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                                            Abstract 
 

 

It is well known in the oil & gas industry that mature oil fields with a water drive produce increasing volumes 

of oily produced water which require treatment and efficient disposal. It is a major concern of all waterflood 

operations now in the industry, to adopt cost effective and environmentally sound water disposal systems. 

Re-injection into the subsurface has been chosen to be a potentially attractive option from environmental 

regulations view point, but to become the preferred alternative for produced water disposal, re-injection 

(PWRI) must also be economical and should not incur excessive risk in form of injectivity decline and damage 

to the formation.  

In this study, a semi-analytical model of contaminated water injection under fracturing conditions, including 

the effects of damage mechanisms over time is developed, that couples the reservoir engineering and fracture 

mechanics aspects of the problem. The main features of this model are finite fracture conductivity, external 

filter-cake build-up on the fracture face, internal plugging at fracture tip by injected solids, backstress 

resulting from pore pressure inflation (poro-elastic stress), backstress resulting from formation cooling 

(thermo-elastic stress), and fracture propagation. The most important characteristic is that the fracture is of 

finite condutivity due to fracture fill up by total suspended solids and oils in injected water. This is what 

differentiates this model from conventional waterflood induced fracturing simulators.  

This model is an extension to Koning’s model for waterflood induced fracturing, where fracture is of infinite 

conductivity. This model is largely based on work of Hoek et al. for finite conductivity fracture. This model 

incorporates a rectangular fracture that fully penetrates a permeable layer bounded by impermeable layers 

on top and bottom. The fracture is surrounded by three elliptically shaped zones, formation damages caused 

are included which are critical for fracture propagation, and the primary objective is to predict long term 

fracture growth and well injectivity. The governing Equations for fracture propagation are based on four 

fundamental physical phenomena which are fluid leak-off from the fracture into the formation, fluid flow 

inside the fracture, poro-elastic and thermo-elastic backstress on the fracture face and fracture propagation 

into the formation.  

The novelty of the new simulator is the ability to model waterflood induced fracture including all kinds of 

damage mechanisms, and accurately predict fracture propagation quickly. 

 

 

 

 

 

 

 

 

 



       

10 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



       

11 

 

                                  List of Figures 
 

Figure2.1. Geometry of fracture (wedge shaped)1…………………………………………………………………….14 

Figure2.2. Elliptical coordinate system (ξ, η) with elliptical zones confocal with fracture tips1……..14 

Figure2.3. Shape of cooled and flooded front………………………………………………………………………….15 

Figure2.4. Schematic description of the WF model……………………………………................................16  

Figure2.5. Multiple zones developed around the fracture during PWRI............................................16  

Figure3.1. Trademark signature of Induced fracturing by water injection………………………………….18  

Figure3.2. Gulf of Mexico field data example for Figure3.1 (adapted from Shell)………………………...18 

Figure3.3. Schematic of filter-cake thickness and internal plug length formed4..............................21  

Figure4.1. In-situ stress components (adapted from Shell)..............................................................24  

Figure4.2. Schematic representation of grid block distribution for poro-elastic stress calculation1…25 

Figure5.1. Schematic representation of pressure and stress distribution in plugged fracture4………28 

Figure5.2 General description of Stages of fracturing (adapted from Shell)………………………..………28 

Figure5.3. Barenblatt fracture propagation criterion (adapted from Shell)………………………………….29  

Figure5.4. The Figure illustrates fracture width profile with a tip plug……………………………………….31  

Figure5.5. Fracture width profile from model for a static fracture…………………………………………….32  

Figure5.6. Fracture width profile with different Young’s modulus …………………………………………….32 

Figure6.1. P(ξ) vs. ξ for 3 zones around static fracture…………………………………………………………….33  

Figure6.2. P(ξ) field for 3 zones around static fracture in 2D…………………………………………………….33  

Figure6.3. P(ξ) field for 3 zones around frac in 2D (top view)…………………………………………………...34  

Figure6.4. P(ξ) field (bar) for 3 zones 2D view after 100 days……………………………………………………..34  

Figure6.5. P(ξ) field (bar) for 3 zones 2D view after 1000days…………………………………………………...34  

Figure6.6. P(ξ) field (bar) for 3 zones 2D view after 3000days……………………………………………………34 

Figure6.7. Numerical vs. Analytical results for this model………………………………………………………..35 

Figure6.8. Comparison with Koning’s Numerical results for case 1……………………………………………35 

Figure6.9. Numerical constant backstress Δσyp~92 bars…………………………………………………………..36 

Figure6.10. Numerical constant backstress Δσyp~106 bars ……………………………………………………….36 

Figure6.11. Pressure profile around the finite conductivity fracture P(ξ) with (a) Two zones and 

ƞ12=0.05, (b) Three zones and ƞ12=0.05, (c) Three zones in 3D view with k=100 mD (ƞ12=0.9), (d) Three 

zones in 3D view with k=1D (ƞ12=0.9), Three zones in 3D view with k=100mD and (e) Uniform grid 

distribution whereas, (f) Non-uniform grid distribution. …………………………………………………………..37 
 

Figure6.12. Fracture pressure profile ∆𝑝𝑓(ƞ) with tip plug, constant fracture width and (a) Without 

external filter-cake, (b) With external filter-cake, (c) With external filter-cake in a scatter plot, and (d) 

With external filter-cake for different dimensionless fracture conductivity values after t=1 year 

(𝐹𝑐𝑑=𝑘𝑓2∗𝑤0/𝑘1∗X𝑓). The filter-cake permeability used is ke=1μd.………………………………………..……….38 



       

12 

 

Figure6.13. (a) Poro-elastic backstress and, (b) Total stress on fracture with tip plug after two years 

of constant injection………………………………………………………………………………………………………….39 

Figure6.14. Poro-elastic backstress and computed bottom hole pressure or fracture pressure (a) 

Without external filtercake and, (b) With external filter-cake are plotted, as a function of the 

coordinate x. The Figure shows the effect on net pressure (𝑃𝑛𝑒𝑡 = 𝑃𝑓 − 𝑆ℎ,𝑚𝑖𝑛) as well……………………….39 

Figure6.15. Fracture pressure with and without filter-cake calculated numerically with 100 source 

points on fracture for (a) X𝑓/h=1.0 and, (b) X𝑓/h<1.0…………………………………………………………………….40 

Figure6.16. The plots show results of poro-elastic stress calculation Syp numerically. In (a) a 

comparative plot of fracture pressure Pf vs. Pf-cake vs. Stress for X𝑓/ℎ = 1.0 case after 𝑡 = 7 days of 

injection, whereas in (b) a comparative plot of fracture pressure Pf vs. Pf-cake vs. Stress for X𝑓/ℎ = 2.0 

case after 𝑡 = 10 days of injection. In Figures (c) and (d), the values of coefficient obtained after volume 

integral calculation of stress are shown w.r.t position of the source point on the fracture………………41 

Figure6.17. Error analysis of numerical and analytical results of finite fracture pressure for (a)X𝑓 /ℎ=1.0 

and, (b) X𝑓/h<1.0………………………………………………………………………………………………………………..42 

Figure6.18. (a) Thermo-elastic stress profile on fracture face for various injection water temperatures 

and 𝑇𝑟𝑒𝑠 = 90℃, (b) Thermal stress change in an inclusion for various X𝑓/ℎ ratios showing that the 

stress change grows when the fluid front grows to becomes much larger than reservoir height……….43 

Figure6.19. The results of analytical fracture propagation model with constant width for various 

degree of damage w.r.t the amount of TSS in injected water which are (a) 10 ppm, (b) 30 ppm and, (c) 

1 ppm. In plot (d), the effect of an unfavourable mobility ratio (>1) is shown for case in (c)…………...44 

Figure6.20. Results from SLOFRAC model for two cases where M>1 (unfavourable) (a) Without TSS 

fraction and, (b) With TSS fraction in injection fluid………………………………………………………………..45 

Figure6.21. (a) Tolerance Error [𝐾𝐼 − 𝐾𝐼𝑐] vs. time for fracture tip model 1 and, (b) Tolerance Error 

[𝐾I−𝐾𝐼𝑐,𝑒𝑓𝑓] vs. time for fracture tip model 2. The fracture length converges if error is ≤ 0.1 in this 

case………………………………………………………………………………………………………………………………..45 

Figure6.22. (a) Represents Base case for Tip Model with 𝐾𝐼𝑐 = 10 𝑏𝑎𝑟√(𝑚). Effect on X𝑓 𝑎𝑛𝑑 𝐿𝑝𝑙𝑢𝑔 with time 

due to change in (b) 𝑇𝑖𝑛𝑗, (c) TSS, (d) Filter-cake permeability 𝑘𝑒 and, (e) Young’s modulus. (f) Shows the 

effect of high modulus on 𝐿𝑝𝑙𝑢𝑔………………………………………………………………………………………..……46 

Figure6.23. X𝑓 𝑎𝑛𝑑 𝐿𝑝𝑙𝑢𝑔 for (a) Fracture Tip Model 2 and, (b) Fracture Tip Model 3. (c) Increasing 

Effective Fracture Toughness and Tip Stress with X𝑓 for Tip Model 2 and, (d) Increasing Effective 

Fracture Toughness for a constant Tip Stress with X𝑓 for Tip Model 3…………………………………………48 

Figure6.24. Represents the Effective Fracture Toughness calculated by changing different 

parameters. It illustrates the increasing 𝐾𝐼𝑐,𝑒𝑓𝑓 with increasing fracture length X𝑓………………………….48 

Figure6.25. Comparative Plot for Calculated Wellhead Pressure (bar) between base case model with a 

tip plug and base case model with uniform fracture permeability……………………………………………….49 

 

 

 

 



       

13 

 

                                    List of Tables 
 

Table 6.1. Stress along the fracture wall ∆𝝈𝒙𝒑𝑫.................................................................................35 

Table 6.2. Stress perpendicular to the fracture wall ∆𝝈𝒚𝒑𝑫.................................................................35 

Table 6.3. Permeability and viscosity input values for the Numerical model cases………………………..36 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



       

14 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



       

15 

 

1                             
Introduction 

 

1.1. Motivation 
Waterflooding is often applied to increase the recovery of oil or to maintain the reservoir pressure. It is well- 

established in the industry that water injectors are likely to be fractured either intentionally or 

unintentionally during the life of the well. Induced fracturing conditions is particularly common in low 

mobility reservoir conditions or in case of produced water re-injection (PWRI) where contaminated water is 

injected that could induce large fractures during field life. One of the common causes of induced fracturing 

is often cooling of hot formation rocks by cold sea water or cold produced water injection. Water injection 

generally leads to rapid decline in injectivity unless it is done under induced fracturing conditions. The 

theme of this thesis is water injection under fracturing conditions, which can be of significant benefit in the 

development plan of a field. It may enable lesser injection wells to be drilled either for recovery processes or 

waste disposal, which will lead to major savings in exploitation costs of the field.  

In this thesis, a model is presented for predicting the performance of water injection wells under fracturing 

conditions in terms of fracture growth over time. The fracture can be both of infinite conductivity in case of 

clean water injection and finite conductivity in case of contaminated water injection (seawater, produced 

water etc). So, the basic difference between conventional waterflood fracturing and unfiltered water injection 

is that in the latter case, the fracture is no longer infinite anymore due to fracture fill up by the suspended 

particles in injected water during continued injection over time. This could potentially form internal filter-

cake in invaded zone around fracture, external filter-cake on the fracture face and subsequently lead to 

formation of internal plug in the fracture. This reduces the effective permeability in the fracture and causes 

rise in the injection pressure, in order to maintain a constant injection rate. When the pressure at the 

fracture tip exceeds the fracture propagation pressure, the fracture extends in length.  

This thesis discusses several aspects of simulating unfiltered water injection under fracturing conditions 

using both analytical and numerical models that couples the reservoir engineering and fracture mechanics 

concepts of the problem. The key features of the numerical model are finite conductivity fracture, external 

filter-cake build up on fracture face, internal plugging of fracture, poro-elastic backstress on fracture face 

resulting from pore pressure inflation and thermo-elastic backstress by formation cooling due to cold water 

injection. This model shows that the pressure drop over the finite conductivity fracture can lead to significant 

increase in the fracture volume without much increase in the injection pressure. As a result, more injected 

solids can be “accommodated” in the fracture. This creates a picture that large volumes of solids can be 

injected without much loss of injectivity unlike in conventional waterflood cases. The analytical model of 

fracture with tip plug emphasizes on an analytical approximation for fractures with tip plug permeability 

very close to permeability of formation surrounding the fracture2.  

1.2.  Thesis Scope 
The thesis investigates four fundamental physical phenomena which are the main research objectives as 

well. The objectives of the thesis are as follows: - 

• Investigate fluid leak-off mechanism from an elliptical fracture into formation, and formulate the 

pressure solution around the fracture which will be elliptically symmetrical in infinite conductivity 

fracture and non-symmetrical for finite conductivity fracture. 
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• Investigate fluid pressure profile within the fracture with and without the presence of an external 

filter-cake of uniform permeability on fracture face, and formulate fracture pressure solution in the 

model. 

