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Abstract: 

 

Floating breakwaters (FBs) have been widely used as an alternative solution to protect coastal 

sites especially small harbors and certain areas which are not suitable for rubble mound 

breakwaters. Floating breakwater cannot completely stop the incident wave action. Instead, it 

attenuates the wave action by partially transmitting, partially reflecting, and partially dissipating 

the incident wave. The efficiency of the FBs profiles and configurations can be quantified by its 

transmission coefficient which is the ratio of the significant wave height at the lee side of the 

FBs over the significant wave height at the front side. The aim of this master thesis was to 

perform a numerical analysis of FBs structures by means of WAMIT and MultiSurf. The study 

was focused on the wave transmission behind the FBs and the response motions of the structure. 

Twelve cases based on laboratory experiments were numerically analyzed and some of the 

results were compared to available measurement data. Some results were satisfactorily confirmed 

to the experiment result while other results were still far from perfect. Some improvement 

methods were recommended to be carried out in the future work i.e. trying out more structure 

geometry representation, simulating more cases which are comparable to the experiments, and 

more detail study of how the experiments were carried out and how the final outputs were 

calculated. 
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BACKGROUND 
 
Floating breakwaters (FBs) have been widely used as an alternative solution to protect coastal sites 
especially small harbours and certain areas which are not suitable for rubble mound breakwaters. FBs 
characteristics and configurations alleviate some of limitations that oppose the construction of rubble 
mound breakwater i.e. poor foundations capability, high construction cost in deep waters, and strict 
requirement of water circulation in certain areas (Ruol, 2008). FBs are also preferable over rubble 
mound breakwater for wave energy attenuation when involving short wave periods (Ozeren, et al., 
2011). The uses of FBs are considered to be economical for wave periods of less than approximately 
3-5 seconds (Tørum, 2011). 
 
Floating breakwater cannot completely stop the incident wave action (Koutandos, et al., 2005). In-
stead, it attenuates the wave action by partially transmitting, partially reflecting, and partially dissi-
pating the incident wave. Energy dissipation are due to damping, friction, and eddies generation. The 
structure motion also generates radiated waves which are propagated in offshore and onshore direc-
tions. These cause an extremely complex hydrodynamic problem on FBs. 
 
The efficiency of the FBs profiles and configurations can be quantified by its transmission coeffi-
cient. The transmission coefficient is defined as ratio of the significant wave height at the lee side of 
the FBs over the significant wave height at the front side. 
 
Many experiments and models have been performed to study the FBs efficiency. One of them is an 
experiment in large-scale facility which was performed by Koutandos et al. (2005) to study the hy-
drodynamic interaction of regular and irregular waves with FBs in shallow and intermediate water. 
Several test cases with different FBs configurations and wave parameters were examined. The results 
showed the dependency of FBs efficiency on breakwater width to wavelength ratio and also on the 
breakwater draught to water depth ratio. Koutandos et al. (2005) suggested a most efficient FBs con-
figuration without considering the cost-effectiveness. 
 
Another experiment of FBs efficiency was conducted by Stansberg et al. (1990) as mentioned by 
Tørum (2011). An FB structure with specific configuration was tested in the Ocean Basin at 
Marintek. Resulted from this experiment, the FBs profile has to be relatively wide in relation to the 
wave length in order to give adequate wave attenuation and it will be uneconomical for incident wave 
with large periods (approximately 10-15 seconds). 
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The FBs efficiency experiments was also performed by Zidan et al. (2012) by examining the hydro-
dynamic interaction of regular waves with FBs for in intermediate and deep waters. The general find-
ing from this experiment was the influence of FBs relative draft and width to the FBs efficiency. 
 
From these experiments results, it can be inferred that the FBs efficiency is closely related to the in-
cident wave length and periods. The FBs profile and configuration therefore must be designed for the 
specific site to take into account the longer wave that may propagate toward the site.  
 
The aim of this master thesis is to generate a numerical model of FBs structures by means of 
WAMIT. The study will be focused on the wave transmission behind the FBs and the transmission 
coefficient resulted from the output data analysis. The structure motions as response to the incoming 
wave will also be studied. Furthermore, the model is expected to be a supporting tool, at a relatively 
lower cost compared to physical model, in designing the efficient FBs profile and configuration. 
 
 
TASK DESCRIPTION 
 
A literature survey was performed by Syltern (2004) to compare the performance of different FBs cross sec-
tions. Among other comparison methods, variation of transmission coefficients (Ct) against relative width to 
wavelength (W/L) of each FB was compared. An experimental study of FBs was also performed by Syltern 
(2005) as his master thesis work. These study reports and data will be the main reference of numerical model 
generation in this master thesis study. 
 
The works that will be carried out during this study is as following; 
1. Generating a numerical model of wave transmission behind FBs and FBs motion response motions by us-

ing WAMIT. 
2. Validating result of generated model with available measurement data. 
3. Using the result in combination with SWAN model should time permits.  
4. Performing sensitivity analysis by applying varied wave period, wave direction, and FBs degree of free-

dom. 
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PREFACE 
 

 

This report is to present the study result of numerical analysis of floating breakwaters 

during the master thesis. Two software, which were new to author, were used to perform 

the study. Lots of times were spent at the beginning of the study to learn, have experiences, 

and gain some confidence in operating the software. 

 

Total of three models of floating breakwaters with twelve different configurations were 

numerically analyzed. These cases were based on two laboratory experiments performed 

by Koutandos et al. (2005) and Syltern (2005). Initially, more cases were considered to be 

analyzed including the combination of parabolic beach, increasing width and draft of the 

breakwaters, and changing the incident wave direction. However, due to a very limited 

time, some of the cases were cancelled and considered to be done in future work. 

 

The study was focused on the transmitted wave behind the breakwater and response 

motions of the structure. The breakwaters were assumed to be subjected to regular waves. 

It is sufficient since the results in irregular seas are possible to be obtained by linearly 

superposing results from regular wave components. The transmission coefficients as a 

definition parameter of floating breakwater efficiency were calculated and compared to the 

available experiment data. 

 

The report consists of brief introduction to the topic and basic theories that related to the 

study. Cases detail and analysis procedures were presented as well as the output plot, 

calculated transmission coefficient, and the breakwater response amplitude operators. The 

conclusion of study was presented on the last chapter following the result analysis and 

discussions.     
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1. INTRODUCTION 
 

 

1.1 Background 
 

Floating breakwaters (FBs) have been widely used as an alternative solution to protect 

coastal sites especially small harbors and certain areas which are not suitable for rubble 

mound breakwaters. FBs characteristics and configurations alleviate some of limitations 

that oppose the construction of rubble mound breakwater i.e. poor foundations capability, 

high construction cost in deep waters, and strict requirement of water circulation in certain 

areas (Ruol, 2008). FBs are also preferable over rubble mound breakwater for wave energy 

attenuation when involving short wave periods (Ozeren, et al., 2011). The uses of FBs are 

considered to be economical for wave periods of less than approximately 3-5 seconds 

(Tørum, 2011). 

 

Floating breakwater cannot completely stop the incident wave action (Koutandos, et al., 

2005). Instead, it attenuates the wave action by partially transmitting, partially reflecting, 

and partially dissipating the incident wave. Energy dissipation are due to damping, friction, 

and eddies generation. The structure motion also generates radiated waves which are 

propagated in offshore and onshore directions. These cause an extremely complex 

hydrodynamic problem on FBs. 

 

The efficiency of the FBs profiles and configurations can be quantified by its transmission 

coefficient. The transmission coefficient is defined as ratio of the significant wave height at 

the lee side of the FBs over the significant wave height at the front side. 

 

Many experiments and models have been performed to study the FBs efficiency. One of 

them is an experiment in large-scale facility which was performed by Koutandos et al. 

(2005) to study the hydrodynamic interaction of regular and irregular waves with FBs in 

shallow and intermediate water. Several test cases with different FBs configurations and 

wave parameters were examined. The results showed the dependency of FBs efficiency on 

breakwater width to wavelength ratio and also on the breakwater draught to water depth 

ratio. Koutandos et al. (2005) suggested a most efficient FBs configuration without 

considering the cost-effectiveness. 

 

Another experiment of FBs efficiency was conducted by Stansberg et al. (1990) as 

mentioned by Tørum (2011). An FB structure with specific configuration was tested in the 

Ocean Basin at Marintek. Resulted from this experiment, the FBs profile has to be 

relatively wide in relation to the wave length in order to give adequate wave attenuation 

and it will be uneconomical for incident wave with large periods (approximately 10-15 

seconds). 
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The FBs efficiency experiments was also performed by Zidan et al. (2012) by examining 

the hydrodynamic interaction of regular waves with FBs for in intermediate and deep 

waters. The general finding from this experiment was the influence of FBs relative draft 

and width to the FBs efficiency. 

 

From these experiments results, it can be inferred that the FBs efficiency is closely related 

to the incident wave length and periods. The FBs profile and configuration therefore must 

be designed properly to take into account the longer wave that may propagate toward the 

site. 

 

1.2 Objective 
 

The aim of this master thesis is to perform a numerical analysis of FBs efficiency by means 

of WAMIT and MultiSurf. The study is focused on the wave transmission behind the FBs 

and the transmission coefficient resulted from the output data analysis. The structure 

motions as response to the incoming wave is also studied. Furthermore, the model is 

expected to be a supporting tool, at a relatively lower cost compared to physical model, in 

designing the efficient FBs profile and configuration. 

 

The analysis is generally carried out in three steps; WAMIT input files preparation, 

WAMIT computation, and WAMIT output processing. The input files preparation is 

involving hand calculations of model center of gravity, radii of gyration, and mooring 

stiffness matrices, and development of the model body geometry by MultiSurf. The 

WAMIT computation is done by using Windows command prompt to execute all the input 

files. The output processing is done to calculate the wave height and model motion from 

non-dimensional output given by WAMIT in Excel spreadsheets and Matlab environment. 

 

1.3 Scope of works 
 

Experimental studies of FBs were performed by Syltern (2005) and Koutandos et al. 

(2005) to compare the performance of different FBs configurations. Among other 

comparison methods, variation of transmission coefficients (Ct) against relative width to 

wavelength (W/L) of each FB was compared. These study reports and data are the main 

reference of numerical model generation in this master thesis study. 

 

The works that is carried out during this study consist of generating a numerical model of 

wave transmission behind FBs and FBs motion response motions by using WAMIT and 

MultiSurf, and validating the result with available measurement data. 
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1.4 Report structure 
 

The thesis background, objective, and scope of works are explained in Chapter 1. Basic 

theory is presented in Chapter 2. The cases, software, and method used in the analysis are 

given in Chapter 3. The output plot and calculated transmission coefficient and response 

amplitude operators are presented in Chapter 4. Conclusion and recommendation for future 

work are given in Chapter 5. 
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2. BASIC THEORY 
 

 

2.1 Floating breakwaters response in regular waves 
 

Analyzing the interaction between floating breakwater and an incident regular wave is very 

useful since the response of the breakwater to irregular seas is possible to be obtained by 

linearly superposing results from regular wave components (Faltinsen, 1990). The 

hydrodynamic analysis of floating breakwaters in incident regular waves is usually 

conducted in the frequency domain and quite often is based on linear wave theory. In this 

linear analysis, the floating breakwater is subjected to small amplitude motions which 

oscillate in all six degrees of freedom corresponding to surge, sway, heave, roll, pitch, and 

yaw, respectively. 

 

The origin of the global coordinate system is usually placed on the free surface. While the 

body fixed coordinate system can be defined as a right-handed Cartesian coordinate system 

(x, y, z) stationary with respect to the global coordinate system and the floating breakwater. 

For the simplicity, the body origin is located on the center of gravity of the breakwater 

with positive z vertically upwards. The breakwater is symmetrical to the x-z plane. 

 

The translational displacements in the x-, y-, and z-directions with respect to the origin are 

defined as ξ1, ξ2, and ξ3 corresponding to surge, sway, and heave displacement, 

respectively. While the rotational motions about the x-, y-, and z-axis are defined as ξ4, ξ5, 

and ξ6 corresponding to roll, pitch, and yaw angle, respectively. The coordinate system and 

the translational and rotational motions are shown for the case of a moored box pontoon 

floating breakwater in Figure 2.1 below. 

 

 

Figure 2.1 Coordinate system and motions of pontoon floating breakwater 
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The response amplitudes of floating breakwater motions ξj are obtained from the solution 

of below Equation 2.1. 

 

∑[   (       
     )    (       

 )  (       
 )]     

 

   

 (2.1) 

  

where ω is the incident wave frequency, Mij are the coefficients of the mass matrix of the 

body, Aij and Bij are the coefficients of the added mass matrix and damping matrix, and Cij 

are the coefficients of hydrostatic and gravitational matrix. Bij
E
 are the coefficients of the 

damping matrix caused by an external force (i.e. drag damping of the mooring lines and 

viscous damping) and Kij are the coefficients of the external stiffness matrix caused by the 

mooring lines. 

