moving. In addition, this assumes a fully developed wake. Zhang

and Tan (2000) use a wake model for the prediction of weeping, their model has a relatively

short range. The studies by Yuan and Prosperetti (1994) and Sankaranarayan et al. (2002) do

investigate the interaction at smaller distances. Both present results for developed flow. Yuan

and Prosperetti (1994) also study the impulsive motion of bubbles, but only for the case when

both bubbles are moving. The results by Yuan and Prosperetti (1994) show that the drag

reduction rapidly increases if the distance between the bubbles is smaller than a distance with

the order of magnitude of the bubble radius. This is exactly the effect that is represented by the

interaction force Fw.

The force Fw is especially important in the later stages of the bubble growth and for relatively

high bubbling frequencies, since it may result in an earlier detachment of the bubble and therefore

a size reduction. For these conditions, the departing bubble has traveled a distance of typically

no more than one bubble diameter, the bubble is rapidly deforming from the spherical to an

ellipsoidal shape, and the flow around the bubble and in its wake is still developing. The distance

between the growing and the departing bubble is still quite small, so the growing bubble will affect

the flow around the departing bubble considerably. Nevertheless, the velocity of the departing

bubble has already reached a considerable fraction of the terminal velocity, and, typically, Re

has values of at least 500. Although very little data is available for these circumstances, a rough

qualitative model is constructed to study the effect of Fw on the bubble diameter. Due to the

inaccuracy of this model its effect will be checked by turning the force Fw on and off, and by

comparison with an alternative wake model. A more detailed model would require an extensive

study of the flow field around the bubble, and the deformation of the bubbles. This approach is

presently not pursued.

The local flow and the developing wake lead to a low pressure field below the departing

bubble. The resulting pressure difference over the growing bubble generates the additional force

Fw. For simplicity, the pressure reduction experienced by the growing bubble is determined only

for the mean height of the upper end of the bubble (i.e. s = sj,j−1 = zb,j−1−Rb,j−1−zj −Rb,j/2)

and assumed constant over the rest of the upper side of the bubble. The lower side of the bubble

experiences no pressure drop. This way, the extra force on the growing bubble is calculated with:

Fw = πR2
b,j∆pw(sj,j−1) (2.4)

The presence of the growing bubble will further lower the pressure in between the bubbles since
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it hampers the flow around the departing bubble. The precise characteristics of this pressure field

are not known, but Johnson and Patel (1999) give an idea of the pressure drop: in the wakes

behind spheres with velocity vsphere and Re up to 300, the pressure drop is C1(1/2)ρlv
2
sphere

where C1 has a typical value around 0.25. The pressure drop reduces to zero over a distance

sw = CwRb,j−1 away from the base of the bubble. Indices j and j − 1 refer to the growing

bubble and last detached bubble, respectively. Over a length Ccsw from the bubble base, the

pressure reduction is constant. These observations are used to construct the model for Fw (see

Figure 2.16). The leading bubble has below it a region with reduced pressure, the reduction is

given by ∆pw(s). s is the distance to the base of the leading bubble. At distances up to Ccsw

below the bubble base the pressure drop is constant: ∆pw(s) = C1
1
2ρlv

2
b,j−1, at distances from

Ccsw up to sw = CwRb,j−1 the pressure drop decreases linearly to zero. C1 is taken 0.25 after

the observations by Johnson and Patel (1999). The drag reduction observations by Yuan and

Prosperetti (1994) suggest that Cw is of the order of magnitude 1. Since no further information

is available, the value 1 is taken. This gives a good match with the experimental results, the

results are not very sensitive with respect to the exact value. Cc is taken as 0.75.

To check the sensitivity, a comparison is made with the results obtained with an alternative

model for ∆pw(s). For this purpose, the model by Zhang and Tan (2000) is used who considered

the drop in pressure below a departing bubble for the study of weeping:

∆pw(s) =
6

Rej−1

(

ρlv
2
j−1R

2
b,j−1

2(s+Rb,j−1)2

)

+

(

ρlv
2
j−1R

3
b,j−1

2(s+Rb,j−1)3

)

(2.5)

where Rej−1 is the Reynolds number of the departing bubble. The first term is usually very

small.

Drag force

The drag force needs to be calculated for a bubble with radius Rb and velocity vb. Most models

in literature use Stokes drag, e.g. Satyanarayan et al. (1969) and Ruff (1972). This is not correct

for the present situation, since relatively high velocities are attained. Similar to Chuang and

Goldschmidt (1970), the drag force is modeled with: Fd = Cd(Re) · πR2
b · 1

2ρl(vb − vliquid)
2,

where Re =
ρl|vb−vliquid|2Rb

µl
. µl is the viscosity of the liquid. vliquid is the velocity of the liquid

around the bubble. It is included to incorporate the effect of long range drag reduction and

liquid circulation induced by the bubble plume. The results in Zhang and Fan (2003) show that

this is a reasonable good approximation for the description of the interaction at longer distances

between the bubbles. The main consequence on the model outcome of the inclusion of this effect

is a more accurate prediction of the terminal velocity of the departing bubble.

Most papers in literature providing correlations on the drag coefficient of bubbles, give values

obtained in situations where the bubble velocity is near the terminal velocity v∞. In the case of

bubble formation, the bubble velocity may be considerably lower, the deformation to ellipsoid

shape has not yet taken place and the mobility of the surface is still changing. In addition, the

wake may not have developed to the same extent as in cases where the terminal velocity has

almost been reached. Therefore, the use of these correlations may not be entirely appropriate.

However, due to the lack of better data, a correlation for the drag coefficient based on terminal



30 Chapter 2. Uniform and non-uniform gas injection in bubble columns

0.1

1

10

10 100 1000

C
d

Re

Figure 2.17.: Drag coefficient model used.

velocity data is used.

A model for the drag coefficient (Figure 2.17) is constructed from terminal velocity data for a

range of bubble diameters found in Clift et al. (1978)(eq. (7-3) and Fig. 7-3), using Cd =
8
3
Rbg

v2
∞

.

The terminal velocities given by Clift et al. (1978) (around 0.24 m/s for bubbles with sizes

around 4 mm) agree well with the experimental values. Other models are not as well able to

predict the terminal velocity of a single bubble for this experiment, for instance the model by

Karamanev (1994) underpredicts the terminal velocity with 0.02−0.03 m/s. Tests show that the

sensitivity with respect to the exact value of the drag coefficient for low to intermediate Reynolds

numbers is quite small. Results are sensitive with respect to the value of the terminal velocity

that is attained by the bubble, however, since it has a major influence on the bubble blockage

interaction.

Since the bubbles are rising in line, drag reduction as well as liquid circulation occurs and

the bubble terminal velocity is higher. Experiments show that for the present conditions, the

velocity increases approximately linearly with the bubbling frequency from the velocity of a

single bubble (0.25 m/s) at low bubbling frequencies to a velocity around 0.31 m/s for the

highest bubbling frequencies. The combined drag reduction and circulation are accounted for by

including the liquid velocity vliquid. For flow rates smaller than 1.2 ml/s the bubbling frequency

increases approximately linearly with the flow rate, beyond the flow rate of 1.2 ml/s the bubbling

frequency is more or less constant. Consequently, the liquid velocity is modeled with a linear

increase from 0 to 0.06 m/s with the gas flow rate for flow rates up to 1.2 ml/s. For flow rates

higher than 1.2 ml/s the liquid velocity is set to a constant value of 0.06 m/s.

Stages

Next, the stages will be discussed in more detail. During stage 1, pressure is building up in the

chamber. Assuming adiabatic behavior in the gas chamber, the following equation is obtained

for the pressure in the chamber (based on Park et al. (1977)):

mc

γpc

dpc

dt
= ΦM,c − ΦM,b (2.6)
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Figure 2.18.: Schematic pressure build up in chamber and bubble with time.

with γ = Cp/Cv ≈ 1.4 and pc/m
γ
c = pc(t = 0)/mγ

c (t = 0). ΦM,b is the gas mass flow rate

through the needle from the chamber to the bubble and is given by (Oguz and Prosperetti

(1993), assuming isothermal flow):

φM,b =
π

16

R4
n

lnµg

p2
c − p2

b

RTe
(2.7)

Here ln is the length of the needle, Te the temperature of the environment, µg the viscosity of

the gas and R the specific gas constant.

During stage 1, the bubble is modeled as a spherical cap with radius of curvature Rb (see Fig.

2.15). The pressure in the bubble pb during stage 1 is described with:

pb = p∞ + 2σ/Rb (2.8)

A mass balance tracks the mass of gas in the bubble. The relation between the gas mass of the

bubble mb and the pressure in the bubble is given by:

pb = mb
RTe

Vb
(2.9)

With these equations the mass evolution, and therefore the bubble size evolution is specified.

The gas-liquid interface starts almost flat (large Rb). When the pressure in the chamber increases

due to inflow of gas, the bubble will slowly grow to a hemisphere. During the growth, the bubble

radius of curvature decreases to the minimum value of Rn. At that moment there is a maximum

pressure drop over the interface (see Figure 2.18), giving a minimum value for the chamber

pressure before bubble growth enters the next stage (Oguz and Prosperetti (1993)):

pc,min = p∞ + 2σ/Rn (2.10)

If the pressure in the chamber increases further, the bubble radius of curvature will increase
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again and stage 2 is entered. So, the criterion for stage 1 to end is:

Rb = Rn (2.11)

During stage 2, the bubble is assumed to be spherical with its base attached to the needle:

zb = Rb. Its growth is described by the Rayleigh-Plesset equation.

RbR̈b +
3

2
Ṙb

2
=

1

ρl

(

pb −
2σ

Rb
− p∞

)

(2.12)

where ρl is the density of the liquid. Consequently the velocity of the bubble is given by vb = Ṙb.

The chamber and bubble pressure are given by equations 2.6 and 2.9.

The end of stage 1 gives the initial conditions for stage 2 and 3. Rb = Rn; for Ṙb the velocity

of the top of the bubble at the end of stage 1 is taken. When switching from stage 1 to stage

2 the bubble volume makes a small jump since the change from a hemisphere to a full sphere is

made. The amount of air required for this is removed from the chamber.

During stage 2, the bubble is growing as a sphere with its base connected to the needle.

The upward and downward forces are balanced, the relevant forces are shown in Figure 2.15.

Stage 2 ends when the upward forces get bigger than the downward forces and the bubble will

accelerate away from the needle. In the absence of blocking, the upward buoyancy and wake

forces and the downward drag and liquid inertia forces can be evaluated, and Fσ follows from

a force balance. Since Fσ can not exceed Fσ,max, stage 2 ends when the force balance produces

Fσ > Fσ,max. When the bubbling frequency increases, the blocking force needs to be taken into

account. However, no explicit formulation is used for the blocking force. Instead, a kinematic

criterion is used: stage 2 can not end as long as the leading bubble is blocking, i.e. as long as the

spherical bubbles overlap in the model. When the blocking ends, the blocking force disappears.

Hence, stage 2 ends if the two resulting conditions are satisfied:

Fb2,3 + Fw ≥ Fσ,max + Fd +Mb
dvb

dt
+ vbCA

ρl

ρb
φM,b (2.13)

zb,j−1 −Rb,j−1 > zb,j +Rb,j (2.14)

The model assumes that in the case of a blocking event, the fluid is able to sustain a film between

the two bubbles, otherwise coalescence would occur. During the blocking event the bubbles will

deform. Experimental observation shows that the condition of no coalescence is actually met

most of the time in the experiment: for most experimental conditions that were considered,

coalescence only occurred occasionally. For certain conditions (e.g. very small chamber volume),

however, the condition is not met. Consequently, the model will not predict the bubble size

correctly for these cases.

During stage 3, the upward forces are bigger than downward forces and no bubble is blocking.

The base of the spherical bubble moves away from the needle exit. The bubble growth is again

given by equations 2.6, 2.9, and 2.12. Newton’s second law of motion determines the ascent of

the bubble. The following equation of motion applies:

Mb
dvb

dt
= Fb,23 + Fw − Fd − Fσ,max − vbCA

ρl

ρb
φM,b (2.15)
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Figure 2.19.: Model predictions for bubble diameter as a function of gas flow rate for various
chamber volumes. Three different realizations for different bubble-bubble interac-
tion models are shown.

Stage 3 may be entered at an earlier time due to the force Fw. This force may level off

in strength very soon in stage 3 due to the departure of the leading bubble. In this case, the

acceleration and velocity of the bubble may become negative. Therefore, the bubble base can

return to, and even sink below the needle exit in stage 3. If the bubble sinks below the needle

exit, the model returns to stage 2 and fixes the bubble base to the needle. Stage 3 ends when

the bubble detaches. This happens when the base of the bubble has traveled a vertical distance

Rn from the needle exit (Oguz and Prosperetti (1993)): zb ≥ Rb + Rn. When stage 3 ends,

immediately a new bubble is generated which enters stage 1: weeping is ignored.

The detached bubble is no longer growing in stage 4. Fw can be ignored since the distance

between two consecutive bubbles is big. The equation of motion is:

Mb
dvb

dt
= Fb4 − Fd (2.16)

2.3.5. Model predictions: comparison with experimental results

Predictions for the bubble diameter by the model are shown in Figure 2.19. The effect of the

bubble interactions on the bubble size is checked by including or excluding the forces induced

by the previous bubble: Fw and Fblock (the latter implemented via eq. 2.14). Four different

model predictions are shown: the first includes both Fw and Fblock, the second only Fblock. The

third includes neither Fw nor Fblock and the fourth shows the outcome with a different model

for Fw. Up to a flow rate around 0.75 ml/s no differences concerning the forces Fw and Fblock

are observed. At higher flow rates, the distance between bubbles has significantly decreased and
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interactions start to play a role. The models with Fblock included have much higher slope for the

higher flow rates: due to the blocking of the growing bubbles, bubbles can grow for a longer time

(stage 2 lasts longer). The predictions without the force Fw do not show the diameter drop that

was observed in the experiments. There is simply no mechanism present in the model that can

give bubble size reduction for increasing gas flow rate. When the force Fw is incorporated, this

force is present. In the later instants of stage 2, when upward and downward forces are almost

balanced, the extra force Fw can lead to an earlier lift-off of the bubble base. Additionally, a

higher acceleration in stage 3 may result. This can give an earlier detachment of the bubble, and

therefore smaller bubbles. These results shows the importance of incorporating bubble-bubble

interaction effects in the model. The difference between the predictions obtained with the two

different models for Fw are quite small. This shows the results are not very sensitive to the

precise details of this model.

The experimental values for the bubble diameter are compared to the predictions using the

model with the force Fblock and Fw included (Fig 2.20). The slope of the curves for high flow

rates agrees quite good with the experimental value. When comparing to the predictions for the

model without Fblock, the relevance of the inclusion of bubble blockage in the model is clear. The

diameter prediction is quite reasonable, except close to the drop in diameter. The gas flow rate

where the drop occurs is underpredicted, and it is more smooth than in the experiment. This

can simply be explained by the qualitative nature of the model for Fw. The effect of the previous

bubble on the growing bubble is complicated, and in order to get more accurate results the flow

between the bubbles, much more extensive modeling efforts are required. Additionally, bubble

deformation is present which again complicates matters. Finally, we saw that the exact gas flow

rate where the drop occurs is strongly dependent on the shape of the needle opening.

Similar to the experimental results, bubble sizes are independent of the chamber volume for

flow rates above 1.2 ml/s. Also, for low flow rates, the bubble size increases with increasing

chamber volume. The sizes predicted for low gas flow rates by the model agree reasonably well

with the experimental values. Only the values for the smallest chamber volumes of 1 ml and

3 ml are somewhat overpredicted.

Figure 2.21 compares the diameters obtained with the model with those obtained in the

experiments for three different needle diameters. Rough agreement is obtained: similar trends

are observed for the change in the flow rate at which the diameter discontinuity is observed. The

reduction in the magnitude of the drop for the needle with 1.0 mm diameter is not predicted

correctly by the model.

2.3.6. Bubble frequency oscillations

The peaking of the standard deviation of the bubbling frequency reported in section 2.3.1 can

now be explained as follows, see Fig. 2.22. The solid line represents the bubble size without

liquid flow. The presence of the liquid flow induces an extra force on the bubbles. This force tries

to move the bubble away from the needle. Detachment of the bubbles occurs earlier: smaller

bubbles and higher bubbling frequencies result. The dashed line represents this smaller bubble

size for the case with liquid flow. With higher frequencies, bubble-bubble interaction will play a

role at a lower gas flow rate, resulting in a diameter jump at lower gas flow rate. If the bubble

column is operated at a flow rate corresponding to point 3 and 4, small diameter and frequency
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fluctuations result when the liquid velocity fluctuates. For flow rates close to the flow rate where

the diameter jump occurs (point 1 and 2), large diameter and frequency fluctuations result.

Unfortunately, the experimental study and the modeling study did not provide useful clues as

how to reduce the effect. For instance, the use of needles with a larger diameter could reduce the

magnitude somewhat, but these needles need to be significantly longer to get a similar pressure

drop (equation 2.7) and they would produce larger bubbles. This prevents practical application.

The magnitude of the chamber volume has very little effect. Reduction of the liquid velocity

along the needles is not feasible either: this would require, e.g., the placement of a honeycomb-

like structure. For modeling studies intending to simulate the setup, however, this would require

a special model for the boundary condition at the sparger. In addition, the honeycomb would

probably quickly fill-up with gas due to the small distance between the needles, strongly affecting

the bubbling behavior.

2.4. Interaction effects for bubble formation with multiple needles

The previous section discussed the creation of bubbles with a single needle. For the bubble

column sparger up to 559 needles are used to introduce bubbles. These needles are closely

spaced, each needle is fed with air through a system of which parts are shared with other needles.

Due to the close spacing, interaction effects via the liquid phase may play a role in the bubble

formation process. The mutual volumes may lead to different bubble volumes since the pressure

fluctuations in the volumes are altered. These factors may, therefore, influence the way bubbles

are introduced and alter the dynamics of the bubble column. For this reason, a study to possible

interaction effects was performed.

Only little attention has been paid in the literature to these possible interaction effects which

may lead to altered or correlated bubble formation. Titomanlio et al. (1976) found that the

presence of a second orifice basically leads to an effective halving of the volume of the common

gas chamber. Ruzicka et al. (2000b) studied the simultaneous bubbling of two orifices with a

common gas chamber, for various distances between the orifices. Various interaction effects were

reported: synchronous bubbling, asynchronous bubbling and intermittent behavior. The gas flow

rate had a strong effect on the type of regime. Ruzicka et al. (1999) studied the various modes of
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bubble formation for larger numbers of orifices placed in various patterns. For both latter studies,

the orifices were holes with diameter 1.6 mm in a plate with thickness of 3 mm. Consequently,

larger bubbles were obtained than in the present study and a relatively smaller pressure drop

was present over the orifice than for the present needle sparger. Therefore, pressure fluctuations

play a much larger role than for the needle sparger. As a result, the dynamic behavior may differ

due to the interplay of the interaction effects in the liquid with the pressure fluctuations in the

chamber volume.

Influence of common chamber volumes

In the present study the influence of the mutual chamber volumes is relatively small due to the

needle length and relatively small chamber volumes employed, therefore different behavior will

be obtained than that reported in the work by Ruzicka. The results in section 2.3 show that

the influence of the chamber volume is very small for flow rates per needle beyond 0.75 ml/s,

and, consequently, the influence of pressure fluctuations in the common volume on the bubble

formation is quite small. For flow rates per needle around and below 0.75 ml/s the chamber

volume does play a role, consequently pressure fluctuations and a possible delay time are impor-

tant. After bubble detachment, extra pressure needs to be built up in order to generate a new

bubble. In addition, water may enter the needle for a small distance, resulting in a need for an

even larger extra pressure. For the lower flow rates, this extra pressure may not be created: each

group has 18 needles, and at any time a bubble is growing at a large number of the other needles.

Consequently, these needles provide a much easier way out for the air, the extra pressure may

not be built up and the needle may cease operation. Observations show that, indeed, part of the

needles cease operation at flow rates per needle around 0.75 ml/s. As a result, the bubble column

is not operated at flow rates where the chamber volume plays a significant role. Alterations or

correlation in the bubble formation due to interaction via pressure fluctuations in the common

volumes will therefore not be very important for the relevant operation conditions. This is con-

firmed by tests: no correlation was found for the bubble formation at needles operated in two

separated compartments. This leaves interactions in the liquid as the only possible significant

source for interactions.

Interactions via the liquid phase

As a next step, a study was performed to find out if correlated bubble formation can occur in the

needle sparger due to interactions in the liquid phase. Several geometries with small numbers of

needles were studied and several types of correlated bubble formation were observed. The type

and strength of interaction were depending of the geometry of the needles. Bubble formation was

more or less uncorrelated if the needles were not direct neighbors (i.e. the distance in between

was larger than 1 cm). If bubbles were generated by two adjacent needles, correlated bubble

formation was observed. Both synchronous and a-synchronous (alternating) bubble formation

were observed, the type depending on the flow rate through the needle. If multiple needles were

placed in a linear row, the correlation strength increased further. Figure 2.23 shows the behavior

for the row of needles. Asynchronous (alternating) bubble formation was observed for flow rates

per needle in the range φtransition/3 < φ < φtransition with φtransition ≈ 1.2 ml/s, the flow rate

at which transition to smaller bubble sizes occurs. For flow rates per needle beyond φtransition,
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Figure 2.23.: Synchronous and asynchronous bubble formation.

synchronous bubble formation was observed. For flow rates around 3φtransition ≈ 3.6 ml/s,

’drafting, kissing and tumbling’ behavior of the detached bubbles is observed quite close to the

needle, as well as coalescence close to the needle. For these flow rates the behavior returns to

asynchronous (alternating) bubble formation, though less stable than for the low flow rates. The

interaction patterns were surprisingly stable for a row of needles: the phase difference of the

bubble formation at needles separated by several other needles was not much larger than that

for adjacent needles. In fact, the stability even increases with the number of needles. Figure 2.24

shows how a sudden change in the bubbling frequency of one needle (due to e.g. a coalescence

event) is quickly followed by a matching frequency change in the neighboring needle.

A possible explanation for the alternating and synchronous bubble formation is sketched in

Figure 2.25. For φ somewhat smaller than φtransition the detached bubble (’1’) rises away from

the needle, and exerts a force via its wake on the growing bubbles at the needle at which the

bubble was formed (’2’) and the closest neighboring needles (’3’). The bubble ’2’ is, however still

firmly attached to the needle due to its small size, and therefore does not detach earlier by this

extra force. The extra force can, however, lead to earlier detachment of bubble ’3’. Vice versa,

the bubbles departing other needles (e.g. bubble ’3’) can result in earlier detachment of bubble

’2’. This way, the bubbling frequencies of neighboring needles will quickly match, though with

opposite phase. For φ larger than φtransition, the detachment of bubble ’2’ is determined by the

moment when bubble ’1’ has moved away far enough (see the previous section). Consequently,

the wake of bubble ’1’ will accelerate the detachment of both bubbles ’2’ and ’3’ and synchronous

bubbling results.
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1 12

Figure 2.26.: 2D grid with bubble formation order: 1=first, 2=second.

The correlation for only two needles was much weaker. Small differences between the needles

(which were manually cut for the study) result in different bubbling frequencies for the individual

needles. The extra upward interaction force can reduce the difference between the bubbling

frequencies, but only small differences can be fully reduced. If a small frequency difference

remains, the phase difference of the bubble formation will slowly drift until a very quick phase

jump to the next cycle occurs: i.e. more or less synchronous bubble formation is interrupted by

short periods of asynchronous bubble formation.

In 2D needle configurations, such as those encountered in the bubble column, alternating

bubble formation such as shown in Figure 2.23 is very unstable since each needle has more

than two direct neighbors which should all have opposite phase. This is not possible in the

2D geometry for all the needles (Figure 2.26). Synchronous bubble formation is also not very

stable. The interaction effects are quite weak, and in the full sparger each needle has six nearest

neighbors. A disruption in only one of these neighbor needles may break the synchronization,

a fluctuating liquid velocity field has a similar result. Observations in the final bubble column

sparger confirm this: negligible synchronization is observed.

2.5. Conclusions

Bubble formation at a single needle

The bubble formation at a needle has been studied. Experiments were performed and a bubble

formation model was developed to study the influence of bubble-bubble interaction mechanisms

on the bubble size. Two important bubble-bubble interaction mechanisms are identified: the

previously formed bubble which is still in the vicinity of the growing bubble can either give a

blocking effect on the growing bubble or accelerate its departure. These effects have an delaying

and accelerating effect, respectively, on the instant of detachment and consequently give larger

and smaller bubble sizes, respectively. Both effects are found to have a significant impact on the

bubble size. The acceleration of the next bubble was found to cause a very rapid bubble diameter

decrease for a small increase in gas flow rate beyond a critical value. The bubble diameter drop

is insensitive to the size of the chamber volume. The effect of the chamber volume can only

be found for small gas flow rates. Results of the model that was developed show reasonable

agreement with the experimental results.

If the needles are used for a sparger in a bubble column with a dynamic liquid flow field,

strong bubble size and frequency fluctuations can occur for specific gas flow rates. The present

investigation has shown that these are caused by changes in the critical flow rate where the

sharp decrease in bubble diameter occurs: liquid flow fluctuations can have a major impact on

the subtle interplay of the bubble-bubble interaction forces with the other forces present.
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Interaction effects for multiple needles

A short study has shown that interaction effects due to mutual chamber volumes can be neglected

for all flow rates of interest: interaction effects only take place at low gas flow rates, and for these

flow rates some of the needles cease operation, rendering the sparger ineffective. Interaction via

the liquid phase is mainly important for linear configurations of needles and can produce both

synchronous and alternating bubble formation. For 2D configurations the synchronization is

easily broken due to the larger number of needles involved.
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List of symbols

Roman symbols

C1 coefficient for the pressure drop behind a sphere -

CA added mass coefficient -

Cc scaling coefficient for constant pressure region -

Cd drag coefficient -

Cw scaling coefficient for sw -

deq equivalent bubble diameter m

F force kg m s−2

Fb−b bubble-bubble interaction force kg m s−2

Fb2,3 buoyancy force during stages 2 and 3 kg m s−2

Fb4 buoyancy force during stage 4 kg m s−2

Fd drag force kg m s−2

Fσ surface tension force kg m s−2

Fσ,max maximum surface tension force kg m s−2

Fblock bubble blockage force kg m s−2

Fw upward force exerted by previous bubble on growing bubble kg m s−2

f bubble formation frequency s−1

g acceleration of gravity m s−2

ln needle length m

Mb virtual mass of bubble kg

mc mass of gas in chamber volume kg

p pressure kg m−1 s−2

pb pressure inside bubble kg m−1 s−2

pc pressure inside chamber volume kg m−1 s−2

pc,min minimum pressure chamber volume before stage 2 is entered kg m−1 s−2

p∞ pressure in liquid at needle exit height kg m−1 s−2

R specific gas constant m2 s−2 K−1

R cylindrical bubble column radius m
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R2D half width of pseudo-2D bubble column m

Rb bubble radius m

Rdepth half depth of pseudo-2D bubble column m

Rn needle radius m

Re Reynolds number -

s distance from lower side of departing bubble m

sj,j−1 distance s at which the force Fw is evaluated m

sw distance s over which reduced pressure is observed behind the bubble m

Te environment temperature K

t time s

x horizontal coordinate m

y horizontal coordinate m

Vb bubble volume m3

Vc chamber volume m3

vb velocity of bubble center of mass m s−1

vliquid velocity of liquid close to the bubble m s−1

vsphere velocity of sphere m s−1

v∞ terminal bubble velocity m s−1

z axial coordinate m

zb distance of bubble center to the needle exit m

zwall distance of bubble center to the wall m

Greek symbols

γ polytropic coefficient -

∆pw pressure drop behind departing bubble kg m−1 s−2

θ contact angle rad

µg dynamic viscosity gas kg m−1 s−1

µl dynamic viscosity liquid kg m−1 s−1

ρb bubble gas density kg m−3

ρl liquid density kg m−3

σ surface tension kg s−2

σf standard deviation of the bubble formation frequency s−1

Φ gas volumetric flow rate through needle m3 s−1

ΦM,b gas mass flow rate through needle to bubble kg s−1

ΦM,c gas mass flow rate feeding chamber volume kg s−1

Φtransition gas volumetric flow rate through needle where transition occurs m3 s−1

Subscripts

j growing bubble

j − 1 previously formed bubble



3. On the accuracy of the void fraction
measurements using optical probes in
bubbly flows 1

3.1. Introduction

For the investigation of bubbly gas-liquid flows, local phase detection probes have become widely

applied sensors. These intrusive probes, often based on impedance or optical phenomena, can

provide estimates for, e.g., the phase indicator functions, void fraction, and dispersed phase

velocity (Cartellier and Achard, 1991). Optical probes have the advantage of the simplicity of

the setup, easy interpretation of the results, and the fact that the signal is not coupled to the

flow. In optical probes, light is emitted into one extreme of an optical fiber. At the other extreme,

the tip, some light is reflected back. The reflected intensity is determined. Its value depends on

the refractive index of the phase surrounding the probe tip. This way, the detection of bubbles

is enabled by the different refraction indices of the gas and liquid phases. A good introduction

and overview of the principles of this technique can be found in Cartellier and Achard (1991)

and Cartellier and Barrau (1998a).

The use of optical probes for the investigation of small non-uniformities in the void fraction

distribution of bubbly flows (chapter 7) puts high demands on the accuracy of the void fraction

estimate. This requires a good understanding of the signal produced by the probe and the

intrusive nature of the probe. From this, a more accurate residence time of the probe in the

bubble can be determined, and the difference between the measured residence time and the

residence time for a ’virtual probe’ (an imaginary probe having no intrusive nature) is clarified.

Regarding these points, two issues are important. First, the moments in the signal that the

probe enters and exits the bubble must be correctly identified. Second, the interaction of the

probe with the bubble interface has to be understood: the probe induced deformation of the

bubble, its deceleration, and the drifting of its trajectory should be identified.

A considerable amount of work on optical probes has been published. Most studies on the

accuracy of the void fraction (Cartellier and Achard, 1991; Cartellier, 1992; Barrau et al., 1999;

Zŭn et al., 1995; Carrica et al., 1995) consider the total error in the void fraction by comparing

with a global technique, such as vertical ducts with fast closing valves (Cartellier and Achard,

1991; Cartellier, 1992; Barrau et al., 1999; Zŭn et al., 1995). These studies provide little clue to

the individual contributions of all error sources. The identification in the signal of the moments

of entrance and exit of the probe in the bubble has been the subject of many studies on the

signal shape and signal analysis (Cartellier and Achard, 1991; Barrau et al., 1999; Zŭn et al.,

1Reprinted with permission from Rev. Sci. Instr. 76, 035103 "On the accuracy of the void fraction measurements
using optical probes in bubbly flows", Copyright 2005, American Institute of Physics.
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1995; Cartellier, 1990; Schmitt et al., 1995). The main focus in these investigations was on

the transition of the probe from the liquid phase into the gas phase, as well as the selection

of appropriate thresholds for an accurate algorithm. There is still uncertainty on the point in

the signal which corresponds to the moment that the probe crosses the undisturbed air-water

interface at the end of the bubble. Especially criteria for lower amplitude signals without a

plateau are unclear (Cartellier, 1992; Barrau et al., 1999). The possible effects of the probe on

the bubble shape, velocity, and trajectory were first classified by Serizawa et al. (1984) for a hot

film probe. This was refined later for optical probes by Barrau et al. (1999). Investigations on

the modification of the bubble shape by the probe have generally been focused on the piercing of

a flat surface (Cartellier and Achard, 1991; Liju et al., 2001) or are based on assumptions about

the piercing behavior (Carrica et al., 1995). Only the work by Barrau et al. (1999) and Sene

(1984) attempt to quantify the contribution of the interaction effects, but their conclusions are

partially contradicting and incomplete.

The present article considers the inaccuracy of the optical probe technique in a bubbly flow.

The first objective is to find proper criteria for the signal analysis that give the best corre-

spondence with the actual crossing of the probe through the undisturbed interface. The second

objective is to find the effects of the probe on the bubble that are responsible for inaccuracies

in the void fraction, and to quantify them. For both objectives, special attention is given to the

dependence of the behavior on the radial position of the piercing event. This way, especially

low-amplitude signals are studied in more detail and the effect of curvature is considered. The

approach toward finding these criteria and interaction effects is experimental. The piercing of a

single bubble is studied under dynamic conditions by comparing probe signals and charge coupled

device (CCD) images with and without piercing and investigating these for possible interaction

effects. Sections 3.2 and 3.3 discuss the literature regarding the subject and the experimental fa-

cilities and processing techniques used in this work, respectively. Section 3.4 presents the results

on the identification of the interfaces in the probe signal and Section 3.5 analyzes the results

obtained on the probe-bubble interaction.

3.2. Literature overview

3.2.1. The probe signal

Cartellier and Achard (1991); Cartellier (1990, 1992) provide a general sketch of the piercing

event of a bubble by an optical fiber. The papers give an overview of literature on optical

probes. Controlled quasi-steady piercing experiments of a probe penetrating a plane water-air

interface are described and appended with an overview of literature on related techniques such

as resistivity probes. This provides a picture of the penetration of a bubble by an optical probe.

Figures 3.1 and 3.2 sketch the bubble piercing process and the corresponding bubble signal

for an ideal case. The probe is fixed, the bubble is moving upward with constant velocity Ub.

If the bubble is penetrated in the center, generally, five stages can be distinguished during the

piercing process:

• Stage 1: Perturbation of the bubble interface (Figure 3.1a); when the probe tip approaches

the bubble surface a deformation is produced due to the probe-induced liquid pressure
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Figure 3.1.: Sketch of the piercing phenomena.

Figure 3.2.: Optical probe signal generated by an ideal bubble.

over the bubble: the ’surge effect’. The film between the tip and the interface is drained

laterally. The amplitude of the deformation depends on the bubble velocity, tip diameter

and geometry, and fluid characteristics. Calculations using boundary element methods and

potential flow assumption (Liju et al., 2001) show that, in general, the amplitude of this

deformation is much smaller than the tip radius. During this stage, the optical probe signal

level equals VL (Figure 3.2 - S1).

• Stage 2: Rupture of the bubble interface (Figure 3.1b). Once the film has become very

thin due to the lateral film draining, it ruptures due to direct force interactions between

the solid surface and the interface. The optical probe signal starts increasing (point A in

Figure 3.2 - S2).

• Stage 3: Movement of the three-phase contact line along the probe tip (Figure 3.1 c). The

tip enters the bubble, and an increasingly larger area of the tip starts reflecting light. As

a result, the probe signal gradually reaches the gas level VG (Figure 3.2 - S3).

• Stage 4: Bubble passage (Figure 3.1d). The tip is almost dry. In the case of a silica tip, it is

never completely dry because the clean silica has a natural wettability due to the hydrogen

bonding to surface silanol (Si-OH) groups produced by the hydrolysis of the silica surface

in aqueous environment (Fordham et al., 1999). In this stage, the optical probe signal level

is VG (Figure 3.2 - S4).
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• Stage 5: Gas-liquid transition (Figure 3.1e). When the tip contacts the rear part of the

bubble, the liquid quickly creeps up along the solid surface and a new deformation is

produced due to surface tension. In this stage, the optical probe signal level drops to VL

(Figure 3.2-S5). The exact signal point that identifies the interface transition is not yet

clear in this case.

The duration of the signal rise for the liquid to gas transition (TL→G) is much longer than the

duration of the signal drop for the gas to liquid phase transition (TG→L). There are two reasons

for this. First, the amplitude of the interface deformation is much smaller for the case of gas-liquid

transition than for the liquid-gas transition: the low gas inertia allows a quick lateral drainage

when pushed by the tip, and the remaining gas layer encounters a higher inertia medium which

resists its penetration. Second, when the probe is applied to bubbles, it usually encounters

a concave interface for the gas-liquid transition. When the probe pierces the interface, the

curvature keeps its sign until breaking. As a result, the gas-liquid transition occurs more rapidly

than the liquid-gas transition which has a convex surface. For bubbles pierced in the center, the

de-wetting is complete and a plateau exists in the signal if the tip penetrates far enough into

the bubble, i.e., deeper than the probe latency length. If the bubble is pierced further away

from its center, the de-wetting process of the probe may not be completed before the re-wetting

occurs at the gas-liquid interface. In this case, a smaller amplitude signal is obtained without a

plateau, the signal usually has a bell-shape. The signal drop associated with re-wetting now has

a much larger duration. Imperfections in the tip shape may give deviations from the ideal signal

shape (Cartellier and Barrau, 1998a). One common example is the occurrence of a pre-signal.

Before the probe touches the interface, a primary peak of low amplitude may be observed in

the signal (Cartellier, 1992), depending on the probe that is used. This ’pre-signal’ is attributed

to reflection of light back into the probe by the interface before contact. The identification of

the points in the signal associated with the crossing of the interface has been done so far by

investigating quasi-steady situations with flat interfaces, and by using the results obtained with

resistivity probes (Cartellier and Achard, 1991). Ignoring the possible pre-signal, the beginning

of the signal rise corresponds to the detection of the disturbed liquid-gas interface (Cartellier

and Barrau, 1998a; Cartellier, 1990; Cartellier and Barrau, 1998b). For the gas-liquid interface,

no tests under dynamic conditions are available (Cartellier and Achard, 1991). Cartellier and

Achard (1991) and Barrau et al. (1999) performed experiments under quasi-steady conditions on

a plane gas-liquid interface. Very accurate measurements of the surface deformations combined

with expectations based on the results for resistivity probes (Cartellier and Achard, 1991) suggest

that the transition takes place at the start of the falling slope, the so-called high level criterion

(HLC, point B in Figure 3.2). In these experiments, a sharp signal drop was obtained at the

instant that the probe touches the lower gas-liquid interface. The rapid wetting of the probe

results in a very fast transition. Other authors (Schmitt et al., 1995) propose a criterion based on

the end of the falling slope for the gas-liquid transition, the so-called low level criterion (LLC),

see point B’ in Figure 3.2. However, the motivation for this choice is based more on algorithm

simplification than on experimental evidence, since the calculation of the point B is difficult for

some types of signals, especially in the case of high gas fractions.
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3.2.2. Probe-bubble interaction mechanisms

Serizawa et al. (1984) performed for hot film probes the first classification of the effects that occur

during the bubble piercing process and that can induce measurements errors. This classification

was refined later for optical probes by Barrau et al. (1999):

• Blinding effect: since the probe detects the disturbed interface position, the local interface

deformation during probe impact contributes to the error. This leads to the existence of a

blind zone or, equivalently, to an effective shape detected by the probe.

• Crawling effect: the whole bubble is decelerated and/or deformed during the interaction.

• Drifting effect: the trajectory of the bubble is altered leading to either the detection of a

smaller chord or to no detection at all.

Both the blinding effect and the crawling effect contain deformation effects. The deformation

for the blinding effect is mainly related with a local deformation zone located in the bubble

interface which may for instance be produced by both the probe induced liquid pressure over

the bubble and the direct hitting itself. The crawling effect considers the deformation of large

parts of the bubble. The relative influence of these effects on the final residence time estimate

results, as well as their absolute magnitude, is not yet clear (Barrau et al., 1999). Carrica

et al. (1995) identified the blind zone for resistivity probes as a membrane over the bubble

interface of width equal to the probe tip radius. If the tip center is inside this zone, no bubble

is detected, leading to underestimation of the void fraction. For optical probes, however, the

work claims that these probes can detect bubbles touched by only a part of the tip. This would

lead to overestimation. For bubbles, however, generally underestimation is observed. Barrau

et al. (1999) reverse the explanation for optical probes by Carrica et al. (1995) and attribute

the systematic underestimations observed in the optical probes measurements to the blinding

effect. Similar to the explanation for resistivity probes by Carrica et al. (1995), a blind zone

near the bubble perimeter is identified where the corresponding chords are not perceived or

underestimated. The size of this region is based on a critical dimensionless radial coordinate for

the piercing, instead of the tip radius. Experiments to determine the value of this coordinate were

only done for a viscous liquid (ν = 20 · 10−6m2/s), and showed a value of 0.7. Outside the blind

zone, the underestimation of the chord length is very small since the surge effect (Liju et al.,

2001) only gives a small deformation. In addition, other authors (Sene, 1984) claim that the

crawling effect can play an important role in bubble piercing interaction, but the experimental

evidence in this case is still weak.

3.3. Experimental setup and processing

3.3.1. Introduction

In order to determine the void fraction, the probe signal must be analyzed by an appropriate

signal processing algorithm. This algorithm must identify the points in the signal that corre-

spond to the crossing of the liquid-gas and gas-liquid bubble interface by the probe tip. The
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Figure 3.3.: Single bubble experimental setup.

identification of the points in the signal associated with the crossing of the interface for a dy-

namic situation requires the simultaneous recording of the probe signal and the position of the

probe tip with respect to the interface. The relative importance of the probe-bubble interaction

mechanisms can be investigated by studying the differences between the original (not-pierced)

and the pierced bubbles. The residence times obtained from the optical probe signal are com-

pared with the residence times obtained from CCD images with and without piercing. These

two types of experiments will be referred to as the synchronous experiments and the residence

time experiments respectively.

3.3.2. Experimental setup

A train of bubbles is analyzed using both the optical probe technique and digital image processing

techniques. Figure 3.3 shows a sketch of the system. The basic configuration is composed of a

water tank, 30 cm x 30 cm x 50 cm, where a train of bubbles with very constant shapes is produced

at a constant flow rate by a single needle (inner diameter 0.8 mm, length 20 cm). With the flow

rates used in these experiments, the bubbles have ellipsoidal shapes and a wobbling behavior

when they have traveled a few centimeters from the needle. The synchronous experiments and

the major part of the residence time experiments have been performed with bubbles having 4.8

mm major axis (equivalent diameter Deq=3.7 mm). Additional residence time experiments have

been performed with bubbles of Deq=2.8 mm (major axis 3.8 mm) and Deq=5.2 mm (major axis

5.8 mm). The diameter variations were obtained by changing the flow rate through the needle.

The image acquisition system is composed of a CCD camera (DALSA, resolution 256x256) and

a continuous light source. The residence time recordings were performed at the highest possible

frame rate of 900 fps (image resolution of 36 pixels per mm). In the synchronous experiments, the

instant when the bubble interface is pierced has to be determined accurately. For this purpose,

a higher temporal resolution is needed. Therefore, a triggering system is used. A small laser

beam is aligned through the bubble plume at an optical detector, which provides a trigger pulse.
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This trigger pulse is delayed with a variable amount of time. Two pulses are derived: one for

starting the image capture and one for ending the image capture (capture time 30 µs). The

evolution of the piercing of the bubble is investigated by varying the delay. The optical probe

system is composed of an optical probe (stretched type, Rf=100 µm, latency length=75 µm), a

multichannel analog-digital converter (ADC) card and a XYZ traversing system with a precision

of 1 µm. The probe is placed vertically in the tank, parallel to the bubble trajectory. The signal of

the optical probe is recorded simultaneously with the trigger signals using the ADC card. For the

synchronous experiments, a sampling rate of 200 kHz is used, for the residence time experiments

100 kHz. The study of the influence of the position of puncture and the evolution of the piercing

at various vertical positions of the bubble requires that all of the bubbles are very constant in

both shape and trajectory and that no coalescence occurs. Different experiments verify that the

constant shape and trajectory is only obtained in the zone near to the needle (at a distance

in between 1 cm and 3.5 cm in this work). In this range, the bubble trajectories are straight

and very reproducible (maximum variation of 1.5 pixels over 8 hours). In addition, the bubble

surface exhibits some shape oscillations. These are again very reproducible (maximum variation

of 1 pixel). The coalescence can be prevented by varying the volume of the pressure chamber

under the needle and the flow rate. The single CCD camera allows for only a two-dimensional

view of the axisymmetric piercing process. The probe is aligned in the plane parallel to the CCD

image plane that passes through the bubble center. This alignment is done by traversing the

probe perpendicular to the image plane and finding the maximum of the probe residence time

from its signal.

3.3.3. Processing of residence time experiments

The differences between the original and pierced bubbles are studied. In this set of experiments,

three different residence times are determined: first, the tip residence times inside the bubble are

obtained from the optical probe signal. Second, the residence times from the sequence of images

without piercing (virtual tip) are obtained and third, the residence times are obtained from

image sequences with piercing. The latter two residence times are obtained using digital image

processing techniques. The analysis is done at various probe locations. Kiambi et al. (2003)

also perform virtual tip measurements but do not distinguish for piercing location, Sene (1984)

also compared images and probe signals but with a rather low accuracy. Comparison between

the various results is possible due to the fact that the bubble shape (including oscillations) and

trajectory are very constant in time. Additionally, information about the bubble deformations

or decelerations is obtained. The analysis of these results for a complete bubble scan will provide

us with valuable information of the different effects during piercing and their contribution to

void fraction (i.e. residence times) measurement errors.

Processing of Charge Coupled Device (CCD) images

The initial step of the digital image processing consists of the bubble segmentation process. First,

the background of the image is subtracted. Next, a simple threshold technique is used to identify

the bubble pixels in the image. The threshold level is chosen from the histogram of the bubble

image. Once the bubble pixels are identified, two different calculations are performed. First,

geometrical calculations are carried out to obtain the center of gravity and bubble boundary
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coordinates from a sequence of images. Velocities are determined of the top, the rear, and the

center of gravity of the bubble. In addition, other bubble geometrical parameters are calculated,

such as the bubble height and the maximum and minimum axis length. By comparing the

set of results from two sequences of images, with and without piercing, it is possible to obtain

information about the bubble deceleration and/or deformation during the piercing process for

different piercing positions. Additional calculations are performed to calculate the residence times

inside the bubble without piercing (virtual tip) from a sequence of images. The trajectories of the

front and rear side of the bubble are determined for all radial piercing coordinates using linear

interpolation between the images. These trajectories are used to calculate the time elapsed

between the arrival of the upper part of the bubble at the virtual tip position and the departure

of the rear part of the bubble from this position. This way, a complete scan of residence times

over a radial line over the bubble is obtained.

Optical Fiber Signal Processing

The signal processing software is similar to that used by Barrau and Cartellier (Cartellier, 1992;

Barrau et al., 1999). The actual analysis is done as post-processing on a PC on the sampled

data. Therefore, the algorithm speed is not an issue. First, the liquid and gas phase signal levels

VL and VG are determined from the signal probability density function (pdf). The levels are

re-determined every second to handle possible drift. Subsequently, the approximate locations

of the bubble signatures are determined by using a threshold level VL + 0.1(VG − VL). Very

short signatures due to noise are discarded. Next, for every bubble, the entry and exit time are

determined. For every individual bubble, the plateau level is determined by finding its corre-

sponding maximum in the signal pdf. For bell-shaped signals, the maximum level is determined.

This level is named Vi. A pre-signal could be observed in some bubble piercing events near the

bubble center where the piercing is almost perpendicular to the interface. For piercing events

with non-perpendicular piercing, this mirror effect is not present and no pre-signal is observed.

Because of the pre-signal, the criterion for bubble entry can not be based on the noise level

(which works well for all signals without pre-signal). Instead, its threshold is set to 10% of the

bubble plateau level. This way, the pre-signal is not included in the residence time. For bubbles

without plateau, 10% of the maximum level is taken. This gives: Ventry,i = VL + 0.1(Vi − VL).

For the gas-liquid transition, both residence times obtained using the HLC and the LLC are

determined. These are located, respectively, at 90% and 10% of the signal plateau, or maximum

(for incomplete signatures): V LLC
exit,i = VL + 0.1(Vi − VL), V HLC

exit,i = VL + 0.9(Vi − VL).

3.4. Identification of interfaces in the signal

Figure 3.4 shows signals acquired at various distances X from the bubble center. When piercing

occurs in the central area (X/R<0.88), full-amplitude signals with a plateau are obtained. The

probe tip gets enough time to dry completely.

When piercing occurs close to the bubble edge (X/R>0.88), full de-wetting is not obtained.

As a result, ’incomplete’ signals are obtained: these have smaller amplitudes, no plateau, and

are usually bell-shaped. When piercing occurs further from the center, the rising flanks get

a longer duration. In the region with approximately X/R>0.8, the falling flanks also get a
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Figure 3.4.: Signal shape as a function of piercing position.

longer duration. As a result, away from the center, the choice for the criterion for the gas-

liquid transition becomes much more important for accurate void fraction measurements: the

difference in the residence times can be up to 50%. The shape of the signals is investigated further

by recording simultaneously the probe signal and images of the bubble and probe. Figure 3.5

shows the results for bubbles with velocities of 0.24 m/s; the instants when capture is started

and ended of the corresponding images are shown in the signals as vertical lines. The (invisible)

probe tip is visualized in white.

Figures 3.5 a-c show the piercing of a bubble providing full-amplitude signals (X/R=0.56).

The arrival of the probe at the gas-liquid interface corresponds to the first 5% rise of the signal.

This agrees with the classical use of the LLC for the liquid-gas transition. Distinction between

the undisturbed and disturbed interface position can not be made, since the magnitude of the

surge effect is of the order of magnitude of 5 µm (Liju et al., 2001), which is smaller than the

spatial resolution used. In addition, this deformation cannot be visualized due to the perspective

of the images. The temporal resolution for the gas-liquid transition is not sufficient to select the

most appropriate criterion: the fall-time is very close to the image capture time. More interesting

are the small-amplitude signals (Figures 3.5 d-h, with X/R=0.93). Again, the signal rise starts as

soon as the liquid-gas interface position is reached. The signal starts to fall before the full dry-tip

signal level is reached. The fully wet-tip signal level is reached before the probe tip reaches the

undisturbed gas-liquid interface position. A more detailed study showed that this happens for

all positions where small-amplitude signals are obtained. This can be explained using Figures

3.6 and 3.7.

Figure 3.6 shows the schematic piercing of a bubble close to its side. The undisturbed interface

is shown; this is the interface that is perceived with the CCD 2D side view. In addition, the

schematic disturbed interface and the probe signal are shown. The instances of the sketches are

marked in this signal. The interface is pierced under a relatively small angle between the tip and

the bubble interface. Due to this small angle the gas-liquid-probe contact line returns over the

tip before it has proceeded far enough to give a fully dry tip. The bump that is created in the
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Figure 3.5.: Images of piercing events with corresponding moment of capture in the signal
(Ucg=0.24 m/s).
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a) b) c) d) e) f) g) h) i)

a)
b) c) d) e)

f)

g) h) i)

undisturbed interface

disturbed interface

Figure 3.6.: Schematic piercing of a bubble close to its side leading to smaller amplitude signals
and blinding effect.

Figure 3.7.: Picture of the bump generated when a bubble is pierced close to its side.
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Figure 3.8.: Schematic explanation of the longer gas-liquid transition signal fall-time.

bubble is shown in Figure 3.7, which gives a front view of a bubble ’pierced’ at the sides. The

probe tip is clearly only partially de-wetted. The sidewards wetting of the tip by the moving

contact line occurs relatively slowly since the probe-interface angle varies relatively slowly. The

tip is fully wetted again before the undisturbed gas-liquid interface is reached. Therefore, if

the probe hits the bubble with a small angle between the probe and the interface, the following

effects can occur:

• A small-amplitude signal is obtained.

• Both the rise time and fall time of the signal increase since the progress of the contact line

over the probe is much slower.

• A partial ’blinding’-effect can occur: part of the undisturbed chord length is not seen by

the probe.

Thus, the most appropriate gas-liquid transition criterion for the processing of the smaller-

amplitude signals is therefore the LLC. This way, the underestimation of the residence time

of small-amplitude signals is minimized. Also, for full-amplitude signals, the fall-time may be

increased if the gas-liquid interface is hit under an angle (sketch in Figure 3.8): not the point,

but the side is the first part of the probe tip that touches the gas-liquid interface.

As a result, the signal starts dropping before the extreme of the probe tip has reached the

undisturbed gas-liquid interface. In addition, the wetting of the probe tip may be only partial,

giving the longer fall-time. This was confirmed by the results from Figure 3.4 for X/R>0.8.

This extra fall-time should be associated with the residence time inside the bubble. This is

accomplished by the use of the LLC. Therefore, typically in about 40% of all bubble hits the

LLC gives the closest approximation to the undisturbed residence time. In the case of more

spherical (smaller) bubbles, this percentage would probably increase even further (for the probe

that was used in this investigation). The fall-time in the case of perpendicular piercing is very

small (a maximum of 1%, but typically 0.3% of the total residence time). In addition, close to

the sides of the bubble, the LLC is the most appropriate one. These arguments lead to the choice

of the LLC for the processing of all bubble signals. Tests in a very uniform bubble column (7.5%

void fraction) show that by using the LLC, typically the underestimation of the void fraction is

reduced from about 15% to about 10%.
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Figure 3.9.: Bubble types and their velocity development.

3.5. Probe-bubble interaction effects

In order to study the bubble modifications during the piercing process, a bubble scan is performed

at 30 radial positions over a line through the bubble center perpendicular to the fiber orientation

and parallel to the CCD image plane. The residence times are measured with the optical probe.

These measurements are compared with the residence times obtained from a sequence of CCD

images without (virtual tip) and with tip for different parts of the bubble. For the piercing

experiments, it is necessary to define the angle α between the probe and the bubble short axis.

The angle α was varied in the experiments. Both the bubble motion and bubble orientation are

parallel to the vertical axis, since the wobbling behavior has not started yet. In the first set of

experiments it is observed that the analyzed bubbles have strong velocity oscillations due to the

relatively small distance that has been traveled since they were generated at the needle. The

oscillations can affect the piercing phenomena and, consequently, the comparison of the results.

Figure 3.9 shows the upper (Uup), rear (Ure), and gravity center (Ugc) velocities of the bubble

with respect to the distance of the lower side of the bubble to the needle that generates the

bubbles (Ymin).

Piercings at three different phases of the oscillations are considered. The oscillations at the

beginning of the piercing are summarized in Table 3.1.

3.5.1. Perpendicular piercing (α = 0)

Figure 3.10 shows the comparison of the residence times given by the optical probe using both

the LLC and the HLC, and the results from the virtual probe CCD images analysis. This was

done for a scan over a line for bubble T1. Comparison of the results of the two gas-liquid criteria
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Bubble
type

Upper part velocity Rear part velocity Gravity center velocity

T1 Near a minimum and in-
creasing

Near a maximum and
decreasing

Almost constant

T2 Increasing Near a minimum and in-
creasing

Slightly increasing

T3 Near a maximum and
decreasing

Near a minimum and in-
creasing

Slightly decreasing

Table 3.1.: Oscillation schemes for the different bubble types

Figure 3.10.: Residence time comparison for bubble T1.
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and of the CCD is facilitated by considering the absolute and relative differences between the

residence time from the probe and the residence time from CCD images (Figure 3.11 for bubble

T1).

There are two different zones for the bubble piercing. In the central zone of the bubble

(|X/R| < 0.5), the residence time is overestimated. In the bubble sides (|X/R| > 0.5), an

underestimation is observed. Both criteria give similar results for the overestimation zone. This

is not surprising since signals with a plateau are obtained in this zone and bubble interfaces

are pierced almost perpendicularly, giving a quick signal drop at the gas-liquid transition. The

underestimation in the region with |X/R| > 0.5 is smaller when the LLC is used, in agreement

with the results from section 3.4. The cross-sectional area of the bubble where the LLC gives

a smaller underestimation is about 75% of the total cross-sectional area, again stressing the

importance of the use of the best criterion for the void fraction estimate. From this point on,

only the results for the LLC will be considered.

Comparison of the residence time for piercing obtained from the probe signal and the images

with piercing is shown in Figure 3.12. Although only a 2D projection is obtained, the images give

a good impression of the total bubble deformation. Therefore, the graph gives a good idea of the

part of the bubble that is not seen by the probe due to local interface deformations, such as the

surge effect and deformations close to the bubble sides, like those described in Figures 3.6 and

3.7. In other words, it shows the magnitude of the blinding effect. In the central region, there

is a very small difference (<0.05 ms, that is < 0.5%): the blinding effect is negligible compared

to the other effects. This agrees with the calculations by Liju et al. (2001) that the surge effect

is small. In the outer regions, however, an underestimation is observed which agrees with the

results from section 3.4. This shows that for these bubbles in water, the blinding effect is only

important in the outer regions of the bubble, and that it results in the underestimation of chordal

lengths. The behavior described by Barrau et al. (1999) (which was discussed in section 3.2.2,

and is sketched in Figure 3.13a), where chords near outer regions are not detected at all, is not

observed.

Instead, a new behavior is observed, shown schematically in Figure 3.13b. The difference may

be caused by the lower viscosity in the current experiment. The underestimation in the outer

bubble regions that remains with the use of the LLC, can be caused by the blinding effect as

well as the crawling effect (deformation). An example of this deformation effect on a larger scale

is shown in Figure 3.14.

The outer part of the bubble is squeezed due to the piercing. As a result, the residence time

is underestimated. In the central bubble region, the overestimation is very likely caused by a

deceleration of the bubble by the probe. So, in all regions, the crawling effect is expected to play

an important role. The trajectory of the bubble center of gravity is investigated for the situations

with and without piercing, for various positions of the probe. This gives information about the

bubble drifting induced by the piercing. The results show that no drifting effect is present with

perpendicular piercing, since the biggest difference in mass center coordinates is around 1 pixel

(which corresponds to about 0.03 mm). The changes in residence time due to the crawling

effect can be estimated. For various piercing positions, bubble deformation and deceleration are

determined by comparing CCD recordings of bubble passages with piercing and without piercing.

These are translated to residence time differences using the average velocity of the bubble center

of gravity. Figure 3.15 shows the results for bubble T1. It is observed that if the bubble is pierced
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Figure 3.11.: Residence time differences comparison for bubble T1 using LLC and HLC, a) ab-
solute and b) relative units.
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Figure 3.12.: Difference in residence time from optical signal and the images for pierced bubble
T1, a) absolute and b) relative units.
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Bubble shape
Effective shape

a)

b)

Figure 3.13.: Schematic representation of the blinding effect. a) behavior according to Barrau
et al. (1999) b) behavior observed in current investigation.

Figure 3.14.: Deformation of the bubble shape induced by piercing.

