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Current techniques in quantum process tomography typically return a single point estimate of an unknown
process based on a finite albeit large amount of measurement data. Due to statistical fluctuations, however,
other processes close to the point estimate can also produce the observed data with near certainty. Unless
appropriate error bars can be constructed, the point estimate does not carry any sound operational interpretation.
Here, we provide a solution to this problem by constructing a confidence region estimator for quantum
processes. Our method enables reliable estimation of essentially any figure of merit for quantum processes
on few qubits, including the diamond distance to a specific noise model, the entanglement fidelity, and the
worst-case entanglement fidelity, by identifying error regions which contain the true state with high probability.
We also provide a software package, QPtomographer, implementing our estimator for the diamond norm and the
worst-case entanglement fidelity. We illustrate its usage and performance with several simulated examples. Our
tools can be used to reliably certify the performance of, e.g., error correction codes, implementations of unitary
gates, or more generally any noise process affecting a quantum system.

DOI: 10.1103/PhysRevA.99.052311

I. INTRODUCTION

Quantum technologies are improving at an ever faster
pace, not only by a concentrated academic effort, but increas-
ingly via collaborations with industry. Quantum technologies
require very precise manipulation and control of quantum
systems, fueling the development of theoretical tools for
precise calibration and characterization of quantum devices
[1]. Notably, quantum-state tomography and quantum-process
tomography (also known as quantum-process tomography)
can infer the quantum state or the quantum process that
describes a quantum device, providing a natural “quantum
debugger” [2].

Quantum-state tomography aims to reconstruct the un-
known state of a system with reference to a set of calibrated
measurement apparatuses. Because of the intrinsically prob-
abilistic nature of the outcomes of quantum measurements,
one runs the experiment many times independently, collecting
data from each run, and uses a statistical procedure to infer
the quantum state. Formally, the reconstructed state is given
by an estimator that associates a quantum state to a given data
set. Statistical properties of estimators have been extensively
studied not only in general for any statistical models [3–5], but
also for quantum-state estimation [1,2,6]. A natural and popu-
lar estimator, which is furthermore computationally efficient,
is the maximum likelihood estimator [7–10]. Error bars that
are asymptotically optimal can be inferred from the quantum
Fisher information [11], either via Cramér-Rao bounds or
directly as confidence intervals [1,12–14].

In quantum-state estimation, one cannot always rely on
results that are valid in the asymptotic regime of many mea-
surements, and finite-size effects become important especially
in settings where collecting measurements is costly [15–17].

Bayesian approaches avoid this problem by constructing cred-
ible regions that are well defined for any finite number of
repetitions of the experiment [18,19]. An alternative approach
that allows to make statements that are not prior dependent is
to carefully and rigorously construct confidence regions with a
precise confidence guarantee for finite number of copies. Such
constructions have been demonstrated using regions based
on a likelihood ratio [20], as well as procedures inspired
by Bayesian methods in which a credible region can be
“upgraded” to a confidence region [21,22].

Many tools for quantum-process tomography are adapted
from quantum-state tomography, for instance, via the Choi-
Jamiołkowski state process correspondence [23]. Beyond tra-
ditional process tomography [24], more advanced tools such
as randomized benchmarking [25–28], gate-set tomography
[29], and compressed sensing [30] display certain advantages
such as a reduced number of required measurements. In the
case of region estimators as in Refs. [21,22], some subtleties
prevent a straightforward application of the corresponding
tools for quantum states to quantum processes. Indeed, the set
of quantum process is in one-to-one correspondence with only
a subset of all bipartite states, namely, those whose reduced
state on one system is maximally mixed; this constraint has
to be incorporated explicitly in the region estimator. In this
paper, we enrich the statistical toolbox for quantum-process
tomography by providing a confidence region estimator for
quantum process inspired by the state tomography method
of Christandl and Renner [21], with a rigorous confidence
guarantee for any finite number of measurements.

Often in certifying specific applications, we are not inter-
ested in the full knowledge of the quantum process; a property
of the unknown channel suffices. For example, in quantum
key distribution we are often interested in how close the final
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state output by the protocol is to the ideal key state; this is
captured for instance by the fidelity or the trace distance of
the real state to the ideal state [31]. Likewise, in quantum
computing a relevant figure of merit that enables fault-tolerant
computation is the error threshold captured by the diamond
distance or the worst-case entanglement fidelity of the real
implemented gate relative to the ideal gate [32]. Note that a
bound on the diamond distance or the entanglement fidelity to
a given fixed channel may confine the true channel to a small
region in channel space.1 For these reasons, and because this
significantly simplifies our analysis, we focus on estimators
for quantum processes that report confidence intervals for a
given figure of merit.

Summary of main results. Our main contribution is three-
fold:

(i) A confidence region estimator for channel tomogra-
phy through the use of the Christandl-Renner-Faist estimator
for states and the Choi-Jamiolkowski isomorphism between
quantum states and quantum processes. We call this the
bipartite-state sampling method.

(ii) A confidence region estimator to directly (without
first tomographing the Choi state associated with the channel)
estimate quantum processes and its proof of correctness. We
call this the channel-space sampling method.

(iii) A software package called QPtomographer [33] ac-
companying our theoretical results for analyzing experimental
data. Our software returns quantum error bars which capture
all the information about the unknown channel derivable
from the tomographic data and enable the user to construct
confidence regions for any confidence level of interest.

By comparing the differences of the two estimators, we
obtain a better understanding about the relationship between
probability measures on state space and channel space which
may be of independent interest. Because the estimators return
a confidence region, they will work without any assumption
on the prior distribution of the unknown process.

To illustrate how to use our result, we consider the scenario
of certifying a quantum memory (an example of quantum
property testing [34]). This corresponds to certifying that
a quantum device (approximately) implements the identity
channel. We consider three possible figures of merit: the
diamond distance to the identity channel, the entanglement
fidelity, and the worst-case entanglement fidelity [35,36]. Our
method yields a reliable estimation of these figures of merit.

The paper is organized as follows. We first demonstrate
in Sec. II how one can use our method to obtain reliable
information in a tomography experiment. The correctness
of our tools is justified in Sec. III where we present the
main results. Then, we study the behavior of our numerical
implementations in Sec. IV before concluding our paper with
future directions (Sec. V). We leave the formal statements and
detailed derivations of our results to the Appendices.

1If after tomography one obtains the statement |� − �ideal|� �
10−3 with 99% confidence, then for all practical purposes we can
consider that � = �ideal. Thus, knowledge of the figure of merit
may imply knowledge of all the entries in the process matrix of the
unknown channel �.

FIG. 1. The workflow of rigorous process tomography. Our data
analysis QPtomographer supports both prepare-and-measure and
ancilla-assisted experimental schemes. The conclusion is guaranteed
without any prior information on the unknown quantum process.

II. SETUP AND WORKFLOW

In this section, we detail the main workflow associated with
the tomographic tools we have developed in our paper via a
concrete example.

Suppose an experimental team has developed a working
quantum memory (single qubit) and would like to certify
its performance for usage within a quantum communication
protocol such as entanglement distillation. In this context, one
way of measuring the performance is the diamond norm dis-
tance to the identity process. The workflow for this example is
illustrated in Fig. 1. We remark that there are other quantities
of interest which do not assume an i.i.d structure, such as, for
example, estimating the capacity as in [37].

The quantum memory’s performance can be determined as
follows. We assume that we have access to a given number
of uses of the quantum memory. The number of uses can be
chosen freely, noting that it affects the final error bars.

Moreover, in order to find out what the unknown pro-
cess was, we need additional access to state preparation and
measurement devices which are information complete (at
least in the physical degrees of freedom where the unknown
process acts). In this example, the set of state preparations
are the Pauli eigenstates |±x〉, |±y〉, |±z〉, while the set of
measurement devices are Pauli X,Y, Z measurements. We
assume that each use of the quantum process is independent,
and that the same unknown quantum process is applied for
each run of the experiment, yielding statistics which are
independent and identically distributed (i.i.d.). While here
we consider a prepare-and-measure scenario as depicted in
Fig. 2(a), it is also possible to consider an ancilla-assisted
scheme [Fig. 2(b)].

FIG. 2. Illustrations of (a) prepare-and-measure and (b) ancilla-
assisted tomographic schemes for an unknown channel �A→B. In
prepare and measure, one can only prepare input state σ

j
A which

is fed into an unknown channel whose output state is measured by
some POVM with elements E �

B. In ancilla assisted, one can prepare
entangled input state with some reference system P, and measure
jointly the output using some POVM with elements E �

BP.
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1.9×10-4

FIG. 3. Typical output from QPtomographer. The (blue) dots
form the estimated distribution of values of the diamond norm
distance to the identity channel as determined by the Metropolis-
Hastings random walk. These are well fitted to the (red) curve,
which is compactly described by the triple of numbers (v0, �, γ )
which we called quantum error bars. Here, v0 is the position of the
peak, � is half-width at relative height 1/e, and γ is a measure of
skewness. These data encode information about the performance of
the quantum memory, and enable us to construct confidence intervals
certifying its quality.

The first step (see Fig. 1) involves calibrating the state pre-
paration and measurement devices to have |±x〉, |±y〉, |±z〉
state preparations and X,Y, Z measurements. After this cali-
bration procedure has succeeded, one performs a chosen num-
ber n = 45 000 of individual experiments. Each experiment
consists of the following steps:

(i) Prepare an input state by executing one of the devices
|±x〉, |±y〉, |±z〉 (perhaps at random).

(ii) Apply the (unknown) quantum memory to the said
input state.

(iii) Measure the output state using one of the possible
X,Y, Z measurement devices (perhaps at random).

(iv) Record the outcome of this experiment in a data set E .
We remark that the preparation and measurement should

yield sufficient data in the sense that all combination of
input states and measurements should be chosen (perhaps at
random).

Such a data set E can then be analyzed by our software
QPtomographer. One provides to our software the informa-
tion about the measurement settings and the observed data
set. Then, using a Metropolis-Hastings sampling method, the
software determines a specific type of distribution of the
figure-of-merit Fig. 3 along with corresponding quantum error
bars (v0,�, γ ) [see (10) for the precise definition and [22] for
the origin of this terminology]. The value v0 is the location of
the maximum in Fig. 3, while � and γ measure the spread
of the error. In our example, the analysis based on the input
data set E with n = 45 000 measurement records returned the
quantum error bars

(v0 = 0.058,� = 0.006, γ = 0.000 19),

which determine the parameters of an appropriate fit function
[(red) curve of Fig. 3].

The quantum error bars contain the information about the
error analysis with an accuracy that can be measured by the
goodness-of-fit value between the fit model and the simulated
histogram. Namely, they (i) form a concise description of the
error, (ii) provide an intuitive idea of the magnitude of the
error, and (iii) can easily determine confidence regions for
the quantum state or quantum process [22]. In this sense,
quantum error bars are perfectly analogous to classical error
bars: the latter are indeed a concise, intuitive description of the
error from which one easily determines rigorous confidence
intervals. For this reason it is a natural object to report at the
end of a process tomography procedure.

If one wishes to actually derive rigorous confidence regions
for the diamond norm distance, one may proceed as follows.
First, one fixes a confidence level, say α = 99%, which sets
the corresponding error parameter as ε = 1 − α = 10−2. By
Theorem 2, for n = 45 000 (size of our data set E ) and dA =
dB = 2, we need to find a region of diamond norm distance
values with weight at least

1 − ε

2

(
2n + d2

Ad2
B − 1

d2
Ad2

B − 1

)−2

� 1 − 10−151.

With reference to Fig. 3, this means we need to find the x po-
sition such that the area under the curve exceeds 1 − 10−151.
A numerical integration leads to a region at least as large as
[0,0.24]. Together with the enlargement by

δ =
√

2

n

[
ln

2

ε
+ 3 ln

(
2n + d2

Ad2
B − 1

d2
Ad2

B − 1

)]
= 0.1

(to exclude nearby channels which could result in the same
observed data set with high probability) the final confidence
region is [0,0.34]. This means we have certified that the
diamond norm distance of the unknown quantum memory to
an ideal quantum memory is at most 0.34 with 99% confi-
dence. In general, increasing the number n of measurement
data points will shrink this confidence interval [due to the
exponential decays in the diamond distance density (see also
Appendix F)].

We emphasize that the unnaturally large size of the regions
is due in large part to a technical difficulty in the proofs of
our bounds that is dealt with by employing tools that are
known not to be tight in this context. For this reason, the
quantum error bars are more informative than the actual final
confidence regions.

This concludes the general workflow associated with our
tomographic tools. The next section explains at a high level
how our software transform tomographic data into confidence
regions.

III. MAIN RESULTS

Our software package QPtomographer is built on top of
two rigorously proven theoretical constructions. These are
confidence region estimators based on the bipartite-state sam-
pling method or the channel-space sampling method. The
bipartite-state method works in the ancilla-assisted scheme,
while the channel-space method works in both ancilla-assisted
and prepare-and-measure schemes. This section gives a high-
level overview of the constructions together with the main
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ideas behind the proof of correctness, and leave the details
to Appendices B and C, respectively. We begin with a brief
motivation for confidence region estimators.

