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1 Introduction 
 

 

Figure 1: Location of Sturgeon Bank. Figure copied from: Potential mechanisms for the salt marsh recession on 
Sturgeon Bank (p. 2), Marijnissen, R., 2017, Delft. 

1.1 Problem description 

At the western edge of the Fraser Delta lie Sturgeon and Roberts Bank. This vast inter-tidal 

area is an important ecosystem of the delta. The daily exchange of tidal water from the Strait 

of Georgia on the shallow fore slope of the delta have allowed productive marshes to 

develop. These provide food and shelter for fish and millions of migratory birds flying 

between breeding grounds in the north and wintering grounds in the south annually. Because 

of these functions the area is of high ecological significance on an international level. It is 

designated as a Wildlife Management Area and protected by the B.C. the Ministry of Forests, 

Lands, Natural Resource Operations and Rural Development (Ministry of Forests, 2015). 

Human activity is widespread within the Delta and it has had a profound impact on the area. 

Since 1905 dikes have been constructed along the river and sea (Richmond, 2005). Jetties 

were constructed in the 1930’s and the Fraser River is being dredged to accommodate 

shipping. According to Hales (2000) following the construction of the jetties (1930-1954) 

there had been rapid expansion of marsh on Sturgeon Bank at lee side of the Steveston 

South jetty, while the patches of marsh on Westham Island expanded to form a more 

continuous marsh. Possibly the calmer conditions provided by the jetties promoted 

sedimentation which led to this expansion. Hales found, based on interpretation of aerial 

photos, that the marshes have been stable or growing until 2004, with one exception at the 

north side of Sturgeon Bank (Church & Hales, 2004; Hales, 2000). 

There is however strong evidence that the marsh has receded. Despite initial accretion, 

sedimentation rates across all marshes have decreased by half between 1954 and 1994, 

from roughly 1 cm/year to 0.5 cm/year (Hales, 2000; Williams & Hamilton, 1995). It is 
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believed that dredging and redirection of the outflow from the Fraser River have limited the 

sediment supply to the marsh (Atkins, Tidd, & Ruffo, 2016). The most compelling evidence 

for marsh recession was found from the field measurement of stem density within the marsh 

made by S. Boyd in 1989 and in 2011. A designated plot from 1989 at the south of Sturgeon 

Bank fronting Steveston Road was devoid of marsh when the measurement was repeated in 

2011, indicating a severe recession must have occurred within this period (S. Boyd, 

McKibbin, & Moore, Unpublished). Meanwhile the plots on Westham did not show recession, 

but overall stem densities had decreased significantly (by 32% averaged across all 5 plots on 

Westham Island).  

Since the recession was discovered more efforts have been made to monitor the marshes 

and more evidence has come forward of recession. Historic documented marsh extents 

(Hutchinson, 1982; Medley & Luternauer, 1976) do not match the recently measured marsh 

extent (Mason, 2016, pers. communication). More evidence was discovered when dead 

corms of marsh plants were found on the bare tidal flat (Balke, 2017). Finally an examination 

of LandSat satellite imagery revealed a similar recession trend for Sturgeon Bank 

(Marijnissen, 2017). 

The factor(s) causing the major loss of brackish marsh have not yet been determined but 

potential drivers have been suggested such as: elevated salinity levels during a historically 

low river outflow, sea level rise, higher sea levels due to decadal oscillations in the Pacific 

and a sediment deficit. It is yet unclear when the recession started, at what rate the marsh 

receded and if it continues to recede. 

1.2 Objective 

The goal of the study is to map the changes of marsh extent and topography on both 

Sturgeon Bank and Westham Island between 1980 and now. The study will look for a 

correlation between the recession and the possible loss of sediment from the banks. If a 

sediment deficit is a (major) contributor of marsh recession within the Fraser Delta, the 

results of the study should reveal such a connection.  

1.3 Approach 

Although there are plenty of studies suggesting changes have taken place in the marshes 

fronting the Fraser Delta (Atkins et al., 2016; Balke, 2017; S. Boyd et al., Unpublished; Hales, 

2000; Williams & Hamilton, 1995),  no study has utilized the extensive data record of 

satellites to study these changes for the entire Fraser Delta. Tools like the Aquamonitor 

(Donchyts et al., 2016) can detect the changes in coastlines in the past 30 years from 

satellite imagery. More advanced tools are still in development like MI-SAFE, which detects 

inter-tidal elevations and vegetation on foreshores to estimate the potential risk reduction of 

flooding by coastal vegetation all across the world (FAST, 2017).  Within the study the latest 

techniques from these tools are applied and adapted to the Fraser Delta. By using the full 

30+ years of information on satellite imagery, the marsh and inter-tidal surface changes are 

examined from a new angle. 
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2 Methods 
 

2.1 Satellite imagery 

The main source of data for the study has been satellite imagery from LandSat and Sentinel. 

These are space programs from NASA and the U.S. Geological Survey, and the European 

Space Agency (ESA) respectively that monitor the earth’s surface through spectral images. 

The satellites orbit the earth at an altitude of 705 km covering 185 km wide swaths during 

each pass. Every 16 days the satellites cross the same point above the earth and thus 

produce an image for any location at a 16-day interval (U.S. Geological Survey, 2015). The 

LandSat program has a long history of successive missions. Only LandSat 5, 7 and 8 are 

used since they cover the period of interest (1980-2016) in the greatest detail. Higher 

resolution Sentinel imagery is available since 2015.  

The images were retrieved and processed using the Google Earth Engine, a large-scale 

cloud computing platform for planetary remote sensing (Gorelick et al., 2017). Each image 

had already been orthorectified and processed to top of atmosphere reflectance (TOA) by 

the data provider. The use of these orthorectified TOA images reduces the variability 

between different scenes by compensating for solar angle, exoatmospheric solar irradiance 

and variability in the distance between the earth and sun (Chander, Markham, & Helder, 

2009). 

Table 1 Sources of the satellite images 

Source Provider Name Image collection ID Date range Resolution 
[m] 

Google 
Earth 
Engine 

USGS USGS Landsat 
5 TM TOA 
Reflectance 
(Orthorectified) 

'LANDSAT/LT5_L1T_TOA' Jan 1, 1984 - 
May 5, 2012 

30 

Google 
Earth 
Engine 

USGS USGS Landsat 
7 TOA 
Reflectance 
(Orthorectified) 

'LANDSAT/LE7_L1T_TOA' Jan 1, 1999 – 
May 5, 2003* 

30 

Google 
Earth 
Engine 

USGS USGS Landsat 
8 TOA 
Reflectance 
(Orthorectified) 

'LANDSAT/LC8_L1T_TOA' Apr 11, 2013 – 
ongoing 

30 

Google 
Earth 
Engine 

EU/ESA/Copernicus
  

Sentinel-2: 
MultiSpectral 
Instrument 
(MSI), Level-
1C 

COPERNICUS/S2 Jun 23, 2015 – 
ongoing 

20 

*LandSat 7 is still operational, but due to a malfunction suffers from striping, i.e.images contain swaths of 
missing information. Images after May 2003 are therefore not considered 

 

2.2 Image selection 

The total amount of raw satellite images covering the area of interest in the collection is 977 

images. Upon closer inspection however, many of these images are unsuitable for analysis 

due to a large amount of cloud cover. Dense clouds not only obscure the view of the flats 

and marsh underneath them, but also cast shadows that change the appearance of the 

features. Because a computer will look for spectral similarities on the image, the area 

affected by the shade will not be recognised as the same class as the area outside of the 

shade. Veils of translucent clouds pose the same problem as shadows. The translucent 
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clouds whiten the area such that a computer cannot recognise its class. Examples of these 

situations are present in figure 2. 

Cloud cover on each image is estimated by the data provider with a dedicated algorithm. 

Cloud pixels are classified under the premise that clouds tend to be bright and cold 

compared to the surroundings (Irish, 1999). The estimated cloud cover follows as the 

percentage of pixels identified as cloud from the total number of pixels in the image. 

Algorithms are available for filtering pixels affected by clouds out of the image. However 

water pixels that are both cold and bright (e.g. in turbid water) can be misclassified as clouds 

(Zhu, Wang, & Woodcock, 2015).  

Because of the complications that arise from using cloudy images a conservative approach is 

taken. All images with an estimated cloud cover of over 10% are filtered out of the collection. 

The LandSat and Sentinel collection is reduced from 977 to 156 images for the area of 

interest in the period 1980 to the first of July 2017.  

Even with the strict cut-off of 10% cloud cover, clouds can still be present within the image. 

Using the premises stated before that clouds tend to be bright and cold, algorithms have 

been developed by the earth engine community to filter out cloud pixels from an image with a 

simple cloud score (Herwig, 2016; Housman, 2016). These algorithms were implemented to 

ensure occasional clouds would not significantly affect the results of the study. As shown in 

figure 3 and figure 4 the cloud filtering is quite conservative on cloudy images, but did not 

affect cloud free images. The cloud removal acts more like an additional filter that inhibits 

potentially problematic classification on cloudy images, rather than to accurately remove 

clouds.  

 

Figure 2 The Fraser Delta as seen on a cloudy LandSat true-color composite, left without clouds and right 
with an estimated cloud cover of 26.64%. Data made available by the USGS.  
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Figure 3 True-color composite of an image with less 

than 10% cloud cover before simple cloud filtering 

 
Figure 4 True-color composite of an image with less 
than 10% cloud cover after simple cloud filtering 

 

2.3 Join tidal elevation 

In order to detect the vegetation and marsh on the images in the collection, the tidal elevation 

on each image needs to be known. Elevation on the satellite images can be estimated from 

the water lines on the images while marsh can only be seen when it is not submerged by the 

tide. The elevation of the tide is thus a crucial piece of metadata for the process.  