Figure 3.15.: Crawling effects in bubble T1.
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Figure 3.16.: Residence time differences comparisons for the three bubble types.

in the central zone, the bubble deceleration causes a residence time overestimation. In the outer

zone, bubble compression is found, resulting in a decrease of the residence time. Combination

of the estimates of the residence time differences due to the deformation, deceleration, and the

blinding effect would give a good explanation for the observed residence time differences. A minor

overestimation of the residence time differences in the outer part of the bubble is obtained. This

may be explained with the assumption of a constant velocity and height of the bubble during its

passage. Additional tests have been done with bubbles T2 and T3 with similar results. Therefore,

the crawling effect can be considered the major effect producing residence time differences, and

the blinding effect a minor effect. It is, however, necessary to distinguish between deceleration

(important in the center) and compression effects (important near the sides). Figure 3.16 shows

the residence time differences for the three bubble types using the LLC.

The underestimation zones are quite constant in both position (|X/R| > 0.5) and underesti-

mation magnitude. However, the overestimation zone presents important differences between the

first two types of bubbles (T1 and T2) and the third one (T3). This fact seems to be connected

to the velocity of the upper part of the bubble at the start of the piercing process, this velocity

has the biggest value for bubble T3. The residence times Tresidence can be translated to bubble

volume by assuming axial rotational symmetry and a constant velocity Ugc:

V = Ugc

∫ R

−R
Tresidence(x)|x|πdx (3.1)

Table 3.2 summarizes the differences ((Vpiercing − Vvirtualprobe)/Vvirtualprobe) between the vol-

umes obtained with the optical probe signal and the ’virtual probe’ CCD images for the three

bubble types and the two different criteria. A systematic underestimation is found with the LLC

giving more accurate results for all cases. Figure 3.17 shows the results obtained for the residence

time differences for different bubble diameters.
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Bubble type Volume difference (%)
(LLC)

Volume difference (%)
(HLC)

T1 -3.66 -8.41
T2 -2.77 -5.88
T3 -6.49 -10.75

Table 3.2.: Volume differences for the three bubble types

Figure 3.17.: Residence time differences comparisons for different bubble diameters, a) absolute
and b) relative units.
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a

x

Figure 3.18.: Bubble volume difference with different α (bubble T2).

The shape of the graphs is the same. The relative size of the underestimation ring is constant.

The magnitude of the underestimation and overestimation increases with smaller diameters:

there is apparently more deformation and deceleration for smaller diameters.

3.5.2. Non-perpendicular piercing (α 6= 0)

Similar experiments were performed with variation of the impact angle α for bubble T2. Fig-

ure 3.18 shows the difference in the volumes obtained with the probe and the virtual probe

experiments.

α ranged from 0◦ to 45◦. Notice that for non-perpendicular piercing, the bubble axial symme-

try is lacking and this assumption in the volume calculation can only give a first approximation

of the true volume. A systematic volume underestimation is found for all the angles, but its value

is not constant. For α ∈ [0◦, 10◦] the underestimation is almost constant, for α ∈ [10◦, 30◦] the

underestimation is drastically enlarged, and for α = 45◦ the underestimation is reduced again.

Figure 3.19 shows the residence times differences for the particular cases of α = 0◦,30◦ and 45◦.

The tip is inclined toward the positive x coordinate values. Significant differences are ob-

served between the non-perpendicular cases and the perpendicular cases. For α = 30◦, the

overestimation zone is bigger and both overestimation and underestimation zones are no longer

symmetrical. The underestimation zone (X < −2000 µm) is reduced considerably in size, and

the underestimation zone (X > 1250 µm) is stretched and increased in magnitude. In the case

of α = 45◦, the overestimation zone is bigger in amplitude. The underestimation in the region

X < −1250 µm is much larger, but the underestimation at X > 1250 µm has disappeared. Fig-

ure 3.20 shows the residence time differences calculated from the deceleration and compression

effects for the α = 30◦ case.

The overestimation zone is properly described by the deceleration effect, but the bubble
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Figure 3.19.: Residence time differences comparisons for bubble T2 and different α.

Figure 3.20.: Deceleration and compression effects for the bubble T2 and α = 30◦.
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Figure 3.21.: Drifting effect for bubble T2 and α = 30◦.

Figure 3.22.: Bubble T2 contour before piercing and the pierced bubble trajectories.

compression only justifies part of the peak at X > 1250 µm; the underestimation peak at

X < −1750 µm cannot be explained. Apparently, some effect is missing. In order to explain

this second underestimation zone, it is necessary to take into account the drifting effect. This

effect is negligible for α < 10◦, but it becomes important for bigger impact angles.

Figure 3.21 shows the drifting trajectory observed for the bubble T1 with a piercing angle

α = 30◦ at different piercing positions, where Xcg and Ycg represent the horizontal and vertical

bubble mass center coordinates, respectively, during the piercing process. In this case, if the

bubble is pierced in its part with X > 0, a small drifting is observed opposite to the tip direction,

this behavior is due to a slight bubble rotation. However, if the bubble is pierced in its part with

X < 0, a big drift is produced toward the tip direction. The consequences of the drifting effect

on the residence time differences are schematically shown in Figure 3.22.

When the bubble is pierced at its center (R2), the drifting effect has a negligible effect on

the residence time. However, if the piercing takes place in the sides (R1 and R3), the drifting

effect results in underestimation of the residence time because the path length inside the bubble
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Figure 3.23.: Residence time differences taking into account the drifting effect (Bubble T2 and
α = 30◦).

is reduced. It is possible to calculate this effect in the residence time assuming constant velocity

during the piercing process. Figure 3.23 shows the results of the residence time errors including

the drifting effect. The underestimation at X/R < −0.65 and part of the underestimation at

X/R > 0.4 are due to the drifting effect. Figure 3.24 shows the results obtained for α = 45◦.

The conclusions obtained from this graph are very similar to the α = 30◦ case. It is possible to

explain all of the differences in the residence times with the two crawling effects (deformation

and deceleration) and the drifting effect. From similar calculations for the other α cases, the

following conclusions are extracted. For 0◦ < α < 10◦, the residence times differences can

be explained with only the crawling effect, since no noticeable drifting effect is present. For

10◦ < α < 30◦, an increment in the size of the overestimation zone is found due to the bigger

deceleration effect produced by the bigger tip-bubble contact zone. Also, the deformation effect

decreases in magnitude for X<0. However, this fact is compensated for by the appearance of

drifting. If all of the effects are summed, the total underestimation increases in this range of α.

For α = 45◦, a slight increment in the magnitude and size of the overestimation zone due to a

further enhancement of the deceleration is observed. Also, the underestimation zone at X>0 due

to the compression effect disappears. The underestimation at X<0 by deformation grows. The

influence of the drifting effect seems not to grow beyond α = 30◦. When all effects are summed,

the total underestimation decreases for these angles.

3.6. Summary and conclusions

The accuracy of the measurement of the void fraction in bubbly flows using an optical probe has

been investigated. Experiments were performed in tap water with ellipsoidal-shaped air bubbles

with equivalent diameters and velocities in the range of 2.8 - 5.2 mm and 0.22 - 0.28 m/s.
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Figure 3.24.: Residence time differences taking into account the drifting effect (Bubble T2 and
α = 45◦).

Comparison of Charge Coupled Devices (CCD) images of dynamic bubble piercing events with

optical probe signals shows that for piercing in the area around the bubble side, the so-called low-

level criterion gives the best agreement with the actual gas-liquid transition for the undisturbed

bubble. In addition, residence time underestimation due to a partial blinding effect is observed

in the outer regions of the bubble. Residence times of the probe inside the bubble are obtained

from the probe signal and from CCD images of the undisturbed bubble. These are compared to

study the relevance of various probe-bubble interaction effects. The crawling effect is found to

play an important role. For perpendicular piercing, the experiment shows that in the central area

of the bubble deceleration effects induced by the probe lead to local overestimation of residence

times. In the outer region of the bubble, large-scale deformation leads to local underestimation

of residence times. The larger cross-sectional area associated with the underestimation leads to

a net underestimation of the total bubble volume. For non-perpendicular piercing, the probe

inclination is found to generate an additional drifting effect, creating an additional source of

underestimation. The exact levels of underestimation and overestimation strongly depend on

the angle under which the bubble hits the probe, the radial position of the hit, the bubble size

and oscillation phase, making quantitative prediction of the total error for practical situations

difficult.

List of symbols

Roman symbols and abbreviations

Deq equivalent bubble diameter m

Dmax horizontal bubble diameter m

HLC High Level Criterion -
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LLC Low Level Criterion -

Rf radius of optical fiber m

TG−L duration change from gas signal level to liquid signal level s

TL−G duration change from liquid signal level to gas signal level s

Tresidence estimated residence time of the probe tip in the bubble s

Ucg velocity of bubble center of gravity m s−1

Ure velocity of bubble top m s−1

Uup velocity of bubble bottom m s−1

V bubble volume m3

Ventry signal threshold for bubble entry -

Vexit signal threshold for bubble exit -

VG signal level corresponding to gas phase -

Vi maximum or plateau signal level for individual bubble -

VL signal level corresponding to liquid phase -

Vpiercing bubble volume estimated from probe measurement m3

Vvirtualprobe bubble volume estimated from CCD (virtual probe) experiment m3

X horizontal coordinate, distance to bubble center m

Xcg horizontal coordinate bubble center of gravity m

Ycg axial coordinate bubble center of gravity m

Ymin axial distance of bubble bottom to needle exit pixels

Greek symbols

α probe-bubble impact angle ◦

ν kinematic viscosity liquid m2 s−1



4. Bubble velocity and size measurement
using a four point optical fiber probe

The measurement of bubble size and 3D velocity with the use of a four point optical fiber probe

is studied. The accuracy of the technique is evaluated, and ways to improve the technique are

investigated.

4.1. The four point probe

4.1.1. Introduction

In order to understand the behavior of the flow in the bubble column better, we are interested in

the bubble velocity and bubble size. For the measurement of these quantities in practical bubble

columns, thus far the only method is by using probes, the most common being conductivity

probes and optical probes. Optical probes have the advantage of simplicity of the setup, easy

interpretation of the results and the fact that the signal is not coupled to the flow (for more

information, see chapter 3). These are therefore used in the present investigation.

Various types of optical probes have been employed by various authors for the measurement

of the bubble velocity and diameter, as well as the interfacial area and volume fraction. The

main difference between these probes lies in the number of tips employed. In the case of a

single tip, the axial velocity component is measured by estimating the rise time of the signal, i.e.

the time required for the active part of the probe to de-wet when it enters the gas phase (e.g.

Cartellier (1992) and Cartellier and Barrau (1998a)). If the size of this active part, the so-called

reference length, is known, the velocity can be determined from the rise-time. Cartellier (2001)

and Cartellier and Barrau (1998b) considered and optimized various tip shapes to get improved

accuracy with this technique.

In the case of two-point tips (e.g. Kiambi et al. (2001)), the axial velocity component is

determined from the difference in the arrival times of the bubble at the two tips that are placed

some distance apart. For both one-point and two-point probes, a problem occurs when the bubble

velocity is not aligned with the probe orientation. Xue (2004) showed that an overestimation

of the velocity component occurs if the velocity direction differs from the probe axial direction.

This overestimation can be as large as 100% at an angle of 45◦. Hence, single probes and two

point probes are only suited for situations where all bubbles move in one direction (e.g. cocurrent

pipe flows). In bubble columns, however, this cocurrent flow is not present and the zig-zag or

rocking motion of the bubbles as well as the presence of liquid vortical structures cause a general

mismatch between the direction of the velocity and the probe axial direction.

Four-point probes were developed to resolve this problem ( Frijlink (1987) (optical probes)

and Burgess and Calderbank (1975) (resistivity probes)). With these probes, it is possible to
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recognize and remove from the data set the bubbles with motion direction deviating from the

probe axial direction. Figure 4.1 shows the geometry of the four point probe used in the current

investigation, with ∆s = 1.6 mm and dp = 0.6 mm. The probe consists of four fibers, the tips of

three of these fibers are located in a plane at a distance ∆s above the central tip. For each fiber,

the instant ti when the bubble hits the probe tip i is determined (see section 3.3 for a description

of the method). Next, the times of flight ∆ti = ti − t0 (i=1,2,3) of the bubble between the

central tip (tip 0) and the three other tips located downstream, are determined. In addition, the

residence time Ti of tip i inside the bubble is estimated. Two different approaches are taken by

different authors to estimate the velocity:

• Mudde and Saito (2001), Guet et al. (2003) and Frijlink (1987):

u =
∆s

∆t
=

∆s
1
3

∑

∆ti
(4.1)

The measurement has to satisfy

|∆ti − ∆t

∆t
| < βt ∀i ∈ {1, 2, 3} (4.2)

• Xue (2004):

u =
1

3

3
∑

i=1

ui =
1

3

3
∑

i=1

∆s

∆ti − T0−Ti
2

(4.3)

Where the term T0−Ti
2 is used to correct for the curvature of the bubble. It will be discussed

in more detail in the following sections. The measurement has to satisfy

|ui − u

u
| < βu ∀i ∈ {1, 2, 3} (4.4)

Some small differences exist in the approaches taken by the various authors, e.g. Guet et al.

(2003) and Frijlink (1987) correct for the bubble shape in ∆s, whereas Mudde and Saito (2001)

do not perform this correction. The criteria in equations 4.2 and 4.4 are used to check if the

bubble was pierced by the probe under a small enough angle to allow accurate measurement. This

way, only the velocities of part of the total pierced bubble population can be determined, namely

those traveling under a small angle with the probe axial direction. It remains questionable how

representative this sample is for the entire bubble population. Xue (2004) showed how a larger

portion of the bubbles can be accepted by increasing the threshold level. This is, however, a

trade-off with the accuracy of the bubble velocity component estimate.

4.1.2. Advanced four point probe algorithms

A method allowing for bubbles arriving under an angle with the probe axial direction would

be strongly preferred. With this method, no longer a large part of the measured data needs

to be rejected. In addition, information about the bubble velocity orientation is helpful for the

understanding of the importance of the lift-force in regions of the flow with strong gradients.
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Figure 4.1.: Four point probe geometry. a) Side view b) Front view.

More refined algorithms for the processing of four-point probe signals, that also determine

the velocity direction, have been presented by Rensen (2003), Guet (2004b) and Luther et al.

(2004) as well as Xue (2004) and Xue et al. (2003) for optical probes and Mishra et al. (2002) and

Lucas and Mishra (2005) for conductivity probes. The idea of these methods is that much more

information than a single velocity component and chord length is contained in the measurements

of the times that the four probes enter and exit the bubble. Based on a model of the bubble,

the three time differences ∆ti(i = 1, 2, 3) and four residence times Ti(i = 0, 1, 2, 3) are used to

estimate several bubble properties. The model of Mishra et al. (2002) was developed for spherical

droplets and bubbles and is therefore not suited, the other techniques allow for ellipsoidal bubbles

and are discussed in more detail.

Rensen’s algorithm

Rensen (2003) estimates the magnitude of the velocity, the two angles that give the orientation

of the velocity vector with respect to the probes axial direction, two angles defining the radial

positions of piercing and finally the semimajor and semiminor axis lengths of the bubble. In

order to do this, the assumption is made that the bubble can be modeled as an ellipsoid and that

the velocity vector ~u is directed parallel to the minor axis. The estimation is performed with a

constrained non-linear least squares minimization of the error between the actual measurements

and the measurements predicted by the model for a given set of parameters. This means that

actually seven parameters have to be determined from seven measurements. This suggests that

there may be a risk of ill-posedness of this reconstruction problem: i.e. relatively small deviations

from the assumptions made about the bubbles or inaccuracies in the measurements may lead

to large errors in the parameter estimates. In this respect, it is important to realize that the

common four point probe geometry was not optimized for the measurement of e.g. the semimajor

axis length of the bubble. The shape of the bubbles in the bubble column generally deviates from

the ellipsoidal shape: many surface oscillations and some flattening of the bubble are observed.

Therefore, the local surface curvature generally differs from that of the ellipsoidal curvature.
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true shape

reconstructed shape

Figure 4.2.: Reconstruction of non-ellipsoidal bubbles.

With the relatively small transversal distance between the probe tips, this can lead to large

errors in the aspect ratio. This is illustrated with an example in Figure 4.2. Rensen (2003)

typically tests the technique for bubbles with horizontal size of 3 mm and mentions an increase

of the inaccuracy with increasing bubble size due to flattening on top, as well as failure for

bubbles in the wobbling regime. In addition, Guet (2004a), who works with bubbles in the size

range 3-10 mm mentioned that the use of this technique resulted in the requirement to reject a

very large fraction (more than 90%) of the bubbles to get results. The probability of rejection

is dependent on the bubble size and the phase of the shape oscillations. This again leads to

questions how representative the result is for the total bubble ensemble. For this reason, we

decide not to use this technique.

Xue’s algorithm

Xue (2004) presents a different reconstruction technique that enables determination of the three

velocity components and does not require selection of bubbles that hit the probe: the entire

population can be used. The technique is employed in bubble columns for bubble sizes in the

range 2 mm-20 mm. This technique will also be used for the measurements in the present

investigation. It is in fact equivalent to the reconstruction technique used by Lucas and Mishra

(2005) for conductivity probes, who apply it to water-air systems with bubbles with their major

axis in the range of 5-8 mm. In order to allow for the reconstruction, the assumptions are made

that the velocity vector is parallel to the semiminor axis, and (implicitly) that the shape of

the bubble has mirror symmetry with respect to the plane perpendicular to the velocity vector

passing through the centroid of the bubble. The technique estimates the velocity magnitude u

and the angles of the velocity vector with respect to the probe axial direction (Figure 4.3). Given

the locations of the probe tips (xti,yti,zti) in the xyz coordinate system (defined by the probe),

the coordinates of the tips in the coordinate system x’y’z’ (defined by the bubble velocity vector)

can be obtained with a simple transformation (section A.1). For the piercing times the following
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equations are obtained:

∆t1 −
T0 − T1

2
=
z′t1 − z′t0

u
=
xt1sin(φ1)cos(φ2) + yt1sin(φ1)sin(φ2) + zt1cos(φ1)

u
(4.5a)

∆t2 −
T0 − T2

2
=
z′t2 − z′t0

u
=
xt2sin(φ1)cos(φ2) + yt2sin(φ1)sin(φ2) + zt2cos(φ1)

u
(4.5b)

∆t3 −
T0 − T3

2
=
z′t3 − z′t0

u
=
xt3sin(φ1)cos(φ2) + yt3sin(φ1)sin(φ2) + zt3cos(φ1)

u
(4.5c)

where the term T0−T1
2 , etc. correct for the bubble curvature (explained in Figure 4.4). These

equations for u, φ1 and φ2 are solved numerically using the Newton-Raphson method.

4.1.3. Probe manufacture

In order to get precise velocity information it is necessary that the bubble is not strongly deformed

due to the piercing. In addition, precise information about the locations of the probe tips

is required. The classical method for probe manufacture is to first pass the fibers through a

capillary. Next, alignment is obtained by passing the fibers through a jig, followed by fixation
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(a)

0.64 mm

(b)

Figure 4.5.: (a) Picture of the four point probe and (b) sketch of the jig used for the alignment.

with glue. When the glue has dried, the jig is removed. With this method, it is difficult to

keep the fibers parallel over a long distance: after removal of the jig, some of the fibers may

get an inclination due to tension in the fibers, leading to a deviation of the desired geometry.

Consequently, the accuracy of the technique may deteriorate for certain velocity directions. For

this reason, a different manufacturing method was used in order to maintain sufficient distance

between the capillary holder with the glue and the three upper tips. Again, a jig was used (Figure

4.5 (b)). This jig has a length of 0.7 cm, its diameter is identical to that of the capillary (3 mm).

Openings are created in the jig with the use of electrical discharge machining. These openings

(0.64 mm diameter) are only slightly larger than the cladding of the fibers (0.6 mm). The fibers

are glued right in front of the jig and the jig is no longer removed after the glue has dried. This

way, the alignment of the fibers is strongly improved, and the uncladded fibers extend over a

length of 1 cm. The result is shown in Figure 4.5 (a).

After production and after longer periods of use, the tips of the probe get contaminated. This

affects the shape of the signal (Figure 4.6(a)). Extra peaks occur right before the arrival of the

tips at the liquid-gas (’presignal’) and the gas-liquid interface. Also, the gas phase-level may

show trends instead of being constant. The signal shape is altered in a different way for each

probe, consequently the inaccuracy in the piercing times and velocity reconstruction increases

strongly. For this reason, the tips are regularly cleaned with ethanol and ultrasonic cleaning.

The signal shape after cleaning is shown in Figure 4.6(b). Not only the shape of the signal is
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Figure 4.6.: (a) Signals for contaminated probe tips. (b) Signals for clean tips.

changed, but also the amplitude is increased considerably, especially by the ultrasonic cleaning.

4.2. Accuracy analysis of 3D bubble velocity vector estimation:
non-intrusive effects

In order to evaluate the experimental observations, information is required about the accuracy of

the measurement technique. This requires insight in the various error sources involved and their

relative importance. This information may also be used to further improve the measurement

technique. Previous investigations (e.g. Guet et al. (2003), Mudde and Saito (2001)) focused on

the accuracy of the probe with the 1D algorithm. Little attention was paid to the individual error

sources. In addition, the study usually focused on bubbles close to a location of formation with

piercing close to the axis of symmetry. These conditions are probably not very representative for

the conditions inside the bubble column. Lucas and Mishra (2005) only consider the inaccuracy

due to errors in the times ti when the bubble interface is pierced. Xue (2004) presents only a

brief study for the accuracy of the 3D reconstruction technique with respect to measurement
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inaccuracies, for different conditions than encountered in the cylindrical bubble column. The

conclusions from Xue’s study do not agree with the results obtained in initial tests with the four

point probe in the present study. In addition, the effect of only one assumption is investigated:

the assumption that the velocity vector is parallel to the minor axis. In practice, there is a wide

variety in error sources: inaccuracy of the tip positions, tip shapes, bubble shape oscillations,

shape of the bubble and various probe-bubble interactions. Consequently, it is not clear what the

accuracy is of the estimate of the velocity and its direction, and which error sources dominate.

For this reason, we investigate the performance of the four point probe in combination with

the Xue algorithm in more detail. Study of the accuracy for the conditions encountered inside the

bubble column is difficult, since visual observation of the bubbles is complicated and many error

sources are involved simultaneously. For this reason, a combined experimental and modeling

study is performed. In the modeling study, artificial piercing events are simulated, this way the

conditions in the bubble column can be mimicked. An order of magnitude of the inaccuracy can

be determined and the individual error sources can be studied separately. The present section

4.2 studies the error sources due to non-intrusive effects, the next section 4.3 discusses the error

sources due to the probe-bubble interaction. Section 4.4 studies the combined error.

4.2.1. Generation of artificial signals

Artificial data is generated by calculating the times when the tips enter and exit bubbles for

artificial piercing events. Both bubbles with fixed shape and size, and bubbles with dynamic

shape oscillations are considered. For most calculations, ellipsoidal bubbles with semimajor axis

length a and semiminor axis length b are considered. For the calculations where the influence of

the shape is investigated, also non-ellipsoidal bubbles are considered. The bubbles have velocity

u parallel to the minor axis (Figure 4.3). The direction of the velocity is given by the angles φ1

and φ2. The tip positions xti, yti, zti are transformed from the probe coordinate system (x,y,z) to

the bubble coordinate system (x’,y’,z’), this gives tip positions x′ti, y
′
ti, z

′
ti. This is done using the

transformations described in appendix A.1. The path of the tips through the bubbles is shown

in Figure 4.3 with the dotted lines parallel to the velocity (i.e. the z’-axis) that pass through

the point x′i, y
′
i, z

′
i. The intersections of these lines with the bubble are determined, which gives

the distances ∆li and li. This provides ∆ti = ∆li/u and Ti = li/u. Next, inaccuracies may be

added and reconstruction is performed.

4.2.2. Tip position and shape

If exact data is used of ellipsoidal bubbles with the velocity vector parallel to the semiminor

axis, and the reconstruction is performed with the exact probe positions, very high accuracy in

the estimates of u, φ1 and φ2 is obtained. The accuracy is independent of the radial position of

piercing r′ =
√

x′2 + y′2 and the velocity direction (φ1 and φ2).

Tip position accuracy

An actual probe will never have the exact dimensions mentioned in section 4.1. A deviation does

not present a problem if the actual measured positions of the tips are used for the reconstruction.

Artificial data is used to investigate the required accuracy in the measured tip positions to get
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reliable velocity (direction) information. Virtual ellipsoidal bubbles are pierced with a = 2.58

mm, b = 1.71 mm (deq=4.5 mm). For the reconstruction, tip positions (xtri, ytri, ztri) (i=0,1,2,3)

are used. These were obtained by displacing the exact tip positions (xti,yti,zti) over a distance

δrt each in a different random three-dimensional direction. For this purpose, a large number of

virtual bubble-probe interactions N (5 · 104 or more) were simulated with velocity uj=0.2 m/s,

random angles φ1j (0◦ ≤ φ1j ≤ 90◦) and φ2j (0◦ ≤ φ2j < 360◦) and random radial piercing

location. For each interaction, different random directions were used for the tip displacement

δrt to get an idea about the order of magnitude of the error induced by this inaccuracy. Of

course, the error in the reconstruction for a given probe will not have a random nature, but will

manifest itself as a systematic deviation. The error for the velocity is estimated from the velocity

estimates ûj as:

δu =

√

√

√

√

N
∑

j=1

(ûj − uj)2

N
(4.6)

Similar definitions are used for the angles. Again, no dependence of the accuracy on the radial

piercing location is found. The accuracy, however, does depend on the angle φ1 (Figure 4.7).

Figure 4.7(a) shows how the inaccuracy of the velocity increases with φ1 for various values of

δrt. This increase is due to the geometry of the probe: dp < ∆s: the relative error in the

’distance of flight’ increases. The inaccuracy of the estimated angles φ1 and φ2 decreases with

φ1 (Figure 4.7(b) and Figure 4.7(c)). For small angles φ1 the angle φ2 is very inaccurate as may

be expected (obviously, φ2 becomes less relevant for φ1 approaching 0◦). The inaccuracy of the

distances between the tips of a real probe is of the order of magnitude of 0.01 mm. This shows

that the accuracy of the tip positions is sufficient to allow accurate reconstruction.

Tip shape

The actual reconstruction of experimental data is performed using the measured geometry of the

tip. The distances between the fiber ends are measured from microscope photographs with an

accuracy of approximately 5-10 µm. This inaccuracy is quite small, but there is an additional

inaccuracy that needs to be taken into account: the effect of the finite size of the probe extreme.

The probe tip is not a single point, but, instead, is a region with a certain size. For the recon-

struction, the part that first touches the bubble is of primary importance. The probe tip shapes

vary from fiber to fiber (Figure 4.8(a)), the radii of curvature vary typically from 25 to 40 µm.

The inaccuracy caused by the differences in curvature is illustrated in Figure 4.8(b) for a flat

gas-liquid interface. If two probe tips with curvature R1 and R2 are used, the probes will not

pierce the gas-liquid interface with their extreme, but pierce it with another part of the rounded

tip. As a result, the interface will travel a distance l′ instead of the distance l for an infinitely

sharp tip. The difference is |l− l′| = |R1 −R2|cos(φ1). For non-zero angles between the velocity

vector and the fiber, this gives inaccuracies in the reconstruction. The variations in Ri are in

the range of 5-15 µm and therefore the magnitude of this effect is similar to the effect caused by

the uncertainty in the position of the probe tips. Therefore, the effect on the accuracy is small,

and it can be neglected.
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Figure 4.8.: (a) Tip shapes. (b) Effect of probe tip curvature on accuracy (not to scale).

Figure 4.9.: Bubble shapes close to the wall in the cylindrical bubble column.
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Figure 4.10.: Bubble shapes used for generation of artificial data.

4.2.3. Non-ellipsoidal shape, shape oscillations and curvature correction

Non-ellipsoidal shape

Due to the fact that bubbles do not have flat interfaces, but, instead, are rounded, a correction for

the curvature is required to get accurate velocity information. In equations 4.5a-c the correction

terms T0−Ti
2 are used, which were illustrated in Figure 4.4. This correction is only precise if

the bubble has mirror symmetry with respect to the plane, perpendicular to the velocity vector,

which passes through its centroid. In the case of the wobbling regime, many bubble shapes are

encountered which do not have this symmetry. This is also observed for our bubble column

(Figure 4.9). Even if the average bubble shape is ellipsoidal, shape oscillations cause deviations

from the symmetry for individual bubbles. The effect of this deviation is investigated with

an example, by considering the accuracy of the reconstruction if the bubble shape is varied.

Figure 4.10 illustrates the shapes used to generate artificial signals. The shape is given by the

curves z = b+
√

1 − r′2/a2 and z = −b−
√

1 − r′2/a2 where 2b = b+ + b− ensuring that the

volume is constant. An ensemble of bubbles with different shapes is considered. First, dynamic

shape oscillations are neglected. The constant b+ is varied according to a sinusoidal probability

distribution between 0.5b and 1.5b from bubble to bubble, but kept constant during the entire

piercing process, simulating bubble shapes around an average ellipsoidal shape. The deviations

from the symmetry result in inaccuracies in the estimates for u, φ1 and φ2. For bubbles where

the top is more flattened (like shape 1 in Figure 4.10), the curvature correction (with T0−Ti
2 ) gives

overcorrection; for bubbles with more rounded top (like shape 3 in Figure 4.10) the curvature

correction gives a correction with is too small.

The order of magnitude of the inaccuracy is investigated. The results are shown in Figure 4.11

(’no selection’). Figure 4.11(a) shows that close to the sides of the bubble, where the curvature

is strongest, the inaccuracy is largest. Figure 4.11(b), Figure 4.11(c) and Figure 4.11(d) show

that the bubble deformations result in errors with magnitudes around 5% for u and 8◦ for φ1.
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Figure 4.11.: Influence of the bubble shape on the accuracy of the velocity magnitude and velocity
angle estimates.

φ2 has an inaccuracy of about 10◦ for φ1 > 30◦, for smaller φ1 the inaccuracy increases rapidly.

The results suggest that improvements in the accuracy may be obtained by rejecting mea-

surement taken close to the bubble edges. This is performed by setting the condition

T ∗
r = max

( |Ti − T0|
T0

)

< T ∗
r,max (4.7)

for acceptance of measurements. Figure 4.11 shows the effect on the accuracy of using this

selection criterion with T ∗
r,max = 0.2. For the present example, this criterion effectively results in

rejection of piercing events with r′/a > 0.7. Tests with experimental data (section 4.4), however,

show little improvement in the results. Apparently, many measurements close to the sides of the

bubble are already rejected due to, e.g., deformation. In addition, the errors in the residence time

due to deformations, etc. may make the criterion less effective for distinguishing measurements

taken close to the bubble sides. For this reason, this criterion is not used in the experiments.
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Figure 4.12.: Oscillating bubble shapes (fosc=20 Hz).

Shape oscillations and curvature correction

If dynamic shape oscillations are included, the bubble is no longer ’frozen’ while passing the

probe tips. This has an additional negative effect on the accuracy since the interface velocities

differ from the velocity of the center of gravity. Again an order of magnitude estimate is obtained

with synthetic data. Virtual bubbles arrive from random directions and are pierced at random

radial positions. The center of gravity of the virtual bubbles moves with a constant velocity.

The shape is defined with respect to the centroid by the curves

z′+(t) =
3

4
(b− b+(t)) + b+(t)

√

1 − r′2

a2
(4.8)

and

z′−(t) = −3

4
(b− b+(t)) − (2b− b+(t))

√

1 − r′2

a2
(4.9)

with

b+(t) = b(1 +
1

2
cos(2πfosct+ φosc)) (4.10)

with fosc and φosc the frequency and (random) phase of the oscillations. An example of a bubble

passage is shown in Figure 4.12. The effect of the oscillations on the velocity accuracy is

shown for various oscillation frequencies fosc in Figure 4.13(a). The accuracy of the velocity

estimate drops with increasing oscillation frequency. The increasing inaccuracy is caused by the

increasingly closer match between the half oscillation period (10 ms for 50 Hz) and the travel

times ∆ti (8 ms for u=0.2 m/s and φ1=0◦). The accuracy in φ1 is nearly independent of the



4.2. Accuracy analysis of 3D bubble velocity vector estimation: non-intrusive effects 83

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0  10  20  30  40  50  60  70  80  90

δ u
/u

 (-
)

φ1 (o)

0 Hz
10 Hz
30 Hz
45 Hz
50 Hz

(a) With curvature correction

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0  10  20  30  40  50  60  70  80  90

δ u
/u

 (-
)

φ1 (o)

0 Hz
10 Hz
30 Hz
45 Hz

(b) Without curvature correction

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0  10  20  30  40  50  60  70  80  90

δ u
/u

 (-
)

φ1 (o)

0 Hz
10 Hz
30 Hz
45 Hz

(c) Curvature correction with eq 4.12

 0

 5

 10

 15

 20

 25

 30

 0  5  10  15  20  25  30  35  40  45  50

δ  
Φ

1 (-
)

fosc (Hz)

curvature correction
no curvature correction

curvature correction with Frijlink method

(d) Accuracy for φ1 estimate for φ1=0.

Figure 4.13.: Influence of oscillations in the bubble shape on the accuracy of the velocity mag-
nitude and φ1 estimates for various oscillation frequencies fosc, with and without
curvature correction.



84 Chapter 4. Bubble velocity and size measurement using a four point optical fiber probe

oscillation frequency (Figure 4.13(d)).

Frijlink (1987) discourages the use of the curvature correction with the term (T0 − Ti)/2 for

the 1D reconstruction algorithm. The author mentions that in the case of shape oscillations and

movement under an angle, the correction may result in large distortion of the results. For this

reason, we compare the results of the reconstruction with (Figure 4.13(a)) and without (Figure

4.13(b)) curvature correction. For the latter, the equation

∆ti − Tcorrect =
z′ti − z′t0

u
=
xtisin(φ1)cos(φ2) + ytisin(φ1)sin(φ2) + zticos(φ1)

u
(4.11)

is solved for i=1,2,3 with Tcorrect = 0. The results show that the inaccuracy is larger if the

correction is left out. Frijlink (1987) suggests an alternative curvature correction, which is also

used by Guet (2004b) (both authors only consider 1D velocity reconstruction with removal of

bubbles which do not move in the axial direction). The author assumes a spherical bubble, for

which the curvature correction is estimated with d̂b/2 −
√

d̂2
b/4 − d2. d̂b is an estimate of the

bubble diameter, which is determined by obtaining a first velocity estimate by solving equation

4.11 with Tcorrect = 0. We get d̂b = u ·max(Ti). Next, a curvature correction is estimated with:

Tcorrect =
d̂b/2 −

√

d̂2
b/4 − d2

p

u
(4.12)

Subsequently, equation 4.11 is solved for i=1,2,3 using equation 4.12. The results are shown in

Figure 4.13(c). This shows that for small φ1 a small improvement over the results without any

correction is obtained. The results with the correction Tcorrect = (T0 − Ti)/2 (Figure 4.13(a))

remain superior. These conclusions also hold if the selection criterion from equation 4.7 is used.

The accuracy of the φ1 estimate is also best with the curvature correction and decreases if the

curvature correction is left out. In the case of correction with equation 4.12 a very large error is

obtained.

Further study with artificial as well as experimental signals shows that, generally, the best

results are obtained if the curvature correction term is based on the average shape of the bubbles.

Since the average shape of the actual bubbles is closer to a ellipsoid than a bubble with a flat

top, in general better results are obtained if the correction terms (T0 − Ti)/2 are included than

when these are left out.

4.2.4. Aspect ratio oscillations and vertical probe dimensions

The bubbles in the bubble column not only exhibit shape oscillations, but aspect ratio oscillations

as well. These contribute even stronger to the errors, since not only the vertical dimensions

vary, but the apparent cross-section of the bubble as well. This generates larger errors when the

bubbles are pierced near the edges: the horizontal movement of the interface can give much larger

changes in the times of piercing than vertical movement of the interface alone. Observation of

the bubbles in the cylindrical bubble column and a plume shows that the frequency of the most

important oscillation mode is in the range of 30-40 Hz. This agrees with the order of magnitude
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Figure 4.14.: Oscillating bubble shapes (fosc=40 Hz).

given by (Lamb, 1932):

flamb =
1

π

[

(k + 1)(k − 1)(k + 2)
2σl

ρcd3
eq

] 1
2 (4.13)

which was derived analytically for small oscillations around a spherical shape. k is the order of

the oscillation, σl the surface tension, and ρc the liquid density. A frequency of 44 Hz is obtained

for the most important oscillation with order k = 2 in the case of bubbles with deq=4.5 mm.

Observations in the bubble column show that the aspect ratio varies between 0.4 and 0.8.

Artificial signals are generated for bubbles with oscillating aspect ratio. Piercing is simulated

of an ellipsoidal bubble (deq=4.5 mm) which has an aspect ratio which is oscillating sinusoidally

in time in between the extremes 0.4 and 0.8. Only φ1=0◦ is considered. Figure 4.15 shows the

inaccuracy for the estimate of the velocity and φ1 for various radial piercing positions in the

case fosc=40 Hz. Overall, the performance of the reconstruction with curvature correction is

superior and the errors are largest for piercing near the bubble sides. The average inaccuracy in

φ1 (averaged over all accepted realizations) is independent of fosc for 20 Hz<fosc<80 Hz and has

the value 14.5◦ with curvature correction, and 18.8◦ without curvature correction. A histogram

of φ1 is shown for fosc=40 Hz in Figure 4.16(b). This shows that also very large values (up to

60◦) are obtained.

Figure 4.16(a) shows the mean inaccuracy for the velocity measurements for increasing os-

cillation frequency and two different probe dimensions (∆s=1.6 mm being the standard config-

uration, other dimensions are left unchanged). The inaccuracy increases with fosc, a maximum

is reached around fosc=50 Hz for ∆s=1.6 mm. For ∆s=0.8 mm the inaccuracy still increases

for fosc>50 Hz. The magnitude of the inaccuracy is determined by the ratio of the displace-

ment of the interface due to the oscillations and the displacement due to the bubble velocity.
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Figure 4.15.: Influence of oscillations in the aspect ratio on the accuracy of the velocity magnitude
and φ1 estimates for various radial piercing locations, with and without curvature
correction, fosc=40 Hz.

For lower oscillation frequencies the technique effectively determines an average of the local in-

terface velocity on the upper side and the lower side of the bubble. For very small oscillation

frequency the errors caused on the upper side and the lower side cancel out since the oscillation

is symmetric. The phases of the oscillations on the lower side and the upper side differ more

for increasing frequency. Therefore, the error in the velocity increases for frequency increases up

to approximately 50 Hz. Although a reduction in ∆s results in a smaller interface displacement

due to the oscillations, this does not help to reduce the error in the velocity, since the decrease

in the displacement is approximately proportional to the reduction in ∆s: the technique will

continue to determine an average of the local interface velocities. Consequently, for fosc<30 Hz,

the inaccuracy is more or less independent of the vertical probe dimensions.

The maximum near 50-60 Hz for ∆s=1.6 mm follows from the probe dimensions. The

mean time in between the piercing event by the central tip and the other tips is approximately

∆s/u=0.008 s. This time corresponds to the half period of an oscillation with frequency of 62 Hz,

i.e. for frequencies around 62 Hz the interface oscillation displacement in between the piercing

events typically reaches a maximum value (the exact result depends on the phase of the oscil-

lation). For frequencies beyond 62 Hz, part of the oscillation during piercing averages out and

the inaccuracy drops. For the smaller probe size ∆s, the maximum inaccuracy is reached for a

higher frequency. Therefore, the inaccuracy continues to increase for fosc>50 Hz. Consequently,

reduction of the size of the probe (∆s) will not help in reducing the inaccuracies due to the

bubble surface oscillations.
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Figure 4.16.: Inaccuracy results for aspect ratio oscillations. (a) Influence of the frequency of
oscillations in the aspect ratio on the accuracy of the velocity magnitude with and
without curvature correction, for two different probe dimensions. (b) Histogram of
φ1 estimates. fosc=40 Hz, curvature correction.

4.3. Accuracy analysis of 3D bubble velocity vector estimation:
probe-bubble interaction

4.3.1. Probe-bubble interactions

In chapter 3, various interaction effects of the bubble with the fiber were discussed. These were

the blinding effect, the crawling effect (i.e. deformation and deceleration of the bubble), and the

drifting effect, where the fiber induces lateral movement and/or a change in the velocity orien-

tation of the bubble. Similar effects are observed for the four point probe, but their magnitude

and relative importance is different.

Figures 4.17 and 4.18 shows the piercing of a relatively small bubble near its center. Some of

the differences with the piercing by a single fiber, that may occur are:

• Up to four piercing events occur instead of one. Consequently, the total force involved is

much bigger.

• The upper three tips pierce an interface that is already deformed by the piercing due to the

central tip. Perpendicular piercing due to the upper tips is therefore unlikely. Consequently,

the lateral component of the interaction forces is larger, and the drifting effect may play a

role, whereas it is negligible for a single fiber if the probe and bubble velocity orientation

are aligned (α = 0◦, section 3.5). In addition, the total deformation may be much larger

than for a single fiber (e.g. compare Figure 3.14 and Figure 4.17).

• The deformation of the upper side of the bubble is relatively unimportant for a single

probe, the deformation of the lower side is mainly responsible for the inaccuracies. For a

four point probe, however, the deformation of the upper side may also play an important

role for e.g. the times of flight ∆ti.
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Figure 4.17.: Images of piercing of a bubble by a 4 point probe. Time between frames 1.4 ms,
bubble size 3.3 mm.

• The delay between the piercing by the central and the other tips provides the deformations

with more time to grow and to have more impact on the measurement.

In the next sections, the drifting effect and deformation effect (crawling and blinding) due

to the probe-bubble interaction are studied in more detail, since these play the most important

role for the accuracy. The study is performed via observations of the interaction of a bubble

and a probe in a bubble plume. The experimental setup that was used for this investigation was

described in section 3.3.2. The deceleration of the bubble by the probe has been the subject of

more studies ( e.g. Guet et al. (2003), Mudde and Saito (2001)) and is therefore only considered

briefly. Observation of piercing of bubbles in the present research shows that for perpendicular

piercing the bubble velocity is reduced by typically 10% during the entire piercing process. This

means that in general the bubble velocity is underestimated by about 5%, a value which agrees

with the results presented in Guet (2004b).

4.3.2. Drifting effect

If the bubble is not pierced in its center, the probe not only exerts a force component in the

axial direction but also in the lateral direction (Figure 4.19). This results in the acceleration of

the bubble in this direction: drifting occurs. The velocity direction of the bubble changes with

an angle φd during the time from the instant when the central tip enters the bubble, until the

instant when the last upper tip exits the bubble (Figure 4.20).

For piercing further away from the bubble center, the lateral interaction force component
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Figure 4.18.: Bubble contours of bubble piercing by a 4 point probe. Time between contours 4.1
ms, bubble size 3.3 mm.

Fprobe

Figure 4.19.: Local bubble deformation at different radial positions and the induced interaction
force.
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Figure 4.20.: Bubble drifting effect for piercing at various radial locations.
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Figure 4.21.: Bubble contours showing drifting effect for case A (deq=3.0 mm), interval between
contours 1.4 msec.

increases as well as the total force magnitude, due to the larger inclination of the interface

locally at the tips. Consequently, the magnitude of φd increases for piercing further away from

the center. This variation is investigated using a bubble plume by studying the piercing of a

bubble a few diameters away from the location of formation. The use of a plume allows simple

visual observation of alterations of the direction of the velocity by the interaction, and allows

accurate control of the radial position of piercing. On the other hand, the use of a bubble

plume has the drawback that the path of the bubbles is somewhat altered by the wake of the

previous bubble. This effect is minimized by keeping the bubbling frequency low. Consequently,

the influence is small. Bubbles are pierced with the probe axial direction parallel to the bubble

velocity (φ1 = 0). Three cases are considered: A) deq=3.0 mm, aspect ratio 0.56, u=0.24 m/s,

piercing at 8 mm from the needle where the bubble is formed (needle opening diameter 0.8

mm), B) deq=3.0 mm, aspect ratio 0.4, u=0.26 m/s, piercing at 15 mm from the needle (needle

opening diameter 0.8 mm) and C) deq=4.3 mm, aspect ratio 0.31, u=0.30 m/s, piercing at 17

mm from the needle (needle opening diameter 1.6 mm). The piercing is performed for various

radial positions x′p over the line y=0 (sketch in Figure 4.23(a)).

Video images of the bubble piercing were processed with image processing software. The

bubble contour and location of the center of mass were determined for each image. Figure 4.21

shows the sequence of bubble contours for case A for three radial piercing locations. The path

of the center of mass of the bubble was calculated from the images, the result is shown for case

A in Figure 4.22. The actual bubble path is 3D, therefore the probe is aligned with its central

tip in the bubble plane of symmetry parallel to the CCD imaging plane, minimizing movement

of the bubble toward or away from the camera.

Figure 4.23(b) plots the drift angles φd versus sin(αd), with αd the angle describing the

surface inclination. Data is shown for the three cases and the various radial piercing locations.

For |sin(αd)|<0.2 the angle φd is approximately proportional to sin(αd), suggesting that the

force on the bubble is directed perpendicular to the interface and approximately constant in

magnitude. From the data the following relation is derived:
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Figure 4.24.: Non-perpendicular piercing and drifting effect model

φd = min(8, 30sin(αd)) (4.14)

If the bubble velocity vector is not aligned with the probe, the drifting effect may increase

in magnitude (section 3.5.2). This is illustrated in Figure 4.24(a). For piercing on the left side

(A) the three phase contact line is longer than for piercing on the right side, and consequently

the force involved and φd are larger (see also Figure 3.21). This effect is, however, not studied

further, and equation 4.14 is used for the generation of artificial signals. For this purpose, the

drifting effect is simplified and the velocity direction is rotated before the actual artificial piercing

takes place. This is implemented as follows (Figure 4.24(b)). The position of the bubble center

is given by the vector ~b, the vector ~a constitutes the path of the location on the bubble where

piercing will take place. The drifting effect is modeled by determining the radial position where

the bubble will be pierced, calculating αd, and next rotating the bubble and its velocity vector

over an angle φd around the rotation axis ~a×~b. This way, only the effect on the bubble velocity

orientation is modeled, inaccuracies in the velocity magnitude are not taken into account, these

will give a small overestimation of the velocity.

4.3.3. Bubble deformation

Once the first fiber touches the bubble, the bubble starts to deform. The deformation is again

an interplay between inertia forces and surface forces, similar to the natural shape oscillations.

Therefore, the deformation has a timescale which is of the same order as the half period of the

bubble shape oscillations. Consequently, it closely matches the bubble passage time, as was
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discussed in section 4.2.4. Close to the sides, the radius of curvature of the bubble is usually

smaller. As a result, the surface forces involved are bigger and the size of the deformations and

the speed with which they grow increase closer to the sides (this can be observed in Figure 4.21).

Observation shows that when the bubble is pierced, it is deformed both locally and on the

scale of its diameter (Figures 4.17 and 4.21). On the upper side the bubble becomes usually

more flattened, on the lower side the interface usually becomes more inclined. In addition, the

aspect ratio of the bubble increases. As a result, inaccuracies in the magnitude and direction of

the bubble velocity are obtained. The effect on the velocity direction is very similar to that of

the drifting effect: a bubble pierced on the left side will appear to move to the right.

Since the deformation effect is accompanied by natural shape oscillations and the drifting

effect, accurate estimation is made more difficult. Analysis is easier relatively close to the point

of bubble formation where surface oscillations are relatively weak, consist out of few modes and

are very reproducible from bubble to bubble. The CCD image sequences of the piercing of cases

A and B are used to study the increase in aspect ratio after the start of piercing. The aspect ratio

is determined as the ratio of the vertical distance between the imaged bubble top and bottom,

and the horizontal distance between the imaged left and right sides of the bubble. In addition,

the time dependent change of the aspect ratio for a bubble, which is not pierced, is determined

(’virtual piercing’). This serves as a reference. First, the difference is determined in the aspect

ratio evolution with time between the cases with and without piercing (Figure 4.25(a), where

t=0 corresponds to the moment when either the real of virtual piercing starts):

aspect_ratiodeform(t) = aspect_ratiopiercing(t) − aspect_ratiovirtualpiercing(t) (4.15)

Next, the average change in time of aspect_ratiodeform(t) is determined as a function of the

radial piercing position (Figure 4.25(b)). It can well be approximated by:

d(aspect_ratiodeform)/dt = min(15, 2 + 18r′/a) (4.16)

where the numerical constants have dimension s−1. The change with time is limited to a max-

imum of 15 s−1 since no data is available for |x′p|/a > 0.7: the bubble is no longer pierced by

all fibers. Equation 4.16 is used to model the deformation effect and to study its influence on

the accuracy of the probe technique. This simple model can of course only present an order

of magnitude estimate for the inaccuracy. The precise deformation will be dependent on many

parameters, such as the bubble size, aspect ratio and bubble velocity direction, and also consists

of local deformation. A model that accurately predicts the effect of all these parameter variations

is, however, outside the scope of the current investigation.

For the generation of artificial signals, the instant tfirst when the first tip touches the interface

is determined. The radial piercing position of the central tip r′ provides d(aspect_ratiodeform)/dt

via equation 4.16. At time t > tfirst the aspect ratio due to the deformation is given by:

aspect_ratio(t) = aspect_rationo deformation(t) + (t− tfirst)d(aspect_ratiodeform)/dt (4.17)

with aspect_rationo deformation the aspect ratio in the absence of deformation. Figure 4.25(a)

suggests that the linear increase of the contribution due to deformation is a reasonable approxi-

mation.
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Figure 4.25.: Observations of the aspect ratio in the case of bubble piercing. (a) Difference in
aspect ratio between a bubble which is pierced and a bubble which is not pierced
for case B. tpierce is the time when the first tip pierces the bubble. (b) Change of
aspect ratio with time due to piercing.

In Figure 4.26 the estimate of φ1 obtained with the simulated piercing is compared with

the values obtained from experiments. The order of magnitude is predicted reasonably well.

This shows that the aspect ratio deformation is responsible for the largest part of the observed

deviation in φ1. Local deformations are responsible for the differences between the simulated

piercing and the experiments, these are especially important in the center of the bubble and close

to the sides.

4.4. Inaccuracy in the bubble column

In the previous sections the focus was put on the separate error sources. The present section

starts with the estimation of the total error magnitude and identification of the major error

sources with the use of artificial piercing simulations. Next, a comparison of simulation results

is made with probe data from a pseudo-2D bubble column from Xue (2004). Subsequently, the

accuracy of the measurements obtained in the cylindrical bubble column is analyzed, with a

focus on the effect of a large angle between the velocity vector and the probe’s axial direction.

Finally, possibilities for improvement of the measurement technique are discussed.

4.4.1. Artificial piercing: total error

In the previous sections many error sources were considered. The present section compares these

and tries to provide an estimate for the total error. In section 4.2, the inaccuracies due to

differences in tip shapes and uncertainties in the tip positions were found to be small compared

to those due to other error sources. The inaccuracy due to shape oscillations is significant.

The largest contribution was found to originate from aspect ratio oscillations. The drifting and

deformation effect were found to give significant contributions for the inaccuracy in the velocity

direction. For the total error, only the largest error sources are considered: shape oscillations,

drifting and deformation. The study is performed for conditions encountered in bubble columns.
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(case A). U=0.24 m/s, deq=3.0 mm, the aspect ratio variation with time without
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Of course, the approach taken here via the modeling of the error sources can only provide an

order of magnitude of the inaccuracy.

The following settings are used: deq=4.5 mm, u=0.2 m/s, the aspect ratio is constant at 0.6

(if the oscillations are ignored) or fluctuates between 0.4 and 0.8 with fosc=40 Hz. The piercing

of 10000 bubbles is simulated, typically 4000 events produce a bubble velocity estimate (in the

other cases one or more tips miss the bubble). Four different cases are considered for the exact

bubble velocity distribution (Figure 4.27), with p(φ1) describing the probability density function

of φ1:

• A1: Vertical motion with φ1=0o

• A2: Zig-zag motion: for φ1 < φ1,max (φ1,max=25 o, after Fan and Tsuchiya (1990), see also
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Figure 4.27.: Exact bubble velocity angle φ1 distributions.
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µA1
φ1

(◦) σA1
φ1

(◦) µA2
φ1

(◦) σA2
φ1

(◦)

Exact 0 0 15.9 7.7
DR 7.1 1.7 15.9 7.3

DR+DF 13.0 5.2 18.4 8.8
DR+DF+OSC 15.5 13.0 21.6 12.4

OSC 16.2 17.1 25.8 18.7

µA3
φ1

(◦) σA3
φ1

(◦) µA4
φ1

(◦) σA4
φ1

(◦)

Exact 25.0 0 24.5 12.8
DR 23.0 4.7 23.6 12.4

DR+DF 23.4 9.0 25.3 13.0
DR+DF+OSC 26.7 11.7 28.1 15.8

OSC 33.0 18.9 32.8 21.5

Table 4.1.: Mean (µφ1) and standard deviation (σφ1) of φ1 for various effects in simulated piercing.
DR=drifting effect, DF=deformation effect, OSC=shape oscillations.

appendix A) :

p(φ1) =
1

π
2φ1,max

√

1 − φ2
1/φ

2
1,max

(4.18)

• A3: Spiraling motion: φ1=25o

• A4: Gaussian distribution of the velocity direction. The velocity direction is distributed

with standard deviation bφ1 around the average velocity vector with φ1=0o. This distribu-

tion is close to that obtained via measurements with the probe inside the cylindrical bubble

column. bφ1 is taken as 20o, this value is obtained from measurements in the cylindrical

bubble column for Ug=0.034 m/s.

p(φ1) = φ1
e
−φ2

1/2b2φ1

b2φ1

(4.19)

For all cases φ2 is a random number, uniformly distributed between 0o and 360o. The magnitude

and direction of the velocity of the center of gravity of the bubble are constant during the bubble

piercing: accelerations are not taken into account.

The results of the simulated piercings are shown in Tables 4.1 and 4.2 and in the Figures

4.28 and 4.29(a). Figures 4.28(a) and 4.28(e) show how the combination of the drifting and the

deformation effect gives an inaccuracy in φ1 of typically 15◦. The effect on u is very small (Figure

4.28(e)). The oscillation effect (Figure 4.28(d)) alone produces large errors, with a magnitude

of typically 24◦ (the total error: the combination of the systematic and random errors). The

piercing close to the sides produces a very long tail with values for φ1 up to 60◦. The inaccuracy

in the velocity u due to the oscillations is about 0.05 m/s.

Combination of the drifting, deformation and shape oscillations produces somewhat smaller

errors than the shape oscillations alone. The inaccuracy of φ1 is around 20◦, the inaccuracy in

u is about 0.04 m/s. This shows that the shape oscillations produce the largest contribution to

the total error. The error for the combined oscillation and interaction effects is even somewhat
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(c) Case A3
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(f) Case A2
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Figure 4.28.: Histograms of artificial estimates of velocity angle φ1 and u. DR=drifting effect,
DF=deformation effect, OSC=shape oscillations.
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Figure 4.29.: Dependence measurement inaccuracy on φ2

µA1
u (m

s ) σA1
u (m

s ) µA2
u (m

s ) σA2
u (m

s )

Exact 0.200 0.000 0.200 0.000
DR 0.200 0.000 0.200 0.000

DR+DF 0.200 0.001 0.200 0.001
DR+DF+OSC 0.196 0.040 0.196 0.039

OSC 0.184 0.051 0.189 0.055

µA3
u (m

s ) σA3
u (m

s ) µA4
u (m

s ) σA4
u (m

s )

Exact 0.200 0.000 0.200 0.000
DR 0.200 0.000 0.200 0.000

DR+DF 0.199 0.001 0.199 0.002
DR+DF+OSC 0.197 0.041 0.196 0.039

OSC 0.193 0.055 0.191 0.052

Table 4.2.: Mean (µu) and standard deviation (σu) of u for various effects in simulated piercing.
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reduced compared to the error due to the oscillations alone. This is due to the fact that measure-

ments close to the bubble sides are rejected more often: the additional deformation may result

in a bubble miss by one or more tips. Nevertheless, a significant part of the error due to the

shape oscillations remains, since the shape oscillations can also cause relatively large errors in

the center. The latter is caused by the following: due to the oscillations, the interface velocities

are different from the bubble centroid velocity. Due to the high frequency of the oscillations the

error contributions from the upper and lower interface do not cancel.

For the zig-zag and spiraling motion (Figures 4.28(b) and 4.28(c)) the inaccuracy produces a

strong smearing in the probability distribution for φ1. The effect for the Gaussian distribution

(Figure 4.28(d)) is relatively small: the width of the distribution was already large due to the

true distribution of velocity vectors.

Figures 4.28e-h show that the inaccuracy in the velocity seems virtually independent of the

exact velocity direction distribution. In reality this may not be the case: if the probe is not

aligned with the bubble velocity the longer contact line will affect the forces involved. An

example of this behavior will be given in section 4.4.4.

Figure 4.29(a) shows the probability density function of φ2 for case A1 and A4. For case

A1 three peaks are observed. These can be explained by the probe geometry (Figure 4.29(b)).

The location where the central tip pierces the bubble is specified with r′ and φc. Two bubbles

are shown, one with φc ≈ 0◦, and one with φc > 0◦. If the bubbles are rising vertically (case

A1), φ2 ≈ φc for both bubbles due to the drifting and deformation effects (Figure 4.20). For

φc ≈ 0, 120, 240◦ and therefore for φ2 ≈ 0, 120, 240◦ piercing is possible up to smaller distances

from the central tip to the side of the bubble due to the probe geometry. Consequently, the peaks

in Figure 4.29(a) result. Especially these measurements close to the bubble sides contribute

strongly to the tails in e.g. Figure 4.28(a). For case A4 the correlation of the inaccuracy with

φ2 is obscured by the wide distribution of velocity directions.

Chord length measurements

One or more estimate(s) for the bubble vertical chord length can be determined with (Guet et al.

(2003), Mudde and Saito (2001)):

dc
c = uT0 (4.20)

or (Frijlink (1987)):

dmax
c = u · max(Ti, i = 0, 1, 2, 3) (4.21)

or by determining one estimate for each tip (Xue (2004)):

di
c = uTi, i = {0, 1, 2, 3} (4.22)

Interpretation of the results is strongly facilitated if the chord length estimate approaches 2b.

