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A B S T R A C T

The Environmental Control System (ECS) is the main consumer of non-propulsive power onboard aircraft.
The use of an electrically-driven Vapor Compression Cycle (VCC) system, in place of the conventional air
cycle machine, can lead to a substantial increase of the coefficient of performance. This work documents the
development of an integrated design optimization method for VCC-based aircraft ECS, where the sizing of the
system is performed along with the conceptual design of the compact heat exchangers and the high-speed
centrifugal compressor. A data-driven model of the compressor has been developed to reduce the complexity
of the VCC system model and the computational cost of the associated optimization problem. The model is
based on artificial neural networks and has been trained on a synthetic dataset of 165k centrifugal compressor
designs, generated with an in-house tool. The case study selected to demonstrate the capabilities of the
proposed methodology is the multi-objective design optimization of an electrically-driven VCC system for
the ECS of a single-aisle, short-haul aircraft, flying at cruise conditions. The results show that the number
of function evaluations needed to identify the Pareto front reduces by a factor of three when using the data-
driven model, in place of a meanline method. At the same time, the robustness of the numerical solver is
improved, leading to the identification of optimal solutions covering a wider design space. Finally, the proposed
methodology enables the analysis of the trends established between the system performance metrics and the
design of the individual components.
1. Introduction

The continuous reduction of aircraft fuel consumption and emis-
sions is a critical target for the aviation sector for economic, environ-
mental, and societal reasons. To this purpose, the Advisory Council for
Aeronautics Research in Europe (ACARE) is calling for innovative and
sustainable technological solutions, to be implemented in the context
of the More Electric Aircraft (MEA). The goals set by Europe with the
Flightpath 2050 require a significant reduction of CO2, NOx, and noise
emissions (ACARE, 2017). To reach these targets, a large number of
resources have been invested in R&D programs for the development
of new technologies for future aircraft, including the investigation of
alternative concepts for non-propulsive aircraft subsystems. Among all
the auxiliary subsystems, the Environmental Control System (ECS) is
the largest consumer of non-propulsive power, accounting for up to
3%–5% of the total fuel burn (Bender, 2018). The ECS is responsible
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for providing dry, sterile, and dust-free conditioned air to the airplane
cabin at the proper temperature, flow rate, and pressure, to satisfy
the safety and comfort requirements, as well as to ensure adequate
avionics cooling (Dechow and Nurcombe, 2005). To reduce the fuel
consumption of the ECS, the Boeing 787 has been equipped with a
bleedless ECS, driven by an electrical motor. This solution eliminates
the extraction of pneumatic power generated by the engines, and
enables a reduction of specific fuel consumption in the range of 1%–2%
at cruise conditions (Boeing, 2007). Furthermore, the replacement of
the traditional Air Cycle Machine (ACM), i.e., an inverse Brayton cycle,
with an electrically-driven Vapor Compression Cycle (VCC) system, can
lead to a substantial increase of the Coefficient Of Performance (COP).
Moreover, the adoption of an electrically-powered ECS is expected to
reduce maintenance costs and increase system reliability, due to the
removal of the maintenance-intensive bleed system. On the other hand,
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Nomenclature

Roman symbols

�̇� Mass flow rate [kg s−1]
�̇� Heat flow rate [W]
�̇� Volumetric flow rate [m3 s−1]
�̇� Power [W]
𝑌 Vector of model predictions [–]
𝐴 Surface area [m2]
𝑏 Fins height [m]
𝐶r Heat capacity ratio [–]
𝑐𝑝 Specific heat capacity at constant pressure [J

kg(−1) K(−1)]
𝐷 Diameter [m]
𝑓 Friction factor [–]
𝐹ax Axial thrust [N]
𝐹d Flow depth [m]
𝐹p Fins pitch [m]
𝐺 Mass flux [kg m−2 s−1]
𝑔 Gravitational acceleration [m s(−2)]
𝐻 Blade height [m]
ℎ Specific enthalpy [J kg−1] - Heat transfer coeffi-

cient [W m−2 K−1]
𝑗 Colburn factor [–]
𝑘 Impeller shape factor [–] - Thermal conductivity

[W m−1 K−1]
𝑘 Impeller shape factor [–]
𝐿 Loss function [–]
𝐿∕𝐷 Lift to drag ratio [–]
𝑙f Fin length [m]
𝐿h Louver height [m]
𝐿l Louver length [m]
𝐿p Louver pitch [m]
𝑙t Tube length [m]
𝑀𝑎 Mach number [–]
𝑁 Fluid molecular complexity [–] - Number of items

[–]
𝑛 Number of samples [–]
𝑁𝑢 Nusselt number [–]
𝑂𝑅 Operating range [–]
𝑃 Pressure [Pa]
𝑃t Tubes pitch [m]
𝑃𝑟 Prandtl number [–]
𝑅 Radius [m] - Thermal resistance [K W−1]
𝑅𝑎 Surface roughness [m]
𝑅𝑒 Reynolds number [–]

the VCC system may not meet the requirements of high cooling power
and low air temperature at the discharge of the ECS pack, occurring
when the system operates on ground at high ambient temperature
and high relative humidity. To overcome this limitation, Airbus and
Liebherr are jointly developing a novel electrically-driven ECS concept
based on a hybrid architecture, which integrates an ACM and a VCC
system (Schmidt et al., 2021). A similar concept has been investigated
also by DLR (Bender, 2018). Fig. 1 shows the simplified process flow
diagram of the three mentioned ECS architectures.

A thorough attempt to derive an analytical formulation for the
COP of aircraft ECS, based on the ACM technology, can be found
355

in Yang and Yang (2020b). Using the endoreversible thermodynamic
𝑆𝐹𝐶P Power specific fuel consumption [lb hp(−1) h(−1)]
𝑆𝐹𝐶th Thrust specific fuel consumption [lb lbf(−1) h(−1)]
𝑇 Temperature [K]
𝑡 Thickness [m]
𝑇h Tube height [m]
𝑈 Peripheral speed [m s−1] - Overall heat transfer

coefficient [W m−2 K−1]
𝑢 Flow velocity [m s−1]
𝑉 Absolute velocity [m s−1] - Volume [m3]
𝑣air Airspeed [m s(−1)]
𝑊 Relative velocity [m s−1]
𝑊ECS ECS pack weight [kg]
𝑊f0 Fuel weight penalty [kg]
𝑥 Vapor quality [–] - Width [m]
𝑌 Vector of true labels [–]
𝑦 Height [m]
𝑧 Depth [m]
𝑁𝑇𝑈 Number of Transfer Units [–]

Greek symbols

𝛼 Absolute flow angle [◦]
𝛽 Pressure ratio [–]
𝜶 Vector of design variables [–]
𝜽 Vector of hyperparameters [–]
𝛿 Thickness [m]
𝜖 Effectiveness [–]
𝜖𝑏 Back face clearance [m]
𝜖𝑡 Tip clearance gap [m]
𝜂 Efficiency [–]
𝜂c Fin surface effectiveness [–]
𝜂f Fin efficiency [–]
𝛾𝑃𝑣 Isentropic pressure–volume exponent [–]
𝜈 Poisson’s ratio [–]
𝛺 Rotational speed [rpm]
𝛷t1 Swallowing capacity [–]
𝜓is Isentropic loading coefficient [–]
𝜌 Density [kg m−3]
𝜏 Aircraft mission time [h]
𝛩 Louver angle [◦]

Subscripts

1 Impeller inlet
2 Impeller outlet
3 Diffuser outlet
4 Volute outlet
air Air stream
bl Blade
CC Cabin Compressor
cond Condensation

analysis, the authors obtained an explicit formulation of the COP for
five different ACM configurations. However, the derivation presented
in the paper is based on the assumption of dry air and ideal gas,
thus it is not directly applicable to VCC systems, where the working
fluid experiences phase changes, and does not obey the ideal gas law.
Moreover, in the aforementioned study, the authors did not account
for the conceptual design of the main components of the ECS, namely,
the heat exchangers and the turbomachinery. However, as reported by

the same authors in Yang and Yang (2020a), the performance of the
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des Desuperheating
el Electrical
eva Evaporation
ext External
f Fin
h Hub
hyd Hydraulic
is Isentropic
mc Microchannel
refr Refrigerant stream
sub Subcooling
t Tube
ts Total-to-static
tt Total-to-total