Hourly water levels for the entire period of interest (1985 to now) were retrieved from the 

Point Atkinson Tide Gauge Station. It is located about 20 km north of Sturgeon Bank and 25 

km north of Westham Island (Figure 6). At this location, there is a continuous record of hourly 

water levels for the entire period. Hourly water level records closer to Sturgeon Bank and 

Westham Island are only available from Sand Heads Tide Gauge Station for a limited period 

(09 Feb 2006 to 27 Sep 2006). The water levels recorded at Point Atkinson can be converted 

to water levels at the Sand Heads by fitting the 2 datasets. Because the tide within the Strait 

of Georgia exhibits a standing wave pattern (Thomson, 1981), there is a strong similarity in 

timing between the two locations.  

The water level at Sand Heads indeed has a strong correlation with the water level at Point 

Atkinson (Figure 5). A linear function was fitted to the two datasets by applying model 2 

regression. 

Eq. 1 ℎ𝑆𝑎𝑛𝑑𝐻𝑒𝑎𝑑𝑠 = 0.9746 ∗ ℎ𝑃.𝐴𝑡𝑘𝑖𝑛𝑠𝑜𝑛 + 0.1695  
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With eq.1 the water levels between 1985 and 2016 at the Sand Heads were calculated. 

Since the coefficient of determination (R2) of the function is very close to 1, there is great 

confidence the calculated water levels reflect the actual historic water levels at that location. 

From the satellite metadata the exact date and time each image was taken is known. The 

date of each image within the collection was exported from the Google Earth Engine into a 

table. To calculate the water level at each time in the table the water levels at the two nearest 

full hours were retrieved from the Point Atkinson tide gauge and converted to water levels at 

the Sand Heads with eq. 1. The water level at the time of the image is then interpolated from 

these two water levels (eq. 2). 

 

Eq. 2  
ℎ𝑡𝑖𝑚𝑎𝑔𝑒

= ℎ𝑡1 +
ℎ𝑡2 − ℎ𝑡1

60
∗ 𝑡 

 

  ℎ𝑡𝑖𝑚𝑎𝑔𝑒
 = Water level at time t (moment of image, e.g. at 18:25) 

  ℎ𝑡1 = Water level at the nearest hour rounding down (e.g. at 18:00) 

  ℎ𝑡2 = Water level at the nearest hour rounding up (e.g. at 19:00) 

  𝑡 = Time in minutes between timage and t1 (e.g. 25) 

 

The dataset of Point Atkinson is extensive but there are moments of missing data. This 

affected only 2 out of the 156 images. A predictive tide model (Stephenson, 2016) was fitted 

to the dataset and calculated the water level if no data was found from the tide gauge.  

 

Figure 5 Relation between the water level at Point Atkinson and Sand Heads 

 



 

7 
 

 

Table 2 Details for Point Atkinson Tide Station 

 
Table 3 Details for Sand Heads tide gauge 

 

Point Atkinson, B.C. #7795  

Provider: Fisheries and Oceans Canada 

Latitude 
Decimal 
Degrees: 

49.337º N  

Longitude 
Decimal 
Degrees: 

123.253º W  

Datum: CD  

Time Zone: PST  

Status: PERMANENT  

Alternate 
Station Name: 

Caulfeild Cove, Sandy Cove   

Established: 1897  

Province: BC  

Ownership: PAC  

Tide Table 
Volume: 

5  

Geo Location: STRAIT OF GEORGIA  

URL http://isdm-gdsi.gc.ca/isdm-
gdsi/twl-mne/inventory-
inventaire/sd-ds-
eng.asp?no=7795&user=isdm-
gdsi&region=PAC  

Sand Heads, B.C. #7594 

Provider: Fisheries and Oceans Canada 

Latitude 
Decimal 
Degrees: 

49.125º N 

Longitude 
Decimal 
Degrees: 

123.195º W 

Datum: DPWD 

Time Zone: PST  

Status: TEMPORARY 

Established: - 

Province: BC  

Ownership: PAC  

Tide Table 
Volume: 

5  

Geo Location: FRASER DELTA 

URL http://isdm-gdsi.gc.ca/isdm-
gdsi/twl-mne/inventory-
inventaire/sd-ds-
eng.asp?no=7594&user=isdm-
gdsi&region=PAC&ref=maps-
cartes  

 
Figure 6 Locations of the Point Atkinson and Sand 
Heads tide gauges as reported by Fisheries and 
Oceans Canada on Google maps  

 

http://isdm-gdsi.gc.ca/isdm-gdsi/twl-mne/inventory-inventaire/sd-ds-eng.asp?no=7795&user=isdm-gdsi&region=PAC
http://isdm-gdsi.gc.ca/isdm-gdsi/twl-mne/inventory-inventaire/sd-ds-eng.asp?no=7795&user=isdm-gdsi&region=PAC
http://isdm-gdsi.gc.ca/isdm-gdsi/twl-mne/inventory-inventaire/sd-ds-eng.asp?no=7795&user=isdm-gdsi&region=PAC
http://isdm-gdsi.gc.ca/isdm-gdsi/twl-mne/inventory-inventaire/sd-ds-eng.asp?no=7795&user=isdm-gdsi&region=PAC
http://isdm-gdsi.gc.ca/isdm-gdsi/twl-mne/inventory-inventaire/sd-ds-eng.asp?no=7795&user=isdm-gdsi&region=PAC
http://isdm-gdsi.gc.ca/isdm-gdsi/twl-mne/inventory-inventaire/sd-ds-eng.asp?no=7594&user=isdm-gdsi&region=PAC&ref=maps-cartes
http://isdm-gdsi.gc.ca/isdm-gdsi/twl-mne/inventory-inventaire/sd-ds-eng.asp?no=7594&user=isdm-gdsi&region=PAC&ref=maps-cartes
http://isdm-gdsi.gc.ca/isdm-gdsi/twl-mne/inventory-inventaire/sd-ds-eng.asp?no=7594&user=isdm-gdsi&region=PAC&ref=maps-cartes
http://isdm-gdsi.gc.ca/isdm-gdsi/twl-mne/inventory-inventaire/sd-ds-eng.asp?no=7594&user=isdm-gdsi&region=PAC&ref=maps-cartes
http://isdm-gdsi.gc.ca/isdm-gdsi/twl-mne/inventory-inventaire/sd-ds-eng.asp?no=7594&user=isdm-gdsi&region=PAC&ref=maps-cartes
http://isdm-gdsi.gc.ca/isdm-gdsi/twl-mne/inventory-inventaire/sd-ds-eng.asp?no=7594&user=isdm-gdsi&region=PAC&ref=maps-cartes
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The updated table (see Appendix: A) with the dates of the images and the tidal elevation was 

imported into the Google Earth Engine. A function was written within the Earth Engine to add 

the tidal elevation as metadata to the image with the same timestamp. The collection with 

water levels is then available for further processing.  

The percent of time an intertidal elevation is visible on an image given the tidal heights at 

Sand Heads is visualised in figure 7. Elevations below 0.5 m+CD will almost always be under 

water while land above 5 m+CD will always be above water. Areas with an elevation of 3.2 

m+CD are expected to be exposed on half of the images in the collection.  

 

2.4 Indices 

The satellite images are recorded with different spectral bands. Each band represents 

sensors that measure the radiation within specific wave lengths. The red, blue and green 

channels make up the visual spectrum, but more bands are available across all satellites to 

detect land and marsh features. Bands should be used in which the features that need to be 

identified are most distinct.  

Live biomass on the tidal flats can be detected by the absorption of red and reflectance of 

infrared wavelengths due to chlorophyll inside the plants (Hardisky, Daiber, Roman, & 

Klemas, 1984).  Water can be detected across different bands though near-infrared (NIR) 

and short-wave infrared (SWIR) are most effective (Ryu, Won, & Min, 2002).  

To study vegetation and water features consistently across different conditions, dedicated 

indices have been developed that rescale the radiance of one or multiple bands into a 

normalized index in which these features show contrasting values with their surroundings. 

Indices used within the study are presented in  

table 6.  

The result of the conversion to a normalized index is a grey-scale image with values scaled 

between -1 and 1, on which features are more easily identifiable than any individual band 

(Figure 8). In the Google Earth Engine the different indices were calculated for each image in 

the available LandSat and Sentinel collection covering the area of interest between 1980 and 

2017. 