• Investigation of Poro-elastic and thermo-elastic backstress on fracture wall resulting from pore 

pressure inflation and formation cooling respectively, and formulation of both analytical and 

numerical model to calculate the stress conditions. 

• Investigation of fracture propagation condition for finite conductivity fracture and implementing it in 

the numerical model by analyzing the factors that influence fracture propagation pressure. The 

purpose is to predict the fracture growth over time under influence of formation damages, 

backstresses etc. 

• Analyze different types of fracture tip propagation models and study their comparative behavior by 

varying key simulation parameters like solids loading, modulus of the formation, injection water 

temperature, constant filter-cake permeability etc. 

1.3. Novelty of the Thesis 
The work in this thesis is focused on building a semi-analytical model in MATLAB that investigates and 

produces reliable results of the four physical phenomena that occur during water injection under fracturing 

conditions, as mentioned in Section 1.2. This model is an extension of Koning’s model for infinite conductivity 

fractures and focuses mostly on the concepts of paper2 SPE 57385. The model also investigates and 

implements three different scenarios for fracture propagation which are primarily based on the fundamental 

concepts that, (i) All suspended solids must be accommodated by the fracture, and (ii) Tip-stress either 

remains constant or grows in time with increase in fracture length. In tip model 1, the fracture toughness 

𝐾𝐼𝑐 is constant whereas, in model 2 and 3, the model estimates an effective fracture toughness 𝐾𝐼𝑐 that 

increases with fracture length 𝑋𝑓.  

1.4. Thesis Outline 
• Chapter 1 introduces the thesis and outlines its general motivation and objectives.   

• Chapter 2 presents a state of the art review of the methods that have been incorporated in the past, 

their objectives and conclusions. 

• Chapter 3 describes the investigation carried out to formulate and model pressure solution in and 

around the fracture especially for finite conductivity fractures. It also emphasizes on the effect caused 

by formation damages like external filter-cake build up, internal plugging etc. 

• Chapter 4 describes the geomechanical concepts of poro-elastic backstress on fracture face due to 

the pressure field around the fracture. In addition, it also covers the thermo-elastic stress induced 

due to cold water injection. 

• Chapter 5 describes the combined effect of fracture pressure, poro-elastic backstress, thermo-elastic 

backstress etc on fracture propagation pressure and models the fracture length growth over time by 

Newton Raphson iterative technique. 

• Chapter 6 discusses all the analytical and numerical results produced for all four physical 

phenomena mentioned above.   

• Chapter 7 presents the main conclusions of this research along with recommendations for further 

work. 
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2  
Literature Review 

 

2.1. SPE 14684, Waterflooding under Fracturing Conditions, Koning1 
Koning’s model focused on analytical modeling of waterflood induced fracturing from a single well in an 

infinite reservoir. The paper focused on propagation of the infinite conductivity fracture. Analytical 

expressions are incorporated in the model assuming maximum leak-off into the formation. Analytical 

calculation of poro-elastic stress changes on the fracture face induced by quasi-steady state elliptical 

pressure profile with elliptical discontinuities in fluid mobility are also included. Koning also presented a 

simple numerical model for calculating stress changes around a fracture and gave a comparative analysis of 

both models.  

The basic assumptions in Koning’s model are: - 

• A vertical rectangular fracture extends laterally from a single well in an infinite reservoir. The 

shape of fracture is elliptical in horizontal cross-section. 

• Fluid pressure drop along fracture can be neglected due it infinite conductivity of fracture. 

• Rate of change of fracture volume is negligible compared to total leak-off rate because the total 

leak-off rate from fracture into reservoir is equal to injection rate from well into fracture. 

• The propagation of the fracture is very slow w.r.t the velocity of transient pressure wave of fluid 

leak-off from fracture into the reservoir. It can be described as 2D-pseudo radial flow. 

• The shape of the fronts separating the three zones-cold waterflooded zone, warm waterflooded 

zone and oil zone are elliptical which are confocal with fracture tips always. 

• The thermo-elastic stress changes at fracture face are calculated under the assumption of an 

elliptical inclusion of uniform change in temperature based on the work of Perkins and Gonzalez8. 

The main difference in Koning’s approach to the previous work done by Perkins and Gonzalez8 was the 

methodology adopted in calculation of poro-elastic stresses on the fracture face. 

                    

          Fig 2.1: Geometry of fracture (wedge shaped)1           Fig 2.2: Elliptical coordinate system (ξ, η) with elliptical zones   
                                                                                                                      confocal with fracture tips1 
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The calculation of pressure solution for infinite conductivity fracture, poro-elastic stress and thermo-elastic 

stress are briefly explained in Chapter 3 and 4 of this thesis, and for detailed explanation Chapters 1, 2 and 

3 of Koning’s doctoral thesis1 can be referred. 

2.2. WF Model, Fenix Consulting 
Koning1 (1988) improved the poro-elastic stress calculation in his extension to the work of Perkins and 

Gonzales8 (1978). WF (Water Frac) model build at Fenix Consulting is an analytical model based on Koning’s 

work used to estimate fracture size and the associated stress changes. This model considers fracture growth 

in a reservoir, assuming that the fracture stays in the reservoir itself and all stress changes occur in the 

reservoir. The WF model basically simulates planar fracture propagation in a vertically confined isotropic 

uniform medium, where the incompressible and less mobile cold injected fluid displaces a zone of heated 

(cold fluid becomes warm when comes in contact with formation rocks) incompressible fluid in a piston like 

manner. So, each zone has its own mobility. The pressure drop in cold and warm zone are approximated as 

steady state and pressure transient is approximated in the reservoir fluid zone. The pressure solution 

estimated around the infinite conductivity fracture has three contributions from each zone based on their 

relative mobilities, extent of each flood front and the penetration depth of pressure transient in the oil zone 

(maximum drainage radius 𝑅𝑒). 

The shape of cold and flood fronts is elliptical with major axis 𝑎 and minor axis 𝑏. So, if 𝑉 is the cooled (or 

flooded) zone volume, ℎ is height of fracture and 𝑋𝑓 𝑜𝑟 𝐿𝑓 (𝑖𝑛 𝑠𝑜𝑚𝑒 𝑐𝑎𝑠𝑒𝑠) is fracture half-length then, the 

relation between the axis of ellipse and 𝑋𝑓 is, 

                                                                                      𝑋𝑓 =  √𝑎2 − 𝑏2                                                                                          (2.1) 

The focal points of ellipse are equivalent to the fracture half-length. Also, the volume of cooled (or flooded) 

zone is given by, 

                                                                                        𝑉 =  𝜋𝑎𝑏ℎ                                                                                                 (2.2)  

Combining both Equations 2.1 & 2.2 yields, 

                                             𝑎 = 𝑋𝑓
√1 + √1 + 𝑐2

2
      ,   𝑏 =  𝑋𝑓

√−1 + √1 + 𝑐2

2
    ,   𝑐 =

2𝑉

𝜋ℎ𝑋𝑓
2                                     (2.3) 

 

Fig: 2.3 Shape of cooled and flooded front 

The fracture propagation criterion is based on a balance between the net effect of fracture pressure, the rock 

stress and fracture toughness (𝐾𝐼𝑐). Since, the fracture is of infinite conductivity, the stress and pressure in 

fracture can be approximated to be constant. Therefore, fracture propagation equation for this case is, 

                                        𝑃𝑓 =  ∆𝑃𝑐𝑜𝑙𝑑 +  ∆𝑃𝑓𝑙𝑜𝑜𝑑𝑒𝑑 +  ∆𝑃𝑜𝑖𝑙 + 𝑃𝑟𝑒𝑠,𝑖 =  𝜎𝑚𝑖𝑛,𝑖 + ∆𝜎𝑇 +  ∆𝜎𝑝 +
𝐾𝐼𝑐

√𝜋𝑋𝑓

                          (2.4) 

where, 𝑃𝑓 = fracture pressure, ΔP = pressure drop in each zone, 𝜎𝑚𝑖𝑛,𝑖 = initial minimum horizontal stress, 

Δσ = stress changes, 𝑋𝑓 = fracture length and 𝐾𝐼𝑐 =fracture toughness. 
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     Fig 2.4: Schematic description of the WF model 

The model in this thesis recreates Koning’s model based on concepts in WF model and extends it for finite 

conductivity fracture case that requires estimation of poro-elastic backstress numerically. This thesis also 

investigates different fracture propagation criterion in both the analytical and numerical models. 

2.3. SPE 36846, Simulation of PWRI under Fracturing Conditions2 
This model is also an extension to Koning’s model but now incorporates finite conductivity fracture. Due to 

injection of produced water, suspended solids in it can lead to formation damage in form of internal filter-

cake build up in formation, external filter-cake build up on fracture face, internal plugging of fracture etc, 

which in turn leads to non-uniform fracture permeability. The fracture is assumed to fully penetrate the 

formation bounded by impermeable layers. As in WF model, there are elliptically shaped zones surrounding 

the fracture. The extent of these zones is calculated from the injected water volume and heat capacities of 

formation rock using Koning’s approach. This model includes a simple damage model. The effect of damage 

because of PWRI above fracturing pressure includes, 

• An external filter-cake on fracture face with uniform permeability (𝑘𝑒). 

• Internal plugging of the fracture over time due to continued injection. 

• A damage zone around the fracture where smaller sized solids have penetrated. The boundary 

between damage zone and cold-water zone is calculated from the volume of deeply penetrated solids 

(user input), assuming that the saturation of deeply penetrating solids is equal to the residual oil 

saturation. This zone has not been included in this thesis as all the damage caused due to total 

suspended solids (TSS) have been assumed to either form an external cake on fracture face or 

accommodate as plug at the fracture tip.  

 

                       

Fig 2.5: Multiple zones developed around the fracture during PWRI 
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As shown in the Figure2.5 above, at any given time there will be three distinct elliptical zones around the 

fracture (neglecting damage zone), 

• The cold flooded zone is closest to fracture where water is mobile and oil is at residual saturation. 

The temperature in this region is equal to injected cold-water temperature 𝑇inj. 

• Warm water zone is ahead of cold zone but behind the flood front. The connate water is mobile and 

oil is at residual saturation. The temperature in this region is equal to initial reservoir temperature 

𝑇𝑟𝑒𝑠. 

• The oil or reservoir fluid zone is ahead of the flood front where both water and oil are mobile. The 

temperature in this region is also equal to initial reservoir temperature 𝑇𝑟𝑒𝑠. 

This thesis investigates the above model and builds the finite fracture conductivity model both analytically 

and numerically in MATLAB using similar fundamentals. For completeness, infinite conductivity fracture 

equations and results are also included in Chapter 3 and Chapter 6 respectively. The main purpose of this 

thesis is to predict fracture growth over time during contaminated water injection (PWRI, seawater, etc.) 

under fracturing conditions. 
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3           
Pressure Field Profile Model 

 

3.1. Waterflood Induced Fractures 

In the previous Chapter, we discussed the previous works done which have been used as the basis in this 

thesis. Over the last few decades, numerous papers have been published on various aspects of hydraulically 

induced fractures. It is widely accepted in the industry that to inject at economic rates, waterflood often 

occurs under induced fracturing conditions9. Induced fractures are typically open during injection and 

closed when well is shut-in which is different than a stimulation fracture such as frac-packs that remains 

always open. The trademark signature of induced fracturing can be observed on a plot between bottom hole 

pressure (BHP) and injection rate. Two different regions can be distinguished on this plot. At low rates, Darcy 

law is prevalent that gives a linear relation of proportionality between BHP and 𝑄𝑖𝑛𝑗 whereas, when the 

fracturing pressure is reached, this relation is no longer valid and pressure becomes almost insensitive to 

the injection rate. The main reason for this is that extra injection rate gets accommodated by increasing the 

surface area of induced fracture. This is described in the graphs below. 

        

   Fig 3.1: Trademark signature of Induced fracturing            Fig 3.2: Gulf of Mexico field data example for Figure3.1 
               by water injection                                                              (adapted from Shell) 

 

In this thesis, we focus on a typically low rate and viscosity of injected fluid as compared to a stimulation 

job. Also, the leak-off is maximum as there are no additives present to minimise leak-off. The injection well 

fracture tends to grow slower compared to in a stimulation job. A 2D flow pattern of leak-off in the plane of 

the reservoir is developed. This clearly means that the leak-off needs to be modelled in a separate way for 

induced fractures. 

3.2. Infinite Conductivity Fractures – Elliptical Solution 
Koning presented a comparative analysis of Carter’s 1D leak-off solution22 vs. 2D pseudo radial and elliptical 

leak-off solution (refer Chapter 3, page 1191). The analysis clearly demonstrates the importance of leak-off 
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modelling in prediction of fracture length. Hagoort23 (1980) in his work on modelling the propagation of 

waterflood induced fractures, coupled a numerical reservoir simulator to an analytical fracture model. He 

observed that in an infinite reservoir, fracture length is always proportional to square root of time. 