 

As an illustration of the concept of the added mass, considering in a forced harmonic heave 

emotion of a structure, the heave motion causes the surrounding fluid to oscillate which 

means there is a pressure field in the fluid. The whole fluid will oscillate with different 

fluid particle amplitudes throughout the fluid. For simplicity, this can be modeled as some 

volume of the fluid moving with the body and the amplitudes of the fluid at some degrees 

are negligible. 

 

Added mass and damping coefficients consist of 36 coefficients each, half of which are 

zero for a structure where the submerged part has one vertical symmetry plane (Faltinsen, 

1990). These coefficients are a function of body form, frequency of oscillation and forward 

speed. These are also influenced by other factors like finite water depth and restricted 

water area. 

 

The response of the floating breakwater in each degree of freedom is expressed in terms of 

the response amplitude operator shown by below Equation 2.2. 

 

     
  
 

 (2.2) 

 

where A is the amplitude of the incident wave and j = 1, …, 6. 

 

2.2 Mooring line stiffness 
 

The effect of the mooring line on the response of the floating breakwater is incorporated to 

the response motion by adding the stiffness coefficients of the mooring lines into the 

motion equation. The complete 6 X 6 stiffness coefficient matrix of the mooring lines is 

derived in six degrees of freedom based on the differential changes of mooring lines 

tensions caused by the static motions of floating breakwater. The stiffness is calculated in 

breakwater static average position, under the action of steady drift force. 
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In a mooring system, numbers of cables are attached to the floating breakwater at different 

points connecting the structure to the anchors at sea bed. The mooring system normally 

used to hold the breakwater in the desired location is a spread mooring system where 

several pre-tensioned anchor lines are arrayed around the breakwater. The anchors are 

usually can be easily moved implies that the anchor is restricted to a small vertical forces 

(Faltinsen, 1990). A significant part of the anchor lines should lie on the sea bed to ensure 

that the anchors are kept in position. Example of spread mooring system is shown in Figure 

2.2. 

 

The mooring lines can be made up of chain, rope, or combination of both. Segmented 

mooring lines are normally used to get a heavy line at the bottom and a light line close to 

the water surface. Comparing to the use of chain or rope alone, this mooring lines give 

greater stiffness and lighter mooring lines.  

 

 

 

Figure 2.2 Spread mooring system (Faltinsen, 1990) 

 

According to Faltinsen (1990), the mooring line analysis can be performed statically by 

assuming a horizontal sea bed and neglecting the bending stiffness and dynamic effects of 

the mooring lines. The line tension then can be calculated by following Equation 2.3. 

 

         (     )  (2.3) 
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where TM the mooring line tension, TH horizontal component of mooring line tension, w is 

the mooring line unit weight, h is the water depth, ρ is the water density, g is the 

gravitational acceleration, A the amplitude of incident wave, and z is the location of the 

observed point in z-axis. 

 

The use of Equation 2.4 which expresses the relation between X and TH resulting horizontal 

forces from the mooring line on the floating breakwater as a function of the horizontal 

distance X between the anchor and the point where the anchor line is connected to the 

breakwater. The illustration of the mooring lines and its tension components and 

parameters is shown in Figure 2.3 below. 

 

     (   
 

 
)
 
 ⁄

        (  
 

 
) (2.4) 

 

where      ⁄ . 

 

In a spread mooring system, the relationship between mean external loads on the vessel 

and its position is calculated by considering the contributions from each cable line 

separately. To find the linear restoring effects due to the mooring lines stiffness, following 

equations can be utilized. 

 

 

Figure 2.3 Mooring line configuration (Faltinsen, 1990) 
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The coupling coefficients K16, K61, K12, and K21 are zero since the mooring arrangement is 

symmetric about the x-z plane. Values of kH and kZ are given by following Equation 2.10. 
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(2.10) 

 

  

2.3 Natural frequencies 
 

The natural frequencies are one of the important parameter in assessing the response 

amplitude operator of the floating breakwater. If the floating breakwaters are subjected to 

incident wave with oscillation periods or frequencies that close to the natural frequencies, 

relatively large motions are likely to occur (Faltinsen, 1990). 

 

The natural frequencies of floating breakwater in each degree of freedom are determined 

by the weight distribution of the breakwater (Fossen, 2011). The natural frequencies are 

independent of the origin if they are computed in a linear system using the six degrees of 

freedom coupled equations of motion. As opposed to this, the decoupled natural 

frequencies computation can be erroneous since the eigenvalues of the decoupled 

equations depend on the coordinate origin. However, according to Fossen (2011), the 

values of natural frequencies computed by coupled and decoupled equations are close to 

each other. Therefore the decoupled natural frequencies are considered as a representative 

parameter in assessing the response motions in this analysis. 

 

The natural frequencies of heave, roll, and pitch are given by Equation 2.11 to Equation 

2.13 as following. 
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    √
   

     (      )
 (2.11) 

 

    √
   

      (     )
 (2.12) 

 

    √
   

      (      )
 (2.13) 

 

where the    ,    , and     are the natural frequencies of heave, roll, and pitch motions, 

respectively. Aii and Cii are the added mass and restoring coefficient for each degree of 

motion. Ix and Iy are the mass moment of inertia about the x- and y-axis and m is the mass 

coefficient. 

 

2.4 Efficiency of floating breakwaters 
 

Floating breakwaters attenuate the incident wave height by partially transmitting, partially 

reflecting and partially dissipating the incident wave. Energy dissipation are due to 

damping, friction, and eddies generation. The structure motion also generates radiated 

waves which are propagated in offshore and onshore directions. The efficiency of the 

floating breakwater is given by transmission coefficient (Ct). Ct is defined as a ratio 

between the incoming wave height and the transmitted wave height. 

 

In addition, reflection coefficient (Cr) of the breakwater can also be used in assessing the 

floating breakwater efficiency. This coefficient is defined as a ratio between the reflected 

wave height with incoming wave height. Ct and Cr are calculated by following equations. 

 

   
  
  

 
(2.14) 

 

 

   
  
  

 
(2.15) 

 

 

where Ht is the height of the transmitted wave, Hr is the height of the reflected wave, and 

Hi is the height of incident wave height. 
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3. CASES AND PROCEDURES 
 

 

3.1 Cases 
 

The starting point for the floating breakwater models analyzed in this thesis is two 

laboratory experiments conducted by Koutandos, et al. (2005) and Syltern (2005). The 

experiment by Koutandos, et al. (2005) was performed to study the hydrodynamic 

interaction of regular and irregular wave with floating breakwaters in shallow and 

intermediate waters. Several test cases with different configurations and generated waves 

parameters were examined.  

 

The experiment by Syltern (2005) was performed to find the best floating breakwater 

profile and configurations to sell and distribute in Norway and international market. The 

basic configurations were provided by a marina manufacturer and supplier company in 

Norway. It was then expanded into various configuration with increasing width, draft, and 

combination with parabolic beach structures. 

 

Some of the cases from both experiments were referred in this thesis and explained in 

Section 3.1.1 to Section 3.1.3. The cases summary is presented in Table 3.1 below. Case 13 

was cancelled due to limited time and considered to be carried out on further work. 

 
Table 3.1 Cases summary 

Cases 

No. 
Configuration 

Incident Wave 

Height 
Wave Periods 

1 2D model - fixed (draft = 0.4 m) 0.2 m 2.04 s - 9.17 s 

2 2D model - fixed (draft = 0.5 m) 0.2 m 2.04 s - 9.17 s 

3 2D model - fixed (draft = 0.65 m) 0.2 m 2.04 s - 9.17 s 

4 Molo model - free floating 0.6 m 1.00 s - 20.00 s 

5 Molo model - vertical restrained 0.6 m 1.00 s - 20.00 s 

6 Molo model - fixed 0.6 m 1.00 s - 20.00 s 

7 Molo model – heave only 0.6 m 1.00 s - 20.00 s 

8 Molo model - moored 0.6 m 1.00 s - 20.00 s 

9 Maere model - free floating 0.6 m 1.00 s - 20.00 s 

10 Maere model - vertical restrained 0.6 m 1.00 s - 20.00 s 

11 Maere model - fixed 0.6 m 1.00 s - 20.00 s 

12 Maere model – heave only 0.6 m 1.00 s - 20.00 s 

13 
Maere model – moored 

(CANCELLED) 
0.6 m 1.00 s - 20.00 s 
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In addition to these cases, in order to have an experience operating software used in the 

floating breakwater analysis, some exercise cases were carried out. The cases standard 

outputs were given by WAMIT developer for model calibration. The exercises were done 

by rebuilding the geometry structure in MultiSurf from scratch, executing the computation 

by WAMIT, and comparing the results with the standard outputs. Some times were spent at 

the beginning of the study to obtain the correct results. 

 

3.1.1 2D model 

 

The experiment by Koutandos, et al. (2005) was performed in large-scale facility and wave 

flume with dimensions of 100 m length, 5 m depth, and 3 m width. The floating 

breakwaters were box shaped with 2 m width, 1.5 m height, and 2.8 m length. 

 

The breakwater was fixed to the wall of flume hence no motions were allowed during the 

experiment. Three different drafts were used 0.4 m, 0.5 m, and 0.65 m. A regular wave 

with wave height of 0.2 m was used. The shortest wave period was 2.04 s and the longest 

was 9.17 s. The floating breakwater model is shown in Figure 3.1. 

 

 

Figure 3.1 2D model in the wave flume (Koutandos, et al., 2005) 

 

3.1.2 Molo model 
 

The experiment by Syltern (2005) was performed with model scale of 1:10 in a wave pool 

with depth of 0.6 m. Two type of models were tested; Molo and Maere model. Molo model 

was constructed from 2 units of pontoons with total dimensions of 4 m length, 0.4 m width, 

and 0.2 m height. It was constructed as bottomless boxes of steel plate with thickness of 3 

mm and polystyrene as the floating element. Two internal plates were installed on each 

pontoon dividing the pontoon into three equal spaces. 
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After being submerged for a long time, pontoons weight on air is approximately each 50 

kg, indicating the polystyrene saturated with water. Several sea conditions with irregular 

waves were used in the experiment. However, a regular wave with wave height of 0.6 m 

and normal direction was selected and considered representative for the numerical models. 

The shortest wave period was 1.00 s and the longest was 20.00 s, with total of twenty wave 

frequencies were examined. The model is shown in Figure 3.2. 

 

Five different model configurations of were used in the analysis; free floating, vertical 

restrained (heave, pitch, and roll are restrained), fixed, heave only, and anchored. 
 

3.1.3 Maere model 

 

Maere model is constructed from 7 units of pontoons with configuration of longitudinal 

and transversal pontoons. The pontoon dimension is 1.5 m length, 0.24 m width, and 0.16 

m height. It is constructed as bottomless boxes of steel plate with thickness of 3 mm and 

polystyrene as the floating element. Two internal plates were installed on each pontoon 

dividing the pontoon into three equal spaces. 

 

Total weight of each pontoon is approximately 25.8 kg. Similar to Molo model, several sea 

conditions with irregular waves were used in the experiment but only regular wave with 

wave height of 0.6 m and normal direction was selected for the numerical models. The 

shortest wave period was 1.00 s and the longest was 20.00 s, with total of twenty wave 

frequencies were examined. The model is shown in Figure 3.2. 

 

Similar to Molo model, five different model configurations were used in the analysis; free 

floating, vertical restrained (heave, pitch, and roll are restrained), fixed, heave, and 

anchored. 
 

 

Figure 3.2 Molo model in the wave pool (Syltern, 2005) 
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Figure 3.3 Molo model in the wave pool (Syltern, 2005) 

 

3.2 Software 
 

3.2.1 WAMIT V6.4 
 

WAMIT version 6.4 was used on this master thesis to compute the wave height 

transmission and the response motion of the floating breakwaters. It is a radiation and 

diffraction panel program developed for the linear analysis of the interaction of waves with 

submerged or floating structures. A variety of options permit the dynamic analysis of 

bodies which are freely floating, restrained, or fixed in position. The radiation and 

diffraction velocity potentials on the body wetted surface are determined from the solution 

of an integral equation obtained by using Green’s theorem with the free-surface source-

potential as the Green function (WAMIT, 1998-2006). 

 

There are two computation method available in WAMIT; low-order and high-order 

method. The high-order method was selected since it provides a more accurate solution, 

with smaller number of unknowns, compared to the low-order method. Specifically for 

case analysis in this thesis, it represents the floating breakwaters by geometry models 

developed in MultiSurf. 

 

The different use of the word order here should be noted to avoid confusion. Following the 

usual conventions of marine hydrodynamics, first-order and second-order are always used 

to refer to linearization of the boundary conditions and solution, whereas low-order and 

high-order are used to refer to the method for representation of the body surface and 

solution. 
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WAMIT consists of two principal subprograms which normally are run sequentially; 

POTEN and FORCE. POTEN solves the velocity potential on the body surface and 

FORCE evaluates physical parameter including the force and motion coefficients, and field 

data including the fluid pressure, velocity, and free-surface elevation. Detail input files for 

both subprograms are explained in Section 3.3.4. 
 