A. Confidence region estimators

In the limit of infinite data (i.e., the number of records
in data set E is infinity), it is possible to exactly compute
the probabilities of each measurement outcome from E and
reconstruct the unknown channel by linear inversion on these
observed probabilities [2]. However, in the practical scenario
of finite data (i.e., data set E contains n records) statistical
fluctuations will imply the failure of all point estimation
methods such as linear inversion or maximum likelihood esti-
mation. This is due to the fact that channels close to the point
estimate can produce the same data set with high probability.

In order to make statistically rigorous and operationally
sound statements on the unknown channel in this regime, we
turn to region estimators, which are generalizations of the
process of constructing error bars. We will look at a type
of region estimators known as confidence region estimators.
These are maps from data E to subsets SE ⊆ C (HA → HB)
of the set of quantum processes with the property that for all
� ∈ C (HA → HB)

Pr
E

[� ∈ SE ] � α, (1)

where α is a prefixed confidence level and the probability is
evaluated over the random data E according to the distribution
Pr[E |�]. It is important to note that confidence is a property
of the entire estimator (the procedure E �→ SE ) and not of any
particular subset SE produced by the estimator.

The operational meaning of confidence region estimators
can be understood as follows. Suppose the black box imple-
menting the unknown channel �true is in fact prepared by a
referee, who knows exactly to which channel the black box
applies. We proceed with a sequence of state preparations,
applications of the channel, and measurements of the output
states to obtain a data set E . Then, we apply the estimator
on E to get SE . Repeating this procedure a large number of
times, say N = 105, if r denotes different repetitions, then
we obtain different data sets E (r = 1), . . . , E (r = 105) with
corresponding conclusions that the true channel �true should
be in the region SE (r=1), . . . , SE (r=105 ). Now since the referee
knows exactly the unknown channel, the referee can evaluate
the proportion of correct conclusions

|{r : r = 1, . . . , N and � ∈ SE (r) is true }|
N

.

If the estimator used is a confidence region estimator with
confidence level α = 0.99, then in the limit of N → ∞ this
proportion is at least 0.99. This is the meaning of confidence:
the correct conclusion is guaranteed for a large number of uses
of the estimator, regardless of the unknown channel. Note that
for a specific use of the estimator which returns SE , we cannot
draw the conclusion that � ∈ SE .

An alternative justification of confidence regions comes
from a Bayesian point of view: Bayesian tomography uses
outcomes of measurements to update a prior distribution about
the quantum state to a posterior distribution. While this poste-
rior clearly depends on the prior, it is known that when enough

data are collected, the posterior distribution is no longer sensi-
tive to the exact prior which was originally used (as long as the
original prior has full support). Now consider a high-weight
region of a posterior distribution, which is also known as a
credible region. We may ask to what extent this region remains
a credible region if we change the underlying prior. It turns
out that for a large enough number of measurements, we may
find regions which are credible regions for any prior, except
for some exceptionally unlikely measurement data sets [21].
Such regions are precisely confidence regions.

B. Our confidence region estimators

Our method of constructing region estimators uses the
information about the underlying unknown channel via the
likelihood function defined generically for an observed data
set E as

L(�|E ) = Pr(E |�), (2)

where the probability of the data set E under the assumption
that the unknown channel is � is given by Born’s rule.
The specific form of the likelihood function depends on the
scenarios and assumptions we postulate (cf. Appendices B and
C). The likelihood function can be seen as giving a ranking
about which channel best produce the observed data set. We
now present our methods of process tomography.

Bipartite-state sampling method. The main idea behind this
method is that a quantum process is in correspondence with
bipartite Choi states via the Choi-Jamiolkowski isomorphism.
Hence, we can construct confidence regions for quantum
states using the method of Christandl-Renner, and then per-
form an additional classical post-processing step to recover a
confidence region for quantum processes.

Let us now first assume the use of an ancilla-assisted tomo-
graphic scheme, Fig. 2(b), which loosely corresponds to phys-
ically performing the Choi-Jamiolkowski isomorphism in the
laboratory. This means having access to a full-rank bipartite-
entangled state |ψAP〉 as input to the channel, and performing
tomography on the output state ρBP := �A→B(ψAP ) which is
the unknown Choi state associated with the unknown channel.

Treating ρBP as the unknown state in a state tomography
problem, we now apply the Christandl-Renner method of con-
structing confidence regions from tomographic data. Recall
that the Christandl-Renner confidence region is constructed
from the measure

dμE (σAB) := c−1
E tr
(
σ⊗n

AB E
)
dσAB, (3)

where cE = ∫ tr(σ⊗n
AB E )dσAB is the normalizing constant, and

dσAB is the uniform distribution on bipartite density matrices
(obtained by tracing out a Haar random pure state on a larger
space). Note that tr(σ⊗n

AB E ) is the likelihood function for the
outcome E given the state σAB in this scenario. Confidence re-
gions for the unknown ρAB can be constructed from dμE (σAB)
as the following proposition asserts.

Theorem 1 (Christandl and Renner [21], informal). Let
n be the number of systems measured by a POVM dur-
ing tomography and 1 − ε be the desired confidence level.
Let SμE ⊆ D(HAB) be any set of bipartite states with high
weight under the probability measure dμE (σAB). Then, the
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enlargement in purified distance Sδ
μE

where

δ =
√

2

n

(
ln

2

ε
+ 2 ln s2n,d2

AB

)
(4)

with sn,d := (n+d−1
d−1

)
is a confidence region of confidence level

1 − ε.
Intuitively, we can think of the enlargement as a way to

exclude nearby states or channels (relative to a proposed
region of states or channels) that can give rise to the same
observed data set E with nonzero probability.

The confidence region Sδ
μE

contains bipartite quantum
states which are not Choi states. This is due to the fact that
the method of Christandl and Renner does not a priori allow
the Choi state constraint trB(σAB) = 1A/dA. Hence, we have
to invent an additional post-processing step to map Sδ

μE
to

a region consisting of exclusively Choi states. By the Choi-
Jamiolkowski isomorphism we then have a confidence region
for the unknown quantum process. The detailed explanation is
left to Appendix B.

Channel-space sampling method. This method is a con-
struction of confidence region that directly returns channel-
space confidence regions. Compared to the bipartite-state
method, the channel-space method works in both the prepare-
and-measure and ancilla-assisted tomographic schemes and
takes into account the a priori knowledge that we are es-
timating a quantum process. This leads to computational
efficiency relative to the bipartite-state method because the
additional post-processing step of the bipartite-state method
is not required here.

The estimator is constructed from the probability measure
on the set of quantum processes C (HA → HB):

dνE (�) := c′−1
E L(�|E )dν(�), (5)

where L(�|E ) is the likelihood for the event E given
a channel �, c′

E = ∫ L(�|E )dν(�) serves as a normaliz-
ing constant, and dν(�) is the Haar-induced measure on
C (HA → HB). The likelihood function is adapted depend-
ing on prepare-and-measure or ancilla-assisted tomographic
scheme and is defined as the probability of obtaining the data
set E given a channel �. Informally, this measure captures
the information of the unknown channel as revealed by the
observed data set E in an unbiased manner (that is, without
using any prior knowledge on the unknown).

Given this measure, we obtain the following:
Theorem 2 (informal). Let n be the number of channel

uses during tomography and 1 − ε be the desired confidence
level. Let RνE ⊆ C (HA → HB) be a set of channels with
high weight under the probability measure dνE (�). Then,
the enlargement in purified distance (for quantum processes,
induced from states) Rδ

νE
where

δ =
√

2

n

(
ln

2

ε
+ 3 ln s2n,d2

AB

)
(6)

with sn,d := (n+d−1
d−1

)
is a confidence region with confidence

level 1 − ε.
Confidence interval for figures of merit. In practice, we

choose the region in Theorem 2 for any chosen figure of merit
to be the subset of channels whose figure of merit is better

than a certain threshold. For the diamond norm distance to the
ideal channel, we consider

R = {� : 1/2|� − �ideal|� � γE }, (7)

and for the worst-case entanglement fidelity we consider

R = {� : Fworst (�) � γE }. (8)

We can work directly with the figure of merit by push
forwarding the measure dνE (�) to the space of figures of
merit, which is typically the real R or the interval [0,1], and
obtain the histogram h(v) over different values of the figure
of merit; the enlargement of these regions under the purified
distance is translated into a loss in the value of the figures of
merit: γE → γE + dAδ/2 for diamond distance and γE − dAδ

for worst-case entanglement fidelity. The loss vanishes with
increasing number of channel uses [as evident in Eqs. (4) and
(6)], which allows reliable estimation of the figure of merit.

C. Numerical implementations

The previous section outlined the theoretical results un-
derpinning our software package. We observe a reduction
from the problem of constructing confidence regions to a
problem of approximating the measures dνE (�) or dμE (σAB).
Solving this latter problem is the objective of the numerical
implementations.

Computing dνE (�) and dμE (σAB). In order to approxi-
mate a probability measure, we will take the Monte Carlo
approach of producing its samples, i.e., producing a histogram
approximating a measure. More samples lead to better approx-
imation but require more computational resources. Sampling
according to dμE (σAB) (i.e., the bipartite-state method) has
been implemented in [22], and sampling according to dνE (�)
(i.e., the channel-space method) can be obtained by similar
methods. More precisely, dνE (�) can be approximated by
Metropolis-Hastings sampling [38] on channel space, which
reduces to the ability of sample a “uniformly random quantum
process” according to dν(�). To do this, it suffices to sample
a unitary operator at random according to the Haar measure,
by Stinespring dilation (see Appendix A 2). Crucially, because
we use the Metropolis-Hasting algorithm, it is not necessary
to calculate the normalizing constants cE and c′

E which are
difficult to obtain in practice. The parameters required to run
the Metropolis-Hastings algorithm are the initial starting point
and a jump distribution (a distribution from which we know
how to produce samples). For the jump distribution, we have
implemented two versions which we call eiH and elementary
rotation.

The Metropolis-Hastings algorithm starts with an initial
point U0 in the sample space, which we take to be the identity
unitary operator, and conducts a random walk around this
space. For each iteration, starting from current location U the
jump distribution produces a candidate U ′ (depending on the
current location) for a sample, a unitary matrix, which could
potentially come from dνE (�). This candidate is accepted to
be a sample of dνE (�) with acceptance probability a, and
upon acceptance the current location is updated to this point.
The acceptance probability is defined to be the likelihood
ratio (i.e., probability ratio) of U ′ to produce the observed
data set E with respect to the the current location U . This

052311-5



LE PHUC THINH et al. PHYSICAL REVIEW A 99, 052311 (2019)

can be computed as the state preparations and measurements
are known from calibration, and the data set E is given
from the experiment. The sequence of points {Ui} visited in
this fashion, albeit correlated, are asymptotically distributed
according to dνE (�) [38].

Extracting information for a given figure of merit. In terms
of a given figure of merit f , the distribution dν(�) can be
represented as a density function h(v) for any possible value
v of the figure of merit associated with the unknown channel
�. For all practical purposes, our goal is to obtain a compact
description of this density. Clearly, this function is well ap-
proximated by the sequence of values { f (Ui )} derived from
the output of the Metropolis-Hastings algorithm by simply
evaluating the figure of merit at each point Ui. We organize
{ f (Ui )} into bins of some size to produce a histogram approxi-
mating h(v). This histogram is further subjected to a statistical
fit analysis to obtain quantum error bars (v0,�, γ ), which
contain enough information to reconstruct a good approxima-
tion of h(v). We consider the fit model given in Ref. [22]:

ln μfit (v) = −a2v
2 − a1v + m ln v + c. (9)

From this, the reported quantum error bars are computed from
the fit parameters of the fit model as

v0 = 1

4a2

[−a1 +
√

a2
1 + 8a2m

]
; (10a)

� =
(

a2 + m

2v2
0

)−1/2

; (10b)

γ = m
�4

6v3
0

. (10c)

Note that if this fit model does not agree well with the
histogram bins, one can always modify the fit model, and
report analogous quantum error bars. See Appendix D and
Sec. IV for more details.

D. Relation between our two sampling methods

There is a connection between our two estimators, which
we explain in detail in Appendix G. The essential difference
between the bipartite sampling method and the channel-space
method can be traced back to how one uses the prior informa-
tion about the input state. In the former, nothing is assumed
about the exact input state other than what can be inferred
directly from the measurement data (of course, still under the
physical assumption of a pure entangled input); in the latter,
the exact input state is assumed with certainty, and is used in
the construction of the estimator (as manifestly visible in the
likelihood function).

IV. APPLICATION: EXAMPLES

We now illustrate in more details the use of our software
package QPtomographer by continuing the quantum memory
example. The generic procedure is described in Algorithms
1 and 2. In the rest of this section, simulation results are
obtained using the channel-space sampling method unless
otherwise stated. All numerics were run on a 2016 Macbook
Pro with 4 physical and 8 virtual cores using our code pro-
vided at [33].