Since the bubble tips usually do not pierce the bubble in its center, smaller chordal lengths are

obtained. At the same time, shape oscillations give inaccuracies in the velocity and residence

time. These inaccuracies are usually correlated: an overestimation in the velocity (aspect ratio

decreasing) is often accompanied by an overestimation in the residence time, and vice versa.

This gives an overestimation of the chordal length that is actually pierced.
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Figure 4.30.: Simulated chord length estimate probability density functions for case A4.

The use of equation 4.22 results in more measurements obtained from the bubble sides, and,

consequently, strong smearing of the chordal length distribution occurs. Therefore this method is

not considered further. If equations 4.20 and 4.21 are used, the chordal length is calculated with

residence times obtained closer to the center of the bubble. The latter is, however, not necessarily

true for larger φ1 and for equation 4.20. Therefore, the use of equation 4.21 is preferred over

equation 4.20 for velocity distributions with large φ1.

Figure 4.30 shows the simulated chordal length probability density functions and compares

it with the range of 2b values encountered for the given shape oscillations. The ’expected’ prob-

ability density function for dc
c is also shown. It is based on the distribution of chord lengths that

are obtained for piercing at random radial position, accounting for the range of aspect ratios and

the fact that the region close to the bubble sides does not produce velocity realizations. Com-

parison of the ’expected’ distribution and the actual distribution of dc
c shows the overestimation

due to the oscillations and an underestimation of the true range of 2b. The distribution of dmax
c

produces the best match with the range of 2b. For all estimates, a wide distribution of dc is

obtained. This makes the measurement of an actual bubble diameter distribution more difficult.

4.4.2. Pseudo-2D column (Xue (2004))

Xue (2004) presents data for a pseudo-2D bubble column with relatively low gas fraction. The

small gas fraction and bubble size with deq=3.6 mm provides a reasonable match with the condi-

tions under which the various models for the simulated piercing were created. This is therefore a

good test for the reliability of the simulated predictions. Artificial piercing events are simulated

for the conditions under which this data was obtained: u=0.365 m/s (due to liquid circulation

in the column), deq=3.6 mm, the aspect ratio fluctuates between 0.4 and 0.8 with frequency

fosc=40 Hz. The latter values for the oscillations were obtained from observations in the cylin-

drical bubble column used in the present investigation. Due to the relative low gas fraction, the

bubble-bubble interaction is relatively small and the bubble motion is consequently modeled as

a zig-zag path with maximum angle 25◦ (Fan and Tsuchiya (1990), see also appendix A). The

bubble velocity direction varies sinusoidally in time. For each bubble, a random direction is
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Figure 4.31.: Comparison simulated piercing data and experimental data from Xue (2004) for
deq=3.6 mm.

picked from the sinusoidal distribution. During the piercing process the velocity direction is kept

constant to facilitate the computations. Shape oscillations, the drifting effect and deformations

are taken into account.

Figures 4.31(a) and 4.31(b) compare the results of the simulation and the results from Xue

(2004). The agreement for φ1 is quite good. This suggests that the model does a reasonable

job and that the shape of the distribution that is measured should be interpreted with care:

the tails are measurement artifacts, the location of the maximum of the distribution is altered

strongly by the measurement inaccuracies. The standard deviation of the simulated velocity

estimates (Figure 4.31(b)) is approximately a factor 0.6 smaller than the experimental standard

deviation. The difference can probably be contributed to the true variations in the velocity. This

indicates that a large part of the measured bubble velocity fluctuations are due to measurement

inaccuracies.

When the results of the simulation are considered, the agreement between the camera obser-

vations and probe measurements in Xue (2004) is surprising. A test with a pseudo-2D bubble

column with a depth of 1.3 cm shows that the movement of bubbles is strongly three dimensional,

and therefore the bubble inclination angle φ1 is generally not aligned in the plane of the cam-

era projection. Estimation of the angle φ1 using observations from a single camera is therefore

inaccurate (Rensen (2003)). For example, the projection of the velocity vector gives estimated

values φ′1 with the camera that are smaller than the actual values φ1. The reduction can be up

to a value 0.65, if a random angle φ2 is assumed. Bubbles with velocity vector aligned towards

or away from the wall will appear more rounded and the inaccuracy in φ′1 may increase further.

This may explain why Xue (2004) finds good agreement for φ1 whereas the simulations presented

in the current investigation indicate a larger inaccuracy.

4.4.3. Bubble identification

In the experimental signals, it is crucial to correctly match the bubble piercings for the various

fibers. The matching is performed in the following way (Figure 4.32). For each bubble pierced

by the central tip, a search is performed in the signals of the other tips for the bubble with the
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Figure 4.32.: Matching of bubbles detected with various fibers.
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Figure 4.33.: Effect of the extra validation on bubble output. Ug=0.034 m/s (α=17%), probe
aligned vertically in the center of the column.

arrival time closest to the arrival time for the central tip. For many interactions, not all of the

four fiber tips are pierced by the bubble. Consequently, an incorrect match will result (dashed

line in Figure 4.32). This incorrect match results in an erroneous velocity measurement. An

example is shown in Figure 4.33(a): the outliers are perceived by the probe as bubbles with φ1

in the range 60◦-110◦, with u<0.1 m/s. As a result, the estimation of velocities for relatively

slow bubbles with φ1 in the range 60◦-110◦ is complicated. For higher void fractions, the time

between the arrival of subsequent bubbles at the probe decreases and the range of outliers may

grow, further increasing the problem. For this reason, an extra check is performed on the bubble

pair. For the selected bubble in channel i a check is performed whether the matched bubble in

channel j is indeed the closest. If not, the measurement is discarded. This check is performed for

all possible channel combinations. The result is shown in Figure 4.33(b). This way, most of the

outliers are removed without affecting the correct measurements. Further improvements may be

obtained by selecting regions of interest for u and φ1 based on knowledge of the flow properties.

4.4.4. Accuracy in the cylindrical bubble column - effect of probe inclination

In the previous sections, the accuracy of the four point probe measurements was analyzed using

artificial signals. For the generation of the signals, models were used based on observations of
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Figure 4.34.: Rotation of probe.

probe-bubble interactions for small φ1. If φ1 is large, the bubble is not pierced perpendicularly

and the inaccuracies may be larger. In addition, the asymmetric piercing (Figure 4.24(a)) may

produce a bias in the average velocity direction. These effects are studied by measuring the

velocity distribution inside the bubble column with a four point probe rotated over an angle φp

in the x-z plane (Figure 4.34).

The use of φ1 and φ2 for the analysis of the average velocity estimate direction is impractical

for small φ1: if the mean of φ1 is nonzero, this does not necessarily mean that the average velocity

direction is non-vertical. Instead, two new parameters are used (see Figure 4.35(a)):

φx = φ1cos(φ2) (4.23)

φy = φ1sin(φ2) (4.24)

With these parameters, a plot of (φx,φy) gives a much clearer idea of the distribution of the

velocity direction with respect to the probe orientation. The line from the origin to (φx,φy)

has the same orientation as (ux,uy), and its length denotes the angle φ1. Measurements are

performed close to the center of the cylindrical bubble column, for Ug=0.034 m/s and uniform

gas injection. For these conditions no large scale structures are present, and therefore the average

bubble velocity vector has φ1=0◦, so φx=0◦ and φy=0◦. φp is varied in between -40◦ and +40◦.

The measured velocity vectors are transformed back to the laboratory frame of reference to check

the influence of φp.

First, the measurements for φp=0◦ are discussed. Figure 4.36 compares the velocity proba-

bility density function with the simulated piercing result from Figure 4.28 (drifting, deformation

and oscillation for case A4). This suggests that a large part of the variation in the velocity is due

to the shape oscillations of the bubble. Figure 4.35(b) shows the probability density function for

φx and φy for φp=0◦. The shape is clearly Gaussian and symmetric.

Next, φp is varied, the velocity vectors are transformed back and φx and φy are determined.

Since the rotation of the probe is performed in the x-z plane, only φx changes significantly. Figure

4.37(a) shows the probability density function for φx for very distinct values of φp. Whereas the

distribution is clearly symmetric for φp=0◦, it is skewed for φp 6=0◦ and its mean, µφx , nonzero.
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Figure 4.35.: (a) Definition of φx and φy. (b) Probability density function for φx and φy, φp=0◦.
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Figure 4.38.: Probability density function and mean for u for various probe inclinations.

The mean is shown as a function of φp in Figure 4.37(b). Approximately for φp > 0◦ we find

µφx > 0◦; for φp < 0◦ we find µφx < 0◦. This bias increases with |φp| for |φp|<40◦ and reduces

with |φp| for |φp|>40◦. The same effect is observed if the probe is rotated in another plane than

the x-z plane. The small offset observed in Figure 4.37(b) is, however, not reproduced in these

cases and is probably due to a small inaccuracy in the alignment or in the probe tip positions.

The observations suggest that there is an asymmetric drifting and/or deformation effect. For

the single fiber also an asymmetric drifting effect was observed (Figure 3.21, explained in Figure

4.24(a)), but with an opposite trend than observed here (movement of bubbles toward the fiber,

i.e. bias to smaller or more negative µφx for φp > 0◦). Therefore, the asymmetry is probably

produced by an asymmetric deformation effect. Apart from the small bias, no effect is observed

on the standard deviations σφx and σφy : these are almost identical and independent of φp (Figure

4.37(b)). The result suggests that the average velocity direction can be determined quite well,

and if the bubble ensemble has on average a non-vertical direction this can be measured.

The effect of φp on the velocity magnitude u is shown in Figures 4.38(a) and 4.38(b) (3D,
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Figure 4.39.: Path lengths of interaction for piercing under an angle φp.

CC curves). It is clear that the use of no curvature correction (’NOCC’) results in much smaller

values for µu than if curvature correction is employed, the offset is approximately constant. In

section 4.2.3 the improved accuracy obtained with curvature correction was discussed, for this

reason only results with this correction are discussed from this point. A bias in µu to smaller

velocities is observed for φp 6= 0, the standard deviation σu is almost independent of φp. This

bias in the mean is probably caused by a stronger deceleration of the bubble by the probe if

the fiber direction is not aligned with the bubble velocity. Moreover, if φp increases, the bubble

is hit by a second, and usually also a third tip before the last tip is hit. The instant when

this occurs, becomes earlier in time for a larger φp (decrease of l2 in Figure 4.39). Therefore,

more deceleration is obtained during the measurement. A maximum deceleration is obtained for

|φp| ≈ 40◦. For larger angle the bias decreases again. This can be explained with the more or

less constant duration of the interaction (constant l1) for 0◦ < |φp| < 40◦. For |φp| > 40◦ l1
rapidly drops, leaving less time for drifting and deformation effects, and the bias reduces. The

bias is investigated in more detail by determining the correlation between φ1 and the velocity

(Figure 4.40(a)). For a measurement with given φp, the mean velocity uφ1,i
is determined for

the measurements with φ1,i − ∆φ1 < φ1 ≤ φ1,i + ∆φ1. ∆φ1 is taken as 5◦. Values for uφ1 are

determined for φp=-76◦, -62◦, -41◦, -20◦, 0◦, 20◦ and 40◦. The trends in uφ1 are very similar to

the trend in µu(φp) and are therefore clearly for a large part a measurement artifact. This shows

that it is not possible to investigate weak variations of the velocity with φ1.

Not only the inaccuracy in φ1 and u obtains a maximum value for bubbles approaching

the probe with an angle of 45◦ (|φp| ≈ 45◦), but also the amount of rejected bubble piercings

has its maximum value for bubbles traveling under this angle (Figure 4.40(b)). Finally, Figure

4.40(c) compares the relative underestimation for the velocity with that of the bubble chord

length (with respect to the measurement at φp = 0◦). This shows that for |φp| ≤ 40◦ the

relative underestimation of the chord length is about half of that of the velocity: part of the

underestimation due to the deceleration cancels due to the longer residence time. The results

show that, although the probe can measure bubbles coming from angles in the range 0-90◦, a bias

occurs which is dependent on the direction of the bubble. The performance for a probe under

90◦ seems actually relatively good. This suggests a very interesting application of the probe,

where both positive and negative axial bubble velocities can be measured reasonably accurately.
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1D algorithm vs 3D algorithm

A comparison between the results of the 1D algorithm (equations 4.1 and 4.3) and the 3D

algorithm is made. A first test with both experimental and simulated signals shows that the use

of either equation 4.1 or equation 4.3 gives no significant differences if the same type of curvature

correction is used. For this reason, equation 4.3 is used from this point on.

Figure 4.38(b) also shows the velocity estimate obtained with the 1D algorithm (βu = 0.1).

Due to the large spread in velocity directions, there are always some bubbles that pierce the

probe in its axial direction (for |φp| up to 40◦) and sufficient bubbles remain after selection in the

case of the 1D algorithm. Figure 4.40(a) suggested earlier that the velocity has at most a weak

dependence on the bubble velocity direction. Consequently, the velocities measured using the

1D algorithm are more or less independent of φp and are very close to the curvature corrected

3D measurements for small φp. Therefore, it seems that the 3D algorithm provides no significant

improvement over the 1D algorithm if one is only interested in the velocity magnitude and/or

bubble diameter and if the technique is applied in flows where there is a preferential direction

of movement for the bubbles and no significant correlation between the velocity magnitude and

direction occurs. For flows where this is not the case, the 3D algorithm should be used.

4.4.5. Gas fraction accuracy

If the void fraction is estimated using a single fiber probe generally a net underestimation is

obtained (Chapter 3 and Barrau et al. (1999)), for the stretched fiber type typically around 10%.

The overestimation by the deceleration of the bubble by the interaction with the fiber is smaller

than the underestimation caused by the deformation and other interaction effects. If a four

point probe is used, however, the deceleration is enhanced by the upper three tips. Xue (2004)

compares void fraction measurements of Computed Tomography and a four point probe, and

find agreement within ±15%. Guet et al. (2003) present void fraction measurements of a single

fiber probe and a four point fiber probe. The four point fiber probe gives about 10-15% higher

void fraction estimates than the single fiber probe. These results suggest that at least partially

the underestimation and overestimation effects cancel, thus the intrusive effects observed do

not make the four point fiber probe technique unsuited for void fraction measurements. The

accuracy, however, will be dependent on, for example, the bubble size.

4.4.6. Improvement of the four point probe technique

The previous analysis considered the various factors responsible for the inaccuracies in the bubble

properties if the four point probe technique is used. The inaccuracy in the velocity magnitude

and orientation distribution and the diameter distribution can be quite big, especially for the

lower bubble velocity (around 0.2 m/s) encountered in the bubble column. A large part of the

inaccuracy is dominated by the shape oscillations. Of course, these shape oscillations cannot

be altered and therefore the improvements that can be achieved are limited. Unfortunately,

the frequency of these shape oscillations is very unfavorable (section 4.2.4), and therefore a

change in the probe dimensions (∆s and dp) will probably not give improvements. A smaller

probe (reduction of ∆s) could even increase the inaccuracy due to higher mode oscillations. The

results in Figure 4.38(b) (for φp=90◦) suggest that the size reduction could reduce the effect
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of deformations and drifting somewhat. This would have a positive effect on e.g. the bias in

the mean of the velocity. A larger probe (increase of ∆s) could in theory average out some of

the fluctuations due to shape oscillations, but in the bubble column these oscillations are less

periodic and the larger scale would increase the total piercing time. This would provide more

time for the probe-bubble interactions to deform the bubble or alter the velocity (direction) of

the bubble.

Some improvement may be expected if thinner fibers are used. This would reduce the mag-

nitude of the forces involved in the probe-bubble interaction. Especially the measurement of

bubbles traveling under a relatively large angle with the bubble may benefit. Since the stiffness

of the probe decreases with the diameter, glass is a preferred material over plastic fibers, since the

position of the tips has to be known with a high precision. The thinner fiber may be achieved by

either using fibers with smaller diameter (e.g. with a core diameter of 50 µm) or etching of fibers

with larger diameter (with core diameters of 100-200 µm). Etching (e.g. Wong et al. (2002),

Buchholz and Auracher (2002)) would also allow for better defined and more reproducible tip

shapes, facilitating the measurement of an accurate piercing time. If a 3C (Cone-Cylinder-Cone)

tip shape (like Cartellier and Barrau (1998b)) would be used, additional axial velocity component

information can be obtained from the rise-time of the signal: eight arrival times are available

instead of four. This extra information may be used to improve the accuracy of the technique.

A first test shows that the width of the velocity distribution may be significantly reduced. Some

improvement may also be obtained with a coating on the fiber (except the active part). This

way the contact angle may be increased, reducing the deformation of the bubble. Finding an

optimal contact angle is difficult, however, since the inclination of the interface with respect to

the probe and therefore the deformation varies strongly with the velocity direction and radial

piercing position.

Considering the difficulties associated with the improvement of the accuracy of the four point

probe technique, it would be interesting to test endoscopic methods for the measurement of e.g.

the bubble size and aspect ratio. With this technique, local probe-interaction effects play a

much smaller role and horizontal dimensions can also be determined. However, image processing

for bubbles in dense flows is difficult and the flow around the imaging device could be altered

strongly, making it probably less suited for, e.g., the analysis of the velocity vector orientation.

4.5. Conclusions

The inaccuracy of the estimation of velocity magnitude and direction in a bubble column with

a four point optical probe has been investigated via experiments and simulations of modeled

piercing. The simulations indicate that the errors due to inaccuracies in probe geometry are

much smaller than other inaccuracies. If the probe pierces a curved interface, curvature correction

is required to get accurate estimates. This correction should be based on the average bubble

shape that is encountered, also in the case of dynamic shape oscillations. The best choice for

a curvature correction criterion is therefore probably based on an ellipsoidal shape. Deviation

from the ellipsoidal shape due to shape oscillations cause inaccuracies in the velocity magnitude

estimate of typically 5%. If these shape oscillations have high frequencies (typically 40 Hz),

this inaccuracy increases to typically 10%. Aspect ratio oscillations produce even larger errors:



110 Chapter 4. Bubble velocity and size measurement using a four point optical fiber probe

typically 20% of the velocity magnitude, and are therefore the dominant error source. The

most important probe-bubble interactions are the drifting effect and deformation of the bubble.

These effects create significant inaccuracies in the estimate of the velocity direction. Analysis of

the total error shows that the magnitude of bubble velocity fluctuations should be interpreted

with care: a large part of the fluctuations can be due to measurement inaccuracy. The typical

uncertainty in the velocity angle φ1 is around 20o. This means that for individual bubbles the

velocity direction estimate is not very precise. Nevertheless, the mean direction of a large number

of bubbles can be estimated quite accurately, although for non-vertical movement a bias exists

towards larger φ1 values. It obtains a maximum value around φ1=45◦. A bias exists for the

velocity magnitude as well: for bubbles that do not move in the probe’s axial direction the

velocity is underestimated, the underestimation increases with φ1. Possibilities for improvement

of the probe technique are discussed: an increase in the accuracy is expected if thinner fibers are

used, nevertheless the dominant error due to shape oscillations cannot be avoided.

List of symbols

Roman symbols

~a,~b vectors for calculating the drift effect -

a bubble semimajor axis length m

aspectratio time dependent aspect ratio -

b bubble semiminor axis length m

b+, b− constants defining bubble shape m

bφ1 strength of the fluctuations of φ1 rad

dc
c bubble chord length calculated from T0 m

dmax
c bubble chord length calculated from maximum residence time m

deq equivalent bubble diameter m

dp radial distance between central tip and other tips m

d̂b initial bubble size estimate m

Fprobe force of probe acting on the bubble kg m s−2

flamb Lamb oscillation frequency s−1

fosc bubble oscillation frequency s−1

k Lamb oscillation mode -

l chordal piercing length m

N number of (artificial) measurements -

p probability density function φ1 rad−1

R tip radius of curvature m

r′ radial position of piercing m

T residence time s

Tcorrect curvature correction s

T ∗
r dimensionless residence time difference -

T ∗
r,max dimensionless residence time difference selection threshold -

t time when tip is hit s

tfirst instant when the first tip touches the interface s
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Ug superficial gas velocity m s−1

u velocity m s−1

x, y, z coordinates in probe frame of reference m

x′, y′, z′ coordinates in bubble velocity frame of reference m

x′p piercing coordinate m

Greek symbols

α probe-bubble impact angle rad

αd local surface inclination with respect to the bubble major axis rad

βt selection criterion based on time of flight -

βu selection criterion based on velocity -

∆l distance tip to the interface when tip 0 enters the bubble m

∆l′ ∆l plus deviation due to tip shape m

∆s axial distance between central tip and other tips m

∆t time of flight s

δ inaccuracy various

δrt random tip displacement for error analysis m

µ mean various

ρc liquid density kg m−3

σl surface tension kg s−2

σ standard deviation various

φ1 angle between probe axial direction and velocity vector rad

φ1,max maximum for φ1 rad

φ2 angle of projection of the velocity vector on the xy plane to the

x-axis

rad

φc angle where bubble is pierced rad

φd drift angle rad

φosc bubble oscillation phase rad

φp probe inclination angle rad

φx bubble velocity angle rad

φy bubble velocity angle rad

Subscripts

deform due to deformation effect

no deformation due to shape oscillation

i tip index

j (artificial) measurement index

t tip

tr tip with error in location
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5. Estimation of power spectra of LDA signals
in bubbly flows 1

The accuracy of the estimation of turbulence power spectra from Laser Doppler Anemometry

(LDA) signals obtained in bubbly flows is studied. Special attention is paid to the effect of the

random sampling and the gaps in the signal created by the bubbles. Suitable signal processing

techniques to deal with these effects are selected. Next, the influence of the local flow field around

the bubbles on the power spectra is investigated, and the techniques to reduce this influence are

evaluated.

5.1. Introduction

The hydrodynamics of bubbly flows are characterized by a wide range of scales. First, (pseudo)-

turbulence is found at the scale of the bubble diameter and at smaller scales, caused by the flow

around the bubbles and the wakes of bubbles. At the same time, density gradients generate

vortical structures at the scale of the equipment diameter, while turbulent cascade processes

break down the vortices to smaller scales. The understanding of these processes in bubbly flows,

such as found in bubble columns, is still incomplete. The measurement of accurate turbulence

power spectra of the liquid velocities in these flows will help in the understanding of the interplay

of all these phenomena. Accurate estimates of the slopes in the power spectra can give more

information on the nature of the cascade process, and, e.g., the influence of large scale structures

on this process. In literature different values for the slope are reported (-8/3 in Lance and Bataille

(1991), -5/3 in Mudde et al. (1997a)), but little attention is paid to accuracy, in particular possible

bias sources in the signal processing.

The most commonly used techniques for measurement of the liquid velocity in bubbly flow are

Laser Doppler Anemometry (LDA), Particle Image Velocimetry (PIV) and hot film anemometry.

Particle Image Velocimetry has limited temporal resolution, and is limited to small equipment

scales and/or very low void fractions due to the restricted optical access. Hot film anemometry,

on the other hand, has sufficient temporal resolution, is not limited to measurements in small

equipment or small distances to the wall, but disturbs the flow and the bubbles. In addition,

its signal processing is complicated, since bubble signatures need to be removed from the signal

(Rensen et al. (2005)). LDA has the advantage that the flow is not disturbed, and the technique

does not require removal of velocity realizations due to the bubbles, since the velocity realizations

are originating predominantly from the liquid seeding (Mudde et al., 1997a). LDA has limits with

respect to the optical accessibility: the laser beams can be blocked by the bubbles. However,

1Parts of the sections 5.1-5.7 have been published as W.K. Harteveld, R.F. Mudde and H.E.A. van den Akker,
"Estimation of turbulence power spectra for bubbly flows from Laser Doppler Anemometry signals", Chem.
Eng. Sci. (60), 2005, pp. 6160-6168
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compared to PIV it has a higher temporal resolution and measurements are possible up to

relatively high void fractions and larger equipment scale.

For the estimation of power spectra from LDA velocity signals, however, particular difficulties

in the signal processing are encountered. First, noise levels are relatively high due to the small

amounts of light detected. Furthermore, the signal is randomly sampled, which is due to the

random distribution of seeding particles.

Consequently, no obvious equivalent to the Discrete Fourier Transform is available as a com-

putational algorithm. For single phase flows, a wide range of estimators has been developed

over the years to deal with the random sampling. Several classes of techniques can be identi-

fied. A first class reconstructs the signal and resamples it equidistantly. This is usually done

with interpolation techniques, e.g. Sample and Hold (Adrian and Yao, 1987) or the Shannon

algorithm (Veynante and Candel, 1988). An overview of reconstruction techniques is presented

by Britz and Antonia (1996). The reconstruction is followed by spectral estimation employing

the periodogram (i.e. the FFT) or nonlinear spectral estimation. Another class employs a slot

correlation (Benedict et al., 2000) followed by a cosine transform. The approach taken by Van

Maanen and Oldenziel (1998) is to fit a general model to the slot correlation coefficients; the

estimated power spectrum is the Fourier transform of the fitted model. In addition, estimation

via time series analysis has been extended for non-equidistant data (Bos et al. (2002)). The final

class of techniques comprises the Lomb-Scargle method (Lomb, 1974; Scargle, 1989) which orig-

inates from astrophysics. This technique was especially developed for the estimation of narrow

peaks in the power spectrum and is not suited for the estimation of the distribution of power over

the frequencies (Broersen et al., 2000). For this reason, this latter technique is a poor choice for

the estimation of turbulence spectra and is not considered further in the present investigation.

In the case of bubbly flow, the random sampling is further complicated by the presence of

the bubbles (Figure 5.1). The measurement volume only exists if none of the laser beams is

blocked by a bubble. This results in the creation of large gaps in the data, which may influence

the properties of the signal processing. Moreover, this gives a decrease in the data rate (see

appendix D), increasing the variance and making the higher frequency information in the power

spectrum less reliable. At the moments when a bubble crosses the measurement volume, the

liquid velocity is not defined, which raises philosophical questions to the interpretation of the

power spectrum. At distances beyond 1-2 bubble diameters from the wall, most gaps, however,

originate from blocking at other locations than the measurement volume.

The multiple reflection of the laser beams by bubbles behind the measurement volume, com-

bined with the use of the backscatter mode results in relatively high noise levels for LDA in bubbly

flow. The passage of the bubbles near or through the measurement volume generates additional

liquid velocity fluctuations which add power the spectrum, especially at higher frequencies. The

study of the cascade of large structures in the flow to smaller structures is complicated by these

fluctuations.

The present work investigates the problems encountered when calculating power spectra for

measurements obtained using LDA, paying particular attention to (i) the effects and problems

introduced by the presence of the bubbles generating gaps in the data and (ii) the effect of the

velocity fluctuations due to the local flow around the bubbles on the spectra. Various signal

processing techniques are compared and their suitability for application to signals obtained in

bubbly flows is studied. The approach taken is to generate synthetic signals with known spectra,
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laser

beams

l

Figure 5.1.: LDA in bubbly flow.

which are randomly sampled using a Monte Carlo technique mimicking the sampling process in a

bubbly flow. Finally, techniques are considered for the removal of the velocity realizations which

contain the strongest contributions of the local flow around the bubbles.

5.2. Generation of synthetic signals of LDA in bubbly flow

In order to study the performance of the spectral estimators, synthetic data is required which has

typical properties of the real bubbly flow signals. An equidistant velocity time series with a known

turbulent power spectrum is generated at a high frequency. This is obtained by convolution of

white noise with the impulse response of a digital low-pass filter with specified power spectrum.

Next, the passage of seeding particles with a specified particle rate Ṅp is simulated by generating

random particle arrival times ti. The random intervals between the arrival of particles have a

Poisson distribution, and are generated with ∆tp = − 1
Ṅp
ln(RND). RND is a random number

uniformly distributed between 0 and 1. The velocity ui at the time ti is determined from the

high-frequency equidistant velocity time series via interpolation.

Next, the passage of bubbles is simulated. Two laser beams are considered. These originate

from a backscatter probe with focal length 35 cm and beam distance 5 cm before the lens. The

beams pass through a transparent wall to form a measurement volume at a distance l from the

wall inside the bubbly flow (see Figure 5.1). For each instant ti, the algorithm determines whether

any of the laser beams is blocked by a bubble (more details can be found in appendix A). Around

the laser beams and the measurement volume, a control volume is considered. Virtual bubbles

are inserted at random positions at the bottom of the control volume, at random times with

intervals which have a Poisson distribution. The void fraction α is assumed constant throughout

the flow. In order to obtain a realistic bubble blockage duration distribution, the motion and

shape of the bubbles is modeled in detail. Each bubble has an ellipsoidal shape with equivalent

diameter of 4.5 mm and aspect ratio of 0.65. The bubble follows a zig-zag trajectory with

a velocity of 0.2 m/s. The rocking angle of the bubble varies sinusoidally with time, with a

maximum of 25◦ (based on Fan and Tsuchiya (1990)). The minor axis of the bubble is parallel

to its path, consequently its path is specified by the time evolution of the rocking angle. The

initial phase and plane of zig-zag motion is chosen randomly for each bubble. Possible blockage

of the laser beams by a bubble is determined for each bubble by determining the intersections of

the bubble surface and the lines that follow the undisturbed laser beam paths. If an intersection
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is found between the wall and the measurement volume at the time ti, the velocity realization

(ti, ui) is removed from the series.

The present technique generates signals with a realistic distribution of the data arrival times.

The properties of the artificial velocity signal that is obtained correspond to a certain extent to

those found in true bubbly flow signals. In sections 5.3-5.8 the local flow around the bubble is not

included in the model. It is included in the sections starting from 5.9. In addition, the fact that

the liquid velocity signal is actually not defined when the bubbles cross the measurement volume

is not taken into account. The signal does, however, have well-defined statistical properties

that allow an accurate evaluation of the estimated spectra and the performance of the signal

processing techniques with respect to the non-equidistant nature of the signals. In addition, the

shapes of the chosen spectra resemble those reported in, e.g., Groen (2004).

5.3. Sample and Hold technique

A commonly applied technique is to reconstruct the signal with the use of interpolation tech-

niques, and resample it at equidistant time intervals at a high frequency. Standard FFT tech-

niques can subsequently be applied for the estimation of the power spectrum. The most common

reconstruction technique is the zeroth-order interpolation or Sample and Hold (S&H) method.

The method is illustrated in Figure 5.2. A stationary, zero mean velocity record u(t) is con-

sidered, which is sampled randomly at intervals tk. The reconstructed signal r(t) is obtained

via the Sample and Hold reconstruction technique: the sampled value obtained at tk is kept

constant until tk+1. Next, equidistant resampling is performed with frequency fe. This means

that r(ti) = u(tk) for tk ≤ ti < tk+1 and ti = iTe (Te = 1/fe).

The work by Adrian and Yao (1987) investigated the effect of the reconstruction with S&H

on the power spectra. For data with Poisson distributed interarrival times (encountered in single

phase flows without velocity bias) they arrived at the following expectancy for the spectrum:

E[Ŝ(f)] =
1

1 + f2/(Ṅp/2π)2

(

S(f) +

∫ ∞

0
R′(τ)e−Ṅpτdτ

)

(5.1)

with Ŝ(f) the estimated power spectrum, S(f) the true power spectrum, Ṅp the particle rate,

i.e. the mean number of particles passing the measurement volume per unit time and R(τ) the

autocovariance function of the velocity series. The effect of the reconstruction is the addition

of white noise (so called ’step noise’, the second term in the brackets) and a low-pass filtering

operation with low pass cut-off frequency of Ṅp/(2π). This results in a redistribution of energy

from high frequencies to low frequencies. Consequently, the shape of the power spectrum is no

longer reliable for f > Ṅp/(2π), and the absolute values are unreliable for the entire frequency

range. This indicates that for bubbly flows, where the particle rate Ṅp is relatively low, only the

shape of the power spectra can be estimated up to relatively low frequencies.

Correction technique

Equation 5.1 suggests that if the step noise level and the particle rate are known, it is possible to

get an unbiased estimate of the power spectrum via a correction method. Nobach et al. (1998a)
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Figure 5.2.: Sample and Hold reconstruction technique.

and Simon and Fitzpatrick (2004) present techniques to perform this correction. Nobach et al.

(1998a) correct the autocovariance function that is obtained via S&H reconstruction. This was

one of the two recommended techniques in the overview of a benchmark of spectral estimators

presented by Benedict et al. (2000). Simon and Fitzpatrick (2004) directly correct the biased

power spectrum estimate. For discrete time signals resampled with frequency fe (which may be

freely chosen) the Power Spectral Density function (PSD), of the reconstructed signal is given

by:

Srr(fk) = |L(fk)|2(Suu(fk) + Sss) (5.2)

with fk = fek/Nf , k ∈ [0, Nf − 1] (Nf is the number of Discrete Fourier Transform (DFT)

points), where Suu(f) is the PSD of the original signal u(t) and Sss the step noise. For discrete

signals, a slightly different low-pass filter is obtained than the result by Adrian and Yao (1987).

If the arrival of velocity realizations occurs randomly, i.e. the arrival times are a homogeneous

Poisson process, the expression for the low-pass filter is given by (Simon and Fitzpatrick, 2004):

|L(fk)|2 =
TeṄp

2

1 − e−2TeṄp

1 − 2cos(2π k
Nf

) + e−TeṄp + e−2TeṄp
(5.3)

provided fe = 1
Te

� 2fmax, where fmax is the maximum frequency for which we want to estimate.

Using the fact that the variance of the original signal u(t) and the reconstructed signal r(t) are

identical, the step noise can be estimated with (Simon and Fitzpatrick, 2004):

Ŝss =
1

Nf





Nf−1
∑

k=0

Srr(fk)

|L(fk)|2
−

Nf−1
∑

k=0

Srr(fk)



 (5.4)

A corrected PSD can be estimated with:

Scc(fk) =
Srr(fk)

|L(fk)|2
− Ŝss (5.5)
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Figure 5.3.: Results of correction procedure for artificial signals. 300000 velocity samples, Ṅp =
100Hz, fe = 104Hz, Nf = 16384

The performance of the correction is illustrated with an artificial signal. Reconstruction of

the irregularly sampled signal is performed using the Sample and Hold technique. The PSDs are

calculated with the periodogram (Welch window, 50% overlap and no zero padding). An example

is shown in Figure 5.3. The shape of the PSD without correction is not reliable above the cut-off

frequency of 16 Hz, and the PSD level below this frequency is not reliable due to transfer of

energy from high to low frequencies by the Sample and Hold energy redistribution. The PSD

with correction, however is reliable up to approximately Ṅp, which is a significant improvement.

Dead time and multiple validation

Application of this method to bubbly flow has a number of complications. The use of equation

5.3 requires an accurate estimate of the mean data rate Ṅtot. Ṅtot, the mean data rate, is the

average number of velocity realizations that is acquired per unit time. It may differ strongly from

the mean particle rate Ṅp, i.e. the number of particles passing the measurement volume that can

scatter enough light for detection. Possible causes for the difference are multiple validation, a

dead time in the processor (Nobach et al. (1998a)) and the presence of bubbles. The influence of

the multiple validation and dead time on the correction technique is investigated in the present

section. The effect of the bubbles is investigated in subsequent sections.

The effect of dead time and multiple validation is simulated. The dead time is realized

by removing all bursts which follow a previous burst within a time interval with length Tdead.

Multiple validation is simulated by insertion of extra velocity realizations for some of the bursts.

If RND < Pmv, the burst located at tk is replaced by a burst pair located at times tk −∆Tmv,k

and tk +∆Tmv,k. Both have velocity u(tk), the effect of increased noise levels is ignored. RND is

a random number with uniform distribution between 0 and 1, Pmv is the probability of multiple

validation and ∆Tmv,k = |σmvG|, with ∆Tmv,k < Tk+1−Tk, and ∆Tmv,k < Tk −Tk−1. σmv is the

time scale over which multiple validation is important and G is a random number with Gaussian

distribution, standard deviation 1 and zero mean.

An example of the data interarrival time distribution with dead time and multiple validation
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Figure 5.4.: Data interarrival time distribution for artificial multiple validation and dead time.
Tdead = 0.1ms, σmv = 0.5ms, Pmv = 0.3. Data rate with multiple validation is 618
Hz, particle rate is 500 Hz.

is shown in Figure 5.4, the multiple validation is visible at intervals shorter than 1 ms. The effect

on the estimated PSD is shown in Figure 5.5. If the correction is performed using the data rate

Ṅtot with multiple validation (618 Hz) there is significant bias: the slope of the PSD is estimated

incorrectly, as was mentioned by Nobach et al. (1998a). An estimate of the true particle rate (500

Hz) can, however, be obtained from a fit to the data interarrival time distribution for intervals

where the multiple validation does not affect the distribution (Figure 5.4). If the correction is

performed using this true particle rate (500 Hz), the result is close to that of the time series

without multiple validation. This is probably caused by the fact that only very short intervals

are perturbed, which affect frequencies outside the range of interest. Once a larger range of

intervals is perturbed, the bias in the PSD estimate increases. The effect is similar to that of an

inaccurate arrival time estimate.

5.4. Data interarrival time distribution for bubbly flow

If bubbles are present, the blockage of laser beams results in relatively large gaps in the time

series. The deviation of the data interarrival time distribution from the Poisson distribution can

become large. The time intervals that are affected are much larger than in the case of multiple

validation, and, consequently, relatively low frequencies are affected. The modifications in the

data interarrival time distribution by the presence of bubbles are studied below.

As a first approximation, a single beam is considered and the bubbles are assumed to give

identical blockage durations Td. Bubbles arrive randomly at the laser beam with an average

interarrival interval Ta. Before the blockage by bubble i ends, bubble i + 1 may arrive and the

blockage continues, etcetera. A blocking event with total blockage time Tbt results. Examples of

the distribution of Tbt are shown in Figure 5.6(a). The shape of the blockage time distribution is

characterized by P (Tbt) = f(Tbt
Td
, Ta

Td
). A sharp peak of single bubble blockage events is located at

Tbt = Td, for Tbt
Td

> 2 the distribution has the shape exp(−Tbt
Td
fo(

Ta
Td

)). These are the overlapping
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Figure 5.5.: Effect of multiple validation (MV) on spectral estimation.

bubbles. The length of the overlapping event scales with the individual blockage duration Td. If

the ratio of the average interarrival time and the blockage duration Ta/Td decreases, the amount

of overlapping increases and the length of the overlapping events increases. This trend is given

by fo(
Ta
Td

), which is shown in Figure 5.6(b). Consequently, the slope decreases if e.g. the void

fraction is increased. The ratio of the number of blocking events and the number of bubbles

crossing the laser beam is shown in Figure 5.6(c).

Similar to the case of the random arrival of particles, the probability of a short interval in

between two blockage events is relatively large. If the particle rate with LDA is relatively low,

the probability that no seeding particle arrives during this interval is large. Consequently, the

length of the intervals without bursts are generally longer than the blockage durations due to

the bubbles. The effect of the combination is shown in Figure 5.6(d). The strong overlap of

the blockage duration distribution and the particle interarrival time distributions result in the

smearing of the peak and different slopes than for particles or bubbles alone. Exponential decay

with two slopes and a bend are obtained. The slope for long intervals (∆T > 2Td) decreases,

the slope for short intervals (∆T < Td) increases. The change in slope decreases with increasing

particle rate and decreasing bubble rate. The presence of bubbles makes estimation of the particle

rate from the distribution of the data interarrival times, therefore, difficult.

In the case of bubbles, the blockage duration Td is not constant, but dependent on the position

of the bubble. Figure 5.7 shows the data interarrival time distributions obtained with Monte

Carlo calculations. This shows that a similar shape as in the case of the simplified model is

obtained. The probability density function p(∆T ) can be approximated by

p(∆T ) = Ae−Ṅ1∆T +Be−Ṅ2∆T (5.6)

where A
Ṅ1

+ B
Ṅ2

= 1 and A
Ṅ2

1

+ B
Ṅ2

2

= 1
Ṅtot

with Ṅtot the data rate of the signal with the bubbles. We

pose Ṅ1 > Ṅ2. The complex interaction of the blockage duration distribution and the particle

interarrival time distribution at the measurement volume makes it difficult to provide a simple

model for A, B, Ṅ1 and Ṅ2. For this reason, these parameters are determined from the Monte
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Carlo simulation results.

Not only the probability distribution of the data interarrival time is altered by the presence of

the bubbles, but also the probability of having a velocity realization in the interval {τ, τ+dτ} after

the previous arrival of a data point. This probability is shown in Figure 5.8 for a bubbly flow and

for random arrival of particles (with Poisson distributed interarrival times). Due to the bubbles,

the probability that more velocity realizations are obtained shortly after the acquisition of a

previous realization, is larger than for the case of random acquisition of the velocity realizations

(i.e. the single phase case).

These changes in the statistics of the arrival times of velocity realizations modify the effect of

the reconstruction step on the power spectra and also affect the correction procedure. The next

section investigates these effects.

5.5. Influence of bubbles on the spectral estimation employing
Sample and Hold reconstruction

The effect of the bubbles on the spectrum can be evaluated if the spectrum is calculated after

resampling of the signal using Sample and Hold. Adrian and Yao (1987) evaluate the effect for

random arrival times with a Poisson distribution. A similar approach is followed here for arrival

times with extra gaps due to the bubbles.

The irregularly sampled signal u(ti) is reconstructed using the Sample and Hold technique.

The effect of the reconstruction on the signal properties can be analyzed by investigating the

autocovariance function of the resampled data RR(τ) and expressing it in terms of the original

autocorrelation function Ruu(τ) (which is equal to E[u(t1)u(t2)]).

RR(τ) = E[uR(t1)uR(t2)] = E[u(ξ0)u(ξn)] (5.7)
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with τ = t2 − t1. u(ξ0) is used to reconstruct uR(t1), u(ξn) is used to reconstruct uR(t2) (Figure

5.9). n is the number of measured data points in the interval [t1, t2], n ≥ 0. We have

RR(τ) = P1point(τ)Ruu(0) +

∫ ∞

0
Ruu(η)fmulti(η, τ)dη (5.8)

with P1point the probability that n=0: a single point ξ0 is used to reconstruct both uR(t1) and

uR(t2). fmulti(η, τ)dη is the probability that two different points are used for the reconstruction

for given τ , i.e. n ≥ 1, with interval η = ξn − ξ0.

For LDA in bubbly flow, the distribution of the time between subsequent velocity realizations

of the unevenly sampled data p(∆T ) is modeled with equation 5.6. P1point(τ) is given by the

probability that no particle arrives during the interval [t1, t2]:

P1point(τ) = Ṅtot

∫ t1

−∞

∫ ∞

t2

p(ξ1 − ξ0)dξ1dξ0 = Ṅtot[
A

Ṅ2
1

e−Ṅ1τ +
B

Ṅ2
2

e−Ṅ2τ ] (5.9)

fmulti(η) is given by

fmulti(η, τ) =

∞
∑

n=1

f(n)(η, τ) (5.10)

where f(n)(η, τ)dη is the probability that exactly n particle(s) are present in the interval [t1, t2]
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with η = ξn − ξ0 for given τ . For a Poisson process, the probability of finding a particle at a

time ξ is independent of what events preceded this time. This is, however, not the case with

the particle interarrival time distribution in equation 5.6. Due to the bubbles, the probability

of finding new particles is larger shortly after the arrival of a particle than at a random moment

in time (see also Figure 5.8). Therefore, the probability of finding a particle at time ξn depends

on ξn − ξ0 and ξn − t1. In total, n particles arrive during the interval [t1, t2] with arrival times

ξi (i = 1..n) where we have ξ0 < t1 < ξ1 < ξ2 < ... < ξi < ... < ξn. The probability that this

occurs is given by

f(n)(ξ0, ξ1, .., ξi, .., ξn)dξ0dξ1..dξi..dξn =

Prob(particle arrival during [ξ0, ξ0 + dξ0]) × Prob(interval of length ξ1 − ξ0) × ...×
Prob(interval of length ξi − ξi−1) × ...× Prob(interval of length ξn − ξn−1)×
Prob(interval with length > t2 − ξn) =

Ṅtotdξ0p(ξ1 − ξn + η)dξ1..p(ξi − ξi−1)dξi..p(ξn − ξn−1)pno(t2 − ξn)dξn

(5.11)

with pno(∆T ) the probability of no velocity realization during a time ∆T after arrival of a

particle:

pno(∆T ) =

∫ ∞

∆T
p(∆T ′)d∆T ′ =

A

Ṅ1

e−Ṅ1∆T +
B

Ṅ2

e−Ṅ2∆T (5.12)

The conditional probability density function for n particles that the points t1 and t2 are recon-

structed from two points with lag η is obtained by integrating over all the possible combinations

that generate this lag:

f(n)(η, τ) = Ṅtot

∫min(t1+η,t2)
t1

pno(t2 − ξn)
∫ ξn

t1
..
∫ ξi+1

t1
..
∫ ξ2
t1
p(ξ1 − ξn + η)..

p(ξi − ξi−1)..p(ξn−1 − ξn−2)p(ξn − ξn−1)dξ1..dξi..dξn−1dξn
(5.13)

The actual integration of equation 5.13 is complicated. For this reason, only part of the

solution is presented here: combination of equations 5.8, 5.9, 5.10 and 5.13 yields

RR(τ) = AṄt

2Ṅ1

∫∞
−∞Ruu(η)e−Ṅ1|η−τ |dη + BṄt

2Ṅ2

∫∞
−∞Ruu(η)e−Ṅ2|η−τ |dη

+AṄt

Ṅ2
1

e−Ṅ1τ
∫∞
0 R′

uu(η)e−Ṅ1ηdη + BṄt

Ṅ2
2

e−Ṅ2τ
∫∞
0 R′

uu(η)e−Ṅ2ηdη + cross terms
(5.14)

and
Srr(f) = AṄt

Ṅ2
1

1
1+f2/(2πṄ1)2

[

Suu(f) +
∫∞
0 R′

uu(η)e−Ṅ1ηdη
]

+BṄt

Ṅ2
2

1
1+f2/(2πṄ2)2

[

Suu(f) +
∫∞
0 R′

uu(η)e−Ṅ2ηdη
]

+ cross terms
(5.15)

Ignoring the cross terms, we see that the combination of seeding and bubbles results in an

additive white noise component followed by low pass filter operation, similar to the results by

Adrian and Yao (1987) for a Poisson process. In the present case, however, two different white

noise terms are found and two second order low pass filters operate on the spectrum, one with

cutoff frequency Ṅ1/2π and another with (lower) cutoff frequency Ṅ2/2π. The difference between

these frequencies increases with α, l and the particle rate. The relative influence of each filter is

dependent on the values of A,B, Ṅ1 and Ṅ2. Nevertheless, the second term (with Ṅ2) is usually

dominant for the lower frequencies. The effect will be demonstrated with examples.
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If the analysis of Adrian and Yao (1987) would hold, one would expect (i) a single cutoff

frequency around Ṅtot/2π due to the signal processing and (ii) that the shape of the spectrum

will be reliable up to higher frequencies by increasing the data rate Ṅtot. Figure 5.10(a) shows the

spectrum for a bubbly flow with a white noise signal and α = 0.1 and l=0.02 m (the equivalent

bubble diameter is 4.5 mm for all artificial signals in this chapter), where the particle rate Ṅp is

increased from 100 Hz to 1000 Hz. For Ṅp=1000 Hz the two cutoff frequencies are clearly visible.

The first cutoff frequency (at Ṅ2/2π) is clearly located at a lower frequency than Ṅtot/2π, the

difference increasing for increasing Ṅp. An increase of the particle rate Ṅp (and therefore Ṅtot)

with a factor of 10 produces an increase in the lower cutoff frequency Ṅ2/2π by only a factor of

2.

This behavior is independent of the true spectrum. This is illustrated in Figure 5.10(b). In

this example, the true spectrum has a -5/3 slope (on a log scale), as is often encountered in single

phase isotropic turbulence. Spectral estimates are shown for both a single phase flow signal (i.e.

Poisson distributed data) and a bubbly flow signal generated with the same exact spectrum Suu.

The changes in the spectral estimates are shown for an increase in the particle rate with a factor

of 10. For the single phase flow, the range over which the spectral estimate is reliable increases

with a factor of 10. For the bubbly flow, this increase is again only a factor of 2. This clearly

shows that improvement of the LDA equipment and an increase in the seeding density do not

help much in order to obtain more reliable spectra if Sample and Hold is used: the bottleneck is

clearly the signal processing, unless the measurement is performed very close to the wall. Even

for very high data rates, the gaps due to the bubbles will never disappear.

The difference in the cutoff-frequencies Ṅ2/2π and Ṅtot/2π can give an incorrect impression

of the nature of the flow. This is illustrated with the following example. Figure 5.11 illustrates

the effect of increasing bubble blockage by an increasing distance l of the measurement volume

to the wall. Increasing the void fraction would give similar effects. The true spectrum Suu is that

of white noise. For increasing l, the data rate Ṅtot decreases. Ṅ2 decreases faster than Ṅtot. The

result is that an increasingly large part of the spectrum with frequencies below Ṅtot/2π becomes

unreliable. The example shows that it is possible to obtain a -5/3 slope for frequencies around

and even below Ṅtot/2π. This suggests a turbulence cascade process, whereas the true spectrum

contains only white noise. The -2 slope that is expected based on the results for Poisson processes

is only observed for frequencies well beyond Ṅtot/2π (i.e. beyond Ṅ1/2π).

The exact behavior depends strongly on α, l, Ṅp and Suu. Nevertheless, the behavior in

the example in Figure 5.11 does not only hold for white noise signals, but also occurs in more

realistic signals. Figure 5.12(b) shows the S&H spectra for the two signals. Figure 5.12(a) shows

the exact spectra for these signals: the signals are generated by the addition of white noise to a

noiseless artificial signal. The spectrum of the first noiseless artificial signal has a slope of -5/3,

the second has a slope -2. The exact -5/3 slope is visible for f>10 Hz in the noiseless artificial

signal, however, the extra noise results in somewhat lower slope for the noisy signal. Both signals

are dominated by noise only for the frequencies beyond the range of interest. Nevertheless, due

to the extra noise, the S&H spectra both get a -5/3 slope in the range below 10 Hz (whereas the

mean total data rate Ṅtot suggests a single phase cutoff frequency at 30 Hz). This shows that the

slope obtained with S&H is not very reliable and that interpretation of spectra obtained using

the Sample and Hold reconstruction technique with bubbly flow requires, therefore, even more

care than results for single phase flows.
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Sample and Hold correction of bubbly flow signals

Consequently, the effect of the Sample and Hold reconstruction on the spectrum is no longer the

addition of a white noise term and a low pass filter. If this were true, equation 5.2 would be valid,

and the low pass filter can be estimated using artificial signals with this equation. Nevertheless,

a test is carried out to see whether or not equation 5.2 can be used to improve the estimated

spectrum. An artificial signal with known spectrum Suu(f) is generated. It is sampled with

non-equidistant intervals distributed according to equation 5.6. The signal is reconstructed with

S&H and the spectrum Ŝrr(f) is calculated. Using the knowledge that L(0) = 1, the step noise

can be estimated via:

Ŝss = Ŝrr(0) − Suu(0) (5.16)

and the low pass filter can be estimated via:

|L̂(f)|2 =
Ŝrr(f)

Suu(f) + Ŝss(f)
(5.17)

If equation 5.2 would be valid, different input spectra Suu(f) would give the same low pass filter

estimate. The results for the input spectra in Figure 5.13(a) are shown in Figure 5.13(b). The low

pass filter estimates for the various input spectra (with identical interarrival time distribution)

are different, showing that equation 5.2 is not valid if bubbles are present. The difference grows

for f > Ṅ1/2π. Although the differences look small (on a log scale), very different estimates

for the step noise are obtained if equation 5.4 is used. The problem originates from the fact

that the spectrum of the reconstructed signal can no longer be written as the operation of a

single filter on the sum of the original spectrum and white noise: equation 5.2 is no longer valid.

Instead, multiple filters act and multiple noise terms originate. It is, however, not possible to

estimate multiple noise terms, since only one equation (similar to equation 5.4) is available for

their estimation. Therefore, a correction method that reduces the bias significantly up to higher

frequencies, similar to that by Simon and Fitzpatrick (2004), is not possible. For the same reason,

it is not possible to construct a correction technique using a convolution sum such as was done

by Nobach et al. (1998a).

At best, a partial correction can be performed. Examples for the spectra 2 and 4 from Figure

5.13(a) are shown in Figure 5.14. Since the spectrum Suu(f) is generally unknown, the shape

of the low pass filter is estimated from an artificial white noise signal using equations 5.16 and

5.17. Next, the corrected spectrum is determined with equations 5.4 and 5.5. The performance

is quite poor, the inaccurate step noise estimates can even produce negative power spectrum

values. The main improvement is observed in the shape of the spectrum at low frequencies up to

Ṅ2/2π. Improvement of the spectrum up to Ṅtot, which can be obtained for single phase flow,

is not obtained (Figure 5.15). A different approach is required.

Summarizing, the results show that the use of Sample and Hold reconstruction gives poor

results when applied to bubbly flow data. A similar conclusion will hold for other reconstruction

techniques (Benedict et al., 2000), since the velocity in the reconstructed signal will always

be strongly correlated to the velocity at the points that were used for the reconstruction, i.e.

the correlation extends over similar time spans as for Sample and Hold (Van Maanen, 1999).

Consequently, the estimation at higher frequencies encounters similar problems.
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5.6. Slotting techniques

Slotting techniques form a second important class of techniques for the estimation of power

spectra from LDA data. The classic slotting correlation technique was introduced by Mayo

et al. (1974). In this technique, the slotting autocovariance estimate R̂k is calculated from

cross-products with time lags falling in a slot with width ∆τ :

R̂k = R̂(k∆τ) =

∑N
i=1

∑N
j=i+1 uiujbk(tj − ti)

∑N
i=1

∑N
j=i+1 bk(tj − ti)

(5.18)

and

bk(tj − ti) =

{

1 for |(tj − ti)/∆τ − k| < 1/2

0 otherwise
(5.19)

Power spectra calculated from the autocovariance functions determined with the slotting tech-

nique suffer only very mildly from a low-pass filtering effect if a small slot size is used, especially

compared to reconstruction techniques (Broersen et al., 2000). This effect is therefore ignored.

The variance of the spectrum estimate, on the other hand, is an important issue (Benedict et al.,

2000). For this reason a number of improvements were introduced to reduce the variance of the

slot correlation estimate. One of these distributes the cross-products over two neighboring slots:

fuzzy slotting (Nobach et al., 1998b):

bk(tj − ti) =

{

1 − |(tj − ti)/∆τ − k| for |(tj − ti)/∆τ − k| < 1

0 otherwise
(5.20)
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Additional reduction in the variance is obtained by using ’local normalization’ with an individual

estimate of the variance for each slot (Van Maanen and Tummers, 1996; Van Maanen et al., 1999):

ρ̂k = ρ̂(k∆τ) =

∑N
i=1

∑N
j=i+1 uiujbk(tj − ti)

[[

∑N
i=1

∑N
j=i+1 u

2
i bk(tj − ti)

] [

∑N
i=1

∑N
j=i+1 u

2
jbk(tj − ti)

]]1/2
(5.21)

This technique has the additional advantage that the influence of velocity bias is reduced (Tum-

mers (1999), Tummers and Passchier (2001)).

Nobach (2002b) pointed out that a processor delay may lead to a gradient in the probability

density function of the time lags. As a result, correlation estimates are dominated by cross-

products with larger time-lags than the time lag in the middle of the bin. In bubbly flow, there

is in addition a gradient in the probability density function of the time lags (Figure 5.8). For

τ < τbubble shorter lags occur more often due to the gaps in the data created by the bubbles. τbubble

is the typical duration of a bubble passage through the laser beams. Consequently, correlation

estimates are dominated by cross-products with shorter time-lags than the time lag in the middle

of the bin, if ∆τ is of the order τbubble. The solution proposed by Nobach (2002b) is to calculate

a more appropriate time lag (’local time estimate’) for each correlation estimate R̂(k) using:

τ̂k =

∑N−1
i=1

∑N
j=i+1(tj − ti)bk(tj − ti)

∑N−1
i=1

∑N
j=i+1 bk(tj − ti)

(5.22)

where bk may be determined via equation 5.19 or equation 5.20. The auto correlation function

(ACF) at τ = 0 is extrapolated from a fit of the data with τ > 0. For this fit, a model similar

to that suggested by Benedict et al. (2000) is used:

ρk = afite
−bfitτ

cfit
k (5.23)

After calculating the correlation coefficients, the normalized power spectrum is calculated

with a cosine transform:

Ŝ(f) = F{ρ̂(τ)}(f) = 2

∫ ∞

0
w(τ ; f)ρ̂(τ)cos(2πfτ)dτ (5.24)

S(f) can be calculated directly by assuming w(τ ; f) = 1. A significant improvement can be

obtained by using a variable window as suggested by Tummers and Passchier (1996). The use of

a Tuckey-Hanning window results in a strong decrease of the variance of the spectral estimates.

This window is given by:

w(τ ; f) =

{

1
2 + 1

2cos(πfτ/κ) for fτ < κ

0 otherwise
(5.25)

Figure 5.16(a) shows the comparison of the power spectrum estimates obtained with the direct

transformation and the transformation with variable window (κ = 3). The spectrum using the

direct transformation is reliable up to the frequencies around the data rate (39 Hz), whereas the

spectrum using the variable window is reliable up to frequencies approximately 10-15 times the
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data rate. The result of the use of the various improvements of the slotting technique is shown

in Figure 5.16(b) that zooms in on the higher frequencies. The variance of the technique clearly

decreases: the oscillations around the true spectrum become much smaller.

Van Maanen and Oldenziel (1998) and Van Maanen (1999) proposed to obtain power spectra

with higher accuracy up to high frequencies by using a curve fit of the correlation coefficients.