Gringarten24 also proposed an analytical expression for pressure solution for an infinite conductivity fracture 

given by, 

                      ∆𝑝𝐷 =
1

2
√𝜋𝑡𝐷 {(erf (

0.134

√𝑡𝐷
) + erf (

0.866

√𝑡𝐷
)) − 0.067𝐸𝑖 (−

0.018

𝑡𝐷
) − 0.433𝐸𝑖 (−

0.750

𝑡𝐷
)}                 (3.1) 

where, ∆𝑝𝐷 =
𝑃𝑓−𝑃𝑖

𝑞𝜇
(2𝜋𝑘ℎ) , 𝑡𝐷 =

𝜂𝑡

𝑋𝑓
2   , 𝜂 =

𝑘

Ф𝜇𝑐
  

In this thesis, a model for pressure solution and flow distribution in and around a fracture is used in elliptical 

coordinate system given by, 

                                                           𝑥 = 𝑋𝑓 𝑐𝑜𝑠ℎ𝜉 𝑐𝑜𝑠𝜂   ,   𝑦 = 𝑋𝑓 𝑠𝑖𝑛ℎ𝜉 𝑠𝑖𝑛𝜂                                                                      (3.2) 

The expression for steady state pressure profile surrounding infinite conductivity fracture used by Koning1, 

was given by Muskat21, 

                                                            ∆𝑝(𝜉) =
𝑞𝜇

2𝜋𝑘ℎ
ln (

𝑎𝑒 + 𝑏𝑒

𝑋𝑓 𝑐𝑜𝑠ℎ𝜉 + 𝑋𝑓 𝑠𝑖𝑛ℎ𝜉
)                                                                    (3.3) 

where, 𝑎𝑒 = 𝑋𝑓  cosh (𝜉𝑒) , 𝑏𝑒 = 𝑋𝑓  sinh (𝜉𝑒) are the major and minor axes respectively of the equi-pressure 

ellipse surrounding the elliptical zone affected by the change in pressure field. The pressure drops across 

each of the zones are obtained depending on position of equi-pressure ellipse using the following equations, 

• When both cold and flood fronts have surpassed the equi-pressure ellipse i.e. 𝑏𝑒 < 𝑏𝑐 < 𝑏𝐹(𝑏𝑒 = minor 

axis of arbitrary ellipse, 𝑏𝐶 = minor axis of cold zone ellipse boundary and 𝑏𝐹 = minor axis of flood 

front ellipse boundary), then pressure drops are given by, 

                                                              ∆𝑝1(𝜉) =
𝑖𝑤

2𝜋𝜆1ℎ
ln (

𝑎𝑐 + 𝑏𝑐

𝑋𝑓 𝑐𝑜𝑠ℎ𝜉 + 𝑋𝑓 𝑠𝑖𝑛ℎ𝜉
)                                                              (3.4) 

                                                              ∆𝑝2(𝜉) =
𝑖𝑤

2𝜋𝜆2ℎ
ln (

𝑎𝐹 + 𝑏𝐹

𝑎𝑐 + 𝑏𝑐
) 

                                                              ∆𝑝3(𝜉) =
𝑖𝑤

2𝜋𝜆3ℎ
ln (

2𝑅𝑒

𝑎𝐹 + 𝑏𝐹
) 

• When the waterflood front has surpassed equi-pressure ellipse but not cold/thermal front i.e. 𝑏𝑐 <

𝑏𝑒 < 𝑏𝐹, then  

                                                              ∆𝑝2(𝜉) =
𝑖𝑤

2𝜋𝜆2ℎ
ln (

𝑎𝐹 + 𝑏𝐹

𝑎𝐶 + 𝑏𝑐
)                                                                                       (3.5) 

                                                              ∆𝑝3(𝜉) =
𝑖𝑤

2𝜋𝜆3ℎ
ln (

2𝑅𝑒

𝑎𝐹 + 𝑏𝐹
) 

• When both the fronts are behind the equi-pressure ellipse i.e. 𝑏𝑐 < 𝑏𝐹 < 𝑏𝑒 then, 

                                                              ∆𝑝3(𝜉) =
𝑖𝑤

2𝜋𝜆3ℎ
ln (

2𝑅𝑒

𝑎𝐹 + 𝑏𝐹
)                                                                                     (3.6)  

In this model, for infinite conductivity fractures, the pressure field around the fracture has elliptical 

symmetry mainly because of uniform pressure within the fracture. So, this pressure is only dependent on 

coordinate ξ, and not η. The formulated steady state pressure distribution for three zones of different mobility 

is given by, 

                                                           𝑝(𝜉) = 𝑝𝑟𝑒𝑠 +  ∆𝑝1(𝜉)  , 0 ≤ 𝜉 ≤ 𝜉1                                                                      (3.7) 

                                                                     = 𝑝𝑟𝑒𝑠 + ∆𝑝2(𝜉)  ,         𝜉1 ≤ 𝜉 ≤ 𝜉2    
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                                                                     = 𝑝𝑟𝑒𝑠 + ∆𝑝3(𝜉)  ,         𝜉2  ≤ 𝜉 ≤ 𝜉3  

                                                                     = 𝑝𝑟𝑒𝑠                     ,          𝜉 ≥ 𝜉3  

In the model, using the assumption that pressure front grows elliptically outward w.r.t slowly growing 

fracture, an effective time dependent exterior radius 𝑅𝑒, is defined from the late-time approximation of the 

fully transient solution by substituting, 

                                                                               𝑅𝑒(𝑡) = 1.5√𝜂𝑡                                                                                                 (3.8) 

                                                                   𝜉3(𝑡) = ln (
3√𝜂𝑡

𝑋𝑓
) = ln (

2𝑅𝑒(𝑡)

𝑋𝑓
) 

where, 𝜂 =
𝑘3

Ф𝜇3𝑐3
 is hydraulic diffusivity derived from reservoir and fluid properties of zone 3. 

The pressure profile Δp(𝜉) satisfies the Laplace Equation, 

                                                                                
𝜕2

𝜕𝜉2
∆𝑝(𝜉) = 0                                                                                                   (3.9) 

with boundary conditions at each elliptical zone boundary given by, 

                                                                                  ∆𝑝1(𝜉3) = 0,                                                                                                  (3.10) 

                                                                                  ∆𝑝1(𝜉1 ) = ∆𝑝2(𝜉1 ), 

                                                                                  ∆𝑝2(𝜉2 ) = ∆𝑝3(𝜉2 ) 

In addition, using Darcy’s law, we get the following boundary conditions, 

                                                                   
𝑘1

𝜇1

𝜕

𝜕𝜉
∆𝑝1(𝜉 = 𝜉1) =  (

𝑘2

𝜇2
)

𝜕

𝜕𝜉
∆𝑝2(𝜉 = 𝜉1)                                                                        (3.11) 

                                  
𝑘2

𝜇2

𝜕

𝜕𝜉
∆𝑝2(𝜉 = 𝜉2) =  (

𝑘3

𝜇3
)

𝜕

𝜕𝜉
∆𝑝3(𝜉 = 𝜉1)                                       

Using the above equations, the pressure field profile can be deduced as, 

                                       ∆𝑝1(𝜉) =
𝑖𝑤

2𝜋𝜆1ℎ
(𝜉1 − 𝜉) +

𝑖𝑤

2𝜋𝜆2ℎ
(𝜉2 − 𝜉1) +

𝑖𝑤

2𝜋𝜆3ℎ
(𝜉3 − 𝜉2)                                             (3.12) 

                                      ∆𝑝2(𝜉) =
𝑖𝑤

2𝜋𝜆2ℎ
(𝜉2 − 𝜉) +

𝑖𝑤

2𝜋𝜆3ℎ
(𝜉3 − 𝜉2) 

                                      ∆𝑝3(𝜉) =
𝑖𝑤

2𝜋𝜆3ℎ
(𝜉3 − 𝜉)  

where, subscripts i = 1, 2 & 3 in ∆𝑝𝑖
(𝜉) represent fluid pressure change in cold flooded zone, warm flooded and 

oil zone respectively. The above equations are generalised under the conditions that fronts separating each 

zone are ellipses confocal with fracture tips and the fluid mobilities are uniform within each zone. The 

corresponding stress changes are illustrated in Chapter 4 and Appendix B in detail. 

3.3. Damage Mechanisms 
The main agents responsible for damage caused are total suspended solids (TSS) in produced water, salty 

seawater, oil in water (OIW) etc. TSS is arguably the most damaging factor present in the injection stream 

mainly due to corrosion along with bacteria present, scaling effect etc adding significant solid content to the 

contaminated produced water by the time it reaches the sand face during injection. The damages could be 

due to solids deposition in fracture, on fracture face, solids getting trapped internally in formation, solids 

travelling freely in the fracture etc. It depends primarily on the TSS to pore throat ratio. In this thesis, the 

following formation damages have been discussed,  

Internal Filter-cake: It is caused because of very small sized particles that deposit internally in the adjacent 

formation to the fracture. These particles form a damage zone around the fracture as shown in Figure2.5 

and reduce the adjacent formation porosity. Also, the permeability of the damage zone is significantly low. 
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But, the magnitude of damage caused by Internal Filter-cake formation is much less compared to the 

pressure decline caused due to formation damages in the fracture in form of external filter-cake build-up on 

fracture face and internal Plug evolution at fracture tip. The formulation of damage or impaired zone can be 

done in following way2, 

                                                                                𝜉0 = 0.5 asinh (
2𝑉𝑠

𝜋 𝑋𝑓
2ℎ

)                                                                             (3.13)  

where, 𝜉0 is the elliptical coordinate of the damage zone adjacent the fracture and before the cooled water 

zone, volume 𝑉𝑠 =
𝑓

∅𝑆𝑜𝑟
 𝑊𝑖, f is the fraction of TSS that penetrates deeply in the adjacent formation and, 𝑊𝑖 

is the total water volume injected at that time.  

External Filter-cake: It is build up on fracture face mainly due to particles that are large. These particles 

tend to deposit at fracture face and form a primary damage zone on the fracture face. Generally, the external 

filter-cake composition is highly complex due to presence of solids, OIW, bacteria, scale, debris etc due to 

which, the pressure drop is much higher compared to internal Filter-cake. In this model, external filter-cake 

is assumed to have uniform permeability (𝑘𝑒). The filter-cake thickness is generally larger near the fracture 

mouth or wellbore and decreases in width towards the fracture tip. This is because the total suspended 

solids and oil in injected water accumulates throughout the fracture face in proportion to the fluid volume 

that leaks off. The flow at fracture mouth is greater than tip due to leak-off, which causes more erosion near 

the wellbore leading to larger external filter-cake thickness at the mouth (𝑏0). So, in this model the external 

filter-cake is assumed to have an elliptical shape given by2, 

                                                                               𝑏(𝑥) = 𝑏0
√1 − (

𝑥

𝑋𝑓
)

2

                                                                                (3.14)   

where, b is the external filter-cake thickness and x is the coordinate on fracture face. In elliptical coordinates, 

it can be written as, 

                                                                             𝑏(𝜂) = 𝑏0 sin(𝜂) , 0 ≤ 𝜂 ≤ (
𝜋

2
)                                                                   (3.15)  

The filter-cake thickness is calculated from volume of total suspended solids in injected water that remains 

in the fracture surface area given by, 

                                                                              𝑇𝑆𝑆. 𝑉𝑖𝑛𝑗 =  𝜋𝑏0𝑋𝑓ℎ                                                                                       (3.16) 

It is to be noted from Equation (3.14) that, in case of an infinite conductivity fracture such a thickness profile 

will lead to uniform pressure drop over the filter-cake because pore pressure distribution is as given in 

Equation (3.12). But, the main focus of this thesis is fracture with finite conductivity that requires internal 

plugging of the fracture as well. 

Internal Plugging at fracture tip: Filter-cake damage w.r.t the fracture occurs not only on the fracture face 

but also inside the fracture at fracture tip. It is illustrated in Figure3.3. In this model, the internal plug is 

formed once the external filter-cake starts building up on fracture face and no newly injected solids can 

penetrate adjacent formation. This is because of conventional filtration theory. Since, the induced fracture 

during water injection grows slowly, this leads to a situation in which the interior of the fracture starts 

getting filled (partial plugging) by TSS and oil in injected water with time. Also, if the external filter-cake 

thickness tends to be large at fracture mouth, causing a small gap for fluid to enter through, then particles 

at the mouth get displaced to the tip4. So, tip plug forms by impurities in injected stream as well as particles 

eroded from filter-cake4. Therefore, the fracture is no more of infinite conductivity. The computation of plug 

length and volume evolution is carried out in Chapter 5 using following volume balance of solids injected, 

                                                                𝑉𝑠𝑜𝑙𝑖𝑑𝑠(𝑡) = 𝑇𝑆𝑆. 𝑖𝑤. 𝑡 =  𝜋 ℎ ∫ 𝑋𝑓(𝑥, 𝑡)  𝑤(𝑥, 𝑡)  𝑑𝑥
𝑋𝑓

𝑋𝑓𝑢

                                                  (3.17) 

where, 𝑤(𝑥, 𝑡) is the fracture width profile, 𝑥 = 𝑋𝑓𝑢 is the unplugged length. 
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The main challenge in modelling a finite conductivity fracture is that the fracture permeability profile is 

unknown due to the formation of internal plug near fracture tip. The main principle for calculation of fracture 

conductivity in this model is that at any given time, the volume of the fracture is equal to total volume of 

injected solids. The formulation of fracture permeability profile is done in next section. 