Algorithm 1 Ancilla-assisted [see Fig. 2(b)]

1: input a pure entangled state and a collection of measurements
2: for i = 1 to n do
3: Choose a measurement from the set
4: Apply the channel to the entangled input state
5: Measure the output state with the chosen measurement
6: Record the observed outcome
7: end for
8: return data set E storing the measurement and outcomes

for each repetition

Algorithm 2 Prepare-and-measure [see Fig. 2(a)]

1: input a set of states and a collection of measurements
2: For i = 1 to n do
3: Choose an input state and a measurement from the set
4: Apply the channel to this input state
5: Measure the output state with the chosen measurement
6: Record the input choice and the observed outcome
7: end for
8: return data set E storing input state, output measurement

and outcomes for each repetition

The output of our classical data analysis is called “quantum
error bars” which contain all the information about the figure
of merit that can be obtained from the tomographic data set.
From here, it is easy to construct confidence regions for any
specified confidence level.

A. One-qubit example

In the following, see example qubit-noisy-identity in our
software package [33] for more details.

Step 1. Data collection: Consider the scenario of testing the
performance of a quantum memory �A→B. The ideal channel
we wish to implement is the identity channel I. Suppose
that the real channel implemented in the experiment is the
depolarizing channel

�A→B(ρ) = pρ + (1 − p) d−1
B 1B, (11)

acting on one qubit (dA = dB = 2), with the parameter p =
0.9. In other words, the experiment is slightly off from the
ideal implementation by some white noise.

Furthermore, we consider the ancilla-assisted scheme, and
assume that the input to the channel is half of a pure entangled
state |ψ〉AP = (σ 1/2

A ⊗ 1) d1/2
A |̂〉AP, where we choose

σA =
(

0.6 0.1
0.1 0.4

)
, (12)

which mimics an input state which deviates slightly from the
maximally mixed state. Note that the entangled input state has
full Schmidt rank.

Since we do not have an actual experiment, we have
to simulate Pauli measurements on the joint state ρBP after
application of the channel �A→B, with two possible outcomes
for each of the three measurement settings. For each mea-
surement setting, 500 measurement outcomes were simulated.
These constitute the information contained in the (simulated)
observed data set E with n = 45 000.
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Worst-case and average

FIG. 4. Distribution of the figures of merit for the single-qubit noisy quantum memory example relevant to construct confidence regions.
This figure is obtained by the channel-space sampling method run over simulated data from a known true state; vertical dashed lines are true
figure-of-merit values of the channel. The data points are the histogram resulting from our Metropolis-Hastings integration method, and the
solid lines a corresponding fit to the empirical model of [22] (see main text). Left: the diamond norm is chosen as figure of merit. Right: the
figure of merit is chosen to be either the worst-case entanglement fidelity [blue (dark gray)] or the average entanglement fidelity [red (light
gray)]. These plots should be understood as tools to construct confidence regions: Given a threshold on the x axis, one may easily calculate
from these curves the confidence with which one may ascertain the true figure of merit (see main text). The present example is included in our
software package [33].

We now subject these data set to an analysis which we
aim to measure three figures of merit corresponding to our
unknown channel: the diamond distance to the identity chan-
nel, the average entanglement fidelity, and the worst-case
entanglement fidelity. Refer to the Appendix A for the precise
definitions.

Steps 2 and 3. Random sampling and histogram: We run the
channel-space sampling method to estimate the three figures
of merit. The calculation of all three figures of merit functions
was done in C++ using the SCS toolbox [39,40]. A simple
PYTHON interface was used to control the execution of the
program. The Metropolis-Hastings random walk is run on
the space of all quantum processes using elementary rotation
jump distribution, as described in Appendix D, until 32 768
data points have been collected. Samples from the random
walk allow to construct a histogram approximating a specific
distribution of the figure of merit.

Step 4. Fit analysis of histograms: In our example, we dis-
covered that the fit model as described in (9) does have good
agreement with the underlying histogram bins, as underscored
by goodness-of-fit values (reduced χ2) of the order of ∼4 in
most cases. In case of poor fit to the default model, one may
modify the empirical fit model until an acceptable goodness
of fit is achieved, before quantum error bars and confidence
regions can be derived.

Step 5. Quantum error bars and confidence regions: The
quantum error bars (v0,�, γ ) are a simple translation from
the parameters of the fit model. The steps toward a confidence
region for diamond norm have been illustrated in Sec. II. In
theory, we have the guarantee that collecting a larger data set
will yield smaller regions converging to the true value. Unfor-
tunately, the confidence interval for diamond norm distance

returned by our method is unreasonably large for the current
example: for 99% confidence level we are able to bound the
diamond norm by 0.34 as compared to the true value of 0.05.
We believe that this is due to operator inequality involved
in bounding the failure probability (Proposition 1). Further
research is needed to provide better construction of confidence
regions (i.e., more efficient in terms of the number of data
samples n).

B. Two-qubit example

Now, we consider a two-qubit example to illustrate the
practicality of our method in this situation. This example also
shows that the channel-space and the bipartite-state sampling
methods do not in general produce the same histogram, as one
might have concluded from Fig. 4.

In the following, see example 2qubits-noisy-identity in our
software package [33] for more details. Suppose that the
real channel implemented in the experiment the two-qubit
depolarizing channel

�A→B(ρ) = pρ + (1 − p) d−1
B 1B, (13)

with dA = dB = 4, and we are interested in the diamond
distance to the identity channel. Assuming access to state
preparation that produces |ψ〉AP = (σ 1/2

A ⊗ 1) d1/2
A |̂〉AP with

σA =

⎛
⎜⎝

0.35 0 0.04 0.1i
0 0.15 0.05 0

0.04 0.05 0.32 0
−0.1i 0 0 0.18

⎞
⎟⎠, (14)

and 34 = 81 Pauli measurement settings each having 22 = 4
outcomes. We perform similar analyses on a simulated data
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FIG. 5. Distribution of the diamond norm distance for the two-
qubit noisy quantum memory example. Results from other jump
distributions of the same sampling method (not shown), namely,
bipartite state or channel space, coincide with plotted curves. The
difference between the two methods for the entanglement fidelity
is not a contradiction, rather, in this situation the channel-space
method [blue (dark gray)] gives better tomographic results com-
pared to the bipartite-state method [red (light gray)]. The reason
is due to the additional use of prior information about the input
state in the channel-space method. This figure can be reproduced
in its entirety from example 2qubit-noisy-identity in our software
package [33].

set of size n = 40 500 which we generated using the state
preparations and measurements described above. The result
is presented in Fig. 5.

The channel-space sampling method’s h(v) is peaked at
lower values of the figure of merit, as can be seen in Fig. 5.
We observe that, in this case, the knowledge of the input state
significantly shifts the corresponding histogram distribution
toward lower values of the figure of merit, allowing to con-
struct smaller confidence regions. Based on several examples
studied, this is not always the case; with less noise (smaller
p), for instance, the curve for μ(v) and the curve for h(v) get
closer to each other.

On a technical level, we show that the Hilbert-Schmidt
measure over the bipartite states factorizes as a measure over
states on the input system and the relevant measure over all
channels (Appendix G). Hence, a large uncertainty over the
input state may enlarge the resulting region as opposed to
considering a region only on the channel space for a fixed
known input state. However, it is not impossible that under
some lucky circumstances a finite distribution width on the
input state helps add more weight to regions of a higher
figure of merit, effectively shrinking the region. Indeed, it
could happen that the input state assumed in the channel-space
method is far from the optimal state for distinguishing the
channels in terms of the diamond norm; in such a case a prior
which is more “smeared out” over different input states might
result in smaller quantum error bars for the diamond norm.
We believe that this is why neither method performs globally
better than the other. See Appendix G for further details on
the relationship between the two methods.

V. CONCLUSIONS

One might think that carrying over the notion of quantum
error bars in quantum-state tomography to quantum-process
tomography is as straightforward as converting quantum states
to channels via the Choi-Jamiołkowski isomorphism.

However, our study reveals a more complicated structure.
We find that different analysis methods are suited to different
experimental process tomography setups. In the experimen-
tally more realistic prepare-and-measure scheme, a judicious
use of the prior knowledge about the input state to the process
allows us in typical situations to obtain tighter quantum error
bars for the process. These results are obtained by developing
a method, along with corresponding proofs, which are specific
to process tomography.

On the other hand, in the case of the ancilla-assisted
scheme, we can directly apply the methods developed for
quantum-state tomography, harnessing them to directly yield
reliable statements about the quantum process itself, while
ignoring any information the measurements provide about the
input state used to probe the process.

We hence provide a fully fledged and practical toolbox
named QPtomographer, with solid theoretical foundations,
for quantum-process tomography of arbitrary quantum pro-
cesses, using any experimental quantum-process tomography
setup, and given measurement outcomes from any measure-
ment settings. Our software package facilitates the numerical
analysis in practice by automating the implementation of the
Metropolis-Hastings random walk, as well as the calculation
of the diamond norm, by simple high-level PYTHON func-
tion calls, while transparently delegating the computation-
intensive routines to heavily optimized C++ code which makes
use of modern programming techniques including template
metaprogramming and exploiting hardware SIMD instruc-
tions.

On the spectrum of characterization tools for quantum
devices, our method can be seen as lying on the opposite
end of randomized benchmarking [25–28]. While slightly
more involved, our technique can be applied to any choice
of state preparations and measurements, and can be applied
to any individual process. By determining the diamond norm
or the worst-case entanglement fidelity to any given ideal
process, we provide individual full characterization of the
processes implemented by individual gates. More generally,
our methods allow the reliable estimation of any specific
property of the quantum process.

We note that our method is currently limited to processes
acting on few qubits, as our confidence region produces
unreasonably large regions, and the algorithm stores dense
representations of the quantum process. However, we expect
that our methods will be used to certify individual components
of complex setups, for instance, individual two-qubit gates.
Because we estimate robust, composable figures of merit
such as the worst-case entanglement fidelity or the diamond
norm, the composition of individually certified components
is still certified to function accurately. The generous size
of the region is partially due to the fact that we provide
rigorous confidence guarantees that are valid for any finite
number of measurements, the proof of which requires the
use of mathematical bounds that are not necessarily tight. In
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practice, however, it appears that the quantum error bars are
comparable in magnitude to error bars obtained by methods
that would formally be exact only in the asymptotic regime,
such as the bootstrap [22]. As future work we would envisage
a more systematic analysis of the discrepancies between the
quantum error bars in the finite regime and traditional methods
such as those based on the Fisher information or the bootstrap.

In addition, we may ask whether the channel method is
always superior to the bipartite sampling method. As noted
above, the additional prior knowledge about the input state
which the channel-space method enjoys in contrast to the
bipartite sampling method is not sufficient to guarantee this.
We leave a more precise understanding of the relation between
our two methods open for future study.
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APPENDIX A: NOTATIONS AND PRELIMINARIES

We begin by setting up some notations and recalling stan-
dard definitions. For more information on states and processes
see [41–43].

1. Quantum processes and figures of merit

Let HA be the Hilbert space of dimension dA associated
with the quantum system denoted A. By D(HA) we mean the
subset of End(HA), the set of linear transformations on HA,
consisting of density matrices ρA � 0 (positive semidefinite)
with tr(ρA) = 1. Composite systems are described by tensor
product constructions, for instance, HAB = HA ⊗ HB is the
Hilbert space of composite system AB.

Quantum measurements on quantum system are the pos-
itive operator valued measures or POVMs on H. For finite
number of outcomes, a POVM is a set of positive operators,
the effects, that sum to the identity operator on H. We will
overload the notation E to mean an outcome label, and also
the effect E (i.e., an operator or matrix) in the POVM.
This is equivalent to the usual “observables” formulation of
measurement, i.e., a Hermitian operator. For example, a Z
measurement or observable has two outcomes E = +1 and
E = −1 with associated effects |0〉〈0| and |1〉〈1|, respectively.

A quantum process �A→B mapping a quantum system A to
a quantum system B is a completely positive trace-preserving
linear map from End (HA) to End (HB). In general, we will
denote quantum processes by capital Greek letters. We will
often drop the subscripts when the quantum systems are clear
from the context.

The set of all possible quantum processes is denoted
C (HA → HB), and it is in one-to-one correspondence with

the set of bipartite Choi states C (HAB) via the Choi-
Jamiolkowski isomorphism

J : C (HA → HB) → End (HA ⊗ HB), (A1)

�A→B �→ (IA ⊗ �Ā→B)(|̂〉〈̂|AĀ),

where |̂〉 := 1√
dA

∑
k |k〉A|k〉Ā is the maximally entangled

state on HA ⊗ HĀ and IA is the identity channel acting on
the system A. Explicitly, the set of Choi matrices is defined
as the image of C (HA → HB) under the Choi-Jamiolkowski
isomorphism and has the following compact description:

C (HAB) = {ρ ∈ D(HAB) : trB(ρAB) = 1A/dA}. (A2)

Throughout the Appendices, we will use the convention that
�AB is the Choi state associated with the channel �A→B.

