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ABSTRACT

I
I In conventional practice extreme design conditions for offshore structures

are obtained very conservatively by extrapolating 3-hourly statistics of
wind, wave and current data to a (say) 100 year return level, assuming that
the 100-year extremes occur simultaneously and act in the same direct ion.
This study involves an alternative approach accounting for the joint
probability and directionality of wind, waves and currents. Design
conditions are generated from the statistics of extreme global loads in
individual storms, resulting in a 100-year base shear and overturning
moment. Treatment in terms of storms avoids the dificulties arising from
correlation between successive 3-hour intervals. The base shear forces are
determined by a loading model, an analytical relationship between base shear
and crest height, and most of the important environmental parameters.
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The inverse of the crest height-base shear relation is used to derive from
the crest elevation statistics a cumulative distribution of the extreme base
shear for individual storms. This is done for every storm from the north-
west quadrant in the 25 years of hindcast data base in the North European
Storm Study (NESS) for one location in the northern North Sea. Each storm is
characterized by its most probable extreme base shear value, F . Thesemp
representative storm parameters are used to describe the short term and the

I
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I

,
long term statistics of extreme base shear.

""

I
-,

It has been found that the short term variability of all storms can be well
represented by one model distribution, p(flF ). With this probabilitymp
distribution for the model storm, in combination with the results of a new

I
I

asymptotic method estimating the probability distribution of F , P(F ),mp mp
the probability distribution of the largest base shear for any random storm,
p(flany storm), is determined. The same analysis is followed for overturning
moment.
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Since the average arrival rate of the storms is known the probability
distribution of the largest base shear (and overturning moment) with a
return period of 100 years, f100 (and m100)' can be deduced. From a back
calculation it appears that the resulting design loads are caused by
combinations of extreme wind, waves and currents, which are significantly
less severe than the values conventionally used for design.
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1. PROJECT INTRODUCTION

1.1 Introduction

This report gives an overview on the work done for the project "Application
of the random storm method to global structural loading on fixed offshore
structures". This project is a continuation of previous research, a.o. done
by B.H. Heijermans, my predecessor at the KSEPL. A random storm method was
developed by Heijermans, where the statistics of individualsevere storms
were used for the generation of a lOO-year design wave. Also surge and tide
were included in the model. Since the results of the new method were quite
satisfactory, it was suggested to extend the theory to environmental loading
on offshore structures, 50 that besides wave height all the other
environmental parameters are considered as weil. This project deals with the
generation of a lOO-year design condition for an offshore structure in terms
of base shear and overturning moment with the random storm methode

1.2 problem Analysis

One of the first steps in the design procedure for offshore structures is
the careful characterization of the environmental forces and effects that a
proposed structure may experience during its operational lifetime. In some
cases, the intensity of storms and their effects may be limited by
geographic and hydrographic factors in such a way that a most severe design
storm exists. More commonly, however, there will be a small but finite
probability that the structure will experience another storm that has some
aspects more severe than the selected storm. This dilemma is due to the fact
that storm intensity cannot really be expressed as a single determinist ic
numberi instead it is a collection of extreme environmental data such as
significant wave height and period, wind speed, current, various directions
and so on. Moreover there is a lack of a true upper bound in most natural

8
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I phenomena, thus statistical considerations and risk or reliability concepts

must be introduced into the oEEshore design procedure.I

I

It has been traditional design practice to estimate the probabilities oE

extreme winds, waves, currents and levels independently and combine these
extreme values, assuming they occur simultaneously and act in the same
direction, to obtain the extreme environmental design conditions. However,
this assumption is invalid and it is thereEore inevitable that this results
in some over-design.

I

I
I According to the traditional method the estimate oE a design wave is based

on the extrapolation oE data Erom a series oE measurement results collected
over a Eew years or data determined with a hindcasting technique. Design
levels Eor current and wind are deEined in a similar way. The data is
usually obtained Erom records oE surface elevation ~(t), or respectively
current velocity v(t) and windspeed W(t), taken every 3 hours for a period
of 15 or 20 minutes. In the statistical analysis the environmental variables
in successive 3 hour intervals are assumed to be independent, which they are
not: they are correlated.

I
I
I
I

I

Since individual storms are much more likely to be uncorrelated than the
environmental parameters in successive 3 hour intervals, it was suggested in
KSEPL to consider particular severe storms and look Eor a similarity, so
that it might be possible to create a model storm and describe its
statistics with only one parameter, Eor example the most probable extreme,
H37 or H , the wave height with a probability of non-exceedence of 37 %.% mp
In addition to this, if an analytical relationship between the base shear
force F (or the overturning moment M) and wave crest elevation can be
established, probabilities for load can be deduced from probabilities for
crest elevation, condi.tioned on the other enviromental parameters. Thus a
model can be created for the load statistics of a storm, that is rather
similar to the model for the wave statistics.

I
I
I
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Besides the objections to the traditional methods this study has some other
motivations. It may be of economic interest to extend the operational
lifetime of an existing structure. If an alternative method is developed for
determining a design load (base shear or overturning moment) the reliability
of the existing structure can be checked. A new attempt at describing the
statistics of the forces on an offshore structure has been made possible by
the developement of a new technique assuming that certain asymptotic
properties of extreme values are applicable to storms, and by the
availability of information of 25 years of hindcasting for the North Sea.
The North European Storm Study (NESS) model contains all relevant
environmental data, such as significant wave height, current, wind speed,
directions, surge and 50 on, simulated according to all meteorological and
environmental information available.

With the new technique and the information available from the NESS data base
a model will be created which describes the load statistics and includes
both short term and long term statistics. The new method is applied for a
location in the Northern North Sea in the UK sector (figure 1.1).

1.3 problem Definition

Traditional design methods for offshore structures assume that the most
unfavourable extreme values of wind, waves and current occur simultaneously
and act in the same direction, and that their values in successive 3 hour
intervals are uncorrelated, and they neglect the short term variability.
Overall these shortcomings result in a conservative design condition.

1.4 General. Objectives

The overall objective of the study is to develop a new method for the
calculation of a design condition, with all environmental data included, as

10
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well as short term statistics and long term influences on the statistics.
Extreme values of wind, waves and current do not necessarily occur
simultaneously and their values in successive 3 hour intervals are not
treated as independent in the way they are treated in the traditional
methods. To succeed in the intention three major objectives are pursued:

1) Creating a model for base shear and overturning moment as a function of
crest height, with all the other environmental data included.

2) Deriving the probability distribution of the largest base shear and
overturning moment for any random storm, based upon 25 years of storm
histories from the NESS data base.

3) Calculating a 100-year value for base shear and overturning moment as a
design condition by extrapolating the random storm distribution to 100
year conditions.

1.5 Strategy

In this study areal, spaceframe structure is represented by a group of
closely spaced vertical columns. By introducing the assumptions that the
wave motion is narrow-banded and that large peaks are drag dominated, an
analytical relationship can be established between the wave mot ion and a
wave load. This relationship can be derived from the Morison equation and
contains all the environmental variables and some constants which are
related to the structure itself and its location. These constants are
calibrated against a numerical loading model using some representative
extreme hindcast data as an input. The structure considered here is a single
column in deep water with a constant diameter of 1.2 m. Extension of the
theory to a group of closely spaced piles may be achieved easily by
adjusting the constants in the analytical load relationship.

11
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Structural responses, i.e. base shear forces and overturning moments, are
considered in this study. For the determination of these loads the structure
is assumed to response quasi-statically. The structural dynamics are
excluded. In thip approximation the base shear is the total. horizontal
force on the structure_and is used as a representative structural response.
Nevertheless any other.quasi-static response may be treated in a similar
way. In this report the derivation of the load equations and statistics is
explained for base shear only. For overturning moment merely the resu~ts
will be given, but in fact the same procedure is followed.

I

I
I
I The inverse of the crest height-load relation can be used for deriving a

cumulative distribution of the extreme base shear for every single storm of
the data base, p(fls.), where a storm is defined as a period of a number of

J
successive 3 hour intervals with a continuous severe sea state. Each stormI

I

is characterized by its most probable extreme base shear value, F . Thesemp
representative storm parameters will be used to describe the short term and
the long term statistics of extreme base shear. Based upon the results of
previous research it is expected that the short term variability of all
storms can be well represented by one model storm distribution curve, i.e.
p(flF ). With this probability distribution for the model storm, inmp
combination with the results of a new asymptotic method estimating the
robability distribution of F , P(F ), the probability distribution of themp mp

largest base shear for any random storm, p(flany storm), can be determined.

I
I

I
I For design purposes conditions with a return period of (say) 100 years are

of interest. Since the average arrival rate of the storms is known, the 100-
year return va1ues may be deduced from the distribution curve for any
random storm. In fact this can be done for any desired return period.

I
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Fiqure 2.1: The interaction between wind, waves and currents.
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2. OFFSHORE STRUCTORES AND ENVIRONMENTAL CONDITIONS

2.1 Introduction

Offshore structures suffer from huge forces due to the ocean environment and
the atmosphere above it, especially under extreme circumstances. The design
and operation of offshore platforms require a proper understanding of the
physical character and behaviour of these natural phenomena and of their
interaction. The two basic independent factors which govern changes in the
marine environment are the weather and gravitational tides. Extreme ~inds,
waves, currents and levels generated by these factors are not independent,
as shown in figure 2.1. The wind stresses on the sea surface produc~ waves,
currents and changes of sea level. The total observed currents and levels.
are produced by a combination of surge and tidal movements. Winds, waves and
levels are related, but statistical correlations will be different for each
specific site, particularly when the directions of winds, waves and currents
are considered. The only way to determine the correlations is through long
series of simultaneous measurements. The problem is further complicated by
the strong seasonal variations which occur especially for winds, waves and
surges (refs. 8,10).

2.2 The interaction between wind, waves and currents

Wind waves are usually the dominant contribution to the environmental forces
on offshore structures. Wave heights, periods and·directions are important
and these may all be related to the winds by a combination of theoretical
and empirical rules. The higher waves are associated with longer wave
lengths and longer ·periods. They are also associated with higher wind
speeds, longer durations of wind action, and longer fetches - the distances
of sea over which the wind has blown before reaching the design site.

13
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Fiqure 2.2a: Environmental loading on an offshore structure.
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The winds which produce extreme waves will also produce extreme surge
currents and levels, but the time scales and directions may be different.
Wave directions in the open sea may be similar to wind directions, but near
the coast and in other areas where the water depths become comparable with
half the wave lengths, the waves will be refracted towards the region of
shallower water.

Currents can also affect the direction of propagation of a wave train, but
the most significant interaction between waves and currents occurs when they
are opposed to each other. In this case the wave propagation speed is
reduced, but the amplitudes are increased. The physical reason for this is
the need to conserve the net energy flux, in the same way as tidal ampli-
tudes increase when travelling over the shallow waters of the continental
shelf. Even more significant for calculating forces on structures, the wave
steepness and the associated accelerations are increased (ref. 10).

2.3 Forces on offshore structures

Offshore structures are subjected to both steady and time varying forces due
to the action of winds, currents and waves (figure 2.2). In general, an air
or water flow incident on an offshore structure will exert forces that arise
from two primary mechanisms. A steady or unsteady flow will directly exert a
corresponding steady or unsteady force with a line of action that is
parallel to the incident flow direction ("in-line" forces). However, the
localized interaction of steady or unsteady flow with a structural member
will also cause vortices to be shed in the flow and will induce unsteady
"transverse" forces with lines of act ion that are perpendicular to the
incident flow direction.

Wind forces on offshore structures account for approximately 10 to 15 % of
the total forces from wind, current and waves acting on the structure. In
deep water, wind induced forces can have a larger relative effect on the

14
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base overturning moment of bot tom emplaçed -structures because of the large
moment arms involved. Winds exert predominantly steady forces on the exposed
parts of offshore structures, although there are significant gust or
turbul~nce components in winds which induce ~jgh, unsteady, local forces on
structural components as weIl as a low frequency total force on the whole

I

structure.

I
I

The general equation for the wind force on a slender member of an ~pen space
framed offshore structure exposed to a wind is:

I
1 w2 S Co (2.1 )FW = Pa2

where: W = wind velocity

Pa = air density
S = frontal area facing the wind

CD = drag coefficient

I
I
I
I

Ocean currents also exert largely steady forces on submerged structures,
although the localized effects of vortex s!1.eddinginduce unsteady .force
components on structural members. Current forces on offshore structures are
calculated using the same methods as for wind forces alone except that
currents do not exhibit fluctuations similar to those of wind gusts. The
current velocities used are much smaller than those for wind force
calculations, although, of course, the water density is higher.