The model chosen to describe the normalized power spectrum is:

S(f) = Sa(0)[1 + (f/f0)
2]

nk
∏

k=1

1

1 + (f/fk)2
(5.26)

where fi, i = 0...nk are the parameters and Sa(0) the static gain of the spectrum. The corre-

sponding autocorrelation function is given by:

ρ(τ) = Sa(0)

nk
∑

k=1



e
−2π|τ |

τfk

(

1 −
τ2
f0

τ2
fk

)

1

τfk

nk
∏

l=1|l 6=k

(

τ2
fk

τ2
fk − τ2

fl

)



 (5.27)

with fit parameters τfk = 1
fk

, i = 0...nk. These parameters are determined by minimizing a

weighted mean square error:

Lfit =

N
∑

k=0

wk

[

ρk − ρ(τ̂k, τf0, τf1, .., τfnk
)
]2

(5.28)

More details can be found in Van Maanen (1999). Figure 5.17(a) compares the results for the

variable window technique and the fit technique for a very long signal (5000 s). The performance

is more or less similar. The variable window technique shows some oscillations around the true

spectrum. The differences between the spectrum estimate with the fit technique and the exact

spectrum are mainly due to the inadequacy of the general model to fit the data exactly. Both

techniques are not very well able to see the second change in slope in the spectrum, which is

located at 25 times the mean data rate. Figure 5.17(b) shows the same comparison for a shorter

signal with duration of 300 s. The shorter signal duration results in stronger oscillations for the

variable window technique. The result for the fit technique is affected less. Consequently, the

use of the slotting technique with its improvements in combination with the variable window

technique or the fit technique is well suited for the estimation of power spectra of LDA signals

obtained in bubbly flow, if the velocity fluctuations are fully dominated by the turbulence.

Section 5.9.1 will show that for flows with pseudo-turbulence due to the bubbles, the fit technique

is less appropriate.

5.7. Tests with experimental signals

Finally, the performance of the signal processing techniques is evaluated with real data. LDA

signals were obtained in a 15.0 cm diameter cylindrical bubble column, in which air is injected

with the use of 559 needles. With these conditions a very homogeneous gas distribution is

obtained, the void fraction is constant in the bulk up to 5 mm distance from the wall. The bubble
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Figure 5.17.: Comparisons variable window and fit techniques. α=0.1, l=0.02 m, Ṅtot=39 Hz
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column is filled with tap water up to a height of 1.2 m, experiments are performed at a void

fraction of 15% (superficial gas velocity 0.031 m/s), at which a very homogeneous bubbly mixture

is obtained without large scale vortical motion and a bubble equivalent diameter around 4-4.5

mm. For more details on the bubble column, see section 2.2.3. The LDA equipment consists of a

4W Spectra-Physics AR+ laser and a TSI 9201 colorburst multicolor beam separator. A preshift

frequency of 500 kHz is used. Beam pairs are focused with a 122 mm lens, the measurements

were performed in the backscatter mode. Detected light is sent to a TSI 9203 color link, and

bursts are processed with the use of processor type IFA-750. The data rate close to the wall is

close to 500 Hz, signals are collected over a period of 180 seconds at a height of 0.65 m.

Measurements were performed at various distances l to the wall, in the range of 1.3 mm to 4

cm. Since the flow has very homogeneous properties, the true power spectra will only vary in the

region very close to the wall (i.e. up to approximately l=5 mm) and be more or less constant in

the bulk region, especially for the higher frequencies. Figure 5.18(a) shows the spectra obtained

with the use of Sample and Hold and the Welch periodogram (resample frequency 5000 Hz).

Figure 5.18(b) shows the results obtained with the slotting technique with variable window. The

results in Figure 5.18(a) clearly show how the cutoff frequency due to the bubble gaps Ṅ2/2π

moves to lower frequencies for increasing l. For l <0.04 m only for the higher frequencies, beyond

Ṅ1/2π ≈ 100 Hz, a slope of -2 is observed. At the intermediate frequencies (typically around

10 Hz) the slope approaches -5/3, especially for l close to 0.02 m. This slope is caused by the

double cut-off behavior of the Sample and Hold filter, and is very similar to that observed in

Figure 5.11(a), obtained with artificial signals. Again, the slope is close to -5/3 at frequencies

below Ṅtot/2π, showing the need for careful interpretation of Sample and Hold spectra. The

results for the slotting technique (Figure 5.18(b)) display a much weaker dependence on l. The

slope is smaller than -5/3 for all frequencies. Since the flow is very homogeneous, only a weak

dependency on l is expected. The measurement at l=0.0013 m is recorded very close to the wall,

i.e. the local void fraction is smaller than in the bulk, the amount of fluctuations due to the

bubble passages is also smaller, and the effect of the wall is noticed. Consequently, the power

at higher frequencies increases if l increases. The results for l=0.02 m and l=0.027 m are very

close, whereas they show great differences for the Sample and Hold reconstruction. This confirms

that the slotting technique deals much better with the non-equidistant nature of the signal and

the gaps due to the bubbles. No results are shown for l >0.027 m. For these distances to the

wall the amount of data is insufficient for the present signal duration of 180 seconds, and the

variance of the spectrum increases strongly. The results for the experimental signals confirm

the results obtained with the artificial signals: the slotting technique is more reliable than the

reconstruction techniques.

5.8. Time series analysis

For the estimation of regular (i.e. equidistant) time series, time series analysis provides a tool for

the investigation of power spectra that is able to produce accurate estimates for much smaller

amounts of data than traditional periodogram techniques (Broersen (2002)). The technique

tries to find the coefficients for the autoregressive (AR), moving average (MA) or autoregressive

moving average (ARMA) model that gives the best match in terms of statistical properties with
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the signal that is analyzed. This technique has been extended for signals with missing data by

Broersen et al. (2004) and for irregular data by Bos et al. (2002). The latter technique requires

typically 200000 observations for reliable results, but recent improvements in the technique by

Broersen (2005) have reduced the number of required observations strongly.

At the time that this thesis is being written, the new algorithms for spectral estimation are

not available yet for general application to data, but some preliminary results are given in Figure

5.19 to demonstrate the potential of this new technique, especially for short signals. The figure

compares the results for spectra obtained from time series analysis with those obtained with the

slotting technique with variable window and fit. The artificial signal from the previous section

is used, truncated to short data segments with lengths of 133 and 13 seconds. The variable

window technique produces quite strong oscillations in the spectrum which are due to the small

number of observations. The fit technique and time series analysis provide good estimates of the

power spectrum for 133 seconds of data. Whereas the fit technique provides a slightly better

approximation up to 500 Hz for ∆τ=1 ms, it cannot predict the power spectrum at higher

frequencies than 500 Hz since this requires a smaller slot width. However, for this smaller slot

width convergence problems were encountered for the numerical optimization. The time series

analysis has some problems approximating the power spectrum shape for frequencies around

200 Hz due to the use of a small number of AR coefficients. The bend at 1000 Hz, however, is

reproduced very well. Even if only 13 s of data is available, the time series analysis provides a

reasonably good estimate of the power spectrum. This shows that time series analysis performs

very well for short data segments. An additional advantage is that the time series analysis

technique makes less assumptions about the shape of the power spectrum than the slotting fit

technique and may have less convergence problems. Although for real data, where the velocity

and arrival time suffer from inaccuracies, the results will be less accurate, the technique seems

promising.

5.9. Effect of the bubble local flow field on the power spectrum

The previous sections showed how the bubbles can have an effect on the estimated spectra due

to the gaps introduced in the signal. The bubbles also have another effect: the flow around the

bubbles and in the wakes introduces sharp fluctuations in the velocity which can affect the spectra

(Groen et al. (1999), Kulkarni et al. (2001a), Rensen (2003)). The present section investigates

the changes introduced by these fluctuations.

First, the spectrum is investigated of bubbly flows with only the potential flow around the

bubbles present, no turbulence is present. This is, again, performed using artificial signals. Next,

the combination of turbulence and potential flow around the bubbles is considered. Special

attention is paid to the slopes in the spectrum.

5.9.1. Power spectrum for bubbly flows with local flow around the bubbles only

In the homogeneous regime, and especially for uniform gas injection, large scale structures are

usually weak. This means that the turbulence production in the flow is small and the velocity

fluctuations are dominated by the local flow field around the bubbles. Investigation of the cascade

of the various structures is, therefore, severely hampered. This problem is not limited to LDA,
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Figure 5.19.: Comparison of slotting technique and results from time series analysis.

but will also affect spectra determined from velocity signals measured with, e.g., hot film probes.

The effect on the power spectrum is investigated with artificial signals. The flow field due to

the bubbles is simulated as follows. The flow around each bubble is modeled as potential flow

around an ellipsoidal bubble, which is given in Moore (1965). As a first approximation, the

total flow field is taken as the sum of the potential flow of the individual bubbles. The following

conditions are used: bubbles with deq=4.5 mm, and aspect ratio 0.66, u=0.2 m/s. The bubbles

rise rectilinear. Velocity realizations are generated equidistantly with sample period 1 ms. This

way, the influence of the random sampling due to the random arrival of particles is ignored

in this stage. Gaps in the data appear if the bubble crosses the measurement volume. The

influence of additional gaps due to bubbles passing the laser beams outside the measurement

volume is studied in subsequent sections. Figure 5.20 shows an example of an artificial signal.

Sharp changes in the velocity before the passage of a bubble through the measurement volume

are visible.

The estimation of the power spectrum of the bubbly potential flow signal is studied for signals

with a length of 500 s. The potential flow signal contains gaps due to the passage of bubbles.

Consequently, in parts of the signal no data is available. The problem is, however, different

from the more general class of ´missing data´ problems for which dedicated signal processing

techniques exist such as those discussed in Broersen et al. (2004). In the present case, however,

the signal simply is not defined during the bubble passage through the measurement volume: no

liquid velocity can be defined during this period. Since signal processing techniques generally are

intended for statistically stationary signals (i.e. without non-defined parts), the outcome should

be interpreted with care.

The spectrum of the artificial signal is determined with the use of the techniques discussed in

sections 5.3 and 5.6. By studying the outcome with artificial signals for the various techniques,
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interpretation of experimentally obtained power spectra is facilitated. Figure 5.21 shows the

result for the reconstruction techniques. The gaps due to the bubbles in the signal are recon-

structed with Sample & Hold and linear interpolation, with resampling interval 1 ms (which is

the original sampling interval for the other parts of the signal).

For frequencies below 10 Hz a more or less constant power is observed, in the frequency range

20-60 Hz a constant slope is observed with a value close to -7/3. For frequencies beyond 100 Hz

more rapid decay is observed, the rate depending on the reconstruction technique. The shape

is dependent on the bubble velocity: slower bubbles induce steeper slopes, and vice versa. The

presence of a wake has a similar result as a lower velocity: a steeper slope is obtained.

In addition, the autocorrelation function is estimated with the slotting technique (Figure

5.22(a)). Two distinct features are visible: a sharp decrease in ρ(τ) for τ < 0.015 s which is caused

by the self-correlation of the high velocities before or after the bubble passage. In addition a peak

is observed around τ=0.02 s, corresponding roughly to the residence time of the bubbles in the

measurement volume. This is, therefore, the correlation of the high velocities before the passage

with the high velocities after the passage of the bubble. This peak in the autocorrelation estimate

produces oscillations in the power spectrum (Figure 5.22(b)). If reconstruction techniques are

used, extra high velocity points are added and the peaks in the autocorrelation function are

smeared and widened (Figure 5.22(a)). Therefore the oscillations are not visible in the spectrum

for the reconstruction techniques. Consequently, the slotting technique provides a different shape

of the power spectrum for frequencies beyond 20 Hz.

The difference between the power spectrum estimate of the slotting technique obtained with

direct transformation and that obtained with the variable window technique is relatively small:

the high frequency at which the data was generated gives only a small variance in the power

spectrum estimate. Some smearing of the power spectrum with the variable window technique

is observed for f>70 Hz. The use of the fit technique by Van Maanen and Oldenziel (1998) faces

a problem due to the peak in the autocorrelation function estimate: equation 5.27 can not fit

peaks. In Van Maanen (1999) this problem is solved by removing periodic components. For

the present signal, the peak is not caused by a periodic component in the signal, but simply by

the shape of the potential flow field, combined with the signal gap. Removal would require the

removal of the potential flow field, i.e. this is not an option. Nevertheless, an idea of the shape of

the power spectrum at high frequencies without the presence of the ’periodic’ component can be

obtained by performing a fit over the range τ < 0.012 s (’fit’ in Figure 5.22(a)). The spectrum

that is obtained (’fit’ in Figure 5.22(b)) has a similar trend as the oscillations in the slotting

results without fitting. This suggests that the decay for f>20 Hz is determined by the shape

of the velocity gradients right before and after the passage of the bubble and will be strongly

affected by the bubble velocity and presence of a wake.

5.9.2. Combination of turbulent flow and the bubble flow field

As the next step, the combination of a turbulent flow with local flow around the bubbles is consid-

ered. The combination is made by superposition, which is obviously only a rough approximation

of reality. The following velocity time series is considered:

umix(ti) = upotentialflow(ti) + Cmixuturbulence(ti) (5.29)
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with umix(ti) the combined flow signal, upotentialflow(ti) the flow field due to potential flow only,

uturbulence(ti) the flow field due to turbulence only, and Cmix a constant determining the relative

strength of the flow fields. The approximation of potential flow underestimates the strength

of the fluctuations (De Vries (2001), Van Wijngaarden (1998) and Mudde and Saito (2001)).

Nevertheless, a reasonable idea of the effect of the combination of the two signals on the power

spectrum can be obtained by selecting Cmix such that the ratio of the velocity variances

Cpower =
C2

mixσ
2
turbulence

σ2
potentialflow

(5.30)

of the two signals is similar to that observed in experimental signals. An idea of this ratio can

be obtained by comparing the variance of the velocity fluctuations for similar void fractions in

the case of a homogeneous flow and in the case of a heterogeneous flow. A range of values of

Cmix (and thus Cpower) is investigated to study the effect on the power spectrum.

Artificial signals with two different exact spectra are considered for uturbulence: the spectra 2

and 4 from Figure 5.13(a), both with -5/3 slope at intermediate frequencies but with different

cutoff frequencies (10 and 1 Hz respectively). The standard deviations of these signals are 0.044

m/s (spectrum 2) and 0.014 m/s (spectrum 4), versus 0.038 m/s for the potential flow signal

(α = 0.1). Figure 5.23 shows the results for spectrum 2 for the S&H reconstruction technique

and the slotting technique with variable window. In Figures 5.23(a) and 5.23(b) the estimated

power spectrum converges to the true turbulence spectrum if Cmix increases and the signal is

progressively dominated by the turbulence. The convergence is more or less complete for Cmix=4

for both techniques (Cpower=22), for the S&H technique a small difference with the true spectrum

is reminiscent: a small bias occurs due to the gaps.
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Figure 5.23.: Evaluation of estimated power spectrum for increasing turbulence strength, nor-
malized to get similar values at low frequency. (α=0.1, exact spectrum 2).



144 Chapter 5. Estimation of power spectra of LDA signals in bubbly flows

The convergence is much faster for the slotting technique than for the S&H technique and for

given Cmix the power spectrum obtained with the slotting technique is a better approximation

of the turbulence spectrum (Figure 5.23(c)). This can be explained by the behavior that was

discussed in section 5.9.1 for the Figure 5.22(a). The use of reconstruction adds additional high

velocities to the bubble velocity ’spikes’ that are present in the signal, increasing their influence

on the spectrum. This once again demonstrates that the slotting technique is to be preferred

over the reconstruction techniques for the estimation of spectra of signals obtained from bubbly

flows. The shape of the power spectrum is determined by Cmix. If we ignore the absolute power

in the signal, an increase in Cmix corresponds to an increase in the turbulence (e.g. transition

from homogeneous regime to heterogeneous regime), or a decrease of the void fraction while the

coherent structures do not change in strength. If the S&H technique is used (Figure 5.23(a)) a

decrease in Cmix results in a gradual increase of the slope in the frequency range 20-60 Hz from

the value of -5/3 to -7/3. This is quite similar to the behavior reported by Lance and Bataille

(1991), who investigated the power spectrum using reconstruction techniques for a turbulent

flow (turbulence generated with a grid) in which bubbles are injected. The authors report that

the classic -5/3 slope is progressively replaced by another power law of exponent -8/3 when the

void fraction increases and the turbulence level is maintained constant. Similarly, Rensen (2003)

reported for hot film flow signals that a slope of approximately -5/3 is obtained if the bubble

spikes are removed from the signal. A slope of approximately -8/3 is obtained if the spikes are

left in the signal. In fact, the behavior reported by Rensen (2003) (Figure 6.14) is very similar

to that observed for the spectrum 4 in Figure 5.24(a).

Figure 5.24 shows similar results for the spectrum 4. The turbulent cut-off of the spectrum of

this signal occurs at a smaller frequency, increasing the influence of the bubbles on the spectrum.

Even for Cmix=8 the estimated power spectrum has not approached the turbulence spectrum

yet fully. Again, the deviation from the turbulence spectrum is larger for the S&H technique

than for the slotting technique (Figure 5.24(c)).

Tests with the slotting fit technique show similar problems as for the potential flow: equation

5.26 is not able to model the oscillations in the power spectra that arise due to the velocity

spikes. This means that the fit technique is not able to give a reliable idea about the shape of

the power spectrum. Tests were performed with a hybrid combination of the fit technique and

the variable window technique: in these techniques the autocorrelation function is fitted only for

τ < 0.01 s, the rest of the autocorrelation function is left unaffected. This technique does not

give improved performance over the variable window technique, partly also since the function

incorrectly extrapolates the autocorrelation function for the times shorter than the local time

estimate of the first slot. Improved results may be obtained by modifying the model in equation

5.26 by adding an extra term like [1+ (f/f0)
2] in the numerator. This approach is, however, not

pursued further and the fit technique is, therefore, not considered further.

5.9.3. Combined effect of the local flow around the bubbles and the gaps due to
intersections of bubbles with laser beams

Next, the combined effect is considered of the local flow around the bubbles, turbulence and the

gaps in the signal due to intersections of bubbles with the laser beams. This way two problems

occur: the measurement of the turbulence spectrum is obscured by the velocity fluctuations due
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Figure 5.24.: Evaluation of estimated power spectrum for increasing turbulence strength, nor-
malized to get similar values at low frequency. (α=0.1, exact spectrum 4).
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to the flow around the bubbles and the signal processing is complicated by the gaps in the signal.

An artificial signal is used with a realistic length of 900 s and a particle rate Ṅp of 400 Hz. Figure

5.25 shows the results in the case of only potential flow around the bubbles for Sample and Hold

reconstruction and the slotting technique. Figure 5.25(a) shows that if l increases, cutoff in the

spectrum due to the gaps occurs at a lower frequency. For l > 0.01 m the slope and shape of

the spectrum are not reliable for the S&H technique. Much better results are obtained with the

slotting technique: for l up to 0.04 m a good impression of the spectrum can be obtained. For

the measurements close to the center of the bubble column (l = 0.08 m) only a rough idea of the

shape of the spectrum is obtained. Some improvement may be obtained by using a smaller value

for κ (e.g. 1). For signals containing both the local flow around the bubbles and turbulence with

spectrum 2 (Figure 5.13(a)), similar results are obtained (Figure 5.26(a)). The same holds for

the results for spectrum 4 in Figure 5.26(b). The gaps have no influence on the bias that was

observed in Figure 5.24(b): for all values of l the spectrum deviates similarly from the turbulence

spectrum.

5.10. Noise removal from velocity time series

Experimental data is always accompanied by noise, which will obscure the higher frequency

information. Therefore, this noise needs to be removed as far as is possible. The present section

discusses two techniques for noise removal.

5.10.1. Noise removal via wavelets

Kulkarni et al. (2001a) use wavelet analysis to identify and remove noise from the bubbly LDA

signal, based on the work by Roy et al. (1999). The use of wavelets gives the advantage over

traditional Fourier techniques that the velocity signal can be studied both in time and at various

structure scales. It has been applied in various other investigations to study bubbly flows (e.g.

Mudde and Van den Akker (1999), Kulkarni et al. (2001c) and Kulkarni et al. (2001b)). For more

information, the reader is referred to Farge (1992), Farge et al. (1996), Kulkarni et al. (2001a)

and Meneveau (1991).

The Discrete Wavelet Transform (DWT) of the signal xi provides wavelet coefficients Wj,k at

dyadic scales in j and displacements k and is defined as:

Wj,k =
1√
N

∑

i

xiψj,k(i) (5.31)

for j ∈ [0, p], k ∈ [1, 2p] with p = logN/log(2) corresponding to the dyadic scale. Small j refers to

fine scales, large j to coarse scales. ψj,k is the selected wavelet basis. In the current investigation,

Daubachies Db4 wavelets are taken, following Kulkarni et al. (2001a).

Kulkarni et al. (2001a) use the following procedure to remove noise from the velocity time

series. Since the wavelet transform requires an equidistant time signal, the signal is first re-

constructed and resampled with interval Te. This gives the equidistant signal ri, consisting of

N points. The resampled velocity-time series ri is differentiated to give rd
i using the central

differences method with fourth order correction. This way, unwanted noise components move
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Figure 5.25.: Evaluation of spectral estimates for artificial signals with potential flow around the
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toward smaller scales. Next, the differentiated data is subjected to wavelet analysis, the wavelet

coefficients are calculated. For each dyadic scale j, the power Pj is estimated via:

Pj =
∑

k

|Wj,k|2 (5.32)

By plotting Pj versus j, the scale jm is identified at which the power due to noise falls off

rapidly. The noise is suppressed by zeroing the wavelet coefficients corresponding to the finest

scales: Wj,k = 0 for j ∈ [0, jm]. Finally, the denoised signal is obtained with the use of the

inverse wavelet transform and subsequent integration of the denoised differentiated signal.

This method has been tested by Roy et al. (1999) for application to equidistant signals only. It

is, therefore, not clear how the outcome is affected by the non-equidistant nature of the signal and

the gaps due to bubbles. As was mentioned, the wavelet analysis requires first a reconstruction

step. The previous sections showed that application of Sample and Hold reconstruction may lead

to bias in the spectrum; energy from higher frequencies is redistributed to lower frequencies. For

this reason, the technique is evaluated with an artificial signal.

The signal with spectrum SN1 (containing a white noise contribution) from Figure 5.12(a) is

used to test the denoising routine (α=0.1, l=0.02 m, Ṅp=400). The signal is reconstructed with

Sample and Hold and resampled at a frequency of 1000 Hz. Figure 5.27(a) shows the scale wise

power distribution for the reconstructed signal before and after differentiation. Next, jm has to

be determined, the gradual decay of the scale wise power makes the selection quite subjective.

Following Kulkarni et al. (2001a), jm is chosen at 3, close to what the authors name the "inflexion

point" (which is not further specified by the authors) of the scale wise power of the differentiated

data. The resulting power spectrum estimate is shown in Figure 5.27(b). The gaps due to the

bubbles give a bias from the exact spectrum due to the reconstruction, as was discussed in the

previous sections. The denoising operation suppresses power in the frequencies beyond 30 Hz,

whereas the noise only becomes apparent in the true spectrum around 100 Hz. In addition,

the spectrum of the signal after denoising does not approximate the spectrum of the signal

without noise any better than the spectrum of the signal before denoising. A different choice

of jm does not give improvements. This suggests that the wavelet denoising technique does not

work for signals with significant gaps. Apparently, the gaps obscure the noise in the combined

reconstruction step and wavelet analysis. No advantage over traditional Fourier Transform-based

filtering techniques is observed. This technique is therefore discarded.

5.10.2. Noise removal in slotting autocorrelation function

If the slotting technique is used, uncorrelated noise can be recognized relatively easily since it

will result in a discontinuity ∆ρ in the autocorrelation function at τ=0 (see, e.g. Tummers

and Passchier (2001)). If ∆ρ is determined accurately, e.g. via a fit, the discontinuity can be

eliminated via:

ρc(k∆τ) =
ρ(k∆τ)

1 − ∆ρ
(5.33)

where ρc is the corrected autocorrelation function. The value at τ=0 is put to 1 for the corrected

autocorrelation function. Figure 5.28(a) shows the result for an artificial signal (signal SN1 from

Figure 5.12(a)). For this signal, a fit of the autocorrelation function with equation 5.23 gives
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good results (Figure 5.28(b), which has ∆ρ=0.17). The maximum frequency up to which the

spectrum is reliable is approximately doubled, the spectrum is estimated accurately down to

somewhat below the noise level. Tests with signals containing both the local flow around the

bubble and turbulence gives similar results: the use of equation 5.23 is also suited for these

signals.

5.11. Reduction of the impact of the flow field around the bubble
on the spectral estimate: removal of velocity realizations

Section 5.9 showed that the local flow field around the bubbles can have a major impact on the

spectra. In order to study the cascade process of the large scale structures, however, a spectrum

of the turbulent nature of the flow is required, without the modifications due to the bubbles. The

results in Rensen (2003) suggest that removal of bubble signatures from the velocity time series

can give a better understanding of the turbulent nature. One possible way to achieve this, is by

identification and removal of the velocity realizations which are most dominated by the local flow

around the bubbles, followed by estimation of the spectrum via, e.g, the slotting technique. This

way, the estimated power spectrum may give a better idea of the turbulent cascade process. The

present section first considers the question how much improvement can be obtained by removing

the velocity realizations which are dominated by the local flow, and, second, how the removal

may be obtained in practice.

5.11.1. Effect of the removal of velocity realizations on the spectrum

Two types of bubble passages can be identified (Figure 5.29). In the first, the bubble crosses

the measurement volume, leaving a gap in the data and producing a rapid velocity increase

before and a rapid velocity decrease after crossing the measurement volume. In the second, the

bubble does not cross the measurement volume, and produces small velocity increases and a

larger negative velocity peak.

The first type of interaction can be identified due to the gap signature in the data accompanied

by sharp velocity gradients right before and after the gap. The second type of interaction is much

harder to identify. No gap is produced, the gradients are much smaller and therefore resemble

those due to the turbulence. No suitable technique is known to identify reliably the velocity

realizations that are dominated by this type of interaction. Identification of the first interaction

type is much more feasible, and, in the presence of wakes, the first type of interaction is relatively

more important. Therefore, the focus in the present investigation is put on removal of velocity

realizations due to the first type of interaction.

First, the change in the estimated power spectrum is considered if velocity realizations ob-

tained close to the bubbles passing the measurement volume are removed from the series. An

artificial signal is considered, with α = 0.1, l = 0.02 m, deq=4.5 mm, aspect ratio 0.66, Ṅp=

400 Hz and a lens with focal length of 12.2 cm. The signal contains a mix of the turbulence

signal (spectrum 4 from Figure 5.13(a)) and potential flow with Cmix=4. For this signal, the

exact times of the bubble passage through the measurement volume are known. This knowl-

edge is used to determine the effect of the removal of velocity realizations. The bubble starts

crossing the measurement volume at time Tcross,start; the crossing ends at time Tcross,end. The
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Figure 5.29.: Two types of bubble passage at the measurement volume, with the typical velocity
signature that results.

velocity realizations obtained during the time period [Tcross,start − Tremoval,start, Tcross,start] and

[Tcross,end, Tcross,end + Tremoval,end] are removed from the series. For the present work on ar-

tificial signals Tremoval,start = Tremoval,end = Tremoval. Results for the spectrum and autocor-

relation function are shown in Figure 5.30. The power spectrum obtained after removal with

Tremoval=0.01 s is a better approximation to the turbulence spectrum for f<10 Hz. A further in-

crease of Tremoval beyond 0.01 s gives no further improvement. Differences between the estimated

spectrum and the turbulence spectrum remain, however, especially for f>10 Hz no improvement

is found. Similar effects are observed for the autocorrelation function. The partial improvement

can be explained by the second type of bubble passages from Figure 5.29. The bubble signatures

due to these interactions are not removed. This shows that in practice it is never possible to fully

separate the local flow due to the bubbles, although the performance will be somewhat different

in the presence of wakes.

5.11.2. Identification and removal of velocity realizations dominated by the local
flow around the bubble

In practice, it is not known when bubbles pass the measurement volume. Therefore, a selection

has to be made of the data points that need to be removed. The present section considers

techniques to perform this removal.

Removal based on gap length

The simplest technique is based only on the duration of gaps in the data. The interval ∆T =

ti−ti−1 between the measurements obtained at ti and ti−1 is attributed to the passage of a bubble

if ∆T > Tmingap. The assumption is made that this bubble has passed through the measurement

volume, and data obtained in the interval [ti−1 − Tremoval,start, ti−1] and [ti, ti + Tremoval,end] is

rejected.

Often, the assumption that this gap corresponds to the passage of a bubble through the

measurement volume is not true. We therefore investigate the nature and length of the gaps in
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the signal. In the signals, gaps occur due to various events:

• The random nature of the arrival of seeding particles. Gaps due to the random arrival

may be misinterpreted as bubbles, especially for low particle rates. Kulkarni et al. (2001a)

also attempt the identification of bubbles via gaps in the signal from forward scatter mea-

surements, and employ data rates in the range of 150-440 Hz. In the present investigation

backscatter is used and data rates close to the wall of typically 400 Hz are obtained. Al-

though occasionally large gaps may be expected do to the Poisson nature, this is therefore

only a minor problem.

• A bubble crosses the measurement volume. This effect will dominate very close to the wall.

• One or more bubbles block one or both of the laser beams in between the wall and the

measurement volume, without actually intersecting the measurement volume. This effect

will dominate, more and more, further away from the wall.

• Two or three of these events occur simultaneously.

The relative importance of these effects is investigated with artificial data. The arrival times

for both the axial and tangential components are determined for a measurement with α = 0.1,

l = 0.02 m, bubble size 4.5 mm. The arrival times of the axial and tangential components are

combined and a lens with shorter focal length (12.2 cm) is used (i.e. blockage for the axial and

tangential components is less correlated). With these improvements, less and shorter gaps due to

the blockage outside the measurement volume and random particle arrival are obtained. Figure

5.31(a) shows histograms of the gap lengths observed in the signal (’LDA velocity series’) and

the actual distribution of the duration of the passage of the bubbles through the measurement

volume (’measurement volume’). This shows that the number of gaps in the signal is much

larger than that can be attributed to passage of bubbles through the measurement volume. In

addition, much overlap of blockage events occurs, leading to longer intervals. Figure 5.31(b)

compares the actual phase that is present in the measurement volume with the arrival times

that are obtained. From the arrival times, identification of the gaps at the measurement volume

is very difficult, the actual gaps that are observed are generally larger than the true passage

duration of the bubble through the measurement volume. This shows that for the conditions in

the present investigation, with bubbles of sizes with order of magnitude of 5 mm, the longer gaps

in the signal are dominated by the passage of bubbles in between the wall and the measurement

volume. This is already the case for l>0.01 m. Kulkarni et al. (2001a) claim that the overlap

of bubble blockage events is only a problem in the case of a wide bubble size distribution and

a small bubble passing through the measurement volume. The present data suggests otherwise.

Kulkarni et al. (2004) use the gaps in the data for the estimation of bubble sizes. The present

observations of the bubble blockage overlap suggests that application of this technique to flows

with bubbles with sizes around 4-5 mm is not possible.

The technique with identification based solely on the length of the gaps will therefore often

lead to incorrect rejection of velocity realizations. Since the incorrect rejection occurs more or

less randomly, this will not give an extra bias. Nevertheless, the variance of the spectrum will

increase due to the smaller number of data points available for the estimation. This is illustrated

with the artificial signal example from section 5.11.1. The results are shown in Figure 5.32. If
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the gaps are detected based on the arrival times of the axial component alone, 81% of the data

is thrown away for Tmingap=0.01 s and Tremoval=0.01 s, leading to a large variance. The use

of both the arrival times of the axial and tangential component results in a rejection of 66% of

the data. The random arrival of the particles leads to incorrect estimation of the times when

the bubble starts and ends crossing the measurement volume. Consequently, it is justified to

use a smaller value for Tremoval than in the case when exact bubble arrival times are available.

Therefore, the values of Tremoval=0.0075 s and Tmingap=0.012 s give a good compromise between

the reduction in bias and the increase in variance.

The results show that it is possible to get similar reduction in bias as in the case when the

exact bubble passage times are known. For practical data, the value of Tremoval has to be chosen

according to what is known about the local flow around the bubble. The values for Tmingap and

Tremoval can be varied to study the effect on the spectrum. For increasing l, the rejection of data

will increase and consequently, the variance will increase strongly, eventually making spectral

estimation impossible.

5.11.3. Identification based on gaps in data and velocity gradients

The previous results showed that a closer approximation to the turbulence spectrum can be

obtained by removing velocity realizations around large gaps in the data, but that this occurs at

the expense of an increase in the variance. Many velocity realizations are, however, thrown away

wrongfully since very frequently the start and end of the gaps do not correspond to the moments

when a bubble enters or exits the measurement volume. If, therefore, it is possible to remove the

velocity realizations in a more sophisticated way, the increase in variance may be limited. In the

following, two methods are described and evaluated, both are based on the occurrence of a gap

which is preceded or followed by strong velocity fluctuations.
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LIM-technique

Kulkarni et al. (2001a) and Kulkarni et al. (2004) suggest the use of wavelet analysis in com-

bination with a quantity named the Local Intermittency Measure (LIM) for the identification.

The velocity fluctuations that follow a bubble passage appear as bursts of energy in the signal.

The LIM has been used earlier for the investigation of intermittency in turbulence by e.g. Farge

(1992), Meneveau (1991) and Camussi and Guj (1997). In addition, Kulkarni et al. (2001c) use

it to find large coherent structures in the signal. Wavelet analysis is particularly suitable for the

identification of these bursts, since they are localized both in time and scale.

The LIM gives an idea of rapid changes in the velocity at a specific moment in time and for

a certain scale j. Kulkarni et al. (2001a) define the LIM as:

LIMj(i) =
|xj(i)|2

< |xj(i)|2 >i
, i = 1, 2, 3, ..., N (5.34)

where <>i denotes averaging over i. xj(i) is the reconstructed signal for scale j, obtained

with the inverse wavelet transform of the wavelet coefficients, after setting the coefficients not

corresponding to scale j equal to zero. For more details about the wavelet transform, see section

5.10.1. The definition for LIM is notably different from the original definition used by Farge

(1992) and Camussi and Guj (1997), who use

LIMj(i) =
|Wj,i|2

< |Wj,i|2 >i
, i = 1, 2, 3, .., 2p (5.35)

A graphical representation of the LIMj(i) can display the velocity gradients and therefore also

the bubble passage by using a threshold value. Kulkarni et al. (2001a) tune this threshold value

for a number of points to get a good match with the void fraction.

Kulkarni (2005a) mentions that the technique is tested primarily on simple flows, e.g. a

bubble plume. In this case, it is reasonable to expect that all strong velocity gradients can be

attributed to the bubbles. In the case of a bubbly flow where also other hydrodynamic effects

may play a role, e.g. turbulence, peaks in the LIM may also be due to other phenomena. For this

reason, we investigate the technique for its suitability for bubble identification in more complex

flows.

The test signal from the previous section is used. With tests, we find that the LIM definition

in equation 5.35 provides a more straightforward interpretation than equation 5.34, in which also

the shape of the basis functions plays a role (although the results are similar for both definitions).

Figure 5.33(a) shows the artificial signal, with its Sample and Hold reconstruction, the phase

which is present in the measurement volume and the LIM. The values of LIM are considered for

the scale which has the closest correspondence to the duration of the typical velocity gradient.

The example shows that peaks are observed in the LIM right before and after gaps in the signal

due to bubbles passing the measurement volume, but that, also, strong peaks are observed at

other instants. Inspection shows that these peaks are caused by turbulent fluctuations, often

accompanied by a gap in the data. As a result, the reconstructed signal exhibits a strong jump,

which produces the LIM peak. This happens even more frequently for signals with gaps due

to bubbles crossing the laser beams (Figure 5.33(b)). The gaps are much longer, and therefore
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the jumps introduced by the S&H reconstruction are also larger. As a result, peaks in the LIM

are quite general behind a long gap. These do not necessarily coincide with the moments when

the local flow around the bubble is measured. Due to the S&H reconstruction, usually a much

stronger peaking occurs for the measurements behind the gap than for those before the gap. The

example in Figure 9 in Kulkarni et al. (2001a) seems to confirm this behavior. Here, it seems as

if the gaps are selected that have the longest duration. In fact, taking into account the length of

the gaps (50 ms) and velocities (0.4-1.0 m/s) in their example, the gaps would have to correspond

to very large bubbles of 2-6 cm which seems quite unlikely for the conditions that are reported

(sintered plate, superficial gas velocities in the range of 1.7-3.8 cm/s, column diameter 15 cm).

Consequently, it seems very difficult to use the LIM technique accurately for the identification

of velocity realizations around the bubbles, especially for measurements deeper in the bubble

column.

Local fluctuations

An alternative for the LIM technique is, therefore, required. Improvements may be obtained by

using linear interpolation instead of Sample and Hold: this would reduce the number of false

alerts. However, in the present section a technique is considered that searches strong velocity

gradients, while taking into account the non-equidistant nature of the signal. If a gap is found in

the signal with duration longer than Tmingap, the Local Fluctuation Measure (LFM) is determined

for the instants corresponding to tlast, the last velocity realization before the gap and tfirst, the

first realization after the gap. The LFM is given by:

LFM(t) =
s2(t)

< s2(t) >
(5.36)

The deviations s2(t) and m(t) of the local velocity realizations from the local mean are given by:

s2(t) =
1

Nlocal

Nlocal
∑

i=1

(ulocal,i − µlocal(t))
2 (5.37)

m(t) =
1

Nlocal

Nlocal
∑

i=1

(ulocal,i − µlocal(t)) (5.38)

s2(t) andm(t) and µlocal(t) are determined with two windows. The first, and smallest, window

spans from either tlast −Tlocal to tlast, or from tfirst to tfirst +Tlocal. The velocity realizations in

the first window are located, their number is given by Nlocal, the velocities are given by ulocal,i

(i ∈ [1, Nlocal]). s2(t) and m(t) are calculated with this window. The second, and largest,

window is centered around time tlast or tfirst. It has duration Tµ,local. The mean velocity µlocal

is determined from the velocity realizations that are located in the second (large) window, but

not in the first (small) window.

We assume that we can identify a piece of the signal corresponding to the local flow around a

bubble, if a gap was found, LFM(t) exceeds a certain threshold LFMmin and m(t) > mthreshold.

The latter constraint serves to prevent the detection of strong negative fluctuations, which more

frequently correspond to turbulent fluctuations than bubble passages. If these constraints are
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satisfied, velocity realizations in a segment of the signal near tlast or tfirst over a duration Tremoval

are removed.

Figure 5.34(a) shows an example of the LFM for an example signal. For clarity, in this

example, LFM is set to zero if m(t) < mthreshold. For this example, the following values were

used: Tlocal=0.007 s, Tmingap=0.01 s, Tµ,local=0.25 s and mthreshold=0.05 m/s. The combined

arrival times of the axial and tangential component are used for the gap lengths. There is a

reasonable correspondence of the highest LFM values with the velocity realizations right before

and after bubble passage. Visual inspection is, however, not an objective way of setting the

threshold. Kulkarni et al. (2001a) and Kulkarni (2005a) mention that the threshold is set to get

a good match with the void fraction. The void fraction αLDA is estimated with:

αLDA =
1
2

∑

bubbles ∆Ti
∑

short ∆Ti +
∑

bubble ∆Ti
(5.39)

where the summation
∑

bubbles is only over the gap lengths ∆Ti for which the adjacent velocity

realizations were removed. The summation
∑

short is only performed over the gap lengths ∆Ti

shorter than Tmingap. The factor 1/2 is used since gaps can be identified twice (the points before

and after the gap are considered separately). LFMmin=5 gives the best match for the void

fraction. The result with this threshold and Tremoval=0.01 s is shown in Figure 5.34(b).

The result for the power spectrum is illustrated in Figure 5.35 for various values of LFMmin.

For LFMmin=5, the value suggested by the void fraction analysis, the power spectrum provides

the best approximation to the true turbulence power spectrum. The result is quite similar to

that obtained using the brute force approach, where data around each gap is rejected. With the

removal based on the LFM technique, only 5% of the data is rejected, and a smaller variance is

obtained. However, the value of LFMmin has a strong effect on the power spectrum, especially

around 6 Hz. For smaller values of LFMmin too many spikes are thrown away: also those due

to turbulent fluctuations, generating a new bias. On the other hand, a value of LFMmin which

is too high results in too little removal. This shows that a reliable result depends on a careful

selection of LFMmin.

Although the present example suggests that the void fraction presents a good verification

method, we previously saw that in fact the number and length of the gaps changes if measure-

ments are performed deeper in the column, and that the gap length cannot be directly coupled

to the duration of the intersection of the bubble with the measurement volume. In addition,

visual inspection may suggest a different optimal value for LFMmin. Tests with artificial signals

obtained much closer to the wall shows similar results, but a different threshold LFMmin is

found via the void fraction technique. This suggests that it is not possible to select a threshold

for one condition, and apply it to different conditions. For the present example, we see that the

settings of the threshold to get a match with the void fraction results in the removal of approx-

imately the correct amount of peaks from the signal. Inspection shows, that not all of these

peaks originate from the local bubble flow, and that part of the peaks due to the local flow are

left intact. The performance is, therefore, probably strongly dependent on the conditions (e.g.

void fraction, turbulence intensity, particle rate) and the results should be interpreted with care.

A safe approach is to use various methods and threshold levels for the removal of the bubble

signatures. Comparison can give an idea of the sensitivity of the results to the details of the
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Figure 5.35.: Power spectrum estimates for removal with the LFM criterion.

removal technique.

Further refinements

The technique for removal of velocity realizations can be further refined using various techniques.

First, the estimation of the gap lengths could be improved by attempts to further increase the

data rate. In the case that the wavelet processor is used (see Chapter 6), additional information

from the detector and processor can be used, e.g. the arrival time of rejected bursts is taken into

account to further close the gaps due to the random arrival of particles. This will, however, only

give a relatively small improvement and this option is therefore not pursued further.

Other methods for improvement can be based on additional properties of the signal. Kulkarni

and Joshi (2004b) and Kulkarni et al. (2004) mention a third check of the cross-correlation of the

two measured fluctuating velocity components, which is further clarified by Kulkarni (2005a).

This is performed as follows: for coincident measurements the cross correlation is calculated (i.e.

the product of u’ and v’, the fluctuating components of the velocities). If a bubble has just passed

the measurement volume, the liquid flows in radially, and also high axial velocities are found.

Consequently, the cross-correlation shows a peak value. An experimental test is performed to

study the potential of this technique. The velocity signal is acquired close to the wall at a

distance of 4.5 mm, using a lens with 12.2 cm focal length (beam distance 5 cm), for a void

fraction of 15.6% and uniform gas injection. The IFA-750 processor is used, and a data rate of

430 Hz is obtained. Coincident axial and tangential velocity realizations are located, these have

a data rate of 210 Hz. A local average of both velocity components is determined by averaging

the velocity realizations in a window with duration 0.25 s. The velocity fluctuations u’ and v’ are

now determined by subtracting the local means from the velocity estimates, and their product

is calculated. In addition, for each velocity realization, the local gap duration is determined, i.e.

the maximum duration of the gaps before and after the velocity realization. Figure 5.36 shows a
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Figure 5.36.: Scatter plot of the gap length versus u’v’.

scatter plot of these two quantities. The measurement was performed close to the wall, i.e. most

large gaps can be attributed to bubbles passing the measurement volume. Nevertheless, no clear

correlation of the gap length and u’v’ is observed. Modifications of the method of calculation,

e.g. clustering of small groups of data, gives no improvement. In addition, the number of data

points available for the detection is usually much smaller, since coincident measurement of two

components is required. Therefore, the use of the cross-correlation technique does not seem

suited for the detection of bubbles passing through the measurement volume.

5.12. Conclusions

Effect of bubble gaps on signal processing

The performance of reconstruction and slotting techniques for the estimation of turbulence power

spectra of bubbly flow signals obtained with LDA has been investigated. The blockage of laser

beams by bubbles leads to extra gaps in the LDA signal. This results in changes in the shape

of the data interarrival time distribution, i.e. the overrepresentation of short and long intervals.

Spectra of LDA signals calculated with reconstruction techniques suffer from step noise addition

and low-pass filtering. The nature of these biases for bubbly flows signals, however, differs

significantly from the biases for single phase flow signals. For bubbly flows, the spectrum is

reliable up to a cut-off frequency much smaller than the cut-off frequency for a single-phase flow

signal with identical data rate. This cut-off frequency is mainly determined by the void fraction

α and distance to the wall l and decreases if these parameters are increased. In total, two cut-off

frequencies are obtained, their interaction may result in (log-log) decay slopes close to -5/3 in

the signal if no turbulence is present at all. Correction for these signal processing artifacts is

not possible for bubbly flow signals. The gaps created by the bubbles do not lead to particular

problems if slotting techniques or time series analysis are employed. The use of variable window
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techniques combined with several improvements in the slotting technique allows for estimation

of the spectra well beyond the mean data rate. The application of the fit technique introduced

by Van Maanen and Oldenziel (1998) gives similar results for long signals as the variable window

technique, but superior results for shorter signals, although it is less suited in the presence of

pseudo-turbulence. The use of wavelet techniques for the analysis of the bubbly signal also suffers

from problems due to need of signal reconstruction.

Effect of local bubble flow on the power spectrum

The local flow around the bubbles and the wakes of the bubbles generate additional velocity

fluctuations in the signal which obscure the turbulence cascade process. Furthermore, no liquid

velocity is defined at the moments when bubbles cross the measurement volume, creating prob-

lems with the interpretation of spectra. The fluctuations due to local flow generate extra power

in the power spectrum, especially at higher frequencies. The amount of extra power is larger for

the case of reconstruction techniques than for the slotting technique. The influence of the extra

power on the spectrum is strongly dependent on the exact shape of the turbulence spectrum and

the turbulence intensity. Results for the combination of gaps in the data and velocity fluctuations

due to local bubble flow, show that the use of reconstruction techniques for the study of bubbly

flow signals is, generally, not suited. The use of slotting techniques shows a superposition of the

deviation due to local flow and an increased variance due to the gaps in the data. The influence

of local flow on the power spectrum may be reduced by removing velocity realizations that were

produced right before and after the intersection of a bubble with the measurement volume. The

removal requires identification of these velocity realizations, which can be based on the associated

gap in the data, and also on the strong velocity gradients that are produced close to the bubble.

Removal based only on the gap length gives a better approximation of the turbulence spectrum.

The improval is, however, only partial since not all fluctuations are localized and accompanied

by an intersection event. In addition, the improvement occurs at the cost of a strong increase in

the variance. The increase in variance is limited if information about velocity gradients is used,

but correct removal is more difficult.

List of symbols

Roman symbols

A,B constants data interarrival time distribution -

afit, bfit, cfit constants for autocorrelation fit -

b slot weight function -

Cmix constant for mixed flow signal -

Cpower ratio strength fluctuations due to turbulence and potential flow -

deq bubble equivalent diameter m

E expectancy

f frequency s−1

fe resampling frequency s−1

fmax maximum frequency to be estimated s−1
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fmulti(η, τ) probability density function of having two different points with in-

terval η for reconstruction of an interval with duration τ

s−1

f(n)(η, τ) probability density function of having exactly n particles for recon-

struction

s−1

fo scaling function total bubble blockage duration -

jm dyadic scale where wavelet power drops off -

L low pass filter due to reconstruction -

Lfit least squares error of fit -

LFM Local Fluctuation Measure -

LFMmin Local Fluctuation Measure threshold -

LIM Local Intermittency Measure -

l distance measurement volume to the wall m

m average local deviation of the velocity from the mean m s−1

mthreshold threshold for m m s−1

Ṅ1, Ṅ2 frequency scales for bubbly flow data interarrival time distribution s−1

Nf number of DFT/FFT points -

Nlocal number of points to calculate s2 -

Ṅp mean particle rate s−1

Ṅtot mean data rate s−1

n number of velocity realizations in interval -

nk number of power spectrum model parameters s

P power in wavelet scale m2 s−2

P1point(τ) probability of having no particles in interval τ -

Pmv probability of multiple validation -

p number of displacements for wavelet transform -

pno(∆T ) probability of having no velocity realizations during interval ∆T

after arrival of a particle

-

r reconstructed velocity signal m s−1

R autocovariance function m2 s−2

RR autocovariance function reconstructed signal m2 s−2

Ruu original autocovariance function m2 s−2

RND uniformly distributed random number between 0 and 1 -

S power spectrum various

Sa static gain power spectrum model various

Scc corrected power spectrum various

Snn step noise various

Srr reconstructed power spectrum various

Suu original power spectrum various

s2 local deviation of velocity fluctuations from mean m2 s−2

Ta average interarrival time bubbles s

Tbt cumulative bubble blockage duration s

Tcross,start time bubble starts crossing measurement volume s

Tcross,end time bubble ends crossing measurement volume s

Td bubble blockage duration s
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Tdead dead time s

Te resampling interval s

Tlocal local averaging period for calculating s2 and m s

Tµ,local local averaging period for calculating µlocal s

Tremoval,start duration signal segment removed from the signal before bubble ar-

rival

s

Tremoval,end duration signal segment removed from the signal after bubble arrival s

Tmingap minimum gap duration in order to associate gap with bubble s

t time s

tfirst time first velocity realization after gap s

tlast time last velocity realization before gap s

u velocity m s−1

u′, v′ axial and tangential velocity fluctuations m s−1

ulocal short segment of velocity signal m s−1

umix combined flow velocity signal m s−1

upotentialflow potential flow velocity signal m s−1

uturbulence turbulence velocity signal m s−1

uR reconstructed velocity m s−1

W wavelet coefficients m s−1

w window function for PSD calculation -

Greek symbols

α void fraction -

αLDA void fraction determined with the use of LDA -

∆T data interarrival time s

∆Tmv multiple validation time s

∆tp interval between particle arrivals s

∆τ slot width s

κ variable window constant -

µlocal velocity mean over small signal segment m s−1

ξi time instant velocity realization i s

ρ autocorrelation function -

ρc autocorrelation function corrected for noise -

σmv multiple validation time scale s

σpotentialflow strength fluctuations potential flow signal m s−1

σturbulence strength fluctuations artificial turbulence signal m s−1

τ lag s

τbubble typical duration of bubble passage through laser beams s

τf power spectrum model parameters s

Ψ wavelet basis -
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6. Dual burst wavelet LDA processor
implemented and tested on real flows 1

The accurate measurement of turbulence spectra up to high frequencies requires data with high

accuracy in both the Doppler frequency and the burst arrival time, as well as a short processor

delay time, even in the presence of high noise levels which can be encountered in e.g. bubbly flows.

In addition, measurement of the mean and standard deviation of the velocity in a bubbly flow can

suffer strongly from bias problems. The present chapter considers the implementation of a dual

burst wavelet processor for the processing of LDA signals, in order to get more accurate velocity

time series. The processor is described, as well as various tests to check its performance. A

comparison is made with the IFA-750 processor that is used for most standard LDA experiments

described in the present thesis.

6.1. Introduction

The use of Laser-Doppler Anemometry (LDA) for turbulence research requires accurate estimates

of both the frequency of the Doppler burst (which is directly related to the velocity of the tracer

particle) and its arrival time. Through the years, considerable attention has been given to the

determination of the frequency (an overview can be found in Albrecht et al. (2003)), since the

noise in the signal leads to an error in the estimation of the frequency of the Doppler burst

and thus in the estimation of the velocity. This, on its turn, translates into a noise floor in

the turbulence power spectra. Less attention has been paid to the accurate estimation of the

arrival time of the burst. However, for, e.g. velocity signal reconstruction and turbulence power

spectrum measurement, the arrival time is very important. This can be clarified in two ways.

First, an inaccuracy in the arrival time can be interpreted as an additional error in the velocity

estimate because the flow is turbulent:

∆u ≈ du

dt
∆Ta (6.1)

in which ∆u is the additional uncertainty in the velocity estimation, u is the measured velocity

component, t time and ∆Ta the uncertainty in the arrival time. Alternatively, the uncertainty in

the arrival times of two tracer particles results in an uncertainty in the time difference between

the two velocity estimates. This translates into an error in the estimation of the auto correlation

function of the turbulent velocity fluctuations. Especially for the estimation of the spectrum at

the higher frequencies, corresponding to the shortest time scales, this error in the time difference

1Parts of this chapter were previously published as W.K. Harteveld, R.F. Mudde, H.E.A. van den Akker, "Dual
burst wavelet LDA processor implemented and tested on real flows", proc. 12th int. symposium on application
of laser techniques to fluid mechanics, Lisbon, Portugal, 2004
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can lead to significant errors in the spectrum at these time scales.

More refined estimators (Benedict et al., 2000; Broersen et al., 2000) allow the determination

of the spectra at higher frequencies, but these also require more accurate estimation of the arrival

time. In addition, the larger the number of Doppler bursts processed, the lower the variance in

the turbulence power spectrum is. Therefore, as many Doppler bursts as possible should be

validated.

A practical problem is the "delay time" (or "dead time") of the processor: when a Doppler

burst is being processed, no other Doppler burst will be accepted, whether the burst being

processed will be validated or not. Because of the exponential time interval distribution, however,

there is a significant probability that two Doppler bursts are not separated in time but are (partly)

overlapping. Most processors are unable to process such overlapping Doppler bursts correctly,

leading to a large number of rejected bursts and a relatively large delay time, which severely

hampers the estimation of the turbulence power spectrum at the smaller scales and increases

the variance of the turbulence properties, derived from the remaining estimates. To improve the

results a processor should therefore be able to:

• Estimate the frequency of the Doppler burst with the highest possible accuracy;

• Estimate the arrival time of the Doppler burst with the highest possible accuracy;

• Be able to process overlapping Doppler bursts and still be able to obtain the best estimators

for their frequencies and arrival times.

The development of such a processor, software based, will be described below.

Van Maanen (1999), Nobach and van Maanen (2001) and Van Maanen and Nijenboer (1996)

have previously shown that a very reliable technique to estimate accurately both the Doppler

frequency and the arrival time is by using wavelets, i.e. by fitting a model of the burst to the data.

This technique uses the a priori information about the Gaussian burst envelope shape to provide

a high accuracy for these estimates. Nobach and van Maanen (2001) used artificially generated

data to show how the noise in the signal is effectively suppressed and that for many cases the

accuracy of the Doppler frequency and arrival time estimates approaches the Cramér-Rao lower

bound. This technique by itself, however, still assumes the presence of a single burst and does not

solve the delay time problem. Nobach (2002a) has considered the option to improve the signal

validation by allowing for dual-burst signals. A signal processing technique is proposed where

three estimators are used. The first estimator assumes a single burst is present and processes

it as such. The other processors assume a dual-burst is present. The first dual-burst processor

attempts a separation in the time domain after evaluation of the envelope. The second dual-

burst processor attempts the separation in the spectral domain. Finally, for each burst the ’best’

estimate is selected. The study pays little attention to the effect of noise in the signal.

The present work considers the combination of the wavelet technique (WT) with the dual-

burst approach to a ‘dual-burst wavelet processor’. This combination should provide both a

short processor delay time, and good performance in the presence of noise: accurate arrival time

estimates and Doppler frequency estimates.

The development of the processor is performed especially for use with LDA in bubbly flows,

although its use is not limited to this flow type. The application of other measurement techniques
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Figure 6.1.: Procedure of LDA signal processing

to bubbly flows has severe limitations. For instance, PIV is not possible at higher void fractions

and larger scale equipment due to the limited optical accessibility. Hot film probes suffer from

their intrusive nature and their liquid velocity signals contain contributions from the bubble

which need to be identified and removed. LDA does not have these problems as predominantly

the seeding velocity is measured. Nevertheless, the use of LDA in bubbly flow also has its

complications. The reflections and scattering by the bubbles give a much higher noise level.

The higher noise level may lead to multiple validation: bursts corresponding to a single particle

appear more than once in the final velocity signal. Bubbles crossing the laser beams create

gaps in the data (see chapter 5). The flow in a bubble column is characterized by no net liquid

flow. If very uniform gas injection is used, the mean axial liquid velocity is low (typically in the

range -0.05 m/s to 0.05 m/s) but the fluctuations are much larger (e.g. in the range -0.4 m/s

to 0.4 m/s). This may lead to relatively large deviations in the moments due to the various

bias sources. The application of the dual-burst wavelet processor may help in dealing with the

problems created by the high noise levels, low data rate etc. For instance, the seeding density may

be further increased. In addition, by storing the entire LDA signals and use flexible processing

via software, extra insight can be gained about problems associated with the use of LDA in the

bubbly flows.

The present chapter describes the implementation of the algorithms for the dual burst wavelet

processor. In particular, attention is paid to the combination of the dual-burst approach and

wavelet approach. The application of the processor to real data is discussed, in particular for

bubbly flow. Most algorithms were developed using test bursts obtained experimentally in these

bubbly flows. The chapter first discusses the general approach to the burst processing, followed by

the algorithms for the processing of single bursts. Next, the processing of dual bursts is discussed,

followed by a discussion of the algorithms for detection and validation. The experimental setup

used for the tests and the results obtained are discussed. A comparison with the commercial

IFA-750 processor is made, followed by conclusions.

6.2. Dual burst wavelet processing

The process of the estimation of burst parameters is composed of a number of steps shown in

Figure 6.1.

These will be discussed in more detail in the rest of the chapter. First, an electronic bandpass

filter is applied which serves as an anti-aliasing filter and removes the pedestal and noise. The

LDA signal is sampled continuously at a high frequency resulting in data files of several GBytes.

Next, the signal is processed offline via the use of software written in C++. First, the noise

level is determined. This is done to allow automatic setting of the detection parameters and

processing parameters. Next, the approximate burst locations are determined by the burst
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detector. The burst processor estimates various parameters of the burst. Finally, a separate

validation procedure is performed which removes outliers. The separate validation procedure

allows quick study of the effect of validation parameters, without the need of re-running the

computationally intensive burst processing algorithms.

For the dual-burst processing, an approach similar to that by Nobach (2002a) is taken. For

every burst (pair) the parameters are determined in parallel by three processors (see Figure 6.2).

This is done since a priori it is not known whether a single or dual burst is present. The first

processor considers the signal fragment as a single burst, the other two processors consider the

signal fragment as a dual burst. The decision which estimate should be used is made in the

validation step. Since the single burst processor is based on the iterative wavelet transform, a

pre-estimation is required for several burst parameters. In the following sections the algorithm

components are discussed in more detail.

6.3. Single burst processing using the Wavelet transform

The single burst processor processes bursts using the wavelet technique. The present section

discusses this technique. The wavelet technique requires pre-estimates for the Doppler frequency

and the transit time. For this reason, the techniques used to provide these pre-estimates are also

discussed.

6.3.1. Wavelet transform technique

The processing of single bursts with the wavelet transform technique is considered. For more

details, the reader is referred to Van Maanen and Nijenboer (1996), Nobach and van Maanen

(2001) and Van Maanen (1999). A detected burst is passed to the processors. Its signal y(t) is

mean-free, has N points and has been sampled with frequency fs at times ti = i∆t (i= 0 . . .