The action of the channel can be recovered from its Choi
state by the inverse of Choi-Jamiolkowski isomorphism

�(ρ) = dAtrA
(
�AB · ρ

ᵀ
A ⊗ 1B
)
, (A3)

where ᵀ is the transpose with respect to the basis of HA

defining the maximally entangled state.
Recall that the fidelity between two states σ, σ ′ is

defined as

F (σ, σ ′) := ‖√σ
√

σ ′‖1 = tr
√√

σσ ′√σ , (A4)

and the purified distance between quantum states is defined
as P(σ, σ ′) :=

√
1 − F (σ, σ ′)2. Then, the purified distance

between channels is defined as

P(�A→B, � ′
A→B) := P(�AB, � ′

AB). (A5)

a. Diamond distance

We first introduce the familiar diamond distance. The dia-
mond distance from the real or actual implementation �A→B

to the ideal or target implementation �ideal is denoted as

f�(�A→B) = 1
2

∥∥�A→B − �ideal
A→B

∥∥
�. (A6)

This function f� : C (HA → HB) → [0, 1] [or equivalently
from C (HAB)] can be cast as a semidefinite program [44]

Primal problem

maximize:
〈
dA�AB − dA�ideal

AB ,W
〉

subject to: W � 1B ⊗ ρ,

W � 0,

ρ ∈ D(X ).

Dual problem

minimize: ‖trB(Z )‖∞

subject to: Z � dA�AB − dA�ideal
AB ,

Z � 0.

b. Entanglement fidelity

The entanglement fidelity is another measure of how close
a given channel is to the identity channel. More specifically,
it measures how well a channel preserves the maximally
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entangled state. The entanglement fidelity of a channel �A→B

with B � A is defined as

Fe(�) = F 2(�Ā→B(̂AĀ), ̂AB), (A7)

recalling that |̂〉AĀ is the normalized maximally entangled
state between the systems A and Ā.

Because �AB = �Ā→B(̂AĀ) is the normalized Choi state
corresponding to the channel �A→B, the entanglement fidelity
of the channel �A→B is in fact exactly the fidelity of the cor-
responding normalized Choi state to the maximally entangled
state:

Fe(�) = F 2(�AB, ̂AB). (A8)

c. Worst-case entanglement fidelity

The worst-case entanglement fidelity is a better measure of
the reliability of the channel to simulate the identity channel, if
we have to worry about any possible input state being fed into
the channel. In effect, the worst-case entanglement fidelity
measures how well the channel preserves any given state on a
system and any purification. It is defined as

Fworst (�A→B) = inf
σAĀ

F 2(�Ā→B(σAĀ), σAB), (A9)

where the optimization ranges over all bipartite quantum
states σAB defined over the input Ā and a reference system
A � Ā. The optimization variable, which appears in both slots
of the fidelity F , may be restricted to pure states without loss
of generality.

Now, we show that the worst-case entanglement fidelity
can be computed by evaluating a simple semidefinite program.
That a semidefinite program formulation of the worst-case
entanglement fidelity can be used in the context of quantum

error correction to find suitable recovery procedures for fixed
input was put forth in Refs. [45,46]. We build upon those con-
structions to optimize over the input state, while in our case
the problem is simplified as there is no recovery operation.
Using our notation, we write

Fworst (�A→B) = inf
|φ〉AĀ

F 2(�Ā→B(φAĀ), φAB)

= inf
TA: tr(T T † )=1

tr(�Ā→B(TÃAĀT †
A ) TA ̃ABT †

A ),

(A10)

where we have defined the non-normalized maximally entan-
gled state |̃〉AB = d1/2

A |̂〉AB. The last equality comes from
the fact that any bipartite pure state |φ〉AĀ can be parametrized
by a complex matrix TA satisfying tr(TAT †

A ) = 1 via |φ〉AĀ =
TA |̃〉AĀ, with moreover trĀ(φAĀ) = TAT †

A (indeed, choose TA

with matrix elements 〈i|T | j〉A = 〈i, j|φ〉). Then, with T ′
A :=

T †
A , and noting that all T ′

AT ′†
A with tr(T ′

AT ′†
A ) = 1 can be written

as a density matrix ρA = T ′
AT ′†

A , we have

(A10) = inf
T ′

A: tr(T ′†T ′ )=1
tr(T ′

A T ′†
A �Ā→B(̃AĀ) T ′

A T ′†
A ̃AB)

= inf
ρA�0: tr(ρA )=1

〈̃|AB ρA �Ā→B(̃AĀ) ρA |̃〉AB. (A11)

This is a minimization over a positive-semidefinite quadratic
form in ρA |̃〉AB, so it is (quite surprisingly) a con-
vex optimization in terms of ρA. We know that positive-
semidefinite quadratic optimizations may be written as
semidefinite programs. Indeed, for any positive-semidefinite
matrix Q = MM†, we have that 〈ψ |Q|ψ〉 � μ if and only if
[ 1 M†|ψ〉
〈ψ | M μ

] � 0. So, finally, we may write the worst-case
entanglement fidelity as a semidefinite program in terms of the
real variable μ and the positive-semidefinite variable ρA � 0:

Fworst (�A→B) = minimize: μ

subject to: tr(ρA) = 1⎡
⎣ 1 M†

ABρA |̃〉AB

〈̃|AB ρAMAB μ

⎤
⎦ � 0,

(A12)

where MAB is a factorization of the non-normalized Choi
matrix of the process, satisfying

MAB M†
AB = dA�AB = �Ā→B(̃AĀ). (A13)

The factorization can be obtained using a Cholseky or LDLᵀ

factorization with L a unit lower triangular matrix and D a
diagonal matrix square root. The unitary freedom of the ma-
trix square-root decomposition (i.e., the freedom of redefining
M → MU ) is irrelevant here.

2. Haar-induced measures

Later, we will base our confidence region estimators on the
following two “uniform” measures. They are both measures
induced by the unique Haar measure on the unitary group
U(H) acting on some Hilbert space. The first measure is
defined on the set of mixed quantum states [47]. Since any
density matrix has a (nonunique) purification, the space

D(HAB) admits a purification space Pure(HABA′B′ ) whose
elements are rank-one density operators on HABA′B′ with
A′B′ being an isomorphic copy of AB. The Haar measure
dUABA′B′ then induces a measure on Pure(HABA′B′ ) via the
relation |ψ〉〈ψ | = U |ψ0〉〈ψ0|U † for an arbitrary pure state
|ψ0〉, which induces a measure dσAB on D(HAB) by partial
tracing. The second measure is defined on the set of quantum
processes, or equivalently on the set of bipartite Choi states.
Let

PC ={|�〉 ∈ HABA′B′ : trBA′B′ (|�〉〈�|) = d−1
A 1A
}

(A14)

be the set of purifications of arbitrary Choi states. Without loss
of generality, let us define a fixed reference pure state in PC ,

|�0〉 := 1

dA

dA∑
i=1

|i〉A|vi〉BA′B′ (A15)
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with {|vi〉BA′B′ } some fixed orthonormal set of vectors. Then,
for all |�〉 ∈ PC , there exists a unitary UBA′B′ such that
|�〉 = 1A ⊗ UBA′B′ |�0〉. This relation transfers the unique
Haar measure dUBA′B′ on the unitary group U(HBA′B′ ) to a
measure on PC which we will denote as dν(|�〉). Again,
by partial tracing the system A′B′, this measure induces the
measure dν(�AB) on Choi states C (HAB) [also denoted as
dν(�AB) by changing the dummy variable]. Finally, taking
the inverse of the Choi-Jamiolkowski isomorphism gives
the induced measure dν(�A→B) [or in a different notation
dν(�A→B)] on channel space C (HA → HB) which is the
starting point of the channel-space sampling method.

The relation between these measures will be discussed in
Appendix G when we compare the two region estimators.

3. The i.i.d. hypothesis

In this paper, we work under the assumption of i.i.d. (in-
dependent and identically distributed) channels. This means
any time we use the experimental device, it is assumed that
one and the same transformation �A→B has been applied.
Experimentally, this assumption is well justified if the same
experimental conditions can be reproduced because the ab-
stract channel is a function of the working parameters of
the physical device. The i.i.d. hypothesis also gives a clear
operational meaning to the following question: To which
object does the tomographic statement apply? It is one and
the same �A→B which does not vary from past to future uses.

Even though we work under the i.i.d. assumption, we note
that this can be weakened to permutation invariant through
the use of the quantum de Finetti theorem for channels [48].
Before proceeding further, we give a clarifying remark about
our notation. We usually consider n uses of a channel �.
Under the i.i.d. assumption we can describe this situation
by tensor product construction giving a composite channel
�⊗n acting on the composite Hilbert space H⊗n

A and trans-
form the system to H⊗n

B . As usual, by measurement on H⊗n
B

and by knowing the input state on H⊗n
A we can perform

tomography of the unknown channel. Our convention has
been to denote a measurement on H⊗n

B by a POVM {E} with
E standing for both the labels of the various outcomes and
the actual operators and matrices. This captures both i.i.d.
measurements and entangled measurements in the following
sense. Suppose n = 2 and we perform X and Z on each
subsystem. This can be equivalently described by two POVMs
{|+x〉〈+x|, |−x〉〈−x|} and {|+z〉〈+z|, |−z〉〈−z|}, and then by
tensor product construction combined into a single POVM
on the composite Hilbert space. However, this is not the
only measurement that one can do: one can perform the Bell
measurement projecting into the four maximally entangled
states. Our description and notation is flexible for arbitrary
measurement one can perform.

APPENDIX B: BIPARTITE-STATE SAMPLING METHOD

This method requires experimentalists to work in the
ancilla-assisted scheme [see Fig. 2(b)]: we select a full
Schmidt rank entangled state ψAP, a collection of bipar-
tite measurements E (�) with corresponding effects E (�)

k , and
assume the experiment can implement the channel � ⊗ I,

where I is the identity map. Again, the collection of mea-
surements should be informationally complete if one wishes
to infer full information about the channel. We assume knowl-
edge of the state preparations and measurements in the form
of matrices in the computational basis. This means the pure
entangled state has the form

|ψ〉AP =
∑

i

si|i〉A|i〉P =
√

dAψ
1/2
A |̂〉AP =

√
dAψ

1/2
P |̂〉AP,

(B1)

where ψA, ψP are the respective reduced states on A and P
of |ψAP〉〈ψAP| and |̂〉AP the maximally entangled state on
HAP. Note that not all pure states on AP have this form, but
we assume it without loss of generality by redefining |̂〉AP if
necessary.

The tomography procedure proceeds according to Algo-
rithm I. In each round, we prepare |ψ〉AP and we apply the
unknown channel �A→B ⊗ IP→P. We then perform a mea-
surement on the bipartite output system BP using a setting of
our choice, yielding an outcome POVM effect E (�)

k . The data
set stores all the outcomes of different rounds. In other words,
the ancilla-assisted scheme actually realizes the (theoretical)
Choi-Jamiołkowski isomorphism in the laboratory under the
assumption of the input state and the channel.

The likelihood function for this scheme is given by

LAA(�|E ) =
∏
k,�

[
tr
(
�A→B(ψAP ) E (�)

k

)]nk,�
, (B2)

where nk,� is the number of times the POVM effect E (�)
k

appears in the data set E . Since

�A→B(ψAP ) = dAψ
1/2
P �BP ψ

1/2
P , (B3)

where �BP is the corresponding Choi state, we have

LAA(�|E ) =
∏
k,�

[
dAtr
(
�BP ψ

1/2
P E (�)

k ψ
1/2
P

)]nk,�

= dn
Atr

(
�⊗n

BP

⊗
k,�

ψ
1/2
P E (�)

k ψ
1/2
P

)
, (B4)

where
⊗

k,� ranges over the observed data set E .
Since quantum processes correspond to bipartite quan-

tum states via the Choi-Jamiolkowski isomophism, we can
generalize quantum-state tomography methods to quantum
processes. Here, we directly apply the existing procedure of
Faist and Renner [22] designed for quantum states to infer
information about quantum processes. The main result in
this section is Theorem 3. We first recall the procedure of
constructing confidence region estimators for quantum states,
phrased in terms of bipartite states in anticipation with the
connection to quantum processes.

1. Christandl-Renner confidence regions

Given access to n copies of an unknown state ρAB, we
can perform a (joint or collective) POVM measurement on
ρ⊗n

AB and upon receiving the data set E , the Christandl-Renner
procedure outputs a distribution

dμE (σAB) := c−1
E tr
(
σ⊗n

AB E
)
dσAB, (B5)
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where cE = ∫ tr(σ⊗n
AB E )dσAB and dσAB is the uniform distri-

bution on bipartite density matrices. Confidence regions for
the unknown ρAB can be constructed from dμE (σAB) as the
following proposition asserts.

Theorem (1 of main text). Let n be the number of systems
measured by a POVM during tomography and 1 − ε be the
desired confidence level. For each effect E in the POVM, let
SμE ⊆ D(HAB) be a set of states such that∫

SμE

dμE (σAB) � 1 − ε

2
s−1

2n,d2
AB

, (B6)

where sn,d = ( n+d−1
d−1 ) � (n + 1)d−1 and let Sδ

μE
be the en-

largement of SμE defined as

Sδ
μE

:= {σAB : ∃σ ′ ∈ SμE with P(σ, σ ′) � δ
}
. (B7)

Then, the mapping E �→ Sδ
μE

is a confidence region
estimator for the unknown ρAB with confidence level
1 − ε if

δ2 = 2

n

(
ln

2

ε
+ 2 ln s2n,d2

AB

)
. (B8)

In other words, for any ρAB ∈ D(HAB),

Pr
E

[
ρAB ∈ Sδ

μE

]
� 1 − ε, (B9)

where the probability is taken over the random data set E with
distribution tr(ρ⊗n

AB E ).