I
I

I

Gravity waves produce by far the largest force on most offshore structures.
The applied force is oscillatory in nature, although non-linear wave
properties gives rise to mean and low-frequency drift forces. For relatively
small structural members where the ratio between diameter of the member, 0,
and wave length, X, is less than 0.2, Morison's equation is used to estimate
forces due to wave act ion. This equation is based on the assumption that
wave forces can be expressed as the sum of a drag force due to wave fluid
velocity (i.e. wave induced and current velocity) and an inertia force due

I
I
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Figure 2.3: Wave force on a vertical cylinder.
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I
I
I to wave acceleration. Moreover it is assumed that wave properties are not

affected by the presence of the structure. An equation to represent this
loading can be written as:I

I (2.2)

I
I

where: dF = the total wave force on a cylinder of volume, dV and
frontal area, dS

u = instantaneous wave fluid acceleration normal to the cylinder
n

u = instantaneous wave fluid velocity normal to the cylinder
n

I v = current velocity
p = fluid density

CM = inertia coefficient

Co = drag coefficientI
I
I
I

The drag force includes a modulus to ensure that the drag force acts in the
same direction as the resultant fluid velocity. Consider an element of a
vertical circular cylinder of radius rand length dy, then the total force
dF acting on this element in the direction of wave propagation can be
integrated over depth to yield the .total force F and moment M about the sea
bed as (figure 2.3):

I

I

2
0 0

F = CMP1Tr J Û dy + copr J (v+u )Iv+u Idy
-d -d n n

and

2
0 0

M = CMP1Tr J (d + y)û dy + Copr J (d + y)(v+u )Iv+u Idy
-d -d n n

(2.3)

I
(2.4)

I
I-

Marine growth causes the surfaces of offshore structures, below the water
line, to become highly roughened. This has the effect of increasing the
effective diameter of individual members and to modify the inertia and drag
coefficients due to the changed interaction between the cylinder boundary
layer and the roughness elements (refs. 8,12).I
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3. EXTREME ENVIRONMENTAL CONDITIONS

I
I 3.1 Introduction -

I
For the design -of -of f sho.re structures one is especially interested in the
extreme environmental conditions, since the structure has to be able to
withstand forces and moments from waves, current and 'wind under such extreme

I circumstances. In general, the extreme conditions may be parameterized as
the probability that a stated extreme will be exceeded at least once during
the specified design life of a structure. An alternative is to calculate the
level which has a stated probability of being exceeded during the design
life. If the probability of a level ~ being exceeded once in a single year

-1is Qy(~)' the level has a return period R(~) of [Qy(~)] years. This is
based on the implicit assumption that the same statistics are valid for the
whole periode The level which has a probability of being exceeded once in
100 years, is called the 100-year return level.

I
I
I
I The return period mayalso be related to the encounter probability or design

risk, which is the probability that the level will be exceeded at least once
during the lifetime of a structure:I

I Risk (3.1 )

I

I

where TL is the design lifetime expressed in years. The appropriate value of
Qy(~) will depend on the value of the property at risk. It should be
remembered that a structure has a probability of near 0.635 of encountering
a level which has a return period equal to its design lifei for acceptable
risk factors the design level must have a return period which considerably
exceeds the expected lifetime of the structure (ref. 10).

I
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3.2 Extreme waves

I
I

I

The design wave approach is applied by defining a wave of large height Hand
a corresponding wave period range whose probability of occurrence is such
that it represents the maximum wave that the structure on ave rage will
encounter once in a finite but long time interval known as the return period
R. The low probability of occurrence is achieved by statistically defining
the highest wave that is likely to be encountered once in a larg.e number (50
or 100) of years. Thus the structure can be designed to withstand this rare
occurrence which is likely to be the worst encountered condition over its
lifetime. Since additional safety factors are involved with the design, the
actual failure rate will be much less than once in 100 years_.

I

I
I According to the traditional method the estimate of a design wave is based

on the extrapolation of instrumentally measured waves over a period of a few
years. The data is obtained from records of wave elevation l1(t~, taken every
3 hours for a period of 15 or 20 minutes. Each sample is reduced to two
representative parameters: the significant wave height Hand the averages
zero crossing period T • For a long time period data can be represented by az
bivariate histogram or scatter diagram of Hand T , in which each boxs z
denotes the number of wave conditions in parts per thousands (figure 3.1).
From the scatter diagram the probability of occurrence of H can be deriveds
for the various significant wave heights. These probabilities then can be
plotted against H according to a chosen probability distribution function

s
(Weibull, Gumbel etc.), as shown in figure 3.2.

I
I
I
I
I
I

I

The fitting of a convenient probability distribution plays a fundamental
role in the extrapolation process. The probability distribution function is
selected in such a way that the plotted data lies on a straight line as
nearly as possible. In the most simple approach one can draw a straight line
through the data plotted on probability paper by eye. The line can be extra-
polated and a design wave height can be selected on the basis of a return
period, which is the average time interval between successive 3-hourly

I
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events of the design wave height being exceeded~ A prescribed return period
of a 3-hour interval in which the design wave height is exceeded has an
associated value of P(H) and the corresponding wave height may be derived
from the extrapolated best-fit line (ref. 8).

I

I

Several studies have been done in order .t o diminish the shortcomings o-f.the
traditional extrapolation method. Battjes proposed a method, where the
probability distribution of individual waves was used, because the
traditional approa-ch did not take -Lnto account the possibility that the
highest wave in a 50 or 100 year period may occur_during the second severest
storm or even less severe storms. Tann and Fortnum used the fitted curve of
cumulative probability instead of the measured H -values. Tucker added as
kind of treshold level to the 'Battjes'-method, to exclude all the waves
below this level. A more detailed description of these methods is given by
Tucker (ref. 17). In spite of the improvements all these methods still
suffer from the shortcomings mentioned in paragraph l.2.

I
I
I

I
I
I

3.3 Extreme currents

I

Extreme currents are difficult to estimate. The first difficulty is to
obtain a sufficiently long series of observationsi few series extending over
more than a year exist because of the expense and the technical difficulties
of making good measurements. Further complications arise because currents
are variabie with depth at each location, and because they change over short
distances, particularly near the shore and around shallow sandbanks.
Finally, although most of the techniques for estimating extreme levels are
theoretically available for currents, their applications to the speed and
direct ion components of the current is much more complicated.

I

I
I
I The simplest method of analysing current observations at a particular depth

is to produce cumulative frequency distributions of the recorded speeds,
averaged over each sampling interval, and to extrapolate according to some

I
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I
West East

-0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 0.4 0.5
1.4 I1.3
1.2
1.1
1.0 I 2 I 2 2 INorth 0.9 7 20 25 20 13 10 I

0.8 28 46 74 96 59 29 5
0.7 2 44 122 148 142 89 43 3
0.6 4 96 143 146 115 88 50 5 I0.5 2 84 150 125 120 110 41 1
0.4 2 100 158 77 112 113 38
0.3 I 99 122 38 81 134 40
0.2 I 107 113 I 71 158 20 I0.1 74 110 0 47 185 11
0.0 103 87 1 32 182 11

-0.1 78 96 4 75 180 3
-0.2 79 105 6 92 150 I I-0.3 92 101 20 162 130
-0.4 64 116 81 216 35
-0.5 2 88 121 127 166 13
-0.6 3 96 115 146 89 2 I-0.7 10 85 104 113 41
-0.8 20 112 111 77 5

South -0.9 25 106 91 31
-1.0 I 41 72 34 2 I-1.1 I 34 39 5
-1.2 4 16 7
-1.3
-1.4 I

Table 3.1: Example of a joint frequency distribution of predicted tidal I
current components. Totally hourly values = 8784.

I
I

West East

-0.5 -0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 0.4 0.5 I0.6
0.5
0.4 3

North 0.3 I I 8 28 9 I0.2 I 3 9 38 258 79 4
Ol 3 10 38 280 1289 358 36 13 4
0.0 2 6 26 95 562 .1995 599 104 28 3

-0.1 2 13 47 379 1139 289 28 17 1 I-0.2 3 11 96 248 61 4 2
South -0.3 I 12 36 9

-0.4 I

-0.5 I
Table 3.2: Example of a joint frequency distribution of surge current I

components. Totally hourly values = 8301.
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I

fitted distribution. This method mayalso be applied to produce directional
estimated extremes by treating the speeds observed in each directional
sector as separate distributions. This method is fairly easy to apply, but
the reliability is invariably limited by-the.short.periods of data
available, the strong seasonal effects, and the correlation between

I

successive measurements,

I
Extreme currents'may also be estimated by separation of the observed current
vectors into tidal and surge components. Two-dimensional frequency
distribut'ions are obtained for each component, but in the. simplest case of
the currents being rectilinear or if only speeds are considered, the problem
may be treated in exactly- the same way as for estimating extreme waves.
Where the flow is not rectilinear, the flow in two orthogonal directions may
be treated separately. North-south and east-west components are usually
chosen, but the directions of the major and minor axes of the current
ellipses are also suitable. The maximum components in each of the four
directions may then be estimated from probability plots produced by
combining the probability distributions of the separate tidal and surge
components. Tables 3.1 and 3.2 show examples of these distributions, in
increments of 0.1 mis.

I
I
I
I
I

I

The probability of joint events is computed by multiplying the separate
probabilities from tables 3.1 and 3.2, and the total probability of a
particular observed current is obtained by summing along the appropriate
diagonals of the joint probability matrices. This combination may be
expressed mathematically as a two dimensional convolution process:

I

,I
I

DO(U,V) = f f DT(U-X,v-y)Ds(X,y)dxdy
-co -CD

(3.2 )

I
where DT(U,v) is the two-dimensional density function for the tidal
currents, where D (x,y) is the two-dimensional probability density function

5
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Figure 3.4: Joint-probability estiaates drawn for all segments, with
the continuous line representing the IOO-year return
current and the broken line the 50-year return current. I

I
I
I
I
I



I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I -

I

for the surge residual currents, and D (u,v) is the two-dimensionalo
probability density function for total observed currents. The parameters
u and vare the two orthogonal components of the total current. The
frequency distributions are first normaLized by the total number of hourly
values. The probability of each total current element is then computed as
the sum:

D (u s v )o
= L L DT(U-ih,v-jh)Ds(ih,jh)
i j

(3.3)

where i and jare integers and h is the class interval of 0.1 mis. Figure
3.3 shows a way of presenting joint probability estimates of extreme total
currents flowing to directions within segments 10,11 and 12 (numbering
clockwise from north: 135-150°, 150-165°, and 165-180°). An alternative
presentation, shown in figure 3.4, involves drawing the speeds which have a
particular return period, within the several segments. For calculation of
extre~e levels and extreme currents, it is wise to make conservative
estimates and to apply these with caution: however, for currents, because
the uncertainties are greater, extra caution is necessary (ref. 10).

3.4 Extreme winds

The lack of suitable measurements makes the estimation of wind speeds at sea
difficult. Estimates are possible by extrapolating the many years of
continuous recording at land stations in conjunct ion with the irregular
observations from ships at sea. These ship measurements are usually not very
accurate and are biased to low wind speeds because ships seek shelter in
extreme weather conditions.

For calculating wind forces on structures the three-second gust speed is
usually used. Hourly mean wind speeds are more appropriate for calculations
of wave generation. If no directional analysis is available it must be
assumed that the extreme winds may blow from any direction. The wind
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Figure 3.5: Wind average velocity profile.



I
I
I velocity above mean sea level varies significantly with height due to the

boundary layer induced by viscosity (figure 3.5). The speed at a height z
above mean sea level can be related to the speed at 10 meters height, WlO'
accordin~ to the relationship:

I
I
I
I

W z
z 0.100

= WlO(lO)- [mis] ( 3.4 )

I
I
I

For design purposes, it is usual to define a gust wind speed value with a-SO
or 100-year return periode In general, design will be most accurate if the
wind speed values used for the extrapolation are based on local
meteorological data sourees (refs. 6,10).

3.5 Extreme loads due to wind, waves and currents

I

Steel framed jackets in not too deep water can be analysed for extreme
structural stresses with acceptable accuracy by assuming a quasi-statie
structural behaviour of the structure. In this approach, wind and current
are assumed to apply statie loads with wave action applying adynamie
loading which is translated into dynamic structural stresses through a
quasi-statie stress analysis. The technique assumes that resonant
frequencies of structural vibrations are sufficiently separated from wave
frequencies, so that dynamic magnification has a very small effect on
calculated stresses.

I
I

I

I

Theoretically, the problem of finding extreme values for a specific type of
load is not more complicated than for any other parameter, such as wave
height or a current velocity. Once input data from a sufficiently long
period are available, standard statistical procedures can be applied for the
assessment of extreme values corresponding to any required return periode
Unfortunately, however, input data in terms of many years of recordings of
base shear forces or overturning moments are in general not available. Since
the joint probability distribution of wind, wave and current act ion over

I

I
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Figure 3.6: Traditional procedure for assessment of extreme va lues of
base shear.
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Figure 3.7: Alternative approach accounting for the joint probability
and directionality of environmental data. ,I
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I
I such long time scales is unknown, the design engineer has to choose a

different route to reach his goal.I
I

The route which is traditionally chosen involves the assessment of extreme
50 or 100-year return values of the individual environmental parameters
followed by the computation of the base shear and overturning moment induced
by these extreme conditions in combination, assuming that they occur
simultaneously and act in the same direction (figure 3.6). As stated in
paragraph 1.2 this is of course a rather conservative approach.

I
I
I The importance of joint probability and directionality of wind, wave and

current data applied in the design of offshore structures was already
investigated by Nielsen a.o. (ref. 7). Their approach involved the
computation of the maximum base shear and overturning moment for the worst
storms during a three year period of site specific measurements and a
subsequent extrapolation to a 50 and 100-year return period (figure 3.7).
This resulted in significant reductions of the 100-year values of base shear
and overturning moment.

I
I
I
I
I
I
,I
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4. THE ANALYTICAL LOAD RELATIONSHIP

4.1 Introduction

Farces on a structural member of an offshore structure due to waves and
currents, are commonly determined with the Morison equation (i.e. equation
2.2). By integrating this equation over depth and simplifying it according
to same linearisations and assumptions to be mentioned later, an analytical
relationship can be established between the global loads on a vertical
column (base shear, F, or overturning moment, M) on the one hand, and crest
height, a, current velocity, v, and period, T, on the other. In addition to
this a term representing the wind force may be added, sa that all
environmental elements are included.

The result of the analysis is a rather simple equation with wind, wave, and
current parameters, multiplied by some constants. These constants can be
refined numerically with a computer program, LOAD, that uses more
sophisticated kinematics models. Representative hindcast data cab be used as
input conditions. Here a case will be considered of single column with
constant diameter. Extending the analysis to a real structure may be
possible by representing the structure by a group of closely spaced vertical
columns, and by simply adjusting the constants in the equation.