 

    Fig 3.3: Schematic of filter-cake thickness and internal plug length formed4  

3.4. Finite Conductivity Fractures – Elliptical Solution 
Finite Conductivity fracture is the main scope of this Chapter. A semi-analytical model has been developed 

to solve for the pressure field in and around the finite conductivity fracture. Finite Conductivity fractures 

can be defined accurately using the fracture permeability profile explained below.  

Fracture Permeability profile: In this model, due to elliptical profile the leak-off is minimum near fracture 

tip. So, it is expected that injected solids/oil droplets will fill the tip area first. The fracture permeability 

tends to decrease from fracture mouth to the tip. This is because the permeability distribution taken has an 

impermeable plug behind the fracture tip along with an infinite conductivity unplugged area behind the plug 

up to fracture mouth (Figure3.3). This is given by a two-step permeability profile step-function2,  

                                                                            𝑘𝑓(𝜂) =  {
  𝑘𝑓1  ,    𝜂12 ≤ 𝜂 ≤ (

𝜋

2
) 

 𝑘𝑓2  ,    0 ≤ 𝜂 ≤ 𝜂12    
                                                                       (3.18) 

This fracture permeability profile in Equation (3.18) is used to calculate the Fourier coefficients by building 

a linear set of Equations of the form AX = B, which is discussed later. In this model with an impermeable tip 

plug, the plug length is iterated along with iteration of fracture length for fracture propagation scenario 

which is discussed in detail in Chapter 5. Also, in case of a fracture with uniform permeability, the fracture 

permeability would be iterated until all injected solids/oil droplets are accommodated by the fracture. This 

case has not been included in the model, but can be referred to in work of Hoek et al.2. 

In this model, the pressure drop over the fracture will be non-zero that will disturb the elliptical symmetry 

of pressure field around the fracture as mentioned in (3.2). So, for a finite fracture the pressure profile 

Δp(ξ) must satisfy the fully Laplace equation instead of Equation (3.9). This is because the pressure field now 

depends on both ξ and η coordinates. The full Laplace equation is given by, 

                                                                                 (
𝜕2

𝜕𝜉2
+

𝜕2

𝜕𝜂2) ∆𝑝(𝜉, 𝜂) = 0                                                                        (3.19) 

The pressure solution is periodic in η with period as π. Therefore, it is expressed in form of a Fourier series 

given by, 

            ∆𝑝1(𝜉) =
𝑖𝑤

2𝜋𝜆1ℎ
(𝜉1 − 𝜉) +

𝑖𝑤

2𝜋𝜆2ℎ
(𝜉2 − 𝜉1) +

𝑖𝑤

2𝜋𝜆3ℎ
(𝜉3 − 𝜉2) + 

                                                                                     
𝜇𝑖𝑤

2𝜋𝑘ℎ
∑ {𝑎1𝑚 cosh[2𝑚(𝜉1 − 𝜉)] + 𝑏1𝑚 sinh[2𝑚(𝜉1 − 𝜉]} cos[2𝑚𝜂]]

∞

𝑚=1
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            ∆𝑝2(𝜉) =
𝑖𝑤

2𝜋𝜆2ℎ
(𝜉2 − 𝜉) +

𝑖𝑤

2𝜋𝜆3ℎ
(𝜉3 − 𝜉2) + 

                                                                              
𝜇𝑖𝑤

2𝜋𝑘ℎ
∑ {𝑎2𝑚 cosh[2𝑚(𝜉2 − 𝜉)] + 𝑏2𝑚 sinh[2𝑚(𝜉2 − 𝜉]} cos[2𝑚𝜂]]

∞

𝑚=1

 

            ∆𝑝3(𝜉) =
𝑖𝑤

2𝜋𝜆3ℎ
(𝜉3 − 𝜉) +

𝜇𝑖𝑤

2𝜋𝑘ℎ
∑ {𝑏3𝑚 sinh[2𝑚(𝜉3 − 𝜉]} cos[2𝑚𝜂]]

∞

𝑚=1

                                                       (3.20) 

The above equations also satisfy boundary conditions given by Equations (3.10 & 3.11). Also, μ and k are 

reference viscosity and permeability respectively. The coefficients 𝑎1𝑚 , 𝑎2𝑚 , 𝑏1𝑚 , 𝑏2𝑚 𝑎𝑛𝑑 𝑏3𝑚 can be related 

using the boundary conditions in following way, 

                                                        (
𝑘1

𝜇1
) 𝑏1𝑛 = (

𝑘2

𝜇2
) 𝑏2𝑛 cosh[2𝑛(𝜉2 − 𝜉1)]                                                                         (3.21) 

                                                        (
𝑘2

𝜇2
) 𝑏2𝑛 = (

𝑘3

𝜇2
) 𝑏3𝑛 cosh[2𝑛(𝜉3 − 𝜉2)] 

                                           𝑎1𝑛 = 𝑏2𝑛 sinh[2𝑛(𝜉2 − 𝜉1)] , 𝑎2𝑛 = 𝑏3𝑛 sinh[2𝑛(𝜉3 − 𝜉2)] 

In order to solve for the five coefficients, a system of linear Equations of the form AX = B is developed to first 

solve for coefficient 𝑏1𝑚 of the Fourier sum in MATLAB. It gives the rest four coefficients from Equation 

(3.21). The detailed calculations are presented in Appendix A. The solution of this linear set of Equations 

requires finite fracture permeability profile which was discussed in section 3.3. 

3.5. Fracture Pressure Profile – Elliptical Solution 
The fracture (viewed from top) is treated as a 1D line with very small width at fracture mouth that decreases 

elliptically to zero at fracture tip. This 1D line is divided into uniform grids of length 𝐷𝑋. The pressure inside 

the fracture is estimated at centre of each of this grid cells i.e. in discretized manner, pressure is evaluated 

at each ith segment from 1 to N’s as depicted below. 

   

In order to derive the equation for fracture pressure, the fluid volume balance locally in the fracture is done. 

The local fluid volume balance in the fracture is achieved under the condition that fluid flow rate along the 

fracture (along x) is equal to the (constant injection flow rate (𝑖𝑤) – leak-off flow along the fracture face). The 

balance Equation for it is mentioned in Appendix A both with and without external filter-cake on fracture 

face. In the absence of external filter-cake we get, 

                                                                    ∆𝑝𝑓(𝜂) =  ∆𝑝1(𝜉 = 0, 𝜂) , 0 ≤ 𝜂 ≤ (
𝜋

2
)                                                            (3.22)  

Equation (3.22) clearly shows that the fracture pressure depends only on coordinate η at ξ=0 i.e. at fracture 

face. So, in case of an infinite conductivity fracture, a constant fracture pressure profile is expected from 𝑥 =

0 𝑡𝑜 𝑋𝑓 𝑜𝑟 𝜂 = 𝜋/2 𝑡𝑜 0. On the other hand, in case of a finite conductivity facture with fracture permeability 

profile as given in Equation (3.18), a sharp pressure drop is expected at transition area from unplugged to 

plugged part i.e. at 𝑥 =  𝑋𝑓𝑢. The fracture pressure profile in presence of an external filter-cake built on 

fracture face with thickness 𝑏(𝑥) 𝑜𝑟 𝑏(𝜂) in elliptical coordinates is given by, 

                      ∆𝑝𝑓(𝜂) =  ∆𝑝1(𝜉 = 0, 𝜂) − [(
𝑘1

𝑘𝑒
) (

𝑏0

𝑋𝑓
) (

𝜕∆𝑝1(𝜉, ƞ)

𝜕𝜉
)] 𝑎𝑡 𝜉 = 0, 0 ≤ 𝜂 ≤ (

𝜋

2
)                                     (3.23) 

The presence of external filter-cake changes the linear set of equations developed in the coefficients of the 

Fourier sum, which have been described in detail in Appendix A from Equations A.11 to A.15.  
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4    
Poro-Elastic and Thermo-elastic Stress Models 

 

In this Chapter, the factors that affect the fracture propagation pressure using the similar wedge-shaped 

fracture geometry (Figure2) is investigated. The pressure field solutions derived in Chapter 3 are used to 

estimate the poro-elastic backstress effect on fracture face due to pore pressure inflation. Also, the thermo-

elastic stress due to formation cooling is evaluated.  

4.1. In-situ Stress 
The underground formations are in confined state and under stress conditions. In-situ stress underground 

is the result of overburden stress due to mass of rock and pore fluid. In general coordinate, it has six 

components (3 stress and 3 shear components). Figure4.1 illustrates the local state of stress translated into 

three principal stress (σ1, σ2, σ3) for an element of the formation. The components are σ1 which is often 

vertical and maximum in a normal tectonic regime (σ1> σ2> σ3), σ2 is the maximum horizontal stress and σ3 

is the minimum horizontal stress. Such induced fractures open against the minimum horizontal stress σ3 

i.e. formation breaks out along σ3 (perpendicular to fracture) and fracture propagates in other two directions, 

in the plane of greatest and intermediate stresses. So, that is the reason why in deep reservoirs we often 

have vertical fractures induced as σ3 is horizontal and overburden (σ1) is maximum whereas, in shallow 

reservoirs we get, horizontal fractures induced as σ3 is vertical and overburden is minimum. The latter is 

often common in tectonically relaxed regions. 

The principal stresses are generally compressive, anisotropic and heterogeneous in nature. This implies that 

compressive forces acting on the rocks are not equal and vary in magnitude depending on their direction of 

orientation. So, the magnitude and direction of principal stresses are key factors in net pressure calculation 

for fracture propagation, fracture widening, shape of the fracture, vertical extent of the fracture, etc. In this 

model, we assume elliptical shape and a rectangular fracture, so focus is only on calculation of minimum 

horizontal stress (σ3) magnitude in a normal tectonic regime. 

          

Fig 4.1: In-situ stress components (adapted from Shell) 

4.2. Poro-elasticity and Calculation of Poro-elastic Stress 
Poro-elasticity is a term used to describe the interaction between fluid flow and deformation of solids under 

external load within a porous media. It results from increase in pore pressure in the formation around 

fracture due to water injection. The pore pressure increase around the fracture leads to increase in 

backstress and propagation pressure. This pore pressure increase was evaluated in Chapter 3. In this 
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Chapter, we model the reaction to this change in pore volume and pressure in form of elastic deformation of 

rocks or poro-elastic backstress mechanism.  

The principal mechanism of poro-elasticity says that, the stress around the fracture will increase 

proportional to the pressure increase around the injection well w.r.t. Pres prior to injection. In equation form 

it can be written as, 

                                                                                  ∆𝜎ℎ = 𝐴𝑝 ∗ ∆𝑝                                                                                               (4.1) 

                                                                                𝐴𝑝 = 𝛼𝐵 ∗ (
1 − 2ν

1 − ν
)                                                                                        (4.2) 

where, 𝛼𝐵 = Biot coefficient, ν = Poisson’s ratio, and 𝐴𝑝 = Poro-elastic constant typically of the order of 0.5-

0.7 (bar/bar). Equations 4.1 and 4.2 are valid under the assumption that overburden stress doesn’t change 

during injection. The ∆𝜎ℎ also depends on ratio between pressure penetration front into the reservoir and 

fracture length1. In specific terms, the larger the fracture and smaller the penetration, the ∆𝜎ℎ is “small” 

whereas, smaller the fracture and larger the penetration, ∆𝜎ℎ is “large”. This model largely deals with the 

latter case. The approach in the model to solve stress fields have been taken from Chapter 2 of Koning’s 

work. The main results of Koning’s stress model which have been incorporated in this model are, 

• When the reservoir pressure increases, the rock matrix tries to expand which results in increase of 

poro-elastic horizontal stress 𝜎ℎ,𝑚𝑖𝑛.  

• The change in total horizontal stress for a given wellbore pressure and/or temperature depends on 

the ratio of reservoir height and penetration depth of pressure and/or temperature front (ℎ/2𝑅𝑒). A 

comparative analysis of analytical and numerical results of this model vs Koning’s results for different 

ℎ/2𝑅𝑒 ratios, have been tabulated in Chapter 6. 

• When reservoir is cooled upon cold water injection, the rock matrix tends to contract which results 

in decrease of thermo-elastic horizontal stress 𝜎𝑦𝑇. 