3.2.2 MultiSurf V8.2 

 

By using WAMIT version V6.4, there is an option to link WAMIT with MultiSurf by 

Relational Geometry Kernel (RGKernel). In this option, a wide variety of body geometries 

are represented by MultiSurf and it can be input directly in the high-order method of 

WAMIT computation. Main advantages of this option are (a) the geometry representation 

is developed using the CAD environment of MultiSurf and (b) this representation can be 

input directly to WAMIT without significant effort or approximation (WAMIT, 1998-

2006). 

 

MultiSurf version 8.2 was used on this master thesis. A special procedure is available to 

create geometry input files for WAMIT. Basically, two output files from MultiSurf are 

required for WAMIT. Detail explanation of these files is given in Section 3.3.3.  

 

3.3 Procedures 
 

In general, the analysis was carried out in three steps; WAMIT input files preparation, 

WAMIT computation, and WAMIT output processing. The input files preparation 

involved hand calculations of model center of gravity, radii of gyration, and mooring 

stiffness matrices, and development of the model body geometry. The WAMIT 

computation was done by using Windows command prompt to execute all the input files. 

The output processing consisted of calculation of wave height and model motion from non-

dimensional output given by WAMIT in Excel spreadsheets and Matlab environment. 

 

3.3.1 Calculation of center of gravity (CoG) and radii of gyration 

 

Calculation of center of gravity (CoG) and radii of gyration of Molo and Maere models are 

detailed in Appendix A. Two approaches of body representation are used in Molo model 

calculation to check its effect on the analysis results. In the first approach (Figure 3.4) the 

model is considered as one rigid composite body consists of steel plate, polystyrene, and 

amount of water filled the open compartment on the bottom model which moves along 

with the model. Whereas in the second approach (Figure 3.5) the amount of water filled the 

bottom open compartment is no longer considered. 
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Figure 3.4 Molo model perspective (approach 1) 

 

 

Figure 3.5 Molo model perspective (approach 2) 

 

 

Figure 3.6 Maere model perspective 
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Comparing the analysis results using both approaches, it found that the results are 

qualitatively comparable in terms of wave diffraction, wave attenuation, and wave riding 

breakwater occurrence on certain incident wave conditions. Consequently, the second 

approach is used in further modeling and Maere model calculation (Figure 3.6) since it is 

representing the model more accurately. Summary of calculated radii of gyration is given 

in Table 3.2. 

 
Table 3.2 Summary of calculated radii of gyration 

Model 
Radii of gyration relative to CoG 

rx (m) ry (m) rz (m) 

Molo model (approach 1) 1.16 0.14 0.23 

Molo model (approach 2) 1.83 0.17 0.25 

Maere model 1.19 0.42 0.012 

 

3.3.2 Calculation of mooring stiffness matrix 

 

In order to have a comparable numerical model result with experiment by Syltern (2005), a 

moored Molo model configuration is analyzed. 

 

Figure 3.7 and Figure 3.8 show the mooring configuration and spread mooring system of 

the breakwater Molo model. The mooring lines consisted of chain and rope with different 

total length for each middle and end mooring lines. The chain was galvanized and its 

weight was 235 grams per meter. Other parameters for the mooring lines are provided in 

Appendix B. 

 

 

Figure 3.7 Molo model mooring configuration (side view) 
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Figure 3.8 Molo model spread mooring system (top view) 

 

Calculation of mooring stiffness matrix for Molo model is detailed in Appendix B. To 

simplify the analysis, solutions of the inelastic mooring line (catenary) equations are used 

(Faltinsen, 1990). The mooring lines are assumed to have constant weight per unit length. 

 

Calculated linear restoring coefficients of the mooring lines in a spread mooring system are 

presented in Table 3.3.  

 
Table 3.3 Mooring restoring coefficients 

Mooring 

Line 
xm ym 

ψm  

(deg) 

kH 

(N/m) 

kZ 

(N/m) 

K11 

(N/m) 

K22 

(N/m) 

K33 

(N/m) 

K66 

(N/m) 

K26 

(N/m) 

K62 

(N/m) 

a -0.1 -1 206.57 0.13 0.081 0.104 0.026 0.081 0.094 0.049 0.049 

b -0.1 0 180.00 0.25 0.085 0.250 0.000 0.085 0.000 0.000 0.000 

c -0.1 1 153.43 0.13 0.081 0.104 0.026 0.081 0.094 0.049 0.049 

d 0.1 -1 333.43 0.13 0.081 0.104 0.026 0.081 0.093 -0.050 -0.050 

e 0.1 0 0.00 0.25 0.085 0.250 0.000 0.085 0.000 0.000 0.000 

f 0.1 1 26.57 0.13 0.081 0.104 0.026 0.081 0.094 -0.049 -0.049 

          Ʃ 0.916 0.104 0.494 0.375 0.000 0.000 
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Complete 6 X 6 mooring stiffness matrix which is used for WAMIT input file is given 

below. 

 

  

(

  
 
   

              
              
              
          
          
              

   

)

  
 

 

 

3.3.3 Geometry models by MultiSurf 
 

Two output files from MultiSurf are required for WAMIT input; file with extension ‘.gdf’ 

and ‘.ms2’ with user specified file names. GDF file is one of essential input file in WAMIT 

that providing all required geometry information of the model body surface to be analyzed. 

MS2 represents the geometry during execution of WAMIT by linking to the RGKernel. 

 

The geometry model was developed in a CAD environment in MultiSurf by creating 

several geometry entities available in MultiSurf; points, curves, and surfaces. In MultiSurf 

manual, other entities such as bead, magnet, and ring are also available. However, the 

floating breakwater body was represented by a simple geometry which requires only the 

first three entities mentioned above. 

 

WAMIT recognizes several types of surface patches with different characteristics for 

analysis which is distinguished by color coding. Surface colors can be selected in the 

properties manager in MultiSurf. Some colors are reserved for specific patches; bright cyan 

(color 11) and bright white (color 15) are reserved for dipole patches and exterior free 

surface patches, respectively. Body patches and interior free surface patches can be any 

other color besides 11 and 15. 

 

Since approach 2 of radii of gyration calculation was used in Molo and Maere model 

analysis (Section 3.3.1), the model geometry was represented in MultiSurf by a rectangular 

cuboid with small dipole panel at the bottom. The body patches was colored green (color 

2) and the dipole patches was colored bright cyan (color 11). 

 

Specifically for 2D model, the breakwater model geometry was represented by a very long 

cuboid in order to eliminate the wave diffraction effect on the lee side and to achieve the 

2D wave flume environment. 

 

Snapshot of body geometry of 2D model, Molo model, and Maere model are shown in 

Figure 3.9 to Figure 3.11 below. 
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Figure 3.9 2D model MultiSurf snapshot 

 

 

Figure 3.10 Molo model MultiSurf snapshot 

 

 

Figure 3.11 Maere model MultiSurf snapshot 
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The origin of the body coordinate system is located at the center of gravity. Using a plane 

of symmetry at y=0, only the first half of the breakwater was modeled in MultiSurf. The 

characteristic length is set to 1. Decimal place was set to 7 places in order to get more 

accurate results. 

 

Help and tutorial to prepare input files for WAMIT is available in MultiSurf manual. 

Example output files from MultiSurf are given in Appendix B. 

 

3.3.4 Computation by WAMIT 
 

To execute WAMIT computation, there were several input files prepared. All input files 

were ASCII files. The first line of most files was reserved for header, consisting of up to 

72 characters which may be used to identify the file. The precise format of the input files is 

not important, provided at least one blank space is used to separate data on the same line of 

the file. 

 

The geometry of the body was specified by a Geometric Data File (GDF) which included 

the Cartesian coordinates of each vertex of each panel, listed sequentially. In addition the 

GDF file specified the characteristics length ULEN used to non-dimensionalize outputs, 

the value of the gravitational acceleration constant GRAV in the same units of 

measurement, the number of panels NPAN, and two symmetry indices ISX and ISY. 

 

The Potential Control File (POT) was used to input various parameters to the POTEN 

subprogram. The name of the POT file can be any legal filename accepted by the operating 

system, with a maximum length of 16 ASCII characters, followed by the extension ‘,pot’. 

Two alternatives format for the POT files are available. Either Form 1 or Form 2 of POT 

file can be used irrespective of whether low-order or high-order method is used. The only 

distinction is that the Form 2 is particularly convenient for the analysis of multiple bodies.  

Optional parameter IALTPOT in the CFG file is used to specify which alternative form of 

the POT is used for the computation. 
 

The Force Control File (FRC) was used to input various parameters to the FORCE 

subprogram. The name of the FRC file can be any legal filename accepted by the operating 

system, with a maximum length of 16 ASCII characters, followed by the extension ‘.frc’. 

Two alternatives format for the FRC files are also available. Alternative Form 1 of FRC 

file may be used for a rigid body which is freely floating and not subject to external 

constraints. In this Form 1, the inertia matrix of the body specified in terms of a 3 x 3 

matrix of radii of gyration. Alternative Form 2 permits input of up to three 6 x 6 mass, 

damping and stiffness matrices to allow for a more general body inertia matrix, and for any 

linear combination of external forces and moments. Another alternative format may also be 

used for multiple bodies. 
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An array of option indices IOPTN was included in FRC file. These indicate which 

hydrodynamics parameters are to be evaluated and output from the program. In this 

analysis, IOPTN(4) and IOPTN(6) were activated to evaluate the response amplitude 

operator and free-surface elevation, respectively. 

 

A configuration file CFG was used to specify various parameters and option in WAMIT. 

As recommended by manual, an optional input file was also used to specify the filenames 

of the primary input files CFG, POT, FRC, and GDF. 
 

3.3.5 Output processing 

 

Several output files were created by WAMIT with assigned filenames. The final output 

was saved in a file with the extension OUT which included extensive text, labels, and 

summaries of the input data. A separate numeric output file for the data corresponding to 

each requested option was also created in a more suitable form for post-processing. These 

files were distinguished by their extension, which correspond to the option numbers. 

 

3.3.5.1 Transmission coefficient 

 

The effectiveness of the floating breakwater is analyzed in terms of Ct or 

coefficient. The wave elevation was calculated for all cases and for all frequencies 

considered in the locations of wave gauges used in the experiments, behind the 

breakwaters. For each frequency and each case, the wave elevation due to both 

and radiation was computed. Coordinates of wave gauge locations relative to origin 

body coordinate system are given in   
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Table 3.4 below. 

 

The free surface elevation output was given in non-dimensional form as following. 

 

 ̅  
 

 
 (3.3) 

 

where  ̅ is a non-dimensional free surface elevation, η is dimensional free surface 

elevation, and A is dimensional incoming wave amplitude. 

 

From Equation 3.3, transmitted wave height was calculated by multiplying the non-

dimensional free surface elevation with the incoming wave amplitude. And the 

transmission coefficient was calculated as a ratio between the transmitted wave height and 

incoming wave height. 
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Table 3.4 Wave gauges coordinates behind the breakwaters 

Cases Wave Gauge x y z 

1. 2D model - fixed (draft = 0.4 m) 

2. 2D model - fixed (draft = 0.5 m) 

3. 2D model - fixed (draft = 0.65 m) 

#1 2.3 0 0 

#2 2.1 0 0 

4. Molo model - free floating 

5. Molo model - vertical restrained 

6. Molo model - fixed 

7. Molo model - heave only 

8. Molo model - anchored 

#1 0.82 1.9 0 

#2 0.82 0.95 0 

#3 0.82 0 0 

#4 1.88 0 0 

9. Maere model - free floating 

10. Maere model - vertical restrained 

11. Maere model - fixed 

12. Maere model - heave only 

13. Maere model - anchored 

#1 1.47 1.8 0 

#2 1.47 0.9 0 

#3 1.47 0 0 

#4 2.47 0 0 

 

3.3.5.2 Body motions 

 

The non-dimensional definitions of the body motions are given below. 

 

  ̅  
  

   
 ⁄
 (3.4) 

 

where   ̅ and    are the non-dimensional and dimensional translational motion for i = 1, 2, 

3 (surge, sway, heave) and rotational motion for i = 4, 5, 6 (roll, pitch, yaw). Values of n = 

0 for i = 1, 2, 3 and n = 1 for i = 4, 5, 6. The translational motions (ξ1, ξ2, ξ3) and rotational 

motions (ξ4, ξ5, ξ6) are measured in meters and radians, respectively. The diagrams of body 

motions of Molo and Maere models are shown in Figure 3.12 and Figure 3.13 below. 