4.2 Morison's equation integrated over a single column

The starting point for obtaining an approximate analytical relationship
between crest height, a, and base shear, F, is Morison's equation. This
equation describes the resultant force per unit length on a single column
with constant diameter, submerged to a mean water depth, d, see definition
sketch in figure 4.1:
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Figure 4.1: Single pile under fluid loading, definition sketch.
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I

F = A Û + B (v + u ) Iv + U I (4.1 )n n n n n n

where: A = (C .!O2)n MP4 n

and 1
B = (CoP"2°)nn

I

I
I

The horizontal component of water particle velocity is composed of a mean
depth current, v, and a wave-induced velocity, u , at a point below then
surface. Initially only cases are considered where current and wave induced
velocity are both in the direction of wave propagation, so that
(v + u ) will always be positive. Equation (4.1) can then be expressed as:

nI
I F = A ü + B (v + U )2n n n n n (4.2)

I
The influence of the wave and current directions will be taken into account
in a later stage.

I
I

The total base shear, F, can be obtained by integrating F over the entiren
submerged length of the column. A vertical coordinate, S, is defined with
its origin at mean sea level. The instantaneous water level at the column is
11(t). Thus:

I
I

11
F = f

-d
F dSn

(4.3)

I
I

The velocity u equals u at mean sea level when corrections for non-
n 0

linearity under large crests are neglected, and can be expressed as a
function of the vertical coordinate, S. If the waves are assumed to be of
small-amplitude and narrow banded, then:

I
u
n

cosh k(d+S)
= Uo sinh kd (4.4a)

I
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Figure 4.2: Wave induced fluid partical velocity profile for shallow
and deep water conditions. I
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I
I
I where k is the wave number (ref. 1). The corresponding accelerations,

can be obtained according to a similar relation:
u ,
n

I
I u

n
. cosh k(d+S)

= Uo sinh kd (4.4b)

I
Assuming that kd is very large, i.e. only deep water cases are considered,
these expressions can be simplified into (see figure 4.2):

I u = u kSen 0

and
= Ü

kSu en 0

(4.5a)

(4. 5b)

I

However, waves that are likely to generate an extreme response are large-
amplitude waves, for which equations (4.5a) and (4.5b) overpredict the
velocities and accelerations in the wave crests. Therefore a technique
called delta-stretching has been developed. It is a simple empirical
correction involving a linear transformation of the S axis in the linear
theory (ref. 11). It is characterized by two parameters: the stretching
depth, 0 , and the stretching parameter, V. If S > -0 it is replaced in

s s
equation (4.3) by Ss' where:

I
I
I

I (S + 0 )
S

flV + 0
S

fI + 0
S

- 0s
( 4.6)

I where 0 is typically set to one half of the significant wave height, H ,s s
and V typically equals 0.3.

I Integrating equation (4.2) over depth involves the integration of the
2+ u ) . A and Bare depth

n n n
B are taken as constants A
n
into account the change in

andI
inertia term, A ü , and the drag term, B (vn n n
dependent parameters. For this study A andn

I
B for S ~ 0, and A and B for S > 0, taking

5 5
inertia and drag coefficients due to fouling by marine life below mean sea
level.

I
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Working out equation (4.3) results in:

11 11
F = f A ü dS + f

-d n n . -d
2 11 11 2B v dS + f 2B vu dS + f B u dSn -d n n -d n n

(4.7)

For examp~e integration of the inertia term gives as aresuit:

11
f
-d

-kO s
11+0 A kO Vn(V-l)

s . • [ S 11+0
+ 11V'+0 j210 e s

s

kO Vn(V-l)
s 11+0s }]-kO A kVI1

s + ~(e
AA ü dS =n n

e- e

( 4.8)

Since only deep water conditions are considered here, a term with e-kd has
been neglected. For x « 1 an exponential term e±x can be approximated by
its first order Taylor series into (1 ± x). 50 expressions like equation
(4.8) can be simplified by linearisations of the exponentia1 terms.

-kO s 1 kOe :::: -
S

k11V
e :::: 1 + k11V

(4.9a)

(4.9b)

e

kO Vn(V-1)
s 11+0s (4.9c)::::1 + kO V'll(V-l)

S 11+0s

50 for each term a simplified expression can be obtained:

11 A A
f A ü dS -( 1

s •
= + -k11)u

-d n n k A 0

11
B v2dS

B 11 2
J Bd(l s -lv= +

-d n B d

11 2B B
J 2B vu dS -(1 s

= + -kl1)VU
-d n n k B 0

(4.10)

(4.11)

(4.12)
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(4.13)

I

I

Linearisation of the exponential terms near mean sea level eliminates the
delta-stretching parameters so that they do not appear in the approximations
above, but for global loading calculations it is almost exactly eqQivalent
to delta-stretching as shown in figure 4.3 (ref. 16). As a result of the
integration of equation (4.2), using the approximations mentioned above, the
base shear force, which is the total integrated force due to waves and
currents under a wave crest, is given by:

I

I
I
I
I
I

(4.14)

I

This expression includes non-linear free surface effects and changes in the
force coefficients due to marine roughness. The k~-term in the equation-is
of the same order as the wave slope, which is generally small in deep water.

-1 -1So ~ «k and also, again based upon the deep water assumption, k «d,
thus the ~/d correct ion to the current-induced drag term can be neglected
safely.

I

I

Equation (4.14) would be more practical if ü could be substituted with someo
function of u • This may be an approximate function, since extreme base

o
shear forces on steel structures tend to be drag dominated, so the inertial
contribution is expected to be small, that is:

I

I
I

A As~o(l + ~k~) « Extreme (F) (4.15)

In this sense it may be useful to consider the peak force, F, which occurs
during the passage of a wave, rather than the instantaneous force, F(t).
Since the horizontal wave-induced particle velocities are in phase with the

I
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Figure 4.4: Surface elevation profile during the passage of a large
wave. I
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I
I
I surface elevation, a maximum drag force comes simultaneously with a peak

value of surface elevation, ~. Considering peak values only and assuming
that the waves are nearly narrow~banded, the wave-induced velocity can be
approximated -by:-

I
I
I

u == u cos Ijl
0

u == -uw sin Ijl
0

n == ~ cos Ijl

(4.16a)

(4.16b)

I (4.16c)

where u is a slowly varying amplitude that defines the peaks in u and ljI=wt,o
a smoothly varying phase defined such that IjI=O at a wave crest. The
instantaneous surface elevation, ~(t), relatively hardly varies near the
peak of a passing wave (figure 4.4).

I
Approximations (4.16a) and. (4.16b) can be further reduced by taking the
first order Taylor series of the cos-term, since Ijl will be small for small
inertial contributions, so:

I ... 2
u cos Ijl == u(l - Ijl /2) (4.17a)

I -uw sin Ijl == -uwljl (4.17b)

I Substitution of these approximations in equation (4.14) yields:

,I F =

I
I
I

(4.18)

where terms with Ijl' have been neglected, since Ijl is small in the vicinity of
the crest. The instantaneous force is at its maximum value when the

I 29

I



I
I
I
I
I-
I
I

'\ I
~~ I

x Inertia Force

-6.0 -4.~ -3.0 -I.~ 0.0

time (sec)
1.5 3.0 4.5 6.0 7.5

o

'" + Drag Force

- Total Force

Figure 4.5: Typical wave force time history profile during the passage
of a large wave.
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I

derivative of the force with respect to the phase angle, W, ,equals zero.
Physically this implies for drag dominant fluid forces, that the peak force,
A

Iv
F, occurs shortly before the wave crest passes the column (figure 4.5). Thus
at peaks in F, dF/dW = 0 or:

I w =
(HA k17/A)s (4.19)

Aw

2k v(1+B k17/B)B/k + u(1+2B k17/B)B/2ks s

I
and

I
=

I
2 2 A 2A w (1+A k17/A)s=

2Bk 2v/u(1+B k17/B) + 1 + 2B k17/Bs s
2Bk 2v/u + 1

I
I

-1Since A /A < 1, B IB < 1 and 17«k ,the correction terms A k17/A and
A s s s

B k17/B in this expression have been omitted, because they represent small
s

corrections on an already small quantity. Thus finally the following
equation for maximum base shear force in a single wave is obtained:

2 2
A w

F = 2Bk
(4.20)

I
I
I

Though the caps (A) over F, u and 17have been omitted for convenience, it
has to be emphasized that this equation strictly refers to peak values only.
Nevertheless, especially when F is large, the base shear force will be drag
dominated, so that the inaccuracies, which will develop only in the inertial
term, will be smalle

I To facilitate the calibration of the constants in the loading equation and
the generation of base shear statistics some of the parameters will be
substituted, so that data derived from the NESS database can be used as an
input. Since 17 = u /w, where w is the peak frequency of ocean surface_

o
I.
I
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elevation, and u = w*a in view of the assumption of deep water, .~ in the
o

equat ion can be replaced by crest height, a. According to the di·spersion
2relation for deep water w equals gk, so wave number k can be written down

2as w jg. Substitution of these ehanged par ame.t.e rs.vtnveque eLon (4.20) yields:
I

I
2

F = ~2B
2 2 2 2 3~a + Bdv + ~ vaT + 4~B va +·~2 a + 4~ B avT + ~a ~ s T s T2

(4.21)

I
I

2~where T = --, the peak period .of ocean surface elevation. With this equation
w

I

a relationship between crest height, a, and base shear4 F, has been
established. For a particular structure, here a single column, A, Band Bs
are considered to be constant. Now equation (4.21) gives base shear, F, as a
function of three parameters: crest height, a, current velocity, v, and wave
period, T. Thus:

I F(a,v,T) *= A
2~a * 2 * * va+ B v + C vaT + 0vT + ~a T

3* 2 * a+ E a + F
T2

(4.22)

I * * * * * *where A , B , C , 0 , E , and F are constants related to the structure.

I

I
I

The analytical relationship according to equation (4.22) still does not
contain all environmental conditions. Current and waves are considered, but
wind and directional spreading of the waves have to be taken into account as
well. Moreover waves and current are assumed to act in the same direction,
so a reduction of current, v, related to the angle between the direction of
wave propagation and current direction, is required.

I

I 4.3 Wave and current directions

The loading equation (4.22) generated in the previous paragraph assumes that
waves and currents act in the same direction. This leads to an overestimate
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IFigure 4.6: Resultant horizontal fluid partiele velocity due ta waves

and currents, acting under a mutual angle 8.
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Figure 4.7: Resultant horizantal loading, F , due to drag and inertia
components, acting under a mutu~l angle 7 .n I
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I
1 of the structural loading, since waves and currents with the same direction

are the exception, rather than the rule. To account for the influence of the
directions on the -loading an extra parameter is introduced: 9, the angle
between the wave direction and the current direction.

1
I
1

If w is the re~ultant horizontal fluid particle velocity due to waves andn
currents, then equation (4.2) can be rewritten as:

1 F = I + D = A ü + B w2n n n n n n n (4.23)

1 Figure (4.6) shows that the drag term in this equation can be expressed as:

1 D = B [(u + v*cos9)2 + (v*sin9)2]
n n n

1
Dn

2 2
= B (u + 2u v*cos9 + v )n n n (4.24)

I
Since directions are involved, the inertia and drag force in equation (4.23)
do not necessarily act in the same direction, and they have to be added as
vectors (figure 4.7).

1 F = I + D+n 11 11
(4.25)

1 (4.26)

-I where ~ is the depth dependent angle between the direction of the waves andn
the drag force. This angle equals 9 near the sea bottom (figure 4.8).

1 If the influence of ~ is ignored then an equation like (4.23) remains,n
which is easy to integrate.I

1
11

F = f
-d

1'1 2 2A ü dS + f B (u + 2u v*cos9 + v )dSn n -d n n n (4.27)

1
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Figure 4.8: The variation with depth of the angle between the inertia
and drag force.
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I

For 8 = 0 this equation reduces to (4.7) and even for small theta's the
assumption that ~n ~ 0 over the whole depth is appropriate. However, this is
not the case if 8 has a relatively large value. Near the sea surface, where
under extreme conditions the wave-induced velocity will be much larger than
the current velocity, ~ will always be relatively small, no matter what

n
value 8 has. In deeper water, however, where the wave-induced velocity
decreases to zero and the current will predominate, the influence of ~n
becomes more significant. By ignoring the influence of ~ the resultant dragn
force is assumed to act "in-line" with the inertia force, i.e. in the

I
I

I direction of wave propagation, over the whole depth. So equation (4.27) will
result in an overestimate of the total base shear. This effect is mainly of
influence for negative currents, thus when: 90 < 8 < 270 deg, but generally
it will be small because of the wave drag dominance.

I
I
I

Working out equation (4.27) according to the analysis described in the
previous paragraph results in an analytical relationship similar to (4.22).

I F(a,v,T,8) *= A ~a * 2 * * va2cos8 * 2 * a3+ B v + C vaTcos8 + 0 + E a + F
T T2vTcos8+~a

I (4.28)

I

I

The main problem with putting the directions into the model is that two more
or less conflicting goals have to be achieved: on the one hand the model has
to describe the behaviour of the loading as accurately as possible and for
as many different cases as possible; on the other hand the expression for
force, F , on a certain depth cannot be too complex like in equation (4.26),

n
because it has to be integrated over depth and result in an analytical
relationship which has to be invertable. However, if certain assumptions
would lead to for example a general overestimate of the base shear, this can
be partly compensated in the calibration of the constants, since these
constants are adjusted to match numerical simulations using representative
NESS data as an input.