2. Mapping channel tomography to bipartite-state tomography

Consider the ancilla-assisted scheme. In order to learn
what the channel �A→B is, we may carry out the experiment
as described in Algorithm I, and use the outcome measure-
ments to perform full tomography on the output state ρBP :=
�A→B(ψAP ). We may then ask, what does this tell us about the
unknown channel �A→B?

Observe that if we knew the output state ρBP exactly (limit
of infinite data) and assume the input state ψAP has full rank,
then we could read out the true channel: its Choi state is
simply given as �BP = d−1

A ρ
−1/2
P ρBP ρ

−1/2
P . Indeed, we have

ρBP := �A→B(ψAP )

= dAψ
1/2
P �A→B(̂AP ) ψ

1/2
P = dAρ

1/2
P �BP ρ

1/2
P (B10)

since under the assumption that P has undergone identity
transformation it follows ψP = ρP. Note that this is the same
trick used in Appendix A 1 c to derive the semidefinite pro-
gram.

Thanks to this observation, we may use the quantum-state
tomography method of Ref. [22] to construct confidence re-
gions on the space of quantum processes �A→B, as well as on
a figure of merit such as the diamond norm to an ideal channel.
To do so, we ignore the knowledge of the exact input state ψA,
but we assume the global state |ψAP〉 has full Schmidt rank
(i.e., forgetting the Schmidt coefficients). Upon observing the
data set E , the classical data processing returns a bipartite
state region Sδ

μE
, which contains information about the pair

(�A→B, ψA).2 The interpretation of Sδ
μE

is given by Theorem
1, and together with the observation above [see Eq. (B10)] we
have

Pr
E

[
dAρ

1/2
P �BPρ

1/2
P ∈ Sδ

μE

]
� 1 − ε, (B11)

where the probability is taken over all possible data set E
with distribution tr((ρ1/2

P �BPρ
1/2
P )⊗nE ). To recover informa-

tion about the channel �, for each ρBP ∈ Sδ
μE

we apply the
(completely positive) transformation T defined as

T : End(HAB) → End(HAB),

ρBP �→ d−1
A ρ

−1/2
P ρBPρ

−1/2
P . (B12)

Observe that T maps any ρBP with full-rank marginal ρP

to a Choi state. Also, the set Sδ
μE

only contains ρBP with
full-rank marginal ρP because we only sample according to
the uniform measure dσAB (i.e., the set of rank-deficient ρBP

has measure zero). This means the image of Sδ
μE

under T will
be a set of Choi matrices which can be interpreted via Choi-
Jamiolkowski as a region of quantum processes (completely
positive and trace-preserving maps). We conclude

Pr
E

[
�BP ∈ T

(
Sδ

μE

)]
� 1 − ε, (B13)

which implies T (Sδ
μE

) are confidence regions for quantum
processes.

3. Regions for figures of merit

The confidence region on channel space constructed in the
last section contains full information on the unknown channel.
But, if one is only interested in a property of the channel, for
instance how close is it to an ideal process, then obtaining
confidence region for a given figure of merit suffices. We now
present how one can do this using push forward of measures.

Given a figure of merit for quantum processes fchannel

(defined on channel space), we associate a function f defined
on the set of bipartite states as

f (ρBP ) := fchannel
(
J−1
(
d−1

A ρ
−1/2
P ρBP ρ

−1/2
P

))
, (B14)

which is just fchannel acting on the channel
J−1(d−1

A ρ
−1/2
P ρBP ρ

−1/2
P ) obtained from ρBP via the mapping

T . This allows us to directly use the tools of Ref. [22] to
obtain confidence intervals for the figure of merit f which
will yield the same result as fchannel. Explicitly, for any v ∈ R,

μ(v) =
∫

dμE (σAB) δ( f (σAB) − v) (B15)

is the probability density of the push forward of dμE (σAB)
along f . This density provides confidence region for a figure
of merit as certified by the following proposition.

Theorem 3. Let μE be given as in (B5), and let μ(v) be
defined as in (B15). Then, for any threshold value vthres > 0,
the region

Rvthres,δ = {ρAB : f (ρAB) � vthres + O(δ)} (B16)

2In fact, in addition to reconstructing the channel �A→B, we may
use this procedure to confirm the correct preparation of the input state
σA.
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of states representing channels at least vthres + O(δ) close to
the reference channel, is a confidence region of confidence
level 1 − ε where

ε = poly(n)

[
1 −
∫ vthres

0
μ(v) dv

]
. (B17)

In summary, for ancilla-assisted tomography scheme,
determining the histogram μ(v) in (B15) gives us all
the necessary information to construct confidence regions
of any confidence level in terms of the figure of merit
fchannel(�A→B).

Diamond distance to ideal and worst-case entanglement
fidelity. The methodology outlined in the previous paragraphs
can be specialized to the diamond distance to an ideal refer-
ence channel �ideal

B→P. Here, we take

fchannel(�B→P ) = f�(�B→P ) = 1
2

∥∥�B→P − �ideal
B→P

∥∥
� (B18)

to be the desired figure of merit on channel space. This
induces a figure of merit in the space of bipartite quantum
states

f (ρBP ) = 1
2 max
{〈

ρ
−1/2
P ρBPρ

−1/2
P − dA�ideal

BP ,W
〉

: W � 1B ⊗ ρ̄,W � 0, ρ̄ ∈ D(X )
}
. (B19)

One is left to perform a numerical computation of μ(v) for the
above function f , as explained in details in Ref. [22].

APPENDIX C: CHANNEL-SPACE SAMPLING METHOD

This method applies to either the ancilla-assisted scheme
explained in the previous Appendix, or the prepare-and-
measure scheme where no entanglement is required. In the
prepare-measure scheme [see Fig. 2(a)], we select a collection
of input states σ j , and select a collection of measurements
E (�) = {E (�)

k }. This set of state preparation and measurement
(SPAM) should be informationally complete if one wishes to
fully reconstruct the unknown channel. The SPAM is repre-
sented as certain set of matrices in the computational basis
{|i〉 : i = 0, . . . , dA − 1}.

The data collection procedure goes as follows: in each
round, we choose an input state σ j , we choose a measurement
� on output, we send σ j through the channel, and record the
measurement outcome k on the output. The data set E consists
of all pairs (σ j, E (�)

k ) chosen and observed for each round.
Typically, one can choose the states j in order, i.e., first

perform measurements on σ 1, then on σ 2, etc. The choice of
the output measurement setting � is allowed to depend on j.
Since we are under i.i.d. channel assumption, at each round
it is the same unknown channel � which is applied, and that
previous outcomes have no influence on new rounds.

The likelihood function for a data set E in this scenario
is defined using the matrix representations of the SPAM
according to Born’s rule

LPM(�|E ) =
∏
j,k,�

[
tr
(
�(σ j ) E (�)

k

)]n j,k,�
, (C1)

where n j,k,� is the number of times the given pair (σ j, E (�)
k )

appears in the data set E . Using (A3), we rewrite the likeli-
hood function as

LPM(�|E ) =
∏
j,k,�

[
dAtr

(
�AB
(
σ

j
A

)ᵀ ⊗ E (�)
k

)]n j,k,�

= dn
Atr

(
�⊗n

AB

⊗
j,k,�

(
σ

j
A

)ᵀ ⊗ E (�)
k

)
, (C2)

where
⊗

j,k,� ranges over the observed data set E .

The method in the previous section maps a channel tomog-
raphy problem into a (constrained) bipartite-state tomography
problem. One may ask if this is the only solution. In this
section, we provide an alternative construction natively on
the channel space. This has consequence on the numerical
implementation: we no longer need to sample from bipartite-
state space. Instead, we can directly sample “random chan-
nels” which leads to improved numerical efficiency. The main
results in this section are Theorems 2 and 4.

1. Regions on channel space

Inspired by the Christandl-Renner construction [21], we
define the following confidence region estimator for quan-
tum processes. Our confidence region is constructed from
the probability measure on the space of quantum processes
C (HA → HB):

dνE (�) := c′−1
E L(�|E )dν(�), (C3)

where L(�|E ) is either prepare-measure or ancilla-assisted
likelihood and c′

E = ∫ L(�|E )dν(�) serves as a normalizing
constant and dν(�) is the induced measure on C (HA → HB)
defined in Appendix A 2.

The main result in this section is as follows:
Theorem (2 of main text). Let n be the number of channel

uses during tomography and 1 − ε be the desired confidence
level. For each data set E , let RνE ⊆ C (HA → HB) be a set of
channels such that∫

RνE

dνE (�) � 1 − ε

2
s−2

2n,d2
AB

, (C4)

where sn,d = (n+d−1
d−1

)
� (n + 1)d−1 and let Rδ

νE
be the enlarge-

ment

Rδ
νE

:= {� ∈ C (HA → HB) : ∃�′ ∈ RνE

with P(�,�′) � δ
}
. (C5)

Then, the mapping E �→ Rδ
νE

is a confidence region estimator
for the unknown �A→B with confidence level 1 − ε if

δ2 = 2

n

(
ln

2

ε
+ 3 ln s2n,d2

AB

)
. (C6)
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In other words, for all channel � ∈ C (HA → HB)

Pr
E

[
�A→B ∈ Rδ

νE

]
� 1 − ε, (C7)

where the probability is over the random data set E with
distribution Pr(E |�) = L(�|E ).

Before starting the proof, we will need the following
results.

Proposition 1. For any channel �A→B, if |�〉 ∈ HABA′B′ is
a purification of its Choi state, then

|�〉〈�|⊗n � s2
n,d2

AB

∫
PC

dν(|�〉) |�〉〈�|⊗n

= s2
n,d2

AB

∫
dU U ⊗n

BA′B′ |�0〉〈�0|⊗nU †⊗n
BA′B′ , (C8)

where sn,d := (n+d−1
d−1

)
.

Proof. The main idea of this proof is to discretize the Haar
integral using Caratheodory’s theorem, and dominate the left-
hand side by a trivial operator inequality. By definition, the
operator ∫

PC
dν(|�〉) |�〉〈�|⊗n (C9)

lies in the convex hull of the set {|�〉〈�|⊗n : |�〉 ∈ PC },
whose linear span [in the ambient space End(H⊗n

ABA′B′ )] has
dimension D. By Caratheodory’s theorem, there exists a con-
vex combination (qi, |�i〉〈�i|⊗n) with size at most D + 1 such
that ∫

PC
dν(|�〉) |�〉〈�|⊗n =

D+1∑
i=1

qi|�i〉〈�i|⊗n. (C10)

Among the probability weights qi there exists a largest el-
ement denoted qmax and its associated purified Choi state
|�max〉〈�max|, from which we split off this term in the finite
sum as

D+1∑
i=1

qi|�i〉〈�i|⊗n

= qmax|�max〉〈�max|⊗n +
∑

i �=max

qi|�i〉〈�i|⊗n. (C11)

By left invariance of the measure dν(|�〉) and the (unitary)
structure of the set PC , we can without loss of generality

assume that �max = �. More precisely, let WBA′B′ be a unitary
transformation bringing |�max〉 to |�〉, we have (leaving the
system label BA′B′ implicit)

W ⊗n

(∫
PC

dν(|�〉) |�〉〈�|⊗n

)
W †⊗n

= qmaxW ⊗n|�max〉〈�max|⊗nW †⊗n

+
∑

i �=max

qiW
⊗n|�i〉〈�i|⊗nW †⊗n. (C12)

Using linearity of integration and translational invariance of
the integrating measure, this equation simplifies to∫

PC
dν(|�〉) |�〉〈�|⊗n

= qmax|�〉〈�|⊗n +
∑

i �=max

qi|� ′
i 〉〈� ′

i |⊗n, (C13)

where |� ′
i 〉 is some other vector in PC .