 

Table 4 Tidal heights at Point Atkinson and Sand 
Heads with reconstructed heights for Sand Heads for 
the period 1985-2016. Original data from Canadian 
Hydrographic Service, data processed with tidal 
harmonics package (Stephenson, 2016) 

 Point 
Atkinson 
1985-2016 
[m+CD] 

Sand Heads 
1985-2016 
[m+CD] 

HHW 5.52 5.55 

MHHW 5.37 5.40 
MLHW 3.53 3.60 

MWL 3.11 3.20 
MHLW 2.69 2.79 

MLLW 0.85 1.00 

LLW -0.24 -0.06 

 

 

Figure 7 The fraction of time each elevation is 

exposed by the tide at the Sand Heads 
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Table 5 Spectral bands per satellite 

 Landsat 4-5 (TM) Landsat 7 (ETM+) Landsat 8 (OLI) Sentinel 2 

Band 1 Blue Blue Ultra Blue 
(coastal/aerosol) 

Coastal aerosol 

Band 2 Green Green Blue Blue 

Band 3 Red Red Green Green 

Band 4 Near Infrared (NIR) Near Infrared (NIR) Red Red 

Band 5 Shortwave Infrared 
(SWIR) 1 

Shortwave Infrared 
(SWIR) 1 

Near Infrared (NIR) Vegetation Red Edge 

Band 6 Thermal Thermal Shortwave Infrared 
(SWIR) 1 

Vegetation Red Edge 

Band 7 Shortwave Infrared 
(SWIR) 2 

Shortwave Infrared 
(SWIR) 2 

Shortwave Infrared 
(SWIR) 2 

Vegetation Red Edge 

Band 8  Panchromatic Panchromatic NIR 

Band 9   Cirrus Water vapour 

Band 10   Thermal Infrared 
(TIRS) 1 

Cirrus 

Band 11   Thermal Infrared 
(TIRS) 2 

SWIR 1 

Band 12    SWIR 2 
 

Table 6 Indices computed from LandSat and Sentinal spectral bands 

Abbreviation Bands 
used* 

Formula Full name Reference 

NDVI R, NIR 𝑁𝐼𝑅 − 𝑅

𝑁𝐼𝑅 + 𝑅
 

Normalized difference 
vegetation index 

- 

NDWI G, NIR 𝑁𝐼𝑅 − 𝐺

𝑁𝐼𝑅 − 𝐺
 

Normalized difference 
water index 

(McFeeters, 
1996) 

MNDWI G, SWIR1 𝑆𝑊𝐼𝑅1 − 𝐺

𝑆𝑊𝐼𝑅1 + 𝐺
 

Modified normalized 
difference water index 

(Xu, 2006) 

CNDSI G, R, NIR, 
SWIR1 

𝑁𝐷𝑉𝐼 + 𝑁𝐷𝑊𝐼 + 𝑀𝑁𝐷𝑊𝐼

3
 

Combined normalized 
difference surface index 

- 

*G=Green, R=Red, NIR=Near-infrared, SWIR1=Shortwave infra-red band 1  
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One more step is taken to find edges between features. Water, in most cases, will appear the 

same across the same image, hence the value of the calculated index will vary only slightly. 

However, the appearance of water and land is very different and thus the value of the 

calculated index will change significantly at the water-land boundary. The sudden transition 

from bare or sparsely vegetated flat to an area with dense plant cover will have the same 

effect. The edges between features can thus be delineated by steep gradients within the 

index.  

In Google Earth Engine, the x- and y-gradients are computed in pixel coordinates, each 

using a simple 3x1 kernel. Then the same 3x1 kernels are used to compute the gradients of 

easting and northing as the final physical gradient in units, unaffected by the projection of the 

image. Finally, the magnitude of the gradient is calculated with the Pythagorean theorem 

from the x- and y-gradients.  

Depending on the sensitivity of the index to certain features the gradients become more or 

less pronounced. For example, the suspended sediment in the water near the tidal flats can 

blur the otherwise clear transition for one feature (e.g., water) to the other (e.g., land). In 

interpretation this is helpful as greater certainty can be attributed to greater gradients. On the 

other hand, if an image contains a large amount of noise or disturbances (e.g., sun glint or 

clouds), edges are found that do not reflect any physical edges between features on the tidal 

flat.   

 
Figure 8 Example of a NDVI image. Light colors indicate water while dark colors are indicative of plant cover. 
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2.5 Methods for tidal flat elevations 

2.5.1 Water line method 

Elevation models of the coast can be constructed through remote sensing by detecting the 

water line at various times during the tide (D. C. Mason, Davenport, Robinson, Flather, & 

McCartney, 1995; Murray, Clemens, Phinn, Possingham, & Fuller, 2014; Ryu et al., 2002). 

The key assumption of this method is that the water lines on the images are at the same 

elevation as the tidal height (measured or modelled) at that time. Essentially the water lines 

become contour lines at the elevations of the observed stages of the tide.  

The most important part of the analysis is defining when a pixel on an image should be 

classified as a water line. The easiest definition would be using a threshold. Any value of the 

normalized difference surface index (NDSI) below the threshold is classified as water while 

any value above the threshold is considered land. Indices, however, can still vary from image 

to image for the same class due to atmospheric conditions. A single threshold will therefore 

not be suitable for all images. 

To resolve this the gradient of the NDSI is taken into consideration. Transitions from water to 

land should show a rapid change in the index as the spectral characteristics of the surface 

change. A range within the NDSI is defined in which the transition can be expected. Within 

the range only the pixels that exceed the gradient threshold are considered a water line. The 

water line is thus defined by: 

1. NDSI > water threshold   Values below this threshold is very likely to be water 

2. NDSI < land threshold  Values above the threshold is very likely to be land.  

3. Gradient of NDSI > threshold Values below this threshold are too small for an edge 

 

Figure 9 The gradient image calculated from figure 8. Large gradients (black) are indicative of edges between 
features such as water, land and dense marsh. 
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The values of the thresholds were estimated by hand from a number of images for each 

NDSI in table 6. The water and land thresholds were determined by estimating the position of 

the water line visually and sampling points about 10 pixels around this estimated edge. The 

highest and lowest sampled values were then rounded to rough estimates and implemented 

as a threshold. The gradient threshold was estimated by gradually increasing the value until 

most noise was filtered out, but lowered when water lines were being lost. The final values 

are presented below in table 7. 

NDVI was affected by noise most but did not have as steep gradients as other indices. This 

inhibited the filtering of all noise by increasing the gradient threshold as water lines would be 

lost. NDWI showed a larger difference between water and land which allowed for both a 

higher land and gradient threshold. MNDWI was very sensitive to water, but it only detected 

water edges more landward than the other indices. CNDSI showed the highest land to water 

gradient and thus the gradient threshold could be set higher. Even though the gradient was 

high, the actual value at the landward side remained lower compared to other indices which 

necessitated a land threshold similar to the NDVI. 

Table 7 Thresholds used to define a water line per index 

 Water threshold Land threshold Gradient threshold 

NDVI -0.25 -0.15 0.75E-3 

NDWI -0.25 0 1.5E-3 

MNDWI -0.5 -0.2 1.5E-3 

CNDSI -0.25 -0.15 1.75E-3 

 

 

 

Figure 10 An intertidal elevation map generated by the water line method from 13 images 
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Each water line pixel in an image is assigned the value of the tidal elevation. The resulting 

collection consists of 156 images, each with a water line that serves as a contour line of one 

elevation at one date and time. This collection should then be filtered for dates within the 

period of interest. All water lines from the period are combined into one image. Where water 

lines overlap the elevation is averaged.  The result is an image of contour lines at different 

elevations (Figure 10). If more images are available a more detailed bathymetry can be 

constructed.   

2.5.2 FAST 

The FAST (Foreshore Assessment using Space Technology) methodology is still in 

development and will be improved in the future. Because of this not all details of the method 

can be given until the methodology is published. However, the principles of the methodology 

are explained below. 

In FAST the elevation is estimated by calculating the probability of inundation of each pixel 

(FAST, 2017). The process first generates a time-averaged image of the selected water-

index (MNDWI for this study, but could be changed in the future). The process will be 

explained further using the NDVI image of figure 8 as an example. 

 

Figure 11 Visualisation of the classification of the inter-tidal zone in FAST 

From the time averaged image a classification algorithm is used to split the image into 2 

classes, water and land, and finds the corresponding index values. This classification is done 

by looking for the peaks of land and water within the histogram of the image. The index 

values in between the distributions for land and water can be interpreted to have been water 

on some images, and land on others. The probability of inundation is calculated from a 

probability distribution between the optimal water and land class index values.  

The resulting probability of inundation is then scaled linearly to the highest and lowest 

astronomical tide. An inundation probability of 100% means the area is lower than the lowest 

astronomical tide as it is always under water while an inundation probability of 0% is higher 

than the highest astronomical tide (FAST, 2017). The elevation is equal to the tidal elevation 

of submergence and so an inter-tidal bathymetry is constructed. 
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2.6 Methods for marsh detection 

Before the marsh can be detected it must be ensured that it is visible on the images. First the 

collection is filtered for low tide images (tide levels below 1.2 m+CD). On the low tide images 

the marsh is not obscured by the tide and is detected more easily. Additionally, only images 

from the summer when the marsh is at peak growth, should be considered. Different plants 

have peak growth and start scenesing at different times of the summer. Plants of the same 

species but in different areas can also peak/scenese at different times. However, limiting the 

date range further would severely limit the amount of images that can be used. The 

remaining images in the collection thus satisfy the criteria: 

• Less than 10% cloud cover 

• Taken at a tide lower than 1.2 m 

• Taken between 1st of July and 31st of August 

The criteria severely limit the collection to only 17 images covering the period 1980 to 2017.  

The detection of marsh requires more complicated methods than were needed to detect 

water (edges). The spectral differences between water and land are quite big compared to 

the difference between tidal flat and the transition into (sparse) marsh. As a result the 

specific characteristics to differentiate between the two from a spectral band or index are not 

obvious. The methods introduced in this section are chosen because of their ability to be 

trained to detect smaller spectral differences and use it to find the marsh.    

2.6.1 Spectral unmixing 

One of the simpler methods that trains to find the criteria of predefined classes as marsh is 

spectral unmixing. Spectral unmixing is a technique in remote sensing whereby the total 

spectral signal of a pixel is decomposed into components (Van Der Meer, 1995). Rather than 

a single 30x30m LandSat pixel being just water, flat or marsh, the signal from the pixel is 

most likely a combination of the three. With spectral unmixing the fraction of each class 

contributing to the signal is calculated. 