I
I
I
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I 4.4 Wind forces

I
I

To take account of the forces due to wind an extra term is put in equation
(4.28). An expression for-the wind generated d~g force _in_the direction of
the waves is given by:

I FW = C w2 cosBwW

where Cw is defined as:

Cw
1

PaS Co= 2

So an extra term is added

(4.29)

I
I (4.30)

I
to equation (4.28), dependent on windspeed, W,

wind direction - or to be more specific the ang1e between wind and wave
direction - Bw' air density, Pa' a drag coefficient, CD' and a
representative topside area, S. A representative additiona1 wind force term
is with:

I
I Cw = 0.1 kg/m (4.31)

I This wou1d lead to a contribution by the wind of 10 % to the tota1 base
shear under a conventiona1 design condition of 12.5 m crest height and 1 mis
in-1ine current.I

I
I

4.5 Directional spreading

I
I

A two-dimensiona1 surfa~e e1evation spectrum is defined as S (w,e); that is
~~

a function of wave frequency, w, and wave direction, e. In the case of
directiona1 spreading this spectrum is re1ated to the frequency spectrum
S (w) by:
~~

I
S (w,e) = G(e) S (w)
~~ ~~

(4.33)
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Figure 4.9: Directional spreading.
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where G(e) is an angular spreading function. The two-dimensional spectrum of
the horizontal fluid particle velocity can then be written as:

I
2 2

5 (w,e) = w . 5· (w) G(e) cos e·uu .~~ (4.34)

I· The directional spreading in the wave p~ocess ~eads to a reduction in the
variance of the velocity and acceleration in the mean direction of the
waves (figure 4.9). This means that less energy is transported in the main
wave direction, which causes·a reduction of the wave induced water particle
velocities and accelerations. The variance of the directional velocity
component in the mean- direction is:

I
I

co 'Ir

I w2 5 (w) G(S) cos2e dw deuu (4.35)I
I

20=1u -co -'Ir

The variance of the velocity· in a uni-directional sea with the same
frequency spectrum of surface elevation is given by:

I co 'Ir.. 2
( w 5 (w ) G(e) dw de -uu

co

I
I

-co -'Ir

I· ,5 (w) dwuu
-al

(4.36)= I

I

In eqûation (4.28) the wave field is considered to be uni-directional, 50

that a reduction of t he wave induced par.tLcLe velocities and accelerations
due to directional spreading is not taken into account. A correction should
be applied to several term~ in the equation accounting for this effect. The
reduction factor for directional spreading is given by:

I 2
0 al

~2 u 1
2 de= = G(w) cos e

2
·0 -al.uo

(4.37)

I
I One way to describe the spreading function G(e) is to assurne that it follows

the shapé·of a normal density function (figure 4.10), 50 that:

I
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Figure 4.10: Spreading function G(e) with the shape of a noraa1 density
function.
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I

G(S) (4.38)

I where 09 is the directional spreading parameter, as given in the NESS data
base. Substituting G(S) in equation (4.37) by this function yields:

I 4>2 = 1 [tr. _e2
ol exp(---2) =
(2tr) 09 _40

" 2°9

1 22 (1 + exp(-209» (4.39)

I
I

This expression can be further reduced by taking the second order Taylor
series, so that:

I (4.40)

I Taking the reduction due to directional spreading into account and also the
wind contribution, the load equation becomes:

I
*F = A

2tra * 2 2 * * va cos9+ B v cos 9 + C 4>vaTcos9 + D 4> + •.•vTcos9 + tra T

I
(4.42)

I
I 4.6 CUrrent blockage

I

Up till now only the single column case has been considered. The analysis
may be extended to a real structure, modelled by a group of closely spaced
vertical piles, by multiplying all the terms with an adaption factor. In the
calculations a steady current measured or estimated for an open sea is used.
However, the average current within a structure is lower than that far
upstream, due to the divergence of the flow (figure 4.11). This influence
would lead to a significant overestimate of the current components in the

I
I

I
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I
I
I loading equation. Therefore this effect is taken into account by introducing

I a b10ckage factor (ref. 14). This factor reduces the current, v,
to:

according

I (4.43)

I
I

where A is the projected area of the structural elements, as used in the
Morison equation, and A is the area normal to the direction of flowc
enclosed by the cross-section of the structure. The ratio A/A typicallyc
equals 1, so that with a drag coefficient of value Co = 1.2 the blockage
factor reducing the current, v, for this study is estimated to be 0.77.I

I 4.7 Calibration of constants

I

I

In the previous paragraphs an analytical relationship has been established
for a loading on an offshore structure due to wind, waves and current,
including all environmental elements. This equation will be used for load
statistics and therefore should be representative for various environmental
storm conditions within a range of interest. The constants which appear in
the equation can be calibrated against a numerical 10ading model, for
representative data, taken from the NESS data base.

I

I
I For this purpose a computer program was used, which calculates the fluid

load (base shear and overturning moment) on vertical piles separated from
each other, by numerical integration over depth. The individual piles are
used to simu1ate 1umped circular members, corner posts and gusset plates
(when present).

I
I
I

For some representative storm data the loads on a single column with
constant diameter submerged in a mean water depth, d, are calculated
analytical1y with the relationship according to equation (4.28) on the one
hand, and numerically with the LOAD-program on the other. The results ofI
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I

I

both calculations are compared and the constants in the equation are
adjusted. in such a way that for all selected storm data the analytical
answers are in as close agreement as possible with the numerical values .
(figure 4.12). As an illustration figure 4.13 gives the storm history of th~
significant wave height, H , wave period, T , current velocity, v, and wind

s p
speed, W, for an example storm, S .•

J

I

I
I 4.7.1 The base shear model

I From the NESS data base twelve representative cases were selected over a
range of.significant wave height of 5.7 m to 11.2 m. With the LOAD-computer
program mentioned above the total base shear for every particular case was
calculated and then used as an input for the analytical re1ationship,
looking for the best fit of the constants. First the influence of the
current direct ion was ignored, assuming that current and waves had the same
direction (equation 4.22), leading to an overestimate of the base shear, but
helpful for the calibration. An obvious method for calibrating the constants
seemed to be a Lf neer regression process. However, although this analysis
gave the best fitting results, some constants became negative, loosing their
physical significanee. Therefore another approximation was chosen. All the
constants can be written in terms of physical constants and coefficients;
according to equation (4.21) this yie1ds:

I
I
I
I
I
I

I

*
2

A = ~ (4.44a)
2B

*B = Bd (4.44b)

* ~C = (4.44c)
1T

*D = 41TB (4.44d)
s

* ~E = (4.44e)
2

I
I
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I
I
I (4.44f)

I
I

where d is the depth and A, B, and B represent respectively the inertia
s

term, the drag term for rough members and the.drag term for smooth members.
As a startingpoint the constants (4.44a) to (4.44f) were calculated with the
same values for A, B, and B as used in the load program •.Then they were put

s
in the equation and adjusted by multiplying them simultaneously or indepen-
dently. Although this approach is not based on any analytical background,
but on a tr~al and error process, the results were quite satisfactory: the
numerically generated loads were reproduced with an accuracy of about 5% for
base shear. Figures 4.14a and 4.15a illustrate this.

I
I
I
I Af ter the calibration the wind term is added and also the reduction factors

I
for directional spreading and current blockage are included, because the
load program did not account for these effects. Finally the analytical base
shear model is found to be:

I v a2~cosB
F = 105*v2 + 2.7l*v aT~cosB + 4.24* s + 3.69*~2a2 + •..ssT

I ~2a3
••• + 9.81*---2- + O.l*W2coSBw

T
(4.45)

I
I

where v is a short notation for O.77*v. The inertia force in this equation
s

is totally neglected. This was a result of the fitting procedure. The
contribution of this term in extreme conditions is very small, so neglecting
the term is permitted.I

I 4.1.2 The overturning moment model

I The generation of an approximate analytical relationship between overturning
moment, M, and the environmental parameters is essentially the same as for

I
I
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I
I
I base shear. The Morison equation describing the resultant moment per unit

length on a single ·column with constant diameter, submerged to a mean water
depth, d, can be expressed as:I

I M = A (d + S)ü + B (d + S)(v + u )2n n n n n (4.46)

I Similarily as for base shear the total overturning moment is determined by
integration of dM over depth.

I
M =

Tl
f

-d
M dS
n

(4.47)

I
I
I

If the same analysis is applied as for base shear in the final analytical
relationship some additional correction terms depending on the wave period,
T, are found.

v Tcos8+1Tas

v a2~cos8*2 * *2 * s+ B v + C (l-K T )v aT~cos8 + 0 -=---T----s s + •••

I
* * 2 1TaM = A (l-K T )

I
~2a3

* * 2 2 *••• + E (l-K T)a + F (4.48)

I

I

* A2gdwhere: A = (4.49a)2B

* lBd2B = (4.49b)2

* Bgd
C = (4.49c)

1T

*
0 = 41TB d (4.49d)s

* Bgd
E = (4.4ge)2

*F = 41T1B d (4.49f)s

I
I
I
I
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I
I (4.49g)

I

*K is an extra constant in the equation. However, since period, T, does not
vary much, the correction terms are included in the other constants. This is
done for convenience, 50 that the load equation for overturning moment is
similar to equation (4.28). Only the constants in the equation will have
different numerical values. As a first estimate the constants are calculated

I

I according to their physical significance. Subsequently the same calibration
procedure is used as for base shear. The accuracy of the calibration was
even better than for base shear, namely 3%, as illustrated in figures 4.14b
and 4.15b.I

I The moment due to wind forces is determined by multiplying the base shear
wind term by a force arm, r, which is estimated to be 200 meters. In general
the moment due to wind can be described as:I

I * 2= G W cos8w (4.50)

I *The value of G then follows from:

I
*G = C *r

W
= 20 kg (4.51)

I
For the overturning moment the load equation can be expressed as:

I
2v a ~cos9

M = 2480* ~a + 14622*v2 + 284.6*v aT~cos9 + 590.0*~s~-----v Tcos9+~a ssT
5

+ •••

I 219.0*W cos9w (4.52)

I
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I
I 4.8 Inversion of the analytical load equation

I

I

The. load equations for base shear and overturning moment can be used to
transform the probability distribution functions of wave crest elevation
into probability distribution functions of a response, like base shear. This
will be explained in paragraph 5.3.2. Hence, equations (4.45) and (4.52)
hav~ to be inverted to give an expression for crest height, a, as a function
of base shear, F, and overturning moment, M, respectively. For example for F
this yields:

I

I- a(F)
1

= (F-,a(al) 2
t3(a)

(4.53)

I where:
* 1Ta * 2 * * 2a(a) - A + B v +·C v aT~cos9 + G W cos9w

v Tcos9+1Ta s s
s

and:
*

v cos9
* *s at3(a) = D + E + FT T2

(4.54a)

I
I

(4.54b)

I As can be seen from these equations both a and t3are functions of crest
height, a, which means that a(M) can only be solved by iteration:

I
a. (F)
1

(4.55)

I
Test results show that the iteration process converges rather quickly. The
starting value, ao' used in the iteration process is chosen to be 10 meters.

I
I
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I 5. STATISTICAL STORM SIMlLARITY MODEL FOR LOADING

I
I

5.1 Introduction

I

Traditional design procedures are based on the extrapolation of wave
elevation, current velocity and wind speed to 100 year extremes directly
from records of these environmental parameters, taken every 3 hours for a
period of 15 or 20 minutes. The variables occurring in 3-hour intervals are
treated in such a way that they are assumed to be independent, which they
are not. Since individual storms are much more likely to be uncorrelated, it
was suggested in KSEPL to consider particularly severe storms and try to
find out if there is any similarity between these individual events.
Supposing there is, it may be possible to create a model storm, which in one
way or another is representative of every random storm. The probability
distribution of any environmental parameter for such a storm can be
described by its most probable extreme, an event with a probability of not
being exceeded of approximately 37 %. For design the distribution for any
random storm may be extrapolated to any desirabie return periode

I

I
I
I
I
I According to the line of thoughts sketched briefly above, previous research

in KSEPL showed that it is possible to create a model storm for wave
heights (ref. 5). From time series of significant wave height, H , thes
probability distribution, P(h), of the extreme wave height of each storm was
calculated. Subsequently the corresponding most probable extreme wave
heights, H , were determined for each storm. Rescaling the various P(h)-mp
distributions, by dividing them by their most probable extreme wave height,
resulted in a remarkable resemblance, all functions approximately lying on
the same curve. Thus all distribution functions could be well represented by

I
I
I
I
I

one standard extreme value distribution in which H appeared as amp
for a storm is given, the probability of the largestparameter. So if Hmp

wave, pr(HShlH ), is known. This standard curve is called the "model curve"mp
and represents the probability distribution of the largest wave in a storm,

I
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I
I given the most probable extreme wave height. It was concluded from these

results that the required similarity can be found in the probability
distributions of extreme wave height of individual severe storms.I

I

I

Simultaneously with the creation of a model distribution curve, representing
the short term statistics of all individual storms, a new asymptotic method
was developed to estimate the probability distribution of the most probable
wave heights, H , namely P(H ). Assuming that certain asymptoticmp mp
properties of extreme values are applicable to storms, it was possible to
extrapolate from a short data base to a 100 year level. The combination of
P(H ) and p(hlH ) was used to calculate the probability distribution ofmp mp
the largest wave height Eor any random storm. The probability density of the
most probable extreme of the wave heights of storms and the probability
distribution of the extreme individual wave height conditioned on that most
probable extreme value, are the two ingredients for determining this random
storm probability distribution:

I

I
I
I
I p(hlrandom storm) pr(H<hIH )*p(H )*d(H )mp mp mp (5.1)

I Essentially pr(H<hIH ) provides short term information, while p(H )mp mp
provides the long term information. The density function of the most
probable extreme wave height is determined by differentiation of the
corresponding probability distribution function, P(H ).mp

I
I
I

From the NESS data base the average number of storms per year, ~, is given,
so that the probability of not exceeding h during a desired return period,
y, can be determined by raising the random storm distribution to the power
y*~, thus:I

I
y*~

p(hly years) = [ p(hlrandom storm) ] (5.2)

I
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I

The wave height with a 100-year return period is then the most probab1e
extreme wave height of the 100-year distribution function obtained by
setting y=100 in equation (5.2).