N − 1; ∆t = 1/fs). The wavelet transform tries to fit the following signal model to this burst

(arrival time Ta, transit time Tt, Doppler frequency fD, phase φ and amplitude A):

s(ti) = Ae
−

8(ti−Ta)2

T2
t cos(2πfDti + φ) (6.2)
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Figure 6.3.: Example burst (a) and its wavelet transform (b). The Doppler frequency of the
burst is 500 kHz, the arrival time 1 ms.

The Wavelet Transform (WT) in complex notation of y(t) is given by:

WT{y}(fD, Ta) =
N−1
∑

i=0
y(ti)e

−
8(ti−Ta)2

T2
t e−2πjfDti

=
N−1
∑

i=0
y(ti)E(ti;Ta)C(ti;fD)

(6.3)

with transform kernels E(ti;Ta) = e
−

8(ti−Ta)2

T2
t and C(ti;fD) = e−2πjfDti . Figure 6.3 shows an

example of a burst and its wavelet transform. In the absence of noise, the wavelet transform of

the burst has its maximum at the location of the exact Doppler frequency and arrival time. If

noise is present in the signal, a deviation from this location will occur.

The estimates of the Doppler frequency f̂D and arrival time T̂a are determined by maximizing

the magnitude of the wavelet coefficient:

(f̂D, T̂a) = max(|WT{y}(fD, Ta)|) (6.4)

The maximization is performed iteratively. A pre-estimation algorithm determines a first esti-

mate of f̂D and T̂t: f̂D,pre and T̂t,pre. The estimate for the transit-time is held constant during

the following calculations. Next, the algorithm calculates the wavelet coefficients for all discrete

arrival times at the fixed frequency f̂D,pre and determines the value of the arrival time where

their magnitude is maximized:

T̂a = max
{

|WT{y}(f̂D,pre, Ta)|
}

(6.5)

Nobach and van Maanen (2001) showed how the wavelet coefficients can be efficiently calculated

for a fixed frequency. With E0 = e
−

8t2i
T2

t , the coefficients at Ta = k/fs (k=0 . . . N − 1) are
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obtained using:

DFT {WT{y}(fD, k/fs)} = DFT {y · C} · DFT {E0} (6.6)

with DFT the Discrete Fourier Transform. The Doppler frequency is found at the location of

the maximum:

f̂D = argmax
{

|WT{y}(fD, T̂a)|
}

(6.7)

The wavelet coefficients can be calculated via the DFT, since:

WT{y}(fD, T̂a) = DFT{y · E(ti, T̂a)} (6.8)

The estimate f̂D is obtained from the coefficients using a three-point Gaussian interpolation

algorithm. The phase estimate φ̂ is required for validation purposes. It is estimated from

the FFT of the signal using the method described in Nobach and van Maanen (2001). The

same authors showed that one frequency iteration and one arrival time estimate are sufficient.

This is due to the symmetry of the Gaussian peak in the two-dimensional (fD, Ta) domain.

Consequently, we obtain the algorithm shown in Figure 6.4.

The wavelet transform provides improved accuracy in the Doppler frequency and arrival

time estimates by optimal weighing of the signal. If, for instance, the Doppler frequency is

determined, the effective windowing operation of the wavelet transform provides the optimal

peak-to-noise level ratio in the wavelet coefficients, better than can be achieved with traditional

DFT-techniques. A priori knowledge about the peak shape can give a further increase in accuracy

via peak fitting. The wavelet transform preserves the Gaussian peak shape, which is not the case

for DFT techniques with other window shapes or clipping.

6.3.2. Improved Doppler frequency accuracy due to the wavelet transform

By comparing the power spectrum and the wavelet transform (for fixed arrival time estimate)

of a burst immersed in noise, an idea can be obtained why the WT gives higher accuracy for

the Doppler frequency estimate than traditional DFT techniques. If the signal of a burst s(t)

immersed in noise n(t) is measured during time Tw, a total signal s(t) + n(t) is obtained. From

Monte-Carlo investigations it was found that the variance of the DFT coefficients and WT co-

efficients of the total signal is proportional to the ratio
√

(nDFT/sDFT) and
√

(nWT/sWT) respec-

tively, with sDFT = |DFT{s(t)}(fD)|2, nDFT = mean(|DFT{n(t)}(f)|2), sWT = |WT{s(t)}(fD)|2
and nWT= mean( |WT{n(t)}(f)|2 ).

The following noiseless burst is considered:

s1(ti) = A1e
−

8(ti−Ta1)2

T2
t1 cos(2πfD1ti + φ1) (6.9)
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Figure 6.5.: a) s/n ratio for Tw=Tt1 b) Comparison of s/n for DFT and WT.

With η1=8/T2
t1, the DFT of the burst is given by (ignoring clipping):

|DFT{s1}(fk)|2 =
πA2

1f
2
s

4η1
e
− 2π2

η1
(fD1−fk)2

(6.10)

The wavelet coefficients for fixed arrival time Ta1, are calculated with a window with width Ttx

(ηx = 8/T 2
tx ):

|WT{s1}(fk)|2 =
πA2

1f
2
s

4(η1 + ηx)
e
− 2π2

η1+ηx
(fD1−fk)2

(6.11)

The noise signal n1(ti) with white Gaussian noise with standard deviation σn1 has nDFT = σ2
1N

and nWT = σ2
1N

√
(π/2)/(Tw

√
ηx). N is the number of data points. With cx = Ttx/Tt1 we get:

sWT

nWT

sDFT

nDFT

=
4√
π

c2x
1 + c2x

Tw

Tt1
(6.12)

that has a maximum for cx=1 (see Figure 6.5(a)), i.e. the maximum accuracy for the WT is

obtained with Ttx = Tt1, as was expected.

The effect of clipping is taken into account by calculating the normalized sWT/nWT and

sDFT/nDFT for artificial bursts for a range of measurement durations Tw. The result is shown

in Figure 6.5(b). sDFT/nDFT first increases with Tw/Tt1 since a larger part of the burst is used.

When Tw/Tt1 >0.7 relatively more extra noise than extra signal is included and sDFT/nDFT

drops. The wavelet coefficients have a larger s/n ratio than the DFT coefficients for all measure-

ment durations Tw. This shows that the wavelet transform will provide more accurate frequency

estimates. Another way of obtaining improved accuracy for the Doppler frequency estimate is

to use the knowledge that a Gaussian burst produces a Gaussian peak in the power spectrum

or wavelet coefficients, and fit a Gaussian curve to the peak. Clipping of the burst (Tw < Tt1)

gives a non-Gaussian shape, and may therefore result in reduced accuracy. The WT, however,

maintains the Gaussian shape as well as a high s/n.
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6.3.3. Pre-estimation

The iterative wavelet transform requires a pre-estimate for the transit time and the Doppler

frequency. This is provided by the pre-estimation algorithms (Figure 6.6). These also provide

parameters for validation afterwards, such as the amplitude.

The Doppler frequency is determined from the peak in the power spectrum. A common

technique for improving the accuracy is spectral peak interpolation, such as peak fitting (Matovic

and Tropea (1991)). The peak in the power spectrum of a Gaussian burst has again a Gaussian

shape. From a Gaussian fit of the spectral peak not only the Doppler frequency, but also the

transit time can be estimated. The power spectrum peak is fitted over the range [i1,i2] by

minimizing the weighted least squares criterion

L(T̂t,pre1, f̂D,pre1, K̂) =

i2
∑

i=i1

(ln(|DFT{y1}(fi)|2) +
π2T̂ 2

t,pre1

4 (fD − f̂D,pre)
2 − K̂)2

σ2
ln(|DFT{y1}(fi)|2)

(6.13)

with respect to the estimates for the logarithm of the peak amplitude K̂, the transit time

T̂t,pre1 and the Doppler frequency f̂D,pre. The fit requires information about the accuracy of

ln(|DFT{y1}(fi)|2), which has been investigated via a semi-empirical analysis of artificial bursts.

This shows that if a signal y1(t) is composed of a noiseless burst s1(t) and random noise n1(t),

i.e. y1(t) = s1(t) + n1(t), the variance of ln(|DFT{y1}(fi)|2) is approximately given by:

σ2
ln(|DFT{y1}(fi)|2)

≈ 2.21
mean(|DFT{n1}(f)|2)

|DFT{s1}(fi)|2
(6.14)

for mean(|DFT{n1}(f)|2)
|DFT{s1}(fi)|2

<0.4. However, since |DFT{s1}(fi)|2 is not known, |DFT{y1}(fi)|2 is

used. This leads in general to underestimation of σ2
ln(|DFT{y1}(fi)|2), especially for the weaker

parts of the burst peak. The underestimation of σ2
ln(|DFT{y1}(fi)|2) in the part of the burst where

|DFT{y1}(fi)|2 approaches |DFT{n1}(f)|2, can lead to erroneous fits, usually resulting in an

underestimation of T̂t,pre1. Therefore, the fit region ifit1 ≤ i ≤ ifit2 is chosen according to

|DFT{y1}(fi)|2 > mean(|DFT{n1}(f)|2) +Cpeak(max(|DFT{y1}(f)|2)−mean(|DFT{n1}(f)|2))
(6.15)

The region has a minimum size of three points. Cpeak was chosen after tests with real bursts,

with a typical value of 0.1 for strong bursts. Tests with artificial bursts show that the technique is

fast and gives much higher accuracy and smaller bias for f̂D,pre and T̂t,pre1 than traditional three

point Gaussian fits. Typical improvements for the standard deviation of the Doppler frequency

and transit time estimates are a factor 5 and 10 respectively.
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If the bursts are not exactly Gaussian, the transit time estimate can be biased. In addition

the noise may cause underestimation. For these reasons, the transit time is also determined

from the envelope. The envelope is not only required for the transit time estimation, but is also

required for the dual burst processors (e.g. arrival time estimation). The envelope of the signal

y(t) is obtained with the use of the Hilbert Transform (HT) (Nobach and van Maanen (2001)):

ENV{y(t)} =
∣

∣IDFT{HT+{DFT{y(t)}}}
∣

∣ (6.16)

where DFT is the discrete Fourier Transform, IDFT its inverse and

HT+{x}i =







xi for i ∈ (0;N/2)

2xi for 0<i<N/2

0 for N/2<i ≤ N-1







(6.17)

A low-pass filter can be applied to the envelope to remove oscillations caused by noise. It is

important to consider the effect of noise on the envelope estimate. Figure 6.7 (obtained with an

artificial burst with A1 = 4 and σ2
n1 = 1) illustrates that:

ENV{s(t) + n(t)} < ENV{s(t)} + ENV{n(t)} (6.18)

Therefore, for accurate estimation of the amplitude, transit time and arrival time of bursts, it

is important to apply a bandpass filter to the signal before determining the envelope. This

bandpass filter should only pass the frequencies where the signal power is larger than the noise

power. The envelope of this band passed signal is shown in Figure 6.7, its shape is close to the

true envelope. The bandpass filtering is performed by setting the Fourier coefficients outside the

region ifit1 ≤ i ≤ ifit2 to zero. This was found to render good results.

The transit time can also estimated iteratively from the envelope of the bandpass filtered
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signal (extending the approach of Nobach and van Maanen (2001)):

T̂
(k)
t,pre2 =

√

8

π

∑

i ENV {y1 } (ti)

fs max(ENV{y1} (ti))
(6.19)

where k denotes the iteration. For the first summation (k=0), summation is performed over the

total signal. The presence of some reminiscent noise will in general lead to an overestimation

of the transit time. Therefore, the estimate is refined in a second iteration (k=1), with the

summation over a region with duration 5
4 T̂t,pre2 centred around the maximum of the envelope.

Two estimates of the transit time are available: one from the fit of the power spectrum, another

one from the envelope. The estimate based on the spectral peak can suffer from underestimation,

the estimate from the envelope can suffer from some overestimation. Therefore, in initial tests

the average of these transit times was used as the final estimate:

T̂t,pre =
T̂t,pre1 + T̂

(1)
t,pre2

2
(6.20)

For weak bursts, the estimate T̂t,pre1 is less reliable. Furthermore, in cases where there is part

of a second burst in the segment provided by the burst detector, the peak shape in the power

spectrum may be strongly affected. Consequently, the estimate T̂
(1)
t,pre2 is found to be more reliable

for practical data and it is therefore selected as the final estimate:

T̂t,pre = T̂
(1)
t,pre2 (6.21)

The amplitude of the burst Â1 is estimated from the band passed envelope:

Â1 = max(ENV{y1}(ti)) (6.22)

6.4. Dual bursts processing

In the dual burst processors, the following signal model is fitted to the data:

s(ti) = A1e
−

8(ti−Ta1)2

T2
t1 cos(2πfD1ti + φ1) +A2e

−
8(ti−Ta2)2

T2
t2 cos(2πfD2ti + φ2) (6.23)

Wavelet transform applied to dual bursts

Doppler frequencies may be estimated by fitting the peak of the coefficients obtained via the

DFT or the WT. Similarly, the arrival time may be estimated via a fit of the peak obtained with

the wavelet transform or the peak in the estimate of the envelope of the burst. The shapes of

the peaks obtained with these techniques differ, however. The shapes of the peak obtained with

the |WT| and the |DFT|2 are given by:

|WT{s1}(fD, Ta)| ∝ A1Tt1e
−4

(Ta−Ta1)2

T2
t1 e−

π2Tt1
16

(fD1−fk)2 (6.24)
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|DFT{s1}(fk)|2 =
πA2

1T
2
t1f

2
s

32
e−

T2
t1π2

4
(fD1−fk)2 (6.25)

Comparison of equations (6.24) (squared) and (6.25) shows that the use of the WT results in

a spectral peak that is a factor
√

2 wider than the spectral peak that is obtained with the

DFT. Similarly, comparison of equations (6.24) and (6.23) shows that the temporal width of

|WT{s}(fD, Ta)| is also a factor
√

2 larger than the width of the burst envelope. The increase of

the widths may lead to problems if a dual burst is measured where the two bursts have almost

the same Doppler frequency and arrival time. Whereas a minor peak overlap may be obtained

with the DFT or envelope based estimation techniques, a larger peak overlap is obtained using

the WT technique. This is illustrated in Figure 6.8 for two artificial bursts with equal frequency

and a small arrival time difference. An initial minor temporal overlap in the envelope becomes a

severe overlap in the wavelet coefficients. The increased overlap can create a larger bias for the

estimate of the Doppler frequency and arrival time. For even larger overlaps, it may even make

the detection of the second peak impossible. Therefore, direct use of the wavelet transform for

the estimation of dual bursts is not suitable and an alternative approach is taken incorporating

only elements of the wavelet transform.

Tests with artificial bursts show that the variance of the arrival time estimate using the

envelope of the band passed signal is only slightly larger than the variance using the wavelet

transform. Therefore, the dual burst processor with temporal separation uses this envelope to

estimate the arrival time instead of the wavelet transform. For the dual burst processor employing

spectral separation, drift and detectability of the Doppler frequency may also improve by using

the original power spectrum instead of the frequency iteration of the wavelet transform. However,

this advantage is only present for bursts with very strong temporal overlap (i.e. two particles at

almost exactly the same time in the measurement volume) and Doppler frequencies which are

very close. These bursts provide little additional information anyway. Therefore, the Doppler

frequency is estimated using the frequency iteration of the wavelet transform where maximum

noise suppression is obtained. For bursts with strong overlap in time and frequency, further



180 Chapter 6. Dual burst wavelet LDA processor implemented and tested on real flows

Calculate lowpassed
envelope of band
passed signal

Fit two gaussian
curves
to envelope

Set wavelet
windows
E1 and E2

Fit peaks power spectra
|FFT(y*E1)| and

2

|FFT(y*E2)|
2

Estimate
phases

Figure 6.9.: Dual burst processor with separation in time

improvements may be obtained by incorporating a third dual-burst processor which uses window

shapes which suppress noise effectively, try to suppress the peak by the other burst, but have a

smaller widening effect on the peak shape. This is not performed in the current investigation,

however.

6.4.1. Dual burst processor with separation in time

Bursts with overlap in the spectral domain may be separated if their overlap in time is small.

The basic idea is to cut the signal at the point of overlap and process the two parts separately,

similar to Nobach (2002a). The current processor, however, employs a multiplication by a wavelet

window to suppress the other burst and noise. Some measures are implemented to allow for some

temporal overlap. Figure 6.9 shows the algorithm schematically.

First, the signal y(t) (an example is given in Figure 6.10a) is filtered with a bandpass filter.

The pass regions of the filter are based on the amplitude in the power spectrum. The threshold

requires an estimate of the noise level and the peak height. Therefore, the frequency fmax and

height Pp of the highest peak in the power spectrum P (f) are determined. Next, the locations of

the adjacent minima at frequencies fmin,s and fmin,e are determined. The region [fps, fpe] around

the highest peak is identified: this is the region [min(fmin,s, fmax−fwidth/2), max(fmin,e, fmax +

fwidth/2)], where fwidth is the spectral peak width based on a burst duration timescale obtained

from the noise detector. The noise level Pn is the average power spectrum level outside region

[fps, fpe].

The pass regions of the filter are determined. For this purpose, the threshold level Pthreshold =

0.2(Pp−Pn)+Pn is used. The frequencies fi in the power spectrum P (f) with P (fi) > Pthreshold

are identified. Around each of these frequencies fi, a region is identified which extends from fi

up to the closest local minima in the power spectrum. All these regions are combined and form

the pass regions for the band pass filter (the combined regions are not necessarily connected).

(Figure 6.10b). The bandpass filter is set to pass all of the frequencies in these regions, the

Fourier coefficients of all other frequencies are zeroed. This gives the filtered signal yf (t). Next,

the envelope ENVbandpass of the bandpass filtered signal is determined using the Hilbert trans-

form. A lowpass filter is used to remove the remaining oscillations from the envelope, providing

ENVlowpass. The lowpass filter passes frequencies up to 2π/Tgap with Tgap the estimate for the

burst duration from the noise detector. Fourier coefficients corresponding to frequencies outside

this range are zeroed. Examples of the envelopes are shown in Figure 6.10c.

Next, the highest peak in the envelope is identified. A Gaussian curveGDT
1 (t) = ÂDT

1 e
−

8(t−T̂DT
a1 )2

(T̂DT
t1 )2

is fitted to three points to determine the estimates for amplitude ÂDT
1 , arrival time T̂DT

a1 and tran-

sit time T̂DT
t1 of the burst with the largest amplitude. The three points used in the fit are the maxi-
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mum, and the points at the flanks where the threshold level min(ENVlowpass)+0.5(max(ENVlowpass)-

min(ENVlowpass)) is crossed. For bursts where the separation is feasible, these three points will

belong to a single burst. The fit is followed by the removal of the fitted burst from the envelope

via:

ENVsubtract(t) = max(ENVlowpass(t) −GDT
1 (t), 0) (6.26)

The amplitude ÂDT
2 , arrival time T̂DT

a2 and transit time T̂DT
t2 of the second burst are estimated in

the same way, via fitting GDT
2 (t) = ÂDT

2 e
−

8(t−T̂DT
a2 )2

(T̂DT
t2 )2 to three points of ENVsubtract. The fitting

procedure is illustrated in Figure 6.10c) and d). The Doppler frequencies are estimated with the

use of the frequency iteration step of the wavelet transform. The influence of a possible temporal

overlap on the peak of the wavelet coefficients is investigated. The noisy signal y(t) is assumed

to be composed of two bursts having noiseless signals s1(t) and s2(t). If a window with transit

time Ttx is used, we get (with ηi = 8/T 2
t,i and ηx = 8/T 2

t,x):

|WT{si}(fD, Ta)| =

√
πAifs

2
√
ηi + ηx

e
− π2

ηi+ηx
(fDi−fD)2

e
−

ηiηx
ηi+ηx

(Tai−Ta)2
(6.27)

The peak associated with burst j is estimated using a window with Ta = Taj and Ttx = Ttj . The

wavelet coefficients will contain peaks due to both bursts. The ratio of the amplitudes of the

peaks corresponding to burst i and burst j is given by the "overlap criterion":

OCij =
|WT{si}(fDi, Taj)|
|WT{sj}(fDj , Tai)|

=
Ai

Aj

√

2ηj

ηi + ηj
e
−

ηiηj
ηi+ηj

(Tai−Taj)
2

(6.28)

If OCij >0.5 the overlap is too big, and the window is made more narrow to reduce the influence

of overlap with:

T̂DT∗
tj = max(2|T̂DT

aj − T̂DT
ai | − T̂DT

ti ,
T̂DT

tj

10
) (6.29)

If OCij <0.5 the standard wavelet transform Doppler frequency iteration method is used for burst

j: the overlap is small enough to ensure detection of the correct peak. This gives T̂DT∗
tj = T̂DT

tj .

The following window is obtained (for simplicity, we assume that T̂aj < T̂ai):

EDT
j (ti; T̂

DT
aj ) =















e
−

8(ti−T̂DT
aj )2

(T̂DT
tj

)2 for ti ≤ T̂DT
aj

e
−

8(ti−T̂DT
aj )2

(T̂DT∗
tj

)2 for ti>T̂
DT
aj

(6.30)

An example is shown in Figure 6.10 e). In this example, the overlap is small and the window has

not been narrowed. In the example in Figure 6.10 f), a different burst pair is considered with

stronger overlap. Consequently, the window is narrowed for burst 2. The Doppler frequency of

burst j (f̂DT
D,j ) is determined using a Gaussian three-point fit of the maximum of |WTDT

j {y}|2
(see Figure 6.10c), which is determined with:

WTDT
j {y}(fD, T̂

DT
aj ) = DFT{y · EDT

j (ti, T̂
DT
aj )} (6.31)
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Figure 6.11.: Dual burst processor with spectral separation.

6.4.2. Dual burst processor with spectral separation

The dual burst processor tries to perform the separation in the frequency domain by finding

the peaks in the power spectrum due to both bursts and selectively process these using digital

filtering. This is again similar to Nobach and van Maanen (2001) but using wavelet techniques

and other measures to reduce the influence of noise. A schematic overview of the method is

shown in Figure 6.11.

First, the two largest peaks in the power spectrum have to be identified, as well as reliable

bandpass regions around these peaks for the digital filters. Due to noise, the power spectrum

contains oscillations which hamper the correct identification of these peaks and bandpass regions.

For this reason, the power spectrum is smoothed using a Gaussian lowpass filter. The transit

time estimate of the largest-amplitude burst with temporal separation T̂DT
t1 is used to set the

minimum frequency scale fw = 4
√

2/(πT̂DT
t1 ) that should be passed. The filter has transfer

function e−i2/N2
c with Nc = fp,max/(2fw), where fp,max is the maximum frequency in the power

spectrum. After searching the largest-amplitude power spectrum peak (located at fmax1), the

second largest peak (located at fmax2) has to be found in the power spectrum. For this purpose,

the algorithm determines the frequency range [fps1, fpe1] of the main peak that should be excluded

from the search. Minima adjacent to the maximum are located: fmin1,sand fmin1,e.

The exclusion region [fps1, fpe1] is now taken as [min(fmin1,s, fmax−0.7fw), max(fmin1,e, fmax+

0.7fw)]. The bandpass filter frequency ranges are set: for peak j the bandpass filter BFDF
j has

frequency pass range [fbpsj , fbpej ]. The range is determined in the same way as the search exclu-

sion zone discussed before. For peak j, the minima adjacent to the peak are determined: fminj,s

and fminj,e. If the peaks are not close (i.e. |fmax1 − fmax2|/fw >2), the peak width [fwj,s, fwj,e]

is estimated from the timescale with: fwj,s= fmax,j-0.75fw and fwj,e= fmax,j+0.75fw. Oth-

erwise, fwj,s= fmax,j-0.5fw and fwj,e= fmax,j+0.5fw. Finally, fbpsj = min(fminj,s, fwj,s) and

fbpej = min(fminj,e, fwj,e). Figure 6.12 illustrates the procedure.

For each peak, the signal is bandpass filtered and the envelope is determined:

ENVDF
j (t) = ENV(BPDF

j (y(t))) (6.32)

Next, each envelope ENVDF
j (t) is fitted with a Gaussian curve GDF

j (t) (Figure 6.12c), from

which the estimates for amplitude ÂDF
j , arrival time T̂DF

aj and transit time T̂DF
tj are obtained.

The fitting procedure is identical to that for the dual burst processor with temporal separation.

Subsequently, the Doppler frequencies are estimated with the use of the frequency iteration step
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of the wavelet transform. With EDF
j (ti; T̂a) = e

−
8(ti−T̂DF

aj )2

T̂2
tj :

WTDF
j {y}(fD, T̂

DF
aj ) = DFT{y · EDF

j (ti, T̂
DF
aj )} (6.33)

The Doppler frequency of burst j (f̂DF
D,j ) is determined using a Gaussian three-point fit of

|WTDF
j {y}|2 of the maximum located in the range [fbpsj , fbpej ].

6.5. Detection and validation

6.5.1. Noise level detection and burst detection

The noise level detection and burst detection are discussed only briefly. An extensive discussion

can be found in appendix B. An estimate of the noise level of the LDA signal is required for

automatic setting of threshold levels in the burst detector as well as for the burst processing. A
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rough estimate for this noise level is found by calculating the standard deviation after removal

of the bursts from the signal. The bursts are removed by an iterative algorithm based on the

probability density function of a small part of the signal. If a large fraction of the points differs

significantly from the mean, the part of the signal is considered to be part of a burst.

The burst detector is based on an autocorrelation technique, which has similarities with the

algorithm by Jenson (1992). The detector should detect bursts with frequencies inside a given

range. Delays are selected that correspond to the location of the first maximum at nonzero

lag of the autocorrelation of signals with these frequencies. A small window is shifted over

the signal. The autocorrelation coefficients for these delays are calculated for this window. The

maximum autocorrelation coefficient is selected: Aacf (t). Burst candidates are found by locating

the parts of the signal where Aacf (t) exceeds a threshold level Aacf,threshold. False detection is

reduced by rejecting burst candidates with duration shorter than a certain threshold, as well as

candidates with mean and maximum Aacf (t) levels lower than certain thresholds. Thresholds are

set automatically, based amongst others on the burst duration and the noise level, to minimize the

occurrence of multiple validation, false detection and bias in the burst duration. In addition, the

algorithm and sampling rate are optimized to prevent a Doppler frequency dependent probability

of detection. At this moment, the settings of the detector have been set sensitive to avoid

possible bias. This results, however, in a somewhat higher rate of false detection, leading to

larger computational loads for the processor. Tests show that the automated setting of detection

thresholds works well: no user input or tweaking is required.

The detector outputs the start positions and end positions of the possible bursts. These

segments are subsequently read by the processor. Since the processor uses FFT routines, the

length of the segment is extended to the nearest larger power of two. A window is used to

suppress the signal in the parts which have been added due to the segment extension.

6.5.2. Validation

After processing the detected bursts, the estimated parameters for the three processors are passed

to the validation algorithm. The validation algorithm has two main purposes: first, to remove

outliers from the time series, and second, to select which of the three processor outputs will be

used.

Three possible criteria are considered for the removal of outliers, these will be evaluated for

their suitability. If

SNRk =
P̂ k

P

P̂ k
NCa(f̂k

D)2
> SNRthreshold (6.34)

or

SNR
(3)
k =

P̂ k
P3

P̂ k
NCa(f̂k

D)2
> SNR

(3)
threshold (6.35)

or
Ak

Ca(f̂k
D)

> Athreshold (6.36)

is not satisfied, the burst is rejected. P̂ k
P is the height of the power spectrum peak. P̂ k

P3 is the

sum of the heights of the power spectrum peak and its two neighbor points. P̂ k
N is the mean
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noise level in the power spectrum. Ca(f) is a frequency dependent amplification factor that is

necessary to compensate for imperfections in the photo multiplier tube and electronics used in

the experiments. The initial experiments performed, used the amplifier and bandpass filters in

the TSI IFA-750 burst processor. Tests with the TSI equipment showed that its amplification

factor may vary up to a factor of 2 over the frequency range inside the specified bandpass filter

range (appendix C). Obviously, this causes a bias for measurements with a large variation in

the Doppler frequency (e.g. bubble columns). For this reason, a correction is included in the

validation criterion. Appendix C discusses the measurement of Ca(f). In order to reduce the

problems related to the use of the IFA-750 amplifier and filters, dedicated amplifiers and filters

were built. Their use made the requirement for correction obsolete.

Apart from the removal of outliers, the rejection via the SNR criterion also serves a second

purpose. Especially for measurements close to the wall, a local maximum is observed in the

power spectrum at the preshift frequency. This is caused by light scattered by impurities at the

wall. For this reason, bursts with a frequency close to the preshift frequency and small SNR are

rejected. In section 6.6.2 the criteria for outlier removal are discussed in more detail.

After the removal of outliers, the remaining burst estimates correspond to actual coherent

signals. Nevertheless, the individual processor estimates may be inaccurate since the actual

number of bursts differs from the number of bursts that the processor can handle. E.g., the

single burst processor may produce inaccurate results if a dual burst is present, similarly both

the single and dual burst processors may produce inaccurate results if more than two bursts

are present. A simple test to check for the presence of these additional bursts is by checking

the ’peak ratio’ Pratio of the second largest maximum and the largest maximum in the power

spectrum or wavelet transform. If a second burst is present, this ratio is large. The peak ratios

for the various processors are given by:

P single
ratio =

max2|DFT{y}(f)|2
max|DFT{y}(f)|2 (6.37)

PDT
ratio,j =

max2(WTDT
j (f))

max(WTDT
j (f))

(6.38)

PDF
ratio,j =

max2(WTDF
j (f))

max(WTDF
j (f))

, with f ∈ [fbpsj , fbpej ] (6.39)

where max2 denotes the second largest maximum. The search for the dual burst processor with

spectral separation is only performed over the band pass regions. If

Pratio > Pratio,threshold (6.40)

is satisfied for one of the burst estimates, it is rejected. The value of Pratio,threshold is typically

set to 0.2. With this value, reliable rejection of multiple bursts is performed. If smaller values

are used, the use of the criterion gets a similar character as the signal-to-noise ratio criteria (e.g.

SNR(3)): it removes the bursts that have a higher inaccuracy due to the noise in the signal.

After these two checks, the estimates with the largest inaccuracies have been removed from

the data set. There is, however, the possibility that the dual burst processor has mistaken a
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single burst for a dual burst due to e.g. oscillations in the envelope. In addition, the overlap

of the bursts may have been so strong that a large inaccuracy in the arrival time results. The

probability of correct detection by the dual burst processors can, however, be estimated. For the

dual burst processor with temporal separation, the separation in time using the envelopes is the

most crucial step: if the bursts cannot be correctly distinguished in the envelope, the results are

inaccurate. The criterion

OCTij =

T
∫

0

ENVi(t)ENVj(t)dt

T
∫

0

(ENVj(t))
2dt

≈
√

2Ai

Aj

Tti
√

T 2
tj + T 2

ti

e
−

8(Taj−Tai)
2

T2
tj

+T2
ti (6.41)

gives information about the impact of the overlap by burst i on burst j. Tests with artificial bursts

show that if OCTij >0.15 the location of burst j has probably been misdetected. Consequently,

if OCT12 >0.15 or OCT21 >0.15 the burst pair is rejected.

Similarly, the dual burst processor with spectral separation only produces useful results if the

spectral peaks can be distinguished. If the spectral overlap criterion

OCFij =

fs/2
∫

0

Pi(f)Pj(f)df

fs/2
∫

0

(Pj(f))2df

≈ A2
2T

2
t2

A2
1T

2
t1

√
2

√

T 2
t1 + T 2

t2

e
−

π2T2
t1T2

t2(fd1−fd2)2

4(T2
t1+T2

t2) (6.42)

exceeds 0.1 for one of the two bursts the burst pair should be rejected since the spectral peak of

burst j has likely been misdetected. If the smallest amplitude burst of a burst pair outputted by

a dual burst processor is strongly clipped (it overlaps with the start or end of the signal block),

the pair is also rejected. In addition, bursts corresponding to possible stray signals are rejected

as well as burst pairs with strong temporal overlap (which originate from two particles present

at the same time in the measurement volume).

After these checks, the best processor estimate is selected from the remaining estimates: the

processor estimate is chosen that has the smallest least squares norm:

Lk = CL,k

N−1
∑

i=0

(sk(ti) − y(ti))
2 (6.43)

Lk is the least squares norm, CL,k a constant and sk(t) is the model signal for processor k

(equations 6.9 and 6.23); y(t) is the input signal. Tests show that the accuracy of the phase

estimate is sufficient to allow a correct choice. In addition, tests show that if two bursts are

present in the signal, Lk will be significantly smaller for the dual burst processor estimates than

the single burst processor estimate if both remain after the previous checks. Consequently, the

dual burst processor output will be chosen. If, however, a single burst is present, sometimes small

oscillations in the envelope may be interpreted as a second burst by the dual burst processor.

In this case, the Lk norm for the dual burst processors is slightly smaller than that of the single

burst processor (in the order of 1%). For this reason, the constant CL,k has been introduced. It
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is typically set to 0.9 for the single burst processor and to 1 for the dual burst processors. This

way the single burst processor output will be preferred in this case.

When all bursts have been outputted, these are sorted by arrival time and a final search is

made for bursts strongly overlapping in time. For signal segments where the bursts are very

closely packed, the burst detector may output two directly adjacent intervals. If a (second) burst

is present at the edges of these intervals, it may be processed and outputted twice. If such a

burst pair is found, the estimate with the largest signal-to-noise ratio is selected and the other

discarded.

6.6. Test experiments

Several tests were performed to evaluate the performance of the new combination of detector,

processor and validation. The present section discusses the setups used, an evaluation of the

criteria for removal of outliers in the validation step, improvements in the data rates and the

accuracies that are achieved as well as the delay time reduction.

6.6.1. Setup

Experiments to test the processor performance were performed in a laminar single phase flow

and a bubbly flow. The LDA equipment consists of a 4W Spectra-Physics Ar+ laser and a

TSI 9201 colorburst multicolor beam separator. Beam pairs are focused using a backscatter

probe. Detected light is sent to a TSI 9230 colorlink. For comparison purposes and setting of

the equipment, bursts are processed with processor type IFA-750 (TSI), controlled by a 486 PC.

Initially, the electronic signals were amplified and bandpass filtered using the filters present in

the IFA 750 equipment. Many problems were encountered which could be traced back to these

amplifiers and filters (see appendix C). For this reason, dedicated filters and amplifiers were

developed to filter and amplify the signals. Acquisition of the signals is performed using a dual

channel fast analog digital convertor (Spectrum MI.3011) which is built in an Adlon 1700+PC

with 4 striped harddisks with a total storage capacity of 160 GByte. This system allows for 8 or

12 bits acquisition of two channels at sampling frequencies up to 20 MHz each. Combined with

the processing software, this provides a cheap ( euro 5000 + costs of the PC) yet a powerful LDA

processing unit. The software was written in standard C++ and its application is therefore not

limited to a windows or linux platform. Tests (sample frequency 2.5 MHz) show that typical

computation times for the Adlon 1700+ machine are in the range of 3-10 times the measurement

time, which is acceptable. Since software is used for the processing, scaling of the processing

power is easily achieved by using more PCs.

Two flows were investigated. The first is a laminar pipe flow. A pipe (diameter 0.05 m)

containing a glycerol-water mixture with a viscosity around 35 mPas was used (for more details,

see section C.2.1). The second flow is a bubbly flow. Air is injected into a rectangular container

with dimensions 0.04 m x0.24 m x1.0 m (dxwxh), void fractions are in the range of 10% and

bubble sizes around 4 mm.
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6.6.2. Outlier removal

The removal of outliers should conform to two demands:

• As many correct bursts should be passed as possible to get a high data rate.

• The fraction of bursts that are passed should not depend on e.g. the velocity of the particles.

These two demands can be conflicting: the probability of detection may depend on the velocity of

the particle. Therefore, if the second demand has to be satisfied, this may mean that a significant

part of the correctly detected and estimated bursts has to be rejected to prevent a bias.

Special care was taken to prevent a possible bias in the detector. This is discussed in appendix

B. In addition, appendix C discusses the efforts involved in removing sources of bias in the

electronic equipment (amplifiers, bandpass filters). Due to these efforts, the use of the correction

factor Ca(f̂
k
D) in equations 6.34-6.36 is no longer required. The present section focuses on the

use of the criteria in equations 6.34-6.36, selection of the threshold level for validation and the

influence of the criteria on the data rate and possible bias.

The criteria are tested with the use of experiments in the laminar pipe flow of the glycerol-

water mixture. A pre-shift frequency of 500 kHz was used with electronic filter range 100-

1000 kHz, sampling frequency of 2.5 MHz and a backscatter probe with a lens with focal length

0.122 m. With this setup, the liquid velocity is constant in time, and only the axial velocity

component is nonzero. Consequently, the data rate should be proportional to the axial velocity

component, if bias due to the processor is not present (of course, velocity bias remains). By

determining the data rate for different velocities, the effect of the various criteria for outlier

removal is investigated.

The velocity of the liquid is varied by changing the flow rate. A velocity signal is acquired

both using the IFA-750 processor and the dual burst wavelet processor. This velocity time series

is chopped in small segments of 500 velocity realizations, the data rate and mean velocity is

determined for each segment. Two different experiments are performed. In the first experiment,

the variation of the flow rate is performed on a short time scale (10-20 seconds) to prevent

inaccuracy due to e.g. drift in the photo multiplier tubes (see also appendix C). A second

experiment is performed to determine the data rate corrected for multiple validation (i.e. the

multiple detection of a single burst). This data rate is determined from the slope of the data

interarrival time distribution. This requires longer measurement intervals with constant velocity.

For this reason, the flow rate is varied stepwise and kept constant during 30 second intervals.

Figure 6.13 shows a scatter plot of the SNR(3) criterion versus the Doppler frequency. Er-

roneously detected and/or processed bursts form a cloud of points with small SNR(3) values

and wide distribution of fD. The threshold for validation is taken just above this cloud. This

threshold was found to vary only slightly for different experiments in different flows.

The results for the data rate are shown in Figure 6.14. The IFA processor typically suffers

from multiple validation, the amount increasing for lower velocities. Consequently, the trend of

the data rate with multiple validation exhibits an offset for small velocities. After correction for

the multiple validation (the data rate from the slope of the data interarrival distribution), the

data rate no longer exhibits this offset. Nevertheless, a sharp change in the slope is observed for

velocities around 0.1 m/s. This suggests that a potential source of bias exists for the velocity

moments if a wide velocity range is present inside the flow and the IFA-750 processor is used. The
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use of the wavelet technique with the SNR(3) criterion from equation 6.35 results in higher data

rates (Figure 6.14) and a more linear increase of the data rate with the velocity. Consequently,

the bias is smaller. Nevertheless, some non-linearity remains. This can be explained as follows.

Equation 6.25 gives:

P̂ k
P ∝ A2

kT
2
t,k and P̂ k

P3 ∝ A2
kT

2
t,k (6.44)

The measurements (Figure 6.15(a), considering that Tt ∝ 1/u) suggest that:

P̂ k
N ∝ Tt,k (6.45)

This can be explained as follows (Figure 6.15(b)). Light from the so-called detection volume

is focused on the receiving fiber in the backscatter probe. This means that particles crossing

one of the laser beams inside this detection volume (’B’ in the figure) produce an incoherent

signal, which has a Gaussian envelope. This produces the largest contribution to the noise in

the signal. If a particle passes the measurement volume (’A’ in the figure), the detector notices

this and provides the processor with a small segment of the signal. The length of this segment

is proportional to the transit time. If another particle crosses a single laser beam inside the

detection volume and within this time interval, the noise level is increased and detection of

the coherent burst becomes more difficult. The probability that this occurs is approximately

proportional to the transit time, and, therefore, inversely proportional to the velocity, as Figure

6.15(a) suggests. Similarly, the amount of power added to the spectrum by noise due to other

(e.g. electronic) sources is also proportional to the length of the selected signal interval, i.e. to

the transit time. Equations 6.44 and 6.45 suggest that

SNRk ∝ A2
kTt,k and SNR

(3)
k ∝ A2

kTt,k (6.46)

This suggests that for faster particles, which have shorter transit time, the probability of valida-

tion decreases. This is exactly the behavior observed in Figure 6.14.
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6.36.

The criteria in equations 6.34 and 6.35 are both based on the detectability of the bursts, these

therefore produce a high data rate, at the cost of a small possible bias. Comparison tests with

these criteria using artificial and experimental signals shows a slightly better performance for the

criterion of equation 6.35, therefore the criterion in equation 6.34 is not considered further. The

criterion of equation 6.36 uses the amplitude of the burst to decide whether the burst should be

validated. The amplitude of a burst will, in general, not be correlated with the velocity of the

particle. The use of this criterion should therefore provide a smaller bias than the use of equation

6.35. This is illustrated in Figure 6.16. The data rate with equation 6.36 is linearly dependent

on the velocity. This improvement is, however, obtained at the cost of a strong decrease in the

data rate.

The most suitable validation criterion is, therefore, dependent on the application. The bias

problem is only significant in flows if the velocity fluctuations are significant with respect to the

mean velocity. This is, however, always the case for a bubbly flow. For the velocity moments, a

high data rate is not essential, and the use of the amplitude based criterion in combination with

velocity bias correction will render the best results. For the measurement of turbulence spectra,

a high data rate is important and velocity bias is usually not taken into account in the signal

processing. Therefore, in this case the use of the SNR based criterion is preferred.

6.6.3. Data rate, accuracy and dead time

The performance of the processor is tested by a further investigation of the measurements in

the laminar glycerol pipe flow. The data rate and relative standard deviation of the velocity

fluctuations were determined for both the single burst wavelet processor (with the SNR(3) val-

idation criterion) and the IFA-750 processor. The signals were recorded simultaneously. Since

the measurements were obtained in the center of the pipe, and the flow rate varies only little

during the measurement, the standard deviation of the liquid velocity is a good measure for the

accuracy of the processor.
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u (m/s) σu/µu σu/µu Data rate Data rate (Hz) Multiple
(%) (%) (Hz) IFA (corrected validation

Wavelet IFA Wavelet for multiple IFA
validation) (%)

0.070 1.8 4.3 255 170 54
0.129 1.6 2.9 400 290 10
0.244 1.9 2.7 551 380 11
0.301 1.9 2.4 612 400 14

(settings A)

0.05 5.3 6.8 100 30 15
(settings B)

Table 6.1.: Results of tests with laminar flow

Table 6.1 shows the results. Settings A refer to a backscatter probe with focal length of 0.122

m, pre-shift frequency of 500 kHz, bandpass filter range 100-1000 kHz. Settings B refer to a

backscatter probe with focal length of 0.25 m, pre-shift frequency of 200 kHz, bandpass filter

range 30-300 kHz. The noise level was much higher for the case with settings B, due to smaller

laser power, higher PMT voltage and poorer alignment of detection volume and measurement

volume.

The results for settings A show that the data rate for the wavelet processor is always higher

than that of the IFA-750 processor, if the data rate for the IFA-750 processor is corrected for mul-

tiple validation. In the results from the wavelet processor, no indications for multiple validation

are found. Multiple validation is, however, a serious problem if the IFA-750 processor is used.

With this processor at least 10% of the measured velocity realizations are due to multiple vali-

dation, the fraction rapidly increasing for u<0.1 m/s. Velocities in the range 0-0.1 m/s are very

common in the bubble column, indicating the relevance of the prevention of multiple validation.

The accuracy of the wavelet measurement is also generally better than that of the IFA processor.

The inaccuracy of the IFA-processor rapidly increases for smaller velocities. The wavelet tech-

nique gives much better accuracy, up to a factor 2.4. The improved performance has two origins.

The increased inaccuracy of the IFA processor at low velocities is due to the increased multiple

validation. Of course, improvements may be obtained by correction for multiple validation, this

is considered in a later stage. The wavelet technique does not suffer from significant multiple

validation, therefore this increase does not occur. The higher data rate for the wavelet processor

provides somewhat better accuracy (for a given measurement time), particularly for the mea-

surements deeper in the column. In addition, the wavelet technique uses the entire burst for

the estimation. For lower velocities a longer transit time occurs and, consequently, the accuracy

improves. This shows that the wavelet technique can deal very well with the wide distributions

of transit times that occur in bubble columns.

The use of the settings A with laminar flow and measurement in the center of the flow results

in a good signal-to-noise ratio. Under these conditions, the detection of the bursts is relatively

easy. Consequently, the data rate of the wavelet processor is larger than the data rate of the IFA-

750 processor, but the difference does not exceed a factor of 2. A different behavior is observed
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Figure 6.17.: Axial velocity time signal for bubbly flow (wavelet processor).

for conditions with worse signal-to-noise ratio. The results for the settings B in table 6.1 are an

example of this behavior. In this case, an increase in the data rate with a factor of 3 is obtained

with a small improvement in the accuracy of the velocity. Similar results were obtained for these

settings for other velocities in the range 0-0.1 m/s. An improvement with a factor of 2-3 in the

data rate was found to be quite typical for many practical applications. Another example is the

use of the wavelet technique for the study of turbulent water pipe flow by Daalmans (2005) who

finds similar improvement in data rates and improved results close to the wall.

Bubbly flow

The effect of the inclusion of the dual-burst processors is tested by using a bubbly flow: the more

or less periodic liquid velocity in a flat bubble column is determined (Figure 6.17) as well as the

velocity signal in the homogeneous cylindrical bubble column. These experiments used a 500

kHz pre-shift frequency, an electronic bandpass range of 100-1000 kHz and a backscatter probe

with a 0.122 m lens. The SNR(3) validation criterion was used.

The initial tests in the flat bubble column showed that the use of the dual-burst wavelet

processor increases the data rate again by a factor of 2-3 compared to the TSI IFA-750 output.

The IFA processor output suffered from much multiple validation, whereas multiple validation

for the dual-burst wavelet processor was negligible. In this situation, the signal-to-noise ratio was

quite poor. The experiments in the cylindrical bubble column were performed in a later stage,

after maintenance and optimization of the optical components. In addition, a larger laser power

was used (1W vs 0.4 W). With these changes, the performance of the IFA-processor improved,

and the data rates of the wavelet processor and the IFA processor are similar. Nevertheless,

the IFA output still suffers from much multiple validation. Figure 6.18 shows the distribution

of the data interarrival time for the IFA-750 processor, for the dual-burst wavelet processor and

for wavelet processing only (dual burst processors switched off). The random arrival of seeding
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Figure 6.18.: a) Particle interarrival time distribution. b) Zoom into smaller timescales. Ob-
tained in the cylindrical bubble column, α=0.15, at 0.9 cm from the wall.

particles should give a straight line on a semi-log plot, with some curvature due to the presence

of the bubbles for longer time intervals (longer than 5 ms), see section 5.4 for more details. The

IFA-750 output shows a strong increase for time intervals shorter than 1 ms, this is caused by

multiple validation. In addition, its output is curved for all interarrival times, which is probably

caused by a combination of multiple validation and inaccuracies in the arrival time. The multiple

validation is not observed for the dual-burst and wavelet processors. In addition, the distribution

shows a straight line on a logscale for intervals up to 4 ms. This shows that the estimate of the

arrival time is much more accurate than for the IFA processor.

Figure 6.18(b) shows the distribution at the shortest relevant time intervals. Using only

wavelet processing, a delay time of approximately 0.3 ms is observed. This corresponds to the

mean transit time of the bursts. Since the transit time has a relatively wide distribution (a wide

velocity distribution is obtained due to the bubbles), the cutoff is not sharp. If the dual burst

processors are used, the delay time is further reduced to approximately 0.2 ms: partial overlap

of the bursts is allowed. The distribution shows a straight line up to these short intervals. This

shows that using the dual-burst processors we may be able to estimate turbulence spectra up to

higher frequencies and that the seeding density may be increased further.

The performance can also be tested via the fuzzy slotted autocorrelation function with local

normalization and local time estimation (see section 5.6). The signals corresponding to Figure

6.18 are used. The result is shown in Figure 6.19(a). Section 5.10 discussed that uncorrelated

noise is visible as a discontinuity at τ=0 in the slotting autocorrelation function. If multiple

validation is present, this discontinuity can be smeared to larger time intervals. In addition,

Tummers (1999) discussed that the finite size of the measurement volume obscures the acf be-

havior at the smallest time scales and results in an extra increase at these smallest time scales.

Similar behavior is observed in Figure 6.19(a). For both processors a discontinuity is observed,

which is slightly smaller for the dual burst processor: i.e. the noise level is somewhat smaller

for this processor. Similar to the approach discussed in section 5.10, a corrected autocorrelation

function is determined (Figure 6.19(b)). This shows that for both processors the discontinuity
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exists up to larger time intervals. For the IFA-750 processor result it extends up to 0.9 ms, for

the dual burst processor up to 0.6 ms. In the case of the IFA-750 processor, multiple validation

is probably the main source of this problem. For the dual burst processor, the precise origin

is not clear, but probably the size of the measurement volume gives a major contribution. In

Figure 6.19(c) the effect of an increase of SNR
(3)
threshold from 40 to 400 and 4000 is shown. The

noise level in the velocity estimates decreases strongly. This occurs, however, at the cost of a

strong drop in data rate: respectively 53% and 89% of the data is rejected due to this increase.

The point where the extra increase in the acf occurs is not altered by the increase in threshold.

This result shows that an improvement in the autocorrelation function is obtained due to the

more accurate arrival time and strong reduction in the multiple validation. The finite size of the

measurement volume, however, limits the improvement.

6.6.4. Mean and standard deviation: evaluation of bias

The accuracy of the mean and standard deviation of the axial liquid velocity inside the bubble

column is evaluated with the use of profile measurements. Test measurements were performed

in the cylindrical bubble column with homogeneous bubbly flow with void fraction 15.3% and

superficial gas velocity of 0.029 m/s at a height of 0.65 m (ungassed liquid height 1.0 m). The
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Figure 6.20.: Results for mean and standard deviation of the axial velocity for probe rotation
with 180◦ (a), (b) IFA-750 result, (c), (d) Dual burst wavelet processor (SNR(3)

criterion), (e), (f) IFA-750 result with removal of multiple validation (denoted by
’mv removed’).
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LDA settings were: laser power 1 W, focal length 0.122 m for the lens of the backscatter probe,

preshift frequency 500 kHz, bandpass filter range 100-1000 KHz. The measurement duration

with the IFA-750 processor was 300 s, the duration with the wavelet technique was 134 s. This

way, typically Doppler frequencies in the approximate range of 300-800 kHz are obtained. If

the backscatter probe is rotated around its axis by 180◦, the mean velocity should only change

sign in the absence of bias, and not change in magnitude. This way, Doppler frequencies are

obtained in the range 200-700 kHz. The probability of validation may be frequency dependent,

comparison of the means before and after rotation is, therefore, a good test for potential bias.

Figure 6.20 show the results for the probe under two orientations (0◦ and 180◦). In addition,

the rotation can also be mimicked electronically with the use of the electronic downmixers in

the TSI model 9230 colorlink: the optical preshift frequency is in fact fixed at 40 MHz, a

preshift frequency of 500 kHz is obtained by electronic downmixing with either 39.5 MHz or 40.5

MHz, this ’swaps’ the velocity sign, and is denoted by ’+’ and ’-’. The results of the electronic

and physical rotation are very similar. A clear bias is observed for the probe orientation: the

means for the two probe orientations differ by approximately 0.02 m/s for all radial positions.

If homogeneous flow is studied, this bias has the same order of magnitude as the mean axial

velocities. For the standard deviation, a clear difference is observed as well. Two possible reasons

can be pointed out. First, the electronic bandpass filters of the IFA-equipment have a response

which is not uniform (see appendix C), and second, the results of the IFA-750 processor suffer

from multiple validation. The probability of multiple validation depends on the transit time

and the frequency of the burst. Bursts with distinctly different Doppler frequencies are sampled

at different frequencies, leading to a frequency dependent probability of detection: bursts with

higher frequency suffer relatively more from multiple validation. For the settings ’0◦, +’ and

’ 180◦, -’ high, positive, axial velocities correspond to high frequencies (around 700-800 kHz),

i.e. a bias to higher positive velocity is obtained. For the other settings the negative velocities

correspond to high frequencies, i.e., a bias toward lower velocity is obtained.

The results obtained with the dual burst wavelet processor do not suffer from this effect

(Figures 6.20(c) and 6.20(d)): the profiles for both probe orientations are very close. This is due

to the fact that the results with the wavelet processor suffer from very little multiple validation,

and strongly improved electronic bandpass filters are used. Figures 6.20(e) and 6.20(f) show the

results of the IFA-750 processor after removal of multiple validation. The removal is performed

by locating groups of velocity realizations with intervals in between the bursts shorter that 1 ms,

and replacing the group with a single realization which has the average arrival time and average

velocity of the group. Other methods of removal, e.g. removal of all realizations except the

first in the group, give similar results. The removal reduces the bias: the difference between the

mean velocities obtained from the two probe orientations is halved. The results for the wavelet

processor remain superior, however, and do not need correction for multiple validation. The

standard deviation estimate is increased: multiple validation occurs relatively more frequently

for low velocities, leading to a bias to lower values in the uncorrected results. This is also clearly

observed in Figure 6.21. The difference in standard deviation for the two probe orientations

remains similar, however. The electronic bandpass filters of the IFA-processor are probably

responsible for this behavior.

The use of the wavelet processor is, however, not free from bias either: although there is

no bias due to any frequency-dependence, there is still the possibility of a bias due to different
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Figure 6.21.: Probability density function for axial velocity for the different processors.
r=0.065 m. ’mv removed’ denotes removal of multiple validation.
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Figure 6.22.: Results for mean and standard deviation of the axial velocity obtained with the
wavelet processor (two criteria, A=amplitude based, SNR3 based on signal to noise
ratio) and IFA processor for probe rotation with 0◦ and 180◦.
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signal-to-noise ratios for bursts with different transit times (see section 6.6.2). If the SNR(3)

criterion is used, bursts with long transit time, often corresponding to low velocities, are some-

what overrepresented. This will lead to an underestimation of the mean velocity (due to the

asymmetry of the velocity pdf), and an underestimation of the standard deviation. The use of

an amplitude-based criterion should give more accurate results, although at the expense of a

reduction in data rate by typically 50-60%. The comparison of the results with these criteria

is shown in Figure 6.22. The differences between the results for the two probe orientations are

similar for both criteria. Analysis shows that the differences for the standard deviations are

caused by different noise levels: since the amplitude of the signal changes with the distance to

the wall, a threshold has to be set manually, giving larger variations in the noise levels for the

amplitude criterion than for the SNR(3) criterion.

The use of the slotting technique allows the estimation of the signal-to-noise ratio of the signal

(see section 5.10) by fitting the autocorrelation function. This way, the standard deviation of

the measured velocity series can be split into a component due to the true velocity fluctuations

and a component due to the noise. The result is shown in Figure 6.23, noise level estimation

could be performed reliably up to 2 cm from the wall. Typically, 10-15% of the variance of

the signal is due to noise. The noise level is independent of the probe orientation. Removal of

the noise contribution results in a small reduction of the standard deviation of 5-10%. Whereas

the total standard deviation has a weak decrease towards the center of the bubble column, this

trend is reduced by the noise removal. The noise level is highest close to the wall, probably due

to scattered light originating from the positions where the laser beams cross the wall. For the

IFA-750 results the noise level is more or less constant further away from the wall, for the wavelet

technique a weakly decreasing trend is observed. If the correction for noise and the correction for

multiple validation are considered, the results show that these corrections cannot fully remove

the differences between the IFA-results and the wavelet processor results.
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Results obtained with noise removal for the wavelet processor output with the two different

criteria are shown in Figure 6.24. These show that the standard deviation for the wavelet

output with amplitude validation gives the highest values. Of course, correction for velocity

bias is still required. The results with velocity bias correction are shown in Figure 6.25. Close

to the wall, the wavelet processor results for the mean axial velocity with the two validation

criteria are very similar, in the center a slightly higher value is obained with the amplitude

criterion (which is the most accurate result). For the standard deviation, the values obtained

with the amplitude criterion are typically about 5% larger. The results obtained with the IFA-

750 processor give reasonable agreement with the wavelet results with the amplitude criterion.

Apparently, the subsequent operations of multiple-validation removal and velocity bias removal

with its requirement for coincident data remove most of the velocity realizations contributing

strongest to the bias. An underestimation of the standard deviation of the signal of typically 5%

is obtained. The experiments in this thesis that use the IFA-750 processor are performed in the

0◦,+ mode, for most of the experiments the relevant corrections have been applied. Consequently,

the bias for the mean velocity and normal stress is quite small.

6.7. Conclusions

The accurate measurement of turbulence spectra up to high frequencies requires data with high

accuracy of both the Doppler frequency and the burst arrival time, as well as a short processor

delay time, even in the presence of high noise levels. The procedure pursued in the present work

is to limit the influence of noise and improve the accuracy of the Doppler frequency estimate and

arrival time estimate by using the wavelet technique, i.e. a model of the burst is fitted to the

data. The shorter delay time is achieved by allowing for dual bursts (i.e. overlapping bursts)
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by separating bursts either in the temporal or spectral domain. The direct use of the (iterative)

wavelet technique for dual burst processing is limited by the peak broadening, resulting in more

difficult burst separations. Therefore, elements of the iterative wavelet technique were combined

with separation techniques using the power spectrum and envelope of the band passed signal,

providing good results for both the burst separation and noise suppression. Tests show that the

combination of the software burst detector, processor and validation routines allows either for

a small increase in the data rate with an improvement in the accuracy, or increased data rates

with similar accuracy when compared with a traditional commercial hardware processor (TSI

IFA-750). The variation of the data rate with the velocity shows smaller bias problems with

respect to a commercial hardware processor due to the transit time dependency. By using an

amplitude based validation criterion, this bias can be even further reduced at the cost of some

loss in data rate. The particle interarrival time distribution shows that the processor delay time

is effectively halved by the inclusion of the dual burst processors, allowing the investigation of

turbulence spectra up to higher frequencies. In addition, the use of the wavelet technique gives

more accurate arrival times. In practice, the advantage is limited due to the finite size of the

measurement volume. Tests with the commercial hardware reveal problems with frequency bias

for bubbly flows, mainly due to multiple validation and poor electronic bandpass filters. The

wavelet technique does not have these problems. The bias present in the IFA-750 is reduced by

removal of multiple validation, application of a coincidence window and velocity bias correction.