 

The response amplitude operators were simply calculated by multiplying the non-

dimensional translational and rotational motion with the incoming wave amplitude divided 

by characteristic length (Lc) to the power of n. 
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Figure 3.12 Molo model body motions diagram 

 

 

Figure 3.13 Maere model body motions diagram 

 

3.3.5.3 Model natural frequencies 

 

Model natural frequencies     were calculated for assessing the amplitude of motions. The 

decoupled and un-damped natural frequencies were calculated by using below Equation 

3.5 and 3.6 (Faltinsen, 1990). 
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 (3.5) 

   

      (
       
   

)

 
 ⁄

 (3.6) 

 

where     is natural periods for each motion mode,     and         are added mass, mass, 

and restoring coefficient for each motion mode, respectively. 

 

There are no (uncoupled) natural frequency in surge, sway, and yaw for unmoored 

structure (Faltinsen, 1990). For a moored structure the natural periods in surge, sway and 

yaw are much longer relative to incoming wave periods occurring in the sea. The 

breakwater is symmetrical about the longitudinal plane x=0 and transverse y=0, thus heave 

is uncoupled from pitch and roll. Natural frequencies of the breakwater were calculated as 

un-damped since the natural frequencies are usually shifted less than 1% when damping is 

added (Fossen, 2011). Calculated natural frequencies in heave and pitch are given below. 

 

Table 3.5 Natural frequencies in heave and pitch 

Incoming Wave Molo Model Maere Model 

T  

(s) 

ω  

(rad/s) 

ωn3  

(rad/s) 

ωn5  

(rad/s) 

ωn3  

(rad/s) 

ωn5  

(rad/s) 

1.00 6.28 5.26 4.99 5.03 5.78 

1.05 5.97 5.30 4.99 5.28 5.82 

1.11 5.65 5.33 4.99 5.47 5.83 

1.18 5.34 5.36 4.99 5.63 5.84 

1.25 5.02 5.37 4.99 5.79 5.85 

1.33 4.71 5.38 4.99 5.89 5.83 

1.43 4.40 5.38 4.99 5.91 5.77 

1.54 4.08 5.39 4.99 5.90 5.70 

1.67 3.77 5.40 4.99 5.87 5.61 

1.82 3.45 5.40 4.98 5.83 5.52 

2.00 3.14 5.38 4.98 5.73 5.42 

2.22 2.83 5.31 4.98 5.55 5.32 

2.50 2.51 5.18 4.98 5.29 5.23 

2.86 2.20 4.98 4.98 4.94 5.15 

3.33 1.88 4.71 4.98 4.54 5.09 

4.00 1.57 4.41 4.98 4.13 5.05 

5.00 1.26 4.07 4.98 3.71 5.04 

6.67 0.94 3.70 4.98 3.28 5.04 

10.00 0.63 3.31 4.98 2.84 5.07 

20.00 0.31 2.85 4.98 2.35 5.10 
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4. RESULTS ANALYSIS AND DISCUSSIONS 
 

 

4.1 Output plots 
 

For each case, output plots are presented for two properly selected frequencies which gave 

the low and high transmission coefficients (Ct). Remain plots for complete cases are given 

in separated CD. Table of content of the CD is given in the Table 4.1 below. 

 
Table 4.1 CD table of contents 

No. Contents Remarks 

01 Final report .doc and .pdf files 

02 Sketches 

Including .psd files 
  01 2D model 

  02 Molo model 

  03 Maere model 

03 WAMIT and MultiSurf models 

with 13 cases, 

including .ms2 files 

  01 2D model 

  02 Molo model 

  03 Maere model 

04 Selected output plot matlab plots and .tiff 

05 Calculation and tables 

.xlsx calculation 

spreadsheets 

  01 Cases & CD contents 

  02 Center of gravity 

  03 Mass moment of inertia 

  04 Mooring stiffness 

  05 Wave gauge location 

  06 Transmission coefficients Ct 

  07 RAOs plot 

  08 Natural frequencies 

 

From figures of plots with low Ct, effectiveness of floating breakwater for wave 

attenuation can be clearly observed. Wave diffraction phenomena on the lee side of the 

breakwaters Molo and Maere model are also clearly shown on these figures by the bent 

wave crests around the breakwaters. Variation of transmitted wave heights behind the 

breakwaters is also noticeable. The transmission wave heights were quantified by varying 

Ct values presented on Section 4.2.  

 

Whereas on figures of plots with high Ct, it can be inferred that the wave lengths are 

relatively larger compare to the breakwater width and the waves are transmitted without 
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any attenuation. The incoming wave lengths, of which the attenuations started to be 

practically unacceptable, were quantified by ratio between the wave length and breakwater 

width (W/L) given on Section 4.2. 

 

4.1.1 2D model 

 

4.1.1.1 2D model (draft = 0.4 m) 

 

 

Figure 4.1 Free surface elevation of 2D model (draft=0.4m) with low Ct 

 

 

Figure 4.2 Free surface elevation of 2D model (draft=0.4m) with high Ct 

 

Above Figure 4.1 shows clearly the incoming wave attenuation on lee side of the 

breakwater. Only small amount of incoming waves were transmitted and most of it were 

reflected back in front of the breakwater. The Ct resulted by this case is the lowest with 
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value of 0.31. Whereas Figure 4.2 shows lower ratio between the breakwater width and the 

wave length (W/L) and less effective wave attenuation indicated by relatively larger wave 

height on lee side of the breakwater. 

 

4.1.1.2 2D model (draft = 0.5 m) 
 

 

Figure 4.3 Free surface elevation of 2D model (draft=0.5m) with low Ct 

 

 

Figure 4.4 Free surface elevation of 2D model (draft=0.5m) with high Ct 

 

Similar phenomenon as previous configuration (draft = 0.4m) is shown by above Figure 

4.3 and Figure 4.4. The lowest Ct of 0.23 is given by top figure, indicating more effective 

wave attenuation, and highest Ct of 0.9 is given by bottom figure, indicating the opposite. 
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4.1.1.3 2D model (draft = 0.65 m) 

 

 

Figure 4.5 Free surface elevation of 2D model (draft=0.65m) with low Ct 

 

 

Figure 4.6 Free surface elevation of 2D model (draft=0.65m) with high Ct 

 

Similar to both previous configurations, for breakwater with draft of 0.65 m, the lowest Ct 

of 0.13 is given by the shortest wave periods and is illustrated by above Figure 4.5. While 

the highest Ct of 0.9 is given by the longest wave periods and is illustrated by Figure 4.6. 

 

4.1.2 Molo model 

 

In general for Molo model, the effects of wave diffraction and reflection wave is clearly 

observed behind and in front of the breakwater. From presented figures, it can be 
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quantitatively determined that for the short wave periods, the fixed configuration (Figure 

4.11) gives the best performance as the wave height behind the breakwater is relatively 

lower than the other configurations, indicating the lower Ct value. While for the long wave 

periods, the wave length is relatively larger than the breakwater width and the wave 

attenuation is no longer noticeable. 

 

4.1.2.1 Molo model - free floating 

 

 

Figure 4.7 Free surface elevation of Molo model (free floating) with low Ct 

 

 

Figure 4.8 Free surface elevation of Molo model (free floating) with high Ct 
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4.1.2.2 Molo model - vertical restrained 
 

 

Figure 4.9 Free surface elevation of Molo model (vertical restrained) with low Ct 

 

 

Figure 4.10 Free surface elevation of Molo model (vertical restrained) with high Ct 
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4.1.2.3 Molo model - fixed 
 

 

Figure 4.11 Free surface elevation of Molo model (fixed) with low Ct 

 

 

Figure 4.12 Free surface elevation of Molo model (fixed) with high Ct 
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4.1.2.4 Molo model - heave only 
 

 

Figure 4.13 Free surface elevation of Molo model (heave only) with low Ct 

 

 

Figure 4.14 Free surface elevation of Molo model (heave only) with high Ct 
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4.1.2.5 Molo model – moored 

 

 

Figure 4.15 Free surface elevation of Molo model (moored) with low Ct 

 

 

Figure 4.16 Free surface elevation of Molo model (moored) with high Ct 

 

4.1.3 Maere model 

 

Similar to Molo model, generally the effects of wave diffraction and reflection wave is 

clearly observed behind and in front of the breakwater Maere model. Quantitatively, it can 

also be determined figures that for the short wave periods, the fixed configuration (Figure 

4.21) gives the best performance as the wave height behind the breakwater is relatively 

lower than the other configurations, indicating the lower Ct value. And for long wave 
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periods, the wave length is relatively larger than the breakwater width and the wave 

attenuation is no longer noticeable. 

 

4.1.3.1 Maere model - free floating 

 

 

Figure 4.17 Free surface elevation of Maere model (free floating) with low Ct 

 

 

Figure 4.18 Free surface elevation of Maere model (free floating) with high Ct 
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4.1.3.2 Maere model - vertical restrained 
 

 

Figure 4.19 Free surface elevation of Maere model (vertical restrained) with low Ct 

 

 

Figure 4.20 Free surface elevation of Maere model (vertical restrained) with high Ct 
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4.1.3.3 Maere model - fixed  
 

 

Figure 4.21 Free surface elevation of Maere model (fixed) with low Ct 

 

 

Figure 4.22 Free surface elevation of Maere model (fixed) with high Ct 
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4.1.3.4 Maere model - heave only 
 

 

Figure 4.23 Free surface elevation of Maere model (heave only) with low Ct 

 

 

Figure 4.24 Free surface elevation of Maere model (heave only) with high Ct 

 

  



4. RESULTS ANALYSIS AND DISCUSSIONS 

40 
 

4.2 Transmission coefficients 
 

4.2.1 2D model 

 

The result of transmission coefficient calculation for 2D model is presented in Figure 4.25. 

The influence of W/L on the wave attenuation by the breakwaters is shown, as well as the 

influence of varies breakwater drafts. The Ct values presented here are the average of Ct 

calculated on two locations of the wave gauges positions. Ct value of each wave gauge 

location is given in the result comparison Section 4.4.1.  

 

 

Figure 4.25 Transmission coefficients of 2D model 

 

Quantitative comparison between the result and the laboratory experiment measured data is 

given in Section 4.4.1. Comparing the presented results with the corresponding one of 

Koutandos, et al. (2005), the tendency of the Ct values as a function of W/L is accordingly 

match. The transmission coefficient decreases with a decrease of wave period, that is to say 

a decrease of wave length, indicating an increase of wave attenuation for short wave 

period. 

 

Though not significant, it can also be inferred that the transmission coefficients are lower 

for breakwater with larger draft. It indicates that the incoming wave is less transmitted 

through the breakwater. It is reasonable since the larger the draft the larger the damping 

effect in surge motion resulting more wave energy dissipated and less transmitted. 

 

0.00

0.20

0.40

0.60

0.80

1.00

1.20

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

C
t 

W/L 

01 Draft=0.4m

02 Draft=0.5m

03 Draft=0.65m



4. RESULTS ANALYSIS AND DISCUSSIONS 

41 
 

The performance of the breakwater with draft of 0.65 m is considered to be practically 

acceptable when the W/L is greater than or approximately 0.25, since Ct is less than 0.5. 

The breakwaters work more effectively with short periods of incoming waves.  

 
 

4.2.2 Molo model 

 

The result of transmission coefficient calculation for Molo model is presented in Figure 

4.26. The influence of W/L on the wave attenuation is shown, as well as different degree of 

freedom defined to the model motions. 

 

 

Figure 4.26 Transmission coefficients of Molo model 

 

The free floating Molo model only gives a low Ct on a very narrow range of wave periods. 

Though the lowest Ct is really low at W/L = 0.19 (wave period of 1.18 s), indicating a very 

effective wave attenuation on the lee side of breakwater, when the model is exposed to 

incoming wave periods greater than 1.18 s and lower than 1.11 s the performance is 

drastically decreased. The model started to ride the wave without any attenuation when the 

incoming wave period is equal to 1.33 s. 

 

In analysis of model with vertical restrained configuration, the model motions in horizontal 

modes are free (surge, sway, and yaw) and the vertical modes are fixed (heave, pitch, and 

roll). Over a wide range of incoming wave periods the wave attenuation is not noticeable 

with the lowest Ct value of only 0.8. Clearly the configuration is not considerable for 
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floating breakwaters due to its poor ability in wave attenuation. These high Ct values are 

also understandable since the breakwater acts similar to a vertical wave paddle that 

oscillating and generating waves which effecting the transmitted and reflected waves. 

 

Relative to other configurations, the fixed configuration gives lower Ct over the whole 

range of incoming wave periods. Considering Ct lower than 0.5 as an acceptable value, this 

configuration performs relatively well for periods range 1 s to 1.18 s (W/L of 0.38 to 0.46). 

For an increase of wave period, or decrease of W/L, the Ct increase gradually and reach the 

value of 1 at wave period of 20 s. 

 

On the next model configuration, heave is the only allowed motion. The Ct tends to be 

similar to the fixed configuration, unless the increase of its value is more immoderate on 

wave period range of 1.05 s to 1.18 s. On the wave periods greater than this range, the 

model started to ride the incoming wave without any attenuation. 