The net effect of poro- and thermo-elastic stress changes on fracture face given by Koning1 is, 

                                                               𝜎ℎ,𝑛𝑒𝑡 =  𝜎ℎ,𝑖𝑛𝑖𝑡𝑖𝑎𝑙 +  ∆𝜎𝑦𝑇 + ∆𝜎𝑦𝑇                                                                                (4.3) 

where, 𝜎ℎ,𝑖𝑛𝑖𝑡𝑖𝑎𝑙 is initial horizontal stress. 

This equation is then used for fracture propagation modelling. The analytical expressions of poro-elastic 

stress changes have been discussed in Appendix 3-A of Koning’s thesis1. In this model, the main focus is 

put on numerical modelling of stress changes at the fracture wall. In this method, the reservoir is divided 

into cartesian grid blocks or small adjacent parallelepipeds as shown in Figure4.2. The pressure in the field 

evaluated in Chapter 2 is constant within each grid block. The principle of superposition is used to calculate 

the net stress on fracture face by summing up the contributions from all grid blocks. 

 

Fig 4.2: Schematic representation of grid block distribution for poro-elastic stress calculation1 
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The poro-elastic backstress induced by a pressure field change Δp (�⃗�) can be expressed using the Goodier 

potential1 Ф(�⃗�). In generalized manner, the equation in cartesian coordinates (x, y, z) for the Goodier 

displacement potential is given by, 

                                                                  (
𝜕2

𝜕𝑥2
+

𝜕2

𝜕𝑦2
+

𝜕2

𝜕𝑧2) ∅ =  −𝑚 ∆𝑝                                                                             (4.4) 

The solution for the above equation given by Koning1 is, 

                                                                 ∅ =
𝑚

4𝜋
 ∫ 𝑑𝑥 𝑑𝑦 𝑑𝑧   ∆𝑝(𝑥, 𝑦, 𝑧)

1

𝑅
                                                                            (4.5) 

Where, R is given by, 

                                                            𝑅 = [(𝑥 − 𝑥′)2 + (𝑦 − 𝑦′)2 + (𝑧 − 𝑧′)2]0.5                                                                  (4.6) 

Therefore, on solving Equation 4.4 the stresses are given by, 

                                     𝜎𝑖𝑗𝑝 = 𝐴𝑝 ∗ {
1

4𝜋
 ∫ 𝑑𝑥 𝑑𝑦 𝑑𝑧 ∆𝑝(𝑥, 𝑦, 𝑧) 

𝜕2

𝜕𝑥𝑖 𝜕𝑥𝑗
  (

1

𝑅
) + ∆𝑝 𝛿𝑖𝑗}                                                (4.7) 

where, 𝛿𝑖𝑗  is the Kronecker delta. The detailed procedure is outlined in Appendix 3-B1. 

In Figure4.2, the coordinate space has been divided into parallelepipeds with edges of length 2𝑎1, 2𝑎2& 2𝑎3 in 

the x, y, z directions respectively. In this model, equal size grids have been used which means the edges are 

of equal length. Also, as mentioned above ∆𝑝 is constant within each parallelepiped. This means equation 

4.7 becomes,  

 𝜎𝑖𝑗𝑝 =
𝐴𝑝

4𝜋
{∑  ∆𝑝(𝑥, 𝑦, 𝑧)

𝑥,𝑦,𝑧

∫ 𝑑𝑘1  ∫ 𝑑𝑘2

𝑦+𝑎2

𝑦−𝑎2

𝑥+𝑎1

𝑥−𝑎1

∫ 𝑑𝑘3

𝑧+𝑎3

𝑧−𝑎3

𝜕2

𝜕𝑘𝑖 𝜕𝑘𝑗

[(𝑥 − 𝑘1)2 + (𝑦 − 𝑘2)2 + (𝑧 − 𝑘3)2]−(
1
2

)
}

+ 𝐴𝑝(∆𝑝(𝑥, 𝑦, 𝑧)𝛿𝑖𝑗)                                                                                                                                                   (4.8) 

On solving the above integrals, we get1 

 𝜎𝑖𝑗𝑝

=
𝐴𝑝

4𝜋
{ ∑  ∆𝑝(𝑥, 𝑦, 𝑧)

𝑥,𝑦,𝑧

∫ 𝑑𝑘1  ∫ 𝑑𝑘2

𝑎2

𝑎2

𝑎1

𝑎1

∫ 𝑑𝑘3

𝑎3

𝑎3

𝜕2

𝜕𝑘𝑖  𝜕𝑘𝑗

[(𝑥0 − 𝑥 − 𝑘1)2 + (𝑦0 − 𝑦 − 𝑘2)2 + (𝑧0 − 𝑧 − 𝑘3)2]−(
1
2

)}  

+ 𝐴𝑝(∆𝑝(𝑥0, 𝑦0, 𝑧0)𝛿𝑖𝑗)                                                                                                                                                                                    (4.9) 

where, (𝑥0, 𝑦0, 𝑧0) is a source point on the fracture and (𝑥, 𝑦, 𝑧) is a field point. The integral is calculated 

analytically16. The results are given in Appendix B of this thesis.  

In Equation (4.9), a volume integral needs to be computed. In case of a dynamic fracture, this volume integral 

will be calculated for each iteration until fracture length converges (Chapter 5). This makes this computation 

a time-consuming affair. Also, the numerical accuracy of this integral relies on the accurate estimation of 

pressure field around the fracture (Chapter 3) at field point (𝑥, 𝑦, 𝑧) due to presence of singularity in the 

integrand7. In this model, it is assumed that the pressure at each grid block is constant over the height of 

the reservoir. So, the summation over z direction is neglected and is replaced by h/2, h/4, h/5 etc. where, ℎ is 

the reservoir height. Also, the only stress component of interest is the one perpendicular to fracture surface 

𝜎𝑦𝑝(�⃗�) induced by pore pressure inflation (Appendix B). The stress is fundamentally expected to be greatest 

at centre of entire fracture 2𝑋𝑓, and least at the tips. 

4.3. Thermo-elasticity and Calculation of Thermo-elastic Stress 
Perkins and Gonzalez13 (1985) calculated the thermo-elastic backstress ∆𝜎𝑦𝑇 for an elliptical disc with 

uniform change in temperature. Their analytical model assumed the elliptical temperature discontinuity 

confocal with the fracture tips. A similar model is built for ∆𝜎𝑦𝑇 calculation in this thesis. The thermo-elastic 
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stress for cold water injection, unlike poro-elastic stress has a negative effect due to formation cooling (rock 

contraction) and thus, reduces the net backstress on fracture face. The principal mechanism of thermo-

elasticity says that, the stress around the fracture will increase proportional to the temperature difference 

between injection fluid temperature and initial reservoir temperature. In equation form it is given by, 

                                                                                   ∆𝜎𝑦𝑇 = 𝐴𝑇. ∆𝑇                                                                                            (4.12) 

                                                                                     𝐴𝑇 =
𝐸 𝛼𝑇

1 − ν
                                                                                               (4.13) 

where, E = Young’s modulus (bar), 𝛼𝑇 = linear thermal expansion coefficient (1/℃), and ∆𝑇 = 𝑇𝑖𝑛𝑗 − 𝑇𝑟𝑒𝑠  (℃). 

The thermo-elastic constant 𝐴𝑇 typically has value of 1 bar/ ͦ C for medium strength rock. It is proportional 

to Young’s modulus which indicates that in soft rocks the thermo-elastic effect is lesser than hard rocks. In 

this model, we use Perkins and Gozalez’s13 expressions for ∆𝜎𝑦𝑇 calculation. Firstly, following dimensionless 

quantities are defined, 

                                                         ∆𝜎𝑥𝑇𝐷 =  
∆𝜎𝑥𝑇

𝐴𝑇. ∆𝑇
      ,     ∆𝜎𝑦𝑇𝐷 =  

∆𝜎𝑦𝑇

𝐴𝑇. ∆𝑇
                                                                         (4.14) 

Using Equations (4.12) to (4.14), for the elliptical inclusion of uniform ΔT, the thermo-elastic stresses in x 

and y are given by1, 

                                  ∆𝜎𝑦𝑇𝐷 =
𝑒𝑐

1 + 𝑒𝑐
+

(1 + 𝑒𝑐)−1

1 + 0.5[1.45(ℎ𝐷)0.9 + 0.35(ℎ𝐷)2][1 + (𝑒𝑐)0.774]
                                            (4.15) 

                                  ∆𝜎𝑥𝑇𝐷 =
1

1 + 𝑒𝑐
+

𝑒𝑐(1 + 𝑒𝑐)−1

1 + [1.45(ℎ𝐷)0.9 + 0.35(ℎ𝐷)2][1 + (1 − 𝑒𝑐)1.36]
                                            (4.16) 

where, ℎ𝐷 =
ℎ

2𝑏𝑐
, 𝑒𝑐 =

𝑏𝑐

𝑎𝑐
 with 𝑎𝑐 , 𝑏𝑐 being the major and minor axes respectively of temperature front.  

In Appendix B, the detailed calculation of major and minor axis of elliptical temperature front is discussed 

using heat and volume balance. The poro-elastic stress ∆𝜎𝑦𝑃 and thermo-elastic stress ∆𝜎𝑦𝑇 discussed in this 

Chapter, both will have significant impact on the fracture propagation pressure (Injection pressure) and 

fracture size. This will be discussed in Chapter 5.  

Combining section 4.2 and 4.3, we get the overall effect of pore pressure and temperature on reservoir stress 

changes given in elliptical coordinates by, 

                                                                 𝜎𝑚𝑖𝑛(𝜉, 𝑡) =  𝜎𝑚𝑖𝑛,𝑖(𝜉, 0) + ∆𝜎𝑦𝑇 + ∆𝜎𝑦𝑃                                                              (4.17) 
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5                  
 Fracture Propagation Model 

 

 

In previous Chapters, the factors that influence fracture propagation pressure have been discussed. In this 

Chapter, the fracture propagation criterion is investigated and different approaches are discussed to model 

fracture propagation pressure and predict fracture length after continued constant rate water injection over 

time.  

5.1. Stages of Fracturing 
The fracture initiation pressure must exceed the sum of minimum horizontal stress (𝜎 ℎ,𝑚𝑖𝑛) and tensile stress 

of formation rock for rock to breakdown. A sudden drop in measured pressure on surface is indicative of 

fracture initiation. Fracture closure pressure is lesser and is observed when injection is stopped and fracture 

starts to close. The minimum principal compressive stress (𝜎 ℎ,𝑚𝑖𝑛) controls the fracture closure pressure 

generally. In most cases, the fracture propagation pressure lies between both the pressures. The fracture 

propagates at slightly lesser pressure than breakdown pressure and remains constant for an infinite 

conductivity fracture as long as injection is done at constant rate. But, in case of a plug formation for finite 

conductivity fractures, the pore pressure and stress in fracture is now a function of x coordinate.  

      

 Fig 5.1: Schematic representation of pressure and              Fig 5.2: General description of Stages of fracturing (adapted   
             stress distribution in plugged fracture4                                               from Shell) 
 

The pressure inside the fracture is greatest at the fracture mouth (near wellbore) and declines towards 

fracture tip due to lesser friction and leak-off. Figure5.1 shows a schematic representation of pressure and 

stresses on fracture face. The fracture pressure at mouth continuously increases with time along with 

increase in plug length due to more suspended solids being accumulated with time. So, it is to be noted that 

if the rate of plug length increase is greater than rate of increase in pressure, then the fracture will not 

propagate and will eventually plug completely. In this model, this issue has been investigated and a model 

has been build which shows that the pressure drop over the entire fracture can lead to sufficient increase 

in fracture width and length, and thus fracture volume (ballooning effect). It also shows that the finite 

conductivity fracture can accommodate more solids over time without substantial increase in bottom-hole 
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injection pressure, and hence is able to propagate. A schematic representation of various stages of fracturing 

over time, under constant injection rate is shown in Figure5.2. 

5.2. Fracture Propagation Criteria 
In order to solve the main problem statement of this thesis, we need to combine the pressure profiles 

estimated in Chapter 3, induced stress changes calculated in Chapter 4 and the fracture propagation 

physical phenomena. In case of infinite conductivity fracture, Koning1 solved the following fracture 

propagation equation to calculate fracture half-length 𝑋𝑓, for constant injection rate 𝑖𝑤, constant height of 

fracture ℎ and at time 𝑡, 

                                                      ∆𝑝𝑓(𝑖𝑤, 𝑡, 𝑋𝑓, ℎ) −  𝜎𝑖 − 𝜎𝑝𝑇(𝑖𝑤, 𝑡, 𝑋𝑓, ℎ) = 𝐺(𝑋𝑓, ℎ)
𝐾𝐼𝑐

√𝜋𝑋𝑓

                                             (5.1) 

where, ∆𝑝𝑓 is difference between fracture and reservoir pressure before injection, 𝜎𝑖 is initial minimum 

horizontal stress before injection, 𝜎𝑝𝑇 is combined effect of poro-elastic and thermo-elastic stress on fracture 

face, and 𝐺(𝑋𝑓 , ℎ) is a dimensionless fracture geometry factor that depends on whether fracture is short or 

long. In this model, 𝐺(𝑋𝑓 , ℎ) = 1. 