Abbreviations

ACM Air Cycle Machine
ANN Artificial Neural Network
CHEX Compact Heat Exchanger
CO2 Carbon Dioxide
con Constraints
COP Coefficient Of Performance
ECS Environmental Control System
FV Finite Volume
H2 Hydrogen
HEX Heat Exchanger
mae Mean absolute error
mape Mean absolute percentage error
MB Moving Boundary
MLP Multi-Layer Perceptron
obj Objectives
pp Pinch point
R-1233zd(E) Trifluoropropene
R-134a Tetrafluoroethane
sc Subcooling
sh Superheating
VCC Vapor Compression Cycle

ECS is highly affected by the design of its components. Therefore, the
optimal design of the system can be arguably achieved only by resorting
to an integrated design approach, i.e., a framework in which the design
variables of the system and those related to the preliminary design
of the main components are optimized simultaneously. A pioneering
application of the integrated design method for the optimization of
a simplified ECS configuration is documented in Vargas and Bejan
(2001). Following this work, numerous attempts have been made to
apply the integrated design approach to more complex and more real-
istic ECS configurations. In Pérez-Grande and Leo (2002), the authors
performed a multi-objective optimization of a two-wheel bootstrap
ACM, including the design of the two offset strip fin heat exchangers.
The objectives selected for the optimization were the minimization of
the volume of the heat exchangers, and the minimization of the total
entropy generation at cruise. The study has been subsequently extended
to include a thermoeconomic analysis, as documented in Leo and Pérez-
Grande (2005). More recently, an unconventional ECS architecture,
featuring a hybrid ACM-VCC system, has been targeted for a multi-
objective optimization (Sielemann et al., 2011). In this work, the ECS
has been simulated under three different operating conditions, and the
specific fuel consumption (SFC) has been computed as a weighted aver-
356

age of the values obtained in the three scenarios. An alternative strategy
to compute the thermodynamic characteristics of a conventional ECS
configuration has been proposed by Li et al. (2019). By adopting the
heat current method, in place of the energy flow method, the authors
were able to reduce the number of independent variables and governing
equations of the system, thus simplifying its solution for analysis and
optimization purposes. In Duan et al. (2022), the authors performed a
multi-objective optimization of a three-wheel bootstrap ACM, including
the high-pressure water separation loop. The optimization featured four
design variables, namely, the effectiveness of the four heat exchangers,
two objectives, i.e., the entropy generation rate and the number of
transfer units (𝑁𝑇𝑈) of the ECS, and five non-linear constraints.

All the aforementioned studies have targeted conventional or hybrid
ACM configurations, focusing the modeling effort on the heat exchang-
ers. However, in a VCC system featuring a high-speed centrifugal
compressor operating with gas bearings, the most critical component
of the system is arguably the compressor. Indeed, the operating range
of the VCC system is limited by the choke and stall margins of the
compressor, and the COP is highly affected by the efficiency of the
turbomachine. Therefore, in order to perform an integrated design opti-
mization of a VCC system, it is necessary to include a conceptual design
model of the turbo-compressor. However, this further complicates the
mathematical problem associated with the ECS model and increases the
number of design variables and non-linear constraints to be included
in the optimization. As a result, the robustness of the numerical solver
decreases, due to the higher likelihood of an ill-conditioned matrix, and
the computational cost of the optimization problem quickly becomes
prohibitive, even for relatively simple ECS configurations. In light of
the above, the availability of a strategy to reduce the complexity of the
system model, without sacrificing the accuracy of the solution, assumes
paramount importance.

2. Objective

The objective of the present study is to bridge the knowledge gap
regarding the integrated design of VCC-based ECS systems, including
the conceptual design of high-speed centrifugal compressors. This tar-
get is achieved through two intermediate steps. First, a methodology
to derive a data-driven model for high-speed centrifugal compressors
is proposed. Second, the capabilities of an optimization methodology,
exploiting this data-driven model for the integrated design of novel
VCC-based ECS, are demonstrated.

The paper is structured as follows. First, the models of the main
components of the ECS are introduced, highlighting the main sources of
complexity for system simulations. Then, the integrated design method-
ology is described and the problem of computational cost is discussed.
Next, the data-driven compressor model is developed and coupled to
the optimization framework, to reduce the computational overhead
associated with the compressor model, while retaining engineering
accuracy. A multi-objective design optimization of the electrically-
powered ECS is performed at cruise conditions with two different
methodologies: a conventional one, where the compressor preliminary
design is addressed by means of a meanline code, and the proposed
one, in which the meanline code is replaced with the data-driven
model. The results are compared in terms of optimal solutions and
computational cost. Moreover, a sensitivity analysis is performed to
assess the robustness of the optimal solutions to changes in the values of
the design variables and to identify the design variables which mostly
affect the objective functions. Finally, concluding remarks summarize
the lessons learnt and provide an outlook for future work.

3. Methodology

The present work deals with the multi-objective optimization of
an ECS for a single-aisle, short-haul aircraft, e.g., the Airbus A320.

One ECS architecture and one operating condition are considered:
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Fig. 1. Simplified process flow diagram of three novel environmental control system architectures.
a single-pressure level, electrically-driven VCC system, operating at
cruise, under mild cooling requirements.

The main components of the selected VCC system are: two com-
pact heat exchangers (CHEXs), an expansion valve, and a high-speed
centrifugal compressor operating with gas bearings. The use of a turbo-
compressor, in place of a conventional scroll compressor, enables an
increase of the system COP, while reducing its volume and weight.
The COP of the VCC system can be further enhanced by adopting
a configuration featuring multiple pressure levels. However, this is
beyond the scope of the present work.

The ECS based on the electrically-driven VCC technology has been
modeled by resorting to the acasual (Schweiger et al., 2020), object-
oriented, equation-based Modelica language, see Fig. 2. The additional
components needed to simulate the performance of the VCC-based ECS
are: two intakes for the ram air and the cabin air, respectively, the
cabin air compressor, the ram air fan, and the nozzle, used to accelerate
the ram airflow at the exhaust. All the components are steady-state,
zero-dimensional, except for the compressor, which features a mean-
line model. The refrigerant selected for the application is the R-134a,
i.e., the standard working fluid used for VCC-based ECS, such as those
of helicopters.

3.1. Heat exchangers

The VCC system features two CHEXs: the condenser and the evap-
orator. The prescribed topology is the one commonly adopted in auto-
motive applications, namely, a bundle of flat tubes with an internal
357
microchannel structure, and louver fins on the external surface, as
displayed in Fig. 3. This topology allows for a large heat transfer
surface on the air stream side, thus enhancing the heat transfer ef-
ficiency, without increasing the total volume occupied by the heat
exchanger. The fins and tube geometries have been modeled following
the guidelines provided in Shah and Sekulić (2003). The air and the
refrigerant flow into the fins and the flat tubes, respectively, according
to an unmixed cross-flow arrangement. The refrigerant undergoes a
phase change along the CHEXs tubes. To capture this phenomenon,
the model of these devices features a number of control volumes equal
to the number of phases undertaken by the refrigerant during the
thermodynamic process. For instance, the condenser is divided into
three sections: desuperheating (superheated vapor), condensation (two-
phase flow), and subcooling (liquid phase), as displayed in Fig. 4.
This modeling approach, known as Moving Boundary (MB) method,
has been selected in place of the Finite Volume (FV) method, since it
guarantees a better trade-off between model complexity and accuracy,
as demonstrated by Pangborn et al. (2015).

By adopting the MB method, it is possible to estimate the heat
transfer coefficient and the pressure drop occurring in the CHEX using
the most appropriate correlations for each refrigerant phase. These
equations are based on non-dimensional numbers, i.e., the Colburn
factor 𝑗 and the Nusselt number 𝑁𝑢 for the heat transfer coefficient,
and the friction factor 𝑓 for the pressure drop. The Colburn factor 𝑗 of
the air passing through the multi-louvered fins is retrieved using the
correlation by Chang and Wang (1997), and the corresponding heat
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Fig. 2. Modelica model of the electrically-driven VCC system. The thermodynamic
states are highlighted as follows: ram air stream in red, cabin air stream in green,
and refrigerant loop in blue. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

Fig. 3. Internal geometry of a heat exchanger featuring multi-louvered fins and flat
tubes with microchannels.

transfer coefficient computed as

ℎ = 𝑗
𝑐𝑝𝐺 . (1)
358

𝑃𝑟2∕3
Fig. 4. Schematic of the condenser model based on the Moving Boundary approach.
The fluid vapor quality 𝑥 determines the subdivision among the different phases.