 

Molo model with moored configuration surprisingly gives high Ct values. According to 

Yamamoto et al., (1980) if the mooring system is properly arranged, the wave attenuation 

by a small draft breakwater can be improved several times compared to the same floating 

breakwater conventionally moored (Sannasiraj, et al., 1998). In this case, the cause of this 

high Ct might be due to the mooring system or some other uncertainties of the numerical 

model. A more thorough analysis and comparison with experiment result is given in 

Section 4.4.2. 
 

4.2.3 Maere model 

 

The result of transmission coefficient calculation for Maere model is presented in Figure 

4.27. The influence of W/L on the wave attenuation is shown, as well as different degree of 

freedom defined to the model motions. 

 

The free floating Maere model performance relatively more effective compare to Molo 

model with the same configuration due to the increase of breakwater width. For incoming 

waves with periods lesser than 1.18 s (W/L = 0.42), free floating model works the most 

effective and gives the lowest Ct which values lower than 0.5. However with period greater 

than that, the Ct increases drastically. 

 

The Maere model with vertical restrained configuration performs in a similar way as Molo 

model to some degree. The Ct values are ranging from 0.75 to 0.82 over a wide range of 

incoming wave periods, and approaching the value of 1 rapidly when the incoming wave 

periods are greater than 2.86 s (W/L = 0.13).  
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Figure 4.27 Transmission coefficients of Maere model 

 

Similar to Molo model, Maere model with fixed configuration gives considerably Ct 

values for periods range 1 s to 1.18 s (W/L of 0.38 to 0.46). For an increase of wave period, 

or decrease of W/L, the Ct increase gradually and reach the value of 1 at wave period of 20 

s. 

 

Maere model with heave configuration give acceptable Ct values lower than 0.5 only on 

the wave periods lesser than 1.05 s (W/L = 0.51). Greater than this, the model gives 

unnoticeable wave attenuation. 

 

4.3 Response motions of floating breakwaters model 
 

4.3.1 Molo model 

 

The response amplitude operators, RAOs, of the motion responses of Molo and Maere 

models are presented as a function of normalized frequency,       , where ω is the 

wave excitation frequency. Figure 4.28 and Figure 4.29 contain the variation of RAOs for 

both translational and rotational motions responses, and Figure 4.30 shows corresponding 

natural frequencies for Molo model. The dependence of the added mass, Aij, on the wave 

excitation frequency, ω, results to natural frequency in each degree of freedom dependent 

upon ω. Therefore, resonance occurs at wave frequencies where the absolute differences 

between the excitation and the natural frequency tend to zero. 
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Figure 4.28 Variation of RAOs (translational motions) – Molo model 

 

 

Figure 4.29 Variation of RAOs (rotational motions) – Molo model 

 

In the case of heave response (Figure 4.28), resonance is observed at normalized frequency 

of 0.58 where the difference ω- ωn3 tends to zero, and then the heave RAO gradually 

decreases. 

0

0.5

1

1.5

2

2.5

3

3.5

4

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80

R
A

O
s 

(m
) 

Normalized Frequencies 𝝎^𝟐W/2g 

(1) surge

(2) sway

(3) heave

0

2

4

6

8

10

12

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80

R
A

O
s 

(r
ad

) 

Normalized Frequencies 𝝎^𝟐W/2g 

(4) roll

(5) pitch

(6) yaw



4. RESULTS ANALYSIS AND DISCUSSIONS 

45 
 

 

In the case of pitch response (Figure 4.29), resonance is observed at normalized frequency 

of 0.51where the difference ω- ωn5 tends to zero, and then the pitch RAO rapidly 

decreases. 

 

 

Figure 4.30 Molo model natural frequencies 

 

4.3.2 Maere model 
 

Figure 4.31 and Figure 4.33 contain the variation of RAOs for both translational and 

rotational motions responses, and Figure 3.31 shows corresponding natural frequencies for 

Maere model. Similar to Molo model, the dependence of the added mass, Aij, on the wave 

excitation frequency, ω, results to natural frequency in each degree of freedom dependent 

upon ω. Therefore, resonance occurs at wave frequencies where the absolute differences 

between the excitation and the natural frequency tend to zero. 
 

In the case of heave response (Figure 4.31), resonance is observed at normalized frequency 

of 1.42 where the difference ω- ωn3 tends to zero (Figure 3.31). However, the peak value is 

observed at normalized frequency of 0.63. 

 

Similar for the case of pitch response (Figure 4.32), resonance is observed at normalized 

frequency of 1.58 where the difference ω- ωn5 tends to zero (Figure 4.33), but the peak 

value is observed at normalized frequency of 1.12. 
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Figure 4.31 Variation of RAOs (translational motions) – Maere model 

 

 

Figure 4.32 Variation of RAOs (rotational motions) – Maere model 

 

Initially, the unconformity was suspected due to the breakwater natural frequency of each 

degree of freedom was calculated by using decoupled formulation. However, according to 
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uncertainties in input parameter of numerical model and further study for improvement is 

recommended for future work. 

 

 

Figure 4.33 Maere model natural frequencies 

 

4.4 Model validation 
 

4.4.1 2D model 
 

Transmission coefficients comparison of 2D models with the laboratory experiments data 

by Koutandos, et al. (2005) are given in Figure 4.34 to Figure 4.36 below. Ct of numerical 

model was calculated on two different locations of installed wave gauges WG6 and WG7. 

 

Comparing the presented results with the corresponding one of Koutandos, et al. (2005), 

the tendency of the Ct values as a function of W/L is accordingly match. The transmission 

coefficient decreases with a decrease of wave period, that is to say a decrease of wave 

length, indicating an increase of wave attenuation for short wave period. However, the Ct 

values for incoming wave periods greater than 2.04 s (W/L=0.31) are generally larger than 

the laboratory experiment data. Whereas the Ct values for incoming wave periods of 2.04 s 

(W/L=0.31) are lower than the laboratory experiment data for all three cases. 
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Figure 4.34 2D model Ct comparison (draft=0.4m) 

 

 

Figure 4.35 2D model Ct comparison (draft=0.5m) 

 

Initially these unconformities were suspected due to different locations of where the 

transmitted wave heights were calculated. However from further observation, the above 

comparisons of Ct on those two different locations show that the differences are not 
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significant. Therefore, some improvement on the numerical model may be considered in 

the future work. The starting point of the improvement would be revisiting the WAMIT 

model and simulating several different parameters to see the sensitivity of the result. Other 

possibility is performing a deeper study of how the Ct values were calculated in the 

laboratory experiment. 

 

 

Figure 4.36 2D model Ct comparison (draft=0.65m) 

 

A remarkable peculiarity of numerical model was also observed within the range of short 

wave periods. For incoming wave periods shorter than 2.34 s (W/L greater than 0.25), the 

experiment results show that the effect of decreasing wave length on the Ct values is less 

and even none for breakwater with draft 0.4 m and 0.5 m. This is due to the breakwater 

performance in a more reflective manner for shorter wave periods. It is also clarified by 

comparison of reflection coefficient Cr of breakwater (draft = 0.4 m) below. As opposed to 

this, the numerical model result still shows the decrease of Ct values on this range.  

 

In Figure 4.37, on the same range of incoming wave periods (shorter than 2.34 s, W/L 

greater than 0.25), the decreasing of wave length on the experiment result is less effecting 

the reflection coefficients. While on the numerical model result, the effect is still 

noticeable. It is shown by the increasing Cr that indicating the increasing of wave height 

reflected by breakwater. Upon this observation, it could be concluded that WAMIT model 

has a limitation in analyzing the floating breakwater 2D model subjected to shorter 

incoming wave periods. 
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Figure 4.37 2D model Cr comparison (draft=0.65m) 

 

4.4.2 Molo model 
 

Transmission coefficients comparison of moored Molo models with the laboratory 

experiments data by Syltern (2005) are presented in Figure 4.38 below. Ct of numerical 

model was calculated on four different locations of installed wave gauges WG4 to WG6. 

 

From the graph, it can be clearly noticed that the numerical model result is far from 

satisfactorily describing the experiment result. The great difference of the Ct resulted from 

this configuration can hardly be explained. 

 

An improvement method has been carried out by changing the mooring stiffness matrix 

several times, but the results were still the same. All the results show that for the same 

incoming wave periods as tested on the experiment, the Ct values resulted from numerical 

model are equal to 1 indicating that the incoming waves are relatively longer compare to 

the breakwater width and wave attenuation was not performed by the breakwater. 

 

These erroneous results are considered due to uncertainties in numerical model. Further 

investigation and improvement are recommended to be done in future work. Modification 

on the breakwater geometry representation by trying out different panels configurations 

(i.e. no-dipole with existing draft and/or no-dipole with increasing draft) in the MultiSurf 

geometry development is one of possible approach for the improvement. More detail study 

of how the laboratory experiment was performed and adapting more comparable cases 

from the experiment can also be considered for future work i.e. combination floating 
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breakwater with parabolic beach, increasing draft and width, and changing the incoming 

wave direction. 

 

 

Figure 4.38 Moored Molo model Ct comparison 
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5. CONCLUSIONS AND RECOMMENDATIONS FOR 

FUTURE WORK 
 

 

5.1 Conclusions 
 

In this master thesis twelve out of total 13 cases of floating breakwater with different 

configurations has been analyzed numerically by using WAMIT and MultiSurf. The cases 

were based on physical models which were tested in a laboratory experiments. 

Measurement data from the experiments were available for numerical model validation. 

The study was focused on the transmitted wave behind the floating breakwaters and 

response motions of the breakwater. 

 

The main conclusions from this study are as following: 

 

 Numerical analysis for 2D floating breakwater model can be satisfactorily performed 

by WAMIT. 

- Approaching the condition of two-dimensional wave flume by eliminating the 

diffraction effect on the lee side of breakwater is considered to be appropriate. 

- The tendencies of resulted Ct were accordingly match to the experiment data, with 

only small deviation of the Ct magnitude. 

- A limitation of WAMIT performance was observed on the short incoming wave 

periods where WAMIT was not indicating the reflective manner of the breakwater 

performance in the experiment. 

 Numerical analysis for Molo model with moored configuration is still far from perfect.  

- The RAOs predicted by WAMIT was clarified by calculated natural frequencies i.e. 

resonances occurred at wave frequencies in the vicinity of the natural frequencies. 

- A remarkable erroneous result of Ct was obtained from this case and the cause 

could hardly be explained. 

- Initial presumption that the error was caused by incorrect mooring line stiffness 

matrix was proven wrong since the same results were obtained by using different 

values of the mooring stiffness. Few possible approaches for numerical model 

improvement might be considered for future work. 

 Numerical analysis for Maere model is not validated and further improvement for the 

analysis is required.  

- The RAOs predicted by WAMIT was not clarified since there were differences 

between the calculated natural frequencies and the peak response motions. 

- Comparable cases for this model are recommended for improvement and model 

validation. 
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5.2 RecommendationS for future work 
 

Recommendations for future work are as following: 

 

 Improving the numerical model result by trying out different structure geometry 

representation, i.e. no-dipole with existing draft and/or no dipole with increasing draft, 

and determining the best one for the analysis 

 Simulating more cases which are comparable to the laboratory experiment i.e. 

combination floating breakwater with parabolic beach, increasing draft and width, and 

changing the incoming wave direction 

 deeper and more thorough study on how the laboratory experiment were carried out 

including detail on how the results were processed and final outputs were calculated in 

order to have a better approach for the numerical model. 
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A. CENTER OF GRAVITY AND RADII OF GYRATION 
 

 

Calculation of center of gravity (CoG) and radii of gyration of Molo and Maere models are 

detailed in this section. Two approaches of body representation are used in Molo model 

calculation to check its effect on the analysis results. In the first approach (Section A.1) the 

model is considered as one rigid composite body consists of steel plate, polystyrene, and 

amount of water filled the open compartment on the bottom model which moves along 

with the model. Whereas in the second approach (Section A.2) the amount of water filled 

the bottom open compartment is no longer considered. 

 

Comparing the analysis results using both approaches, it found that the results are 

qualitatively comparable in terms of wave diffraction, wave attenuation, and wave riding 

breakwater occurrence on certain incident wave conditions. Consequently, the second 

approach is used in Maere model calculation (Section A.3) and further analysis since it is 

representing the model more accurately. Summary table of calculated radii of gyration is 

given in Section A.4. 

 

A.1 Molo model (approach 1) 
 

Molo model is constructed from 2 units of pontoons type I with total dimensions of 4 m 

length, 0.4 m width, and 0.2 m height. It is constructed as bottomless boxes of steel plate 

with thickness of 3 mm and polystyrene as the floating element. Two internal plates were 

installed on each pontoon dividing the pontoon into three equal spaces.  

 

After being submerged for a long time, pontoons weight on air is approximately each 50 

kg, indicating the polystyrene saturated with water. 