In fracture modelling during water injection, the fracture could grow, remain constant or shrink (partial 

closure) at a time step. This is determined using the stress intensity factor (𝐾𝐼). It characterises the stress 

behaviour near fracture tip. The 𝐾𝐼 at each fracture tip is evaluated at all time steps w.r.t the material 

property called rock toughness 𝐾𝐼𝑐, which is typically of the order of 10 𝑏𝑎𝑟√𝑚. Using this concept, the 

following fracture propagation criterion has been used in this model to determine whether fracture 

propagates in a given time step or not. 

                                                    𝐾𝐼 > 𝐾𝐼𝑐 ; Fracture tip extension or Xf increases until 𝐾𝐼 = 𝐾𝐼𝑐                                      (5.2) 

             𝐾𝐼 < 0  ; Fracture tip shrinkage or Xf  decreases until 𝐾𝐼 = 0             

             0 ≤ 𝐾𝐼 ≤ 𝐾𝐼𝑐 ;   No extension or shrinkage of  Xf 

This is called the Barenblatt propagation criterion for hard rocks. The stability range for it is shown in 

Figure5.3. 

 

 Fig 5.3: Barenblatt fracture propagation criterion (adapted from Shell) 

Firstly, for a given time step, using the reservoir, fluid and rock properties, the pressure field around and in 

fracture is estimated at each grid cell. From this 2D pressure field, backstresses are estimated on fracture 

face. They are combined to estimate the fracture length at each time step using values from previous time 

step by Newton Raphson Iteration Method. In this model, the following fracture propagation equation for a 

recti-linear fracture has been implemented, 

                                
1

√𝜋𝑋𝑓

 ∫ 𝑑𝑥 [𝑃𝑓𝑟𝑎𝑐(𝑞, 𝑡, 𝑋𝑓, ℎ, 𝑥) −  𝜎𝑖 − ∆𝜎𝑝𝑇(𝑞, 𝑡, 𝑋𝑓, ℎ, 𝑥)]√
𝑋𝑓 + 𝑥

𝑋𝑓 − 𝑥
 =  𝐾𝐼𝑐                              (5.3)

𝑋𝑓

0
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The dimensionless stress intensity factor is given by, 

                                                                             𝐾𝐼𝑐𝐷 =  
2𝜋𝑘ℎ

𝜇𝑞

1

√𝜋 𝑋𝑓

 𝐾𝐼𝑐                                                                                    (5.4) 

This Equation (5.3) signifies the concept that in case of a finite conductivity fracture, the fluid pressure in 

the fracture 𝑃𝑓𝑟𝑎𝑐  𝑜𝑟 𝑃𝑓, and the net backstress ∆𝜎𝑝𝑇 depend on the position along the fracture, x. Therefore, 

for implementation of this semi-analytical model, efficient algorithms for calculation of 𝑃𝑓 and ∆𝜎𝑝𝑇 as 

function of time and fracture length is scripted and executed. By solving this Equation (5.3) in the model, 

we get the time dependence of fracture length and bottom-hole injection pressure. From Equation (5.2), the 

fracture propagation criterion could lead to different possible propagation scenarios such as, 

• 𝐾𝐼 > 𝐾𝐼𝑐: It signifies that the fluid pressure increases inside the fracture due to volume injected during 

(ti-ti-1) provides enough energy to overcome the rock toughness and fracture to propagate. So, a new 

fracture length 𝑋𝑓 is computed that is in equilibrium with pressure field and stress conditions for 

time 𝑡𝑖  using the Newton Raphson Method until 𝐾𝐼 − 𝐾𝐼𝑐 ≈ 0. 

• 𝐾𝐼 < 0: It signifies that the volume injected does not provide sufficient energy to keep the fracture 

open. So, the facture begins to close and a new fracture length is computed that is in equilibrium 

with pressure field and stress conditions for time 𝑡𝑖  until 𝐾𝐼 ≈ 0. 

• 0 ≤ 𝐾𝐼 ≤ 𝐾𝐼𝑐: It signifies that the fracture is neither growing nor shrinking. So, 𝑋𝑓 computed at time 

step 𝑡𝑖−1 is equal to 𝑋𝑓 at time step 𝑡𝑖 . This is a stable scenario. 

 

5.3. Fracture Tip Models 
In this thesis, for finite fracture conductivity fracture, three fracture tip models have been discussed. For 

the concepts discussed above the following are the tip propagation models that can be implemented, 

• The first model which is also the default model is based largely on the above-mentioned concepts. 

The fracture toughness 𝐾𝐼𝑐  being a rock material property is input as a constant value. The fracture 

length is then iterated such that stress intensity factor 𝐾𝐼 for each time-step converges with this 𝐾𝐼𝑐   

value to give the converged fracture length at that time. The tip stress ∆𝜎𝑡𝑖𝑝 evaluated in this case is 

proportional to 1/√𝑋𝑓 .  In terms of stress intensity factor, stress close to the fracture tip can be 

approximated as in Equation (5.5). This resulting tip stress reduces with increasing fracture length 

from Equation (5.5). This is often not observed in practice, where the tip-stress either gradually grows 

in time or remains high. 

                                                                                       𝜎𝑡𝑖𝑝 =
𝐾𝐼𝑐

√𝜋𝑋𝑓

                                                                                               (5.5) 

• In the second tip model, the minimum tip-stress ∆𝜎𝑡𝑖𝑝,𝑖𝑛𝑖𝑡𝑖𝑎𝑙  is specified along with an initial fracture 

toughness 𝐾𝐼𝑐,𝑖𝑛𝑖𝑡𝑖𝑎𝑙 value which tend to grow in time for large fractures. It is given by Equation (5.6). 

In this model, an effective fracture toughness 𝐾𝐼𝑐,𝑒𝑓𝑓 is estimated after every time step, which grows 

with fracture length. So, as the fracture propagates, new tip stress and fracture toughness are 

estimated. The criteria for propagation is that if the bottom hole pressure (BHP) exceeds the sum of 

minimum confining stress and effective tip stress evaluated from this tip stress model, then the 

fracture will propagate. It is to be noted that, since the confining stress changes with time, the 

fracture propagation may occur at an elevated stress state if poro-elastic stress increase dominates 

the confining stress, or at reduced stress state if thermal stress reduction due to formation cooling 

dominates the stress development. 

                                                                        ∆𝜎𝑡𝑖𝑝 = ∆𝜎𝑡𝑖𝑝,𝑖𝑛𝑖𝑡𝑖𝑎𝑙  (1 + (
𝑋𝑓

3000
)

0.25

 )                                                          (5.6) 

                                                                                         𝜎𝑡𝑖𝑝 =
𝐾𝐼𝑐,𝑒𝑓𝑓 

√𝜋𝑋𝑓

                                                                                          (5.7) 
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• In the third tip model, the initial fracture toughness 𝐾𝐼𝑐,𝑖𝑛𝑖𝑡𝑖𝑎𝑙 is specified as an input parameter as 

well. Unlike the second fracture tip model, in this case the tip stress remains constant with time. 

Only the effective fracture toughness 𝐾𝐼𝑐,𝑒𝑓𝑓  increases with fracture length after every time-step. So, 

as 𝑋𝑓 grows with time, from Equation (5.5) the calculated 𝐾𝐼𝑐,𝑒𝑓𝑓 also grows with time by a factor of 

constant 𝜎𝑡𝑖𝑝. For this case as well, since the confining net stress changes with time, the fracture 

propagation may occur at an elevated stress state if poro-elastic stress increase after every time-step 

dominates the confining stress, or at reduced stress state if thermal stress reduction is dominant 

factor. The governing Equation for this model is given by, 

                                                                                     𝜎𝑡𝑖𝑝 =
𝐾𝐼𝑐,𝑒𝑓𝑓 

√𝜋𝑋𝑓

= constant                                                                          (5.8) 

The computational sequences for all three fracture propagation models have been mentioned in Appendix C. 

5.4. Fracture Width Profile Model 
In this section, the fracture width profile is discussed. The fracture width is assumed to have an elliptical 

profile which can be clearly observed in an infinite conductivity fracture. But, in this model the emphasis is 

on the width profile in case of a tip plug build up inside the fracture due to solids fill up. As discussed in 

Chapter 3, the injection of new solids with time reduces the fracture conductivity, which leads to a large 

pressure drop over the fracture. This causes the fracture to widen or expand and, increases its conductivity 

due to opening of existing wormholes in the plug. This is called the ballooning effect of the fracture that 

allows fracture to adjust its conductivity. In this model, the ballooning effect basically signifies large 

increment in fracture width due to the pressure drop over finite conductivity fracture. This is the objective 

as it increases the fracture volume significantly to accept more injected solids, propagate further and 

experience minimum loss in injectivity. The Figure5.4 below shows the expected width profile for a finite 

conductivity propagating fracture. 

                              

Fig 5.4: The Figure illustrates fracture width profile with a tip plug  

The following Equations have been incorporated in the model under assumptions of a symmetric fracture, 

                                                                             𝑤𝑓(𝑥) = 𝑤∆𝑝(𝑥) −   𝑤𝑆1(𝑥) − 𝑤𝑆2(𝑥)                                                                               (5.9) 
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where, 𝑤𝑆1(𝑥) and 𝑤𝑆2(𝑥) are corrections which slightly decrease the width of fracture due to consideration of 

backstress effects on fracture face.  

                                                                 𝑤∆𝑝(𝑥) = (
4 𝑋𝑓

𝐸′𝐸(𝑚)
) (𝑃𝑓𝑟𝑎𝑐 − ∆𝜎𝑝𝑇)√1 − (

𝑥

𝑋𝑓
)

2

                                             (5.10) 

Where, 𝐸′ =
𝐸

1−𝜈2   ,   𝐸 = Young′s modulus and 𝐸(𝑚) =
𝜋

2
  

The correction terms are calculated using the net pressure in the following way, 

   𝑤𝑆1(𝑥) =
2𝑋𝑓𝑆1

𝐸′𝐸(𝑚)
{((1 − (

2

𝜋
) arcsin(𝑓1)) √1 − (

𝑥

𝑋𝑓
)

2

 ) − ((
2

𝜋
) (𝑓1 − (

𝑥

𝑋𝑓
)) acosh (

1−𝑓1
𝑥

𝑋𝑓

 |(
𝑥

𝑋𝑓
)−𝑓1|

))}                  (5.11) 

    𝑤𝑆2(𝑥) =
2𝑋𝑓𝑆2

𝐸′𝐸(𝑚)
{((1 − (

2

𝜋
) arcsin(𝑓2)) √1 − (

𝑥

𝑋𝑓
)

2

 ) − ((
2

𝜋
) ∗ (𝑓2 + (

𝑥

𝑋𝑓
)) acosh (

1+𝑓2∗
𝑥

𝑋𝑓

 |(
𝑥

𝑋𝑓
)+𝑓2|

))}            (5.12) 

Where, 𝑆1 = 𝑆2 = (𝑃𝑓𝑟𝑎𝑐 − (𝜎𝑖 + ∆𝜎𝑝𝑇)  𝑎𝑛𝑑  𝑓1 = 𝑓2 =
𝑋𝑓𝑢

𝑋𝑓
 (since, symmetric case assumed) 

For a fracture half-length 𝑋𝑓, 𝑤𝑆2(x) correction due to the other half of fracture is also included because 

pressure on the left half of fracture also affects the width on the right half-length (used in the model). Here, 

𝑓1 and 𝑓2 are vertical upper and lower stress contrast which are basically equal to ratio of unplugged fracture 

half-length to total fracture half-length. 

                                                                  

Fig 5.5: Fracture width profile from model for a static frac       Fig 5.6: Frac width profile with different Young’s modulus    
 

The above graphs are obtained from the model after implementing the above-mentioned equations. Figure5.5 

shows the width profile in a static fracture with tip plug after 100 days. It is clearly seen that the plug starts 

at 𝑥 = 60 𝑚 in a 100m fracture for example. Figure5.6 on the other hand, illustrates the dependency of 

fracture width on Plain Strain Young’s modulus of adjacent formations. This means that, the higher the 

Young’s modulus, the more is the stiffness of the rock and thus, it causes lesser width expansion of the 

fracture.  
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6                     
Results & Discussions 

 

In this Chapter, the results obtained from the infinite and finite conductivity fracture pressure model, stress 

model and fracture propagation model have been discussed. For completeness and clarity, relevant results 

from Koning’s model, WF model based on Koning’s work and SLOFRAC software (adapted from Shell) have 

also been discussed briefly in the respective sections.  

6.1. Infinite Conductivity Fracture 

6.1.1. Pressure solution around fracture 
In this section, the pressure profile for three zones around the fracture and in the fracture, are illustrated. 

Also, comparison of poro-elastic stresses at the fracture wall with Koning’s results (Table 3-I1) for numerical 

and analytical model have been discussed. 