Now, since all operators in the convex combination are
positive semidefinite, we obtain∫

PC
dν(|�〉) |�〉〈�|⊗n � qmax|�〉〈�|⊗n. (C14)

By the property of the maximum weight qmax, namely, qmax �
1/(D + 1), we get

|�〉〈�|⊗n � (D + 1)
∫

PC
dν(|�〉) |�〉〈�|⊗n. (C15)

Finally, span{|�〉〈�|⊗n : |�〉 ∈ PC } ⊆ span{|�〉〈�|⊗n :
|�〉 ∈ HABA′B′ } and the latter is identified as a subspace of
End(Symn(HABA′B′ )), the operator space on the symmetric
subspace of H⊗n

ABA′B′ . Together with the constraint that trace
is 1, we have D � s2

n,dABA′B′ − 1 where the dimension of the

symmetric subspace is sn,d := (n+d−1
d−1

)
. This completes the

proof of the operator inequality. �
Proof of Theorem 2. Our proof technique follows closely

that of [21], with the main technical difficulty being in-
corporating the a priori constraint trB(�AB) = 1A/dA. This
allows the reduction of numerical sampling from bipartite-
state space to channel space. For any region estimator, our
construction E �→ Rδ

νE
, in particular, the failure probability

of the reconstruction typically depends on the underlying
unknown channel

Pfail(�A→B) = Pr
E

[
�A→B /∈ Rδ

νE

]
:=
∑

E

Pr(E |�)χ
(
�A→B; Rδ

νE

)
, (C16)

where Pr(E |�) is the probability of obtaining data set E , and χ (�A→B; Rδ
νE

) is the indicator function of the set Rδ
νE

:= C (HA →
HB) \ Rδ

νE
(i.e., the complement set). Recall that

Pr(E |�) =
⎧⎨
⎩

dn
Atr
(
�⊗n

AB

⊗
j,k,�

(
σ

j
A

)ᵀ ⊗ E (�)
k

)
in prepare-and-measure scheme,

dn
Atr
(
�⊗n

BP

⊗
k,� ψ

1/2
P E (�)

k ψ
1/2
P

)
in ancilla-assisted scheme.

(C17)

Our goal will be bounding this failure probability independently of �A→B by using the operator inequality we have just
developed.
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Before starting the actual calculations, observe that
Pr(E |�) for both schemes are functions of the type tr(�⊗n ⊗
· · · ) where ⊗ · · · is the operator constructed from the ob-
served data set E from information about the state preparation
and measurement schemes. In the following, we do not utilize
the exact form of ⊗ · · · for each scheme and thus the calcu-
lation works for both schemes. We choose to put ⊗ · · · as the
operator corresponding to the prepare-and-measure scheme
for concreteness.

Via the Choi-Jamiolkowski isomorphism, the failure prob-
ability reads as

Pfail(�AB) = Pr
E

[
�AB /∈ Rδ

νE

]
:=
∑

E

dn
Atr
[
�⊗n

AB ρ
ᵀ
An ⊗ EBn

]
χ
(
�AB; Rδ

νE

)
, (C18)

where we have abused the notation Rδ
νE

to mean both the set in
channel space C (HA → HB) and in Choi state space C (HAB).
This can be rewritten in terms of an arbitrary purification of
the Choi state �AB:

Pfail(�AB) =
∑

E

dn
Atr
[|�〉〈�|⊗n

ABA′B′ ρ
ᵀ
An

⊗ EBn

]
χ
(|�〉ABA′B′ ; Qδ

νE

)
, (C19)

where Qδ
νE

:= tr−1
A′B′ (Rδ

νE
) contains all the purifications of ma-

trices in Rδ
νE

. In the following, we will bound (C19) indepen-
dent of |�〉 ∈ PC .

We first analyze the indicator function of the set Qδ
νE

, which
is by definition

χ
(|�〉ABA′B′ ; Qδ

νE

) = {1 if |�〉ABA′B′ ∈ Qδ
νE

,

0 otherwise.
(C20)

Without the knowledge of |�〉ABA′B′ , the condition |�〉ABA′B′ ∈
Qδ

νE
can only be physically checked by a measurement

POVM with effects T and 1 − T acting on the quantum state
|�〉ABA′B′ . Upon the observation of the effect T , we decide
that |�〉ABA′B′ ∈ Qδ

νE
and similarly for 1 − T . In other words,

we are approximating χ (|�〉ABA′B′ ; Qδ
νE

) by a quantum mea-
surement. Here, we construct such an approximation using
Holevo’s covariant measurement [49].

Let k be the number of copies of |�〉 ∈ HABA′B′ used in
the approximation, i.e., we are given |�〉〈�|⊗k . If we ignore
the fact that |�〉 ∈ PC , we can use the Holevo’s continu-
ous POVM {sk,d2

AB
|φ〉〈φ|⊗kdφ} to distinguish |�〉 ∈ HABA′B′

among the set of pure states. Here, dφ is the uniform spherical
measure on the set of pure states of HABA′B′ and sk,d2

AB
is

the dimension of the symmetric subspace of H⊗k
ABA′B′ . Coarse

graining this measurement, we can distinguish |�〉ABA′B′ ∈
Qδ

νE
versus |�〉ABA′B′ ∈ Qδ

νE
by the following POVM with two

effects (analogous to Ref. [21]):

TQδ/2
νE

:= sk,d2
AB

∫
Qδ/2

νE

|φ〉〈φ|⊗kdφ, and 1 − TQδ/2
νE

. (C21)

We now check that this POVM indeed approximates
χ (|�〉; Qδ

νE
). For all |�〉 ∈ Qδ

νE
, using the definition of

χ (|�〉; Qδ
νE

),

χ
(|�〉; Qδ

νE

)− tr
(|�〉〈�|⊗kTQδ/2

νE

)
= 1 − sk,d2

AB

∫
Qδ/2

νE

tr(|�〉〈�|⊗k|φ〉〈φ|⊗k )dφ. (C22)

Since |�〉〈�|⊗k is supported on the symmetric subspace, we
reinterpret the constant 1 above as

1 = tr

(
|�〉〈�|⊗ksk,d2

AB

∫
|φ〉〈φ|⊗kdφ

)
, (C23)

which implies for all |�〉 ∈ Qδ
νE

χ
(|�〉; Qδ

νE

)− tr
(|�〉〈�|⊗kTQδ/2

νE

) = sk,d2
AB

(∫
tr(|�〉〈�|⊗k|φ〉〈φ|⊗k )dφ −

∫
Qδ/2

νE

tr(|�〉〈�|⊗k|φ〉〈φ|⊗k )dφ

)
(C24)

= sk,d2
AB

∫
Qδ/2

νE

tr(|�〉〈�‖φ〉〈φ|)kdφ (C25)

� sk,d2
AB

max
|φ〉∈Qδ/2

νE

F (�AB, trA′B′ |φ〉〈φ|)k. (C26)

By the definition of the sets

Rδ/2
νE

:= {� ∈ C (HAB) : ∃� ′ ∈ RνE with P(�,� ′) � δ/2
}

(C27)

and

Rδ
νE

:= C (HAB) \ {� ∈ C (HAB) : ∃� ′ ∈ RνE with P(�,� ′) � δ
}
, (C28)

we have, for �AB ∈ Rδ
νE

and φAB := trA′B′ |φ〉〈φ| ∈ Rδ/2
νE

,

F (�AB, φAB) =
√

1 − P(�AB, φAB)2 �
√

1 − (δ/2)2 � e−δ2/2, (C29)

using the reverse triangle inequality for purified distance. In summary, we obtain the approximation

χ
(|�〉; Qδ

νE

)− tr
(|�〉〈�|⊗kTQδ/2

νE

)
� ε1 := sk,d2

AB
e−kδ2/2. (C30)
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Now, we can start bounding the failure probability. Inserting (C30) into (C19), we have an intermediate bound

Pfail(�AB) � ε1 +
∑

E

dn
Atr
[|�〉〈�|⊗n

ABA′B′ ρ
ᵀ
An ⊗ EBn

]
tr
[|�〉〈�|⊗kTQδ/2

νE

]
(C31)

= ε1 +
∑

E

dn
Atr
[|�〉〈�|⊗(n+k)

ABA′B′ ρ
ᵀ
An ⊗ EBn ⊗ TQδ/2

νE

]
.

(C32)

Using the operator inequality in the Proposition 1, namely,

|�〉〈�|⊗(n+k)
ABA′B′ � s2

n+k,d2
AB

∫
PC

dν(|�〉) |�〉〈�|⊗(n+k), (C33)

we can bound the right-hand side independent of the unknown �AB as follows:

Pfail(�AB) � ε1 + s2
n+k,d2

AB

∑
E

∫
PC

dν(|�〉)dn
Atr
[|�〉〈�|⊗nρ

ᵀ
An ⊗ EBn

]
tr
[|�〉〈�|⊗kTQδ/2

νE

]
(C34)

= ε1 + s2
n+k,d2

AB

∑
E

c′
E

∫
dνE (�)tr

[|�〉〈�|⊗kTQδ/2
νE

]
, (C35)

where the last equality follows from the definition of the a posteriori measure dνE (�). For each measurement outcome E , the
integral can split into two parts based on the set RνE from which the kernels are uniformly bounded as follows:∫

RνE

dνE (�)tr
(|�〉〈�|⊗kTQδ/2

νE

)
� sk,d2

AB
[1 − (δ/2)2]k/2 � sk,d2

AB
e−kδ2/2, (C36)

using the definition of TQδ/2
νE

and the fidelity bound F (�AB ∈ RνE , φAB ∈ Rδ/2
νE ) �
√

1 − (δ/2)2, and∫
RνE

dνE (�)tr
(|�〉〈�|⊗kTQδ/2

νE

)
�
∫

RνE

dνE (�) (C37)

since tr(|�〉〈�|⊗kTQδ/2
νE

) � 1. Choose k = n, the fact that
∑

E c′
E � 1, and combining all the inequalities together we have

Pfail(�AB) � ε1 + s2
n+k,d2

AB
ε1 + s2

n+k,d2
AB

∑
E

c′
E

∫
RνE

dνE (�) (C38)

= sn,d2
AB

e−nδ2/2 + s2
2n,d2

AB
sn,d2

AB
e−nδ2/2 + s2

2n,d2
AB

∑
E

c′
E

∫
RνE

dνE (�) (C39)

� s3
2n,d2

AB
e−nδ2/2 + s2

2n,d2
AB

∑
E

c′
E

∫
RνE

dνE (�). (C40)

If we choose RνE and δ such that∫
RνE

dνE (�) � 1 − ε

2
s−2

2n,d2
AB

and δ2 = 2

n

(
ln

2

ε
+ 3 ln s2n,d2

AB

)
, (C41)

then Pfail(�AB) � ε/2 + ε/2 = ε as desired. The proof of the
Proposition is complete. �

2. Regions for figures of merit

The construction of confidence region on channel space
can be pushed forward to obtain confidence regions for any
figure of merit of channels we are interested in. The idea is
exactly the same as [22] and we include it here for complete-
ness. Let fchannel : C (HA → HB) → R be an arbitrary figure
of merit of channels. The measure dνE (�) can be pushed
forward by fchannel to a measure on R, which can then be
represented as a density function h(v) with respect to the

Lebesgue measure of R. Concretely, we have

h(v) =
∫

dνE (�)δ( fchannel(�) − v), (C42)

where δ( fchannel(�) − v) is the Dirac delta measure on R at
the point mass v ∈ R. And for some subset of values V , the
measure of V is given by∫

f −1
channel (V )

dνE (�) =
∫

V
h(v)dv, (C43)

where dv is the Lebesgue measure on R. The density h(v)
allows us to construct confidence interval for the property we
desired.

052311-16



PRACTICAL AND RELIABLE ERROR BARS FOR QUANTUM … PHYSICAL REVIEW A 99, 052311 (2019)

Proposition 2. Let fchannel be a figure of merit and choose
a confidence level 1 − ε. For each data set E , let VνE ⊆ R be
a region of values such that∫

VνE

h(v)dv � 1 − ε

2
s−2

2n,d2
AB

, (C44)

and let V δ
νE

be defined as

V δ
νE

:= {v ∈ R : ∃v′ ∈ VνE with |v − v′| � ω fchannel (δ)
}
,

(C45)

where ω f (δ) := supP(�,�′ )�δ | f (�) − f (�′)|. Then, the map-
ping E �→ V δ

νE
is a confidence region estimator for the figure

of merit fchannel with confidence level 1 − ε if

δ2 = 2

n

(
ln

2

ε
+ 3 ln s2n,d2

AB

)
. (C46)

In other words, for all channel � ∈ C (HA → HB),

Pr
E

[
fchannel(�) ∈ V δ

νE

]
� 1 − ε. (C47)

Proof. It is clear from the fact that, as defined, V δ
νE

⊇
fchannel( f −1

channel(VνE )δ ). �
For each figure of merit of interest, we can derive a bound

on ω f (δ) by simple inequalities for distance measures. For
diamond distance, we have the following result.

Proposition 3. For each data set E , let γE ∈ [0, 1] be such
that ∫ γE

0
h(v)dv � 1 − ε

2
s−2

2n,d2
AB

. (C48)

Then, the mapping E �→ [0, γE + d1δ/2] is a confidence re-
gion estimator for the diamond distance to ideal with confi-
dence level 1 − ε if

δ2 = 2

n

(
ln

2

ε
+ 3 ln s2n,d2

AB

)
. (C49)

In other words, for all channel � ∈ C (HA → HB),

Pr
E

[
1
2

∥∥�A→B − �ideal
A→B

∥∥
� � γE + dAδ/2

]
� 1 − ε, (C50)

where the probability is over the random data set E with
distribution Pr(E |�) = L(�|E ).