Applying the storm similarity method to wave heights was rather successful.
In a later stage also surge and tide were included in the model (ref. 5).
The next step is to apply the same theory to the global loading on an
offshore structure, i.e. base shear and base overturning moment, which is
the purpose of this project. This may be very interesting, because it may be
possible to include all environmental conditions (waves, as weIl as wind and
current) in one model, so that their extremes are no longer treated as
independent. The probability distributions for base shear and overturning
moment can be deduced from the crest height probabilities by way of the
analytical load relationship generated in chapter 4.

5.2 Environmental data and storm selection

The new attempt to describe the joint statistics of wind, waves and current
in terms of a structural loading has been made possible by the availability
of the NESS data base. This hindcast data base contains almost all relevant
data required to describe the behaviour of the North Sea over a period of 25
years (1963 to 1988). The data is simulated with all environmental and
meteorological information available, such as wind speed, wind direction,
tida1- and surge elevation in coastal areas, etc. The simulation model gives
all the environmental variables describing the sea state for three hour
intervals continuously from October till March, but in the other months only
during storms.

For every three hour interval the NESS data base gives information about 11
environmental parameters, including:

- wind speed, W
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I
I - wind direction, 9w

- significant wave height, HsI

I

- peak period, Tp
- wave direction, 9H
- directional spreading, 09

- depth mean residual current, vres
- depth mean total current, v
- residual current direction, 9v,res
- total current direct ion, 9v

I

I
I The total current includes both storm driven and tidal current.

I
A representative selection of these data was used earlier to calibrate the
constants of the analytical load relationship. For the statistical analysis
storms are selected according to their H -values, since waves provide thes
dominant contribution to the loading on an offshore structure. Thus a storm
may be considered to be severe iE its significant wave height is high. Since
only extreme events are of interest, it would not make any sense to consider
low sea states. That is why a lower limit for H of 5 meters is introduceds
for the select ion of the storms. Information for sea states below this limit

I
I
I is not of any significant influence on the results of an extreme event study

such as this. Cutting off the continuous random signal at this 5 m-limit,
also serves to break the H -history into a series of separate storms. Thiss
way a storm can be defined as a period of severe sea state in which the
significant wave height is continuously higher than 5 meters.

I
I
I If a continuous time period contains two high peaks it seems to be

unreasonable to assume that this is necessarily just one storm with two
peaks. If the time period between the two peaks is rather long, it might
weIl be two storms. Therefore an additional definition is made for theseI

I

special cases. The storm definition used here is the same as was defined by
Heijermans (ref. 5), and is described briefly. Let ~t be the duration of the
time interval between the two highest values of H within a singles

I
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I
I continuous time series in which H exceeds the threshold value of 5 m, thens

three cases can be distinguished:I
I 1) If ~t S 12 hours, then the event is described as one storm.

I
2) If 12 < ~t < 24 hours, then the storm definition depends on the

ratio of the lowest H between the two highest peaks (H h' ands s,troug
the highest value of the lower peak (H 2).s,max

I 2a) If H < 0.8*H 2' then the event is described as twos,trough s,max
storms.I

I 2b) If H > 0.8*H 2' then the event is described as ones,trough s,max
storm.

I 3) If ~t ~ 24 hours, then the event is described as two storms.

I
I

The 0.8*H 2-1imit in the second case is based on the fact that lower H -s,max s
values of .the storm do not contribute to the shape of the probablility
distribution function.

I If the storms are defined as described above, 451 storms can be selected
from the NESS data base for the considered location. Unfortunately there are
some gaps in the data base: for the storms during the summer seasons there
is no information about current, so that these periods cannot be used
directly. Therefore only storms during the winter seasons are considered
initially.

I
I
I

I

The location considered in this study is a NESS grid point in the northern
North Sea. It appears that the biggest storms come from two directions:
north-west (where: 90 deg < 9 < 180 deg from north) and south-eaststorm
(where: 270 deg < 9 < 360 deg) The direction of a storm, 9 , isstorm· storm
defined as the wind direct ion at the time of the highest H -value of as

I
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I
I
I storm. Since the north-west storms appear to be more severe than the south-

east storms, and storms coming from the two directions are independent, only
the north-west storms are considered, which leaves 150 storms to beI

I analysed.

I 5.3 Loading statistics for a single storm

I One of the ultimate objectives is to predict the probability that a certain
value of base shear force will not be exceeded in the 25 years of
hindcasting. This probability is conditioned on the hindcast storm history
and is derived with the help of the approximate analytical load relationship
between crest height and response, generated in chapter 4. This relation
can be used to transform the probabi-lity distribution functions of crest
height into probability distribution functions of response.

I
I
I
I 5.3.1 Crest height statistics within a 3-hour interval

I
I

In a Gaussian proces with a narrow banded spectrum the crest elevations are
Rayleigh distributed. In the case of a broader spectrum, where theoretically
the probability distribution of the crest elevations is more complicated,
empirically the Rayleigh distribution appears to be a rather good
approximation for the higher crests (ref. 2).

I

I

Thus the probability distribution of individual crest elevation, a, in a
stationary interval, i (i.e. an interval which is so short, that the
statistical parameters, like average and standard deviation, can be treated
as if they do not vary with time), with a significant wave height, H ., isS1

I
given by the Rayleigh distribution (figure 5.1):

I pr(a~ali) = R(ali) = 1 - exp{-8(a/H .)2}S1
(5.3)

I
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I
I

I

This is a probability conditioned on the interval, i, that is on all the
parameters in i. Apart from H ., these include current, v., peak period,

51 1

T ., wind speed, W.: and 50 on. Of course for crest height the controlling
p1 1

paramerer_is-H .•
51

I

I
The distribution-of the largest crest in the interval, i, and hence the
probability that in a 3~hour interval a certain level a wil 1 not be
exceeded, is:

I N.
pr(a::5ali,Ni) = [R(ali)] 1 ( 5.4 )

I
I

where N. is the number of crests in the interval (figure 5.2). The non-
1

exceedance probability of the individual crest heights is raised to the
power of N. on the assumption that these crest heights are statistically

1

independent. This assumption is made to simplify the calculation of the
probability distribution of the largest crest in the interval and is in fact
a slightly conservative estimate of this distribution.

I
I
I

The number of crests in the interval depends on the zero crossing period,
T , of the waves:
z

I ( 5.5 )

I where: àr = duration in seconds of a 3-hour interval = 10800 5

I However, the NESS data base only gives information of the peak period, T ,
P

which is ~inearly related to the zero-up crossing periode This relationship
depends on the chosen wave spectrum. The JON SWAP spectrum, usually used for
the North Sea, gives the following relation:I

I T = 0.778*T
z P

(5.6)
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Analytical load relationship for Base Shear
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I

so that:

N. =
1.

(5.7)
0.778*T

P

The probabitity distribution for the extreme value of base shear force F in
a 3-hour interval corresponding with (~.4) is:

N.
Pr(FSfli) = [R(ali)] 1. ( 5.8)

where crest height, a, in this expression is a function of F: a=a(F). This
is the inverse of the analytical load relationship, where all environmental
parameters are included.

5.3.2 Transformation of probability distribution functions

In the previous chapter an analytical relationship has been generated
between base shear force, F, crest height, a, and the other environmental
parameters, which vary for different 3-hour intervals (figures 5.3 & 5.4).

F = F(a,i) (5.9)

These other parameters are:

- wave period, T.
1.

- current velocity, v.
1.

- current direct ion relatively to wave direction, 9.
1.

- directional spreading parameter, 09 .
,1.

- wind speed, W.
1.

- wind direction relatively to wave direction, 9W .,1
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I
I Suppose that the environmental parameters are all constant over the

interval, i. Then a monotinic relationship between F and a exists; i.e. F(a)
can be inverted to a(F), which means that if a probability density function
is known for variable, a, it can be used to determine the the corresponding
probability density function for F (figures 5.5 & 5.6).

I
I
I
I

The probability that crest height, a, lies in a small interval [a,a+da] is:

Pr(a<aSa+da) = p(a)*da (5.10)

I
I
I
I
I

It is the same event that base shear, F, lies in the corresponding interval
[f,f+df]:

pr(f<FSf+df) = p(f)*df (5.11)

Hence:

p(f)*df = p(a)*da (5.12)

I
I
I
I

By integrating the density function p(a) over the range [-~;a] the
probability distribution of a is generated, which equals the density
function of F integrated over a range [-~;f].

f
f p(f)*df = a

f p(a)*da (5.13)

or:

Pr(FSf) = Pr(aSa) (5.14)

I
Since the environmental parameters, i, are different for each 3-hour
interval, this transformation of variables between crest elevation and load

I
I 51

I



I
I
I
I
I
I
I
I
I
I
I
I
I,
I
,I
I
I
I
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ti

I

is also different for each interval. Thus equations (5.12) and (5.14) are
replaced by:

p(fli)*df = p(ali)*da (5.15)

and

pr(FSfli) = pr(aSali) (5.16)

where the probabilities are conditioned on the environmental variables, i.

5.3.3 Loading statistics for a whole storm

A whole storm contains several 3-hour intervals. The probability
distribution of F for the whole storm j is:

p(fls.) =
J

N.
J

n p(fli) =
j=l

N. NJ .
n [R(ali)] 1

j=l
(5.17)

where N. is the number of intervals of storm j. This is the probabi1ity that
Jno maximum base shear force exceeds the level f during the whole storm j.

Note that here the probabilities of F for successive 3-hour intervals are
multiplied with each other. This does not imply a traditionally made
assumption of statistical independence of slowly varying environmental
parameters such as significant wave height, H , (see appendix A).s

For computational accuracy it is preferable to calculate the probability
distribution of F for a whole storm, p(fls.), as a sum of the logarithms of

J
the interval distributions, which may be written as:

p(fli)
N.

= [1 - O(fli)] 1

N.
= exp{ln[l - O(fli) l}
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I
I
I
I
I
,I
I
I
I
,I
I
I
I
I
I

= exp{N,*ln[l - O(~li)]}
1

(5.18)

The function O(fli) yields the probability of exceeding f and can be
expressed as:

O(fli) = exp(-8(a(f)jH .)2)51
(5.19)

Equation (5.18) can be further simplified by taking the first order Taylor
series approximation of ln[l - O(fli)]:

ln[l - O(fli)] = - O(fli) (5.20)

50 that:

p(fli) = exp(-N.*O(fli»
1

(5.21)

This approximation is not only valid for relatively large N. and small
1

O(fli), i.e. O(fli) « l~ but also if O(fli) is not so small as long as
N.*O(fli) » 1 (ref. 2). In fact equation (5.21) is a special case of the
1

poisson distribution, as is shown in Appendix B.

The logarithm of the probability distribution of storm j then equals the sum
of the logarithms of the distributions of all the intervals of the storm:

ln{p(fls.)}
)

N,
)= l:

j=l
-N.*O(fli)

1
(5.22)

so that the distribution of storm j can be expressed as:

p(fls.)
)

N.
)

- exp( l:
j=l

-N, *O( f Ii»
1

(5.23)
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I
I
I It can be shown that the probab iLity 'density function corresponding to this

distribution function has its maximum value (reL 2), when:I
I
I

N.
J

1:
j=l

N.*Q(fli) = 1
1

(5.24)

The base shear value at this maximum is cal led the most probable extreme,

I
F . (figure 5.7). This
mp , J

storm j. The probability
-1e , thus:

value will be used to characterize every individual
of not exceeding the value of F . equals

mp , J

I P(F Is.)mp J

-1
= e (5.25)

I
I
I
I

The F value can be determined by interpolation of the storm distribution
mp -1

curve between the two nearest points adjacent to e

Subsequently it shall be demonstrated that knowledge of the value of F ofmp
a storm is sufficient information to specify the probability distribution of
extreme base shear of that storm.

I 5.4 The random storm probability distribution of extreme base shear

I
The probability distribution function of the extreme base shear force, F,
for any random storm with an F ~value exceeding Fo; i.e. the probabilitymp
that a maximum base shear in a random storm will not exceed a certain level

I f, can be expressed as:

I
I

F
0>

P(F ~F ~F ) =o mp 0>
p(flF )*p(F )*dFmp mp mp (5.26)

I
This equation is cal led the random storm formula. The upper integration
limit F accounts for the possibility of an upper bound on the F -values.

0> mp
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I
I
I If there is no upperbound then F~ becomes infinity. The lower limit Fo

arises because data for small storms have not been used. Thus theI
I

probability from equation (5.26) is conditioned on any storm with a most
probable extreme base shear, F , exceeding the level Fo' Since small stormsmp
do not contribute to the probability of occurence of an extreme (say 100-
year return) va1ue, this lower limit will not influence the validity of the
methodeI

I The random storm formula is composed of two parts:

I

1) the "model curve" distribution function, p(flF ), to be generatedmp
in the next paragraph and representing the short term base shear
variability

I

I
2) the probabi1ity density function of the F -values, p(F ), to bemp mp

derived in paragraph 5.6 and representing the long term base shear
statistics

I
I

In the analysis in the next three sections 5.5 to 5.7 the wind is not taken
into account. This is done for interpretational reasons. Wind forces are
added in paragraph 5.8.

I
5.5 Short term statistics: the generation of the -model curve-

I

I

The "model curve" represents the probability distribution of the extreme
base shear, F, for a particu1ar storm, given the most probable extreme base
shear value, i.e. p(flF ). With the statistical analysis described inmp
paragraph 5.3 the probability distributions of F for each of the 150
selected storms, p(fls.), are determined. The corresponding most probab1e

J
extremes are determined by interpolation of these distributions functions
round the probability with the value e-1• These characterizing parameters
give an indication of the intensity of the storm. The storm with the highest

I
I
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I

H does not necessarily have to be the storm with the largest value ofs,max
F , because there is also a significant influence of the storm duration,mp
the distribution of the H -values over the storm duration, and of course thes
contribution of wind and currents.

I
I

I

In principle the "model curve" is generated as follows: first the
distribution functions of the storms are rescaled by dividing the F-values
by the F -value of each particular storm. It appears that the rescaledmp
distribution functions fall approximately on one curve. This reflects the
storm similarity, mentioned before. By averaging the rescaled distribution
functions the "model curve" is created.