                

    Fig 6.1: P(ξ) vs. ξ for 3 zones around static fracture              Fig 6.2: P(ξ) field for 3 zones around static fracture in 2D   

   
In Figure6.1, the pressure profile around an infinite conductivity fracture is shown. It clearly illustrates 

behaviour of Darcy pressure wave upon cold water injection. The initial pressure drop is in the cold zone 

where we have maximum viscosity value. When this cold water comes in contact with the formation rock, it 

immediately gets warm and a sharp change in the pressure wave at the boundary between zone 1 and zone 

2 is observed. This ΔP(ξ) satisfies the Laplace Equation (3.9) and, boundary conditions (3.10) and (3.11). 

When the pressure transient reaches the oil zone boundary, another sharp change is observed and the 

pressure keeps declining until ΔP(ξ) is equal to zero or P(ξ) equals reservoir pressure 𝑃𝑟𝑒𝑠. In Figures 6.2 and 

6.3, the similar concept is shown in different view for better understanding. The fracture length taken to 

produce these results is 50m and constant fracture height is 50m. The simulation parameters are discussed 

in detail in Appendix D. In Figure6.4, 6.5 and 6.6, the pressure wave increase over time has been shown for 

a static fracture of length 50m and reservoir permeability of 100mD. 
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Fig 6.3: P(ξ) field for 3 zones around frac in 2D (top view)       Fig 6.4: P(ξ) field (bar) for 3 zones 2D view after 100 days  

 

                         
Fig 6.5: P(ξ) field (bar) for 3 zones 2D view after 1000days      Fig 6.6: P(ξ) field (bar) for 3 zones 2D view after 3000days 
 

6.1.2. Pressure solution in the fracture 
As discussed in Chapter 3, the fracture pressure profile for an infinite conductivity fracture will give a 

constant pressure solution. There is no damage due to clean water injection and permeability is infinity 

throughout the fracture length. The main focus of this thesis is on fracture pressure with damage inclusion, 

and so this section has not been discussed in detail. However, results for infinite conductivity fracture have 

been included in Chapter 6 for completeness.  

6.1.3. Poro-elastic backstress solution in fracture (analytically and numerically) 
In this section, numerical and analytical calculations of poro-elastic stress changes at fracture face have 

been discussed. For completeness, firstly the results given by Koning (Table 3-I1) have been recreated in this 

model, for a range of dimensionless heights ℎ𝐷 =
ℎ

2𝑅𝑒
 from 0.01 to 1.0 and, for a range of 

𝑋𝑓

ℎ
 ratios from 0.01 

to 10.0. The results of comparative analysis of both sets of results have been presented in tabular form in 

Table 6.1 and 6.2 below. The table shows that the analytical results when 
𝑋𝑓

ℎ
≤ 1.0 for ∆𝜎𝑦𝑝𝐷 are within 1% 

accuracy of the numerical results whereas for ∆𝜎𝑥𝑝𝐷 they are within 5% accuracy approximately. The 
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accuracy reduces for the other two cases in the table mainly because the method derived in Koning’s thesis 

for evaluation of stress was developed to be valid for small 
𝑋𝑓

ℎ
 ratios. However, the accuracy is still within 

10%, which is acceptable. So, for practical purposes, for 
𝑋𝑓

ℎ
≤ 1.0 the method used in the model is sufficiently 

accurate.  

For stress along the fracture wall ∆𝜎𝑥𝑝𝐷 from Table 6.1 we get, 

ℎ/(2𝑅𝑒) 𝑋𝑓/ℎ Num. Koning Num. model Num. 3 zones Anal. Koning Anal. model Anal. 3 zones 

0.01 0.01 6.82 6.70 6.85 6.82 6.81 6.75 
 0.1 5.66 5.69 5.30 5.66 5.65 5.60 
 1.0 4.32 4.30 4.20 4.42 4.41 4.40 
 10 2.28 2.29 2.44 2.51 2.51 2.51 
        

0.1 0.01 4.56 4.59 4.43 4.56 4.56 4.45 
 0.1 3.40 3.41 3.21 3.41 3.41 3.29 
 1.0 2.06 2.06 2.47 2.16 2.16 2.10 
        

1.0 0.01 2.65 2.60 2.80 2.65 2.64 2.55 
 0.1 1.49 1.48 1.44 1.49 1.49 1.40 

 

For stress perpendicular to the fracture wall ∆𝜎𝑦𝑝𝐷 from Table 6.2 we get, 

ℎ/(2𝑅𝑒) 𝑋𝑓/ℎ Num. Koning Num. model Num. 3 zones Anal. Koning Anal. model Anal. 3 zones 

0.01 0.01 6.32 6.31 6.10 6.32 6.316 6.25 
 0.1 5.16 5.20 4.80 5.16 5.16 5.10 
 1.0 3.93 3.96 3.86 3.92 3.92 3.91 
 10 2.17 2.12 2.03 2.01 2.005 2.00 
        

0.1 0.01 4.06 4.08 3.50 4.06 4.058 3.95 
 0.1 2.90 2.95 2.78 2.91 2.90 2.82 
 1.0 1.67 2.70 2.10 1.66 1.66 1.61 
        

1.0 0.01 2.15 2.20 2.14 2.15 2.14 2.05 
 0.1 0.996 1.10 0.85 0.994 0.98 0.92 

 

       

   Fig 6.7: Numerical vs Analytical results for this model       Fig 6.8: Comparison with Koning’s Num. results for case 1 
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The permeability and viscosity input values for the above model cases are tabulated below for reservoir height 

h equal to 120m as an example. It shows the input parameters for mobility (𝜆 =
𝑘.𝑘𝑟

𝜇
 ) in each of the three 

cases for different 
𝑋𝑓

ℎ
 ratios from Table 6.3 are, 

𝑋𝑓 [m] 𝑋𝑓/ℎ K1 (m2) K2 (m2) K3 (m2) μ1 (Pa.s) μ2 (Pa.s) μ3 (Pa.s) 

1.2 0.01 5E-13 4E-13 1E-13 1E-3 6E-4 8E-4 
12 0.1 5E-13 4E-13 1E-13 1E-3 6E-4 8E-4 

120 1.0 5E-13 4E-13 1E-13 1E-3 6E-4 8E-4 
1200 10 5E-13 4E-13 1E-13 1E-3 6E-4 8E-4 

        
1.2 0.01 5E-14 4E-14 1E-14 1E-3 6E-4 8E-4 
12 0.1 5E-14 4E-14 1E-14 1E-3 6E-4 8E-4 

120 1.0 5E-14 4E-14 1E-14 1E-3 6E-4 8E-4 
        

1.2 0.01 5E-15 4E-15 1E-15 1E-3 6E-4 8E-4 
12 0.1 5E-14 4E-14 1E-14 1E-3 6E-4 8E-4 

 

As mentioned in section 6.1.2, the poro-elastic backstress due to pore pressure inflation on fracture wall for 

an infinite conductivity fracture gives a uniform solution as shown in Figures 6.9 and 6.10. It shows the 

stress calculated numerically on fracture face by superposition principle from pressure field around the 

fracture in a 40 x 40 and 100 x 100 grid mesh respectively. The input parameters in both case are different. 

        

Fig 6.9: Numerical constant backstress Δσyp~92 bars              Fig 6.10: Numerical constant backstress Δσyp~106 bars  
 
 

6.2. Finite Conductivity Fracture 
In this section, the pressure profile for three zones around the finite conductivity fracture and in the fracture 

are illustrated. Also, poro-elastic and thermo-elastic stresses at fracture wall both numerically and 

analytically have been discussed. 

6.2.1. Pressure solution around fracture 
As discussed in Chapter 3, the non-zero pressure drop over fracture implies that there is no elliptical 

symmetry of pressure solution around the fracture. A fracture step function is taken as an arbitrary fracture 

permeability profile, using which the problem is solved semi-analytically. In order to solve the full Laplace 

Equation, truncated Fourier series is used. The detailed calculation of Fourier coefficients is given in 

Appendix A. 
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                                         (a)                                                                                          (b) 
   

    

                                      (c)                                                                                 (d) 

   
                                          (e)                                                                                        (f) 

Fig 6.11: Pressure profile around the finite conductivity fracture P(ξ) with (a) Two zones and ƞ12=0.05, (b) Three zones 

and ƞ12=0.05, (c) Three zones in 3D view with k=100 mD (ƞ12=0.9), (d) Three zones in 3D view with k=1D (ƞ12=0.9), Three 
zones in 3D view with k=100mD and (e) Uniform grid distribution whereas, (f) Non-uniform grid distribution. 
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In the above Figures, the pressure has been plotted against size of the ellipses from zone 1 to zone 3 for 

different 𝑥12 𝑜𝑟 ƞ12 positions. We see pressure rising with time due to continued injection at constant rate. 

This pressure declines away from the fracture until it reaches the reservoir pressure (150 bars) beyond zone 

3 boundary. Also, in Figure6.11(c), 𝑘𝑓2 (1𝐷) > 𝑘(100𝑚𝐷) whereas in Figure6.11(d), 𝑘(1𝐷) > 𝑘𝑓2(100𝑚𝐷) which 

clearly shows the effect of formation permeability and plug permeability on energy of the system. Also, it is 

to be noted that tan( ƞ12) = (
𝑐𝑜𝑠ℎ𝜉

𝑠𝑖𝑛ℎ𝜉
)

𝑦

𝑥
 . Figures6.11(e) and (f) show that non-uniformity of grid distribution 

with smaller grids near the fracture doesn’t show any effect on near fracture pressure profile. 

6.2.2. Pressure solution in the fracture 
As discussed in Chapter 3, ∆𝑝𝑓(ƞ) 𝑜𝑟 ∆𝑝𝑓(𝑥) is the fluid pressure profile within the fracture or the fracture 

pressure. It is calculated at 𝜉 = 0 by contributions from pressure in fracture and formation adjacent to the 

fracture. Again, a permeability step function 𝑘𝑓(ƞ) is taken as an arbitrary fracture permeability profile. The 

fracture pressure is calculated both analytically and numerically. It should be noted that although ∆𝑝𝑓(𝑥) is 

expected to be uniform over unplugged part, it is now a function of x coordinate or ƞ in the plugged part. 

Also, the comparison plot of ∆𝑝𝑓(𝑥) with and without external filter-cake of thickness 𝑏(𝑥) is presented below. 

The detailed calculation of Fourier sum coefficients is given in Appendix A. 

    

(a)                                                                                          (b) 

      

                                           (c)                                                                                             (d)  
Fig 6.12: Fracture pressure profile ∆𝑝𝑓(ƞ) with tip plug, constant fracture width and (a) Without external filter-cake, (b) 

With external filter-cake, (c) With external filter-cake in a scatter plot showing 100 grid points on the fracture, and (d) 
With external filter-cake for different dimensionless fracture conductivity values after t=1 year. The filter-cake 
permeability used is 𝑘𝑒 = 1𝜇𝑑. 



       

43 

 

As discussed in Chapter 3, the formation of an impermeable tip plug behind the fracture tip is more realistic 
than a uniform fracture permeability scenario, especially over prolonged period of injection of contaminated 

water. This observation is proven with more evidence in section 6.4 using figures explaining the effects of 

presence of tip plug on wellhead pressure and well injectivity.  

 

In the above plots, fracture pressure profile has been plotted along the fracture half-length assuming 

constant fracture width 𝑤0 (for simplicity) for various cases. In Figure6.12(a) the fracture pressure ∆𝑝𝑓(ƞ) is 

plotted against 𝑥/𝑋𝑓, and it is seen that 𝑝𝑓 remains constant in the unplugged part due to uniform 

permeability 𝑘𝑓1, but drops as soon as x exceeds unplugged length 𝑋𝑓𝑢. In the plugged section, frac 

permeability 𝑘𝑓2 is also taken to be uniform but it’s much lower (close to formation permeability) due to very 

small sized solids deposition at tip. This is primarily the reason for this pressure trend. In Figure6.12(b) 

however, there is presence of an elliptical external filter-cake on fracture face due to which a continuous 

decrease in 𝑝𝑓 is observed even behind the plug. The pressure in unplugged length isn’t constant anymore 

due to presence of an external filter-cake caused by solids deposition on fracture wall. Figure6.12(c) 

demonstrates the number of fracture grid points or source points used to estimate the pressure profile. In 
this case 100 grid points are used. Figure6.12(d) is an interesting Figure as it is plotted for different 

dimensionless fracture conductivities (𝐹𝑐𝑑 = (𝑘𝑓2 ∗ 𝑤0)/(𝑘1 ∗ 𝑋𝑓)) after 1 year of injection. It is to be noted that 

external filter-cake is still present in this case, but clearly doesn’t affect the fracture pressure much. This is 

because to obtain 𝐹𝑐𝑑 value of 2.0 and less, significantly lower formation permeability is used. This shows 

that formation permeability also has significant effect on pressure in fracture caused due to 1𝜇𝐷 external 

filter-cake. So, it’s observed that a lower permeability adjacent formation reduces pressure drop over external 
cake.  