Proof. Continuing from the previous Proposition, we set
VE := [0, γE ]; it remains for us to obtain a bound on ω f� (δ).
Using the reverse triangle inequality and semidefinite pro-
gramming (SDP) reformulation of diamond norm, we have

| f�(�) − f�(�′)| = 1
2 |‖� − �ideal‖� − ‖�′ − �ideal‖�|

� 1
2‖�A→B − �′

A→B‖� (C51)

� 1
2‖dA(�AB − �′

AB)‖1, (C52)

where the last inequality utilizes the duality between Schatten
1-norm and Schatten ∞-norm to bound the objective function
of the diamond norm SDP. Since the purified distance domi-
nates the trace distance, we obtain

1
2‖�AB − �′

AB‖1 � 1
2 P(�AB,�′

AB), (C53)

which implies ω f� (δ) � dAδ/2. �
For worst-case entanglement fidelity, we have the follow-

ing result.
Proposition 4. For each data set E , let γE ∈ [0, 1] be such

that ∫ γE

0
h(v)dv � 1 − ε

2
s−2

2n,d2
AB

. (C54)

Then, the mapping E �→ [0, γE − dAδ] is a confidence region
estimator for the diamond distance to ideal with confidence
level 1 − ε if

δ2 = 2

n

(
ln

2

ε
+ 3 ln s2n,d2

AB

)
. (C55)

In other words, for all channel � ∈ C (HA → HB),

Pr
E

[Fworst (�A→B) � γE − dAδ] � 1 − ε, (C56)

where the probability is over the random data set E with
distribution Pr(E |�) = L(�|E ).

Proof. We set VE := [γE , 1]. Let ρA be an optimizer of
Fworst (�′) since ρA will give an upper bound on Fworst (�) we
have with f = Fworst

| f (�) − f (�′)| = |Fworst (�) − Fworst (�
′)| � |〈̃|ρA(dA�AB)ρA|̃〉 − 〈̃|ρA(dA�′

AB)ρA|̃〉| (C57)

= dA|〈ρA|̃〉〈̃|ρA,�AB − �′
AB〉| � dA|ρA|̃〉〈̃|ρA|∞|�AB − �′

AB|1 � dAδ, (C58)

using Holder inequality for Schatten norms and |�AB −
�′

AB|1 � P(�AB,�′
AB). �

APPENDIX D: METROPOLIS-HASTINGS
ALGORITHM IN CHANNEL SPACE

The previous two sections describe the construction of con-
fidence region estimators for quantum processes, which utilize
distributions dμE (σ ) and dνE (�). We now describe how
one can numerically estimate such distributions so that the
densities μ(v) and h(v) can be approximated. The distribution
dμE (σ ) or the density μ(v) can be estimated by numerically
producing a lot of samples. These can be generated by the
Metropolis-Hastings random walk in (bipartite) state space,

whose details can be found in Ref. [22]. Here, we only discuss
the Metropolis-Hastings random walk in channel space.

Recall that in the channel-space method, we need to be
able to compute the density h(v) for the given figure of merit
fchannel. We do this numerically using Metropolis-Hastings
algorithm. The output of this algorithm is a histogram of the
figure of merit which approximates the continuous density.
Let us recall the Metropolis-Hasting algorithm for continuous
sample space [38]. Let p(x)dx be the target distribution from
which we want to sample, and q(x′|x)dx′ be a proposal distri-
bution, all displayed with respect to the same base measure
dx = dx′. We assume that the proposal density function is
symmetric q(x′|x) = q(x|x′). When the process is at point
x, the distribution q(x′|x)dx′ proposes a new point x′. If
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p(x′)/p(x) � 1, then we jump unconditionally to the new
point x′; otherwise, p(x′)/p(x) < 1 and we jump to x′ only
with probability p(x′)/p(x). The points visited in this fashion,
for a large number of iterations, are distributed according to
the target distribution. Note that the algorithm only requires
computing the ratio p(x′)/p(x) and thus does not require
determining any normalization factor for p(x).

We want to generate samples from the target distribution

dνE (�) := c′−1
E L(�|E )dν(�), (D1)

where L(�|E ) is the prepare-and-measure or ancilla-assisted
likelihood function and dν(�) is the induced measure on
channel space. Recalling the definition of dν(�), we thus
want to sample from

dνE (UBA′B′ ) = c′−1
E L(UBA′B′ |E )dUBA′B′ , (D2)

with dUBA′B′ the invariant Haar measure. Concretely, in the
prepare-and-measure scheme we take

LPM(U |E ) = dn
Atr

(
(U |�0〉〈�0|U †)⊗n

⊗
j,k,�

(
σ

j
A

)ᵀ ⊗ E (�)
k

)

(D3)

and in the ancilla-assisted scheme we take

LAA(U |E ) = dn
Atr

(
(U |�0〉〈�0|U †)⊗n

⊗
k,�

ψ
1/2
P E (�)

k ψ
1/2
P

)
,

(D4)

where |�0〉 is the fixed reference state in (A15). This can
be done using the Metropolis-Hastings algorithm, by design-
ing a symmetric proposal distribution over the space of all
unitaries UBA′B′ , and setting q(U ′

BA′B′ |UBA′B′ ) ∝ L(U ′
BA′B′ |E ).

To ensure q(U ′|U ) = q(U |U ′), let q(W )dW be a distribution
on unitaries on BA′B′ such that q(W ) = q(W †). For each
point U , if we define U ′ := WU , then we have a sym-
metric proposal distribution q(U ′|U ) = q(WU |U ) = q(W ) =
q(W −1) = q(W −1U ′|U ′) = q(U |U ′), namely, q(WU |U )dW
where dW is the Haar measure. It remains to fix a q(W )dW
with q(W ) = q(W †). We have implemented two choices:

(i) “eiH -type jumps”: We pick a random dBA′B′ × dBA′B′

matrix N with each entry independent and normally dis-
tributed complex numbers with standard deviation given by
the step size. We then calculate H = N + N† and set W =
eiH , inducing a measure q(W ) dW . Denoting by dN the
measure induced on N by this sampling procedure, observe
that dN = d (−N ) as the normal distribution is symmetric.
Furthermore, the Haar measure is invariant under the adjoint,
dW = d (W †), since d (W †) is also unitarily invariant and
is thus also the Haar measure. Hence, q(W ) dW = dN =
d (−N ) = q(W †) d (W †) = q(W †) dW as required.

(ii) “Elementary rotation jumps”: Choose m ∈ {x, y, z}
uniformly at random and choose two indices i < j uniformly
at random. Choose sin(α) at random (normally distributed
number whose standard deviation is the step size; truncated
to [−1, 1]). Define the unitary W1 as the qubit rotation on
the subspace spanned by {|i〉, | j〉} defined by eiα (�em·�σ ) =
cos(α) 1 + i sin(α) (�em · �σ ), where �em is the mth basis vector
in three dimensions (3D) and where {σx, σy, σz} are the Pauli
matrices. We see that −α (�em · �σ ) is sampled with the same
probability as α (�em · �σ ) and hence for the same reason as

above, q(W ) = q(W †). In order to keep the acceptance ratio
at a reasonable rate, we sample Ninner-iter different instances
of W1, and multiply them together to form the sampled W .
One should choose Ninner-iter such that it is possible to keep the
acceptance rate around 30%.

APPENDIX E: IMPACT OF THE RANDOM WALKER
AND EMPIRICAL FIT FUNCTION

Overall, we have two main methods, bipartite-state and
channel-space sampling, for tomography of an unknown
quantum process. In each of these methods, there are sev-
eral options on how to configure the Metropolis-Hastings
random walk: standard or optimized jump distribution for
bipartite-state sampling, and eiH or elementary rotation jump
distribution for channel-space sampling. The histogram bins
are further subjected to a statistical fit analysis to the default
fit function. Thus, in this section we study the variability of
our simulation results, briefly presented in the main text, in
terms of these choices. The main takeaway message is that
difference choices lead to very consistent results although
their computational performance (time, memory) may differ
significantly.

Let us focus on the two-qubit quantum memory example
where a simulated data set of n = 40 500 measurement out-
comes is subjected to different numerical analyses. The run-
ning times vary quite significantly. For example, the bipartite-
state method runs for 85 min with standard jump distribution
and 18 min with optimized jump distribution to compute
diamond norm distance. The channel-space method runs for
15 h with eiH jump distributions and 2 h with elementary
rotation jump distribution. Despite the difference in running
times, the histograms produced are consistent across different
choices (see Fig. 6, left plot).

The histograms can be compactly described by the fit
parameters (or equivalently the quantum error bars) associated
with the default fit function. As seen in the main text, the
default fit function could yield high goodness of fit or small
reduced χ2 values. In the right plot of Fig. 6, we show a
situation where the default fit function does not fit well to
simulated data. This leads us to develop an empirical model

ln μfit,#2(v) = −a2v
2 − a1v + m (ln v)p + c. (E1)

Trying the fit #2 yields better agreement and smaller χ2

values. The main lesson here is that the fit models need to be
treated a bit delicately on a case-by-case basis. Since good fit
is usually achieved for a region of high probability density, we
expect that this translates to reasonably accurate confidence
region computations. However, in a fully paranoid setting, one
might need to be more conservative and use an optimized fit
function before computing confidence regions.

APPENDIX F: CONVERGENCE IN NUMBER
OF SAMPLES N → ∞

We now turn to an example where we clearly observe the
convergence of the distributions h(v) and μ(v) around the
known true figure of merit. Consider a noisy identity process
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FIG. 6. Distribution of the figures of merit for the two-qubit noisy quantum memory example in log-scale. This figure is obtained by all
combinations of sampling methods and jump distributions. Left: log-plot of histogram bins with vertical error bars for diamond norm distance.
Bipartite-state methods are plotted as the two right dotted bins [standard as red (light gray), optimized as blue (dark gray)], while channel-space
method are two left dotted bins [elr as magenta (light gray), eiH as green (darker gray)]. Different jump distributions for each method, bipartite
state and channel space, give consistent results. Right: log-plot of worst-case entanglement fidelity and bipartite-state sampling. The default
fit model (with legend fit1) does not match the histogram well, which is fixed by another fit model (legend fit2). In any case, however, the
exponential decay of the fit function ensures that the quantum error bars provide a meaningful estimation of the estimation error. The present
example is included in our software package [33].

on a qutrit, of the form

�A→B(ρ) = pρ + (1 − p) d−1
B 1B, (F1)

with p = 0.96 and dB = 3. This gives us a diamond norm to
the identity process of

1
2 |�A→B − IA→B|� = 0.035 56. (F2)

We consider measurements on the input and output systems
given by using the Gell-Mann matrices as observables:

λ1 =
⎛
⎝0 1 0

1 0 0
0 0 0

⎞
⎠; λ2 =

⎛
⎝0 −i 0

i 0 0
0 0 0

⎞
⎠;

λ3 =
⎛
⎝1 0 0

0 −1 0
0 0 0

⎞
⎠; λ4 =

⎛
⎝0 0 1

0 0 0
1 0 0

⎞
⎠;

λ5 =
⎛
⎝0 0 −i

0 0 0
i 0 0

⎞
⎠; λ6 =

⎛
⎝0 0 0

0 0 1
0 1 0

⎞
⎠;

λ7 =
⎛
⎝0 0 0

0 0 −i
0 i 0

⎞
⎠; λ8 = 1√

3

⎛
⎝1 0 0

0 1 0
0 0 −2

⎞
⎠.

Each single-system measurement setting has three possible
outcomes. For each pair of measurement settings (for the
input and the output systems) we simulate N measurement
outcomes. We choose N = 106 for our reference experiment,
yielding a total of Ntot = 82 × 106 = 6.4 × 107 measurement
outcomes. We denote the corresponding frequency vector by
(nRef

jA jB,�A�B
), where ji labels the measurement setting on system

i and �i labels the corresponding measurement outcome. We

group together all the indices into a collective index k, such
that nRef

k denotes the number of times the joint POVM effect
E (k)

AB was observed.
The corresponding analysis is depicted in Fig. 7, as the

curve labeled “100%.” Thanks to the large number of mea-
surements, the distributions h(v) and μ(v) peak sharply
around the true value of f�. We now ask, how would these dis-
tributions look if fewer measurements had been taken? Instead
of simulating new outcomes, which would cause the peak to
be displaced and would make a comparison more difficult, we
artificially rescale the frequency vector nRef

k by a factor α, i.e.,
we define nα

k = �α nRef
k �, where by �x� we denote the largest

integer less than or equal to x. For instance, we may choose
α = 0.01 = 1% to represent an experiment in which only n ≈
α N = 104 measurements per setting were sampled, instead of
N . While this rescaling of the frequency vector is artificial,
the resulting measurement counts are still representative of
possible outcomes that one could have sampled if we had
simulated directly only α N outcomes per setting; crucially,
doing so facilitates comparisons between the different set-
tings. The analysis for a selection of values for α (given as
percentages) is presented in Fig. 7. The corresponding peaks
are indeed seen to converge toward the true value of f�. For
each value of α, we calculate the corresponding quantum error
bars (v0,�, γ ), and plot them against α (Fig. 7, inset). The
quantum error bars become a better and tighter description
of the true state as the number of measurements increase, as
expected.