 

In this approach, the model is considered as one rigid composite body. It consists of steel 

plate, polystyrene, and amount of water filled the open compartment on the bottom part 

which moves along with the model. Figure A.1 and Figure A.2 show the sketch of the 

model perspective and cross section. 

 

 

Figure A.1 Molo model perspective 
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Figure A.2 Molo model cross section 

 

Body properties are given below. 
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A.1.1 Component mass calculation 
 

To ease the calculation of pontoon-center of gravity (pontoon-CoG) and mass moment of 

inertia, the pontoon is divided into components consists of cross-plates and body-sections 

as shown in following Figure A.3. The cross-plates and body-sections are marked by c1 to 

c8 and s1 to s6, respectively. 

 

A.1.1.1 Cross-plates mass (c1 to c8) 
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     (            )                 ⁄         
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Figure A.3 Molo model divisions 

 

A.1.1.2 Body-sections mass (s1 to s6) 

 

                       (        (            ))  ⁄          

                 (               )               ⁄         

                                         

                                ⁄         

     (             )                                              

 

A.1.2 Calculation of component-CoG and pontoon-CoG 

 

Cross-plates are component with uniform density. Therefore the component-CoG of cross-

plates is right in the center of the cross-plates. 

 

In other hand, body-section is a composite component with various densities which is 

symmetrical about the plane x=0 and y=0. Following is the calculation of component-CoG 

of the body-sections relative to reference point placed on the center of top plate with ź-axis 

positive upward. The position of calculated component-CoG is shown in Figure A.4. 
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Figure A.4 Position of body-sections CoG 

 

Pontoon is symmetrical about the plane x=0 and y=0. Therefore; 

 

 ̅           

 ̅           

 

Calculation of pontoon-CoG on the ẑ-axis is given below. A new reference point is placed 

on the center of pontoon top plate with ẑ-axis positive upward. Figure A.5 illustrates the 

reference point placement and the calculated pontoon-CoG position. 

 

 

Figure A.5 Position of pontoon CoG 
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A.1.3 Calculation of mass moment of inertia 

 

A.1.3.1 Cross-plates mass moment of inertia 

 

Mass moment of inertia of cross plates relative to its CoG is calculated below.  

 

                
 

  
         

 

  
                                 

                
 

  
         

 

  
                               

                
 

  
         

 

  
                                 

 

A.1.3.2 Body-section mass moment of inertia 

 

Mass moment of inertia of steel plates covering the body-section is done by calculating 

mass moment of inertia of steel solid rectangular cuboid then subtracted by mass moment 

of inertia of center portion in order to obtain the mass moment of inertia of bottomless 

hollow steel cuboid.  
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Above mass moment of inertia is relative to the solid cuboid CoG. To get the correct mass 

moment inertia of bottomless hollow steel cuboid, it should be translated to the hollow 

cuboid CoG. According to parallel axis theorem, mass moment of inertia about the new 

axis is given by Equation A.1 below. 

 

 

            
(A.1) 

 

 
where d is the perpendicular distance between the axis of rotation. The same equation is 

also applied to other axis. 

 
                              

                                   

                              
                                  

                              
                           

          

 
Mass moment of inertia of polystyrene in the body-section is calculated below. 

 

                
 

  
                 

      
 

  
                     

          



A. CENTER OF GRAVITY AND RADII OF GYRATION 

A-7 
 

                
 

  
                 

      
 

  
                     

          

                
 

  
                 

      
 

  
                       

          

 
Mass moment of inertia of water in the body-section is calculated below. 

 

          
 

  
           

      
 

  
                        

          

          
 

  
           

      
 

  
                        

          

          
 

  
           

      
 

  
                        

          

 
Total mass moment of inertia of body-section is the sum up of the mass moment of inertia 

of all elements about the same axis of reference. Parallel axis theorem is used to translate 

calculated moment of inertia to the body-section CoG. Since the element center of masses 

are shifted only about the z-axis, the mass moment of inertia of all elements about the x 

and y-axis will be the same. The mass moment of inertia for new z-axis is given below. 

 
                           

                                      

                                             
 

                                    

                           
                            

         

 

Total mass moment of inertia of each body-section about its CoG is given below. 
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A.1.3.3 Pontoon mass moment of inertia 

 

Pontoon mass moment of inertia is calculated by translating mass moment of inertia of 

each cross-plate and body-section to the pontoon-CoG. Parallel axis theorem is also used 

for the calculation. Table A.1 shows the calculated pontoon mass moment of inertia. 

 
Table A.1 Calculation of pontoon mass moment of inertia 

Components 

Component mass 

moment of inertia 

(kgm
2
) 

Mass 

(kg) 

Axis distance (m) 

Pontoon mass 

moment of inertia 

(kgm2) 

Ixx Iyy Izz dx dy dz Ixx Iyy Izz 

Cross-plate c1 0.0063 0.0315 0.0252 1.89 1.9950 0.0000 0.0100 7.53 0.03 0.03 

Cross-plate c2 0.0063 0.0315 0.0252 1.89 1.3340 0.0000 0.0100 3.37 0.03 0.03 

Cross-plate c3 0.0063 0.0315 0.0252 1.89 0.6680 0.0000 0.0100 0.85 0.03 0.03 

Cross-plate c4 0.0063 0.0315 0.0252 1.89 0.0000 0.0000 0.0100 0.01 0.03 0.03 

Cross-plate c5 0.0063 0.0315 0.0252 1.89 0.0000 0.0000 0.0100 0.01 0.03 0.03 

Cross-plate c6 0.0063 0.0315 0.0252 1.89 0.6680 0.0000 0.0100 0.85 0.03 0.03 

Cross-plate c7 0.0063 0.0315 0.0252 1.89 1.3340 0.0000 0.0100 3.37 0.03 0.03 

Cross-plate c8 0.0063 0.0315 0.0252 1.89 1.9950 0.0000 0.0100 7.53 0.03 0.03 

Body-section s1 1.5500 0.7800 2.2700 39.49 1.6670 0.0000 0.0000 111.29 0.78 2.27 

Body-section s2 1.5500 0.7800 2.2700 39.49 1.0000 0.0000 0.0000 41.04 0.78 2.27 

Body-section s3 1.5500 0.7800 2.2700 39.49 0.3350 0.0000 0.0000 5.98 0.78 2.27 

Body-section s4 1.5500 0.7800 2.2700 39.49 0.3350 0.0000 0.0000 5.98 0.78 2.27 

Body-section s5 1.5500 0.7800 2.2700 39.49 1.0000 0.0000 0.0000 41.04 0.78 2.27 

Body-section s6 1.5500 0.7800 2.2700 39.49 1.6670 0.0000 0.0000 111.29 0.78 2.27 

              Total 340.13 4.93 13.82 

 

A.1.4 Calculation of radii of gyration 

 

Calculation of pontoon radii of gyration is done by Equation A.2 below. 
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A.2 Molo model (approach 2) 
 

In this approach, the model is considered as one rigid composite body. It consists of steel 

plate and polystyrene placed inside the pontoons with height of 0.1m. The amount of water 

filled the bottom open compartment is no longer considered. Figure A.6 and Figure A.7 

show the sketch of the model perspective and cross section. 

 

 

Figure A.6 Molo model perspective (approach 2) 

 

 

Figure A.7 Molo model cross section (approach 2) 

 

Body properties are given below. 
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A.2.1 Component mass calculation 
 

Similar to previous approach, the pontoon is divided into components consists of cross-

plates and body-sections as shown in following Figure A.8. The cross-plates and body-

sections are marked by c1 to c8 and s1 to s6, respectively. 

 

Figure A.8 Molo model divisions (approach 2) 

 

Applying the same calculations as in section A.1.1.1 and A.1.1.2 above, the cross-plate and 

body-section masses are following. 

 

     (            )         

     (             )          

 

A.2.2 Calculation of component-CoG and pontoon-CoG 

 

Cross-plates are component with uniform density. Therefore the component-CoG of cross-

plates is right in the center of the cross-plates. 
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The component-CoG and pontoon-CoG are calculated by employing the same procedures 

as in Section A.1.2 above. The calculated CoG are given below and illustrated in Figure 

A.9 and A.10. 

 

 ̅                

 ̅                
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Figure A.9 Position of body-sections CoG (approach 2) 

 

 ̅           

 ̅           

  ̅              

 

Figure A.10 Position of pontoon CoG (approach 2) 

 

A.2.3 Calculation of mass moment of inertia 

 

Pontoon mass moment of inertia is calculated with the same procedures as in Section A.1.3 

above. The calculated moment of inertia is given in Table A.2 below. 
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Table A.2 Calculation of Pontoon Mass Moment of Inertia (approach 2) 

Components 

Component mass 

moment of inertia 

(kgm
2
) 

Mass 

(kg) 

Axis distance (m) 

Pontoon mass 

moment of inertia 

(kgm2) 

Ixx Iyy Izz dx dy dz Ixx Iyy Izz 

Cross-plate c1 0.0063 0.0315 0.0252 1.89 1.9950 0.0000 0.0100 7.53 0.03 0.03 

Cross-plate c2 0.0063 0.0315 0.0252 1.89 1.3340 0.0000 0.0100 3.37 0.03 0.03 

Cross-plate c3 0.0063 0.0315 0.0252 1.89 0.6680 0.0000 0.0100 0.85 0.03 0.03 

Cross-plate c4 0.0063 0.0315 0.0252 1.89 0.0000 0.0000 0.0100 0.01 0.03 0.03 

Cross-plate c5 0.0063 0.0315 0.0252 1.89 0.0000 0.0000 0.0100 0.01 0.03 0.03 

Cross-plate c6 0.0063 0.0315 0.0252 1.89 0.6680 0.0000 0.0100 0.85 0.03 0.03 

Cross-plate c7 0.0063 0.0315 0.0252 1.89 1.3340 0.0000 0.0100 3.37 0.03 0.03 

Cross-plate c8 0.0063 0.0315 0.0252 1.89 1.9950 0.0000 0.0100 7.53 0.03 0.03 

Body-section s1 0.6000 0.4300 0.9700 39.49 1.6670 0.0000 0.0000 110.34 0.43 0.97 

Body-section s2 0.6000 0.4300 0.9700 39.49 1.0000 0.0000 0.0000 40.09 0.43 0.97 

Body-section s3 0.6000 0.4300 0.9700 39.49 0.3350 0.0000 0.0000 5.03 0.43 0.97 

Body-section s4 0.6000 0.4300 0.9700 39.49 0.3350 0.0000 0.0000 5.03 0.43 0.97 

Body-section s5 0.6000 0.4300 0.9700 39.49 1.0000 0.0000 0.0000 40.09 0.43 0.97 

Body-section s6 0.6000 0.4300 0.9700 39.49 1.6670 0.0000 0.0000 110.34 0.43 0.97 

              Total 334.43 2.83 6.02 

 

A.2.4 Calculation of radii of gyration 

 

   √
   

        
 √

          

     
       

   √
   

        
 √

        

     
       

   √
   

        
 √

        

     
       

 

A.3 Mære model 
 

Mære model is constructed from 7 units of pontoons type II with configuration of 

longitudinal and transversal pontoons as shown in Figure 11. The pontoon dimension is 1.5 

m length, 0.24 m width, and 0.16 m height. It is constructed as bottomless boxes of steel 



A. CENTER OF GRAVITY AND RADII OF GYRATION 

A-13 
 

plate with thickness of 3 mm and polystyrene as the floating element. Two internal plates 

were installed on each pontoon dividing the pontoon into three equal spaces.  

 

On this analysis, the model is considered as one rigid composite body. It consists of steel 

plate and polystyrene placed inside the pontoons with height of 0.1m. Figure A.11 and 

Figure A.12 show the sketch of the model perspective and cross section. 

 

Body properties of each pontoon are given below. 
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Figure A.11 Maere model perspective 
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Figure A.12 Maere model cross section 

 

A.3.1 Component mass calculation 
 

Similar to calculation of Molo model in previous section, each pontoon is divided into 

components consists of cross-plates and body-sections. Figure A.13 and A.14 show the 

cross-plates and body-sections of longitudinal and transversal pontoon division. 

 

A.3.1.1 Cross-plates mass 
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Figure A.13 Mære model longitudinal pontoon divisions 
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Figure A.14 Mære mdel transversal pontoon divisions 

 

A.3.1.2 Body-sections mass 
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A.3.2 Calculation of component-CoG and pontoon-CoG 

 

Cross-plates are component with uniform density. Therefore the component-CoG of cross-

plates is right in the center of the cross-plates. 

 

In other hand, body-section is a composite component with various densities which is 

symmetrical about the plane x=0 and y=0. Following is the calculation of component-CoG 

of the body-sections relative to reference point placed on the center of top plate with ź-axis 

positive upward. 