I

I
I 5.5.1 A -model curve- for base shear

I In order to check whether the severest storms are more similar than the less
severe ones, the selected storms are distributed over 9 bands on the basis
of their F -values. The first band has a range of F from 50 to 100 kN,mp mp
and the last band -has a range of F from 550 to 600 kNomp

,
I If the rescaled distributions in each band are averaged and if the averaged

band curves are plotted, then it is notabie that some curves strongly
deviate, despite the expectation of all the curves having approximately the
same position. Further investigation shows that the deviating curves are
from the bands with the lower F -values. It is evident that this deviationmp
is caused by the fact that many storms with a small F -value are influencedmp
by the 5 m lower limit on significant wave height. For these storms some
3-hour intervals with H below 5 m would have a significant influence on the

s
shape of the probability distribution function of extreme load, but are not
taken into account.

I
I
I
I
I
I

Uncensored storm distributions are probability distributions of F for storms
of which all the contributing 3-hour intervals have an H -value larger thans
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I
I
I 5 m. In the application of the random storm method to the air-gap problem an

80%-rule was_introduced: only the intervals with a H -value larger than 0.8s
times the largest H -value during a storm, H ,influence the distribu-s s ,max
tion of extreme wave height, p(hls.), of the continuous storm period, if h ~J -
2*H (ref. 5). This rule is also useful for the distribution of extremes,max
base shear, because the forces are wave drag dominated and, for the main
part, dependent on the significant wave height. Thus a storm distribution is
uncensored if 0.8 times the maximum significant wave height in a storm,
H ,is larger than 5 m, or:s,max

I
I
I
I
I 0~8*H ~ 5.0 ms,max ----> H ~ 6.25 ms,max (5.27)

I. If only the uncensored storm distributions are considered 79 storms remain,
distributed over 8 bands, and the strongly deviating curves disappear
(figure 5.9).

I
Averaging the band distribution functions results in one curve which has
approximately the shape of a double exponential function. This is called the
"model curve" for base sheqr. The distribution of extreme values is

I described by the Fisher Tippett FT-l distribution function:

I F(x) = exp(-exp(- x-a))
IJ

(5.28)

Since extreme values are the issue here it may be worthwile trying to
describe the "model curve" with a function similar to FT-I:

p(flF ) = F(f,F ) = exp{-exp{-mp mp
(f/F )a_ 1

mp }}
IJ

(5.29)

I
where a an ~ are the fitting parameters. For fitting the "model curve" for

-1wave height in earlier research it was found that: a = 2 and ~ = 8 (ref.
25). Since base shear, F, is roughly proportional to H because of drag-

dominance, it may be appropriate to take: a = 1. Af ter some trial and error

I
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I
I for best fitting purposes ~-l is found to be 7.7, so that the distribution

function of the model curve can be expressed as (see figure 5.10):I
I

p(flF ) = exp{-exp{7.7*(1 - (fjF »}}mp mp (5.30)

The fact that the short term statistics of all storms can rather well be

I
I

expressed by one single "model curve"-function such as equation (5.30)
confirms the idea that there exists a statistical similarity between
individual severe storms.

I 5.5.2 A -model curve- for overturning moment

I Similar to base shear the "model curve" for overturning moment, M, is
generated. The 150 north-west storms are distributed over 11 bands based on
their M -values. The bands have a range length of 5 MNm, with the first andmp
the last band having a range of M respectively from 7.5 to 12.5 MNm andmp
from 57.5 to 62.5. Considering the uncensored distributions only and
averaging the remaining 9 band distributions the "model curve" for
overturning moment, M, is generated. Figure 5.11 shows that one curve still
deviates strongly from the others. This may be caused by the small number of
storm samples in this band. Fitting the "model curve" to a FT-l function
results in (see figure 5.12):

I
I
I
I
I p(mlM ) = exp{-exp{8.0*(1-(mjM »}}mp mp

(5.31)

A smaller value for the parameter ~ indicates that the model curve for
overturning moment is a bit steeper than the model curve for base shear.

I

I
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I 5.6 The probability density function of most probable extremes

I
I

In the random storm formula, generated in paragraph 5.4, the long term force
statistics are represented by the density function of the most probable
extreme values of base shear, F • This p(F )-function is needed formp mp
extrapolation purposes to predict extremes with say a lOO-year return
period. However, the NESS data base only covers 25 years of hindcasting. The
available information is limited to the largest value deduced from the data
base. For extrapolation beyond this value an additional assumption has to be
made on the behaviour of the upper tail of the distribution function of F ,mp

I
I
I
I

P(F ),mp
predict

where P(F ) approaches the value 1. Then it may be possible tomp
the P(F )-function beyond the finite sample. Two options for suchmp

an assumption are: a parametric assumption or a semi-parametric one.

I
If it is assumed that the distribution function is known, except for some
parameters, the required information may be expressed in terms of these
parameters. Then some method can be used to find an estimate of this
information. Of ten used for this purpose are the Weibull or Gumbel
distribution functions as parametric assumptions of the function of the
tail. The number of samples used for the estimate is chosen arbitrarily.

I
I

I

On the contrary, for the semi-parametric assumption only an optimum number,
k, of the largest samples is used, determined by minimizing the mean squared
error of the estimate of the index of variation, ~ (ref.18). The smallest
F -value of these k samples is denoted as Fo. Assumptions are made on themp
behaviour of the distribution near the upper end, where: F >Fo. Themp
function is fixed by the samples. This semi-parametric method has been
developed by P.P. de Wolf, a thesis student of the mathematics department of
the Technical University of Delft (ref. 18).

I
I
I

I
With the F -values of all the storms considered as an input, the methodmp
results in a expression for the distribution function of Fmp
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I
I P(f IF >F) = Pr(F' Sf IF >Fo)mp mp 0 mp mp mp . (5.32)

I This function is conditioned on the event that F is larger than the lowermp
integration .limit , F o. The probab Ll ity density function of the. F -values ismp
generated by differentiation of the distribution function:

I dP( f IF >F 0)mp mp
dfmp

(5.33)

I
I 5.6.1 The p.d.f. of the most probab1e extreme base shear force

I

During the application of the semi-parametric method to the most probable
extreme base shear forces, F , some problems appeared: on the one hand themp
extrapolation was disturbed by the influence of the presence of 71 censored
storms; on the other hand, however, the number of 79 uncensored storms
appeared to be too little for a proper extrapolation. So both including and
ignoring the uncensored storms led to silly answers.

I
a,

I

One way to solve this problem is to extend the number of data. This can be
done by lowering the 5 m-limit, which was introduced for the defining and
selecting of storms. An alternative is to fill the gaps in the data base,
which arise because currents were not hindcasted for summer storms, as
mentioned in paragraph 5.2. This can be achieved by introducing some "bogus"
data. In spite of the fact that the extrapolation worked rather weil with
this additional data, in an absolute sense the results should be interpreted
with care.

I

I
I

Figure (5.13) shows the correlation between the most probable extreme wave
height, H , and the most probable extreme base shear force, F • It can bemp mp
seen from this plot that the F -value is roughly proportional to the Hmp mp
value squared. In fact this correlation can be described roughly by the
following relation:

I
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I

F· == C *H2mp 0 mp
(5.34)

I where:

I

I

Since the H -va lues for all storms can be obtained from the data base andmp
t-h~ lack 'of informati_on in the data base only concerns currents and current
directions, this rel~tionship can be used to invent "bogus" F -values of_ . mp
the storms for which the current data is missing. This provides a total
number of 128 uncen$ored storms, of which 49 storms have a "bogus" F -mp
value. Figure (5.13) shows that-most of the "bogus" storms are relatively
not sosevere, lying in a range of F from 125 to 175 kNo The extrapolationmp
with this number of storms, where the~e is no influence of censored data,
was much more succesfull. The influence of the number of data on the
extIapol~tion will be discussèd in the next chapter.

I

I
I
I
I

As aresuit ·of t he semi-parametric method the optimum number of storms, k ,

is: k = 84, of whlch 26 were "bogus" storms. The estimate for the
distribution function is found to be:

I
I

P(f ) == ~ [1 + ~*(f - Fo)]mp mp

1
'Y (5.35)

for: F~ S f S ~mp

-where: ~ = 0.774*10-3

'Y = 0.0544
Fo = 174.3 kN

-1kN

Differentiation of this function yields:

df
.mp

1 _ 1
'Y (5.36)

dP(f )mp
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I
I where: 1

'Y
= 0.0142

I
I
I
I

5.6.2 The p.d.f. of the most probable extreme overturning moment

The same procedure is followed for the derivation of the probability density
function of the most probable extreme overturning moment, M The "bogus"mp
M -values again are found from arelation between Mand H squared,mp mp mp
based upon the correlation between these two parameters (figure 5.14).

I M ~ C *H2 + Clmp 1 mp
(5.37)

where: Cl = 120 kg/sz
Cl = 2500 kNm

I The constants in relations (5.34) and (5.37) are adapted in such a way that
there is a linear relation between the F -values and the M -values, whichmp mp
follows from the correlation between F and M (figure 5.15).mp mpI

I

App1ying the semi-parametric method to overturning moment, the optimum
number of samples is found to be: k = 88, of which 28 samples are from
"bogus" storms. The distribution function of M is in principle the simi1armp
to the distribution of F , apart from the parameters ~, 'Y and Mo:mp

I
I

1

P(m ) 1 - [1 + p(m - Mo) ] 'Y~mp mp

for: Mo s m s 0>
mp

where: ~ 6.914*10-6 kNm -1=
'Y = 0.0612

Mo = 24351.0 kNm

(5.38)
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I
I Differentiation of this function results in:

I
dmmp

1 _ 1
1 (5.39)

I
p(m ) =mp

dP(m )mp

-,

I
where: 1 = 0.113*10-3

1

5.7 Extrapolation to a lOQ-year design condition

I

The random storm formula derived in paragraph 5.4 (equation 5.26) represents
the probability distribution for extreme base shear, F, during a single, but
random, storm; or in other words: it determines the probability that F will
not exceed a certain level f during a random storm with F ~Fo' Themp
probability of not exceeding f during the whole hindcasting period of 25
years can be determined by raising the random storm formula to the power k,
i.e. the number of storms with F ~Fo:mp

I

I
I p(f125 years) (5.40)

I The probability distribution of F for a period of y years is then:

I p(fly years) = [p(fIF ~F )]y*~mp 0
(5.41)

I
I

where: ~ k= 25 = the expected number of storms per year with Fmp~ Fo

I
I

A base shear, f , with a return period of y years can be defined as the most
y

probable extreme base shear value of this y-year distribution and is
determined as the f-value corresponding to a probability of non-exceeding of
e-l• This base shear value will be exceeded on the average once in y years.

I
The distribution from equation (5.41) can be replaced by a poisson
distribution (see also Appendix B). When Q(f) is the probability of
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6. DISCUSSION OF THE RESULTS

6.1 Introduction

As a result from the app1ication of the random storm method to base shear
and overturning moment, a 100-year base shear and overturning moment have
been derived. However these are numbers which are not directly applicable to
design. Therefore a back calculation on the basis of the analytical load
relationship is performed in order to obtain some interpretation of these
results. It mayalso be interesting to determine the 1,000 and 10,000-year
base shear and overturning moment. The validity of the models and methods
used is further checked by a carefully considering their inaccuracies and
uncertainties, and estimating their probable influence on the final results.

6.2 Interpretation of the results by way of a back calculation

If all environmental parameters, apart from crest height, a, and current
velocity, v, are set constant in extreme environmental conditions, for a
100-year design base shear or design overturning moment arelation can be
created between current velocity, v, and wave height, H, where the wave
height equals two times the crest height. Looking at such a relation is
useful, because it gives an idea of what sort of current occurs in
combination with a design wave height to produce the design base shear or
design overturning moment.

Figure (6.1) shows the wave-current relations for both constant base shear
and overturning moment, where wind, waves and currents are fixed to have the
same direction. This means that these curves are valid only for "in-line"
currents. The wave period T is set to be, T = 15.5 s and the reduction
factor due to directional spreading, ~ = 0.92 • It shows that the two curves
are rather close to each other, which gives some confidence in the method.
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I
I exceeding f per storm, then the expected number of exceedings in y·years

equals: y*~*Q(f),so that:I
I

-y*~*Q(f)p(fly years) = e . (5.42)

I
The f -value is then determined from: .-

y

I
y*~*Q(f ) = y*~*[l-P(f IF ~F)] = 1Y Y mp 0

(5.43)

or:

I 1P(f IF ~Fo) = 1 -Y mp y*~
(5.44)

I For a lOO-year base shear force this expression yields:

I = 1 _ 1
4*k (5.45)

I
I

There is a minimum return period for which this analysis will work. This
arises from the condition that F ~Fo' When the return period, y, ismp
sufficiently short that the storms with a most probable extreme value
smaller than Fo begin to contribute to P(f Iy years), the present theoryy
will be less useful. This is shown in Appendix C.I

I 5.7.1 A 100-year design base shear

I

I

As stated in the previous paragraph a lOO-year design base shear force can
be determined from the random storm curve as the f-value corresponding to a
probabilityof (1 - 4!k)' where k is the optimum number of samples used for
the estimate of the density function of F • Since k was found to be:mp
k = 84, the probability that a design base shear value, flOO' will not be
exceeded by an extreme base shear, F, during any random storm equals:

I
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I
I
I (5.46)

I The 100-year design base shear is found by interpo1ation of the random storm
curve for F which resu1ts in~I

I
f100 = 755 kN (5.47)

I 5.7.2 A lOO-year design overturning moment

I For overturning moment k was found earlier as: k = 88, sa that the
probability that a design overturning moment value, m100' wil1 not be
exceeded by an extreme moment, M, during any random storm equals:

I
I

(5.48)

I
The 100-year design overturning moment is found by interpolation of the
random storm curve for M, as shown in figure 5.16, which results in:

I m100 = 99605 kNm (5.49)

I 5.8 Including wind farces

I As stated in paragraph 4.4, wind forces are included by adding an extra term
in the loading equation depending on wind speed and wind direction. The
additional wind force influences both the "model curve" and the probability
density function of the most probable extremes.I

I
I

The model curves of base shear and overturning moment, i.e. the probabi1ity
distributions of F and M, conditioned on their most probable extremes, are
steeper than those without wind farces (figures 5.17 & 5.18). This is due to
the fact that the F and M -values are higher and since the model curvesmp mpI
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I
I
I are rescaled distribution functions, where F and Mare divided by their most

probable extremes, the values_of F and M tend to be compressed a little. The
values found for the paramete~_~ from equation (5.29) for base shear and
overturning moment respectively is found: /3-1 = 9.3 and ~-l = 8.9 •

I
I

I

The generation of the probability density function of the most probable
extremes is effected in two ways: besides the fact that the F and M. mp mp
values have been increased, also the sequence of these values has been
changed. This is caused by the relatively large wind force contribution in
the less severe storms. While this contribution in severe storms varies

I

I around 10 % of the total value for base shear, in a storm of a relatively
small intensity it can rise to a percentage of about 25 %. This means that a
certain storm, being represented by a lower F -value than another stormmp
when wind is neglected, can get a higher F -value than the other stormmp
after including the wind forces in the model. Apparently this mixing up of
most probable extreme values does not .disturb the estimation procedure for
the probability density function of these extremes.