The quantum error bar � is the one which is most akin to
a “standard deviation,” as in the limit γ → 0 the fit model
(9) becomes a Gaussian. We may investigate the precise
scaling of � as a function of the number of measurements
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FIG. 7. Convergence of quantum error bars to the true value
of figure of merit in the limit of many measurements, for a noisy
identity process on a qutrit. Measurements using Gell-Mann matrices
as observables on the input and the output systems were simulated
with 106 outcomes per setting, providing the reference experiment
(labeled “100%”). Analyses as in Fig. 4 were then carried out
after artificially rescaling the measured frequency counts by various
factors (percentage labels), allowing us to compare regimes with
different number of measurements while still keeping the estimated
expectation values of the measured observables constant to facil-
itate comparison. As the number of measurements increases, the
distribution of f�, the diamond norm to the identity channel, peaks
to the known true value of 3.556 × 10−2. Data points display the
numerical histogram (bipartite-state sampling method: blue-green;
channel-space method: red-yellow) which are fit to our model #1.
Inset: the quantum error bars (v0, �, γ ) obtained from the fit [22]
(channel-space method only) are plotted against the number of mea-
surements relative to the reference experiment; markers represent
v0 with an error bar representing [v0 − (� − γ ), v0 + � + γ ] for
each analysis instance. The dotted line indicates the known true
value of f�.

by plotting the magnitude of this quantum error bar against
the number of measurements in a log-log plot (Fig. 8). We
indeed observe a scaling close to 1/

√
n, where n ≈ αN is

the number of measurements, as expected from known results
in usual quantum tomography. We expect that by improving
the measurement settings, for instance by using adaptive
measurements, tighter error bars can be achieved with fewer
measurements [13,50–52]. This depiction allows us again to
appreciate the convergence to the true value of f�.

APPENDIX G: RELATIONS OF TWO METHODS

In this Appendix, we discuss the theoretical connections
between the two methods, specifically the relationship be-
tween the densities μ(v) and h(v). We will use basic notions
from measure theory which is available in any standard text-
book.

Recall that we use the induced measure dσAB on den-
sity matrices D(HAB) in the bipartite-state sampling and the
measure dν(�) on Choi state C (HAB) in the channel-space
method. It is helpful for the reader to refresh the definition
of these measures in Appendix A 2. The following result
connects these probability measures; its proof is delayed until
the end of this Appendix.

FIG. 8. One of the quantum error bars, �, is observed to scale
approximately as 1/

√
N , where N indicates the number of measure-

ments, as expected in standard (nonadaptive) quantum tomography.
The setting is the same as in Fig. 7. By choosing more sophisticated
measurement operators, for instance by adapting the measurement
settings based on earlier outcomes, the scaling could be improved
[13,50–52].

Proposition 5. The measure dσAB factors as
dσAdν(�A→B) in the sense that for all measurable function
g(σAB),∫

dσAB g(σAB)

=
∫

dσA

∫
dν(�A→B) g

(
dAσ

1/2
A J (�A→B)σ 1/2

A

)
(G1)

=
∫

dσA

∫
dν(�A→B) g

(
dAσ

1/2
P J (�A→B)σ 1/2

P

)
, (G2)

where dσA is the reduced measure of dσAB via partial tracing
and dν(�A→B) is the uniform measure on channel space
induced by dUBA′B′ and σP = σ

ᵀ
A .

We remark that intuitively this result is clear: the probabil-
ity measure dσAB can be “conditioned” on different values of
y = trB(σAB) giving rise to conditional probability measures
dνy(σAB) and these are recognized as dν(�) by unitary in-
variance. However, the fact that these events which we are
conditioning on have measure zero under dσAB makes the
proof more complicated.

Proposition 5 tells us that integrating over all bipartite
states according to the measure dσAB can be done by sepa-
rately integrating over all possible input states σA and over all
possible channels �A→B, by combining them as σ

1/2
A �AB σ

1/2
A

where �AB = J (�A→B). Equivalently, this can be done by
separately integrating over all possible transposed input states
σA and over all possible channels �A→B as in (G2). We can
use this intuition to relate the two methods presented above.

In order to connect both quantities, we consider the sit-
uation depicted in Fig. 9. Assume that for each repetition
j = 1 . . . n the input ρ

j
A is chosen by a measurement on the

pure state |ψ〉AP = σ
1/2
A |̂〉 for some given state σA, and the

outcome POVM effect E j
P was observed. The measurement on

the output state of the channel is chosen from some collection
of measurements acting only on system B only. Assuming that
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FIG. 9. An intermediate tomographic scheme. Scenario
(c) comes from restricting E �

k acting on BP of Fig. 2(b) to be a tensor
product measurement. The measurement E j

P on half of an entangled
state in (c) can be seen as a probabilistic state preparation similar to
Fig. 2(a).

the outcome POVM effect E j
B was observed, the data set E

consists of the pairs (E j
P, E j

B ) for all n repetitions.
Viewing this scenario as an ancilla-assisted scheme (by

moving the measurement on P to the end), we can employ the
bipartite-state sampling method and calculate μ(v) by inte-
grating our test function δ( f (ρAB) − v) over the full bipartite-
state space according to (B15) and (B5):

μ(v) = c−1
E

∫
dσAB L1(σAB|E ) δ( f (ρAB) − v), (G3)

where

L1(σAB|E ) = tr
(
σ⊗n

AB E
)
, (G4)

for E = ⊗n
j=1E j

P ⊗ E j
B.

On the other hand, we can also view this as a prepare-
and-measure scheme and use the channel-space method to
compute the histogram by (C3) and (C42) as an integration
over the space of all channels only:

h(v) = c′−1
E

∫
dν(�A→B)L2(�|E )δ( fchannel(�) − v), (G5)

where

L2(�|E ) =
n∏

j=1

tr
(
�A→B
(
ρ

j
A

)
E j

B

)
. (G6)

We may rewrite each factor term using the Choi-Jamiolkowski
state of the channel as

tr
(
�A→B
(
ρ

j
A

)
E j

B

) = tr
(
σ

1/2
P �PB σ

1/2
P

(
E j

B ⊗ E j
P

))
(G7)

(where σP = σ T
A ) and thus

L2(�|E ; σA) = tr
((

σ
1/2
P �PB σ

1/2
P

)⊗n
E

)
, (G8)

now defining the same operator E = ⊗n
j=1E j

P ⊗ E j
B as before

and where σA is fixed.
The similarity of (G3) and (G4) with (G5) and (G8) is now

more evident. It is worth giving a precise interpretation to
both L1(σAB|E ) and L2(�|E ; σA). The function L1(σAB|E ) is
a probability density on the bipartite-state space with respect
to dσAB, describing the Bayesian posterior distribution after
observing data E for an agent using the uniform prior dσAB

(and thus ignoring any prior information about what the input
state actually is). On the other hand, L2(�|E ; σA) is the pos-
terior distribution in the space of all channels, after observing
data E for an agent which is using the prior dν(�A→B). Yet,
Proposition 5 tells us that the prior dν(�A→B) is precisely the
same as the prior in the bipartite-state space corresponding

to knowing with certainty that the input state is exactly
σA. Indeed, dν(�A→B) is precisely the measure induced
by dσ ′

ABδ(trB(σ ′
AB) − σA) on �A→B = J−1(σ ′−1/2

A σ ′
ABσ

′−1/2
A ),

where δ(trB(σ ′
AB) − σA) is a Dirac delta at the point σA. That

is, with the shorthand σ ′
A = trB(σ ′

AB), we may rewrite (G5) as

h(v) = c′−1
E

∫
dσ ′

ABδ(σ ′
A − σA)

∫
dν(�A→B)

· L2(�|E ; σ ′
A)δ( fchannel(�A→B) − v). (G9)

Hence, the difference between the bipartite-sampling method
and the channel-space method, at least in the current scenario,
is exactly the prior information about the input state. In the
former, nothing is assumed about the input state other than
what can be inferred directly from the measurement data; in
the latter, the exact input state is assumed with certainty as
represented by the first Dirac delta function in (G9).

Finally, we will prove the following result, which is easily
seen to imply the Proposition 5.

Proposition 6. There exists an essentially unique family
of probability measures dνy(σAB) on D(HAB) indexed by full
rank y ∈ D(HA) such that∫

dσABg(σAB) =
∫

dσA(y)
∫

tr−1
B (y)

dνy(σAB)g(σAB), (G10)

where dσA(y) is the reduced measure of dσAB and tr−1
B (y)

denotes the preimage of y under partial tracing B. Moreover,
each member dνy(σAB) of the family is supported on tr−1

B (y)
and actually isomorphic to dν(�) on C (HA → HB). These
isomorphisms are given by

J−1
y : tr−1

B (y) → C (HA → HB) (G11)

σAB �→ J−1
(
d−1

A y−1/2σABy−1/2
)
. (G12)

Proof. Again, it will be convenient to work in the puri-
fied picture. By definition, dσAB originates from the uniform
spherical measure d|φ〉ABA′B′ induced by the Haar measure
dUABA′B′ by the relation |φ〉ABA′B′ = UABA′B′ |�0〉. On the other
hand, dν(�) comes from the Haar measure dUBA′B′ via the
relation |�〉 = UBA′B′ |�0〉.

Consider the partial trace trBA′B′ : End(HABA′B′ ) →
End(HA). Two things happen under this mapping. First,
the measure d|φ〉ABA′B′ admits a push forward along trBA′B′

denoted as dσA(y) living on space D(HA). Note that this
measure dσA(y) no longer coincides with the Haar-induced
(or Hilbert-Schmidt–induced) uniform measure on D(HA)
(since such measure arises uniquely from the Haar measure
dUAA′ acting on HAA′ ). Second, the space End(HABA′B′ ) is
partitioned into fibers tr−1

BA′B′ (y) over y ∈ End(HA). Observe
that one of such fibers corresponds to the set of purified Choi
states PC : take y = 1/dA. Moreover, if y ∈ D(HA) is full
rank, then the fiber over y is isomorphic to PC . Indeed, the
bijection is given by

J−1
y : tr−1

BA′B′ (y) → PC , (G13)

φABA′B′ �→ d−1
A y−1/2φABA′B′y−1/2. (G14)
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Note that partial tracing out A′B′ gives Choi-Jamiolkowski
isomorphisms identifying tr−1

B (y) ⊆ D(HAB) with the space of
all quantum processes:

J−1
y : tr−1

B (y) → C (HA → HB), (G15)

σAB �→ J−1(d−1
A y−1/2σABy−1/2), (G16)

where J−1 is the standard Choi-Jamiolkowski isomophism
identifying C (HAB) with C (HA → HB). We stress again that
these are isomorphisms only for full rank y ∈ D(HA).

The probability measure dφABA′B′ then disintegrates [53]
into a family of conditional probability measures dνy(φABA′B′ )
on each fiber (or preimage over y) tr−1

BA′B′ (y) such that

∫
dφABA′B′g(φABA′B′ )

=
∫

dσA(y)
∫

tr−1
BA′B′ (y)

dνy(φABA′B′ )g(φABA′B′ ) (G17)

for all functions g(φABA′B′ ). Moreover, the family
{dνy(φABA′B′ ) : y ∈ D(HA)} is dσA(y) almost everywhere
unique and each member dνy(φABA′B′ ) is supported on
tr−1

BA′B′ (y).
Without loss of generality, we only pay attention to full

rank y ∈ D(HA) because the set of rank-deficient density
matrices y has measure zero under dφABA′B′ . Here, each fiber
tr−1

BA′B′ (y) has been identified with the space PC . Under this
identification, we will show that dνy(φABA′B′ ) is almost every-
where equivalent to the uniform measure on channel space
dν(�). This follows from unitary invariance of dνy(φABA′B′ )
and the uniqueness of the Haar measure dUBA′B′ . Specifically,
since d (U †

BA′B′φABA′B′UBA′B′ ) = dφABA′B′ for all UBA′B′ we have

by change of variables∫
dφABA′B′g(φABA′B′ )

=
∫

d (U †
BA′B′φABA′B′UBA′B′ )g(φABA′B′ ) (G18)

=
∫

dφABA′B′g(UBA′B′φABA′B′U †
BA′B′ ) (G19)

=
∫

dσA(y)
∫

tr−1
BA′B′ (y)

dνy(φABA′B′ )g(UBA′B′φABA′B′U †
BA′B′ )

(G20)

=
∫

dσA(y)
∫

tr−1
BA′B′ (y)

dνy(U †
BA′B′φABA′B′UBA′B′ )g(φABA′B′ ),

(G21)

where the last equality follows from the fact that the fiber
tr−1

BA′B′ (y) is invariant under all UBA′B′ . By uniqueness of the
family, we have

dνy(U †
BA′B′φABA′B′UBA′B′ ) = dνy(φABA′B′ ) for all UBA′B′ .

(G22)

This says that each member dνy(φABA′B′ ) of the disintegration
family is unitary invariant. Due to the uniqueness of the nor-
malized Haar measure, we conclude dνy(φABA′B′ ) = dν(�). In
fact, we obtain correspondences between the objects

tr−1
BA′B′ (y) ↔ PC , (G23)

dνy(φABA′B′ ) ↔ dν(�) (G24)

induced by J−1
y .

Taking partial trace of system A′B′ yields the statement of
the proposition and completes the proof. �
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