 

 ̅                

 ̅                

  ̅            
  ̅               ̅                  
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Pontoon is symmetrical about the plane x=0 and y=0. Therefore; 

 

 ̅           

 ̅           

 

Calculation of pontoon-CoG on the ẑ-axis is given below. A new reference point is placed 

on the center of pontoon top plate with ẑ-axis positive upward. Figure A.15 illustrates the 

reference point placement and the calculated pontoon-CoG position. 

 

  ̅       
∑    ̅                

 
    ∑    ̅                 

 
   

                          
 

  ̅       
                                  

               
        

 

Figure A.15 Position of Pontoon CoG 

 

A.3.3 Calculation of breakwater-CoG 

 

Calculation of breakwater-CoG is given on the Table A.3 below. A new reference point is 

placed on the center of middle pontoon top plate with ż-axis positive upward. Figure A.15 

illustrates the reference point placement and the breakwater division for CoG calculation. 
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Figure A.16 Mære Model Divisions 

 
Table A.3 Calculation of Breakwater-CoG 

Pontoon 
Mass 

(kg) 

Distance to Reference 

Point (m) 
Mass X Distance 

x y z x y z 

p1 25.81 0.00 1.74 -0.05 0.00 44.91 -1.29 

p2 25.81 -0.63 0.87 -0.05 -16.26 22.45 -1.29 

p3 25.81 0.00 0.87 -0.05 0.00 22.45 -1.29 

p4 25.81 0.00 0.00 -0.05 0.00 0.00 -1.29 

p5 25.81 -0.63 -0.87 -0.05 -16.26 -22.45 -1.29 

p6 25.81 0.00 -0.87 -0.05 0.00 -22.45 -1.29 

p7 25.81 0.00 -1.74 -0.05 0.00 -44.91 -1.29 

Ʃ 180.67     Ʃ -32.52 0.00 -9.03 

        
CoG 

(m) 
-0.18 0.00 -0.05 

 

A.3.4 Calculation of mass moment of inertia of longitudinal pontoon 

 

A.3.4.1 Cross-plates mass moment of inertia 

 

Mass moment of inertia of cross-plates relative to its CoG is calculated below.  
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A.3.4.2 Body-section mass moment of inertia 

 

Mass moment of inertia of steel plates covering the body-section is done by calculating 

mass moment of inertia of steel solid rectangular cuboid then subtracted by mass moment 

of inertia of center portion in order to obtain the mass moment of inertia of bottomless 

hollow steel cuboid.  
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Above mass moment of inertia is relative to the solid cuboid CoG. To get the correct mass 

moment inertia of bottomless hollow steel cuboid, it should be translated to the hollow 

cuboid CoG by employing parallel axis theorem given in Equation 1 above. 

 
                              

                                  

                              
                                 

                              
                           

          

 
Mass moment of inertia of polystyrene in the body-section is calculated below. 

 

                
 

  
                 

      
 

  
                     

            

                
 

  
                 

      
 

  
                     

           

                
 

  
                 

      
 

  
                       

          

 
Total mass moment of inertia of body-section is the sum up of the mass moment of inertia 

of all elements about the same axis of reference. Parallel axis theorem is used to translate 

calculated moment of inertia to the body-section CoG. Since the element center of masses 

are shifted only about the z-axis, the mass moment of inertia of all elements about the x 

and y-axis will be the same. The mass moment of inertia for new z-axis is given below. 

 
                           

                                      

                                             
 

                                     

Total mass moment of inertia of each body-section about its CoG is given below. 
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A.3.4.3 Longitudinal pontoon mass moment of inertia 

 

Longitudinal pontoon mass moment of inertia is calculated by translating mass moment of 

inertia of each cross-plate and body-section to the pontoon-CoG. Parallel axis theorem is 

also used for the calculation. Table A.4 shows the calculated pontoon mass moment of 

inertia. 

 
Table A.4 Calculation of Longitudinal Pontoon Mass Moment of Inertia 

Components 

Component mass 

moment of inertia 

(kgm
2
) 

Mass 

(kg) 

Axis distance (m) 

Pontoon mass 

moment of inertia 

(kgm2) 

Ixx Iyy Izz dx dy dz Ixx Iyy Izz 

Cross-plate cl-1 0.0063 0.0019 0.0044 0.91 0.0000 0.7490 0.0300 0.01 0.51 0.01 

Cross-plate cl-2 0.0063 0.0019 0.0044 0.91 0.0000 0.2500 0.0300 0.01 0.06 0.01 

Cross-plate cl-3 0.0063 0.0019 0.0044 0.91 0.0000 0.2500 0.0300 0.01 0.06 0.01 

Cross-plate cl-4 0.0063 0.0019 0.0044 0.91 0.0000 0.7490 0.0300 0.01 0.51 0.01 

Body-section sl-1 0.0940 0.1670 0.2300 7.39 0.0000 0.4990 0.0040 0.09 2.01 0.23 

Body-section sl-2 0.0940 0.1670 0.2300 7.39 0.0000 0.0000 0.0040 0.09 0.17 0.23 

Body-section sl-3 0.0940 0.1670 0.2300 7.39 0.0000 0.4990 0.0040 0.09 2.01 0.23 

              Total 0.31 5.32 0.71 

 

A.3.5 Calculation of mass moment of inertia of transversal pontoon 

 

A.3.5.1 Cross-plates mass moment of inertia 

 

Mass moment of inertia of cross-plates relative to its CoG is calculated below.  

 

                
 

  
         

 

  
                                  

                
 

  
         

 

  
                                 

                
 

  
         

 

  
                                  

 

A.3.5.2 Body-section mass moment of inertia 

 

Mass moment of inertia of steel plates covering the body-section is done by calculating 

mass moment of inertia of steel solid rectangular cuboid then subtracted by mass moment 

of inertia of center portion in order to obtain the mass moment of inertia of bottomless 

hollow steel cuboid.  
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Above mass moment of inertia is relative to the solid cuboid CoG. To get the correct mass 

moment inertia of bottomless hollow steel cuboid, it should be translated to the hollow 

cuboid CoG. According to parallel axis theorem, mass moment of inertia about the new 

axis is given by Equation 3 below. 

 
            (3) 
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where d is the perpendicular distance between the axis of rotation. The same equation is 

also applied to other axis. 

 
                              

                                  

                              
                                 

                              
                           

          

 
Mass moment of inertia of polystyrene in the body-section is calculated below. 

 

                
 

  
                 

      
 

  
                     

           

                
 

  
                 

      
 

  
                     

            

                
 

  
                 

      
 

  
                       

          

 
Total mass moment of inertia of body-section is the sum up of the mass moment of inertia 

of all elements about the same axis of reference. Parallel axis theorem is used to translate 

calculated moment of inertia to the body-section CoG. Since the element center of masses 

are shifted only about the z-axis, the mass moment of inertia of all elements about the x 

and y-axis will be the same. The mass moment of inertia for new z-axis is given below. 

 
                           

                                      

                                             
 

                                     

Total mass moment of inertia of each body-section about its CoG is given below. 
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A.3.5.3 Transversal pontoon mass moment of inertia 

 

Transversal pontoon mass moment of inertia is calculated by translating mass moment of 

inertia of each cross-plate and body-section to the pontoon-CoG. Parallel axis theorem is 

also used for the calculation. Table A.5 shows the calculated pontoon mass moment of 

inertia. 

 
Table A.5 Calculation of Transversal Pontoon Mass Moment of Inertia 

Components 

Component mass 

moment of inertia 

(kgm
2
) 

Mass 

(kg) 

Axis distance (m) 

Pontoon mass 

moment of inertia 

(kgm2) 

Ixx Iyy Izz dx dy dz Ixx Iyy Izz 

Cross-plate cl-1 0.0019 0.0063 0.0044 0.91 0.7490 0.0000 0.0300 0.51 0.01 0.01 

Cross-plate cl-2 0.0019 0.0063 0.0044 0.91 0.2500 0.0000 0.0300 0.06 0.01 0.01 

Cross-plate cl-3 0.0019 0.0063 0.0044 0.91 0.2500 0.0000 0.0300 0.06 0.01 0.01 

Cross-plate cl-4 0.0019 0.0063 0.0044 0.91 0.7490 0.0000 0.0300 0.51 0.01 0.01 

Body-section sl-1 0.1670 0.0940 0.2300 7.39 0.4990 0.0000 0.0040 2.01 0.09 0.23 

Body-section sl-2 0.1670 0.0940 0.2300 7.39 0.0000 0.0000 0.0040 0.17 0.09 0.23 

Body-section sl-3 0.1670 0.0940 0.2300 7.39 0.4990 0.0000 0.0040 2.01 0.09 0.23 

              Total 5.32 0.31 0.71 

 

A.3.6 Calculation of mass moment of inertia of Mære breakwater 

 

Calculation of breakwater mass moment of inertia relative to breakwater-CoG is given on 

the Table A.6 below. 

 
Table A.6 Calculation of Mære breakwater Mass Moment of Inertia 

Components 

Component mass 

moment of inertia 

(kgm
2
) 

Mass 

(kg) 

CoG distance (m) 

Pontoon mass 

moment of inertia 

(kgm2) 

Ixx Iyy Izz dx dy dz Ixx Iyy Izz 

Pontoon p1 0.3100 5.3200 0.7100 25.81 1.7400 0.1800 0.0000 78.45 6.16 0.71 

Pontoon p2 5.3200 0.3100 0.7100 25.81 0.8700 0.4500 0.0000 24.86 5.54 0.71 

Pontoon p3 5.3200 0.3100 0.7100 25.81 0.8700 0.1800 0.0000 24.86 1.15 0.71 

Pontoon p4 0.3100 5.3200 0.7100 25.81 0.0000 0.1800 0.0000 0.31 6.16 0.71 

Pontoon p5 5.3200 0.3100 0.7100 25.81 0.8700 0.4500 0.0000 24.86 5.54 0.71 

Pontoon p6 5.3200 0.3100 0.7100 25.81 0.8700 0.1800 0.0000 24.86 1.15 0.71 

Pontoon p7 0.3100 5.3200 0.7100 25.81 1.7400 0.1800 0.0000 78.45 6.16 0.71 

              Total 256.64 31.83 4.97 
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A.3.7 Calculation of radii of gyration 
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A.4 Summary of radii of gyration 
 

Summary of calculated radii of gyration is given in Table A.7 below. 

  
Table A.7 Summary of calculated radii of gyration 

Model 
Radii of gyration relative to CoG 

rx (m) ry (m) rz (m) 

Molo model (approach 1) 1.16 0.14 0.23 

Molo model (approach 2) 1.83 0.17 0.25 

Maere model 1.19 0.42 0.012 
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B. MOORING STIFFNESS MATRIX 
 

 

Calculation of mooring stiffness matrix for Molo model is detailed in this section. To 

simplify the analysis, solutions of the inelastic mooring line (catenary) equations are used 

(Faltinsen, 1990). The mooring lines are assumed to have constant weight per unit length. 

 

Figure B.1 and Figure B.2 show the mooring configuration and spread mooring system of 

the breakwater Molo model. 

 

 

Figure B.1 Molo model mooring configuration 

 

 

Figure B.2 Molo model spread mooring system 
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B.1 Middle mooring lines (line b and e) 
 

Middle mooring lines parameters are given below. 

 

     

        

       

                         

 

Equation B.1 below expresses relation between X and the horizontal force TH. 

 

     (   
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 ⁄

        (  
 

 
) (B.1) 

 

where      ⁄ . 

 

Calculation results based on Equation B.1 is illustrated in Figure B.3 where the horizontal 

force from a mooring line on breakwater model is a function of the horizontal distance X 

between the mooring and the point where the mooring line is connected to the model. 

 

 

Figure B.3 Middle mooring horizontal forces 
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Line tension and vertical force at the model is given by Equation B.2 and B.3 below. 

 

        (B.2) 

 

        (
  

 
) 

(B.3) 

 

 

Using both equations above, the vertical force from a mooring line on breakwater model 

then can be calculated. The calculation result is illustrated in Figure B.4 where the vertical 

force is a function of the horizontal distance X. 

 

 

Figure B.4 Middle mooring vertical forces 

 

Since WAMIT is not able to predict model with non-linear mooring tension line, the model 

horizontal motions are restricted to only small motions and the average model position was 

selected at distance X within the linear region. In this case, the distance X is selected at 

1.7m, indicating the model horizontal motions oscillate around amplitude of 0.3m. From 

Figure B.3 and B.4 the average horizontal force for the distance X is         , vertical 

force          ,         , and       ⁄        . 

 

The analytical expression of mooring line restoring coefficient is given by Equation B.4 

below. 
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(B.4) 

 

 

Using above equation, the restoring coefficients of mooring line b and e are calculated as 

              ⁄  and                ⁄ . 

 

B.2 End mooring lines (line a, c, d, and f) 
 

End mooring lines parameters are given below. 