I
I
I Af ter introducing some bogus F and M -values for the summer storms in themp mp

same way as described previously in order to obtain enough data for the
extrapolation, the results for a 100 year design base shear and a 100 year
design overturning moment including the wind forces are:

I
I
I

f100 = 781 kN (5.50)

m100 = 112725 kNm (5.51)

I

I

The design base shear has increased about 3%, while the design overturning
moment has grown by 15%. The increase of the m1oo-value is higher as was
expected, because a large moment arm is associated with the wind load, 50

that the wind contribution is of more importance for overturning moment.
However, the growth of the design base shear force seems to be rather low.
The possible causes of this will be discussed in the next chapter.

I
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f (kN) m (kNm)

I
I

excl. wind incl. wind excl. wind incl. wind I
excl. s,t .v , 655 689 86790 100425 I
incl. s ,t .v , 755 781 99605 112725 I

ITable 5.1: Extrapolation results with lOO-year return period with and
without the short ter. variability (s.t.v.) taken into account.

I
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Summarizing, in table 5.1 all the lOO-year design loads are listed, i.e.-
both excluding and including wind forces. Moreover also the lOO-year values
are given not accounting for the short term variability. These values can be
determined directly from equations (5.35)_ and (5.38). It can be seen from
these values that neglecting the short term statistics yield a significant
reduction of about 15% of the lOO-year design loads.
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Rowever, the wave-current relation based on the design base shear is
approximately linear, while the other line is more curved.

In the application of the random storm method tO.~ave heights, a 100-year
design wave including short term variability was found to be 26.35 meters
(ref. 5). The corresponding current according to the relations of figure 6.1
is:

RIOO = 26.35 m -----> v = 0.28 mis for F = Fl~O (6.1a)

v = 0.30 mis for M = MIOD (6.1b)

These currents are considerably less strong than commonly used 100-year
design currents of about 1.0 mis. Rowever, it is not to say that the
currents from (6.la) and (6.1b) have a 100-year return period: the 100-year
current may rather weIl occur in combination with a lower wave height. This
illustrates exactly one of the main differences of this method from the
traditional approach, where 100-year waves and 100-year currents are
assumed to occur simultaneously.

If wind is included, a similar back calculation can be performed. It appears
that the wind speeds occurring in combination with a 100-year design wave
height of 26.35 mand a current of 0.30 mis according to the 100-year base
shear and overturning moment are respectively:

RIOD = 26.35 m
v = 0.30 mis -----> W = 17 mis for F = FIOD (6.2a)

W = 30 mis for M = M100 (6.2b)

The difference for the wind speeds is probably due to the extrapolation:
this will be explained in paragraph 6.4.3.
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f (kN) m (kNm)

I
I

RP (years) excl. wind incl. w ind excl. wind incl. wind I
100 755 781 99605 112725 I

1,000 1046 1012 137230 148785 I
10,000 1391 1252 182425 187395

I
Table 6.1: Base shear forces and overturning moments extrapo1ated to

various return periods.

I
I
I

a = 5.0 m
T = 9.5 5

a = 7.5 m
T 11. 2 5

a = 10.0 m
T = 13.2 5

a = 12.5 m
T 15.4 5

I
10.7 9.0 7.2 5.7 I

I
Tab1e 6.2: Inertial contribution to total base shear force in \ for

various combinations of crest height and wave period. I
I
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I
I 6.3 .Extrapolation to a l,OOO-year and lO,OOO-year level

I For the interpretation of the results for a 100-year condition it may be
relevant to calculat~ the ,~,OOO and 10,000-year base shear and overturning
moment. This can be done rather easily by changing equation (5.45) into:I

I
I

P(floooIF~Fo) 1 1
= - 40*k

and:

P(flooooIF~Fo) 1 1
= - 400*k

(6.3)

I (6.4)

I The results of these calculations are listed in table 6.1. It is striking
from these results that the 1,000 and 10,000-year base shear values
including wind are lower than the values excluding wind, which can not be
right of course. It is confirmed once again that something went wrong with
the extrapolation in this case. A probable cause will be given in paragraph

I
I 6.4.3.

I 6.4 Inaccuracies and uncertainties

I The total analysis involved in generating the lOO-year design conditions is
roughly built up of two main parts:

I
I

1) the loading moftel, represented by the approximate analytical load
relationshipi

I
I

2) the storm similarity model, describing the laad statistics for any
random storm, which can be extrapolated to any desired return
periode

I
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8 (deg) I
v (mis) o 45 90 135 180

0.0 7.0 I
0.5 5.4 5.5 6.9 9.1 9.7

1.0 4.3 4.4 6.3 11.0 14.0 I

Table 6.3: Inertial contribution of total base shear force in \ for
various combinations of current velocities and directions.

-1-
I
I
I

8 (deg)

v (mis) 0 45 90 135 180

0.0 -0.65

0.5 -0.37 0.09 -0.99 -2.61 -4.05

1.0 5.49 -1. 30 -1.95 -3.51 -11. 29

I
I
--I
I

Table 6.4a: proportional deviations of the analitically determined base
shear forces from the numerical values in \ for various
combinations of current velocities and directions. I
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Both parts suffer from some significant inaccuracies and uncertainties. They
will be discussed here.

6.4.1 Eva1uation of the analytical loadinq equation

The main objective of the loading model is to describe the response of a
simplified offshore structure in such a way that it can be expressed in one
single equation including all the environmental parameters. This must be
done carefully, so that results from the equation approximately coincide
with answers from numerical modeis. Since the calibration of constants has
been performed within a accuracy range of about 5 %, it seems to work rather
weIl.

However, the loading model suffers from some major inaccuracies arising from
several assumptions •.One is the assumption of drag dominance. It may be
appropriate to check if the partialor total neglect of the inertia term is
reasonable. Table 6.2 shows the percentages of the inertial contributions
relatively to the total base shear force for various combinations of crest
height and wave period with a fixed "in-line" current of 0.5 mis. These were
obtained by the numerical LOAD-program. It shows that the inertial
contribution decreases as the environmental conditions becoming more severe.
The relative contribution of the inertia force also depends on the current
velocity and the current direction. It can be seen from table 6.3, where
current velocities and directions vary with fixed crest height (10 m) and
period (15.5 s), that the inertia term is the biggest for negative currents.
Thus a neglect of the inertia force affects the forces from the loading
model most strongly if the currents are negative. This can also be seen from
table 6.4, which gives for the same combinations of current velocities and
directions the proportional deviations of the analytically determined base
shear farces from the numerical values. A positive percentage means an
overestimate of the numerically generated force and a negative value stands
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8 (deg) I
v (mis)

180

Io 45 90 135

0.0 -1. 85
I
I

0.5 -1. 30 -0.48 -1. 28 -1.72 -2.15

Table 6.4b: proportional deviations of the analitically determined over-
turning moments from the numerical values in \ for various
combinations of current velocities and directions.

I

1.0 5.59 -0.32 -0.27 -0.09 -9.03

I
I
I
I
I
I
I
I
I
I

drag force D

Figure 6.2: Typical drag force profile over depth compared with a drag
not accounting for the change of sign for negative
currents. I
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for an underestimate. The underestimate is the biggest for strong and
negative currents.

Though for the calibration of constants an accuracy range of 5 %, was
mentioned earlier, in table 6.4 some percentages exceed this value. However,
the calibration was based upon data.from the NESS data base, where current
velocities as large as 1 mis do not appear. The loading equations therefore
are only valid for a limited range of data.

The effect of underestimating the base shear for negative currents by
neglecting the inertia forces is partially compensated by the ignorance of
the absolute value of the water particle velocity in the drag term of the
Morison equation. The drag force is assumed to increase as the square root
of the water speed - compare equation (4.2) with (4.3) -, which results in
an overestimate of the drag force especially near the sea bed (figure 6.2).
Near the surface this effect is not of interest, since under extreme
conditions the wave induced velocity is much larger than the current
velocity, but weIl below the surface, where the wave induced velocity is
smaller, there is a significant influence leading to a conservative
approach. This effect may be more important for base shear than overturning
moment, since the small moment arms make the latter less sensitive to forces
near the sea bed.

Other inaccuracies are involved with the NESS data base. The values of the
environmental parameters in the NESS data base are determined from a
hindcast simulation technique with all environmental and meteorological
information available used as an input. This simulation contains significant
uncertainties.
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flOO (kN) 761 755 749

I
I

-1
13 7.4 7.7 8.1

deviation in % 0.7 0.0 -0.8 I
I

-1
13 7.6 8.0 8.4

I
mlOO (kNm) 100570 99605 98785

deviation in % 0.9 0.0 -0.8
I
I
I
I

Table 6.5: Influence of the fitting parameter ~ from the -model curve-
on the lOO-year base shear and overturning moment values.
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6.4.2 Evaluation of the -model curve-

I

I

The "model curve" represents the short term variability of every storm ~nd
is generated by takin~ the average of-the rescaled probability distributions
of all the storms selected from the NESS data base. It may be appropriate to
check how representative the "model curves" are actually. This can be done
by calculating the standard deviation of the curves in each band for a value
of f/F ,where the deviation of the curves from eách other seems to be themp
most significant, that is for f/F = 1.2 (see figure 5.9). The standardmp

I
I

deviation is then defined as:

I
I

1
12122

= [--l(Lx. - -(I:x.) )]n- J n J
(6.5)

I
where x. is the probability that the ratio f/F = 1.2 will not be exceeded

J mp
during storm j and n is the number of storms in a band. Although the number
of storms in several bands is rather small, the standard deviations can give
an indication of the fit of the "model curve".I

I

Figure 6.3 shows the standard deviations of the storm distribution functions
within each band both for base shear and overturning moment. There is no
clear indication that the standard deviation decreases for bands with more
severe storms, which would have indicated that very severe storms are more
similar than less severe ones. The lack of this trend may be due to the
small number of storms in the highest bands.

I

I

I

The average values of the standard deviations for base shear and overturning
moment are respectively 1.4 % and 1.3 % (figure 6.3). A curve based upon a
deviation of say 1.5 % from the "model curve" for f/F = 1.2 tends to bemp
steeper for a positive and less steep for a negative deviation. This is
controlled by the fitting parameter ~ (equation 5.29). However, it appears
that a small change of ~, caused by 1.5 % deviation from the "model curve"
has a negligible influence on the final results as shown in table 6.5.

I
I

I
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Figure 6.4: Comparison of the probability distribution of F with the
normalized number of samples used for the estim~~ion of the
distribution.

I
f (kN) I

RP (years) excl. wind incl. wind I
100 755 812 I

1,000 1046 1069

I
10,000 1391 1353

I
Table 6.6: Base shear forces extrapolated to various return periods,

with 7 = +0.0514 for f incl. wind. I
I
I
I



I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

6.6 Evaluation of the extrapolation

The validity of the probability density function of the most probable
extremes can be checken by comparing one minus the distribution function of
these extremes, following from the semi-parametric estimation method, with
for every storm one minus the normalized ranking number of the storm sample,
which is a rough estimate of the discrete distribution function. The number
of each sample from 1 to the optimum number of samples k is then divided by
k. Figure 6.4 shows that the the curve representing the values of 1 minus
the distribution function fits rather weIl for the lowest 50 values,
compared to the dots representing the values of 1 minus the normalized
number of samples. For overturing moment this picture looks similar. The
deviation of the highest values may be due to the noise in the data,
extracted from a simulation containing some uncertainties.

Generally the curve representing the continuous distribution function seems
to be a good fit. However, some comments have to be made upon this. As
stated earlier the index of variation, ~, in the probability density
function of the most probable extremes (see equations (5.36) and (5.39» is
determined by the minimization of the mean squared error of the estimate
(ref. 18). Figure (6.5) shows that the minimum of this mean squared error
corresponds with a value of ~ which is used for the density fuction. The
course of ~ round the optimum k is not very stabie. Although ~ seems to be
approximately zero and the variation is only within a range of ~ from -0.1
to +0.1, for extrapolation even the s1ighest change of ~ is of significant
influence for the results.

For example when wind was included for base shear a minimum of the MSE was
found for k = 121, where ~ = -0.028. A closer look at figure (6.6) reveals
that there is a second minimum of MSE for k = 114. The ~ corresponding to
this value of k is positive ~ = +0.0514. Performing the extrapolation for
this ~ results in a 100-year design base shear of 812 kN, where the wind
contribution is 8 % instead of 3 % as found earlier and listed in table 6.1.
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This base shear including wind forces seems to be much more realistic than
the value resulting from the negative 7. Moreover the 1,OOO-year base shear
value inluding wind now is higher than the value excluding wind (table 6.6).