The heat transfer coefficient of the single-phase refrigerant flow is
computed as a function of the Nusselt number estimated with the
correlation by Gnielinski (2013)

ℎ = 𝑁𝑢 𝑘
𝐷hyd

. (2)

In the case of condensing and evaporating refrigerant flow, the heat
transfer coefficient is determined according to Shah (1979) and Kand-
likar (1990), respectively. The heat transfer rate is estimated using the
𝜖 −𝑁𝑇𝑈 method, where the definition of 𝜖 depends on both the flow
arrangement and the phase of the refrigerant (Kim and Bullard, 2002a).
In case of unmixed cross-flow and single-phase flow, it is expressed as

𝜖 = 1 − exp
{

𝑁𝑇𝑈0.22

𝐶r

[

exp
(

−𝐶r𝑁𝑇𝑈
0.78) − 1

]

}

. (3)

On the opposite, if evaporation or condensation occurs within the heat
exchanger tubes, the heat capacity ratio 𝐶r is null, and the effectiveness
can be simply expressed as

𝜖 = 1 − 𝑒−𝑁𝑇𝑈 . (4)

The 𝑁𝑇𝑈 is defined as the product of the overall heat transfer
coefficient 𝑈 and the total heat transfer surface 𝐴, divided by the
minimum heat transfer capacity between the two working fluids. The
overall heat transfer coefficient 𝑈𝐴 accounts for both the effect of
convection and of conduction, due to the presence of the fins and the
tubes
1
𝑈𝐴

= 1
ℎair𝜂c𝐴air

+ 1
ℎrefr𝐴refr

+ 𝑅t . (5)

The fins surface effectiveness 𝜂c is a function of the fin efficiency
𝜂f (Kim and Bullard, 2002a)

𝜂𝑐 = 1 −
𝐴f
𝐴air

(

1 − 𝜂f
)

= 1 −
𝐴f
𝐴air

(

1 −
tanh𝑚𝑙f
𝑚𝑙f

)

, (6)

where

𝑚 =

√

2ℎair
𝑘f𝛿f

(

1 +
𝛿f
𝐹d

)

, (7)

𝑙f =
𝐻
2

− 𝛿f . (8)

The thermal resistance of the microchannel walls is estimated as (Yadav
et al., 2017)

𝑅t =
1

2𝜋𝑘

(

1
𝑙tNmcNt

)

log
( 𝐷ext,mc

𝐷ext,mc − 2𝛿mc

)

. (9)

The pressure losses due to friction depend on both the fluid phase
and the heat exchanger geometry. In the present work, the friction
coefficient 𝑓 of the airflow is computed using the correlation proposed
by Kim and Bullard (2002a). For what regards the refrigerant stream,
the model proposed by Schmidt and Friedel (1997) has been selected
as the most suitable for the case of two-phase flow. A well-established
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Table 1
Comparison between the predictions of the correlations adopted in this study and the experimental data available in the literature.

Working fluid Property Experimental data Deviation/%

Air Heat transfer coefficient Kim and Bullard (2002a) ±17%
Air Pressure drop Kim and Bullard (2002a) ±14%
Refrigerant: single phase Nusselt number Sheikholeslami et al. (2015) ±5%
Refrigerant: condensation Heat transfer coefficient Cavallini et al. (2001) ±8%
Refrigerant: evaporation Heat transfer coefficient Yan and Lin (1998) ±10%
Refrigerant: two-phase flow Pressure drop Cavallini et al. (2001), Yan and

Lin (1998)
±10%
set of correlations for pressure drops in straight tubes has been imple-
mented to model pressure drops for single-phase flow, depending on the
Reynolds number. The complete list of references is reported in Ascione
et al. (2021). Finally, once the tube geometry and the fluid mass flow
rate are fixed, the total pressure drop can be calculated as

𝛥𝑃 = 𝑓
𝑙t

𝐷hyd

𝜌𝑢2

2
. (10)

All the correlations used in this work have been verified using exper-
imental data available in the literature, and the results are reported in
Table 1. Moreover, the condenser model has been validated against the
experimental data published by Kim and Bullard (2002b). The results
show a 10% discrepancy in the estimation of the pressure drop and a
deviation lower than 4% in the calculation of the available heat transfer
surface. No comparison has been performed in terms of heat transfer
coefficient since no experimental data for this quantity are available in
the aforementioned study.

The heat exchanger models include also a method to estimate the
dry weight of the device. Once the geometry has been fully determined,
the volume of the material forming the HEX core can be computed
as the sum of the volume occupied by the fins 𝑉f , and that of the
microchannels tubes 𝑉t . With reference to Fig. 3, these two volumes
can be expressed as

𝑉f = 𝛿f

[

(

𝑏2 + 𝐹 2
p

)1∕2
− 𝛿f

]

𝐹dNf

𝑉t = 𝑥HEX
[ 𝜋
2
𝛿tNt

(

𝑇h + 𝐹d − 2𝛿t
)

+ 𝛿mc
(

𝑇h − 2𝛿t
)(

Nmc − 1
)

]

.
(11)

Then, based on the prescribed material, the weight of the heat ex-
changer is computed as the product of the material density and the total
volume. Finally, the result is multiplied by an empirical coefficient,
accounting for the presence of casing, manifold, and soldering.

3.2. Centrifugal compressor

A detailed description of the model developed in-house for the
conceptual design of single-stage centrifugal compressors can be found
in Giuffre et al. (2022). In this section, only the fundamental build-
ing blocks are reviewed, and emphasis is given to the simplifications
adopted when implementing it in Modelica.

With reference to Fig. 5, the compressor sizing is performed on the
basis of ten design variables, namely: the swallowing capacity

𝜙t1 =
�̇�

𝜌t1𝑈2𝐷2
2

, (12)

the isentropic loading coefficient

𝜓is =
𝛥ℎtt,is
𝑈2
2

, (13)

the impeller shape factor

𝑘 = 1 −
(𝑅1,h

𝑅1,s

)2
, (14)

the total-to-total pressure ratio (𝛽tt), the mass flow rate (�̇�), the im-
peller outlet absolute flow angle

(

𝛼
)

, the number of blades (𝑁 ),
359

2 bl
Fig. 5. Meridional view of a centrifugal compressor stage featuring splitter blades,
pinched vaneless diffuser, overhung volute, and no inlet guide vanes.

the diffuser radius ratio (𝑅3∕𝑅2), and the non-dimensional parameters
characterizing the shape of the diffuser

𝑅r,pinch =
𝑅pinch − 𝑅2

𝑅3 − 𝑅2

𝐻r,pinch =
𝐻3 −𝐻2

𝐻2(𝑅2∕𝑅pinch − 1)
.

(15)

Moreover, the model requires the specification of the working fluid,
the total inlet conditions, and a list of geometrical parameters related
to manufacturing constraints, e.g., the impeller tip clearance gap.

The compressor design methodology is based on the lumped param-
eters modeling approach. However, the flow quantities are evaluated
at five different spanwise locations at the inducer section, to account
for the spanwise variation of the peripheral speed. The inlet velocity
triangle is determined by the choice of 𝜙t1 and by the minimization
of the relative Mach number at the inducer shroud (Rusch and Casey,
2013). The first guess of the outlet velocity triangle is set by the
selection of 𝛼2 and 𝜓is. The actual work coefficient is then iteratively
adjusted to match the target pressure ratio, accounting for slip (von
Backström, 2006) and losses, which are predicted by means of the set
of semi-empirical correlations reported in Giuffre et al. (2022). The
flow in the vaneless diffuser is modeled by integrating the system of
two-dimensional differential equations derived by Stanitz (1952). The
axial thrust acting on gas bearings is computed following the approach
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devised by Tiainen et al. (2021). The model can be used both for de-
signing a compressor stage, as well as for computing its operating map,
once the main dimensions have been determined. However, for the sake
of brevity, the prediction of the compressor off-design performance is
not described here, and the interested reader is referred to Giuffre et al.
(2022) for further information.