 

        

        

       

                         

 

Calculation results based on Equation B.1to B.3 is illustrated in Figure B.5 and B.6 where 

the horizontal and vertical force from a mooring line on breakwater model is a function of 

the horizontal distance X between the mooring and the point where the mooring line is 

connected to the model. 

 

 

Figure B.5 End mooring horizontal forces 
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Figure B.6 End mooring vertical forces 

 

Similar to the middle mooring line, since WAMIT is not able to predict model with non-

linear mooring tension line, the model horizontal motions are restricted to only small 

motions and the average model position was selected at distance X within the linear region. 

In this case, the distance X is selected at 2m, indicating the model horizontal motions 

oscillate around amplitude of 0.24m. From Figure B.5 and B.6 the average horizontal force 

for the distance X is         , vertical force          , and ,          , and 

      ⁄        . 

 

Using Equation B.4, the restoring coefficients of mooring line a, c, d and f are calculated as 

                      ⁄  and                        ⁄ . 

 

B.3 Analysis of spread mooring system 
 

To find the linear restoring effect of the mooring lines of a spread mooring system in the 

equation of motion, the procedure can be generalized by following Equation B.5 to B.9. 
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(B.9) 

 

 

The coupling coefficients K16, K61, K12, and K21 are zero since the mooring arrangement is 

symmetric about the x-z plane. 

 

Calculated linear restoring coefficients are presented in Table B.1 below. 

 
Table B.1 Mooring restoring coefficients 

Mooring 

Line 
xi yi 

ψi  

(deg) 

kH 

(N/m) 

kZ 

(N/m) 

K11 

(N/m) 

K22 

(N/m) 

K33 

(N/m) 

K66 

(N/m) 

K26 

(N/m) 

K62 

(N/m) 

a -0.1 -1 206.57 0.13 0.081 0.104 0.026 0.081 0.094 0.049 0.049 

b -0.1 0 180.00 0.25 0.085 0.250 0.000 0.085 0.000 0.000 0.000 

c -0.1 1 153.43 0.13 0.081 0.104 0.026 0.081 0.094 0.049 0.049 

d 0.1 -1 333.43 0.13 0.081 0.104 0.026 0.081 0.093 -0.050 -0.050 

e 0.1 0 0.00 0.25 0.085 0.250 0.000 0.085 0.000 0.000 0.000 

f 0.1 1 26.57 0.13 0.081 0.104 0.026 0.081 0.094 -0.049 -0.049 

          Ʃ 0.916 0.104 0.494 0.375 0.000 0.000 

 

Complete 6 X 6 mooring stiffness matrix which is used for WAMIT input file is given 

below. 
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C. MULTISURF AND WAMIT FILES 
 
 

Examples of MultiSurf output files and WAMIT input files of 2D model (draft = 0.4 m), 

Molo model (free floating), and Mare model (free floating) are given below. Snapshot of 

model geometry model are shown in Figure C.1 to Figure C.3. Explanation of WAMIT 

input files and each command can be found in WAMIT manual. Complete files are given 

in separated CD. 

 

C.1 2D model (draft = 0.4m) 
 

 

Figure C.1 2D model MultiSurf snapshot 

 

C3.GDF: 

c3 draft=0.4m 
1.000000  9.806650 ULEN, GRAV 
0 1 ISX, ISY 

0  2 NPATCH  IGDEF 
3 NLINES 
C3.MS2 

* 
0  0  0 Fast/acc  DivMult  Inward_normals 
 

C3.POT 
c3 draft=0.4m 

 2 

 1           1 IRAD, IDIFF 
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 7 NPER (array PER follows) 
 2.04 2.34 2.67 3.16 5.04 6.23 9.17 
 1 NBETA (array BETA follows) 

 0. 
 1 NBODY 
 c3.gdf 

 0. 0. 0.6 0. XBODY 
 1  1  0  0  0  1 IMODE(1-6) 
 0 NEWMDS 

 
C3.FRC: 

c3 draft=0.4m 
 1    0    0    -1    0    1  0  0 0     IOPTN(1-9) 
 6 NDFR 

 0 0 0 0 0 0 IMODE 
 1000 RHO 
 0. 0. 0.  XCG 

 0 IMASS 
 0 IDAMP 
 0 ISTIFF 

 0 (NBETAH) 
 0 (NFIELD -- no individual field points) 
 3 (NFIELD_ARRAYS -- number of arrays) 

 0 (Array is in exterior fluid domain) 
 30   1.2   0.2 (NFX, X1, DELX) 
 11   0.0   0.15 (NFY, Y1, DELY) 

 1    0.0   0.0 (NFZ, Z1, DELZ) 
 0 (Array is in exterior fluid domain) 

 35   -8    0.2 (NFX, X2, DELX) 
 11   0.0   0.15 (NFY, Y2, DELY) 
 1    0.0   0.0 (NFZ, Z2, DELZ) 

 1 (Array is in interior fluid domain) 
 11   -1  0.2 (NFX, X4, DELX) 
 11   0.0   0.15 (NFY, Y4, DELY) 

 1    0.0   0.0 (NFZ, Z4, DELZ) 
 

C3.CFG: 

ILOWHI=1 
IALTPOT=2 
IRR=0 

ISOLVE=2 
KSPLIN=3 
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IALTFRC=2 
IQUADO=3 
IQUADI=4 

IPERIO=1 
ITANKFPT=1 
MONITR=0 

NUMHDR=1 
NOOUT= 1 1 1 1 0 1 1 1 1 
IFIELD_ARRAYS=1  (field points input in array format in .frc file) 

USERID_PATH=\WAMITv6   (directory for *.exe, *.dll, and userid.wam) 
ipltdat=5 

 

C.2 Maere model (free floating) 
 

 

Figure C.2 Molo model MultiSurf snapshot 

 

C1.GDF: 
c1, s1, free floating, high-order, dipole 

1.000000  9.806650 ULEN, GRAV 
0 1    ISX, ISY 
0  2  N PATCH  IGDEF 

3  NLINES 
C1.MS2 

* 
0  0  0  Fast/acc  DivMult  Inward_normals 
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C1.POT: 
c1, s1, free floating, high-order, dipole 

0.6 HBOT 

1           1 IRAD, IDIFF 
20 NPER (array PER follows) 
1 1.06 1.12 1.18 1.25 1.34 1.43 1.54 1.67 1.82 2 2.23 2.5 2.86 3.34 4 5 6.67 

10 20 
1 NBETA (array BETA follows) 
0. BETA 

1 NBODY 
c1.gdf 

0. 0. -0.06 0. XBODY 
1  1  1  1  1  1 IMODE(1-6) 
0 NEWMDS 

 
C1.FRC: 
c1, s1, free floating, high-order, dipole 

 1    0    0    1    0    1  0  0 0     IOPTN(1-9) 
 0.000000 VCG 
 1.830000      .0000000      .0000000 

 .0000000      0.170000      .0000000 
 .0000000      .0000000      0.250000        XPRDCT 
 0 (NBETAH) 

 0 (NFIELD -- no individual field points) 
 4 (NFIELD_ARRAYS -- number of arrays) 
 0 (Array is in exterior fluid domain) 

 10   0.4   0.2 (NFX, X1, DELX) 
 11   0.0   0.2 (NFY, Y1, DELY) 

 1    0.0   0.0 (NFZ, Z1, DELZ) 
 0 (Array is in exterior fluid domain) 
 10   -2.2  0.2 (NFX, X2, DELX) 

 11   0.0   0.2 (NFY, Y2, DELY) 
 1    0.0   0.0 (NFZ, Z2, DELZ) 
 0 (Array is in exterior fluid domain) 

 23   -2.2  0.2 (NFX, X3, DELX) 
 11   2.2   0.2 (NFY, Y3, DELY) 
 1    0.0   0.0 (NFZ, Z3, DELZ) 

 1 (Array is in interior fluid domain) 
 5   -0.2  0.1 (NFX, X4, DELX) 
 5   0.   0.4 (NFY, Y4, DELY) 

 1    0.0   0.0 (NFZ, Z4, DELZ) 
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C1.CFG: 
ILOWHI=1 
IALTPOT=2 

IRR=0 
ISOLVE=2 
KSPLIN=3 

IQUADO=3 
IQUADI=4 
IPERIO=1 

ITANKFPT=1 
NDIPOLE= 5 6 7 

MONITR=0 
NUMHDR=1 
NOOUT= 1 1 1 1 0 1 1 1 1 

IFIELD_ARRAYS=1 (field points input in array format in .frc file) 
USERID_PATH=\WAMITv6 (directory for *.exe, *.dll, and userid.wam) 
ipltdat=5 

 

C.3 Maere model (free floating) 
 

 

Figure C.3 Maere model MultiSurf snapshot 

 

C2.GDF: 
c2, s1, free floating, high-order, dipole 

1.000000  9.806650 ULEN, GRAV 

0 1 ISX, ISY 
0  2 NPATCH  IGDEF 
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3 NLINES 
C2.MS2 
* 

0  0  0 Fast/acc  DivMult  Inward_normals 
 

C2.POT: 

c2, s1, free floating, high-order, dipole 
0.6 HBOT 
1           1                IRAD, IDIFF 

20                             NPER (array PER follows) 
1 1.06 1.12 1.18 1.25 1.34 1.43 1.54 1.67 1.82 2 2.23 2.5 2.86 3.34 4 5 6.67 

10 20 
1                             NBETA (array BETA follows) 
0. 

1                             NBODY 
c2.gdf 
0. 0. -0.05 0.           XBODY 

1  1  1  1  1  1          IMODE(1-6) 
0                             NEWMDS 
 

C2.FRC: 
c1, s1, free floating, high-order, dipole 

 1    0    0    1    0    1  0  0 0 IOPTN(1-9) 

 0.000000                               VCG 
 1.830000      .0000000      .0000000 
 .0000000      0.170000      .0000000 

 .0000000      .0000000      0.250000        XPRDCT 
 0 (NBETAH) 

 0 (NFIELD -- no individual field points) 
 10 (NFIELD_ARRAYS -- number of arrays) 
 0 (Array is in exterior fluid domain) 

 9   0.8   0.2 (NFX, X1, DELX) 
 10   0.0   0.2 (NFY, Y1, DELY) 
 1    0.0   0.0 (NFZ, Z1, DELZ) 

 0 (Array is in exterior fluid domain) 
 7   -2.4  0.2 (NFX, X2, DELX) 
 2   0.0   0.12 (NFY, Y2, DELY) 

 1    0.0   0.0 (NFZ, Z2, DELZ) 
 0 (Array is in exterior fluid domain) 
 3   0.0  0.15 (NFX, X3, DELX) 

 8   0.2   0.2 (NFY, Y3, DELY) 
 1    0.0   0.0 (NFZ, Z3, DELZ) 
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 0 (Array is in exterior fluid domain) 
 11   -2.4   0.2 (NFX, X1, DELX) 
 13   0.2   0.1 (NFY, Y1, DELY) 

 1    0.0   0.0 (NFZ, Z1, DELZ) 
 0 (Array is in exterior fluid domain) 
 7   -2.4  0.2 (NFX, X2, DELX) 

 3   1.6   0.1 (NFY, Y2, DELY) 
 1    0.0   0.0 (NFZ, Z2, DELZ) 
 0 (Array is in exterior fluid domain) 

 25   -2.4  0.2 (NFX, X3, DELX) 
 12   2.0   0.2 (NFY, Y3, DELY) 

 1    0.0   0.0 (NFZ, Z3, DELZ) 
 1 (Array is in interior fluid domain) 
 11   -0.93  0.15 (NFX, X4, DELX) 

 2   0.0   0.12 (NFY, Y4, DELY) 
 1    0.0   0.0 (NFZ, Z4, DELZ) 
 1  (Array is in interior fluid domain) 

 3   0.33  0.1 (NFX, X4, DELX) 
 11   0.12   0.15 (NFY, Y4, DELY) 
 1    0.0   0.0 (NFZ, Z4, DELZ) 

 1  (Array is in interior fluid domain) 
 11   -0.93  0.15 (NFX, X4, DELX) 
 3   1.62   0.12 (NFY, Y4, DELY) 

 1    0.0   0.0 (NFZ, Z4, DELZ) 
 1   (Array is in interior fluid domain) 
 3   -0.3  0.1                    (NFX, X4, DELX) 

 11   0.12   0.15                     (NFY, Y4, DELY) 
 1    0.0   0.0                   (NFZ, Z4, DELZ) 

 
C2.CFG: 

ILOWHI=1 

IALTPOT=2 
IRR=0 
ISOLVE=2 

KSPLIN=3 
IQUADO=3 
IQUADI=4 

IPERIO=1 
ITANKFPT=1 
NDIPOLE= (18 30) 

MONITR=0 
NUMHDR=1 
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NOOUT= 1 1 1 1 0 1 1 1 1 
IFIELD_ARRAYS=1 (field points input in array format in .frc file) 
USERID_PATH=\WAMITv6    (directory for *.exe, *.dll, and userid.wam) 

ipltdat=5 
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