This example illustrates that the extrapolation procedure is very sensitive
to the estimate of 7. In figure (6.4) a positive 7 yields a convex curve,
while the curve would be concave if 7 were negative. Wheri these curves are
extrapolated to a lOO-year level they diverge from each other significantly
(figure 6.6).

It can also be seen from figure (6.5) that if not enough data is used the
MSE-value will not be able to create a real global minimum. For example when
the 79 uncensored storms mentioned in paragraph 5.6.1 were used, the
corresponding minimum of MSE was found for k = 79. This mimimum, however, is
a boundary minumum, rather than a global one. Thus, in order to be sure that
the minimum of MSE found is really a global minimum and not a local or a
boundary minimum, sufficient data has to be available.

+ l' = + 0.028

x l' = - 0.028

~+-------~---------------------------------------------

N

'0....

~
~+------.-----'r-----'------'o'o-.o----A'o-O.-Or---6TOO-.O-----70'O-.OJL--8'o-O.-O~~90TO-.0----I'OOO.

0.0 100.0 ZOO.O 300.0 ~ ~
Fmp (kN)

Figure 6.6: Comparison of the probability distributions of F.p' with a
positive and a negative value of 7.
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7. CONCLUSIONS AND RECOMMENDATIONS

7.1 Introduction

From the results presented in this report it can be concluded that in
principle the random storm method is applicable to global structural
loading. However, in an absolute sense the numerical values of the lOO-year
design base shear and overturning moment have to be treated with great care,
not only because they are partially based on bogus data, but also because
the models contain certain uncertainties asking for further research. On the
other hand in a relative sense there is a trend in the answers: the
application of the random storm method leads to a significant reduction of
the design forces and moments. This implies that further research is
certainly worthwile.

7.2 The advantages and disadvantages of the random storm method

During the project it became clear that the random storm method has some
major advantages over the traditional design procedures, but like any
method it has its disadvantages as well. Both advantages and disadvantages
are enumerated here.

Advantages are:

1) The statistical parameters from successive 3-hour intervals are no longer
treated as independent. Instead, individual storms are assumed to be
independent, which is much more likely to be the case.

2) Extreme winds, waves and currents do not necessarily occur simultaneously
and they are not assumed to have the same direct ion.
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3) The random storm method accounts for the short term variability by way of
a representative "model curve" in the random storm formula.

4) Since the extrapolation is based on the fitting of the tail of the
probability density function, only severe storms are used, so that less
data have to be analysed, without loss of information about the tail.

Disadvantages are:

1) There is no straightforward analytical method available yet for the
calibration of the constants in the loading equation. This does not only
mean that this process is rather laborious, but also that the values of
the constants have to be tested for a large number of data.

2) For different structures and locations the constants in the loading
equation have to be determined all over again. However, for using the
equation for other cases, multiplying the constants with some factor may
be sufficient, but that has to be investigated.

3) For a successful extrapolation a large data base is required.

4) In the generation of the parameters of the probability density function
of the most probable extremes a huge amount of epu time is involved.

1.3 Conclusions

1) The random storm method is indeed applicable to global structural
loading.

2) The use of the random storm method leads to significant reductions of
design forces and moments.
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3) The possibility of an application of the random storm method is at
present dependent on the amount of data available.

4) Considering base shear and overturning moment a similarity for severe
storms is found as for wave heights: the rescaled probability
distributions of base shear and overturning moment approximately lie
on the same curve. This confirms the idea of the existance of a
similarity for severe storms.

5) The random storm method is in principle applicable for any fixed
structure in any other location. However, the consequences of a
different structure and location for the "model curve" and the loading
equations have to be investigated.

7.4 Recommendations

It is shown that an application of the random storm method to global
structural loading is possible. The indications that the use of this new
method will lead to significant reductions of the design forces and moments
make it certainly worthwile to do some further research in order to improve
the models and methods. There are of course a lot of uncertainties, that
require some extra consideration. On the one hand some attempts have to be
undertaken to eliminate these uncertainties, on the other hand the method
needs more testing, which means that a repetition of the calculations for
different structures and different locations may be advisable. In this sense
a few practical recommendations are enumerated here.

1) The constants in the loading equation were calibrated by way of trial and
error. It would be worthwile to find a more sophisticated way of doing
the calibration.

2) The modelling of the base shear and overturning moment by way of the
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analytical loading equation may be improved. Especially the influence of
wave and current directions needs more attention.

3) It is advisable to repeat the calculations for adjacent grid points of
the considered location in order to check the validity of the method and
the results.

4) It has been indicated in this report that extension of the loading model
to a real structure may be done easily by multiplying the constants in
the loading equation by a certain factor. This has to investigated.

5) Although the extrapolation procedure seems to work rather well, it is
still very sensitive to the influence of the rather unstable course of
the estimate parameter, 1. Further study is required.

6) The application in design of joint wave, current and wind conditions as
derived here would have consequences for platform reliability. These
should be investigated carefully.
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I
I ROMAN:

a

I
I

d

f,F
9

h,H
i

I
I

k

k

m,M
n

I
n

r

I
u

Ü

u

I v

vres

I v s
w

y

I
I
I
I
I
I

crest height
depth
base shear force
gravity
wave height
environmental parameters apart from wave height
wave number (chapter 4)
optimum number of storm samples (chapters 5 & 6)
overturning moment
number of successive 3-hour intervals (appendix B)
number of successes in poisson distribution (appendix C)
radius of a circular cylinder
horizontal wave induced fluid velocity
horizontal wave induced fluid acceleration
slowly varying amplitude that defines peaks in uo
depth mean total current velocity
depth mean residual current velocity
depth mean current velocity including current blockage
resultant horizontal fluid velocity
number of years of a return period

inertia factor for rough cylinder (S~O)
inertia factor for smooth cylinder (S>O)
drag factor for rough cylinder (S~O)
drag factor for smooth cylinder (S>O)
drag coefficient
inertia coefficient
wind drag coefficient
diameter of cylinder
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D instantaneous drag force normal to pipe axis
n

D stretching depth
s

FW total wind force
H significant wave height
s

H maximum significant wave height in a storms,max
H secondary maximum significant wave height in a storms,max2
H lowest significant wave height in between two maximas,trough
I total horizontal inertia force normal to pipe axis
N. number of crests in a 3-hour interval
1

N.
J

Ns

number of 3-hour intervals during a storm
total number of storms that occcur in 25 year hindcasting [-]

R

S

S.
J

T
P

T
z

TL
V

W

W10

return period
frontal area
storm history of storm j

peak period
zero-up crossing period of ocean surface elevation
design life time of a structure
volume of cylinder element
wind speed
wind speed at 10 meters above mean sea level

GREEK:
a,(j fitting parameters for "model curve"

estimate of the index of variation used for the estima-'Y

tion of the p.d.f. of most probable extremes
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[-]

[-]
depth depending angle between inertia and drag forces [deg]
instantaneous ocean surface elevation [m]
peak value of surface elevation during passage of a wave [m]
wave length [m]
average number of storms per year with F ~Fo [-]mp
average number of storms per year [-]
angle between wave propagation and depth mean current [deg]
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B storm
Bv
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I SUBSCRIPTS:

I xy
X.
1

X
n

Xo

X
00

Xmp

I
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I

*X

I
I
I

direct ion of wave propagation taken form north
direction of a storm taken from north
direction of total depth mean current taken from north

[deg]
[deg]
[deg]

direction of residual depth mean current taken from north [deg]
angle between wave and wind direct ion [deg]
fluid density [kg/m3]

air density
directional spreading parameter
duration of time interval between two maxima of Hs
duration of a )-hour time interval in seconds
zero-up crossing frequency of ocean surface elevation
parameter in p.d.f. of Fmp
smoothly varying phase for defining peak forces
vertical coordinate defined with its origin at m.s.l.
substitute coordinate from delta stretching

[kg/ml]
[deg]
[hrs]
[s]

[rad/s]
[l/kN]
[rad]
[m]

[m]

individual wave direction relatively to general direction [rad]
delta stretching parameter
reduction factor from directional spreading

value of parameter X with a lOO-year return period
value of parameter X with a y-year return period
parameter from interval, i
instantaneous value of X at a certain depth
lower integration limit in the random storm formula
upper integration limit in the random storm formula
most probable extreme value of X

constant from the analytical loading equation
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APPENDIX A

I
INFLUENCE OF TUE DEPENDENCE OF SUCCESSIVE 3-HOUR INTERVALS

I
I
I

Suppose a storm with storm history, S. (i.e. the history of the environ-
J

mental parameters in all the 3-hour intervals of storm j), contains n 3-hour
intervals and the probability distribution of F in the i-th interval is
expressed as:

p(fli-th interval) = P(A.)
1

(A.l)

I Then the probability distribution of F in n intervals should be:

I
I (A.2)

I
I
I

If the statistical parameters in successive 3-hour intervals are assumed to
be independent, this distribution becomes:

n
n P(A. )

i=l 1

(A.3)

I
The probability distribution of equation (5.18) is conditioned on the storm
history, S., of the considered storm j. Including this condition in equation

J
(A.2) yields:

I
I

p(fln intervals,S.)
J

= P(A1Is.)*P(A2IAl,S.)* •••*P(A. IA1···A. l'S,)* .••J J 1 1- J

•••*P(A IA1···A l'S')n n- J
(A.4)

I
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By conditioning the probability distributions on the storm history S. the
J

other events in the condition, namely that in the preceding intervals F will
not exceed the value f, have become redundant and can be left out. The event
that storm history S. will occur, completely conditions the problem. Thus,

J
the probability distribution in equation (A.4) changes into an expression
similar to (A.3):

I
I
I
I

n
p(fls.) = n P(A. Is.)

J i=l 1 J
(A.S)

I
I
I
I
I
I
I
I
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APPENDIX B

TUE POISSON DISTRIBUTION APPROXIMATION FOR A PROBABILITY DISTRIBUTION OF
EXTREME BASE SBEAR DURING A WHOLE STORM

Suppose exceeding a certain level f during a 3-hour interval with N. crests~
is called a success and consequently not exceeding that level during the
interval is cal led a failure, then the probability of n successes can be
expressed by a binomial distribution:

Pr(g=n)
N. n N.- n

= ( ~)*(Q(f» *(l-Q(f» ~
n

(B.l)

If Q(f) ~ 0 and N. ~ =, in such a way that (N.*Q(f» remains constant, then~ ~
this probability can be approximated by the Poisson distribution (ref. 13):

Pr(g=n)
n

= l!_ exp(-~)
nl

(B. 2)

where ~ is the expected number of successes:

~ = E{g} = (B. 3)N.*Q(f)~

Consequently the probability of no successes in one interval is then:

Pr(g=O) ~o= --O'exp(-N.*Q(f» = exp(-N.*Q(f»
• 1 L

(B.4)

This result is the same as equation (5.21).
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APPENDIX C

I INFLUENCE OF THE LOWER IN'l'EGRATION LIMIT, F., ON THE EXTRAPOLATION TO ANY

RETURN PERIOD

I The semi-parametric approach of predicting the distribution of the most
probable extreme base shear forces, P(F ), is based on the estimation ofmp
the behaviour of the distribution near the upper end (see paragraph 5.6).
Therefore only an optimum number of the k largest samples is used for the
extrapolation. That is why a lower integration limit, Fo' is introduced,
where Fo equals the lowest F -value from the total of k samples. Themp
probability of not exceeding f during a random storm is then conditioned on
F ~F.mp 0

I
I
I
I If the total number of storms that passed during the hindcasting period of

25 years, N , is used for the extrapolation, rather than only an optimum
s

number of k storms, then equation (5.40) changes into:I
I N

p(f125 years) = [p(flany storm)] s (C.l )

I
I

where the probability distribution of F for any random storm, p(flany
storm), is not conditioned on a lower integration limit, but only on the
storm histories. According to the subsequent analysis expressed in equations
(5.41) to (5.45) the probability that an extreme base shear force f , with ay
return period of y years will not be exceeded during that period is (compare
equations 5.41 and 5.44):I

I I I y*vP(f y years) = [P(f any storm)]y y (C.2 )

I where: v = the expected number of storms per year

I and thus:
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I
p(fylany storm) = (1 - y!v) (C.3)

I

Af ter introducing the threshold, Fo' the total number of storms, N , can bes
divided into two ranges, one including all storms with F <Fo' and the othermp
including the storms with F ~Fo' Theoretically the probabilitymp
distribution from equation (C.3) can then be written as:

I

I
I

(C.4)

I

If the return period, y, is sufficiently large then P(f IF<Fo) will approachy
the value of 1, because a large return period implies that f will be muchy
larger than the lower limit, Fo' Hence, if F is smaller than Fo' it will
always be much smaller than f as well.y

I
The probabilities that F is larger than the lower limit, Fo' respectively
smaller can be estimated from the fractions of F -values:mp

I

I

Pr(F~Fo) k~ Ns

and thus:

pr(F<Fo) 1
k~ - Ns

(C.S)

(C.6)

I where k is the optimum number of storms used in the estimation procedure for
generating the density function for F and N the number of storms whichmp s
occured during the hindcasting period of 25 years.I

I
I

Equation (C.4) can thus be rewritten as:

P(f lany storm)y
= 1 _ k

Ns
+ P(f IF~F )*~Y 0 Ns

(C.7)
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I Working out this expression combined with the random storm formula, equation

(C.3) results in:I
I

= 1 _ 25 =
y*k

1
1 - y*u (C.8)

I

This expression is the same as equation (5.29), which proves that as long as
the return period, y, is chosen sufficiently large no relevant information
is lost, in spite of the use of a number of k storm samples only, rather
than a number of N .s

I
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