To assess the accuracy of the compressor model, the predictions of
the in-house tool have been compared with the experimental data of
three reference test cases available in literature (Eckardt, 1975, 1976,
1977; Japikse, 1987; Schiffmann and Favrat, 2009, 2010), and with the
CFD simulation results of a new compressor prototype. As documented
in Giuffre’ et al. (2023), the outcome of the validation study is that
more than 95% of the experimental and CFD data fall within the ±5%
uncertainty bands of the values predicted by the model.

The main simplifications adopted when implementing the afore-
mentioned compressor model in Modelica are: (i) the span-wise distri-
bution of flow quantities at the inducer section is neglected, (ii) the flow
in the vaneless diffuser is described with a simplified model (Amirante
et al., 2015), which does not require any stream-wise discretization
of the flow quantities; (iii) the compressor performance are computed
only at design point. Despite these simplifications, when integrating the
compressor design tool within the model of the VCC system, the non-
linearity of the resulting system of equations increases remarkably, as
well as the number of design variables. As stated in the introduction,
this leads to a reduction of the robustness of the numerical solver, and
to a substantial increment of the computational cost, when performing
an integrated design optimization.

3.3. Data-driven compressor model

To reduce the complexity of the ECS model and the computational
cost of the corresponding optimization problem, a data-driven com-
pressor model has been developed and integrated into the existing
design framework. Recently, a surrogate model for small-scale single-
stage centrifugal compressors has been developed by Mounier et al.
(2018). Using a symbolic regression tool, the authors obtained an
analytical expression of the isentropic efficiency at the design point, as
a function of five non-dimensional groups and the total inlet pressure.
The data-driven regression has been performed on a dataset comprising
approximately 12.5k compressor designs, obtained by means of a mean-
line tool, validated with experimental data. However, the proposed
reduced-order model has the following limitations. All the compressor
stages featured in the dataset have been designed to operate with R-
134a. Moreover, a number of geometrical parameters characterizing
the shape and the performance of the compressor stage, e.g., the
impeller outlet blade angle, have been set at constant values, or have
been determined by prescribing a constant ratio among two geometrical
parameters, e.g., the diffuser radius ratio. Therefore, the dataset is
biased, and the resulting analytical expression of the efficiency is not
applicable to a compressor stage operating with an arbitrary working
fluid and featuring a generic shape. Furthermore, the proposed data-
driven model does not provide any prediction of the operating range
of the machine, thus it may lead to compressor configurations that are
unfeasible for systems that require a broad operating envelope, such as
the ECS of aircraft.

To overcome these limitations, a new methodology to derive a
data-driven model for single-stage centrifugal compressors is proposed
in this work. In the same fashion as in Mounier et al. (2018), the
dataset has been generated with a validated compressor model (Giuffre
et al., 2022). The synthetic dataset comprises 240k unique compressor
stage designs, characterized by different combinations of the design
variables listed in Table 2, and sampled according to the latin hy-
percube method. Differently from the aforementioned study, none of
the main geometrical characteristics of the stage has been fixed to a
constant value. Nevertheless, the number of design variables considered
360

to create the dataset is relatively limited, thanks to the adoption of a
non-dimensional approach based on scaling analysis. The additional
compressor design parameters related to manufacturing constraints
have been set to constant values, namely, 𝜖b = 𝜖t = 0.15 mm, 𝑅𝑎 = 3.2
μm. Finally, to cope with the design of compressors of different sizes,
the ratio between the shaft and the inlet hub radii has been fixed
throughout the design space, instead of prescribing a constant value
of shaft radius.

The working fluids considered in the present work are synthetic and
natural refrigerants selected from a parametric study conducted for an
electrically-driven VCC for the ECS of large helicopters (Ascione et al.,
2021). To enrich the dataset, the compressor stages operating with
the refrigerants R-134a and R-1233zd(E) have been designed for two
different total inlet thermodynamic states, resembling the conditions
encountered in a conventional and a high-temperature heat pump. To
reduce bias in the dataset and extend the range of applicability of the
data-driven compressor model, the database has been complemented
with compressor stages designed for simpler molecule fluids, i.e., CO2
and H2. Additional working fluids and thermodynamic conditions will
be included as part of future work. The complete list of fluids and of
the corresponding reduced inlet conditions, i.e., total inlet conditions
normalized with respect to critical state properties, considered in this
work is reported in Table 2.

Several techniques are suitable for data-driven regression, e.g., sym-
bolic regression, Artificial Neural Networks (ANN), Support Vector
Machines (SVM), Gaussian Processes (GP). In the present work, a Multi-
Layer Perceptron (MLP), i.e., a feedforward ANN featuring one or
multiple fully connected hidden layers, has been selected to accomplish
this task. The reason is twofold. First, the computational overhead
associated with the evaluation of the data-driven model is of primary
importance for the target application. In general terms, the computa-
tional cost of a MLP model scales with the total number of neurons and
is lower than the cost of evaluating, for instance, a model based on a
GP or a SVM. At the same time, a MLP model requires a larger amount
of training data to reach the same level of accuracy as a GP or a SVM.
However, the availability of data is not a limiting factor in the present
work, since the dataset is synthetically generated.

To reduce the number of input features used to train the ANN and
to avoid the use of categorical input, i.e., a string identifying the name
of the fluid, the data associated with the working fluid and the inlet
thermodynamic conditions have been synthesized in two parameters.
These are the fluid molecular complexity, measured as the number of
active degrees of freedom of a molecule (Colonna and Guardone, 2006)

𝑁 =
2𝑀𝑐v,id(𝑇c)

𝑅
, (16)

and the average value of the isentropic pressure–volume exponent
(Kouremenos and Kakatsios, 1985) over the compression process

𝛾𝑃𝑣 =
log

(

𝑃in
𝑃out

)

log
(

𝜌in
𝜌out

) . (17)

A detailed analysis of the influence of these parameters on the design
of centrifugal compressors can be found in Giuffre et al. (2022), and
it is omitted here for brevity. The resulting vector of input features for
the ANN reads

𝑋 =
[

𝜙t1, 𝜓is, 𝛼2,
𝑅3
𝑅2

, 𝑘, 𝑁bl, 𝐻r,pinch, 𝑅r,pinch,

𝛽tt,target , �̇�, 𝑁, 𝛾𝑃𝑣,
𝜖b
𝐻2

,
𝜖t
𝐻2

]

.
(18)

The original dataset has been pre-processed by removing the com-
pressor designs that are considered unfeasible or do not meet the
required specifications. The criteria used to filter the dataset are:

• minimum acceptable efficiency at design point
𝜂 ≥ 0.5;
tt
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Table 2
Design space selected to create the dataset used to train the data-driven compressor model.

Variable Range Fluid N 𝑇r 𝑃r
𝛽tt 2.0–5.0 H2 3.0 2.0 0.08
�̇� [kg/s] 0.05–0.25 CO2 7.0 0.9 0.2
𝜙t1 0.05–0.2 Propane 19.08 0.65 0.015
𝜓is 0.6–1.2 R-134a 21.64 0.65 - 0.81 0.015 - 0.15
𝛼2[◦] 60–75 Isobutane 28.43 0.65 0.015
𝑘 0.65–0.95 R-1233zd(E) 28.77 0.65 - 0.82 0.015 - 0.15
𝑁bl 10–20
𝑅3∕𝑅2 1.2–2.0

𝐻r,pinch =
𝐻3 −𝐻2

𝐻2(𝑅2∕𝑅pinch − 1)
0.0–1.0

𝑅r,pinch =
𝑅pinch − 𝑅2

𝑅3 − 𝑅2
0.0–1.0
Table 3
Design space and set of optimal hyperparameters.