List of symbols

Roman symbols

A amplitude -

Aacf maximum of the autocorrelation coefficients -

Aacf,threshold threshold for Aacf for burst detection -

Athreshold validation threshold for burst amplitude -

BP bandpass filter

C spectral transform kernel -

Ca correction factor frequency dependent amplification -

Cl constant for least squares norm -

Cpeak threshold constant for finding the peak in the power spectrum -

cx ratio window duration and burst duration -

DFT Discrete Fourier Transform

E transform kernel: WT temporal window -

E0 transform kernel -

ENV envelope -

ENVbandpass envelope of bandpass filtered signal -

ENVlowpass envelope after lowpass filtering -

ENVsubtract envelope after subtraction fitted burst -

fbps, fbpe frequency region that should be passed by bandpass filter s−1

fD Doppler frequency s−1

fmax, fmax1 frequency corresponding to the maximum of the PSD s−1
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fmax2 frequency corresponding to the second largest maximum of the PSD s−1

fmin,s, fmin,e frequency corresponding to the location of minima next to the max-

imum of the PSD

s−1

fp,max maximum frequency in PSD s−1

fps, fpe frequency exclusion region for calculation mean noise level s−1

fs sampling frequency s−1

fw minimum frequency scale to pass with lowpass filter for PSD s−1

fws, fwe frequency range around peak calculated from time scale s−1

fwidth spectral peak width based on noise detector output s−1

G Gaussian curve fit -

HT+ Hilbert transform

IDFT Inverse Discrete Fourier Transform

ifit1, ifit2 indices start and end DFT peak fit region -

K amplitude estimate -

L least squares criterion -

N number of signal points -

n noise -

nDFT mean |DFT |2 level noise -

nWT mean |WT |2 level noise -

OC overlap criterion -

OCF overlap criterion frequency -

OCT overlap criterion time -

P power spectrum -

Pn mean noise level in the PSD -

PP maximum of the PSD -

PP3 sum of maximum of the PSD and the two neighboring points -

Pratio ratio height biggest peak and second biggest peak -

Pratio,threshold validation threshold for Pratio -

Pthreshold threshold level PSD for locating bandpass regions -

r radial position in bubble column m

SNR SNR based on PP -

SNR(3) SNR based on PP3 -

SNRthreshold validation threshold for SNR based on PP -

SNR
(3)
threshold validation threshold for SNR based on PP3 -

s noiseless signal -

sDFT mean |DFT |2 level signal -

sWT mean |WT |2 level signal -

Ta arrival time s

Tgap estimated burst duration from noise detector s

Tt transit time s

Tw measurement time s

u velocity m s−1

t time s
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WT wavelet transform

y noisy signal -

yf bandpass filtered signal -

Greek symbols

α void fraction -

∆t sampling interval s

∆Ta inaccuracy arrival time s

∆u error velocity estimate m s−1

∆τ slot width s

η amplitude temporal decay constant s−2

µ mean

σ standard deviation

σn noise standard deviation -

φ phase rad

Superscript and subscript

DF processors with spectral separation

DT processors with separation in time

pre pre-estimate

single single burst processor

x wavelet window
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7. Dynamic large scale vortical structures in
bubble columns 1

The present chapter discusses the results for the hydrodynamics of the bubble column. First,

some general aspects of the measurement techniques, and the setup are discussed. This is followed

by results for uniform gas injection, which focus on the stability of the flow. Subsequently, results

on the strength of the fluctuations due to pseudo-turbulence are discussed. Next, non-uniform

gas injection is discussed for both the cylindrical and rectangular bubble column. Finally, the

results for the power spectra, obtained from LDA data, are discussed.

7.1. Setup and experimental techniques

7.1.1. The sparger: gas injection patterns

The gas injection pattern was varied to study its influence on the hydrodynamics. Results are

presented in sections 7.4 and 7.5. The patterns are described in Tables 7.1 and 7.2, and are

depicted in Figure 7.1. The superficial gas velocity was kept constant when the pattern was

varied. The void fraction αheight was determined from the hydrostatic pressure difference over

the column.

7.1.2. Experimental techniques

Careful and accurate experiments are required to investigate the influence of the gas injection.

Various experimental techniques have been used to investigate the flow properties. For the liquid

velocity, Laser Doppler Anemometry (LDA) is used (employing the TSI IFA-750 processor).

1Parts of this chapter have previously been published as W.K. Harteveld, R.F. Mudde, H.E.A. van den Akker,
"Dynamics of a bubble column: influence of gas distribution on coherent structures", Can. J. Chem. Eng 81,
2003, pp.389-394 and W.K. Harteveld, J.E. Julía, R.F. Mudde, H.E.A. van den Akker, "Large scale vortical
structures in bubble columns for gas fractions in the range of 5% to 25%", proc. 16th Int. Conf. on chemical
and process engineering (CHISA), Prague, Czech Republic, August 2004

Pattern Description Needles used Needles used Relative area Aeration
gas injection (α < 15%) (α > 15%) aerated zone for r/R

C1 Uniform 187 559 100% ≤ 1
C2 1 ring off 151 451 81% ≤ 0.89
C3 2 ring off 115 343 62% ≤ 0.77
C4 3 rings off 79 235 42% ≤ 0.63
C5 Center off 108 324 58% > 0.63

Table 7.1.: Gas injection patterns for the cylindrical column
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Figure 7.1.: Gas injection patterns for the cylindrical bubble column (a) and the pseudo-2D
column (b).

Pattern Description Needles Rel. area Aeration αheight

used aerated for (%)
gas injection zone

F1 Uniform 95 100% |x|/R2D <1.00 7.3
F2 Central, 1 wall row off 87 93% |x|/R2D <0.93 7.2
F3 Central, 2 wall rows off 81 85% |x|/R2D <0.85 7.0
F4 Central, 3 wall rows off 73 78% |x|/R2D <0.78 6.8
F5 Central, 4 wall rows off 67 70% |x|/R2D <0.70 6.7
F6 Asymmetric, 4 wall 81 85% x/R2D <0.70 7.0

rows off
F7 Wall, 3 central rows off 84 89% |x|/R2D >0.11 7.1

Table 7.2.: Gas injection patterns for the pseudo-2D column
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Large scale structures in the pseudo-2D column are investigated with the use of Particle Image

Velocimetry (PIV, for the bubble velocities) and Particle Tracking Velocimetry (PTV, for the

liquid tracers). The volume averaged void fraction is determined from the hydrostatic pressure

difference over the bubble column. Local void fractions are determined with the use of single

point glass fiber probes. Bubble properties (size, velocity) are studied with the use of four point

glass fiber probes.

Several problems may be encountered when applying these techniques to the bubble column.

The chapters 3, 4, 5 and 6 discussed some of these problems. For instance, especially for homo-

geneous flow the fluctuations in the liquid velocity are much larger than the actual mean liquid

velocities (the standard deviation can be up to 5-10 times larger than the mean of the velocity).

Consequently, the accurate measurement of the mean liquid velocities can be quite complicated.

For example, the results in section 6.6.4 indicate how sensitive the mean of the velocity mea-

sured with Laser Doppler Anemometry is to bias sources. The present section discusses some

of the problems encountered for the accurate measurements in the bubble column that were not

discussed in previous chapters. More detailed information about the measurement techniques,

that is not directly related to the application to the bubbly flow, can be found in appendix E. In

addition, the Short Time Frequency Transform is discussed that is used to detect the presence

of vortical structures.

7.1.3. Velocity measurements

The application of LDA in bubbly flows is hampered by the strong reduction in data rate due to

the blockage of the laser beams by the bubbles. The data rate is approximately proportional to

exp(−c lα
db

) where c is a constant in the range 1.5-3, l is the distance of the measurement volume

to the column wall, α is the void fraction and db the bubble diameter (see appendix D for more

details). Typical data rates for void fractions near 10% are 150-400 Hz near the wall, and 0.8 Hz

in the column center (cylindrical column). This shows the difficulty of the experiments deeper

inside the column, especially at the higher void fractions, where experiments in the center are

no longer possible. Moreover, velocity bias correction is needed, which requires the use of a

coincidence window for the axial and tangential components. The blockage of the beams used

for measuring the axial and tangential component shows little correlation, especially further

away from the wall, since the beam paths are different. As a result, the data rate with the use

of the coincidence window drops even faster than for the single component alone, the constant

c is nearly doubled and the maximum distance to the wall where experiments are possible is

approximately halved.

Figure 7.2 shows mean velocity and normal stress profiles for the axial component for z=0.9 m

and Ug=0.025 m/s (cylindrical column). At this void fraction (11%), the data rate in the center

of the unprocessed velocity series is about 1 Hz. Application of the coincidence window, which

is required for velocity bias correction, results in an even further reduction of the data rate, and

there is no longer enough data to provide reliable estimates of the bias corrected mean velocity

and stress. Nevertheless, velocity bias correction is very important, since for homogeneous flow

the bias (overestimation) in the mean axial velocity is of the same order of magnitude as the mean,

and the bias in the stress value is considerable as well (order of magnitude: 20% overestimation).

Therefore, an approximate correction is performed. The magnitude of the velocity bias correction
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Figure 7.2.: Mean axial velocity (a) and axial normal stress (b) for α=11% (Ug=0.025 m/s) and
z=0.9 m.

is strongly correlated with the shape of the velocity pdf, which is quite constant in the inner

regions of the bubble column (Figure 7.3). Consequently, the velocity bias correction has a more

or less constant magnitude in the inner regions (this can be observed in Figure 7.2). With this

knowledge the velocity bias correction can be estimated by a constant offset imposed on the

uncorrected velocity mean, and a constant factor imposed on the stress. The result is shown in

Figure 7.2 (’estimated velocity bias correction’). The resulting profile shows a very low mean

velocity in the inner regions of the bubble column with liquid down flow very close to the wall.

The mean liquid velocity, if the profile is integrated with:

∫ R

0
(1 − α(r))u(r)2πrdr/πR2 (7.1)

is about -0.0007 m/s which agrees well with the lack of a net liquid flow in a bubble column.

The stress decreases slowly toward the center of the column. Section 6.6.4 showed that a large

part of this decrease can be explained by a decrease in the noise level in the LDA experiments if

the measurement volume is moved inward.

7.1.4. Short time frequency transform

LDA data is investigated for the presence of coherent structures using the Short Time Frequency

Transform technique (STFT, Mudde et al. (1997a)). This technique provides time-frequency

plots where vortical structures appear as peaks at low frequencies. After making the time series

equidistant using Sample & Hold, it is windowed using a Gaussian window γ(t) centered around

time T , truncated at its e−2 decay width. The corresponding spectrum is then obtained from:

STFT (T, f) = |
∫

u(t)γ(t)e2πiftdt|2 (7.2)
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Figure 7.3.: Pdf of axial velocity (unprocessed) at two radial positions (Ug=0.025 m/s and z=0.9
m).

When the time window is slided over the time series, the evolution of the frequency content of

the velocity time series is obtained. The Short Time Frequency Transform (STFT) technique

is widely used for equidistant signals. For application to bubbly flows, resampling is required,

which, as was discussed in chapter 5, leads to redistribution of power from high to low frequen-

cies. Consequently, a sudden increase in the power at high frequencies will also result in a power

increase at the lower frequencies, and this may lead to incorrect interpretation. For instance, for

measurements further away from the wall, long gaps may occur that are followed by a measure-

ment in the wake (i.e. a high velocity realization results). The reconstruction will, consequently,

generate low-frequency power. The magnitude of this effect depends strongly on the value of Ṅ2

(see section 5.5). In the present chapter, the measurements are taken not too far from the wall,

usually at a distance of 1.3 cm. This way, the effect does not provide big problems for the lower

void fractions: the power due to the large structures is generally located at frequencies smaller

than 1 Hz, and the re-distributed high frequency power will predominantly produce an extra

offset for the low-frequency power. This does not give strong problems for the interpretation.

For the higher void fractions, however, problems may be encountered. Tests show that the STFT

is reliable for the detection of large scale structures for void fractions up to 15% (for the distance

of 1.3 cm from the wall). For higher void fractions, many strong low-frequency artefacts are

caused by large gaps in the data.

7.1.5. Column inclination angle

Rice and Littlefield (1987), Rice et al. (1990), Ityokumbul (1993) and Tinge and Drinkenburg

(1986) showed that small departures from vertical alignment result in the increase of the axial

dispersion in a bubble column due to the creation of a large circulation loop. The study of large

scale structures in a bubble column, therefore, requires very accurate alignment. The work by

Tinge and Drinkenburg (1986) shows that the required accuracy of the alignment increases with
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Figure 7.4.: Effect of small departures from vertical alignment on the axial liquid velocity profile
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the column scale. Extrapolation of their results shows that for a column with a diameter of

0.15 m, the axial dispersion increases rapidly for inclination angles larger than 0.05◦. In the

present study, this was checked by first optimizing the inclination visually (i.e. the presence

of the large circulation loop was determined by visual comparison of the bubble velocities on

both sides). Subsequently, the influence of small variations of the inclination angle on the liquid

velocity profile was checked. The variations had a size of about 0.04◦, which is about 1 mm

horizontal deviation over a height of 1.5 m. The test was performed with an ungassed liquid

height of 1.3 m and a void fraction of 8.1%, the result is shown in Figure 7.4. The effect on

the velocity profile is clearly noticeable and indicates that the circulation loop is also present for

smaller angles than those predicted by Tinge and Drinkenburg (1986). This can be explained

by the uniformity of the flow (which is illustrated in the next section), and the resulting small

variations in the velocity profile, which make small deviations very visible. It can be concluded

that the investigation of uniform aerations requires very sensitive alignment. The flat bubble

column, which has a horizontal width of 23.4 cm, therefore requires even more accuracy in the

alignment.

7.2. Uniform gas injection: flow stability

The present section focuses on the properties of the flow in the bubble column for uniform gas

injection, with a focus on the occurence of large scale vortical structures. First, observations on

the presence of these structures are reported, followed by a discussion of literature on the stability

of bubbly flows and bubble columns in particular. Next, the results for the flow properties of

homogeneous flow are discussed. The focus is put on the mechanism responsible for the transition

to a flow with large scale (dynamic) structures.
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7.2.1. Presence of structures

First, the flow for uniform gas injection is investigated for relatively low superficial gas velocities.

Figure 7.5(a) shows an image of the flow for uniform gas injection for Ug=0.023 m/s. Visual

inspection of the flow shows no large scale dynamics: all bubbles rise more or less similarly, the

largest scale in the flow that is observed occurs at a scale similar to the bubble-bubble distance.

Inspection of LDA velocity time series (Figure 7.5(d)) and the Short Time Frequency Transform

of this time series (Figure 7.5(b)) does not reveal any large scale motion either. The same holds

for the other quantities that are measured, such as the void fraction profiles (Figure 7.5(c)).

Consequently, we find that uniform gas injection results, for low superficial gas velocities, in a

flow without large scale structures. This holds also for the region close to the sparger.

Next, an investigation is performed whether the absence of the dynamic structures holds for

increased superficial gas velocities, and how this compares to other results from the literature.

Figure 7.6(a) compares the void fraction as a function of the superficial gas velocity for the
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needle sparger with that obtained with porous plate and perforated plate spargers (porous plate

sparger: data for a 0.15 m diameter bubble column from Groen (2004), constructed from sintered

polyethylene with porosity 40%, and average pore diameter of 40 µm, perforated plate sparger:

data from Drahos et al. (1992b) for a 0.14 m diameter bubble column, orifice size 0.5 mm or

1.6 mm, free plate area ratio 0.2%). For the perforated plate (0.5 mm pores), the increase

in the void fraction flattens for Ug>0.06 m/s, the authors (Drahos et al. (1992b)) report the

presence of macro scale eddies for Ug>0.04 m/s. For the perforated plate with 1.6 mm pores,

heterogeneous regime behavior is reported for all gas velocities. For the porous plate, the increase

in α flattens if Ug is larger than 0.04-0.05 m/s, indicating the transition to the heterogeneous

regime. The author (Groen (2004)) reports the presence of large scale dynamical structures also

for the lower superficial velocities. For the needle sparger, for Ug<0.057 m/s, no indications

for large dynamical structures or significant large scale circulation are found. The slope of the

void fraction curve starts decreasing for Ug>0.057 m/s and reaches a constant value in the range

0.059 m/s<Ug<0.066 m/s. The initial slope decrease corresponds to the conditions where a

strongly increased liquid down flow is observed close to the wall in the top of the bubble column,

but no large scale dynamic motion is observed. The strong liquid down flow is visible since the

bubbles closest to the wall move upward with a small axial velocity for Ug=0.057 m/s. When Ug

is somewhat further increased, the upward bubble velocity approaches zero, and weak unstable

behavior is observed in the region near the free surface, with alternating upward and downward

motion of the bubbles closest to the wall. The spatial scale of these disturbances is much smaller

than the column diameter: dynamic large scale structures at the scale of the column diameter

are not observed. For Ug>0.059 m/s, large dynamic structures are observed in the top of the
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U =0.057 m/s =39%g a U =0.076 m/s =54%g a

Figure 7.7.: Picture of the flow in the bubble column for contaminated water and high void
fractions

bubble column. These exhibit a more or less periodic (intermittent) behavior: the structures

gradually become stronger (over a period of 5-10 seconds), the local void fraction decreases until,

apparently, the local mixture density has increased enough and the structures ’fall’ to lower

regions. The structures are dampened in the lower regions, and the bubble column becomes

more or less homogeneous again, until the process repeats itself. If the superficial gas velocity

is increased, the intermittent behavior changes. First, the ’heterogenous’ behavior extends in

space: not only the top region contains dynamic structures, but these structures are also able to

reach increasingly lower parts of the column for increasing superficial gas velocities, until, finally,

the sparger region is reached. If the superficial gas velocity is increased further, the time scale at

which the structures are generated decreases, and the column contains dynamic structures for an

increasing fraction of time. An increase of the presence of the structures in time and space has

been reported earlier by Ruzicka et al. (2001). The change from a very homogeneous behavior

to one with intermittent behavior appears less smooth for the needle sparger than for the other

spargers: the change in slope in Figure 7.6(a) is much faster for the needle sparger. In addition,

the void fraction at the onset of the structures is larger. The differences may be explained by the

very uniform gas injection and possibly a narrower bubble diameter distribution for the needle

sparger.

Similar to what was reported by Groen (2004), the superficial gas velocity for which the onset

of large dynamical motion is observed, increases with time after filling the bubble column with

fresh tap water (Figure 7.6(b)). The tap water is contaminated naturally. This reduces coales-

cence, and increases the maximum void fraction that is achieved before large scale structures

appear. Eventually, a flow without large scale structures is found for void fractions up to 55%

(see Figure 7.7 for an impression of the sparger region). The change from a homogeneous flow to

a flow with large dynamic structures occurs much faster for the contaminated tap water than for

’fresh’ tap water. Once large dynamic structures occur, they are able to reach the lower sparger

region for only a small additional increase in the superficial gas velocity, whereas a much larger

additional increase is required for the cleaner water. The ’intermittency factor’ (see Ruzicka

et al. (2001)) appears to increase much faster with the superficial gas velocity than for cleaner



216 Chapter 7. Dynamic large scale vortical structures in bubble columns

-0.02

-0.01

 0

 0.01

 0.02

 0.03

 0.04

 0  5  10  15  20

R
uu

 (m
2 /s

2 )

τ (s)

Ug=0.028 m/s
Ug=0.057 m/s
Ug=0.066 m/s
Ug=0.080 m/s

Figure 7.8.: Autocovariance function for increasing superficial gas velocities (slotting technique).

water.

The ’age’ of the tap water that is used for the experiments clearly has a big impact on the

behavior, in particular on the transition. The exact superficial gas velocity where the onset of

vortical structures occurs, varies somewhat from experiment to experiment since regularly fresh

water needs to be added to compensate for evaporation. Therefore, some differences occur be-

tween experiments owing to a change in the water quality. For this reason, the critical superficial

gas velocity, where the onset of dynamic large structures occurs, is given in addition to the age

of the tap water that was used, when appropriate.

The STFT is not suited for the detection of large structures in the signal for the highest void

fractions: the gaps in the signal, combined with the Sample and Hold reconstruction, suggest

much low-frequency power, which is non-existing in reality (see sections 5.5 and 7.1.4). Instead,

the autocovariance function is determined with the use of the slotting technique. Figure 7.8

shows the results for the contaminated water of three weeks old. For Ug=0.08 m/s, the amount

of long-term correlation (τ>1 s) strongly increases due to the large dynamic structures, although

there is much scattering due to the low data rate. The correlation for the lower superficial gas

velocities is limited to short intervals: no large dynamic structures are present.

7.2.2. Stability: literature

The observations in the previous section showed that the homogeneous flow contains no large

scale structures for uniform gas injection. A transition to a flow with large structures is observed

for void fractions in the range of 30%-55%. Various authors have attempted to predict this

transition with various approaches. Biesheuvel and Gorissen (1990), Léon-Becerril and Liné

(2001) and Léon-Becerril et al. (2002) focused on the occurence of gas fraction waves with a one-

dimensional model for the axial direction. This way, instability is typically predicted for void

fractions around 35% for spherical bubbles. For ellipsoidal bubbles, such as found in the present

investigation, the critical voidage drops to typically 25% (Léon-Becerril and Liné (2001)). The
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Figure 7.9.: Images of bubbles close to the wall for increasing void fraction (contaminated water
of three weeks old).

approach is not able to explain the very high void fractions found in the present investigation,

possibly since the behavior and shape of bubbles is strongly altered at high void fractions (see

Figure 7.9) and some damping effects are not taken into account. Bhole and Joshi (2005) do

account for effects of contamination (which act mainly on the added mass coefficient and bubble

terminal velocity in their analysis), and predict the possibility of homogeneous flow at high void

fractions, but only for very small bubbles, similar as was found in the experiments by Oels et al.

(1978), who found a transition around a critical void fraction of 55% for bubbles smaller than

1 mm. In addition, a one-dimensional approach does not consider radial non-uniformities in the

void fraction, which are the main driving force for the creation of large liquid vortical structures.

Ruzicka et al. (2001) and Ranade and Joshi (1987) consider the fact that every bubble carries

with it a certain amount of liquid in its wake. This liquid has to flow downwards when the

bubble reaches the free surface. The down-flow area for this liquid continues to decrease with

increasing void fraction. The authors associate the instability with the point where the decrease

has reached a critical point. Instability is predicted for void fractions in the range of 40% to

50%. The approach requires, however, an empirical value for the amount of liquid carried by

each bubble.

Ruzicka and Thomas (2003) studied the analogy with thermal convection to provide a criterion

for stability. This analogy is, however, only valid for bubbles with very small slip velocity (i.e.

very small bubbles). Shnip et al. (1992) considered in a two-dimensional stability analysis the

continuity equations and momentum balances and included the effect of the sparger. A maximum

void fraction of around 35% was predicted this way. Monahan et al. (2005) studied the instability

with the use of Computational Fluid Dynamics and the two-fluid model, focusing on various

model aspects, such as the interaction forces and bubble induced turbulence, in order to find
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their importance for predicting correctly the properties of homogeneous flow and the onset to

transition. A comparison with experiments presented in the current chapter was made by the

authors. This showed qualitative agreement and the importance of the lift force model for the

stability.

Lucas et al. (2005) study the influence of the lift force on the stability of the flow in a bubble

column via a linear stability analysis. The study shows that the sign of the lift force coefficient

CL can be used as a measure for the stability of the flow: if CL<0, bubbles experience a force

directed to the column center, and turbulent diffusion is too weak to counteract it. Tomiyama

et al. (2002) suggested that CL<0 for bubbles larger than a critical diameter. This suggests that

primarily the bubble size determines the stability of the flow instead of the void fraction, and

it agrees with the occurence of a pure heterogeneous regime if a single orifice (producing large

bubbles) is employed.

The next two sections discuss the results of the study into the properties of the homogeneous

flow and the change in properties at the onset to the transition. The focus is put on the mecha-

nisms responsible for the transition, with special attention for the lift force. Direct measurement

of the lift force on bubbles is not feasible in a dynamic flow such as the present bubble column:

this requires the accurate measurement of both the path of the bubbles and detailed knowledge

of the flow fields in which the bubbles are immersed. Optical accessibility is, however, strongly

limited. Kulkarni and Joshi (2004a) attempt to determine the lift force sign with an indirect

method from the gradient of the liquid velocity. For the evaluation, assumptions are required

about the relation between the drag force and the lift force. The validity of these assumptions

is not clear, and therefore this method is not pursued here. Instead, the present study focuses

on the measurement of liquid velocity profiles, void fraction profiles and bubble diameters.

7.2.3. Homogeneous flow and transition

The hydrodynamics are investigated in more detail. Special attention is paid to the influence of

the degree of water contamination on the results.

Void fraction profiles: wall peaking

Void fraction profiles were determined with single glass fiber probes for various superficial gas

velocities at various heights in the column. Figure 7.5(c) gives an impression of the uniformity

of gas injection that is achieved with the needle sparger. The profile was measured with a single

fiber probe to avoid inaccuracies due to differences between the probes. The result shows that the

void fraction profile contains small non-uniformities at z=0.07 m, introduced by imperfections

in the sparger, but that these non-uniformities quickly even out: at z=0.15 m the void fraction

distribution is very uniform. This shows that the needle sparger can provide very uniform gas

injection. Small peaks are observed in the void fraction at distances of 5 mm from the wall

(about one bubble diameter). At smaller distances to the wall, the void fraction drops more or

less linearly. The drop near the wall may be explained with a local force driving bubbles away

from the wall, such as modeled by Antal et al. (1991). This model is employed quite frequently

in modeling studies for the estimation of, e.g., void fraction profiles for bubbly pipe flow or

bubble columns (Guet (2004b), Krepper et al. (2004)). It is not clear, however, if such a force
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Ug (m/s) α (-) No. of needles

0.015 6.1% 187
0.017 7.6% 187
0.025 11% 187
0.032 16% 559
0.039 20% 559
0.049 25% 559

Table 7.3.: Superficial gas velocities for the various gas fractions studied in the cylindrical column
(uniform gas injection).

is really present: the derivation by Antal et al. (1991) is performed for small bubble Reynolds

numbers. The work by Takemura and Magnaudet (2003) and De Vries (2001) suggest that,

instead, for larger bubble Reynolds numbers, bubbles may be attracted to and bounce against

the wall. An alternative explanation for the drop in void fraction near the wall may be the fact

that bubbles cannot overlap with the wall. This way, their shape determines the variation in void

fraction. A check with the assumption of an ellipsoidal shape shows that this gives a reasonable

approximation to the decrease in void fraction near the wall.

Next, the shape of the void fraction profile is investigated for various heights, superficial

gas velocities and water contamination levels. Since the gas injection is very uniform, the non-

uniformities observed in the profiles are due to hydrodynamic effects and not due to the sparger.

First, results are shown for tap water of several days old (large vortical structures occur for

Ug>0.06 m/s), and an ungassed liquid height of 1.3 m. The superficial gas velocities that have

been used are shown in Table 7.3. This table also shows the number of needles that have been

used. The flow rates through the needles for these conditions give equivalent bubble diameters

in the size range 3.5 mm-5.0 mm. If the superficial gas velocity is increased from 0.015 m/s to

0.025 m/s the bubble size increases due to the larger flow rates through the needles (see chapter

2). If the superficial velocity is increased further, the number of needles is tripled, the flow rate

through the needles decreases and the bubble diameter drops again. As a result, the bubble

diameter variation over the entire void fraction range is reduced, and attains a local maximum

value for α=11%.

Figure 7.10 shows void fraction profiles for superficial gas velocities of 0.015 m/s and 0.049 m/s.

Figure 7.11 shows more profiles for the superficial gas velocities without large scale structures

for z=1.2 m and z=0.6 m. The figures show that the inside of the bubble column is very uni-

form for all superficial velocities, except close to the surface for α=25%. The low superficial gas

velocities show a wall peaking behavior for all heights. The same peaking behavior is observed

for Ug>0.035 m/s (α>18%) for z<0.9 m, in higher parts of the column the peak disappears. A

small dip occurs near x/R=0.7 for all experiments with Ug>0.03 m/s. This small dip is probably

due to inaccuracies in the correction factors for the glass fiber probe experiments which were

determined for void fractions in the range 6-11%.

Additional void fraction profiles for more contaminated tap water of two weeks old are shown

in Figure 7.12. For all the experiments from this point on, the ungassed liquid height was 1.0 m,

unless noted otherwise. The behavior is similar to that observed in Figures 7.10 and 7.11. For

the superficial gas velocities, that are significantly below the critical superficial gas velocity where
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Ug>0.07 m/s.

the onset of vortical structures occurs (e.g. Ug=0.047 m/s), again wall peaking is observed for

all heights. For the superficial gas velocities somewhat below the critical superficial gas velocity

(Ug=0.066 m/s), the wall peaking disappears near the top of the bubble column. For the case

where dynamic large scale structures are present (Ug=0.076 m/s), the familiar core-peaking void

fraction profile is found. In this case, an additional underestimation of the void fraction is

present: bubbles rising downwards have a smaller probability of being pierced (Groen (2004)).

Wall peaking behavior has been reported for bubbly pipe flows by e.g. Serizawa et al. (1975).

Similar void fraction wall peaking is observed in model predictions for bubble columns and pipe

flow by Guet (2004b). The behavior is explained by the effect of the lift force, which causes

accumulation of small bubbles (i.e. smaller than 5 mm) in the negative velocity part of the flow,

which is close to the wall. The position where the peaking is observed in the current experiments

is at 5 mm from the wall. The lift force acting on the bubbles at this location is signicant

since these bubbles experience a shear due to the down flow close to the wall, as the subsequent

observations of the liquid velocity profile will show.
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Axial liquid velocity profiles

Mean axial liquid velocity profiles for various gas fractions are shown in Figure 7.13 and Figure

7.4. The profiles show that for all superficial gas velocities up flow occurs in the central region with

|x|/R<0.9 with a typical very small velocity around 0.01 m/s. Down flow occurs for |x|/R>0.9

and has a typical velocity of around -0.04 m/s. The down flow is probably caused by the low void

fraction very close to the wall (due to bubble interaction with the wall), which causes a density

difference between the inner bubble column regions and the wall region. Most publications on

bubble columns (e.g. Mudde et al. (1997a), Hills (1974)) report that the inversion point (i.e. the

point where =0) is located around |x|/R=0.7, whereas the present study finds the inversion point

near |x|/R=0.9. This shows the very strong homogeneity for the present flow. The difference is

most likely caused by the absence of any large scale structures in the flow. This absence is caused

by the very homogeneous gas injection combined with a more narrow bubble size distribution at

the sparger. For the other studies, the gas injection may not have been uniform enough. The

results close to the wall show no trend with Ug. This is probably due to the presence of a strong

preshift frequency bleedthrough in the signal for measurements near the wall. This affects the

mean velocity. In addition, since the wall location is determined by locating positions where zero

velocity is found, a small error in the radial alignment is created, which manifests itself strongest

close to the wall where the velocity gradient is largest.

Extra measurements have been performed to determine the velocity profile close to the wall

more accurately (using very clean walls, etc.). The results are shown in Figure 7.14. For the

measurements in the transitional regime (Ug=0.076 m/s), the homogeneous flow and flow with

structures alternate. Consequently, the void fraction varies, generating extra variations in the

data rate in addition to the variations due to velocity bias. This introduces additional bias, which

increases with the distance to the wall. For this reason, the mean velocity is not only calculated

with 2D+ velocity bias correction, but also with Sample and Hold. Generally, the down flow
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Figure 7.14.: Mean axial liquid velocity profiles close to the wall. Ungassed liquid height 1.0 m,
tap water of 1 week old, large dynamic structures for Ug>0.070 m/s.

close to the wall is strongest close to the wall in a region with a thickness of approximately 4 mm.

The maximum downward velocity increases with z and Ug. This agrees with the observation that

the strongest down flow is observed in the top parts of the bubble column. For the superficial

gas velocities approaching the onset of large vortical structures, the maximum downward liquid

velocity close to the wall approaches the bubble slip velocity (which is about 0.15 m/s), agreeing

with the observation of very slow rising bubbles close to the wall.

Axial normal stresses

The axial normal stresses of the liquid velocity provide a useful tool for evaluating the distribution

of large scale structures along the axial direction z. Figure 7.15 shows this distribution for tap

water of 3-9 hours old. In the homogeneous parts of the bubble column, the stress levels are

constant and have a low value, with a typical order of magnitude around 0.01 m2/s2. Strong

liquid down flow is observed near the wall for z>1.1 m for Ug ≈ 0.057 m/s. This is accompanied by

a small increase in the axial normal stresses. Weak dynamic structures are observed for z>0.9 m

for Ug ≈ 0.061 m/s, again accompanied by a small increase in the stresses in this region. A
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sudden large increase in the stress level is obtained at the onset of intermittent dynamic large

scale structures, which are observed for Ug ≥ 0.066 m/s. The stress level is highest at intermediate

heights z for Ug ≈ 0.066 m/s. The structures are dampened when they approach the sparger,

consequently the stress level drops close to the sparger. If the gas flow rate is increased further

(Ug ≈ 0.075 m/s) all structures are able to reach the bottom of the bubble column.

Bubble properties

In the previous sections, several indications were found that the lift force may be important.

Wall peaking of the void fraction profiles was found, which is generally associated with a lift

force driving the smaller bubbles closer to the wall. Close to the wall a narrow region with liquid

down flow is found, providing a velocity gradient that can produce a significant lift force. In the

higher parts of the column, and for the higher superficial gas velocities approaching the critical

gas velocity where the first large structures are observed, the velocity of the down flow increases.

Nevertheless, for these conditions, the wall peaking disappears. This indicates that the lift force

towards the wall is decreasing in magnitude. Since the actual velocity gradient is increasing,

the decrease in the lift force is probably caused by a decrease of the lift coefficient, which may

possibly even reach a negative value. The results by Tomiyama et al. (2002) show that the

lift coefficient decreases if the horizontal bubble diameter approaches a critical value, which is

approximately 5.8 mm for air-water. If the bubble diameter increases beyond this critical value,

negative values are obtained for the lift coefficient due to the asymmetry generated in the wake

(Sousa et al. (2005)). The results, therefore, indicate that the mechanism for the transition that

was proposed by Lucas et al. (2005) probably plays an important role. In order to investigate

this further, the properties of the bubbles are investigated in more detail.

The bubble velocity and size are estimated with the use of the four point optical fiber probe

(see chapter 4). Two types of flow are analyzed: homogeneous flow, where the bubbly motion

is preferentially vertical, and flow with structures, where bubbles frequently hit the probe under

angles that deviate significantly from the vertical direction. For the flow with structures, three-
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dimensional reconstruction is prefered to get a more representative impression of the flow. On

the other hand, the results in section 4.4.4 show that for bubbles hitting the probe under an

angle with the vertical, an underestimation of the velocity and the chordal length occurs (see

Figure 4.40(c)). The underestimation is relatively large for the velocity. For the axial velocity, we

are mainly interested in values for the homogeneous regime, since the bubble velocity estimate

is strongly biased for the heterogeneous regime anyway for φp=0◦. This is due to the effect

that most bubbles traveling downward do not produce validated measurements (for φp=0◦). For

this reason, the axial bubble velocity is determined with the 1D reconstruction algorithm with

curvature correction (equation 4.3, βu=0.2). The performance is checked by comparing the total

gas flow rate measured with the probe (
∫ R
0 αub2πrdr) and the gas flow rate that is measured

with the flow meter. The gas flow rate measured with the probe underestimates that of the flow

meter by typically 10%-15% for Ug in the range 0.038 m/s to 0.057 m/s.

The underestimation is smaller for the chordal length. Therefore, the three-dimensional re-

construction algorithm is used in combination with equation 4.21. Two corrections are applied:

measurements with φ1>60◦ or with bubble velocity smaller than 0.05 m/s are discarded since

these contain the largest error (see section 4.4.3), and, in addition, a correction for the underes-

timation is perfored based on linear interpolation of the data in Figure 4.40(c). This way, the

results are very similar to those obtained with the 1D algorithm for homogeneous flow (with

φp = 0◦), and the accuracy for flows with structures is much better than if the 1D algorithm is

used, which gives a strong underestimation in the bubble chordal length estimate. The bubble

chordal length gives an impression of the minor axis length of the bubble. In addition, both the

major and minor axis lengths are determined from photographs taken at the bubble column wall.

For each condition and position, two or three photographs are analyzed manually, this way the

mean and standard deviation of the major axis length and minor axis length are determined for

at least 30 bubbles. Figure 7.16 compares the chordal length that is measured with the probe

in the bubble column center and the minor length determined from the photographs. A typical

difference of 5% is found.

Figure 7.17 shows the axial bubble velocity in the bubble column center for several cases where

homogeneous flow is observed. The axial liquid velocity at this position is not known, however,

Figure 7.13 suggests it is in the range 0.01 m/s - 0.02 m/s. Consequently, the slip velocity is

only slightly lower than the axial velocity and probably changes similarly with the void fraction.

The results suggest that the velocity is independent of the level of contamination of the liquid.

Similar to what has been observed by other authors (e.g. Garnier et al. (2002)), the velocity of the

bubbles decreases with an increasing void fraction due to an increased resistance. Garnier et al.

(2002) show that this decrease scales well with the decrease in the bubble-bubble distance, which

varies as db/α
1/3. However, for the present results the velocity appears constant for α>35%.

No data is presented by Garnier et al. (2002) for this range. The constant velocity may be

caused by a change in the structure of the relative bubble placement: the more or less random

bubble positions at lower void fractions become more ordered (see Figure 7.9). Consequently,

the average bubble-bubble distance may decrease more slowly than according to db/α
1/3. In

addition, the relative bubble positions may change such that increased in-line drag reduction

(such as described by e.g. Yuan and Prosperetti (1994)) cancels the increased mutual hindrance.

Figure 7.18 shows radial profiles for the axial bubble velocity for two heights. This confirms

the observations in Figures 7.13 and 7.14, that in the case of the homogeneous regime the velocity
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profile is more or less flat for |x|/R<0.8, and that lower velocities are measured close to the wall.

Once large scale structures appear, the velocity differences become more pronouced. Once should

notice that for measurements in the heterogeneous regime, the velocity is biased to higher values

since downward moving bubbles are not measured.

Guet (2004b) measured an average inclination of bubbles close to the wall that was oriented

towards the wall for wall peaking conditions. In addition, the inclination for bubbles was found

to become more orientated towards the column center for smaller aspect ratios. This behavior

was associated with the migration of large bubbles towards the center due to the lift coefficient

sign reversal. Figure 7.19 gives an impression of the radial variation of the average horizontal

bubble velocity component towards the wall. Close to the wall, the average bubble motion is

directed towards the wall, and a similar observation is made for the bubble inclination angle (φx).

The behavior is found both in the presence of wall peaking and in the absence of wall peaking

and is therefore not consistent with the explanation of Guet (2004b). The effect is possibly a

measurement artefact caused by the altered motion of bubbles when pierced by the probe nearby

the column wall, which may have an effect on the chordal length estimate as well.

The radial profiles for the vertical bubble chordal length measured with the probe are shown

in Figure 7.20. The chordal length is more or less constant for |y|/R<0.7, but shows a small

increase close to the wall. The increase is observed in the same part of the flow where the

strongest velocity gradient in the liquid velocity is present. Perhaps, this gradient induces a

different bias locally. This bias may be associated with the bias observed in Figure 7.19.

The change in chordal length with height is plotted in Figure 7.21. The increase of the bubble

chordal length with z is quite small, but cannot fully be explained with the diameter difference

in hydrostatic pressure (about 2% over 0.9 m height). This shows that there is relatively little

coalescence in the bulk region. When large scale structures appear in the flow, the axial mixing

is strongly enhanced and the variations in the chordal length with z become even smaller.

Figure 7.22 shows the variation of the chordal length with the superficial gas velocity for tap

water of various ages. The results show almost no dependency on the level of water contamina-

tion. A strong increase with the superficial gas velocity is observed. This result can not explain

how the lift force sign reversal occurs at different superficial gas velocities for different levels of

water contamination. However, for the lift force the length of the major axis 2a is important,

not the length of the minor axis 2b, an estimate of which is obtained with the probe. Figure 7.23

shows the means and standard deviations for the major and minor axis lengths of the bubbles

obtained with the photographic technique. For the horizontal diameter, clear differences are

observed between the case of ’fresh’ tap water and the case of contaminated tap water. For

the relatively clean water, the horizontal bubble size is increasing for Ug<0.05 m/s, whereas it

is more or less constant for the contaminated water. In this range, the bubble shape for the

contaminated water is more or less ellipsoidal, whereas the bubbles in the relatively ’clean’ water

have much more irregular shapes and exhibit strong shape oscillations. As soon as the horizontal

diameter reaches a value around 5.8 mm in the region near the free surface, the increase levels

off and strongly increased liquid down flow is observed close to the wall in the top regions of

the bubble column (’A’). If the superficial gas velocity is increased slightly further, large scale

instability is observed, first in the top parts of the column (’B’), and for a small further increase

in the entire bubble column (’C’).

The results suggest that the lift-force direction reversal mechanism suggested by Lucas et al.
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(2005) plays an important role for the transition. The graph in Figure 7.24 reproduces the results

of the stability analysis by Lucas et al. (2005) for a Gaussian bubble size distribution. If the

standard deviation of the bubble diameter exceeds a certain critical value, the flow becomes

unstable. This critical standard deviation is a function of the mean bubble diameter. The mean

and standard deviation that were observed in the present experiments at the onset of dynamic

large scale structures are also plotted in the same figure. The agreement with the result of the

stability analysis is good, although the good match is not very sensitive to the precise value of

the standard deviation for the present conditions. In addition, the result shows that the width

of the bubble diameter distribution is quite small in terms of lift force behavior.

Equivalent bubble diameters were obtained from photographs with the assumption deq =

(8a2b)1/3, which is only a rough approximation since the axial symmetry is absent, especially for

the bubbles with strong shape oscillations. Figure 7.25 compares the estimated equivalent bubble

diameters with those obtained in the single needle experiment described in section 2.3 (which

was performed with tap water of at least one week old). For φ<2 ml/s, the bubble size obtained

with the contaminated water matches the diameter obtained in the single needle experiment. If

the flow rate is increased further, coalescence close to the needle due to the collision of growing

bubbles with previously formed bubbles increases the bubble size. Observation of the bubble

formation at high void fraction (i.e. 30%-50%) with a CCD camera shows that there is very

little space for newly formed bubbles to enter the dispersion: the bubbles need some time to

accelerate, and consequently the local bubble velocity is lower close to the needles. As a result,

the local void fraction is significantly higher than in the bulk, and the probability of coalescence

is, therefore, higher than in the bulk. Consequently, for conditions where the probability of

coalescence in the bulk is small, this probability is not necessarily small near the sparger. For

the relatively clean tap water, coalescence starts to play an important role at much lower gas

injection velocities, and consequently the bubble size starts increasing at a smaller flow rate. As

a result, the critical diameter, required for the onset to a flow with dynamic large structures, is
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reached at a lower value of Ug.

7.2.4. Transition: mechanism and intermittency

The previous observations suggest that the mechanism for the onset to transition is dominated

by a reversal in direction of the lift force. The following impression of the phenomena leading

to the creation of large dynamic structures is obtained. At low superficial gas velocities, gas is

injected uniformly in the form of bubbles with equivalent diameters in the range of 3 to 4 mm,

creating a flat void fraction profile. Close to the wall, either due to interaction effects or the fact

that bubbles cannot overlap with the wall, a smaller void fraction exists. The density difference

with the core region of the bubbly flow creates a circulation with weak up flow in the center

and down flow in a narrow region close to the wall. Due to the resulting velocity gradient, the

bubbles close to the wall experience a lift force that is oriented towards the wall. This produces

a void fraction profile with wall peaks. When the superficial gas velocity is increased, the bubble

size increases due to the effect of inertia and drag during bubble formation. In addition, due

to the increase in the frequency of bubble formation and the void fraction close to the needles,

coalescence near the sparger increases. This effect becomes more important at lower gas input if

the liquid contains less impurities. Coalescence in the bulk is limited, but nevertheless generates

slightly bigger bubbles in the top parts of the bubble column, especially for the ’fresh’ tap water.

At the same time, the void fraction in the bulk increases, and the density difference with the wall

region increases, enhancing the down flow near the wall. Eventually, the bubble size approaches

the critical diameter where a zero lift coefficient is obtained, and the stabilizing effect of the lift

force becomes weaker. Consequently, the wall peaking in the void fraction becomes weaker. As

a result, the density difference increases further and strong down flow is observed close to the

wall. The bubble axial velocity close to the wall becomes much smaller. If the gas flow rate is

increased even further, the average bubble size becomes larger than the critical size. At the same

time, a significant velocity gradient is present near the wall, and the large bubbles experience

a lift force oriented towards the column center. The void fraction close to the wall decreases
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and the local down flow close to the wall increases. This void fraction disturbance is convected

to the top part of the bubble column if it is not created there, and can grow close to the free

surface. This way large scale structures are created near the top. This is further enhanced by

a possible bubble size gradient due to coalescence and the hydrostatic pressure gradient, due to

which the bubbles near the top are largest. Once a large enough fraction of the bubbles has a

size larger than the critical diameter, the large scale structures become strong enough, such that

the local void fraction drops. If the local density becomes significantly bigger than that in the

lower column parts, the structure can move to the lower column parts. For the relatively clean

water, there is a significant bubble size gradient with z. The properties in the upper part of the

bubble column may allow instability to occur, whereas the lower part may still be homogeneous

and not allow for instabilities to grow. Consequently, the structures that move downward are

dampened more when they reach a lower level than in the case of the contaminated water,

where the bubble size near the sparger is similar to that near the free surface. As a result, a

smaller increase in the superficial gas velocity is required for the contaminated water before large

dynamical structures can reach the sparger. When the structures also fill the lowest parts of

the bubble column, they will interact with the bubble formation. The extra drag force oriented

away from the needle that is acting on the bubbles during formation, will reduce their size. In

addition, bubbles are transported away from the needles much faster and coalescence close to

the needles reduces. Quite rapidly the bubble column is filled with smaller bubbles and the flow

stabilizes: it becomes homogeneous again. Once the large dynamical motion near the sparger

has ceased, the sparger produces large bubbles again. The large bubbles rise to the top parts of

the bubble column, a new instability can grow and intermittent behavior results.
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The latter behavior is illustrated with Figure 7.26, where the volume average void fraction is

shown as a function of time. When the instability is created, it rapidly progresses through the

column, and the void fraction rapidly drops. The passage of the structures clearly produces strong

fluctuations in the LDA signal. Once the sparger produces small bubbles (the size difference is

clearly visible by the eye), these will be quickly mixed by the large scale structures. The flow

becomes homogeneous, vortical structurse are killed and, again, large bubbles will be generated

at the sparger. The column is slowly filled with the high void fraction bubbly mixture, and the

volume averaged void fraction increases linearly with time until the big bubbles reach the free

surface and a new instability can grow.

The change of the time scale of the intermittent behavior is determined with the slotting tech-

nique for LDA signals obtained close to the wall, and for axial bubble velocity signals obtained

with the four point probe placed under an angle φp of 90◦. This way, both upward and downward

bubble velocities can be measured. Examples of the signals are shown in Figure 7.27. The pas-

sage of the vortical structures is both visible by the increased amplitude of the fluctuations, and

by the higher density of the velocity realizations for the bubble probe signal. The autocorrelation

functions that were obtained for the LDA signal are shown in Figure 7.28(a). For Ug=0.061 m/s,

when the first vortical structures are observed, a weak peak is observed around τ=12 s. For

Ug=0.066 m/s the periodic behavior is much stronger and this peak becomes much more pro-

nounced. If the superficial gas velocity is further increased, the periodic behavior becomes more

irregular (Ug=0.075 m/s), and the time scale drops (Ug=0.085 m/s): the homogeneous regime

exists for shorter periods. Figure 7.28(b), similarly, shows the autocorrelation function for the

axial bubble velocity signals. Since a very large difference in ’datarate’ (number of validated

bubbles hitting the probe) exists between the periods with homogeneous flow and the periods

with structures, Sample and Hold reconstruction is used to get a more even distribution of the

amount of data with time, similar to velocity bias correction for LDA signals. This way, weak

peaks become visible in the autocorrelation function. Comparison with the LDA results obtained

close to the walls indicate that the time scale in the center is somewhat smaller than the time

scale near the wall. This may be caused by a scale for the structures that is somewhat smaller

than the column diameter.

7.3. Pseudo-turbulence: kinetic fluctuations

The motion of the bubble relative to the liquid causes small scale velocity fluctuations in the

latter. This is named pseudo-turbulence and provides a strong contribution to the mixing at

the smaller scales. The pseudo-turbulence has been investigated by several authors in order to

provide relations for the extra kinetic energy introduced by the bubbles. The focus has been

both on the magnitude of the kinetic energy u′2E = u′2 + v′2 + w′2 and the magnitude of the axial

normal stress: u′2.

Figure 7.29 shows the axial normal stress levels close to the wall for various gas fractions.

The stress level looks constant for x/R≤0.95 but is different close to the wall (x/R=0.98). For

void fractions smaller than 15%, the stress level is lower near the wall. This can be explained

by the low void fraction near the wall. If the void fraction is lower, there is less ’local stirring’

by the bubbles and therefore the stress level drops. The higher stress level for the void fractions
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Figure 7.27.: Time signals showing the alternating regimes that occur in the bubble column (not
synchronous). Ug=0.066 m/s, z=0.6 m. Tap water of 3-9 hours old with onset of
vortical structures for Ug=0.058 m/s.
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Figure 7.28.: Autocorrelation functions for increasing superficial gas velocity. Onset of vortical
structures for Ug=0.058 m/s. Tap water of 3-9 hours old.
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Figure 7.29.: Axial normal stresses near the wall for increasing void fraction (z=0.9 m)

Study Dcolumn Ug1 (m/s) u′u′ (m2/s2) Ug2 u′u′ (m2/s2)
for Ug1 for Ug2

CARPT 0.14 m 0.024 0.012 0.048 0.032
LDA, Mudde 0.15 m 0.027 0.015-0.02 0.045 0.045-0.075
LDA, present 0.15 m 0.025 0.009 0.049 0.012

Table 7.4.: Stress levels reported in the study by Mudde et al. (1997a) and the present study.

larger than 15% is not clear. This may be due to an increase in the noise level. For the purpose

of further analysis stress level measurements at x/R=0.83 are used. This way, the wall has no

effect on the level.

First, a comparison is made with other results published in literature. Mudde et al. (1997a)

compared the stress levels obtained with LDA in a 0.15 m column with stress levels obtained from

filtered data sets obtained by Dudukovic and coworkers with CARPT. This was done for two

superficial gas velocities, their results are compared with results from the present study in Table

7.4. The stress levels in the present study are significantly lower. This is probably due to the very

uniform gas injection obtained with the needle sparger. The CARPT and LDA experiments in

the paper by Mudde et al. (1997a) were obtained using porous plate spargers which may provide

less uniform gas injection (this is discussed in a subsequent section). The CARPT stress levels

are probably smaller than the LDA experiments for the porous plate because of the larger inertia

of the CARPT tracer particle: LDA is more suited to measure high-frequency fluctuations. In

addition, the difference of the current experiments with the LDA experiments by Mudde et al.

(1997a) is further enlarged by the lack of velocity bias correction in the results by Mudde et al.

(1997a).

Next, the level of the kinetic fluctuations is investigated. Inviscid theory provides the following

estimate for the dilute limit (Van Wijngaarden (1998)):

u′2E,pot = CkαU
2
R (7.3)

and

u′2pot = Ck,aαU
2
R (7.4)
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with UR the relative velocity of the bubble with respect to the liquid, and Ck is the added

mass coefficient for the inviscid flow. Ck=1/2 for a spherical bubble. Van Wijngaarden (1998)

presents a relation how Ck varies with the aspect ratio and gives Ck=1 for an ellipsoidal bubble

of 3 mm. For the present case of a bubble of approximately 4 mm with aspect ratio 0.65, it gives

Ck=0.83. The coefficient for the axial normal stress, Ck,a, equals 0.2 for a spherical bubble and

approximately 0.33 for the 4 mm ellipsoidal bubbles considered in the present work.

A second contribution comes from the wakes of the bubbles and the vortices generated by the

bubbles. The fluctuation level due to these small structures can be estimated with a similar ap-

proach as that used by Mudde and Saito (2001). We consider ellipsoidal bubbles with equivalent

diameter deq of 4 mm and aspect ratio 0.65 (from observations): the length of the semi-major

axis is a, the length of the semi-minor axis is b. Similar to Lance and Bataille (1991), the wake

contribution to the kinetic energy can be roughly estimated from the dissipation rate, which is

estimated from the drag force experienced by the bubbles:

εw ≈ 3

8

α

1 − α

CD

b
U3

R (7.5)

Similar to Lance and Bataille (1991), the relation (u′2
w )3/2

lw
∝ εw may be used to get an estimate of

the magnitude of the fluctuations due to the wake. Assuming that the velocity fluctuations asso-

ciated with this dissipation have a length scale lw equal to 2a, and introducing a proportionality

constant Cp, we get:

(u′2w)3/2

2a
≈ Cpεw ≈ Cp

3

8

α

1 − α

CD

b
U3

R (7.6)

CD is estimated with CD = (1 − α)(8/3)(b/U2
R)g, where the 1 − α term is motivated by the

pseudo-hydrostatic effect (Barnea and Mizrahi (1973)). We get (neglecting correlations between

the fluctuations due to the potential flow and the wake):

u′2E = u′2E,pot + u′2w ≈ CkαU
2
R + (2CpαagUR)2/3 (7.7)

and

u′2 < u′2pot + u′2w ≈ Ck,aαU
2
R + (2CpαagUR)2/3 (7.8)

An alternative approach is taken by Garnier et al. (2002) and De Vries (2001). Both investi-

gations propose a scaling similar to that for inviscid flow:

u′2E = CkinαU
2
R = CkinαU

2
∞(1 − Cuα

1/3)2 (7.9)

where the second step is introduced by Garnier et al. (2002) to account for the effect of "mutual

hindrance" (the data in Garnier et al. (2002) suggests a value of Cu = 1). De Vries (2001) does

not account for this effect and assumes a constant velocity UR with respect to α. A similar scaling

is used for the axial normal stresses, with scaling constant Ckin,a. De Vries (2001) estimates the

second contribution by considering the formation of ’vortex blobs’ by the bubbles: each ’blob’ is

rearranged as Hill’s spherical vortices, and an estimate for the number of vortices is obtained in

order to provide a number for Ckin. An upper limit is obtained by considering the time that is

required to generate new vorticity at the bubble surface after releasing a ’vortex blob’. A lower
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limit is given by twice the natural frequency of the path of the bubble. This gives a value for Ckin

in the range 1.35-3.1 for a 3 mm bubble at low void fraction. For the larger bubbles considered

in the present study, a somewhat higher upper limit is expected due to the longer life-time of the

vortical structures (which get a bigger size). In the model of the author, however, the fraction

of space occupied by these vortical structures is typically in the range of 10-50 times the bubble

void fraction. For the high void fractions considered in the present investigation, this space is

lacking, and the results can therefore not be applied directly.

Experimental data at relatively low void fractions is provided by Theofanous and Sullivan

(1982) (0-15%), as well as Lance and Bataille (1991) (up to 3% void fraction). In both inves-

tigations, a net liquid flow is present: pipe flow for Theofanous and Sullivan (1982), combined

with grid turbulence for Lance and Bataille (1991). Garnier et al. (2002) present data up to

void fractions of 40%. However, the authors report the presence of large scale structures for the

higher void fractions, resulting in a large scatter for the high void fractions. The data reported

in the present investigation does not suffer from this effect.

The kinetic energy is estimated from the LDA measurements, the normal stress of the third

(radial) velocity component perpendicular to the wall, which has not been measured, is taken

identical to the second (tangential) component: u′2E = u′2 + 2v′2. The measurements are scaled

in two different ways: first according to equation 7.7 (’dissipation method’, Figure 7.30(a)),

second according to equation 7.9 (’inviscid flow’, Figure 7.30(b)). For the scaling, the relative

velocity is estimated from experiments for the contaminated water of 3 weeks old. Figure 7.17

gives information about the axial bubble velocity in the bubble column center. The high void

fractions do not allow the accurate measurement of the axial velocity in the column center using

LDA. However, the liquid velocity profiles in Figures 7.13 and 7.14 suggest that the axial liquid

velocity profile is close to 0.015 m/s for all conditions. This value is used for the calculation of

the slip velocity. A fit of the results is used for the scaling (for α < 28%: UR = 0.273 − 0.4072α

and for α ≥ 28%: UR = 0.174 − 0.0554α, constants have unit m/s). Similarly, the mean

bubble major axis length is obtained from a fit of the results in Figure 7.23: for Ug<0.05 m/s:

2a = 5.84 ·10−3Ug +3.92 ·10−3 and for Ug ≥0.05 m/s: 2a = 64.68 ·10−3Ug +0.96 ·10−3 (constants

have units s and m respectively). A similar procedure is followed for the axial normal stresses

measured in tap water that was one hour old.

The first scaling suggests a value around 1.3 for Cp and a value around 0.5 for Cp,a. The value

1.3 is somewhat bigger than the unity value found by Lance and Bataille (1991) for void fractions

up to 3%. The actual difference is even somewhat bigger since these authors did not subtract

the inviscid flow contribution. The second scaling suggests a value of Ckin in the range 3-3.5

and a value for Ckin,a around 1.3. The latter value for Ckin,a agrees with the findings of Garnier

et al. (2002), who report values close to unity. The value for Ckin roughly agrees with the upper

limit suggested by De Vries (2001). The two methods for the scaling seem more or less equally

appropriate: the relative amount of variation in the relevant constants for the different void

fractions is roughly similar. Possibly, Ckin shows a larger variation with the bubble diameter:

equation 7.9 does not explicitly take this parameter into account, whereas equation 7.7 does.
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Figure 7.30.: Kinetic energy scaled according to dissipation method (a) or inviscid flow method
(b). Tap water, 3 weeks and 1 hour old, z=0.9 m.

7.4. Non-uniform gas injection in the cylindrical bubble column

The influence of non-uniformities in the gas injection on the flow properties is investigated for the

cylindrical bubble column. First, experiments for tap water of several days old are performed for

superficial gas velocities below the point where the transition occurs. No large scale structures

are observed inside the bubble column when the uniform gas injection pattern is used (C1).