The number of classes must be equal to the number of bands for this approach and the 

classes should be fuzzy to allow for fractional covers. Furthermore the bands should be 

different enough between classes to do a reliable calculation. All indices (NDVI, NDWI and 

MNDWI) are selected as bands to select a water, a land and a marsh class. NDVI is 

designed to pick up vegetation whereas NDWI and MNDWI are designed pick up water, with 

MNDWI being the most sensitive to changes in water content. Combined they can better 

differentiate between these classes.  

First the NDVI, NDWI and MNDWI values for ‘pure’ water, flat and marsh must be defined. 

Training areas were chosen such that one can be certain of the class there at all times. The 

training area for water was chosen at the mouth of the middle arm of the Fraser River, flats 

were defined around 200 m offshore of the approximate marsh. On Sturgeon Bank marsh 

was trained in the southern portion north of Garry Slough and on Westham Island a section 

on the northern side was chosen. The marsh training areas include both low and high marsh 

(see Figure 12). 
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Figure 12 Training areas for spectral unmixing: blue is water, yellow is flat and green is marsh. The reference 
marsh fraction was found on the flat at the red marker. 

The pure marsh (𝒎̅), flat (𝒇̅) and water (𝒘̅) index values are found by averaging the values 

across their respective training areas: 

 

𝒎̅ = [

𝑛𝑑𝑣𝑖̅̅ ̅̅ ̅̅
𝑚

𝑛𝑑𝑤𝑖̅̅ ̅̅ ̅̅ ̅
𝑚

𝑚𝑛𝑑𝑤𝑖̅̅ ̅̅ ̅̅ ̅̅ ̅
𝑚

] , 𝒇̅ = [

𝑛𝑑𝑣𝑖̅̅ ̅̅ ̅̅
𝑓

𝑛𝑑𝑤𝑖̅̅ ̅̅ ̅̅ ̅
𝑓

𝑚𝑛𝑑𝑤𝑖̅̅ ̅̅ ̅̅ ̅̅ ̅
𝑓

] , 𝒘̅ = [

𝑛𝑑𝑣𝑖̅̅ ̅̅ ̅̅
𝑤

𝑛𝑑𝑤𝑖̅̅ ̅̅ ̅̅ ̅
𝑤

𝑚𝑛𝑑𝑤𝑖̅̅ ̅̅ ̅̅ ̅̅ ̅
𝑤

]  

For any given pixel on the image (say at x position i and y-position j) that contains index 

values (𝑛𝑑𝑣𝑖𝑖,𝑗, 𝑛𝑑𝑤𝑖𝑖,𝑗, 𝑚𝑛𝑑𝑤𝑖𝑖,𝑗) the marsh, flat and water fractions (𝑚𝑖,𝑗, 𝑓𝑖,𝑗, 𝑤𝑖,𝑗) are 

calculated. To do so they are rewritten into a set of linear equations: 

𝒄𝒊,𝒋 = [

𝑛𝑑𝑣𝑖𝑖,𝑗

𝑛𝑑𝑤𝑖𝑖,𝑗

𝑚𝑛𝑑𝑤𝑖𝑖,𝑗

] , 𝐴 = [𝒎̅, 𝒇̅, 𝒘̅] = [

𝑛𝑑𝑣𝑖̅̅ ̅̅ ̅̅
𝑚

𝑛𝑑𝑤𝑖̅̅ ̅̅ ̅̅ ̅
𝑚

𝑚𝑛𝑑𝑤𝑖̅̅ ̅̅ ̅̅ ̅̅ ̅
𝑚

    

𝑛𝑑𝑣𝑖̅̅ ̅̅ ̅̅
𝑓

𝑛𝑑𝑤𝑖̅̅ ̅̅ ̅̅ ̅
𝑓

𝑚𝑛𝑑𝑤𝑖̅̅ ̅̅ ̅̅ ̅̅ ̅
𝑓

   

𝑛𝑑𝑣𝑖̅̅ ̅̅ ̅̅
𝑤

𝑛𝑑𝑤𝑖̅̅ ̅̅ ̅̅ ̅
𝑤

𝑚𝑛𝑑𝑤𝑖̅̅ ̅̅ ̅̅ ̅̅ ̅
𝑤

] , 𝒙𝒊,𝒋 = [

𝑚𝑖,𝑗

𝑓𝑖,𝑗

𝑤𝑖,𝑗

] 

Eq. 3 
 

 𝒄𝒊,𝒋 = 𝑚𝑖,𝑗 ∗ 𝒎̅ + 𝑓𝑖,𝑗 ∗ 𝒇̅ + 𝑤𝑖,𝑗 ∗ 𝒘̅ = 𝐴𝒙𝒊,𝒋 
 

Eq. 4  
 

𝒙𝒊,𝒋 = 𝐴−1𝒄𝒊,𝒋 
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The set of equations is solved within Earth Engine 

for each pixel in the image. In a second step, the 

values within 𝒙𝒊,𝒋 are normalized to arrive at 

fractions. The marsh area was found at those 

location with a marsh fraction greater than a 

threshold: 

𝑚𝑖,𝑗 > 𝑚𝑟𝑒𝑓 → cell is marsh 

The marsh fraction does not directly correspond to 

marsh as was implied. The marsh fraction in this 

approach is affected by wetness. As can be seen 

in figure 12, the water training area is naturally 

always wet, the flat training areas are lower in 

elevation than the marsh training area hence the 

flats remain wetter at low tide than the marsh. As 

a result, the algorithm is trained to associate dry 

areas with marsh.  

The exposed sand ridges north of the Steveston 

North Jetty dry up at low tide and are thus not as 

wet as the flat training areas. Consequently, these 

flats are calculated to have a marsh fraction 

despite there being no marsh. The calculated 

marsh fraction at this location was sampled and 

used as the threshold value for the marsh 

classification. 

The remaining pixel values are rescaled to values 

between 0 and 1. Values closer to 1 represent 

pixels with a greater similarity to the “pure” marsh 

while values closer to 0 are more different and 

thus less certain to be marsh. 

The spectral unmixing method was applied to the time averaged images for each period 

including the training. Thus for each period the classifiers are recalibrated. Given the limited 

amount of images this was necessary to account for variations in indices from image to 

image that would have been averaged out in a large collection. The result of the procedure is 

a map where values close to 1 (green) are indicative of marsh presence (Figure 13). 

 

 

Figure 13 The result of the spectral unmixing 

procedure for marsh classification 
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2.6.2 Supervised classification 

 

Figure 14 Training areas for the supervised classification algorithm. Blue = water, yellow = flat, red = sea grasses, 

dark green = high marsh, light green = low marsh 

Supervised classification uses training areas of predetermined classes and looks for 

predictors of the class. The predictors can then be applied across other images to classify 

them in their entirety. Multiple automated supervised classification algorithms are available 

within Google Earth Engine. Of those the random forest method was found to be most 

promising for object-based classification according to literature (Ma et al., 2017). A random 

forest is a classifier consisting of a collection of tree-structured classifiers where each tree 

casts a unit vote for the most popular class (Breiman, 2001). The details of the method are 

documented by Breiman (2001).  

All spectral bands (red, green, blue, NIR, SWIR1, SWIR2) and indices (NDVI, NDWI, 

MNDWI) could and were used within the method. Problematic areas from the unmixing 

approach were implemented in the training set to ensure these areas would be classified 

differently. Closer inspection suggested sea grass, algae and wetness were influencing the 

spectral unmixing results (see Discussion at Section 3.2.3), so new classes were 

determined. A “sea grass” class was implemented to classify green areas outside of the 

marsh. Further the low and high marsh were separated into two classes as the high marsh 

was usually more distinct on the indexed images than the low marsh.  

A different approach was taken to the training areas as for the spectral unmixing approach. 

The classifier was trained within one period: 2010-2017. The classifier was then applied to 

the other images. The consideration for unmixing was that due to the limited number of 

images available it was better to reclassify water, flat and marsh for each period. This was 

manageable since the procedure is not computationally intensive and training areas could be 

very certain to remain that class for the entire study period. Supervised classification is more 

computationally intensive and the assumption of the training areas not changing classes 

between periods does not hold for the new classes.  
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The training areas are presented in figure 14. Training areas for water were selected again 

within the Fraser river, but with the addition of more training off-shore to account for 

differences between sediment content within the river and off-shore. Because the training 

area no longer needs to apply for the entire period, the GPS marsh edge from 2015 could be 

used to delineate flat and low marsh on Westham Island where classification was most 

difficult. A region on Sturgeon Bank with sea-grass as observed in the field in 2017 and 

visible on Google Earth was selected to train the algorithm to account for green cover outside 

of the marsh. The southern part of Sturgeon Bank was again selected to use for the 

classification of high marsh. 

After the training was completed and the retrieved predictors were applied to the whole 

image, a classified map is returned (Figure 15). 

  

 

Figure 15 The random forest classified image for the period 2010-2017. Dark blue areas are classified 
as water, light blue areas as flat, red areas as flat with possibly algae or sea grass, light green as low 
marsh, and dark green as high marsh 
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3 Validation 
 

3.1 Tidal flat elevation 

The results of the study are checked against other elevation measurements to establish the 

accuracy of the method. In this case a LIDAR survey of the area from 2013 provided by the 

Vancouver Fraser Port Authority was available to compare the results of this study against. 