Hyperparameter Range MLPobj MLPcon

𝐿 4–6 5 6
𝑛[1] 5–200 199 60
𝑛[2] 5–200 199 94
𝑛[3] 5–200 200 44
𝑛[4] 5–200 144 63
𝑛[5] 5–200 42 68
𝑛[6] 5–200 – 70
𝛼 10−4–10−1 10−2.75 10−2.89

mini-batch size 26–210 26 26

• minimum acceptable operating range at the design rotational
speed 𝑂𝑅 =

�̇�max − �̇�min
�̇�des

|

|

|

|𝛺des

≥ 0.05;

• maximum allowable blade angle at impeller outlet to ensure
stable compressor operation 𝛽2,bl ≤ 0◦;

• maximum allowable deviation between the target and the com-
puted values of pressure ratio 𝛥𝛽tt ≤ 20%.

The filtered dataset is composed by 165k samples, thus reducing
the computational cost associated to the training of the data-driven
model by about 30%, without any loss of useful information. In order to
enhance the accuracy of the MLP model, input features standardization
has been applied prior to training. Moreover, to further simplify the
multivariate regression function to be learnt by the ANN, the labels
have been categorized according to their use in the ECS optimization
process, i.e., objectives or constraints. Then, two separate MLP models
have been trained to predict the vector of objective functions and
constraints, namely:

𝑌obj = [𝛽tt , 𝜂tt , 𝑂𝑅, �̇�choke],

𝑌con = [𝛺des, 𝑅1,h, 𝐻2, 𝛽2,bl, 𝑅4].
(19)

Upon pre-processing, the dataset has been split into training, de-
velopment, and test sets, counting 145k, 10k, and 10k samples, cor-
responding to approximately 88%, 6%, and 6% of the total amount
of data, respectively. The space of hyperparameters investigated to
optimize the accuracy of the ANN is summarized in Table 3. The
hyperparameters search is performed by resorting to the NOMAD al-
gorithm (Audet et al., 2019, 2021), i.e., an optimization algorithm
suited for mixed-integer non-linear programming problems, featuring
an expensive black-box function evaluation. For each combination of
hyperparameters, a MLP model is created leveraging an open-source
programming framework (Abadi et al., 2015). The model is trained for
80 epochs, and its performance is evaluated on the development set,
using the mean squared error loss function

𝐿(𝜽) = 1
𝑛

𝑛
∑

𝑖=1
(�̂�𝑖 − 𝑦𝑖)2, (20)

where 𝜽, 𝑛, and �̂� denote the space of the hyperparameters, the num-
ber of samples, and the model prediction, respectively. The optimal
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Table 4
Accuracy of the two MLP models evaluated on the test set.

𝑌 mae = 1
𝑛

𝑛
∑

𝑖=1
∣ 𝑌 − 𝑌 ∣ mape = 1

𝑛

𝑛
∑

𝑖=1

∣ 𝑌 − 𝑌 ∣
𝑌

⋅ 100

𝛽tt 0.031 [–] 0.96%
𝜂tt 0.007 [–] 0.97%
𝑂𝑅 0.013 [–] 4.97%
�̇�choke 0.004 [kg/s] 2.41%
𝛺des 1670 [rpm] 1.01%
𝑅1,h 10−5 [m] 0.31%
𝐻2 10−5 [m] 0.84%
𝛽2,bl 0.02 [◦] 0.37%
𝑅4 7 ⋅ 10−4 [m] 1.06%

architecture is selected after a maximum of 750 different MLP models
have been trained and evaluated. The process is repeated for both the
models trained to predict 𝑌obj and 𝑌con. The hyperparameters search has
been performed on an Intel® Xeon® Gold 5220R, featuring 48 logical
threads, leading to a total computational cost of about 380 h. The arrays
of optimal hyperparameters are reported in Table 3 for the two MLP
models. The training histories of the MLP models featuring the optimal
set of hyperparameters are displayed in Fig. 6.

The accuracy of the optimal MLP models is evaluated for each
label on the test set, i.e., the 10k samples not used for training or
hyperparameters search, in terms of both mean absolute error (mae),
and mean absolute percentage error (mape). The results are listed
in Table 4. Furthermore, to provide a more comprehensive overview
of the predictive capabilities of the MLPs, the deviation between the
model predictions and the true labels of the test set is reported in Fig. 7.
The comparison shows an excellent agreement, and highlights that
the maximum prediction errors occur when the value of the operating
range is close to zero.

3.4. ECS design optimization

The optimization of an aircraft ECS is a multi-disciplinary problem
involving aspects related, but not limited, to: system performance,
weight, installation, maintenance, safety, and life-cycle costs. For the
sake of simplicity, the present study addresses an optimization problem
involving three conflicting objectives, namely the maximization of the
system COP, and the minimization of the weight and of the drag penalty
associated to the ram airflow. With the purpose of evaluating the
overall performance of the ECS, the COP is defined as the ratio of the
power required for cabin cooling and pressurization in ideal conditions,
over the total electric power consumption of the system, due to the
cabin air compressor, the ram air fan and the high-speed centrifugal
compressor:

COP =
�̇�cooling + �̇�p,id

�̇�el,CAC + �̇�el,fan + �̇�el,CC
. (21)

To further simplify the problem, only the dry weight of the two
CHEXs is accounted for as objective in the optimization process. The
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Table 5
Settings of the multi-objective optimization problem.

Design variable Type Range Constraint Value

�̇�ram [kg/s] System 0.4–1.0 min(𝑅1,h) [mm] 3.25
�̇�refr [kg/s] System 0.1–0.25 min(𝐻2) [mm] 1.5
𝛽tt System 2.0–5.0 min(𝛽2,bl) [◦] −45
𝛥𝑇sh [K] System 3.0–10.0 max(𝛽2,bl) [◦] −10
𝛥𝑇sc [K] System 3.0–10.0 max(𝛺) [krpm] 250
𝜙t1 Compressor 0.05–0.2 min(𝑥)||

|eva−cond
[mm] 50

𝜓is Compressor 0.6–1.0 max(𝑥)||
|eva−cond

[mm] 800
𝛼2 [◦] Compressor 60–75 min(𝛥𝑇pp)

|

|

|eva
[K] 3

𝑘 Compressor 0.65–0.95 min(𝛥𝑇pp)
|

|

|cond
[K] 5

𝑁bl Compressor 10–20 max(𝑉air )
|

|

|eva−cond
[m/s] 30

𝑅3∕𝑅2 Compressor 1.2–2.0 max(𝑉refr )
|

|

|eva−cond
[m/s] 30

𝑅r,pinch Compressor 0.0–1.0
𝐻r,pinch Compressor 0.0–1.0
𝑦||
|eva−cond

[mm] Heat exchanger 100–300
𝑧||
|eva

[mm] Heat exchanger 20–70
𝑧||
|cond

[mm] Heat exchanger 10–60
Fig. 6. Training history of MLP models trained to predict 𝑌obj (top) and 𝑌con (bottom),
and featuring the optimal set of hyperparameters.

weight of the remaining components of the ECS is assumed to be
constant throughout the design space. Due to the low operating tem-
perature of the prescribed application, the material selected for both
the condenser and the evaporator is the Aluminium alloy 6061. The
weight minimization leads to CHEXs designs characterized by a high
heat transfer surface-to-volume ratio. This design approach is beneficial
in terms of heat transfer efficiency, but it often leads to higher pres-
sure drops. To compensate for this effect, the third objective function
selected in the present study addresses the minimization of the ram air
drag. In mathematical form, the multi-objective optimization problem
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can be formulated as follows:
min
𝜶∈R𝑛

𝐹 (𝜶) = [𝑓1(𝜶),… , 𝑓nobj (𝜶)], s.t.

ℎ𝑘(𝜶) = 0 𝑘 = 1,… , neq
𝑔𝑖(𝜶) ≤ 0 𝑖 = 1,… , nineq
𝛼𝑙,𝑗 ≤ 𝛼𝑗 ≤ 𝛼𝑢,𝑗 𝑗 = 1,… , n

(22)

where 𝜶 is the vector of design variables, 𝐹 (𝜶) is the vector of the
objective functions, and ℎ𝑘(𝜶), 𝑔𝑖(𝜶) are the vectors of the equality
and inequality constraints, respectively. The non-linear constraints are
imposed to ensure the manufacturability of the system components,
i.e., heat exchangers and compressor, and to define an upper threshold
for the speed of the air and the refrigerant in the circuit. Overall, the
optimization problem comprises 17 design variables, 3 objectives, and
15 inequality constraints, as summarized in Table 5. In line with what
is reported in the introduction, this demonstrates that the size of the
optimization problem rapidly increases, when including the design of
the centrifugal compressor in the integrated design framework together
with a set of realistic manufacturing constraints.