Non-uniformities are introduced by creating non-aerated zones in the sparger (patterns C2-C5).

Pictures of the lowest region of the bubble column for void fractions in this range are shown in

Figure 7.31. Introduction of a small non-aerated ring near the wall (pattern C2) gives only a

few weak circulation cells with fixed positions, no dynamic behavior was observed either visually

or in the LDA time series. The circulation cells can be observed in the void fraction profiles

in Figure 7.32(a). A diffuse plume is observed, which meanders from the center (z=0.07 m),

to the wall (z=0.15 m) and back to the center (z=0.30 m). Subsequently, it gets more diffuse.

The stationary recirculation cells between which the plume moves have very stable positions:

these gas fraction profiles could be reproduced on different days and are apparently fixed by

imperfections in the sparger. If the non-aerated zone is enlarged further (patterns C3 and C4),

dynamic behavior results: circulation cells are observed in a very dynamic entrance region that

extends visually up to approximately z=0.6 m. The structures move around dynamically with

a typical timescale of 10 s. The void fraction profile (Figure 7.32(b)) shows the familiar core-

peaking shape. Higher up in the bubble column (z=0.9 m), the profile is uniform. The behavior

does not change if the void fraction is increased to 20% (Figure 7.33). In the upper column

parts, again wall peaking is observed. Gas injection pattern C5, with gas injection near the wall,

but not in the center, gives a strong recirculation near the sparger with up flow near the wall

and down flow in the center, and a small bubble-free region in the center. No dynamic behavior

is observed, however. This is illustrated with the STFT in Figure 7.34: the difference with the

STFT plot for the uniform case is small, whereas the measurement for pattern C3 shows much

power for the lower frequencies. Finally, Figure 7.31 also shows an impression of the behavior

with a porous plate sparger (that was used by Groen (2004)). With this sparger, a dynamic
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(C1) (C2)

(C3) (C4)

(C5) (Porous plate)

Figure 7.31.: Flow in the lower parts of the bubble column (images for α around 9%).
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Figure 7.32.: Void fraction profiles for injection patterns C2 and C3.

entrance region is obtained. Apparently, the porous plate sparger does not provide very uniform

gas injection.

Figure 7.35 shows the change in void fraction in the column center for various injection

patterns. If the gas mass fraction is assumed constant, there is only a small variation due to

the change in hydrostatic pressure. A weak linear dependence on z results, which is plotted for

α=9.1% (’hydrostatic’). The uniform gas injection shows no entrance effect, whereas the other

patterns do. The entrance effect for the case C3 extends up to z=0.6 m. The effects for the

patterns C2 and C5 extend up to z=0.45 m. This is caused by the static circulation cells near

the sparger for these patterns.

For all non-uniform gas injection patterns, the strength of large scale structures decays with

height. This is best observed by considering the axial normal stress level for the liquid velocity,

which is shown in Figure 7.36 for Ug=0.017 m/s (α=7.6%) and Ug=0.039 m/s (α=20%), nor-

malized by the mean level for the uniform gas injection case. The highest stress levels are found

near the sparger and these quickly decay with z. For pattern C3, the stress level has decayed

to the uniform level for z=0.6 m. For pattern C4, the decay is complete near z=0.9 m. In the

higher regions of the bubble column, no differences with the case for uniform gas injection are

observed. This agrees with the observations for the void fraction profiles. The case with wall

injection (C5) only has increased stress levels close to the sparger (z<0.3 m). The decay of the

stress levels is more or less the same for the different void fractions. Apparently, the turbulent

kinetic energy contained in the structures scales with the energy input into the column (which

is proportional to the void fraction). The size of the entrance region has a small dependency on

Ug, and a much bigger dependency on the injection pattern.

Figure 7.37 shows radial profiles of the axial liquid velocity for z=0.9 m. This shows that

for patterns C2, C3 and C5 the liquid circulation is weak in the upper column parts, and again

that the flow properties are very similar to that for the case of uniform gas injection. Only for

pattern C4 a slightly increased circulation is observed. This agrees with the somewhat bigger
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Figure 7.37.: Axial liquid velocity profiles for the various injection patterns. z=0.9 m, tap water
of several days old.

entrance region that was observed for this pattern in Figure 7.36.

The stress levels reported in the present study for z>0.6 m are much lower than those reported

generally (e.g. Mudde et al. (1997a)), even if the gas injection is made non-uniform. A reason

for the difference may be the non-dynamic behavior of the sparger. In the current setup, a large

pressure drop over the sparger has been obtained by using needles. By grouping the needles

and providing an additional large pressure drop for each group, the flow to the sparger is made

even more independent of possible pressure fluctuations inside the bubble column. The more

constant flow rate will also result in a more constant bubble size. As a result, the feedback of

the hydrodynamics on the sparger is strongly limited. Most studies reported in the literature,

however, make use of, e.g., perforated plate spargers or porous plate spargers. These have a

smaller pressure drop and may, therefore, exhibit larger variations in the bubble size. As a

result, the hydrodynamics may have a feedback effect on the local flowrate and/or the bubble

size in the sparger. Consequently, large structures may be re-enforced and the size of the entrance

region may grow. For instance, comparison of the flow patterns observed in the present study

with those reported in Chen et al. (1994) shows significant differences. Chen et al. (1994)

reported the presence of the dispersed bubble flow regime up to Ug=0.017 m/s. This regime is

characterized by no coalescence and more or less straight downward liquid flow in between the

bubbles. For 0.017 m/s<Ug<0.049 m/s, the vortical-spiral flow regime was reported. This regime

is characterized by a spiraling central bubble plume and vortical structures near the wall. The

present study does not reveal this ’vortical-spiral’ behavior up to Ug=0.049 m/s, even for non-

uniform gas injection. Instead, the dispersed bubble flow regime is observed for all superficial

gas velocities up to the point where transition occurs. The difference may be caused by the

different spargers used: Chen et al. (1994) used a tube-orifice type of distributor. The difference

in pressure drop may again give a more dynamic behavior displayed by the sparger. The bubble

size, which is quite uniform for a needle sparger, may vary much more for the sparger used by

Chen et al. (1994), possibly promoting coalescence, which was reported by these authors for

Ug>0.021 m/s. Dynamic effects of the sparger are only considered in few modeling studies (e.g.

Ranade (1993)).
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Figure 7.38.: Images of entrance region for patterns C3 and C4 for increasing Ug. Contaminated
water: 3 weeks old. Ungassed liquid height 0.9 m.

Next, the influence of the gas injection patterns is studied for tap water of several weeks old.

Figure 7.38 gives an impression of the sparger region for increasing superificial gas velocities. For

pattern C3 and Ug<0.05 m/s, the behavior is similar to what was reported before for pattern

C3. For Ug>0.05 m/s, the behavior for pattern C3 changes. The circulation at the sparger

sides due to the non-uniform gas injection eventually becomes stronger, until the down flow

close to the wall is so fast that bubbles are dragged downwards. For Ug=0.057 m/s a wavy

motion is observed, for Ug>0.060 m/s the down flow results in homogeneous distribution of the

bubbles, even close to the sparger and the dynamic behavior is killed. This is also visible in the

normal stress levels (Figure 7.39): a local minimum is observed for Ug=0.066 m/s. Eventually,

transition occurs in a similar fashion as in the case with uniform gas injection, but at a higher

superficial gas velocity (Ug=0.08 m/s). Apparently, the local circulation at the sparger results in

smaller bubbles, and the lift force sign reversal is delayed to a higher gas input. For the pattern

C4, this behavior is not observed. The dynamic behavior remains present (Figure 7.40) for all

superficial gas velocities. The upper parts of the bubble column are no longer homogeneous for

Ug>0.050 m/s. This is probably caused by increased coalescence near the sparger: only 42% of

the sparger area is available for the bubble generation, leading to strongly increased bubbling

frequencies and very high local void fraction. As a result, much bigger bubbles are produced,

and the lift force reversal occurs at a lower gas input, resulting in transition. Nevertheless, again,

an entrance region and a bulk region can be identified. Inside the bulk region, the strength of

the vortical structures is independent of z: the flow is well developed. If Ug is increased further,

the relative difference between these two regions decreases.
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7.5. Pseudo 2D column

The limited optical accessibility of the cylindrical column makes it hard to study the dynamic

behavior. For this reason, the influence of small non-uniformities on the large scale dynamics

of the rectangular bubble column is studied. In addition, the rectangular geometry provides

interesting data for validation studies since rectangular geometries are often still preferred for

CFD modeling studies. The data presented in the present section was used for validation purposes

in Monahan et al. (2005) and Monahan and Fox (2005). The influence of the gas injection pattern

on the dynamics is studied by visual observation, PIV of the bubbles, PTV on the liquid tracers

(where one should consider the slip velocity of the particles of 0.09 m/s for the interpretation,

see appendix E), LDA for the mean liquid velocities and glass fiber probes for the void fraction

profiles. Images of the flow combined with PIV and PTV results are shown in Figures 7.41-7.44.

Visual observation of the bubbly flows shows a similarity with the behavior in the cylindrical

column. For uniform gas injection and relatively small non-aerated areas in the column (F1-F4),

no dynamic large scale structures are observed. Moreover, no large structures are observed (F1,

F2), or these structures, if present, have a fixed position (F3,F4). If the non-aerated area near

the wall is increased from 22% to 28% (from F4 to F5), suddenly very dynamic large structures

are obtained with periodic behavior. Introduction of a non-aerated zone in the center leads to

two circulation cells near the sparger with up flow near the walls. These cells display some weak

irregular motion, but no large structures are observed in the higher parts of the column.

The hydrodynamics are now discussed in more detail. LDA axial liquid velocity profiles of

the flow for uniform gas injection (F1) are shown in Figure 7.45. Horizontal velocities are not

shown: these are in the range -0.015 m/s to 0.015 m/s. The axial velocity profile in the upper

parts of the column has great similarity with that in the cylindrical column: down flow is only

present very close to the walls, the velocity away from the walls is quite uniform. The down flow

near the walls is again probably caused by a thin region near the wall where the void fraction

drops. A big difference with the cylindrical case, however, is that the total area of the walls

is much bigger for the pseudo-2D column. As a result, the relative volume where a lower void

fraction is present, is larger (by a factor of 2 if the thickness of the region is assumed constant).

This may lead to an increased circulation. The velocity profile indeed shows a slightly bigger

upward velocity (2 cm/s compared with 1 cm/s for the cylindrical case). Another important

difference is the relative amount of wall area, which is bigger near the two column ends (large

|x|). As a result, the local driving force for the circulation increases near the ends and the void

fraction near the y=0 line will be higher near the ends than in the central parts of the column

(x=0). A small circulation results with up flow for large |x|. The circulation is clearly present in

the LDA profiles for z=0.05-0.1 m. The difference in void fraction rapidly disappears due to the

circulation and for z>0.1 m the column is very uniform. In order to obtain even more uniform

gas injection, one would have to consider the presence of the low void fraction region near the

wall: the amount of gas introduced near the wall per unit area of the sparger should be slightly

lower. This may partially explain why only a small difference in hydrodynamics is obtained if a

small area near the wall is not aerated for the cylindrical column.

Next, a small non-aerated zone near the column ends is introduced, which is gradually en-

larged (F2-F5). F2 results in a weak circulation cell near the column ends with up flow in the

center (Figure 7.46). Further enlargement of the non-aerated zone results in a stronger up flow
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Figure 7.41.: Pseudo 2D column: Images of bubbly flow, PIV results for the bubble velocity field
(bottom) and PTV results for the liquid tracers (top) for gas injection patterns F1
and F2.
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Figure 7.42.: Pseudo 2D column: Images of bubbly flow, PIV results for the bubble velocity field
(bottom) and PTV results for the liquid tracers (top) for gas injection patterns F3
and F4.
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Figure 7.43.: Pseudo 2D column: Images of bubbly flow, PIV results for the bubble velocity field
(bottom) and PTV results for the liquid tracers (top) for gas injection patterns F5
and F6.
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Figure 7.44.: Pseudo 2D column: Images of bubbly flow, PIV results for the bubble velocity field
(bottom) and PTV results for the liquid tracers (top) for gas injection pattern F7.
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Figure 7.45.: LDA velocity profiles for uniform gas injection (pattern F1) over the center line
with y=0 (a) and over two lines in the y-direction (z=0.5 m) (b).
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Figure 7.46.: LDA axial velocity profiles for the various gas injection patterns at z=0.05 m, y=0
(a) and z=0.7 m, y=0 (b).
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Figure 7.47.: LDA axial (a) and horizontal (b) mean velocities and normal ((c) and (d)) stresses
for pattern F5.
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in the center for z<0.2 m (Figure 7.46(a)). Multiple stacked circulation cells are obtained with

F3 and F4. These are clear in the PIV/PTV velocity fields. These cells, however, have a static

nature: their position is more or less fixed. Case F5, finally, gives dynamic behavior. Large

scale structures move around the column in a very periodic way, similar to what was reported by

Mudde et al. (1997b). The transition from static to dynamic behavior seems to occur when the

liquid down flow velocity near the wall reaches the same magnitude as the bubble slip velocity.

The mean velocities and normal stresses for both the axial and horizontal direction for pattern

F5 are shown in Figure 7.47. The mean velocities show the average circulation cells, and how

these become weaker higher in the column. The normal stresses are very non-uniform in the

lower regions and quite uniform at z=0.7 m. The axial normal stress near the sparger peaks

in the center, at the position of gas injection, but peaks in the region 0.2 m≤z≤0.5 m closer

to the walls: in this region the large structures have scales close to the column diameter, and

the maximum axial velocities occur near the walls. The horizontal normal stresses peak near

the center: the meandering vortical structures have their maximum horizontal velocity near the

center.

Figure 7.48 shows LDA time series after resampling and low-pass filtering (cutoff frequency

0.5 Hz). The series were obtained at x/R2D=-0.78, y=0. It is important to realize that the results

from chapter 5 show that the amplitude of these filtered signals may be an overestimation: the

Sample-and-Hold operation that is required transfers power from the higher frequencies to the

lower frequencies. The time signals for pattern F5 clearly show the periodic behavior with period

9.4 s. The amplitude is dampened with the height z. Patterns F3 and F4 do not show a clear

slow oscillation which can be associated with large structures. Study of the autocorrelation of

the velocity time series shows that there is a very weak oscillatory behavior with time scale close

to 10 s at z=0.2 m. The correlation coefficient is a factor 50 smaller than that for pattern F5.

The oscillatory behavior is probably a weak meandering movement of the up flow in the center.

Despite the dynamic behavior obtained with pattern F5, the void fraction profile is quite flat for

z>0.2 m (Figure 7.49), and no significant difference with the void fraction profile for uniform

injection (F1) can be observed for z=0.7 m. The asymmetric pattern F6 was found to produce a

number of stacked, fixed, circulation cells. Gas injection near the wall, but not in the center (F7)

was found to give some vortical structures which exhibit some weak irregular dynamic motion.

No large scale structures were found in the higher parts of the column (z>0.2 m). The dynamic

behavior is also studied via the axial normal stresses. Figure 7.49(b) shows these stress levels for

various heights and various injection patterns. The levels were determined by taking the average

stress level for all x-coordinates at a certain height z over the line y=0. For uniform gas injection,

the axial normal stress in the rectangular column is around 0.007 m2/s2 (α=7.3%). This agrees

well with the values found in the cylindrical column (for α=7.6% also around 0.007 m2/s2). For

the horizontal velocity, the normal stress is around 0.004 m2/s2.

If gas injection patterns with dynamic behavior are used (F5, F7), the stress levels increase.

For the top region of the column, the difference with the uniform gas injection pattern is small.

The decay cannot be compared with the decay observed in the cylindrical column due to the

smaller aspect ratio for the pseudo-2D column: the height where the stress has decayed to the

uniform level is very close to the free surface.

More information about the dynamics of the large structures can be obtained from the shear

stress u′v′ (Mudde et al. (1997b)). Static large structures will not contribute to the mean shear
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Figure 7.49.: Void fraction profiles for pattern F1 and F5, over the line y=0 (a) and axial normal
stresses for the various injection patterns (b).

stress averaged over a longer period. The same holds for the bubble wakes, where the vari-

ous contributions will cancel after averaging. Instead, the largest contribution comes from the

dynamical motion of the large structures. Mudde et al. (1997b) mentions that the contribu-

tions from vortical structures exhibiting circular motion that travel through the column cancel.

Therefore, non-zero values must come from vortical structures that are dynamic, that may have

preferential locations, or lack symmetry in their direction of motion. The latter points are very

clear for the sparger region. The measured shear stress values for the uniform gas injection

and pattern F2 are in the range -4 · 10−4m2/s2- 4 · 10−4m2/s2. Clearly, the average correlation

between the two fluctuating components is very small: the structures producing the fluctuations

are much smaller than the equipment size and therefore do not have a preferential location with

respect to the measurement volume (except very close to the walls). For patterns F3 and F7

slightly increased values are observed in the range -6 · 10−4m2/s2- 6 · 10−4m2/s2. The increased

values can be contributed to weak meandering of the static circulation cells which have more or

less fixed places. Figure 7.50 shows the shear stress values for patterns F4 and F5. The values

are much larger for the pattern F5, reflecting the very dynamic nature of the large structures for

this pattern, whereas the dynamics for pattern F4 are much weaker. For pattern F5 the vortical

structures have clear preferential locations in the lower corners. The typical velocity direction

in the region z<0.2 m and the region 0.2 m≤z≤0.5 m are very distinct, leading to oppositely

signed values for the shear stress. For z=0.70 m the shear stress values have decayed, but not

completely to the values of uniform gas injection: there is still some weak meandering motion.

The results indicate that the shear stress is an interesting quantity for validation studies: correct

prediction may be quite tough.
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Figure 7.50.: Shear stress for gas injection patterns F4 (a) and F5 (b).

7.6. Power spectra in bubbly flow: experiments and fit of
autocorrelation function

The present section discusses the autocorrelation functions and power spectra obtained experi-

mentally in the cylindrical column.

7.6.1. The local flow field

The section 5.9 considered the reduction of the impact of the flow field around the bubble on

the spectral estimate via the removal of velocity realizations close to gaps. An improvement

was obtained for artificial signals with potential flow contributions. The improvement was only

partial since:

• The disturbance due to the flow field around the bubble is not limited to a region with

specified size.

• Not all disturbances due to the local flow field are accompanied by a gap in the data.

In actual flows, the situation differs from potential flow due to the presence of the wake and

the bubble-bubble interactions. A schematic impression of the local flow around the bubbles is

shown in Figure 7.51. The strongest part of the velocity flow field around the bubble extends

further away in the presence of a wake than for potential flow. In addition, a large part of the

fluctuations are found in region ’A’ on the lower side of the bubble, whereas the distribution was

more symmetric with the artificial potential flow signals: fluctuations in front of the bubble were

equally strong. The presence of the other bubbles influences the local flow field: it is confined to

a smaller region in space.

An idea about this local flow around the bubbles and its potential influence on the spectra

is obtained experimentally. The axial and tangential velocity signals are measured during 900

s (the data rate close to the wall is in the range 400-500 Hz) in a homogeneous flow with void

fractions of 15%, 26% and 38%, at a distance of 7 mm from the wall. At this distance, the
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Figure 7.51.: Schematic impression of the local flow field in between the bubbles.
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spectrum of the signal is very similar to the spectrum obtained at larger distances from the wall,

but the amount of gaps in the data is still limited. Figure 7.52 shows the strength of the velocity

fluctuations as a function of the time after the presumed bubble passage. Gaps in the signal

longer than 0.01 s were associated with bubble passages, the variation of the velocity realizations

was determined as a function of the time after the end of the gap. Gaps were located in the

combined set of arrival times from both the axial and tangential components. Larger deviations

from the mean are observed right after a gap, i.e. after the bubble passage. The deviations decay

in strength and have more or less disappeared around t = 0.015 s. These fluctuations probably

correspond to region ’A’ in Figure 7.51. If a bubble velocity of around 0.2 m/s is assumed, this

corresponds to a region with a size of 3 mm, somewhat smaller than the bubble diameter, which

is around 4 mm. The higher levels after the gaps confirm the idea that it is possible to reduce

the impact of the local flow with the removal of velocity realizations after gaps. In addition,

Figure 7.52 provides information for the selection of the value of Tremoval. A similar study of

the strength of the fluctuations before the gap does not show increased levels: the fluctuations

in this area are probably of a similar magnitude as those in the other regions around the bubble

and in between the bubbles.

The slotting autocorrelation functions of the axial and tangential velocity signal components

are shown in Figures 7.53(a) and 7.53(b). Here, a clear decay is seen as well, the autocorrela-

tion values are significant for lags up to 0.05-0.1 s for the axial component and 0.02 s for the

tangential component. The decay for the tangential component is faster than that for the axial

component. This agrees with findings by Bunner and Tryggvason (2002) for autocorrelation

functions obtained from direct numerical simulations: the horizontal components become uncor-

related sooner after the bubble passage. Probably, the correlation in the horizontal fluctuations

originates mostly from the wake region right below the bubble (’A’), whereas the vertical fluctu-

ations extend further in space: also below the primary wake and in the regions near the sides of

the bubbles (e.g. regions ’B’, ’C’ and ’D’). The decrease of the tangential component is more or

less independent of the void fraction. Somewhat further away from the bubble (’D’), the wake is

no longer stable: vortical structures shed by the bubble can be found here. In addition, the flow

is affected more and more by the neighboring bubbles. Therefore, the velocity in these structures

is still correlated with that in the structures in region ’A’, but the correlation decreases with the

distance. At distances comparable to the bubble-bubble distance (’E’) the correlation becomes

negligible. These distances correspond to the time interval of 0.05-0.1 s. The maximum time lag

Tlocal up to which the local correlations are important will scale according to Tlocal ≈ db−b/ub.

Here, ub is the typical bubble velocity (estimated from Figure 7.17) and db−b is the typical

bubble-bubble distance. The bubble-bubble distance is expected to scale approximately with

α−1/3. Figure 7.53(c) also presents a scaled version of the autocorrelation function. This shows

that the length of the area containing correlated velocities decreases with the void fraction, and

the decrease is faster than according to α−1/3 for the lower void fractions. Similar behavior is

observed in the results of Bunner and Tryggvason (2002).

The results confirm, again, that the removal of velocity realizations can only provide a partial

improvement: the influence of the local flow is not limited to a subset of the velocity signal, but

in fact affects the entire data set, especially for the high void fractions considered here.

Finally, the power spectra that are obtained for the bubbly flow are presented in Figure 7.54.

The spectra are very similar, except for the spectrum measured at 1.3 mm distance from the
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Figure 7.53.: Slotting autocorrelation functions measured in homogeneous flow at 7 mm from the
wall, corrected for noise.
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Figure 7.54.: Power spectra for homogeneous bubbly flow.
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Figure 7.55.: Power spectra for bubbly flow with vortical structures (uniform gas injection).
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wall, which has slightly larger values for the lowest frequencies. Cutoff occurs at a frequency

around 10 Hz, beyond this frequency a power-law behavior with slope -1.5 is observed. The cut-

off frequency corresponds to the bubble-bubble distance, which seems to be therefore the largest

scale at which structures with relevant power are observed. At lower frequencies, the spectrum is

more or less flat. For the corresponding long timescales, the autocorrelation function resembles

a Dirac’s delta function located at τ=0. This means that for the longer time scales the local

bubble velocity field has a ’white noise’ character, creating a ’noise floor’ in the power spectrum

for f<5-10 Hz. If the power spectrum is determined for flows containing large scale structures,

this noise floor may obscure their behavior. The oscillatory nature of power spectrum that was

observed in Figure 5.22(b) is not seen here. The correlation of liquid velocity fluctuations below

and above the bubble is obscured by the correlations inside the wake region, in which the velocity

fluctuations extend further than in the case of potential flow.

The influence of the void fraction on the spectrum shape is small. Although the value of -1.5

is relatively close to -5/3, this does not show that the cascade and dissipation of the wake is

similar to that in single phase flow (the Kolmogorov -5/3 law), as is claimed by Cui and Fan

(2004). The slope is in fact caused by the pseudo-turbulence: the passage of structures around

the bubble with the bubble rise velocity. These structures do not need to be dissipated or broken

down into smaller structures in order to produce a power-law spectrum.

7.6.2. Flow with large scale structures and the hybrid fit technique

Although the entire data set is affected, the correlation of the fluctuations due to the local flow

field is limited up to lags around Tlocal. For conditions with large scale structures, this time

scale decreases since the typical velocity increases, assuming the bubble-bubble distance does

not increase strongly.

Figure 7.55 shows the power spectra of the velocity signals obtained at various distances from

the wall l. The variable window technique with κ=3 was used. This leads to some smearing of the
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power at the frequencies below 0.5 Hz. For the study of these lowest frequencies, a higher value

for κ or the direct transformation technique should be used. The variation with the distance

to the wall is quite small. A slope close to -5/3 is observed in the range 1-10 Hz. One of the

signals is examined in more detail: the signal obtained at 7 mm from the wall. Figure 7.56 shows

the increased variance level before and after the gaps in the data that are associated with the

bubble passage, suggesting a value of 0.005 s for Tremoval. Since the bubbles can move downward

due to the vortical structures, increased levels are found before the gaps as well. Figure 7.57(a)

shows the autocorrelation function for the shorter time intervals. A clear increase in the slope

of the autocorrelation function is observed for τ<0.015 s. This increase is due to the local flow

around the bubbles. Removal of the velocity realizations right before and after gaps in the

data only reduces this increased correlation level slightly, at the cost of a 50% reduction in data

points. This is therefore not an effective method. Another method to reduce the influence of the

local flow field on the power spectrum is by fitting the autocorrelation function with a model

for τ>0.015 s, and replacing the autocorrelation values for τ<0.015 s with values obtained via

extrapolation of this model. This method is named the ’hybrid fit technique’: extrapolation of

a fit of the autocorrelation function is followed by application of the variable window technique.

The effect of the technique is the following:

• For frequencies smaller than 5-10 Hz the technique removes the ’noise’ due to the small

scale bubble fluctuations.

• At higher frequencies the velocity fluctuations of the cascaded structures and the flow field

around the bubble are correlated: the local flow does not simply provide an additional

amount of power, independent of the flow at larger scales. Nevertheless, the technique

does provide an idea about the amount of power that is due to the larger scale structures

that have cascaded to smaller scales.

Figures 7.57(a) and 7.57(b) show the result of a fit with equation 5.23. The fit is performed

over the interval 0.015-0.4 s and gives a good approximation. The effect of both procedures on

the power spectrum is shown in Figure 7.58. The effect of the removal of velocity realizations
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on the power spectrum is very small. The effect of the fit is much larger. In order to get an

idea about the decay of turbulent structures at scales larger than the bubble-bubble distance,

the various estimates are compared. The spectra are similar for frequencies smaller than 10 Hz.

This shows that, for the present example, for these frequencies the ’noise’ contribution of the

bubbles is negligible. In the region 2-10 Hz a slope of approximately -5/3 is observed, consistent

with experiments for single phase flow. This may suggest the cascade process is similar to that

in single phase flow. Beyond 10 Hz, the various curves present a confidence interval: the curves

present two extremes. If the decay of the autocorrelation function at the shortest lags is indeed

similar to that at the longer lags, a slope close to -2 is present. This would indicate that the rate

of dissipation increases somewhat at scales around and smaller than the bubble-bubble distance.

Without any further information, however, this remains speculative.

Figure 7.59 shows the effect of an increase in the superficial gas velocity on the power spec-

trum. For Ug<0.055 m/s no large scale structures are present: the entire spectrum is dominated

by the local flow around the bubbles, consequently the spectra are similar. For Ug>0.065 m/s

vortical structures are continuously present in the flow. The large scale structures lead to a

strong increase in the energy in the low frequencies. For frequencies beyond 20 Hz, the local

flow around the bubbles results in a smaller slope. For Ug=0.057 m/s, intermittent behavior is

observed: the flow is locally free of vortical structures for a short period, followed by a period

of typically 10 seconds during which a large number of vortical structures pass, after which the

process repeats itself. As a result, the amount of power in the large scale vortical structures is

not large enough to obscure the fluctuations due to the local flow: the cascade of the large scale

vortical structures is observed at the lowest frequencies, and the local flow around the bubbles

for the high frequencies. For the higher superficial gas velocities, the power due to the structures

increases.

For the tangential velocity component flatter spectra are obtained (Figure 7.59(b)) than for

the axial component. Figure 7.60 shows the effect of the hybrid fit technique for the tangen-

tial velocity component. The results show that the local flow fluctuations provide a relatively

larger contribution to the total power for the range of 1-10 Hz than for the axial component.

The removal via the fit results in steeper spectra. Although the resulting spectrum is locally

still somewhat curved, possibly a -5/3 power law behavior may be present for the tangential

component as well.

Figure 7.61 shows the power spectra for non-uniform gas injection as a function of the height in

the bubble column. Due to the non-uniform gas injection, dynamic large scale vortical structures

are created near the sparger, which decay in strength higher in the bubble column. These result in

increased power levels at low frequencies with -5/3 power law behavior. A comparison is shown

with the case of uniform gas injection. If measurements are performed higher in the bubble

column, the flow dynamics resemble more and more that of homogeneous bubbly flow. The

measurements closer to the sparger resemble more and more the spectra obtained at Ug>0.07 m/s

with uniform sparging. This suggests that the nature of the cascade process of vortical structures

created by the sparger and the cascade process for the structures created by instabilities are

similar. The differences that are observed can be explained with different strengths of the vortical

structures and the different void fractions.

Figure 7.62 shows the result of the hybrid fit technique for measurements where the power-

law behavior due to the local flow around the bubbles and the large scale structures are clearly
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Figure 7.59.: Effect of an increase in the superficial gas velocity (and amount of vortical struc-
tures) on the power spectrum. l=7 mm, uniform gas injection. Tap water of one
day old was used.
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separated in frequency. A comparison between uniform gas injection with instabilities and non-

uniform gas injection is made. Similar results as in Figure 7.58 are obtained: beyond the fre-

quency where the local flow around the bubbles becomes important the hybrid fit technique gives

a power law slope around -2. The behavior is similar for the two flow conditions.

For high superficial gas velocities (Ug>0.07 m/s), which already have large vortical struc-

tures in the flow for uniform gas injection, the shape of the power spectra is not affected by

the non-uniformity of the gas injection, only a small increase in the magnitude of the velocity

fluctuations is obtained. The -5/3 power law behavior that is observed in the various spectra

may be an indication that the typical Kolomogorv scaling also appplies to these bubbly flows.

This observation was also made by Camussi and Verzicco (2004), Verzicco and Camussi (2003)

and Mashiko et al. (2004) for buoyancy driven flows driven by temperature differences.

7.7. Conclusions

Uniform gas injection: flow stability

If uniform gas injection with the needle sparger is used, homogeneous bubbly flow is obtained

for low superficial gas velocities; no large scale vortical motion is observed, except for a very

weak up flow in the center and down flow in a very narrow region close to the wall. The

superficial gas velocity where the first large scale structures are observed, increases with the

level of contamination of the tap water. For the highest level of contamination, a maximum

void fraction of 55% with homogeneous flow properties is reached. Several strong indications are

found that the onset of large dynamical motion is due to the reversal of the sign of the lift force.

For low superficial gas velocities, void fraction profiles are very flat, except close to the wall where

small peaks are observed, since the flow contains many small bubbles and these small bubbles
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experience a lift force oriented toward the wall. The wall peak disappears when the transition is

approached, since the bubble size increases until eventually the flow contains sufficient bubbles

with small or negative lift coefficient. At this point, bubbles will start moving toward the

center of the flow and instabilities can grow. The critical diameter where the instability occurs,

agrees well with the results of Lucas et al. (2005) and Tomiyama et al. (2002). If the level of

contamination of the liquid increases, smaller bubbles in the column result due to decreased

coalescence, and the critical diameter is reached for a higher superficial gas velocity. As soon as

the flow becomes unstable, the interaction of the vortical structures with the sparger can create

intermittent behavior.

Pseudo-turbulence

In the homogeneous regime, the liquid velocity fluctuations are dominated by pseudo-turbulence:

the small scale velocity fluctuations induced by the motion of the bubble relative to the liquid.

Scaling methods based on the dissipation rate in the flow and on the variation for inviscid flow

are considered. Both scaling methods appear more or less equally appropriate.

Non-uniform gas injection

The influence of the uniformity of gas injection is investigated by introducing non-aerated regions

in the sparger. If small non-aerated regions are introduced in the sparger, weak static circulation

cells result, but no dynamic large scale structures are obtained. If the non-aerated region is

introduced at the wall, and its size exceeds a critical value, large scale dynamic structures are

found close to the sparger. These generate an entrance region with increased mixing. The
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intensity of the associated fluctuations decays exponentially with the height in the column, and

at a distance of about 4 column diameters from the sparger the nature of the flow is very similar

to that obtained with uniform gas injection, if the transitional regime has not yet been reached.

For Ug<0.05 m/s, the intensity of the fluctuations in the entrance region scales with the void

fraction, and the rate of decay of the fluctuations is independent of the void fraction: the size

and nature of the entrance region mainly depend on the type of gas injection pattern. If the

area through which the gas is injected is decreased, eventually a point is reached where the

onset of the transitional regime occurs at a lower superficial gas velocity. This is probably due

to increased coalescence at the sparger. For all cases, the bubble column can roughly be split

in two regions: an entrance region close to the sparger and a bulk region on top with uniform

properties (either with or without large vortical structures).

For the pseudo-2D column, the behavior is only investigated for low void fractions, but it looks

qualitatively very similar. Again, small non-aerated regions do not produce dynamic behavior,

and if the size of the non-aerated region is increased beyond a critical size, suddenly dynamic

behavior is obtained.

Power spectra in bubbly flow

Autocorrelation functions and power spectra obtained in the bubbly are determined with the

slotting technique, both for homogeneous flow and flow with large dynamic structures. Large

dynamic structures are considered both due to non-uniform gas injection and due to instability

of the flow. The local flow around the bubbles results in the addition of extra energy to the

spectrum, obscuring the turbulent cascade process. Analysis of the autocorrelation functions

for homogeneous flow shows that the flow around the bubble is significantly correlated up to

intervals corresponding to the bubble-bubble distance. Consequently, removal by rejection of the

velocity samples obtained closest to the bubble gives only a partial improvement. Better results

are obtained by extrapolating the autocorrelation function for the shortest intervals with the

use of a fit technique. The power spectra that are obtained in the transitional regime exhibit a

-5/3 slope for the intermediate frequencies, consistent with results for single phase turbulence.

Similar results are obtained for the flow dominated by large scale structures generated by the

non-uniform gas injection.

List of symbols

Roman symbols

a bubble semi-major axis length m

b bubble semi-minor axis length m

CD drag coefficient -

Ckin proportionality constant total kinetic energy -

Ckin,a proportionality constant axial component contribution to total ki-

netic energy

-

CL lift coefficient -

Cp proportionality constant fluctuations dissipation method -
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Cu constant describing decay terminal velocity with void fraction -

c constant describing decay data rate -

ck constant for kinetic energy due to inviscid flow contribution -

ck,a constant for axial contribution to kinetic energy due to inviscid flow

contribution

-

Dcolumn bubble column diameter m

dc bubble chord length m

db bubble diameter m

db−b bubble-bubble distance m

deq bubble equivalent diameter m

f frequency s−1

g gravitational acceleration m s−2

l distance measurement volume to the wall m

lw length scale fluctuations m

Ṅ1, Ṅ2 frequency scales for bubbly flow data interarrival time distribution s−1

Ṅtot mean data rate s−1

R radius bubble column m

R2D half width pseudo-2D column m

Rdepth half depth pseudo-2D bubble column m

Ruu autocovariance function m2 s−2

r radial coordinate m

S power spectrum various

STFT Short Time Frequency Transform

T window duration s

Tlocal maximum time lag up to which correlations due to local flow are

important

s

Tmingap minimum gap duration in order to associate gap with bubble s

Tremoval duration signal segment removed from the signal before/after bubble

arrival

s

t time s

U∞ terminal velocity m s−1

Ug superficial gas velocity m s−1

UR slip velocity m s−1

u axial liquid velocity m s−1

ub axial bubble velocity m s−1

v tangential liquid velocity m s−1

u′, v′ axial and tangential velocity fluctuations m s−1

u′2E total liquid kinetic energy m2 s−2

w radial liquid velocity m s−1

wb radial bubble velocity m s−1

x horizontal coordinate m

y horizontal coordinate m

z axial coordinate m
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Greek symbols

α void fraction -

α0 void fraction for scaling -

βu bubble selection criterion 1D four point probe algorithm -

γ Gaussian window for STFT -

∆τ slot width s

εw dissipation rate m2 s−3

κ variable window constant -

ρ autocorrelation function -

σu,t strength fluctuations in liquid velocity at time t after end gap in

data

m s−1

τ lag s

φ gas flow rate per needle m3 s−1

φ1 angle between probe axial direction and velocity vector rad

φp probe inclination angle rad

φx bubble velocity angle rad

Subscripts

pot potential flow



8. Conclusions

The aim in the present thesis was to investigate the behavior of dynamic large scale structures

in bubble columns. Special attention has been paid to the influence of non-uniformities in the

sparger on the creation of these structures and to the changes in the homogeneous flow leading

to instability. Both the properties of the pseudo-turbulence (strength of the fluctuations) and

the large-scale turbulence (power spectra) have been studied.

First, conclusions are presented of the investigation of the hydrodynamic behavior. Next, the

findings of the preparatory studies on the sparger and measurement techniques are discussed.

8.1. Dynamic large scale vortical structures in bubble columns

The main findings of the study are that very homogeneous flow is obtained with uniform gas

injection which can be maintained up to very high void fractions for conditions with little coales-

cence, that non-uniformities in the sparger can only introduce large structures relatively close to

the sparger and that the stability of the flow seems to be governed by the bubble size: instability

sets in once enough bubbles are present larger than the critical diameter of 5.8 mm given by

Tomiyama et al. (2002) for which the lift coefficient changes sign.

Uniform gas injection: flow stability

The very uniform gas injection obtained with the needle sparger produces homogeneous bubbly

flow up to the superficial gas velocity where instability sets in. For increasing levels of natural

contamination, increasing critical voidages, for which the vortical structures first appear, are

found with values up to 55%. Up to this highest void fraction, only very weak up flow (0.01-0.02

m/s) is found in the column center, and down flow is only found in a very narrow region close to

the wall. Several indications are found that the onset to the transition regime with large vortical

structures is due to reversal of the sign of the lift force. Wall peaking is observed for the lower

superficial gas velocities, it disappears at superficial gas velocities right before the onset of the

structures. The mean horizontal bubble diameter that is observed around the critical voidage

agrees well with the critical diameter given by Tomiyama et al. (2002). For more contaminated

water, the coalescence near the sparger decreases, smaller bubbles result and the flow is stable up

to a higher voidage. As soon as the flow becomes unstable, the interaction of vortical structures

with the sparger can create intermittent behavior due to a time-dependent bubble size generated

at the sparger.

Non-uniform gas injection

The introduction of non-aerated regions in the sparger leads to the creation of circulation cells,

which can become dynamic if the non-uniformity is big enough. The strength of these large
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structures quickly weakens for higher positions in the column: an entrance region is created.

Above this entrance region, a bulk region is identified with uniform properties, where dynamic

large structures, if present, are due to instability of the flow. For Ug<0.05 m/s, the size and

decay of the entrance region are mainly dependent on the gas injection pattern and only little

depend on the void fraction. For higher superficial gas velocities, both increased and decreased

stability can be obtained due to the non-uniform injection.

Pseudo-turbulence

In the homogeneous regime, the liquid velocity fluctuations are dominated by pseudo-turbulence:

the small scale velocity fluctuations induced by the motion of a bubble relative to the liquid.

Scaling methods based on the dissipation rate in the flow and on the variation for inviscid flow

are considered. Both scaling methods appear more or less equally appropriate and reasonably

well describe the experimental data.

Turbulence power spectra

Autocorrelation functions and power spectra obtained in the bubbly flow are determined with

the slotting technique, both for homogeneous flow and flow with large dynamic structures. Large

dynamic structures are considered both due to non-uniform gas injection and to instability of the

flow. Extra energy is added to the spectrum by the local flow around the bubbles, obscuring the

turbulent cascade process. Analysis of the autocorrelation functions for homogeneous flow shows

that the flow around the bubble is significantly correlated up to intervals corresponding to the

bubble-bubble distance. Consequently, removal of the velocity samples obtained closest to the

bubble gives only a partial reduction in the amount of extra power due to the local flow. Better

results are obtained by extrapolating the autocorrelation function for the shortest intervals with

the use of a fit technique. The power spectra that are obtained in the transitional regime exhibit

a -5/3 slope for the intermediate frequencies, consistent with results for single phase turbulence.

Similar results are obtained for the flow dominated by large scale structures generated by the

non-uniform gas injection.

8.2. Sparger, setup, measurement and signal processing
techniques

Sparger

For the study of the influence of the gas injection, a special needle sparger was built and the

bubble formation at the needles was investigated. This investigation showed that several inter-

action effects are important for the formation process: both blocking and attraction due to the

previously formed bubble are observed. These effects can change the bubble size and result in

a size reduction for flow rates beyond a critical flow rate. As a result, strong size fluctuations

can be obtained around this critical flow rate if large vortical structures are present. Interaction

effects with other needles are quite small.
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Optical fiber probes

The use of a single optical fiber probe for the estimation of the void fraction generally leads to

underestimation. A study of the piercing process of bubbles with the use of CCD images shows

that the so-called Low-Level-Criterion for the processing of signals gives the best match with

the actual gas-liquid transition. Additionally, its use results in reduction of the underestimation.

Further study of the error sources shows that, for perpendicular piercing, the blinding and

crawling effects provide the major inaccuracy. For non-perpendicular piercing, the drifting effect

becomes important as well. The magnitude of the inaccuracy is strongly dependent on the

piercing conditions, making quantitative prediction difficult for practical conditions.

The inaccuracy of the measurement of the bubble size and 3D bubble velocity with a four

point optical fiber probe has been evaluated with the use of simulations of modeled piercing, and

with test experiments. This showed that the major error sources are the shape oscillations of

the bubbles and probe-bubble interaction effects, and that correction for the bubble curvature

is required in order to get reduced inaccuracy. Especially aspect ratio oscillations can produce

considerable variations in the bubble velocity and bubble size estimates that can obscure the

true distribution. The most important probe-bubble interaction effects are the drifting effect and

deformation of the bubble, which create significant inaccuracies in the estimate of the velocity

direction. Although, for individual bubbles, the velocity direction estimate is not very precise,

the average direction of an ensemble of bubbles can be estimated reasonably accurately. If the

bubble moves under an angle with the probe, an underestimation of the velocity magnitude and

bubble chordal length is found, as well as an overestimation for the angle between the probe

axial direction and bubble velocity vector.

Laser Doppler Anemometry applied to bubbly flows

In order to evaluate and improve LDA applied to bubbly flows, both the signal processing of

the velocity signals and the processing of the electronic signals containing the bursts are studied

and enhanced. For the signal processing, the focus is on methods how to deal with the random

sampling and gaps in the data introduced by the blocking of laser beams by the bubbles, and on

the effect of the pseudo-turbulence (local flow around the bubble) on the power spectra.

The study shows that reconstruction based techniques, such as Sample-and-Hold are not

suited for use with bubbly flows. The techniques suffer from step noise addition and low-pass

filtering. Compared to the effects for single phase flow, the cut-off frequency is, generally, located

at a lower frequency. In addition, a second filter operation is created with different cut-off

frequency. The interaction of the two filters can result in power-law slopes close to -5/3 in the

absence of turbulent behavior. Correction for the artifacts is not possible. Slotting techniques

and time-series analysis give good results and have no problems with the extra gaps due to the

bubbles.

The pseudo-turbulence results in the addition of extra power in the spectrum, affecting the

shape especially at frequencies typically beyond 10 Hz. This obscures the cascade process of

the large scale structures. The amount of additional power is larger for reconstruction based

techniques than for the slotting technique. The influence may be reduced by rejection of ve-

locity realizations before and after gaps in the data. The improvement is, however, partial and

occurs at the cost of an increase of the variance. Less data needs to be rejected if more sophis-
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ticated methods are used that employ information about velocity gradients, but correct removal

is difficult.

For the processing of the electronic signals obtained in LDA, a dual burst wavelet processor

and a dedicated burst detector have been developed, tested and applied to both single phase

and bubbly flows. Special attention has been paid on effective ways how to combine the wavelet

technique (fitting a model of the burst to the data) and dual burst (i.e. overlapping bursts) pro-

cessing. The use of this processor results in a 50% smaller dead time, strong reduction of multiple

validation, more accurate arrival time and Doppler frequency estimates, and strongly enhanced

transparency of the data processing when compared to a traditional commercial hardware pro-

cessor (TSI IFA-750). Also, for applications with poor SNR, the data rate is strongly enhanced.

Smaller bias problems are obtained for the velocity moments. The advantages for estimation of

power spectra are, however, limited due to the finite size of the measurement volume, and since

the extra information is obtained in the frequency range governed by the pseudo-turbulence. The

comparison of the moments of the velocity time series gives clues how to improve the accuracy

in the results of the commercial processor: by removal of multiple validation, application of a

coincidence window and velocity bias correction much better results are obtained.

8.3. Perspectives and implications

Hydrodynamics

The results for uniform gas injection and non-uniform gas injection show that for numerical

work the homogeneous regime still provides an interesting challenge. Correct prediction of the

transition to the heterogeneous regime requires good models, the sharp change in entrance region

behavior for small changes in the sparger provides additional tough validation cases. So far, no

agreement exists about the implementation of the lift force (e.g. Sokolichin et al. (2004)). The

present work suggests that it is important, and that the reversal of direction for larger bubbles

needs to be taken into account.

It would be interesting to test the stability of flows with wider bubble size distributions than

used in the present thesis. This would require a sparger that generates large bubbles in addition

to the smaller bubbles. In addition, more details are required about the flow close to the free

surface in order to understand the onset of the instability better. The present investigation

suggests that instability is mainly due to the lift force reversal. On the other hand, various

authors (e.g. Biesheuvel and Gorissen (1990)) suggest another mechanism where the instability

of void fraction waves in the axial direction leads to transition. It would be interesting to find

out under which conditions this mechanism becomes relevant, and why it underestimates the

critical voidage for the present conditions.

In the process industry, there is a trend toward smaller equipment: process intensification.

This way, the aspect ratio of the reactors may decrease, increasing the importance of the behavior

in the entrance region. The improved understanding of the entrance region obtained in the

present investigation may be used for better process design. For instance, the study has shown

that gas injection close to the wall is important if the large scale structures should be limited

(e.g. mass transfer is the limiting factor and mixing is less important).

The importance of the pressure drop over the gas injector is not clear: clarification is required
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into which extent dynamic behavior of the gas injector changes the characteristics of the entrance

region. On the other hand, forced dynamic gas injection provides an interesting way to increase

the operational space of bubble columns: this way, it may be possible to temporally alternate

a dynamic and quiescent entrance region via control and obtain a better compromise between

mass transfer and mixing.

For the study of the turbulent behavior, the pseudo-turbulence still presents problems. For the

high void fractions in the present work, it appears not possible to fully separate the contributions

due to the local flow and the cascade of the large structures. It would be interesting to check if

this also holds for the low void fractions, and, if not, from which void fraction this holds. The

combination of LDA with a fiber probe close to the measurement volume may provide means

for separation, with improved performance when compared to methods employing the signal

characteristics.

The -5/3 slope that has been found in the power spectra is consistent with results for single

phase flow. Further study should clarify how to interpret this similarity. A comparison with

power spectra of velocity time series obtained from Computational Fluid Dynamics studies can

show how good the dynamic behavior is predicted by this CFD work. The interpretation of the

results of the hybrid fit technique is not yet fully clear. The influence of the bubbles on the

cascade process needs further study.

Sparger and measurement techniques

The study of the bubble formation process at the needle sparger showed the importance of

bubble-bubble interaction processes. In the bubble column, coalescence near the sparger was

found to have a major impact on the hydrodynamics, i.e. the critical voidage where transition

occurs. More detailed study of the coalescence during bubble formation and the influence of the

level of contamination on this process can provide better predictions for the critical voidage.

Improved accuracy for both the one-point and four-point probes can be achieved with the use

of thinner fibers. Similar studies as those presented in chapters 3 and 4 can provide insight how

the inaccuracy reduces for these thinner fibers. The use of the so-called 3C (Cone-Cylinder-Cone)

geometry for the probe tips may provide additional velocity information, which can be used to

reduce the variance in the bubble velocity estimate due to shape oscillations. The results on the

lift force show the importance of the measurement of the horizontal bubble diameter, which is

not possible using the optical probes. Alternative techniques, such as endoscopic methods may

provide this information.

The use of the wavelet processor can provide accurate measurements. This technique may be

employed for different flows and can be used to construct low-budget LDA systems. So far the

technique was optimized for accuracy. In a next step, more attention can be paid to speed-up

the processing.

On the fundamental aspects of the application of LDA to bubbly flows, more attention should

be paid to the bias due to temporal variations in void fraction, i.e. the time-dependent data rate

for measurements further away from the wall. Perhaps the extent of the problem can be reduced

by testing a reference beam technique: the use of only a single beam inside the bubble column

may be able to reduce the temporal variations in data rate.





A. Monte Carlo simulation of bubbly flow

The blockage of laser beams by bubbles when LDA is used, has an impact on the data rate and

the distribution of the data interarrival times. This has important consequences for, e.g., the

estimation of turbulence power spectra (chapter 5). In order to study these effects, artificial

data is generated with the use of Monte Carlo techniques. The present appendix discusses these

Monte Carlo techniques.

Basically, the simulation is performed by creating a batch of virtual ellipsoidal bubbles with

prescribed trajectories. For a given set of arrival times, the algorithm checks whether blockage

of the laser beams (modeled as lines) by any of the bubbles occurs. All time instants when there

is no blockage, are outputted for further use. In addition, the data set with the positions of the

bubbles in time can be used to create artificial signals of potential flow around the bubbles (see

section 5.9). The first section describes the check for blockage, the second the batch of virtual

bubbles.

A.1. Blockage by bubbles

Bubbles are modeled as ellipsoids with half major axis length a and half minor axis length b.

The orientation of the minor axis is specified by the angles φ1 and φ2 (Figure A.1). The center

of the bubble is located at (x0, y0, z0). Each laser beam is specified by two planes

{

a1x+ b1y + c1z = d1

a2x+ b2y + c2z = d2
(A.1)

In order to determine whether the laser beam intersects with the bubble the equations are

transformed to the coordinate system of the bubble (x′, y′, z′):











a′1x
′ + b′1y

′ + c′1z
′ = d′1

a′2x
′ + b′2y

′ + c′2z
′ = d′2

x′2

a2 + y′2

a2 + z′2

b2
= 1

(A.2)

using the transformation:
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 (A.3)
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Figure A.1.: Coordinate frames for ellipsoid bubble.

We get:


























a
(1)
i = aicos(φ2) + bisin(φ2)

a′i = a
(1)
i cos(φ1) − cisin(φ1)

b′i = −aisin(φ2) + bicos(φ2)

c′i = aisin(φ1) + cicos(φ1)

d′i = di − aix0 − biy0 − ciz0

(A.4)

Equation A.2 have zero, one or two solutions (x′1, y
′
1, z

′
1) and (x′2, y

′
2, z

′
2). These points are

transformed back to the original coordinate system using the inverse of equation A.3: (x1, y1, z1)

and (x2, y2, z2). If 0 ≤ x1 < l or 0 ≤ x2 < l the beam is blocked by the beam. l is the distance of

the measurement volume to the wall. Similarly, an overlap of the bubble with the measurement

volume can be determined by checking whether x1 ≤ l ≤ x2.

A.2. Virtual batch of moving bubbles

We consider a control volume with dimensions ∆xc, ∆yc, ∆zc and volume Vtot (Figure A.2).

Initially, Nb ellipsoidal bubbles with identical dimensions are placed randomly in it. In order

to predict realistic bubble-beam intersection durations, the non-rectilinear bubble motion is

modeled. Fan and Tsuchiya (1990) report zig-zag motion for contaminated conditions, therefore

the bubble motion is modeled with zig-zagging trajectories with vertical velocity Uz. Bubble i

has dimensions a and b and volume Vb, and orientations φ1,i(t) and φ2,i. The bubble only tilts

in the plane in which it moves (Brücker (1999)), and with its minor axis parallel to the velocity

vector (De Vries (2001) and Fan and Tsuchiya (1990)). Brücker (1999), Fujiwara et al. (2004)

and De Vries (2001) show that the trajectory has a sinusoidal shape. Consequently, the motion
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of the bubbles is described with:


























rosc,i(t) = Roscsin( 2π
λosc

zi(t) + φosc,i)

x0,i(t) = x0c,i + rosc,i(t)cos(φ2,i)

y0,i(t) = y0c,i + rosc,i(t)sin(φ2,i)

φ1,i(t) = φ1,maxcos(
2π

λosc
zi(t) + φosc,i)

zi(t) = Uz(t− Ta,i)

(A.5)

The parameters for the motion are obtained from Brücker (1999) and Fan and Tsuchiya (1990).

Brücker (1999) investigates the motion of zig-zagging bubbles in water with 6 mm equivalent

diameter and aspect ratio of 0.66. These conditions are close to the bubbles observed in the

bubble column (4-5 mm, aspect ratio around 0.6-0.65). For these bubbles, Brücker (1999) finds

that the oscillation amplitude Rosc = 1.3a, which agrees approximately with observations in the

bubble column. Fan and Tsuchiya (1990) show that the maximum rocking angle φ1,max = 25◦

for Re up to approximately 4000. This angle agrees quite well with the data presented in Xue

(2004). With the condition of the minor axis parallel to the bubble path, the wavelength of the

oscillation is given by tan(90◦ − φ1,max) = λosc
2πRosc

. Bubbles with equivalent diameter of 4.5 mm

are considered with aspect ratio of 0.65. This gives Rosc = 7 mm, and λosc = 0.07 m, which

agrees with the wavelength of 6 cm observed in a bubble plume.

Each new bubble which is given a random position (x0c,i, y0c,i,−∆z/2) at the bottom plane

of the control volume, random orientation φ2,i and random oscillation phase φosc,i. Ta,i =

Ta,i−1 − ∆Tbln(RND), with RND an uniformly distributed random number between 0 and 1,

and ∆Tb the average time between the arrival of two bubble centers in the control volume. The

average time is given by:

∆Tb =
Vtot

∆xc∆ycUznb
(A.6)

nb is the mean number of bubbles inside the control volume over a long period. In order to

determine this number, the possible overlap of bubbles due to the random placement has to be

taken into account. Due to this overlap, in general the void fraction is smaller than NbVb/Vtot.

Prevention of overlap by modified placement of the bubbles at the inlet region (i.e. replacement
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Figure A.3.: Blockage of laser beams by bubbles. α = 10%, l = 0.04 m, bubbles deq = 4.5 mm
with aspect ratio 0.66. u = 0.2 m/s, fl = 0.35 m.

if an overlap is detected) does not solve the problem because of the zig-zagging motion. Over a

long period, the void fraction is on average:

α = 1 − (1 − Vb

Vtot
)nb (A.7)

where nb may be non-integer. So:

nb =
ln(1 − α)

ln(1 − Vb
Vtot

)
(A.8)

Figure A.3 shows how the number of bubbles that block the beams fluctuates wildly, and

that even though on average 2-3 bubbles are blocking the laser beams, still windows allowing for

measurements occur.

List of symbols

Roman symbols

a bubble semi-major axis length m

a1, a2, b1, b2,

c1, c2, d1, d2

constants defining laser beams various

b bubble semi-minor axis length m

l distance measurement volume to wall m

nb mean number of bubbles in control volume -

Rosc maximum radius bubble path m

rosc intantaneous radius bubble path m

N number of bubbles -

Ta arrival time bubble at bottom control volume s

t time s

Uz vertical velocity m s−1

Vb bubble volume m3

Vtot control volume m3
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x, y, z coordinates in lab frame of reference m

x′, y′, z′ coordinates in bubble frame of reference m

x0, y0, z0 coordinates bubble center m

x1, y1, z1 coordinates first point where laser crosses bubble interface m

x2, y2, z2 coordinates second point where laser crosses bubble interface m

z axial coordinate m

Greek symbols

α void fraction -

∆xc,∆yc,

∆zc

dimensions control volume m

∆Tb average time between arrival bubbles in control volume s

λosc wavelength zig-zag motion m

φ1 angle between gravity direction and bubble minor axis rad

φ1,max maximum for φ1 rad

φ2 angle of projection of the velocity vector on the xy plane to the

x-axis

rad

φosc phase zig-zag path rad
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B. Laser Doppler Anemometry burst
detection

In order to get reliable and accurate information from the measured bursts in Laser Doppler

Anemometry, a good burst processor is required. The processor that was developed and de-

scribed in chapter 6, requires, however, a large number of computations and a piece of the signal

containing not more than two bursts in order to be successful. Thus, in order to prevent exces-

sive computation times, a separate efficient burst detector is required which provides the burst

processor with the approximate location and width of the bursts (Figure B.1). The present ap-

pendix describes and discusses the method and algorithms used to detect the bursts. First, the

requirements for a good burst detector are discussed. Next, existing methods from literature as

well as the new detection algorithms are described. Finally, the optimum setting of the presented

algorithm is discussed using artificial signals.

B.1. Requirements burst detector

A number of requirements can be identified for a good burst detector. The importance of the

requirements depends on the type of detector/processor combination. For instance, the newly

developed detector and processor algorithms employ a final validation step (Figure B.1), whereas

the TSI Intelligent Flow Analyzer (IFA) - 750 has no such validation step (Figure B.2). This

means that segments with noise that are detected as bursts will generate erroneous velocity

realizations for the IFA-750 processor. This is not necessarily so for the new detector/processor

algorithms.