The elevations were calculated from the 10-year period around 2013, 2008 until the 1st of 

July 2017. 

3.1.1 Methodology of validating elevations 

For the validation the elevations produced 

by the satellite methods needed to be 

compared against the LIDAR survey. To do 

so elevations were sampled in two ways: 

many samples taken randomly across the 

whole area or a small number of samples at 

set transects. The random samples are less 

likely to be affected by any outliers and give 

a representation of the overall accuracy of 

the methods. The transects on the other 

hand show how the errors of a method can 

skew elevations along the profile which is 

relevant for certain practical cases (e.g. 

calculating the flooding probability at the 

dike). 

A large number of sample points were 

randomly generated across the study area. 

It was found 10,000 points were adequate. 

For each point the corresponding elevation 

was retrieved from the LIDAR set and the 

satellite set (schematized in figure 16). For 

the waterline method four indices were tried 

and thus generated four sets of elevations 

to verify against the LIDAR survey. The fifth 

set of satellite elevations was generated by 

the procedure from FAST. 

For many sample points no elevation could be found in one or both datasets. These points 

are in locations where no LIDAR is available like far off-shore or within the channel of the 

middle arm, or in points were water line has been detected in the study period. 

As a measure of accuracy the root mean squared error (RMSE) and mean absolute error 

(MAE) were calculated from the N number of points that contain elevations. A graph was 

plotted for each method showing the relation between the predicted height from the satellite 

and the height measured from the lidar survey (see the results in figure 19).  

After the random sampling, four transects at Sturgeon Bank and Westham Island were 

analysed. Many transects had been established by the Fraser River Estuary Management 

Program (FREMP) before. For continuity two FREMP transects at the center of Sturgeon 

Bank and two on Westham Island were selected: transects J, I, E, and F (see figure 17). The 

 

Figure 16 Procedure for validation 
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original transects only had points at 200 m intervals. Additional points were added in 

between the original ones to reduce the intervals to 50 m and make more detailed transects. 

The sampling process for the transects was identical to the process described for the random 

samples. At each sample point on the transect the elevation was retrieved from the LIDAR 

survey and the elevations generated by the satellite procedures. Along each transect the 

RMSE and MAE was calculated for each method. The elevations are plotted along the 

transect to show the different elevation profiles generated by the satellite methods. 

 

 

Figure 17 The selected FREMP transects for validating the results 

  



 

21 
 

 

3.1.2 Results  

Elevations in the period 2008-2018 

 
(A) 

 
(B)  

 
(C)  

 
(D)  

LIDAR NDVI 

NDWI MNDWI 
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(E) 

 
(F)  

Figure 18 The elevations from the LIDAR survey (A) and the elevations generated for the validation period 2008-
2017 from satellite data. Maps B to E are generated by the water line method while F is generated by the FAST 
method 

 

  

CNDSI FAST 
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Random samples 

 
(A) 

 

 
(B) 

 

 
(C) 

 

 
(D) 

 

 
(E) 

 

Figure 19 Scatter plots of the LIDAR elevations against the elevations derived from the satellite images. The 
water line method was carried out for the NDVI (A), NDWI (B), MNDWI (C), and CNDSI (D) indices. The FAST 
method (E) was carried out only once with the MNDWI.  

  



 

24 
 

 
(A) 

 

 
(B) 

 

 
(C) 

 

 
(D) 

 

 
(E) 

 

Figure 20 Graphs of the relation between the LIDAR elevations and the elevations derived from the satellite 
images. The line denotes the average satellite derived elevation for each LIDAR elevation while the error bar 
shows the standard deviation around the average. The water line method was carried out for the NDVI (A), NDWI 
(B), MNDWI (C), and CNDSI (D) indices. The FAST method (E) was carried out only once with the MNDWI. 
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Transects 

(A) 

 

(B) 

 

(C) 

 

(D) 

 
Figure 21 Elevations generated by the satellite methods compared to the LIDAR survey along 4 transects 
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Table 8 The root mean squared error and mean absolute error calculated for each method at each transect 

 E F I J 

 RMSE MAE RMSE MAE RMSE MAE RMSE MAE 

FAST: 0.752 0.702 0.667 0.620 0.890 0.876 0.924 0.878 
MNDWI: 0.925 0.727 1.017 0.859 0.887 0.764 0.892 0.738 
CNDSI: 0.524 0.459 0.312 0.252 0.849 0.790 0.939 0.791 
NDVI: 0.710 0.543 0.318 0.242 0.301 0.199 0.295 0.229 
NDWI: 0.537 0.445 0.368 0.303 0.438 0.286 0.639 0.482 

 

3.1.3 Discussion 

All methods produce elevation maps that look similar to the LIDAR elevations (Figure 18). 

One advantage of the FAST method becomes immediately apparent which is the fact that it 

generates a full inter-tidal bathymetry, where the maps using the water line method leave 

gaps. It can also be observed that the NDVI method does contain noise as evidenced by the 

red specks seaward on figure 18B. The NDWI method shows noise as well in the Fraser 

River which, upon inspecting the original images, turns out to be the result of boats. This 

noise does not affect the elevations on the tidal flats for obvious reasons. The MNDWI and 

CNDSI are very similar in appearance. Both methods found more water lines shoreward 

compared to the other methods, but do not exhibit specks or stripes indicating noise. FAST 

produces on first sight a very detailed and credible elevations, but it can already be observed 

that elevations are structurally underestimated as compared to the LIDAR. 

The figures 19 and 20 do show a clearer picture of the biases and errors of the methods. The 

methods all have a relatively high accuracy with the absolute errors ranging from 0.36 m to 

0.73 m. The LIDAR itself can have an error in the order of up to 25 cm for this type of area 

(Hladik & Alber, 2012; Schmid, Hadley, & Wijekoon, 2011). The fact that these methods 

approach the accuracy with a much more limited resolution adds confidence to the viability of 

using satellite imagery for observing elevations.  

As figure 19 shows, the scatter can be quite large. NDVI most notably shows large 

overestimations at low LIDAR elevations. This is most likely the result of the specks of noise 

that were visible in figure 18B. There is also another form of scatter at LIDAR elevations 

around and below -1 m across all methods. After inspecting the coordinates of the largest 

errors, it appears these originate from the channel in the south-eastern corner of Sturgeon 

Bank. The channel there is too thin to be detected by the resolution of the satellite and hence 

the much higher elevation surrounding it is detected. The large error is thus the result of the 

discrepancy in resolution. This discrepancy can also be responsible for rather large errors at 

the edges of other steep channel walls (e.g. at Swishwash island in between the airport and 

Sturgeon Bank), and to a lesser extent errors landward near the dike where the elevation 

gradient is steep compared to the flats. 

Figures 18 and 19 further show a tendency of all methods to underestimate the elevations 

where the LIDAR elevation is above 1.5 m. The most likely reason is the presence of 

vegetation during winter and summer. The LIDAR survey was taken at the 23rd of July in 

summer and probably detected the top of the plants. The plants can grow upward of 1.2 m in 

the summer but die in autumn. If the elevation is estimated from a satellite image outside of 

the summer it can be expected that much lower elevations are found. Although this very 

likely the case, this problem warrants further verification in the field.  

A final point of discussion is the structural underestimation of FAST. It should be noted that 

the MNDWI index used in FAST also does tend to underestimate elevations. Most likely the 

index is too sensitive to small puddles of water resulting in the underestimation. Either 

calibration or switching to a less biased index (e.g. NDWI) could have improved the method. 
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Further, the scaling of flooding probabilities linearly to elevations is not entirely accurate. As 

was shown in figure 7 of the tidal analysis, the relation between flooding and tidal elevation 

deviates far from a straight line which leads to underpredictions of the elevations up to 4 

m+CD (or 1.8 m relative to mean sea level).  

3.1.4 Best method 

The best method should be the one that minimizes the error (i.e., low RMSE and MAE). In 

both figure 19 and figure 20 the best method should also be apparent as the method that is 

closest to a one-to-one relation with the LIDAR (dashed line), and does not have a large 

amount of scatter. Based on these criteria the water line method with the NDWI preformed 

the best with a RMSE of 0.53 m and MAE of 0.36 m. The scatter is low compared to the 

water line method with other indices and is well distributed around a one to one relation with 

the LIDAR. 

Still the FAST method has advantages over the water line method. As figure 20 shows, the 

variation around the elevations is small. This becomes more apparent when looking at the 

transects that it produces (Figure 21) where the transects are much smoother. If the FAST 

method were recalibrated the transects would be superior to the transects produced by the 

other methods. It is expected that the bias remains constant throughout time and thus will not 

affect the elevation changes produced by the method. Because the ultimate objective of the 

study is to study elevation changes, rather than actual elevations, this method while 

uncalibrated will still be useable for that purpose.  

The NDWI and FAST methods were both selected to analyse the full period of marsh 

recession. The NDWI water lines provide a better estimate of the elevations on the tidal flats, 

while FAST is used to study the elevation changes in greater detail.  
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3.2 Validation of the marsh extent 

3.2.1 2015 GPS marsh edge 

 
(A) 

 
(B) 

Figure 22 Marsh extents from the satellite analysis using spectral unmixing (A) and Supervised classification (B) 
compared to measured marsh extents by GPS by B. Mason (2016) 

The marsh extends produced form the satellite imagery were verified against known marsh 

extents measured in the field in 2015-2016 by B. Mason (2016). The marsh leading edges 

had been measured during the summer of 2015 while the edge within the marsh was 

measured in 2016. The validation period was taken again as five years before and after the 

measurement. Because this study was carried out in 2017 the validation period was set to 

2010-2017. All available images within this time were processed using the methodologies 

described in Chapter 2.6. 