The in-house optimization framework consists of a Python program
coupling the ECS model developed in Modelica with an open-source
toolbox for multi-objective design optimization (Blank and Deb, 2020).
The Pareto front of optimal solutions is computed by means of the
NSGA-II algorithm described in Deb et al. (2002). The initial population
comprises ten individuals for each design variable, and is sampled
according to the latin hypercube methodology along the floating-point
directions, and randomly along the integer axis, i.e., the one cor-
responding to the number of compressor blades. The population is
evolved for a maximum of 170 generations, leading to a maximum of
28900 evaluations of the Modelica model. The result thereof is that
the computational cost quickly becomes prohibitive when increasing
the number of design variables, even if resorting to parallel computing
to evaluate the individuals of each generation.

To overcome this limitation, the integrated design framework has
been modified by replacing the compressor model implemented in
Modelica with the pre-trained MLP models described in the previ-
ous section. The computational cost of the optimization problem can
be significantly reduced by limiting the number of design variables
selected by the stochastic algorithm NSGA-II. This can be achieved
by leveraging the computational efficiency of the pre-trained MLP
models, as described in the following. The vector of design variables
𝜶 can be conveniently split into three subsets, corresponding to the
design variables of the system, the heat exchangers, and the high-speed
compressor:

𝜶sys = [�̇�ram, �̇�refr , 𝛽tt , 𝛥𝑇sh, 𝛥𝑇sc],

𝜶HEX = [𝑦||
|eva

, 𝑦||
|cond

, 𝑧||
|eva

, 𝑧||
|cond

], (23)
𝜶c = [𝜙t1, 𝜓is, 𝛼2, 𝑘, 𝑁bl, 𝑅3∕𝑅2, 𝑅r,pinch, 𝐻r,pinch].
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Fig. 7. Comparison between the predictions of the optimal MLP models and the true labels of the test set. The data points are displayed in gray, whereas the black lines correspond
to the ±10% error bands.
Fig. 8. Flowchart of the modified ECS optimization framework. The data-driven model is used to decouple the optimization of the high-speed centrifugal compressor, highlighted
in blue, from the optimization of the VCC system, highlighted in red. (For interpretation of the references to color in this figure legend, the reader is referred to the web version
of this article.)
The vector of input features for the data-driven model can be
assembled by combining 𝜶c with two variables of 𝜶sys, namely, �̇�refr ,
𝛽tt , and with two parameters related to compressor manufacturability,
i.e., 𝜖b∕𝐻2, 𝜖t∕𝐻2, and two parameters related to the prescribed work-
ing fluid and thermodynamic state, i.e., 𝑁 , 𝛾𝑃𝑣. As a result, the set
of compressor design variables 𝜶c can be decoupled from the array of
optimization variables selected by the stochastic algorithm, and can be
363
treated separately. In the present implementation, once the values of 𝛽tt
and �̇�refr have been selected by the stochastic algorithm for each indi-
vidual of a generation, the set of 𝜶c is optimized separately, by resorting
to a constrained gradient-based algorithm (Kraft, 1988). The values
of the objectives and constraints are evaluated by means of the MLP
models, and the objective function is expressed as a linear combination
of 𝜂 and 𝑂𝑅. After the gradient-based optimization, the resulting
tt
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values of 𝜂tt and 𝛽tt are appended to the vectors 𝜶sys and 𝜶HEX, and
the values of the objectives and the constraints of the VCC system are
evaluated by means of the Modelica model. Eventually, the compressor
operating range can be included into the vector of objective functions
𝐽 . However, this is not done in the present work, since the aim is
to compare the Pareto front identified by means of the original and
the modified ECS optimization framework, without altering the vector
of the objective functions. The proposed optimization methodology is
schematically illustrated in Fig. 8.

Thanks to the use of data-driven modeling, the cost of the compres-
sor optimization for each individual of the population is negligible, as
compared to the cost associated with the evaluation of the VCC system
model. On the other hand, the number of design variables selected
by the stochastic algorithm drops from 17 to 9, leading to a sizeable
reduction of the number of objective function evaluations required to
reach convergence.

4. Results

The test case selected to benchmark the performance of the original
and the modified integrated design framework is the multi-objective
optimization of an electrically-driven VCC system for the ECS of a
single-aisle, short-haul aircraft, e.g., the Airbus A320. The aircraft is
assumed to fly at cruise conditions, namely at 𝑀∞ = 0.78, and at
n altitude of 11.88 km. The environmental conditions are computed
ccording to the International Standard Atmosphere (ISA) model. The
orking fluid selected for the VCC system is refrigerant R-134a. The

nlet conditions of the mixing manifold of the air distribution system,
hich corresponds to the outlet of the VCC system, are specified in

erms of mass flow rate, pressure, and temperature: �̇�mix = 0.5 kg∕s,
mix = 76.25 kPa, 𝑇mix = 13.14 ◦C, and correspond to a mild cooling
perating point (Sielemann et al., 2011). The water content in the air at
ruise altitude is negligible, thus the effect of humidity is disregarded.
he objectives selected for the optimization study are the system COP,
he weight of the CHEXs, and the drag penalty associated with the ram
irflow. The design variables and the non-linear constraints are listed
n Table 5. The results are computed and presented for a single ECS
ack.

The multi-objective optimization performed with the original frame-
ork, namely the one adopting the compressor model embedded in
odelica, reached convergence after a total of 13050 function evalua-

ions. Conversely, the number of function evaluations reduces to 4500
hen resorting to the modified optimization framework, leveraging

he data-driven compressor model. This enables a reduction of the
otal computational time from approximately 125 h to 37.5 h when
unning the optimization in parallel on an Intel® Xeon® E5-1620 v3
PU, featuring 8 logical threads. The Pareto front computed with the
odified optimization framework is displayed in Fig. 9. The COP of

he entire ECS, see Eq. (21), is reported on the 𝑥-axis of the left
igure, whereas the COP of the VCC system, i.e., the ratio between
he cabin cooling duty (�̇�cooling) and the electrical power required by
he centrifugal compressor (�̇�el,CC), is reported on the 𝑥-axis of the
ight chart. The same results are illustrated on the weight-drag, COP-
eight, and COP-drag planes in Fig. 10. By comparing the optimal
esign points identified with the original and the modified integrated
esign methodology, it is possible to observe that: (i) similar trends
re established among the three objectives; (ii) the range of variation
f weight and drag penalty over the Pareto front is comparable; (iii)
he design methodology exploiting the data-driven compressor model
s able to identify optimal solutions characterized by higher COP.

Additional insights regarding the optimal VCC system configura-
ions identified with the framework embedding the data-driven com-
ressor model can be inferred by examining the data reported in
able 6. In particular, the table lists the design variables and the
ain performance metrics corresponding to the design points lead-
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ng to maximum COP, minimum drag penalty, and minimum weight. i
Moreover, a VCC system layout corresponding to an optimal trade-off
solution, i.e., the one leading to the minimum fuel weight penalty 𝑊f0,
is reported in Table 6. In this work, the fuel weight penalty associated
with the ECS is computed as the sum of three contributions (SAE,
2004):

• penalty due to additional weight

𝑊f0 = 𝑊ECS

[

exp
(

𝑆𝐹𝐶th𝜏
𝐿∕𝐷

)

− 1
]

; (24)

• penalty associated with shaft power off-take

𝑊f0 = 𝑃el𝑆𝐹𝐶P
𝐿∕𝐷
𝑆𝐹𝐶th

[

exp
(

𝑆𝐹𝐶th𝜏
𝐿∕𝐷

)

− 1
]

; (25)

• penalty associated with ram air drag

𝑊f0 = �̇�ram𝑣air
𝐿∕𝐷
𝑔

[

exp
(

𝑆𝐹𝐶th𝜏
𝐿∕𝐷

)

− 1
]

. (26)

The values of the parameters in Eq. (24)–(26) depend on the aircraft
type, the engine specifications, and the prescribed flight phase. The set
of aircraft parameters selected in this work are representative of an
Airbus A320 flying at cruise and is reported in Table 7.