• The detector should provide the burst location and duration with reasonable accuracy to

the processor. If the duration is underestimated, clipping of the burst occurs, which re-

duces the accuracy of the Doppler frequency and arrival time estimate: optimal estimation

requires the entire burst. If the duration is overestimated, the signal-to-noise ratio of the

Sampled
signal

Noise level
detection

Burst detector

correlation
calculation

threshold validation

Burst
processor

noise
level
estimate

burstlocation
and width

Validation

Figure B.1.: Schematic algorithm detection and processing of bursts
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Figure B.2.: Schematic algorithm detection and processing of bursts in TSI IFA-750

signal drops. Although the wavelet technique effectively suppresses the noise outside the

burst, this has negative consequences for the pre-estimation that provides first estimates

for the Doppler frequency and e.g. for various filters. In addition, the probability of having

more than one burst in the selected signal segment increases. Although the algorithm can

process dual (overlapping) bursts, the accuracy of the processing of dual bursts is generally

smaller than the processing of a single burst. Furthermore, if more than two burst are

present in the segment, only two can be processed.

• Associated with this last point is the prevention of multiple validation: if the duration of

bursts is underestimated, the probability of multiple validation increases, i.e. the multiple

detection of a single burst. Multiple validation can give serious problems with further

data processing, since the inaccuracy of the estimates of the burst parameters increases,

the accurate estimation of turbulence power spectra up to high frequencies becomes more

difficult and velocity moments can get biased.

• The segments of the signal that are provided to the processor should contain bursts that are

strong enough to allow for accurate processing. In addition, unwanted low-level coherent

signals should not be passed (such as frequency shift bleedthrough). The importance of

these points depends on the type of detector/processor. If a segment containing only noise

or a very weak burst is passed to the processor, this will lead to an erroneous point in the

velocity series in the case of the IFA-processor. In the new dual burst wavelet processor, this

point is probably removed by the validation routine, since it has more detailed information

about the burst. In addition, velocity realizations due to frequency shift bleedthrough can

be removed. Therefore, if such a validation routine is present, the detector can be set more

sensitively and higher data rates may be obtained. Of course, a more sensitive setting will

lead to more detected burst candidates and therefore to higher computational times.
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• The frequency sensitivity of the algorithm should be sufficiently uniform: bursts with

different frequencies but identical amplitudes should have similar probabilities of detection.

If not, a bias will result.

• The algorithm should be sufficiently fast.

• Some degree of ’intelligence’ should be present in the algorithm: if the noise level or other

properties of the signal change from one signal to another (within certain limits), the

algorithm should adapt.

• The algorithm should be transparent. With the IFA-750 it is hard to check whether the

detection step is accurate. The most powerful test is by checking the time between data

distribution for the presence of multiple validation. Improvements may be obtained in a

new burst detector by adding additional detection information, such as calculated detec-

tion signals, thresholds and validation criteria. Problems such as multiple validation or

overlapping bursts detected as single bursts are more easily noticed this way.

B.2. Burst detection algorithm

B.2.1. Existing detectors

Albrecht et al. (2003) presents an overview of existing methods for burst detection. These are

based on various signal properties: the signal amplitude, the autocorrelation of the signal or the

spectrum of the signal. In some cases, the detection is performed as pre-processing, in others

the algorithm serves to check whether the processed data contains a valid signal or not.

For the present investigation, TSI equipment is used and the TSI IFA-750 processor is used

for many of the experiments described in the present thesis. Figure B.2 shows the schematic

operation of the detector in the IFA-750 (TSI Incorporated, 1988). An analogue signal enters the

IFA-750. This is the signal of the Photo Multiplier Tube after downmixing and amplification.

Inside the IFA-750 the signal is first further amplified and bandpass-filtered to remove noise.

Next the signal is digitized with 1 bit digitizers: only the sign bit is determined of the signal

(clipping). The sampling is performed in parallel by the burst detector digitizer and the sampler

digitizer. The latter performs the sampling at multiple sampling rates. In the burst detector

16 logarithmically spaced autocorrelation coefficients of the 1 bit clipped signal are calculated.

Whenever a negative peak in these coefficients drops below a fixed negative threshold, a coherent

signal is detected. A rough frequency estimate is obtained from the smallest time-delay coefficient

that drops below the threshold. The transit time is determined from the time the coefficients stay

below the threshold. The frequency estimate of the detector is used in the sampler to determine

which of the multiple sampling rates is best for further processing, the burst location estimate

is used to take out the center 256 samples, which are passed to the burst processor.
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Figure B.4.: Autocovariance of signal segments.

B.2.2. New burst detection algorithm

Autocovariance signal

The burst detector algorithm employs the autocovariance function (ACF) of the signal in a

similar way as the IFA-750 detector. However, there are important differences. These are partly

due to the fact that the signal has been sampled at a relatively small sampling frequency fs,

typically a factor of 3-10 times the Doppler frequency. In addition, the present detector is more

flexible and has been made more sophisticated to provide more sensitivity, accuracy and prevent

multiple validation.
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Figure B.3 shows an example of a burst immersed in strong noise. The signal has been

sampled at 2.5 MHz, the Doppler frequency is 500 kHz, the transit time 0.4 ms. We consider

small segments of the signal with lengthNwindow = 2Nhalfwin+1 and calculate the autocovariance

function of these segments around sample k with (see Figure B.4):

R(∆, k) =
1

Nwindow

i=k+Nhalfwin
∑

i=k−Nhalfwin

x(i)x(i+ ∆) (B.1)

where ∆ is the lag. The autocovariance function is calculated for incremental values of k. By

doing this with running sums the computational load remains low. The autocovariance functions

of three example segments are shown in Figure B.3 (Nwindow=1001). As can be expected, if a

periodical component is present in the signal, strong negative and positive peaks exist in the

autocovariance function. Thus, the presence of a burst in the signal can be determined by

finding signal segments with strong peaks in the autocovariance function at nonzero lags. In

order to get a fast algorithm, the covariance coefficients are only calculated for a small number

of lags.

Two types of algorithms are tested: the first detects coherent signals by detecting positive

peaks (’maximum algorithm’), the other detects negative peaks (’minimum algorithm’). A range

of frequencies fdet,low..fdet,high where bursts can be expected is selected. Based on this range

Ndet,f lags for the covariance calculation are selected. For the maximum algorithm, this gives

the following lags based on the location of the first maximum of the covariance coefficients:

∆j ∈ [floor(fs/fdet,high)...round(fs/fdet,low)] (B.2)

where fs is the sampling frequency. For the minimum algorithm, lags are obtained based on the

location of the first minimum of the coefficients:

∆j ∈ [floor(0.5fs/fdet,high), ..., round(0.5fs/fdet,low)] (B.3)

where floor(x) denotes rounding x to the nearest smaller integer, and round(x) denotes rounding x

to the nearest integer. Consequently, Ndet,f lags ∆j are considered with window sizes Nwindow,j =

2Nhalfwin,j + 1 . For each lag ∆j we calculate the sum of products for a signal segment around

sample k:

R(∆j , k) =
1

Nwindow,j

i=k+Nhalfwin,j
∑

i=k−Nhalfwin,j

x(i)x(i+ ∆j) (B.4)

Two approaches will be evaluated for the amount of averaging specified by Nwindow,j :

• For each lag, the averaging is performed over approximately the same number of periods:

Nhalfwin,j = round(0.5Nperiods
fs

fj
) (B.5)

with fj = fs/∆j for the maximum algorithm and fj = fs/(2∆j) for the minimum al-

gorithm. Generally, faster particles generate shorter transit times and higher Doppler

frequencies. In the absence of a preshift frequency, the number of periods is more or less
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constant for each burst and with this method similar fractions of each bursts are considered

if the frequency varies.

• The window size is the same for all lags.

Nhalfwin,j = Nhalfwin,constant (B.6)

with Nwindow,constant = 2Nhalfwin,constant + 1. This assumes that the transit time shows

little variation from burst to burst.

The largest and smallest values of R for all lags are determined. For the maximum and

minimum algorithm the following expressions are obtained:

Rmax(k) = max(R(∆j , k), j = 1..Ndet,f ) (B.7)

Rmin(k) = min(R(∆j , k), j = 1..Ndet,f ) (B.8)

Rmax(k) and Rmin(k) are referred to as the autocovariance signals and are used to detect the

bursts. A higher value indicates a higher probability that that the signal segment contains a

coherent signal. Examples of these autocovariance signals are shown in Figure B.5a (for fixed

Nperiods). The index j where the extreme value is found is referred to as jmax (maximum

algorithm) or jmin (minimum algorithm), see Figure B.5b. For the maximum algorithm, jmax is

usually close to the period of the signal in the strongest part of the signal. In the weaker parts

of the burst jmax is usually a multiple of this period and it locks to a higher order maximum

of the autocovariance function. This is especially the case for fixed Nperiods, where Nwindow,j is

larger for larger j.

The coherent bursts are detected by monitoring two threshold levels: Rthreshold andRthreshold,2

(Figure B.6). The start of a potential burst is marked when the covariance signal Rmax(k) or

Rmin(k) becomes larger (’maximum’ algorithm) of smaller (’minimum’ algorithm’) than the

threshold level Rthreshold. When the covariance signal again crosses this threshold level, the end

of the burst is marked, except in the following case. If during a time Tthreshold the autocovariance

signal does not cross Rthreshold,2 and again exceeds Rthreshold, the end is not marked, and the

search for the end of the burst continues. This second threshold technique is implemented to

allow for fluctuations in the autocovariance signal inside the bursts that otherwise might cause

multiple validation, especially at higher threshold levels Rthreshold.

Detection threshold level

The noise in the signal causes fluctuations and an offset in the autocovariance signal (visible

in Figure B.5a). Consequently, the threshold levels Rthreshold and Rthreshold,2 have to be set

carefully with respect to the magnitude of these fluctuations and the offset. For this reason, the

offset µR and standard deviation σR of Rmax(k) and Rmin(k) are investigated for the combination

of a sine with amplitude A and white noise with standard deviation σnoise. The values for µR

and σR in the absence of a coherent signal are given by µRn and σRn, their magnitude determines

the threshold level. Empirical relations were found for µR, µRn, σR and σRn. For fixed Nwindow
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(equation B.6):

µR ≈ 1

2
A2 + µRn =

1

2
A2 +

σ2
noise(0.5ln(Ndet,f ) + 0.32)
√

Nwindow,constant

(B.9)

σnoise >> A and Ndet,f > 10 : σR ≈ σRn = 0.3µR (B.10)

For fixed Nperiods (equation B.5):

σnoise/A > 3 : µR ≈ 1
2A

2 + µRn = 1
2A

2 +
σ2

noise√
Nwindow,1

(B.11)

σnoise/A < 1 : σR ≈ A
σ2

noise
√

Nwindow,jmax/min

(B.12)

σnoise/A > 6 : σR ≈ σRn = 1
2

σ2
noise√

Nwindow,1
(B.13)

For fixed Nperiods, µR and σR scale with the window size of the most relevant lag, which in

the case of pure noise is the shortest window, with index 1. This explains why if jmax or jmin

increases near the sides of the burst, the magnitude of the fluctuations decreases (Figure B.5).

The mean offset level outside the burst is given by µRn (an example is shown in Figure B.5a).

For both fixedNperiods and fixedNwindow, the magnitude of the fluctuations in the autocovariance

signal outside the burst, σRn, scales with the offset µRn: σRn = constant ∗ µRn. The threshold

levels for detection Rthreshold and Rthreshold,2 should therefore be chosen proportional with this

level:

Rthreshold = ±CthresholdµRn (B.14)
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Rthreshold,2 = ±Cthreshold,2µRn (B.15)

where the sign is positive for the ’maximum’ algorithm and negative for the ’minimum’ algorithm.

Correct setting of the constants Cthreshold and Cthreshold,2 is discussed in section B.3. The

constants are kept constant for similar flow conditions. If the noise level of the signal varies from

measurement to measurement, the threshold is adjusted automatically.

Noise level estimation

In order to set the detection threshold levels with equations B.14 and B.15, an estimate of µRn

is required. In order to calculate µRn a piece of the signal not containing any bursts is required.

Next, µRn can be either determined from the standard deviation of this signal with equations B.9

or B.11, or by directly calculating the mean of the autocovariance signal of the signal segment.

The second method was found to render best results, since usually the noise is not purely white,

and the signal also contains stray components, e.g. frequency shift bleeding. Consequently, µRn

is usually larger than the prediction by equations B.9 and B.11.

The estimation of µRn is performed in the noise level detection routine (Figure B.1). The

noise level is determined by considering a signal segment, remove possible bursts based on the

local probability density function of the signal amplitude and, subsequently, calculate the mean

of Rmax(k) or Rmin(k) of the remaining signal parts.

The idea behind the burst removal is that for a Gaussian white noise signal xi with mean µnoise

and standard deviation σnoise, the probability p(µnoise−Cclipσnoise < xi < µnoise +Cclipσnoise) =

1 − Pclip, e.g. for Cclip = 2, Pclip = 0.05. If the probability density function of a small signal

segment is determined and the fraction of values inside the interval [µnoise −Cclipσnoise, µnoise +

Cclipσnoise] is significantly smaller than 1 − Pclip, this segment probably contains a burst.

The mean µnoise and standard deviation σnoise are determined iteratively. As a first guess,

the mean and standard deviation of the entire signal are taken: µ
(0)
noise = mean(x) and σ

(0)
noise =

standard deviation(x). Subsequently, these estimates are refined in iteration j. The parts of

the signal where potential bursts are located are identified. A window with size Nnoisewindow is

shifted over the signal. When the window is centered around point k, Nclip(k) points are found

inside the window which have values outside the interval [µ
(j−1)
noise −Cclipσ

(j−1)
noise , µ

(j−1)
noise +Cclipσ

(j−1)
noise ].

Next,

if
Nclip(k)

Nnoisewindow
> Cnoise : n

(j)
k = 0

if
Nclip(k)

Nnoisewindow
≤ Cnoise : n

(j)
k = 1

where Cnoise is based on Pclip but taken somewhat larger to account for the finite window size

and deviations from the white noise character. Consequently, n
(j)
k = 0 in the parts of the signal

where a burst may be present. In order to include the weaker tails of the bursts, the zones

where n
(j)
i = 0 are extended in length with a factor Cnoiseextend. Next, the mean and standard

deviation of the noise are calculated for j > 0 with:

µ(j)
n =

∑

i xin
(j)
i

∑

i n
(j)
i

(B.16)
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σ(j)
n =

√

√

√

√

∑

i(xi − µ
(j)
n )2n

(j)
i

∑

i n
(j)
i

(B.17)

Typical values that are used (obtained with some trial and error), are Cclip = 2.5, Cnoise = 0.06,

Cnoiseextend = 1.4. A piece of the signal of typically 1 Msamples is used. With these values

the algorithm also works well if the noise is not purely white Gaussian and e.g. there is some

frequency shift bleeding. Usually 2-3 iterations are enough, with more iterations no further

change in the standard deviation is obtained. An example is shown in Figure B.7. The clipping

intervals are shown, as well as ni, for each iteration. After the first iteration (n(1)) the strongest

parts of the burst have been removed. At this point, the average duration of the gaps Tgap is

calculated, it can be used as an estimate of the burst duration for the burst detector. After the

second iteration (n(2)), also the weak bursts and the tails of the strong bursts are removed.

After the removal of the bursts, µRn is estimated by directly calculating the mean of Rmax(k)

or Rmin(k) from the signal parts not containing bursts.

Detected burst validation

Due to the noise, Rmax(k) or Rmin(k) regularly crosses the threshold level Rthreshold, also if

no burst is present. Similarly, a single burst may be detected multiple times, especially in its

weakest parts close to the tails. In order to reduce the number of these false burst detections
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some checks are performed on the burst candidate. The burst location and width to the burst

are only passed to the processor if the burst satisfies:

• Ttransit = (kend − kstart)/fs > Ttransit,min

• Maximum algorithm:

– Rmean = 1
kend−kstart+1

∑kend
i=kstart

Rmax(k) > Rmean,threshold

– Rpeak = max(Rmax(k), k ∈ [kstart, .., kend]) > Rpeak,threshold

• Minimum algorithm:

– Rmean = 1
kend−kstart+1

∑kend
i=kstart

Rmin(k) < Rmean,threshold

– Rpeak = min(Rmin(k), k ∈ [kstart, .., kend]) < Rpeak,threshold

where kstart and kend mark the start and end of the burst, and with:

Rmean,threshold = ±Cmean,thresholdµRn (B.18)

Rpeak,threshold = ±Cpeak,thresholdµRn (B.19)

similar to equation B.14. The setting of Cmean,threshold and Cpeak,threshold is discussed in section

B.3.

Splitting of overlapping bursts

If bursts arrive shortly after one another, there may be an overlap, such that the autocovariance

signal does not cross the threshold level(s) in between the bursts. As a result, the detector sees

only one long burst (interval AC in Figure B.8). If this occurs with two bursts the dual burst

processor can deal with the problem, but if more than two bursts are involved, problems may

result. The probability that more than two bursts are involved is dependent on the data rate

(seeding density), typical transit time and the detection threshold level. If the signal-to-noise

ratio of the LDA signal is increased, the threshold level drops relatively since it is based on

the noise level. Consequently, the probability that the detector cannot distinguish the bursts

increases. One way to tackle the problem is by increasing the threshold level(s). The example of

a burst with relatively large amplitude in Figure B.8 illustrates that the increase of the threshold

has to be quite large since the signal to noise ratio varies strongly from burst to burst. This

means that weak bursts are no longer detected or detected incorrectly. Therefore, the data rate

may drop significantly due to this increase in threshold. For this reason, a different approach is

taken.

In order to deal with this problem an optional additional step is included in the algorithm.

The part of the autocovariance signal between kstart and kend is considered in more detail, and

an attempt is made to split it into separate bursts if these are present. A threshold based on

Rpeak is introduced.

Rthreshold,split = Cthreshold,splitRpeak (B.20)

with Cthreshold,split typically around 0.2. If Rthreshold,split < Rthreshold, the burst (pair) is too

weak to be splitted and no splitting is performed. The parts of the autocovariance signal are
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identified where the autocovariance signal exceeds Rthreshold,split. The indices where segment

i starts and ends are named ksplitstart,i and ksplitend,i. Only segments complying to validation

criteria are identified. These validation criteria are similar to those used in the detector burst

validation step:

• (ksplitend,i − ksplitstart,i)/fs > Ttransit,min

• Rsplit
mean,i = 1

ksplitend,i−ksplitstart,i+1

∑ksplitend,i

i=ksplitstart,i
Rmax(k) > Rsplit

mean,threshold

• Rsplit
peak,i = max(Rmax(k), k ∈ [ksplitstart,i, .., ksplitend,i]) > Rsplit

peak,threshold

with

Rsplit
mean,threshold = max(Rmean,threshold, Rthreshold,split + µRn) (B.21)

and

Rsplit
peak,threshold = max(Rpeak,threshold, Rthreshold,split + 4µRn) (B.22)

which were obtained empirically. If at least Nsplit,min segments are found, splitting is performed.

Nsplit,min is typically set to 3. In this case, the location and width of Nsplit,min bursts are

outputted. The start and end of these bursts are given by kstart, kend and the locations of the

minima ofRmax(k) between the segments. An example with two segments (i.e. withNsplit,min=2)

is shown in Figure B.8: the original interval AC is splitted into AB and BC.
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Parameter/method Description

maximum/minimum
algorithm

Detection is based on either the 1st maximum
or the 1st minimum of the autocovariance function

fixed Nperiods

or fixed Nwindow

Either the number of periods inside the
window is fixed or the window size itself is fixed

Nperiods
Number of periods on which
the window size is based

Nwindow Window size

fdet,low
Lowest frequency of signals that the
detector should be able to detect accurately

fdet,low
Highest frequency of signals that the
detector should be able to detect accurately

fs Sampling frequency

Cthreshold
Constant that determines 1st
threshold level for burst detection

Cthreshold,2
Constant that determines 2nd
threshold level for burst detection

Cmean,threshold
Constant that determines burst
validation threshold for Rmean

Cpeak,threshold
Constant that determines burst
validation threshold for Rpeak

Table B.1.: Various methods and parameters in the burst detector

B.3. Optimal setting of burst detector

Good performance of the detector as described in section B.1 requires correct selection of the

various methods and setting of the various parameters in the algorithm that was described in

section B.2 (see Table B.1). The influence of these parameters and the selection of these methods

on the accuracy of the burst location and width, multiple validation and frequency sensitivity is

investigated in this section.

B.3.1. Frequency sensitivity

The frequency sensitivity of the burst detection can be tested by calculating Rpeak for artificial

bursts without noise for a range of Doppler frequencies. Strong variations in Rpeak with the

Doppler frequency may indicate a frequency dependent probability of detection, which can lead

to bias problems. Artificial bursts are generated with transit time 0.4 ms and Doppler frequencies

in the range of 10 kHz-1250 kHz. Figure B.9 shows the frequency sensitivity for the ’maximum’

algorithm for decreasing fdet,low value. Since only integer lag values are available (equations

B.2 and B.3) not every Doppler frequency will give a similar value for Rpeak. For example, if a

sampling frequency of 2.5 MHz is used with the ’maximum’ algorithm, a frequency of 500 kHz

corresponds exactly to lag 5. The first maximum of the autocovariance function of a burst with

a frequency of 714 kHz is not located close to an integer lag but at 3.5. However, it has its

second maximum at lag 7. The sum of products for this lag is only considered for the ranges
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with fdet,low ≤ 300 kHz. Consequently, only for these ranges the sensitivity around 714 kHz is

similar to that around 500 kHz. Similarly, the frequency 555 kHz has its second maximum at

lag 9, which is included in the calculations for fdet,low ≤ 200 kHz. So for decreasing fdet,low the

uniformity of the frequency response at higher frequencies improves as well. For fdet,low in the

range 100-200 kHz the uniformity is quite good.

Since non-uniformities in the sensitivity are caused by the discrete nature and limited number

of the lags, an increase in the sampling frequency fs leads to an improvement in the uniformity

of the sensitivity. This is illustrated in Figure B.10. In order to get no more than 10% variation

in Rpeak for different Doppler frequencies, the signal should be sampled at at least 2500 kHz for

LDA performed in the 100-1000 kHz range.

The effect of the integer values of the lags becomes even more apparent when the ’minimum’

algorithm is used. Figure B.11 compares the sensitivity of the ’minimum’ algorithm with the

’maximum’ algorithm. Since the ’minimum’ algorithm operates at even smaller lag values than

the ’maximum’ algorithm, stronger gaps appear in the frequency sensitivity (e.g. around 835

kHz). The ’maximum’ algorithm has a few small drawbacks: it requires a larger number of

lags Ndet,f to be calculated, which makes the algorithm a bit slower and increases the level µRn

somewhat (equation B.9). In addition, if a stray signal, such as frequency preshift bleeding, is

present, and the burst is weak, the first and second maximum of the autocovariance function

may be distorted and therefore smaller. Consequently, the ’minimum’ algorithm has a larger

sensitivity for the weakest bursts. This difference reduces if fdet,low is reduced since the higher

order maxima in the autocovariance function are detected as well. However, the bubble column

signal generally covers a large frequency range and we want to prevent bias induced by an

insensitivity for certain frequencies in the detector. For this reason the ’maximum’ algorithm

is selected and this is the only algorithm that will be considered in the rest of this section.
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Nevertheless, most results are equally valid for the ’minimum’ algorithm.

B.3.2. Multiple validation and accuracy of burst width and location

Multiple validation

The most important parameters for the correct detection of the start and the end of bursts are

the amount of averaging when calculating the autocovariance signal Rmax(k) (set with Nperiods or

Nwindow,constant) and the threshold levels Rthreshold and Rthreshold,2. This is illustrated in Figure

B.12. The threshold level Rthreshold should not be selected too low or too high. If it is taken too

low, no bursts are selected, or many parts of the signal not containing any coherent signal are

mistaken as bursts. If it is taken too high, a single burst is detected multiple times: multiple

validation occurs. Careful setting of Rthreshold,2 can reduce the problem, but not eliminate it

fully. In the example in Figure B.12, the burst is detected three to five times for Nperiods = 4.

The problem reduces if Nperiods is increased and more averaging occurs. For Nperiods = 32

one large and one small burst are detected in Figure B.12. Correct setting of the constraints

Ttransit,min, Rmean,threshold and Rpeak,threshold will remove these small bursts. When the IFA-750

detector/processor is used, the only possible values for Nperiods are 4 and 8. A typical burst for

LDA in the bubble column contains 100-200 periods (500 kHz, 0.3 ms transit time), which is

much larger. This explains the problems with multiple validation if the IFA processor is used for

measurements in the bubble column.

Nperiods or Nwindow,constant should therefore be based on the actual number of periods or

samples encountered in the bursts.

Fixed number of periods versus fixed window size

Figure B.13 shows the autocovariance signal of an artificial burst without noise for both constant

Nperiods and constant Nwindow. The Doppler frequency of 500 kHz provides maxima around lag

5, 10, 15, 20 and 25. Since Nwindow is larger for larger lags if fixed Nperiods is used, the lag ∆j

of the sum of products that determines Rmax(k) increases in the weaker parts of the burst (see

also Figure B.5b). Consequently, the burst shape is smeared in the autocovariance signal. As a

result, estimation of its width is difficult and adjacent bursts cannot very well be differentiated.

This effect can only be reduced by decreasing Nperiods, which increases the probability of multiple

validation. This effects makes it difficult to find an optimal value for Nperiods.

Since the experiments in the bubble column were usually performed with a relatively large

preshift frequency, and the flow has a relatively isotropic character, the number of periods varies

quite a lot from burst to burst. Combining this with the potential problems due to the smearing

effect, constant window size is selected as the preferred method for all bubble column experiments.

For this reason, constant Nwindow is the only method that will be considered in the rest of this

section.

Selection of Nwindow

The value of Nwindow is a compromise. In order to smooth noise fluctuations, a large value

is required for Nwindow. On the other hand smoothing of the burst should be prevented by
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keeping Nwindow small. For this reason, the largest possible value is taken for Nwindow where

the smoothing of the burst is still acceptable. The smoothing of the burst shape is illustrated in

Figure B.14, where Cw is the fraction of the typical burst transit time Tt,typical over which the

averaging is performed:

Nwindow = CwTt,typicalfs (B.23)

This shows that the largest value of Cw where the burst duration can be estimated reliably is

around 0.5. Around this value, some overestimation of the burst duration may be induced, but

overestimation of the burst duration has much smaller negative consequences than underestima-

tion of the burst duration. The value of 0.5 will be used when possible.

For the typical bubble column experiments, a mean transit time of 0.3 ms is found, and the

minimum burst duration is typically set at 0.05 ms. The mean transit time has been estimated

as Tgap in the noise estimation algorithm. The algorithm is set to process bursts with durations

of 50% of this transit time with the optimal factor Cw = 0.5. Bursts with duration close to the

minimum burst duration should be processed with a factor Cw = 1. This gives two values for

Nwindow,constant, the average is taken:

Nwindow,constant = fs
Tgap ∗ 0.25 + Ttransit,min

2
(B.24)
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Validation criteria and detection thresholds

Tests with artificial signals are used to find optimal setting for Cpeak,threshold, Cmean,threshold,

Cthreshold and Cthreshold,2. This gives for Cthreshold,2 a value of 1.5 and for the validation criteria:

Cpeak,threshold = Cthreshold + 4 (B.25)

Cmean,threshold = Cthreshold + 1 (B.26)

For the investigation of Cthreshold artificial bursts are generated which have relatively small

amplitudes. The bursts have frequencies in the range 400-600 kHz and transit times of 0.4 ms.

fs=2.5 MHz, fdet,low=100 kHz, fdet,high=1000 kHz, Nwindow,constant=156. The amplitudes of the

burst A are in the range 0.35-4.0, σnoise=1. Cthreshold,2=1.5 and the validation criteria from

equations B.25 and B.26 are used.

The results are shown in Figure B.15. This shows that at very low values of Cthreshold the

burst duration is overestimated and has large fluctuations. The magnitude of the fluctuations

decreases if Cthreshold is increased, but levels off for Cthreshold>1.5. A similar trend is observed

for the accuracy of the estimate of the location of the burst center. The mean burst duration

estimate continues to decrease if Cthreshold is increased since the burst is ’cut’ at a higher point.

Consequently, the duration of the weakest bursts is either underestimated, or these bursts may

not be detected at all. Therefore, the best results will be obtained for Cthreshold in the range

1.5-2.0.

Example

Finally, the performance of the algorithms is evaluated for the parameter settings recommended

in the previous sections. A signal was obtained by measuring the axial velocity component in a

turbulent pipe flow of water (mean velocity 0.11 m/s, Re=5400). The mean Doppler frequency

was close to 300 kHz. The following settings were used: frequency preshift 200 kHz, electronic
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bandpass filter range 100-1000 kHz, fs=2500 kHz, ’maximum’ algorithm, Nwindow=constant (eq.

B.24), fdet,low=100 kHz, fdet,high=1000 kHz, Cthreshold=2, Cthreshold,2=1.5, Cmean,threshold=3 (eq.

B.26), Cpeak,threshold=6 (eq. B.25), Ttransit,min=0.1 ms.

The result is shown in Figure B.16. The performance is good. This shows that without any

user tweaking good results can be obtained. The current settings were based on an analysis of

bursts with white noise and allow for the presence of some additional noise inside the bursts.

If e.g. the noise is colored or stray signals are present, some small manual adjustments may be

required to improve the sensitivity a little further.

List of symbols

Roman symbols

A amplitude -

Cclip constant determining interval for clipping -

Cmean,threshold factor for Rmean,threshold -

Cnoise minimum fraction of time that clipping should occur before signal

is considered part of a burst

-

Cnoiseextend constant determining with which factor noise window length should

be multiplied

-

Cpeak,threshold factor for Rpeak,threshold -

Cthreshold constant for setting of Rthreshold -

Cthreshold,2 constant for setting of Rthreshold,2 -

Cthreshold,split constant for setting of Rthreshold,split -
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Cw fraction of burst transit time on which Nwindow is based -

fdet,low,

fdet,high

lowest and highest frequency to be detected s−1

fs sample frequency s−1

jmax or jmin index acf for which value of Rmax or Rmin is used -

k index at center of window for acf calculation -

kend, kstart indices where end and start of burst are detected -

ksplitstart,

ksplitend

indices for splitting of burst -

Nclip number of points in window which have value outside clipping in-

terval

-

Ndet number of lags for which acf is calculated -

Nhalfwin half window size acf calculation -

Nnoisewindow number of points in window for noise estimation -

Nperiods number of periods for acf calculation -

Nwindow window size acf calculation -

n window function denoting which points are considered as noisy -

Pclip probability that clipping occurs -

p probability -

R autocovariance -

Rmax largest autocovariance value -

Rmean mean Rmax or Rmin during burst -

Rmean,threshold threshold Rmean for validation -

Rmin smallest autocovariance value -

Rpeak extreme values of Rmax or Rmin during burst -

Rpeak,threshold threshold Rpeak for validation -

Rsplit
mean mean of Rmax or Rmin for splitting interval -

Rsplit
mean,threshold threshold for Rsplit

mean -

Rsplit
peak extreme of Rmax or Rmin for splitting interval -

Rsplit
peak,threshold threshold for Rsplit

peak -

Rthreshold threshold for Rmax or Rmin -

Rthreshold,2 second threshold for Rmax or Rmin -

Rthreshold,split threshold for Rmax or Rmin for splitting -

Tgap estimate burst duration from noise estimator s

Tthreshold minimum time that Rmax or Rmin should drop below threshold be-

fore end of burst is marked

s

Ttransit estimated burst duration s

Ttransit,min minimum burst duration for validation s

Tt,typical typical burst transit time s
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Figure B.16.: Example of burst detection in a signal obtained in turbulent pipe flow.

Greek symbols

µR expectancy Rmax or Rmin signal+noise -

µRn expectancy Rmax or Rmin noise only -

µnoise mean noise signal -

σnoise standard deviation noise -

σR standard deviation Rmax or Rmin signal+noise -

σRn standard deviation Rmax or Rmin noise only -



C. LDA frequency sensitivity measurements

C.1. Introduction

The range of Doppler frequencies is relatively high for the measurements in bubble columns.

Both negative and positive velocities are encountered over a wide range, requiring a relatively

large frequency preshift. A relatively small fringe spacing results from the use of a lens with short

focal length to reduce the magnitude of the preshift frequency component present in the signal

due to reflections. For example, using a lens with 12.2 cm focal length, Doppler frequencies in

the range 300 kHz to 800 kHz are obtained. The most suitable bandpass filter in the IFA-750

processor has the range 100 kHz to 1000 kHz, thus a large part of the range of this filter is

covered.

Consequently, if the electronic equipment does not amplify all frequencies with the same

factor, a bias may result in the liquid velocity moments. This is due to the larger probability for

detection and/or validation for weak bursts with frequencies that have the larger amplification

factor. The resulting relative error in the mean liquid velocity can be quite large since the

mean liquid velocities are often smaller than the standard deviation of these velocities. This is

especially the case for the measurements in the homogeneous regime with uniform gas injection.

Therefore, this frequency dependent amplification is investigated for the IFA equipment. A

simple tests can show the presence of the frequency dependency. If a LDA signal is determined

in a bubbly flow, rotation of the backscatter probe with 180◦ should only change the sign of the

mean velocity if no bias occurs. With this test, velocities that initially give a Doppler frequency

of e.g. 700 kHz, now give Doppler frequencies of 300 kHz (in the case of a preshift frequency of

500 kHz). The relative probabilities of detection are strongly modified this way. The test shows

that the mean of the velocity is changed with up to 0.05 m/s when the probe is rotated by 180◦.

This change is of the same order of magnitude as the true mean. Its actual value depends on

the signal-to-noise ratio of the signal. Although part of this bias may be due to frequency bias

and multiple validation in the IFA-750 detector and/or processor (some of these problems are

discussed in Nievaart (2000)), part of the problem lies in the electronic components of the IFA

equipment.

Also if wavelet processing is used, the frequency dependent amplification may result in bias.

After processing, the validation is based, amongst others, on a signal to noise ratio criterion like:

SNRi =
Si

Ni
> SNRthreshold (C.1)

with Si the height of the peak in the powerspectrum, and Ni the height of the noise floor in the

power spectrum. As was shown, Si is dependent on the Doppler frequency fD, whereas tests

show that this is hardly the case for Ni. Therefore, a bias may result with this criterion. For

this reason, a different criterion is required.
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Figure C.1.: The equipment that processes the optical signal before AD conversion.

Suppose two bursts are measured, one with frequency fD, the other with reference frequency

f0. The bursts have similar intensity I when they arrive at the optical detector. After detection,

downmixing, amplification and filtering (Figure C.1), the signals enter the burst detector and

processor with amplitudes A(fD) and A(f0). Their ratio is given by:

Ca(fD) =
A(fD)

A(f0)
(C.2)

With this ratio a correction can be introduced for the SNR criterion:

SNRc
i =

Si

C2
a(fD)Ni

> SNRc
threshold (C.3)

which should no longer suffer from the bias problem, possibly at the cost of a reduction in data

rate.

This appendix discusses the experiments performed to determine Ca(fD). This is performed

for the bandpass filter range 100-1000 kHz. In addition, an attempt is made to identify the

electronic components which are the biggest source of the variations in Ca(fD).

C.2. Experiments

Ca(fD) can be determined by monitoring the amplitude of the signal sampled with the ADC

card (Figure C.1) while varying the Doppler frequency. During this experiment, the intensity of

the incoming optical signal should be kept constant, as well as the amplification factors inside

the electronic equipment.

The optical signal is generated by positioning a rotating surface in the measurement volume,

or by placing the measurement volume in a liquid with seeding particles at a point where the

velocity is constant in time. The Doppler frequency can be varied by changing the velocity, the

probe orientation and/or the preshift frequency. The intensity can be kept constant by ensuring

the surface position and passage of seeding particles is not changed if the velocity is changed. To

ensure this is the case, two different experiments are performed and the results are compared:

• Histograms of the amplitudes of bursts in a laminar flow are determined with the use of

the wavelet processor and compared for different frequencies.

• The amplitude of the signal originating from a rotating disk is measured while its velocity

is varied.
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Figure C.2.: Setups. a) Laminar flow experiment b) Rotating disk experiment

C.2.1. Laminar flow experiment

The setup is shown in Figure C.2a and uses an overflow system to keep the velocity constant.

The pipe diameter is 0.05 m, the liquid used is a glycerol-water mixture with viscosity close to 35

mPas, ensuring laminar flow at a constant velocity in the range 0-0.2 m/s. The open nature of the

system, the high viscosity in combination with the downflow result in problems with tiny bubbles

(smaller than 0.5 mm). These bubbles present a second source of scattered light. If the velocity

is varied, their size and quantity change, and thus the amplitude of the optical signal is velocity

dependent. For this reason, the velocity is kept constant and the Doppler frequency is varied

by changing the preshift frequency (0, 100, 200, 500 and 1000 kHz) and the backscatter probe

orientation. This way, the Doppler frequencies 100, 200, 300, 400, 600 and 900 are obtained.

The amount of small bubbles is minimized, measurements are started after five hours and are

performed in a short period, such that the size and concentration of the bubbles have reached

an equilibrium and do not change during the experiment.

By sampling and wavelet processing, the amplitudes A(fD, i) of the bursts are obtained as

a function of the Doppler frequency fD. Next, the histograms of A(fD, i) are determined, an

example is shown in Figure C.3. 600 kHz is taken as a reference frequency. Ca(fD) is estimated

by finding the value where the histograms of A(600kHz, i) and Ca(fD)A(fD, i) have the best

match (an example for 400 kHz is given in Figure C.3).

C.2.2. Rotating disk

The measurement volume is aligned on a rotating disk (Figure C.2b). The alignment of the

disk and the measurement volume changes slightly when the velocity is changed. This leads

to changes in the strength of the optical signal. These changes are minimized by pressing an

object against the axis of rotation. In addition, the measurement is performed close to the axis

to reduce variations in time due to small changes in the orientation of the disk. The standard
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Figure C.3.: Histograms of burst amplitudes for laminar flow experiment.

deviation of the sampled LDA signal is used to determine Ca(fD). Contributions due to noise

are subtracted. A simple test is performed to check the constantness of this standard deviation

with time. Initially the laser beams are blocked, next the blockage is removed and the standard

deviation is monitored. This shows that the standard deviation is constant for 10-15 seconds,

after which both sudden and smooth decreases are observed. These are probably due to automatic

stepwise changes in the gain of some amplifiers, as well as possible slow changes in the sensitivity

of the photomultiplier tube. After a short period of renewed beam blockage, the same initial

high values are obtained. For this reason, the following protocol is used:

• The laser beams are blocked with an object during 15 seconds. This way, all gains and

sensitivities are reset to the same initial values. During this time, the speed of the disk is

adjusted and has enough time to reach a constant value.

• The object is removed, the standard deviation is determined during 5 seconds. The Doppler

frequency is determined from the signal. The laser beams are blocked again after this

period.

• The procedure is repeated with different velocities; every fifth measurement the same ref-

erence velocity is used to correct for small drifts.

C.2.3. Amplification factors

Figure C.4 shows the results for the laminar flow experiment and the rotating disk. For the

rotating disk, two different preshift frequencies were used. The results have been scaled since

different reference frequencies were used. For comparison the root of the noise spectrum is

shown. This spectrum was determined from spectra of two laminar flow LDA signals with

distinct Doppler frequencies, such that contributions due to bursts could be removed. The

agreement between the noise spectra, the laminar flow experiment and the rotating disk is good.

This suggests that the input noise has a white noise character, and that the noise spectrum is
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Figure C.4.: Amplification factors Ca(fD) for various experiments. A comparison with the scaled
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proportional to the amplification function Ca(fD) of the equipment. This means that Ca(fD)

can also be determined from noise spectrum measurements, greatly facilitating the measurement

procedure.

The variations in Ca(fD) are quite strong over the range 100-1000 kHz. The amplitude of

bursts with Doppler frequency 800 kHz is generally a factor 0.6 smaller than bursts with Doppler

frequency 500 kHz. Results for the second channel are identical. This explains at least part of

the biases observed in the tests where the probe orientation is reversed.

C.2.4. IFA-750 amplifier and bandpass filters

In order to find the electronic component responsible for the strongly non-uniform amplification

Ca(fD) is compared with the amplification in the IFA-750 amplifier and bandpass filter (Figure

C.5). This shows that this component is responsible to a large extent for the problem. Different

bandpass ranges (30-300 kHz, 300-3000 kHz) exhibit similar behavior. For this reason, dedicated

electronic amplifiers and bandpass filters have been built for use with the wavelet processor

measurements. The use of these filters ensures a much smaller drop in the amplification factor

over the relevant ranges (see Figure C.5, where the relevant range is 300-800 kHz).
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List of symbols

Roman symbols
A amplitude random

Ca amplification factor -

f0 reference frequency s−1

fD Doppler frequency s−1

I intensity random

N noise -

S signal -

SNR signal-to-noise ratio -

SNRthreshold validation threshold signal-to-noise ratio -



D. The influence of the bubbles on the data
rate for Laser Doppler Anemometry in
bubbly flow

For the measurement of liquid velocities with LDA, a sufficiently high data rate is essential to get

detailed information about the hydrodynamics. In a bubbly flow, much light is blocked due to

the presence of the bubbles. This blockage is a strong function of the void fraction α, the bubble

size and the path length l of laser beam from the wall to the measurement volume. Measurements

further away from the wall, and at higher void fractions are, therefore, severely hampered. The

present appendix studies, therefore, how the data rate for LDA in bubbly flow varies with α and

l.

The following constraints have to be satisfied in order to get a velocity realization if a particle

crosses the measurement volume. First, the laser beams that form the measurement volume

should not be blocked in between the measurement volume and the wall. Second, enough light

should be able to pass back to the detecting fiber to allow detection of the burst. The influence

of these points on the data rate is discussed in the present appendix, starting with the second.

Signal to noise ratio: detection of scattered light

If the measurement volume exists and a particle crosses the measurement volume, light is scat-

tered. This light is collected by the receiving lens and focused on the receiving fiber. Apart

from this desired source of light, several other sources of undesired light signals can be identified.

If particles pass through the laser beams at positions close to the measurement volume, their

light will also be focused on the receiving fiber (i.e. they are inside the ’detection volume’, see

Figure 6.15(b)). This produces ’noise bursts’ with a Gaussian envelope. Second, at the moments

when measurements are possible, i.e. when the measurement volume exists, the light reflected

by bubbles will always originate from locations behind the measurement volume. This light has,

therefore, to cover distances larger than the light from the measurement volume. In addition,

contaminations in the water crossing the beams further away from the measurement volume,

and light reflected by bubbles produce a ’background’ noise level. All noise contributions ham-

per the detection of coherent bursts, and tests show that the ’noise bursts’ produce the major

contribution.

If the void fraction, or the distance of the measurement volume to the wall is increased,

the amount of light that reaches the detection fiber from the measurement volume decreases.

The decrease is, however, approximately similar for both the coherent bursts, the ’noise’ bursts

and the reflections from bubbles at the moments when the measurement volume exists. The

’background’ noise level is found to vary slightly with the distance to the wall, but no clear trend

is observed. In addition, the contribution of the background noise level to the total noise level is
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Figure D.1.: Dual beam geometry for the axial component

limited. Its influence on the data rate is, therefore, also small. Consequently, the effect on the

data rate is small if the thresholds for detection are adjusted accordingly.

Summarizing, the blockage of light from the measurement volume travelling to the receiving

fiber has only a minor influence on the data rate.

Blockage of laser beams

The blockage of the laser beams, however, does play an important role. If the void fraction or

the distance to the wall is increased, the probability decreases that the path of the laser beam is

not blocked by one or more bubbles. Ohba et al. (1976) showed that this probability decreases

exponentially. If the data rate without bubbles is Ṅ0, the data rate Ṅ with the bubbles present

is given by:
Ṅ

Ṅ0

= exp(−c αl
dSV

) (D.1)

with dSV the mean Sauter diameter (for its calculation the volume-equivalent diameter and the

diameter based on the cross-sectional area perpendicular to the beam are used). The coefficient

c is 3/2 for a single beam (Ohba et al. (1976)) and 3 for two beams with independent blockage.

Close to the measurement volume, the distance between the beams is smaller than the bubble

diameter, and the beam blockage is no longer independent. Consequently the decay is slower.

Mudde et al. (1998) report a coefficient c value of 2.4.

In order to accurately predict the decay of the data rate, the blockage of both beams by a

single bubble has to be taken into account. Approximately, the situation can be modeled as is

shown in Figure D.1. The measurement volume is located in the origin O. Ellipsoidal bubbles

without inclination (non-wobbling) are considered, with semi-major axis length a, and semi-

minor axis length b. If the center of a bubble is located in the volume Vi, beam i is blocked.

These volumes Vi have ellipsoidal cross-sections Ai, i.e. the projection of the bubble if it is

observed along the laser beam i. These ellipsoids have dimensions a and b′1 (beam 1) and a and

b′′2 (beam 2). Since the bubbles are not inclined, b′1 = b′′2 =
√

a2sin2(αl) + b2cos2(αl).

A period with duration T0 is considered. T (x) is the amount of time in this period during
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which neither of the beams is blocked in the region between the measurement volume and the

plane Ω, which is located at a distance x from the measurement volume. The blocking is modeled

by stating that beam 1 is blocked in the portion between x′ and x′ + dx′ if a bubble center is

present inside the volume dV1. The probability that this occurs is given by:

P1(x
′)dx′ =

3

2
α
d2

A

d3
V

dx′ (D.2)

with d2
A = 4ab′1. Due to symmetry and since dx′ = dx′′, the probability that beam 2 is blocked

is identical: P1(x
′)dx′ = P2(x

′′)dx′′. Part of the volume dV1 may be located inside volume V2,

i.e. bubbles that are located in this part of the volume block both beams and should therefore

be excluded for one of the beams. The overlap in the volumes is determined by calculating the

overlap A12 of A1 and A′
2, the cross-section of V2 and plane Ω1. This is shown in Figure D.2.

The dimensions of A′
2 are given by: b′2 = b′′2/cos(2αl) and ∆z′ = x′tan(2αl). The probability

density of blockage of one beam or both beams is given by:

Pblockage(x
′) = P1(x

′)(2 − fo(x
′)) =

3

2
α
d2

A

d3
V

(2 − fo(x
′))dx′ (D.3)

with fo(x
′) = A12(x

′)/A(x′) and ignoring second order terms. We get:

Ṅ

Ṅ0

=
T (l)

T0
= e

− 3
2
α

d2
A

d3
V

∫ l/cos(αl)
0 (2−fo(x′))dx′

(D.4)

which is solved numerically.

Figure D.3 shows the prediction by equation D.4 for both the axial and tangential component

for a void fraction of 15.6%, probe focal length of 35 cm, beam distance 5 cm and bubbles with

diameter 4 mm and aspect ratio 0.65. The ellipsoidal shape of the bubbles results in a smaller

loss in data rate for the tangential component. As expected, in the limit of short length l, the

slope corresponding to a single beam is found, in the limit of long l the slope of two independent

beams is found. Obviously, if the model in equation D.1 is used to fit the data, a coefficient

c somewhere in between 1.5 and 3.0 will be found, the value depending on the fit range, lens

focal length, bubble size, etc. This explains the value of 2.4 which was reported by Mudde et al.

(1998). The value of 1.66, reported by Kulkarni et al. (2001a) is very low, considering the results

presented here. The authors use forward scatter, in which case it may be harder to distinguish

individual bursts, i.e. the data rate may not represent very well the number of bursts due to
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particles passing the measurement volume.

Figure D.4 shows the experimental data rate for the axial component for the 12.2 and 35

cm focal length lenses, for the IFA-750 processor and the wavelet processor, and compares these

with model predictions. The experiment was performed for a void fraction of 15.6% and bubbles

of 4 mm. The results show that close to the wall a smaller slope is obtained with the 35 cm lens.

This is caused by the smaller beam distance close to the measurement volume, i.e. over a longer

distance the blocking resembles that of a single beam. Consequently, the data rate attenuation

is clearly relatively smaller at larger distances from the wall for the 35 cm lens than for the 12

cm lens. Further away from the wall the data rate decreases according to a straight line on a

log scale, the behavior is similar to that of two beams which are blocked independently. The

slope according to the model is somewhat smaller than that observed in the experiments. This is

probably due to deviations in the bubble diameters, orientations and shapes, which are obviously

not constant in the experiment.

List of symbols

Roman symbols

a bubble semi-major axis length m

b bubble semi-minor axis length m

c constant describing decay data rate -

dSV mean Sauter bubble diameter m

dA area equivalent bubble diameter (in direction laser beam) m

dV volume equivalent bubble diameter (in direction laser beam) m

fo function decribing overlap blockage of beams -

l distance measurement volume to the wall m

Ṅ mean data rate s−1

Ṅ0 mean data rate at wall s−1
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P1 probability bubble blocking beam 1 at distance x′ -

Pblockage probability blockage beam 1 and/or 2 at x′

T (x) average time at x that neither of the beams is blocked s

T0 period of measurement s

V small volume considered for bubble presence m3

x horizontal coordinate m

y horizontal coordinate m

z axial coordinate m

Greek symbols

α void fraction -

αl inclination laser beam rad
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E. Experimental techniques

The present appendix provides a description of various practical aspects of the application of the

experimental techniques that have been used in the investigations reported in this thesis.

E.1. Laser Doppler Anemometry

The present section describes the LDA technique: the equipment that is used and the data pro-

cessing that is performed before calculating means, standard deviations and probability density

functions. For more general information about LDA, the reader is refered to Albrecht et al.

(2003).

The LDA equipment consists of a 4W Spectra-Physics Ar+ laser and a TSI 9201 colorburst

multicolor beam separator. Beam pairs are focused using a backscatter probe with a lens of

0.122 m focal length. Detected light is sent to a TSI 9230 colorlink. The axial component is

determined with green (λ=514.5 µm) beams, the tangential component using blue (λ=488 µm)

beams. The fringe spacings are 1.28 µm (green channel) and 1.22 µm (blue channel). For the

measurements in the homogeneous regime and relatively mild structures, a preshift frequency

of 500 kHz and bandpass filter range 100-1000 kHz has been used. For measurements in the

heterogeneous regime, a preshift frequency of 1 MHz and bandpass filter range of 300-3000 kHz

are used. Bursts are processed with the IFA-750 (TSI) processor, controlled by a 486 PC. For test

measurements, comparisons have been made with the results of the wavelet processor (chapter

6). The comparison has been used to get improved settings, understanding and data processing.

For the majority of the experiments, the use of the wavelet processor is quite impractical due to

the huge amounts of data and processing times involved. The flow is seeded with glass particles

which were neutrally buoyant and had 10 µm size. The time series obtained has typical lengths

of 900 s (cylindrical column) and 300 s (rectangular column).

The short focal length of 0.122 m is used to enable measurements close to the wall (i.e. at

distances smaller than 5 mm). With longer focal lengths, strong preshift frequency bleeding is

encountered: light is scattered at the positions where the beams cross the vessel walls - close to

the wall some of this light is focused on the receiving fiber of the backscatter probe. Shorter

focal lengths strongly reduce the amount of focused light.

A number of data-processing steps have been performed on the data before calculating the

velocity moments. The presence of the bubbles leads to increased noise levels compared with LDA

in single phase flows. The higher noise levels lead to the occurrence of multiple validation, i.e. the

multiple detection of the burst caused by a single particle. This may lead to inaccurate velocity

estimates or even outliers. The effect has been handled by first rejecting velocity realizations with

|ui − ui| > 4σ (σ being the standard deviation of the signal). Next, bursts have been removed

which follow other bursts within an interval of 1 ms (see section 6.6.4 for motivation). The

effect of these operations on the tangential velocity component is very small: mean velocities
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typically decrease by 0.003 m/s, variances increase by typically 2%. The effect on the axial

velocity variances is somewhat bigger: these increase by typically 6-9%.

In a time varying flow the instantaneous data rate is generally correlated with the instanta-

neous liquid velocity. As a result, the higher velocities are usually over-represented in the time

signal and the velocity moments are biased if simple arithmetic averaging is used: velocity bias

occurs. The results in chapter 6.6.4 indicate the importance of velocity bias correction. The

velocity bias correction is performed by so-called 2D+ weighing: inversely weighing the data

with the velocity (Tummers (1999)). Since only two components are known, the magnitude of

the third component is estimated from the variance of the second component: the weighing fac-

tor is ω = 1/

√

u2 + v2 + (dm/lm)2v′2 with dm/lm the diameter-to-length ratio of the ellipsoidal

measurement volume. The use of only two components is justified since the magnitude of the

radial and tangential fluctuations will be close, and the influence of the third component is small

since dm/lm is small. Due to inaccuracies in the burst processing, the axial velocity u and the

tangential velocity v are never measured at the exact same time instants. For this reason, pairs of

axial and tangential velocity realizations are searched which have arrival times inside coincidence

windows with length of 300 µs. This time roughly corresponds to the mean transit time of the

seeding particles. Unfortunately, the use of this coincidence window results in a further decrease

of the datarate of the velocity signal.

E.2. Particle Image Velocimetry/ Particle Tracking Velocimetry

The large scale structures in the pseudo-2D column can be studied very well with the use of

Particle Image Velocimetry (PIV) and Particle Tracking Velocimetry (PTV). For more details

about these techniques, the reader is refered to, e.g., Raffel et al. (1998). A CCD camera (Dalsa

Inc) with resolution of 512x512 is used to record images of the flow. The lower area (0<z<0.7m)

of the column is recorded in two steps, each step imaging an area of 0.24mx0.35m, providing a

resolution of 0.64 mm/pixel. Both the PIV and PTV analyses have been performed with the use

of DaVis processing software (LaVision). Sequences of images of the bubble motion are recorded

and PIV is used to determine the bubble velocities from these sequences. Illumination from

the rear is used to obtain bubble shadows over a large area of the column (Figure E.1). This

leads to averaging of the bubble velocity over the depth of the column, but does not lead to

problems since only large scale structures have to be resolved. Binary images of the bubbles are

obtained by applying a threshold algorithm to the greyscale images, from the subsequent images

the velocities are obtained using PIV. Interrogation areas of 32x32 pixels have been used with

50% overlap. 50 subsequent images of the bubbly motion have been used (frame rate 150 Hz), the

velocities obtained from these images have been averaged. The total time of the image sequence

corresponds to 0.33 second, therefore the information about the large structures is preserved

since these have a much longer timescale.

The liquid flow is determined by putting tracers in the liquid. The tracer particles need to

be distinguished from the bubbles before the PTV algorithms are used. The separation is based

on a threshold applied to the greyscales in the image. This requires a large contrast between the

shadows of the bubbles and the particles. This has been achieved by optimisation of the lighting

conditions and selection of proper tracer particles. Relatively large particles have been selected to
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provide sufficient contrast: polystyrene particles of approximately 2.5 mm size. These have been

painted black to give further image contrast enhancement. The relatively large size also results

in a homogeneous distribution over the column. Due to the large inertia of the particles only the

largest structures were determined, the effect of the smaller structures was filtered out this way.

The lighting gave the best contrast results in the center of the image, the corners had somewhat

worse contrast. For the PTV analysis, images have been used that were obtained at a framerate

of 30 Hz over a period of 0.6 s. Due to the presence of the bubbles, most tracer particles are

only visible for short periods. Some particles are visible for long periods. Therefore the amount

of vectors per area varies widely. For the sake of clarity, the vector field has been interpolated

on a grid. Since the particles are not neutrally buoyant, but have a slip velocity of 0.09 m/s

the results must be interpreted with care and give mainly a qualitative impression of the large

structures. The PIV and PTV results have been obtained from sets of experiments performed

on different days, therefore the vector fields do not correspond to the same time instants and the

large scale structures are different.

E.3. Glass fiber probes

The time averaged void fraction is determined by using glass fiber probes (see chapter 3 for

more details). Five fiber probes are used simultaneously to measure the void fraction over a line

from the center of the column to the wall. If only a single probe would be used it is hard to

investigate the uniformity of the flow due to drift of, e.g., the total flow to the sparger. This

drift can be bigger than the small gas fraction variations near the column center obtained with

uniform gas injection. The technique generally underestimates the void fraction for the present

conditions by some 10-20%, depending on the type of signal processing that is used. Chapter 3

has shown that the so-called low level criterion should be used for the processing. This reduces

the underestimation to about 10%. The remaining underestimation is caused by the interaction

of the probe with the bubble as well as a perturbation of the flow field by the fiber and its holder.

Chapter 3 showed that the dominant effects in the probe-bubble interaction are a reduction of

the bubble velocity if it is pierced in the center, or a deformation if the bubble is pierced close
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to its side. In addition, if the bubble is pierced under an angle the bubble path is altered.

The latter two effects result in the underestimation. The underestimation has been quantified

in chapter 3 for a bubble formed at a needle. The exact result was found to be dependent on

the phase of the bubble oscillation. This phase differs widely in an actual bubble column, and,

in addition, bubbles follow zig-zagging paths, leading to a distribution of angles under which

the bubble is pierced. Moreover, the bubble motion is affected by the presence of the other

bubbles. Consequently, it is not possible to estimate the total underestimation accurately with

experiments of bubbles formed at a single needle. Therefore, an empirical correction factor is

determined for each probe to compensate for the underestimation.

The void fraction αprobe,i is obtained for one probe by integration of the void fraction obtained

over the entire column. The void fraction is measured over a horizontal line through the center at

z=0.6 m and an axial line through the center (900 s/point). The radial integration is performed

by assuming axial symmetry and by using linear interpolation. The void fraction in the region

closest to the wall drops to zero, no measurements can be taken in this region due to the size of the

probe holder. The void fraction profile is in this region therefore estimated with the assumption

that bubbles are randomly distributed, but that bubbles cannot overlap with the wall. This gives

an approximately linear profile over a region with thickness equal to the horizontal bubble axis

length. For the integration in the axial direction, the assumption of isomorphic profiles is used.

The correction factor has been determined for void fractions 6.2%, 7.7% and 11%, the mean has

been taken for further use. The correction factors for the other probes have been determined by

determining the differences between the underestimation for all probes from a measurement in a

homogeneous region with the probes quite close to each other. The mean correction factor of all

probes is around 1.1. Tests with experiments over several weeks show that the correction factors

are quite reproducible (about 1% variation). The time series in the experiments for the probes

have lengths of 1000 s. During this time, typically some 15000 bubbles have been collected per

probe (α=20%).

List of symbols

dm diameter measurement volume m

lm length measurement volume m

u axial liquid velocity m s−1

v tangential liquid velocity m s−1

z axial coordinate m

α void fraction -

αprobe average void fraction entire bubble column from probe measure-

ments

-

λ laser light wavelength m

σ standard deviation

ω weight factor velocity bias correction -
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