Both methods produce very similar marsh extents. The marsh edges match the observed 

marsh edges from 2015-2016 quite well. The edge on Sturgeon Bank is resembled more 

closely by the supervised classification where the biggest deviation from the edge was about 

100 m (ignoring obvious noise), but most of the edge was followed within 1 pixel of variation 

(i.e., 30 m). Spectral unmixing preformed almost identical to the classification in the middle of 

Sturgeon Bank but misclassifies pixels about 300 m away from the edge in the southern end 

in a noisy pattern. It appears the cut-off for marsh in the spectral unmixing was set a little too 

loose as the slightly greener pixels delineate the marsh better.  
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(A) 

 
(B) 

Figure 23 A close up of Westham island from figure 22 showing the marsh extents produced by spectral unmixing 
(A) and supervised classification (B) with the mars edge from 2015-2016 (red line) by B. Mason (2016). 

On Westham Island there is bare flat within the marsh (nicknamed the “frog pond”) that 

needs close verification. Both methods follow the outer edge of the marsh at the north end 

with great precession and one pixel of variation even picking up colonies of plants visible on 

the Google Earth background layer. At the southern outer edge however, a large area is 

identified as containing no or very little marsh by the unmixing method in particular. The 

spectral unmixing method also identifies a strip of marsh within the frog pond that the 

supervised classification correctly predicted as flat. Outside of these two areas however, 

spectral unmixing produced a more continuous marsh within the marsh edges while the 

supervised classification classified more individual pixels as bare flat. 

3.2.2 1981 marsh survey 

A large survey was conducted in 1981 looking at the composition and position of the marsh 

on Sturgeon Bank (W. S. Boyd, 1983). With this dataset the accuracy of the methods was 

tested on the marsh prior to the recession event. Satellite imagery was only available after 

1980 from Landsat 5. To get enough images the validation period was chosen as 1980-1990. 

There is a risk that marsh recession started within this period, but differences are expected to 

be limited given the severe recession had been observed to have happened after 1989 (S. 

Boyd et al., Unpublished).  

A simple check was performed for the validation: for each of the 124 sample points of the 

survey where a marsh species was documented, the satellite methods should indicate that 

point as marsh. The accuracy was calculated by counting the number of correctly identified 

sample points and dividing it by the total number of samples (Table 9). 

Table 9 Accuracy of the marsh detection methods as calculated from the 1981 marsh survey samples from W. S. 

Boyd (1983) 

N=124 Accuracy 

Supervised classification 0.8629 
Spectral unmixing 0.9032 
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(A) 

 
(B) 

Figure 24 Comparison of the marsh survey in 1981 by W. S. Boyd (1983), compared to the results of the marsh 
detection for the period 1980-1990 by spectral unmixing (A) and supervised classification (B) 

Both methods perform well with quite high accuracies of 86% for supervised classification 

and 90% for spectral unmixing. However with most of the sample points at the landward side 

of the marsh edge the performance is expected to be better as high marsh is more easily 

detected than the low marsh.  

The low marsh is still quite accurately represented in both  figure 24A and B. The transects in 

the north and middle are in almost perfect agreement with the survey. Most of the 

misclassifications occur in the two southernmost transects of Sturgeon Bank where more 

marsh is detected than was observed in the survey. Possibly this is due to the influence of 

the tidal channels in this area. As discussed in section 2.6, because (1) the algorithms learn 

to recognize the features from training areas and (2), the training areas for marsh tend to be 

higher in elevation and thus drier, the algorithms are implicitly trained to associate drier areas 

with marsh. The rapid dewatering through the tidal channels might thus incentive the 

algorithms to misclassify this area as marsh.  

The spectral unmixing has calculated as having a 4% better accuracy than the supervised 

classification. Even though both methods perform similarly, the small gaps left within the 

marsh by the supervised classification where there should be marsh give the spectral 

unmixing a slight edge. Ignoring these, both methods are comparable in accuracy. 

  

Spectral 

unmixing 

Supervised 

classification 
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3.2.3 2017 field observation 

 
(A) 

 
(B) 

Figure 25 The spectral unmixing (A) and supervised classification at Sturgeon Bank side by side for the period 

2010-2017 with the marsh edges by B. Mason (2016)  and the location of the 2017 survey 

 
(A) 

 
(B) 

Figure 26The spectral unmixing (A) and supervised classification at Westham Island side by side for the period 
2010-2017 with the marsh edges by B. Mason (2016)  and the location of the 2017 survey 

In the summer of 2017 Eric Balke surveyed 5 locations on Sturgeon Bank and Westham 

Island for this study to help interpret the results with in situ observations (see his field notes 

in Appendix: B). Five locations were selected where initial classification attempts showed 

conflicting results (see figure 25 and figure 26). At each location a 30 m x 30 m plot was 

made to mirror a 30 x 30m pixel from a satellite image. The area was photographed and the 
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type surface was recorded. In areas with marsh the fraction of area with vegetation within the 

plot was estimated.  

The fractional cover of vegetation of the sample points was estimated as well from the results 

of the satellite images. By setting all marsh pixels to 1, and all detected bare flat pixels 0 

within Google Earth Engine, the fraction of plant cover is estimated from the average value of 

all pixels in a 10-pixel radius around the sample point. For example, if in the area around the 

sample point half of the pixels is classified marsh and the other half is not, it can be assumed 

that within the pixel that is sampled half of the area is covered by plants. Although this is not 

necessarily true, it is a proxy to provide a first estimation of area plant cover. If a pixel is not 

classified as marsh while it should have, the cause might be that simply to little of the area 

was covered by too little vegetation to detect. Using the surveyed pixels from Eric Balke and 

the calculated plant cover proxies, this hypothesis is tested. 

As table 10 shows, the plant cover proxies are similar to what was observed in the field. 

What becomes clear is that the areas on Westham Island where classification was difficult 

(A, B, C), the plant cover is estimated around the 50%. At location A the distribution of 

bulrush was observed to be very patchy. At location B almost the whole plot was covered by 

vegetation except for the large drainage channel running through it and the old grubbing 

holes from geese. Location C was observed to have a 4-cm deep pool in the middle of the 

plot. This sheds some light on the spatial difficulties of classification from low-resolution 

satellite images; it merges all the complex features within a 30x30m pixel into mixed signal. 

These pixels reveal that patchiness and the presence of water complicated a proper 

detection of the marsh. 

On Sturgeon Bank the pixels of the survey would occasionally be misclassified as marsh. 

Although the proxy plant cover was low enough to not detect the pixel surveyed as marsh, 

there were still misclassified pixels around it. As noted by Eric, both locations D and E have 

non-native sea grass (Zostera japonica) and location E had 5% of its area covered by algae 

at the time of the survey. It is believed that algae deposition combined with the presence of 

sea grass can create a “green” enough spectral signature to lead to occasional false marsh 

classifications.  

 

 

Table 10 Estimated plant cover from in-field observations, spectral unmixing and supervised classification 

 In-field Spectral unmixing Supervised 
classification 

Point Plant 
cover [%] 

Classified 
as marsh 

Plant 
cover [%] 

Classified 
as marsh  

Plant 
cover 
[%] 

A 50 No 34 No 37 

B 85 Yes 62 Yes 56 

C 60 Yes 71 Yes 70 

D 1 No 30 No 21 

E 0 No 5 No 3 
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3.2.4 Discussion 

The detection of marsh was performed well by both the spectral unmixing and the supervised 

classification. The predicted marsh extents are for most of the area in agreement with what 

was measured in 1981, 2015 and 2017 with a deviation of only 1 to 2 pixels.  

The challenging areas proved to be the southern part of Sturgeon Bank and the marsh edge 

on Westham in front of the flat at the center of the marsh. At the very south of Sturgeon Bank 

the areas were misclassified as marsh but at Westham island marsh was misclassified as 

flat. The contrast between these two areas is the presence of water. While at Westham there 

was sparser marsh present with pooling water, the very south of Sturgeon Bank is drained 

quickly due to the larger system of tidal channels nearby. This drier flat is an exception as 

most of the flats are not drained as quickly. As discussed in section 2.6 the algorithms learn 

implicitly to see dryness as an attribute of the marsh since the marsh is generally higher in 

elevation and not inundated as much. Hence the difference between a dry flat and a marsh 

with ponds becomes more difficult to distinguish. The presence of plant matter is another 

attribute of marsh but when green algae and seagrasses are present the spectral signals of 

the two areas are even more similar.  