Analyzing the optimal VCC system configurations reported in Ta-
ble 6, the following design considerations can be derived. As the cabin
cooling requirement is fixed in the present study, the COP of the
system is inversely proportional to the power demand of the refrigerant
compressor. It follows that, to maximize the COP, the pressure ratio
provided by the compressor has to be minimized, as displayed in
Fig. 11. This design choice implies that the condenser operates at a
lower pressure level and its core dimensions become larger, with a
consequent reduction of the pressure losses on the refrigerant side.
With reference to Fig. 4, this can be achieved by increasing 𝑧eva and
𝑧cond, thus lowering the refrigerant velocity in the microchannels. The
nalysis of Fig. 11 reveals also the main reason of the difference in
he COP computed with the original and the modified optimization
ramework. The use of the data-driven compressor model leads to
ptimal solutions featuring a wider range of 𝛽tt , thus a wider range of
OP values. The root cause of this difference can be arguably attributed
o the higher complexity of the VCC system model when embedding the
ompressor meanline code. This makes the solution of the underlying
on-linear system of equations more susceptible to failure during the
ptimization process, narrowing the design space that the optimizer can
xplore.

On the other hand, if the main objective is to design compact
nd lightweight heat exchangers, it is necessary to minimize the heat
ransfer surfaces, i.e., minimize the 𝑥, 𝑦, and 𝑧 dimensions of the
ondenser and the evaporator. This can be accomplished by raising the
ressure ratio provided by the refrigerant compressor, which results
n an increase of the temperature lift, i.e., the difference between
cond and 𝑇eva. This design choice does not lead only to higher electric
ower consumption, but also to larger drag penalty due to larger
ressure drops in the air flow. The increase of 𝑃el is exacerbated by
he increment of the refrigerant mass flow rate observed in the case
f more compact heat exchanger designs, as depicted in Fig. 12. This
rend can be explained by observing that, given a value of evaporation
ressure, the latent heat of condensation decreases with an increase in
he pressure ratio and temperature lift. In turn, since the condenser heat
uty does not vary significantly throughout the Pareto front, a higher
efrigerant mass flow rate is required when higher values of pressure
atio are chosen.

Conversely, in order to minimize the drag penalty, the designer
as to select an intermediate value of pressure ratio and minimize the
ressure drops on the ram air side. This can be achieved by increasing
he condenser frontal area on the air side, i.e., 𝐴cond,air = 𝑥cond ⋅ 𝑦cond,
hich results in lower air velocity throughout the condenser, at a given
ass flow rate. This argument is corroborated by the trend displayed

n Fig. 13.
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Fig. 9. Pareto front computed with the modified optimization framework coupled to the data-driven compressor model, considering the COP of the entire ECS (left), and the COP
of the VCC system (right).
Fig. 10. Comparison between the trends established among the objective functions, computed with and without the use of the data-driven compressor model, coupled to the
integrated design optimization framework. The markers identify the optimal solutions reported in Table 6.
Fig. 11. COP of the VCC system vs. total-to-total pressure ratio, computed for the ECS
models with and without the data-driven model of the centrifugal compressor. The
markers identify the optimal solutions reported in Table 6.
365
Fig. 12. CHEXs weight vs. refrigerant mass flow rate, computed for the ECS models
with and without the data-driven model of the centrifugal compressor. The markers
identify the optimal solutions reported in Table 6.
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Table 6
Most influential design variables and performance metrics corresponding to the optimal VCC system configurations selected over the Pareto front
computed with the data-driven model. The optimal design points leading to maximum COP, minimum drag, minimum weight, and minimum
fuel weight penalty are marked with different symbols.

Symbol Type max(COP) ⧫ min(drag) ★ min(weight) ▴ min(𝑊f0)

�̇�ram [kg/s] System - variable 0.99 0.97 0.99 0.86
�̇�refr [kg/s] System - variable 0.19 0.19 0.22 0.19
𝛽tt [–] System - variable 2.8 4.5 4.9 2.9
COP [–] System - result 1.4 1.3 1.3 1.4
COPVCC [–] System - result 6.4 3.8 3.4 6.2
Weight [kg] System - result 7.8 8.0 4.8 8.9
Drag [N] System - result 15.0 7.2 39.6 8.4
𝑊f0 [kg] System - result 32.2 33.2 36.0 31.6
𝑃el [kW] System - result 65.3 68.8 69.7 65.0
�̇�eva [kW] System - result 32.3 32.3 32.0 32.0
�̇�cond [kW] System - result 37.1 40.2 41.1 36.8
𝑃eva [bar] System - result 2.07 1.34 2.23 2.17
𝑃cond [bar] System - result 5.72 6.15 10.70 6.14
𝑇eva [K] System - result 263.9 253.4 265.8 265.2
𝑇cond [K] System - result 293.1 295.5 315.1 295.5
𝑧eva [mm] Heat exchanger - variable 70 60 60 61
𝑧cond [mm] Heat exchanger - variable 51 41 51 51
𝐴eva,air [m2] Heat exchanger - result 0.10 0.08 0.11 0.12
𝐴cond,air [m2] Heat exchanger - result 0.21 0.33 0.09 0.26
𝛥𝑃air,eva [kPa] Heat exchanger - result 2.13 2.05 1.38 1.29
𝛥𝑃air,cond [kPa] Heat exchanger - result 2.71 1.07 8.28 1.82
𝛥𝑃refr,eva [kPa] Heat exchanger - result 3.67 4.59 4.64 3.72
𝛥𝑃refr,cond [kPa] Heat exchanger - result 0.59 1.37 1.06 0.59
𝜙t1 [–] Compressor - variable 0.07 0.10 0.06 0.05
𝜓is [–] Compressor - variable 0.81 0.80 0.79 0.83
𝛼2 [◦] Compressor - variable 70.1 69.5 70 67.3
𝜂tt [–] Compressor - result 0.85 0.81 0.84 0.85
𝛺 [krpm] Compressor - result 52 100 55 39
𝑅1,h [mm] Compressor - result 5.3 6.8 5.5 5.3
𝐻2 [mm] Compressor - result 3.0 3.0 2.9 2.8
𝛽2,bl [◦] Compressor - result −33.5 −33.1 −35.6 −25.7
Table 7
Set of aircraft parameters prescribed for the calcu-
lation of the fuel weight penalty. The values are
representative of an Airbus A320 flying at cruise
(Bender, 2018).

Parameter Value

𝑆𝐹𝐶th [lb/(lbf.h)] 0.514
𝑆𝐹𝐶P [lb/(hp.h)] 0.5
𝐿∕𝐷 [–] 15.32
𝜏 [h] 1.5

The trade-off solution leading to the minimum fuel weight penalty
can be interpreted as a linear combination of the VCC system config-
urations associated with maximum COP and minimum drag penalty.
In particular, the pressure ratio and the refrigerant mass flow rate
delivered by the compressor resemble the values leading to maximum
COP. In the same fashion, the frontal area of the condenser on the ram
air side is close to the value associated with minimum drag penalty.
Moreover, the values of the pressure drops on the refrigerant side are
comparable to those leading to maximum COP, whereas the values
of the pressure drops on the air side are similar to those computed
for the system layout featuring minimum drag. Nevertheless, it should
be noted that in real applications the ECS must be sized not only to
operate at cruise conditions but also at critical operating points, such
as ground operation on a very hot and humid day. To comply with such
extreme cooling requirements, the heat exchangers are oversized with
respect to what is reported in this work. Moreover, additional weight
contributions, e.g., the weight of the turbomachines, can be included
in Eq. (24). As a result, the weight of the ECS of an actual passenger
aircraft may have a higher influence on the fuel weight penalty than
estimated in the present work.