It should be noted that these problems, while important, do not negate the high accuracy 

both methods demonstrated. Both methods were found to achieve comparable results with 

spectral unmxing having the slight advantage of showing a gradient in “marshness”, rather 

than only a classification of high and low marsh. 
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4 Results and discussion 
4.1 Tidal flat elevation 

  
Figure 27 Elevations produced by FAST (A) and the water line method with NDWI (B) for the period 1980-1990 

Figure 28 Elevations produced by FAST (A) and the water line method with NDWI (B) for the period 1990-2000 
  

A B 

A B 
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Figure 29 Elevations produced by FAST (A) and the water line method with NDWI (B) for the period 2000-2010 

  
Figure 30 Elevations produced by FAST (A) and the water line method with NDWI (B) for the period 2010-2017 

  

A B 

A B 
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4.2 Marsh extent 

  
Figure 31 Marsh extents produced by spectral unmixing (A) and supervised classfication (B) for the period 1980-

1990 

  
Figure 32 Marsh extents produced by spectral unmixing (A) and supervised classfication (B) for the period 1990-
2000 

A B 

A B 
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Figure 33 Marsh extents produced by spectral unmixing (A) and supervised classfication (B) for the period 1980-

1990 

  
Figure 34 Marsh extents produced by supervised spectral unmixing (A) and supervised classfication (B) for the 
period 2010-2017 

A B 

A B 
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4.3 Marsh and elevation changes 

  

 

 

Figure 35 Elevation changes since 1980-1990 as calculated by FAST. Blue indicates a decrease in elevation, red 
an increase in elevation and green no change in elevation. 
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Figure 36 The elevation difference between the FAST elevation in 1980-1990 and 2010-2017 (A), and the 

elevation difference between the NDWI waterline elevation in 1980-1990 and 2010-2017 (B) 

  
Figure 37 The difference in marsh between 1980-1990 and 2010-2017 from spectral unmixing (A) and the 

difference in marsh between 1980-1990 and 2010-2017 from supervised classification(B) 

  

A B 

A B 
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Figure 38 The marsh change from spectral unmixing from 1980-1990 to 200-2017 overlaid on top of the elevation 
change from FAST between 1980-1990 and 2010-2017 

4.4 Discussion of the results 

4.4.1 Tidal flat elevation 

The tidal flat elevation did not change much for in the first years after 1980 to 2000, but the 

first signs of elevation loss start to become visible in the upper-part of the profile along the 

entire delta while an increase in elevation is detected seaward at the flats (Figure 27, Figure 

28 and Figure 35). In the years after 2000 this trend continued (Figure 29 and Figure 35), 

though Sturgeon Bank is affected most. Further loss of elevation is detected in the years 

after 2010 (Figure 30 and Figure 35).  

In figure 36 the total amount of elevation change is presented. It shows losses occurred 

along the upper-part of the profile roughly at the edge of the high marsh. On Sturgeon Bank 

this resulted in the loss of a slightly elevated plateau that existed in the 1980’s while on 

Westham Island the loss occurred within the marsh itself. In fact, at the seaward leading 

edge on Westham no significant elevation changes were observed. At Sea island in front of 

YVR-airport loss of elevation is detected all the way to the dike.  

The pattern of elevation loss along the upper-profile at each location suggests erosion could 

have occurred, caused by mechanisms affecting the entire Delta. These could be 

mechanisms like sea-level rise, storms, or any other process governing the coast on a 

regional scale. Research is needed to identify and quantify these mechanisms.  
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4.4.2 Marsh extent 

In 1980-1990 the marsh at the center of Sturgeon Bank extended much further onto the flats 

than it does today (Figure 31). This had already been known from the comparing the leading 

edge survey in 2016 (B. Mason, 2016), to the 1981 marsh survey (W. S. Boyd, 1983) and the 

marsh survey by Hutchinson (1982) as well as the locations of corms found within the bare 

flat today (Balke, 2017). What had remained uncertain was when this marsh changed to its 

current state.  

The results in figure 32 suggest this change started in the 1990’s; a large portion of the 

marsh front receded on Sturgeon Bank and the marsh on Sea Island. On Westham Island 

the leading edge did not change significantly between 1980-1990 and 1990-2000, but within 

the marsh a bare flat started to form. In the period 2000-2010 these changes continue 

(Figure 33). The marsh on Stureon Bank receded until it was straignted, while on Westham 

Island the flat within the marsh expanded. After 2010 no more significant changes in marsh 

extent were observed (Figure 34).  

The net change in marsh extent over the past 35 years is presented in figure 37. Most 

recession was obsereved on Sturgeon Bank, where the overall leading edge has receded by 

200 m. At the center of Sturgeon Bank where the marsh was extending further outward 600 

m of recession was observed to the point where the marsh no longer pretudes outward in 

this area. In total about 1.5 km2 of marsh was lost on Sturgeon Bank. On Westham Island the 

leading edge has remained stable, but around 0.4 km2 of marsh was converted to mud flat 

from the inside. These figures are close to estimations made by Balke (2017). Comparing 

leading edge and frog pond Trimble measurements by B. Mason (2016) to georeferenced air 

photos from 1979, Balke (2017) calculates that at least 1.6 km2 of marsh has died off at 

Sturgeon Bank, and 0.55 km2 low marsh died off and converted into mud flat from the inside 

sometime from 1989-2016. 

 

4.4.3 Correlation between erosion and recession 

One of the objectives of the study was to look for a correlation between the recession and 

the possible loss of sediment from the banks. If a sediment deficit is a contributing factor, 

indications should be found in the results. 

The first period in which the marsh recession was observed was 1990-2000 and the 

recession appear to have stopped in by 2010-2017. No large elevation changes had been 

observed yet in 1990-2000. Most elevation changes were observed to have happened after 

2000 up until the last period 2010-2017. The results indicate the elevation changes to be 

lagging behind the marsh changes and thus elevation changes are more likely to be caused 

by the loss of marsh rather than the other way around. As figure 38 shows, where marsh was 

lost on Sturgeon Bank the largest loss in elevation was detected. On Westham Island 

though, elevation loss was detected in both the lost marsh at the center, as well as within the 

remaining low marsh and no correlation was found.  

As was discovered in the validation, the marsh has an influence on the predicted elevations 

from summer images by obscuring the water until it is high enough to be picked up through 

the stems. When marsh is lost, water is more easily detected, and the area would be 

identified as inundated earlier that if vegetation were present. As a result, some decrease in 

elevation at areas with marsh loss was expected. The validation could not quantify this effect. 

Erosion detected in these areas is likely a combination of this effect and actual erosion.  
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5 Summary and Conclusions 
 

The use of satellite imagery to detect marsh and tidal changes proved an effective tool to 

shed new light on the marsh recession in the Fraser Delta. Two methods to calculate 

elevations from satellite imagery were employed and validated, the waterline method and a 

the method from the Foreshore Assessment using Space Technology-project (FAST) (FAST, 

2017). All methods achieved higher than expected accuracies with mean absolute errors 

ranging from 0.36 m to 0.73 m. These accuracies are not far from the accuracy of the 2013 

LIDAR survey provided by the Vancouver Fraser Port Authority used for validation, which is 

expected to be in the order of 20 cm in this environment (Hladik & Alber, 2012; Schmid et al., 

2011). The largest errors were the result of the discrepancy in resolution between the LIDAR 

survey and the resolution of the satellite imagery which led to large elevations differences 

within channels that were to small to be detected by the satellite.  

Erosion was detected by looking at the change in elevation from 1980 to 2017 at 10-year 

intervals. The elevations for each period were produced using the FAST method and the 

water line method. A limited amount of erosion was detected before 2000 but the largest 

amount of erosion was detected after 2000. It was concentrated at the upper-profile at 200 m 

from the dike on Sturgeon Bank and 600 m from the dike at Westham Island. Although 

elevation changes were in the order of -0.4 m, these are within the margin of error and no 

solid conclusions on the amount of erosion could be made. However, the consistent pattern 

of erosion across the entire delta front suggests erosion did take place and probably is the 

result of a process that affects the entire delta front.   

The marsh was extracted from satellite imagery with the spectral unmixing technique and by 

using random forrest supervised classification. Both methods were validated against a 1981 

marsh survey by W. S. Boyd (1983), the marsh edge as measured in the summers of 2015 

and 2016 (B. Mason, 2016), and a field survey at five location in 2017 by Eric Balke. Both 

techniques performed similarly and achieved an accuracy within two satellite pixels (± 60m) 

for most of the area. Larger misclassifications were observed at the southern corner of 

Sturgeon Bank and the area in between the leading edge and inner mud flat on Westham 

Island. Factors leading to misclassifications were found to be: a small plant density, the 

pooling of water, the presence of sea-grass and algae.  

The marsh extent for each 10-year period from 1980 to 2017 was produced by the 

supervised classification and spectral unmixing. The leading marsh edge on Sturgeon Bank 

receded rapidly between the periods 1980-1990 and 2000-2010, but showed no significant 

change after 2010. On Westham Island the outer leading edge remained stable, but marsh 

was being converted to mud flat in the same period as the marsh receded on Sturgeon Bank. 

Similarly, no large changes were detected on Westham after 2010. In total around 1.5 km2 of 

marsh was lost along the leading of Sturgeon Bank and 0.4 km2 of marsh was lost within the 

marsh on Westham Island. 

The study did not find compelling evidence to support the hypothesis that erosion of 

sediments did lead to the loss of marsh along the Fraser Delta. Instead, the elevation 

changes appear to lag behind the loss marsh by one 10-year period. It is therefore more 

likely the marsh recession was a factor that lead to erosion, rather than the erosion leading to 

marsh recession.  
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Appendix: A. Image dates and water levels 
 

Image nr Date 
[dd-MM-yyyy HH:mm] 

Water level 
[m+CD] 

 
Image nr Date 

[dd-MM-yyyy HH:mm] 
Water level 
[m+CD] 

1 17-7-1984 18:36 2.61 
 

79 15-10-1999 18:44 3.94 

2 28-9-1984 18:31 3.66 
 

80 13-2-2000 18:35 4.53 

3 14-8-1985 18:31 0.96 
 

81 17-4-2000 18:36 1.83 

4 8-10-1985 18:36 3.25 
 

82 28-6-2000 18:53 2.04 

5 29-5-1986 18:25 3.17 
 

83 30-7-2000 18:52 0.43 

6 1-8-1986 18:23 1.65 
 

84 22-8-2000 18:58 3.63 

7 8-8-1986 18:29 2.22 
 

85 23-8-2000 18:39 3.34 

8 11-10-1986 18:27 3.5 
 

86 23-9-2000 18:58 2.76 

9 8-1-1987 18:20 4.26 
 

87 24-9-2000 18:39 1.92 

10 25-2-1987 18:22 3.5 
 

88 10-11-2000 18:57 2.64 

11 29-3-1987 18:23 1.94 
 

89 22-1-2001 18:51 3.53 

12 7-5-1987 18:31 2.97 
 

90 4-4-2001 18:41 3 

13 16-5-1987 18:25 1.88 
 

91 20-4-2001 18:41 2.42 

14 10-7-1987 18:32 0.33 
 

92 21-5-2001 18:57 1.13 

15 5-9-1987 18:28 1.04 
 

93 22-5-2001 18:41 0.93 

16 21-9-1987 18:28 1.63 
 

94 9-7-2001 18:41 2.19 

17 28-9-1987 18:34 4.04 
 

95 25-7-2001 18:41 3.11 

18 21-7-1988 18:32 3.18 
 

96 10-8-2001 18:41 3.26 

19 30-9-1988 18:38 4.2 
 

97 26-8-2001 18:41 3.46 

20 10-4-1989 18:36 2.69 
 

98 4-10-2001 18:47 2.68 

21 24-7-1989 18:28 3.45 
 

99 12-7-2002 18:37 1.41 

22 28-3-1990 18:27 1.83 
 

100 13-8-2002 18:36 3.37 

23 12-8-1990 18:21 3.76 
 

101 5-9-2002 18:41 1.01 

24 28-8-1990 18:21 3.41 
 

102 21-9-2002 18:41 1.67 

25 4-9-1990 18:27 1.34 
 

103 22-9-2002 18:49 2.02 

26 13-9-1990 18:21 2.92 
 

104 16-10-2002 18:34 2.47 

27 20-9-1990 18:27 2.61 
 

105 1-11-2002 18:33 2.52 

28 2-5-1991 18:29 2.14 
 

106 12-2-2003 18:40 3.83 

29 19-6-1991 18:30 3.2 
 

107 1-9-2003 18:38 3.6 

30 30-7-1991 18:24 2.62 
 

108 4-11-2003 18:39 2.86 

31 15-8-1991 18:24 3.83 
 

109 11-3-2004 18:40 3.29 

32 16-9-1991 18:25 3.44 
 

110 28-4-2004 18:41 3.07 

33 23-9-1991 18:31 1.92 
 

111 17-7-2004 18:43 1.01 

34 9-10-1991 18:31 3.09 
 

112 24-7-2004 18:50 3.35 

35 21-6-1992 18:30 2.98 
 

113 2-8-2004 18:44 1.32 

36 16-7-1992 18:24 1.77 
 

114 9-8-2004 18:50 2.94 

37 17-8-1992 18:23 3.08 
 

115 18-8-2004 18:44 2.03 

38 24-8-1992 18:30 1.9 
 

116 17-2-2005 18:54 3.86 

39 9-9-1992 18:29 1.61 
 

117 22-4-2005 18:54 1.83 

40 16-2-1993 18:29 3.61 
 

118 20-7-2005 18:49 0.46 
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41 25-2-1993 18:23 3.33 
 

119 27-7-2005 18:55 3.51 

42 23-5-1993 18:30 1.66 
 

120 5-8-2005 18:49 1.15 

43 4-8-1993 18:23 2.16 
 

121 21-8-2005 18:49 1.57 

44 12-9-1993 18:29 2.17 
 

122 6-9-2005 18:49 2.55 

45 24-11-1993 18:23 3.29 
 

123 4-5-2006 18:53 3.02 

46 3-5-1994 18:21 3.16 
 

124 28-6-2006 19:00 1.58 

47 20-6-1994 18:20 1.34 
 

125 23-7-2006 18:54 0.91 

48 22-7-1994 18:19 0.91 
 

126 31-8-2006 19:01 3.67 

49 30-8-1994 18:24 3.08 
 

127 25-9-2006 18:55 3.13 

50 24-9-1994 18:17 3.85 
 

128 2-10-2006 19:01 3.19 

51 1-10-1994 18:23 2.53 
 

129 11-10-2006 18:55 4.33 

52 3-3-1995 18:12 3.14 
 

130 14-5-2007 19:02 1.53 

53 26-3-1995 18:17 3.03 
 

131 30-5-2007 19:01 1.09 

54 13-5-1995 18:15 1.1 
 

132 10-7-2007 18:55 2.12 

55 30-6-1995 18:13 2.16 
 

133 26-7-2007 18:55 1.77 

56 16-7-1995 18:12 2.94 
 

134 19-9-2007 19:00 3.79 

57 29-10-1995 18:00 4.51 
 

135 5-10-2007 19:00 3.3 

58 2-2-1996 18:06 3.26 
 

136 12-7-2008 18:48 2.52 

59 11-7-1996 18:15 1.57 
 

137 4-8-2008 18:53 2.29 

60 27-7-1996 18:16 1.42 
 

138 14-9-2008 18:46 1.47 

61 12-8-1996 18:17 1.29 
 

139 28-5-2009 18:49 2.27 

62 18-12-1996 18:23 4.31 
 

140 4-6-2009 18:55 1.62 

63 4-2-1997 18:26 3.67 
 

141 13-6-2009 18:49 2.77 

64 11-5-1997 18:29 2.78 
 

142 16-8-2009 18:50 2.27 

65 18-5-1997 18:36 2.11 
 

143 24-9-2009 18:57 4.15 

66 7-9-1997 18:39 1.59 
 

144 9-7-2010 18:58 1.25 

67 23-9-1997 18:40 1.48 
 

145 25-7-2010 18:58 0.93 

68 18-3-1998 18:44 3.28 
 

146 6-10-2010 18:51 2.03 

69 2-8-1998 18:39 2.72 
 

147 13-10-2010 18:57 4.45 

70 3-9-1998 18:40 1.78 
 

148 23-4-2011 18:57 3.02 

71 26-9-1998 18:46 3.81 
 

149 5-7-2011 18:50 2.56 

72 21-10-1998 18:40 2.83 
 

150 7-9-2011 18:50 2.55 

73 15-4-1999 18:40 1.45 
 

151 16-10-2011 18:55 3.89 

74 22-4-1999 18:46 3.41 
 

152 4-10-2015 19:20 4.38 

75 12-7-1999 18:54 0.43 
 

153 11-9-2016 19:23 3.21 

76 28-7-1999 18:54 1.13 
 

154 7-12-2016 19:18 4.44 

77 13-9-1999 18:44 3.08 
 

155 30-3-2017 19:20 2.07 

78 22-9-1999 18:37 1.82 
 

156 29-5-2017 19:27 1.84 
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Appendix: B. Pixel survey June, July 2017 
 

Below are the field notes and pictures from Eric Balke of his survey in the summer of 

2017.  

Plot A 

- location: 10 U, 0486251 E, 5436710 N 

- survey date: 06 July 2017 

- weather: sunny 

- substrate: slightly muddy 

- water: some pooling in depressions 

- vegetation cover: ~50% Schoenoplectus pungens in a highly variable, patchy 

distribution; located just north of a large area of mud flat (i.e., denuded marsh) 

- algae deposition: negligible 
 

 
Looking north 

 
Looking east 

 
Looking south 

 
Looking west 
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In the middle looking west 

 

Plot B 

- location: 10 U, 0485749 E, 5437423 N 

- survey date: 06 July 2017 

- weather: sunny 

- substrate: slightly muddy 

- water: some pooling in depressions 

- vegetation cover: ~80-90% S. pungens; old goose grubbing holes and large drainage 

channel constitute unvegetated proportion 

- algae deposition: negligible 

 

 

 
Looking north 

 
Looking east 
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Looking south 

 
Looking west 

 
In the middle looking west 

 

 

Plot C 

- location: 10 U, 0485605 E, 5437946 N 

- survey date: 06 July 2017 

- weather: sunny 

- substrate: slightly muddy 

- water: up to 4 cm pooling in large denuded pool in middle of plot 

- vegetation cover: ~60% S. pungens; large denuded pool with Ruppia maritima (widgeon 

grass) in the middle of the plot; large mudflat immediately south of plot. 

- algae deposition: negligible 
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Looking north 

 
Looking east 

 
Looking south 

 
Looking west 

 
In the middle looking west 
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Plot D 

- location: 10 U, 0485270 E, 5443727 N 

- survey date: 28 June 2017 

- weather: sunny 

- substrate: mud flat with recent deposition of mud over lots of plot 

- water: approximately 0-1 cm pooling water throughout plot 

- vegetation cover: <5% Zostera japonica (likely greater, but much of area has recent 

deposition of mud), ~10 shoots of S. pungens 

- algae deposition: negligible 

 

 
Looking north 

 
Looking east 

 
Looking south 

 
Looking west 

 

 

Plot E 

- location: 10 U, 0485003 E, 5444940 N 

- survey date: 28 June 2017 

- weather: sunny 

- substrate: mud flat 

- water: approximately 1 cm pooling water throughout plot 

- vegetation cover: 10% Z. japonica 

- algae deposition: <5% Ulva lactuca 
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Looking north 

 
Looking east 

 
Looking south 

 
Looking west 

 