A detailed analysis of the trends established among the most influ-
ential performance metrics of the refrigerant compressor is presented
366

in Fig. 14. The values of 𝜂tt depicted in the figure correspond to the
Fig. 13. Drag penalty vs. condenser frontal area on the air side, computed for the ECS
models with and without the data-driven model of the centrifugal compressor. The
markers identify the optimal solutions reported in Table 6.

internal efficiency, which only accounts for the losses occurring within
the main flow passage. The external losses, e.g., the windage loss,
are taken into account when calculating the power demand of the
compressor. As expected, the compressor efficiency is inversely pro-
portional to the pressure ratio. Moreover, the design points associated
with ECS configurations with maximum COP and minimum fuel weight
penalty lie in the region of maximum compressor efficiency. In general
terms, an increase in the pressure ratio leads to compressor designs
featuring higher values of the rotational speed. This can be mainly
attributed to the need for a higher value of peripheral speed to achieve
a higher specific work. The ECS configuration featuring the compressor
with the highest rotational speed is the one leading to minimum drag.

This can be explained by the fact that the compressor weight is not
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𝑚

Fig. 14. Trends of compressor efficiency and rotational speed as a function of pressure ratio, and trend of rotational speed as a function of swallowing capacity established over
the Pareto front computed with the data-driven model. The markers identify the optimal solutions reported in Table 6.
taken into account in the objective function and by the fact that the
evaporating pressure 𝑃eva is lower at the compressor inlet. In turn, this
leads to a higher volumetric flow rate processed by the compressor,
and, consequently, to a higher swallowing capacity selected by the
optimizer. As documented in Giuffre et al. (2022), higher values of 𝛷t,1
are associated with higher rotational speeds, but also with lower values
of operating range, thus limiting the operating envelope that can be
covered by the VCC system. To overcome this issue, in the modified
integrated design framework, the compressor optimization has been
performed by setting a linear combination of 𝜂tt and 𝑂𝑅 as one of
the objective functions. This explains the presence of optimal design
points, e.g., the one associated with minimum fuel weight penalty,
characterized by values of the compressor swallowing capacity in the
order of 0.05.

To conclude the study, a sensitivity analysis of the objective func-
tions with respect to the prescribed set of design variables is performed.
The purpose is to assess the robustness of the solutions with respect
to changes in the values of the design variables, as well as to identify
those variables which mostly affect the objective functions. The analysis
is carried out as follows. First, five design points are selected over
the Pareto front computed with the modified optimization framework.
Then, a perturbation of ±10% is applied to each design variable in-
dependently, and the vector of objective functions is re-evaluated.
This process is repeated for each prescribed design point, and the
averaged results are displayed in Fig. 15. The sensitivity of the objective
functions is evaluated with respect to the compressor efficiency 𝜂tt ,
rather than to the compressor design variables 𝜶𝑐 . Moreover, for the
present investigation, the COP of the ECS is replaced with the COP
of the VCC system, since the former is mainly affected by the terms
�̇�p,id and �̇�el,CAC in Eq. (21), whose values are almost constant in the
simulations.

The outcomes of the sensitivity analysis can be summarized as
follows. The COP shows the highest sensitivity with respect to the
mass flow rate of the refrigerant, and to the pressure ratio and the
efficiency of the refrigerant compressor. The weight of the CHEXs is
mostly affected by the mass flow rates of refrigerant and ram air. The
value of drag penalty shows the highest sensitivity with respect to �̇�refr ,
̇ ram, 𝑧cond, 𝑦eva, and 𝛽tt . As a result, the computational cost of the

optimization process can be further reduced by removing 𝑧eva, 𝑦cond,
𝛥𝑇sh, and 𝛥𝑇sc from the vector of design variables, without significantly
affecting the optimal solutions. Moreover, the COP of the optimal
designs shows a variation of the order of ±10% when changing the
values of the compressor efficiency and the refrigerant mass flow rate
by the same order of magnitude. These results corroborate the fact
367
that the compressor is one of the most critical components of the VCC
system, and highlight the need of performing its conceptual design
along with that of the system.

5. Conclusions

A novel integrated design optimization method for aircraft ECS,
based on the electrically-driven VCC system, has been presented in
this work. The main novelty lies in the integration of the conceptual
design of the high-speed compressor, performed by means of a data-
driven model, as well as of the compact heat exchangers, along with
the definition of the VCC system cycle parameters. The case study
selected to demonstrate the capabilities of the proposed methodology
is the multi-objective design optimization of an electrically-driven VCC
system for the ECS of a single-aisle, short-haul aircraft, flying at cruise
conditions. The prescribed objective functions are the maximization of
the system COP, the minimization of the weight of the heat exchangers,
and the minimization of the drag penalty associated with the ram air-
flow. The optimization of the VCC system has been performed with and
without the use of the data-driven compressor model, to highlight the
advantages offered by the proposed methodology. The main outcomes
can be summarized as follows.

1. A data-driven compressor model can be developed using a
dataset of about 165k compressor designs. The number of design
variables considered to create the dataset is relatively limited,
thanks to the adoption of a non-dimensional approach based on
scaling principles. To enhance the accuracy of the data-driven
model, and to facilitate its integration in the ECS optimization
framework, two MLP models have been trained to predict the
compressor performance parameters and the relevant geomet-
rical constraints. The mean absolute percentage error of the
two MLP models evaluated on the test set is 2.32% and 0.72%,
respectively.

2. The complexity of the VCC system model, and the likelihood
of an ill-conditioned matrix when the associated mathematical
problem is solved, can be reduced by replacing the high-speed
centrifugal compressor with a data-driven model. A similar ap-
proach could be adopted to replace also the models of the
compact heat exchangers.

3. The use of a data-driven model enables the partial decoupling
between the optimization of the VCC system and of the com-
pressor. For each set of system design variables selected by the
stochastic algorithm, the compressor design variables are opti-
mized by resorting to a constrained gradient-based algorithm.
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Fig. 15. Sensitivity of the objective functions with respect to a ±10% perturbation in the vector of design variables. The analysis is repeated for five optimal design points selected
over the Pareto front identified with the modified optimization framework, and the results are averaged.
el,
As a result, the number of design variables selected by the
stochastic algorithm drops from 17 to 9, and the number of
function evaluations needed to identify the Pareto front reduces
from 13050 to 4500.

4. The objective functions selected for the optimization of the VCC
system are in trade-off. In particular, the use of very compact
heat exchangers leads to higher drag penalties. Nevertheless,
it is possible to achieve a lightweight design of the heat ex-
changers, without incurring in large drag penalties, at the ex-
pense of a reduction in the COP. The range of variation of
the objective functions and the trends established among them
remain virtually unaltered, regardless of the adopted compressor
model. Moreover, the modified framework is able to identify op-
timal solutions in a wider design space, thanks to the improved
robustness of the underlying VCC system model.

5. The results show that the ram airflow and the condenser thermal
load do not vary significantly over the Pareto front. Therefore,
the use of heavier condenser units, featuring a larger frontal area
on the ram air side, leads to a reduction of the drag penalty.
On the other hand, the adoption of compact and lightweight
heat exchangers requires a higher temperature lift and a higher
refrigerant mass flow rate to comply with the prescribed heat
duty.

6. An increase in the temperature lift of the VCC system produces a
rise in the pressure ratio of the refrigerant compressor. In turn,
this leads to a rapid deterioration of the compressor efficiency
and to an increase in the rotational speed. A higher rotational
speed, thus a more compact compressor design, can be also
attained by increasing the value of the swallowing capacity.
However, this comes at the expense of a reduced operating
range.

7. As pointed out by a sensitivity analysis, the computational cost
of the optimization process can be further reduced by removing
𝑧eva, 𝑦cond, 𝛥𝑇sh, and 𝛥𝑇sc from the vector of design variables,
without significantly affecting the solution. Furthermore, the
analysis shows that the COP of the VCC system is mostly influ-
enced by the compressor efficiency. This demonstrates the need
for an integrated design optimization methodology embedding a
model for the conceptual design of the compressor.
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The results of this research reveal the large potential of adopting
data-driven models for the simultaneous optimization of a refrigeration
cycle and the preliminary design of its components. The substantial
reduction of the computational cost associated with the optimization
process, combined with the improved robustness of the underlying
system model, make this approach suitable for large-scale, industrial-
strength design applications. Future works will target the improvement
of the data-driven compressor model by extending the dataset with
additional working fluids and thermodynamic conditions. Furthermore,
the proposed integrated design methodology will be applied to assess
the performance of different non-conventional ECS architectures over
multiple operating points.
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