 

6.2.3. Poro-elastic backstress calculation on fracture face 
As discussed in Chapter 4, for poro-elastic stress changes along the fracture length, an inclusion with a 

constant pressure can’t be assumed, unlike thermo-elastic stress changes. The pressure disturbance 

extends to a large distance away from facture and falls off slowly to zero. Koning1 suggested that for such a 

pressure disturbance, the stress change due to pore pressure inflation will be in the case of a plane strain1. 

The poro-elastic backstress on fracture face for an infinite conductivity fracture has already been discussed 

in section 6.1. In this section, results for poro-elastic backstress on a finite conductivity fracture face is 

discussed in detail. Also, comparison between total stress and computed fracture pressure with and without 

an external filter-cake is discussed.  

       

(a)                                                                                        (b)                                            
 Fig 6.13: (a) Poro-elastic backstress and, (b) Total stress on fracture with tip plug after two years of constant injection 
 

In the above Figure6.13, the poro-elastic backstress on fracture face has been calculated using analytical 

expressions derived by Koning1 in the unplugged part (
𝑥

𝑋𝑓
≤ 0.6) whereas in plugged part (

𝑥

𝑋𝑓
> 0.6), the stress 

is dependent on x-coordinate as given in Appendix B of paper by Hoek et al.2. The analytically approximated 

expression used here is achieved by using an infinite conductivity fracture with length equal to the 
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unplugged half-length 𝑋𝑓𝑢 instead of 𝑋𝑓. In Figure6.13(b), a similar plot to 6.13(a) is plotted but now total 

stress has been calculated (poro-elastic + thermo-elastic stresses). It is observed that the thermal effect of 

cold water injection has a reducing effect on net stress due to rock contraction. Also, if an external filter-

cake is present then, filter-cake thickness isn’t zero at 𝑥 = 𝑋𝑓𝑢 (i.e. “tip” of infinite conductivity fracture2). 

Therefore, an approximate expression is also derived in work of Hoek et al.2 to account for the larger pressure 

drop over external filter-cake. 

  
                                         (a)                                                                                             (b) 
Fig 6.14: Poro-elastic backstress and computed fracture pressure (a) Without external filter-cake and, (b) With external 
filter-cake are plotted, as a function of the coordinate x.  
 

Figure6.14 shows an example of fracture pressure and poro-elastic backstress profiles computed 

analytically. In Figure6.14(a), we observe that the net pressure (𝑃𝑛𝑒𝑡 = 𝑃𝑓 − 𝑆ℎ𝑚𝑖𝑛) becomes negative in the 

plugged region. This is because of lesser decrease in stress than 𝑃𝑓 in plugged part. A negative net pressure 

obstructs the progression of fracture under dynamic conditions. It is observed in this example mainly 

because of two reasons, (i)Low formation permeability~10mD, and (ii)Very high 
𝑋𝑓

ℎ
 ratio. Both, low 

permeability and 
ℎ

𝑋𝑓
< 1 cause larger pressure drop compared to stress and thus, negative net pressure is 

observed. Similarly, in Figure6.14(b), we observe the same phenomenon in presence of an external filter-

cake. The additional pressure drop over filter-cake can also be observed along with the elliptical filter-cake 

profile (yellow curve) clearly. 

      

(a)                                                                                           (b) 
Fig 6.15: Fracture pressure with and without filter-cake calculated numerically with 100 source points on fracture for 

(a) 
𝑋𝑓

ℎ
= 1.0 and, (b) 

𝑋𝑓

ℎ
< 1.0. 



       

45 

 

In the Figure6.15, we observe the effect of 𝑋𝑓/ℎ ratio on the estimated fracture pressure in numerical model. 

Figure6.15 (b) is particularly noticeable w.r.t the fact that fracture pressure drops only few bars whereas, it 

drops a few hundred bars in presence of an external filter-cake. This is because of the very small length of 

fracture, which is not enough to form a significant internal plug. Therefore, despite of a larger pressure drop, 

a sharp drop in not observed in 𝑃𝑓𝑐𝑎𝑘𝑒 case (orange curve), unlike in Figure6.15 (a). 

 

As discussed in Chapter 4, the changes in reservoir pressure and temperature due to cold water injection 

lead to change in state of stress in the adjacent formation. Increase in pore pressure causes poro-elastic 

increase in backstress and formation cooling causes thermo-elastic decrease in backstress. The overall effect 

is given by Equation (4.17). This has been calculated numerically as well using Equation (4.9) to present an 

extensive analysis of the stress changes as well as validate analytical calculations. Koning1 presented this 

calculation in Appendix 3-B of his thesis, in which he calculated changes in stress due to steady state 

changes in pressure and temperature, based on application of Hooke’s law for linear and isotopic medium7. 

The results for numerical poro-elastic stress calculations are given below in Figure6.16.  

     

(a)                                                                                          (b) 
 

      
                                         (c)                                                                                            (d) 
Fig 6.16: The plots show results of poro-elastic stress calculation Syp numerically. In (a) a comparative plot of fracture 

pressure Pf  vs. Pf-cake vs. Stress for 
𝑋𝑓

ℎ
= 1.0 case after 𝑡 = 7 days of injection, whereas in (b) a comparative plot of fracture 

pressure Pf vs. Pf-cake vs. Stress for 
𝑋𝑓

ℎ
= 2.0  case after 𝑡 = 10 days of injection. In Figures (c) and (d), the values of 

coefficient 𝐼22 obtained after volume integral calculation of stress are shown w.r.t position of the source point on the 
fracture as shown in titles of both figures. 
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It is clearly shown that the trend of results from the numerical model match the behaviour of results obtained 
from analytical model. As mentioned in Chapter 4 and later formulated in Appendix B, the volume integral 

for stress calculation is solved analytically16 and the results obtained require calculation of two coefficients 

𝐼11 𝑎𝑛𝑑 𝐼22 for 𝑆𝑥𝑝 𝑎𝑛𝑑 𝑆𝑦𝑝 estimation respectively. Also, as the pressure profile is constant over the height of 

the rectangular fracture, the integral over z-direction is neglected and the length a3 of parallelepiped is 

replaced by 𝑧 = 𝑎3 = ℎ (𝑜𝑟
ℎ

2
) where h is the reservoir height. This is also indicated in title of Figures 6.16 (c) 

and (d).  

 

6.2.4. Error Analysis between Analytical and Numerical Results 
In this section, the error analysis of analytical and numerical results for fracture pressure in case of a low 

permeability tip plug has been presented for various 
𝑋𝑓

ℎ
 ratios. 

      

(a)                                                                                              (b) 

   Fig 6.17: Error analysis of numerical and analytical results of finite fracture pressure for (a) 
𝑋𝑓

ℎ
= 1.0 and, (b) 

𝑋𝑓

ℎ
< 1.0. 

 

The permeability inputs for this case are 𝑘𝑓1 = 1𝑒−2𝑚2, 𝑘𝑓2 = 1𝑒−12 𝑚2 𝑎𝑛𝑑 𝑘 = 1𝑒−12 𝑚2. It is shown that the 

numerical results are mostly within 5-7% of the analytical results for  
𝑋𝑓

ℎ
≤ 1. For cases of  

𝑋𝑓

ℎ
> 1, especially 

when 𝑋𝑓 is 10 times larger than h, the error is >10%. The reason for this is because the analytical expressions 

modelled represents an approximation to low-permeability tip plugs given in Appendix B2. This is done by 

treating unplugged length as infinite conductivity fracture and using corresponding expressions1 for it 

whereas, for numerical case, the fracture pressure on entire fracture face (unplugged + plugged lengths) is 

calculated using the pore pressure field in the adjacent formations.  
 

6.2.5. Thermo-elastic backstress on fracture face 
In this section, result of thermo-elastic stress change on the fracture face described in section 4.3 has been 

briefly discussed. The results in previous sections of this Chapter already include effect of thermo-elastic 

changes. Thermo-elastic stresses can be calculated from the theory of inclusions in an elastic solid which 

comes from the Lauwerier solution. It shows that after a relatively short period of time temperature change 

(𝛥𝑇) can be approximated using a step function. Since, cold water is being injected, inside the cold front zone 

a uniform injection temperature 𝑇𝑖𝑛𝑗 is taken, and outside it the reservoir is assumed to still be at initial 

temperature equal to reservoir temperature (𝑇𝑟𝑒𝑠) such that, ∆𝑇 = 𝑇𝑖𝑛𝑗 − 𝑇𝑟𝑒𝑠. The Figure6.18(a) below, shows 

result based on this concept and calculated from expressions derived by Perkins et al.8 which are also 

described in Appendix 3-C by Koning1. Figure6.18(b) shows the computed dimensionless stress in y direction 

i.e. along the minor axis, for elliptical inclusions of various shapes. If the elliptical inclusion or penetration 

is tall w.r.t the minor axis of ellipse, there will be a stress difference for elongated ellipses. On other hand, 

for inclusions that are short w.r.t the minor axis, stress change will be isotropic. It is to be noted that, this 

situation is different in case of poro-elastic backstress where we haven’t assumed an inclusion with a 

constant pressure.  
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                                         (a)                                                                                           (b) 

Fig 6.18: (a) Thermo-elastic stress profile on fracture face for various injection water temperatures and 𝑇𝑟𝑒𝑠 = 90℃ and, 

(b) Thermal stress change in an inclusion for various 𝑋𝑓/ℎ ratios showing that the stress change grows when the fluid 

front grows to become much larger than reservoir height. 

 

6.3. Fracture Propagation Solution 
In this section, the results for fracture propagation models (dynamic case) are discussed. As discussed in 

Chapter 5, for the fracture tip model 1, the fracture length is iterated using the fracture propagation criterias 

given by Equation (5.3) such that, the evaluated stress intensity factor 𝐾𝐼 at each time step converges with 

the constant fracture toughness 𝐾𝐼𝑐 (user input). The integration in Equation (5.3) is carried out using 

trapezoidal method.  

As discussed earlier, the following parameters are estimated to calculate the fracture length (𝑋𝑓): Reservoir 

pressure at start of injection (𝑃𝑟𝑒𝑠), Minimum in-situ stress before injection (𝜎𝑚𝑖𝑛,𝑖𝑛𝑖𝑡𝑖𝑎𝑙) which is an important 

parameter and is usually estimated from Step rate test, Total stress (∆𝜎𝑝𝑇) on fracture face due to effects of 

pore pressure inflation and formation cooling, Poro-elastic coefficient (Ap) which is calculated from Biot 

coefficient and Poisson’s ratio, Transmissivity (𝑘. ℎ) of the formation where permeability (𝑘) must be estimated 

from well tests since core data are often not accurate reperesentative of large scale permeabilitites, Drainage 

radius (𝑅𝑒) and, Fracture tip pressure (𝜎𝑡𝑖𝑝). These parameters are inputed in Equation (5.3). 

The results in Figure6.19 are obtained from the contant fracture toughness model for a constant fracture 

width 𝑤0 profile. So, under the condition of volume of fracture being equal to volume of injected solids at any 

time, only the fracture length grows in this case until the entire fracture fills up with solids, and not the 

width. In Figure6.19(a), the model runs for over 6 months before 𝑋𝑓 stops growing as length of plug becomes 

equal to length of fracture. In Figure6.19(b), the model runs for less than 2 months. This is because of the 

total suspended solids injected is 3 times more compared to case 1. Similarly, in 6.19(c) the model runs for 

almost 8 years as TSS is only 1 ppm. This shows the effect contaminents present in the injected fluid have 

on the duration of injection and thus, it can have a major say on the life span of the injection well.  

In Figure6.19(c) and (d), a comparison is made between favourable and unfavourable mobility ratio (M). In 

6.19(c), M<1 which is favourable condition but in 6.19(d) when M>1, the observation is different. The initial 

shoot up in 𝑋𝑓  is because of the sudden pressure transient wave effect at start of model run whereas the 

slight dip that follows is because of the fact that a more viscous fluid is being pushed, that reduces 𝑋𝑓 value. 

𝑋𝑓 then increases because of the external filter-cake effect that reduces leak-off and fracture propagates 

again.  If TSS is zero in 6.19(d) then, the 𝑋𝑓 curve will close completely and fracture will not propagate again. 

This could also be an artefact in the model’s initial outputs. To validate this theory, results for similar case 

have been obtained from SLOFRAC (adapted from Shell) model as an example shown in Figure6.20.  
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(a)                                                                                            (b)                                                                                                 

             

 (c)                                                                                                         (d)   
Fig 6.19: The results of analytical fracture propagation model with constant width for various degree of damage w.r.t the 
amount of TSS in injected water which are (a) 10 ppm, (b) 30 ppm and, (c) 1 ppm. In plot (d), the effect of an unfavourable 
mobility ratio (>1) is shown for case in (c). 
 

In Figure6.20, the model used in SLOFRAC simulator gives results for case of M>1 i.e. an unfavourable 

mobility condition. The model is built for waterflooding under fracturing conditions using the Koning’s 

formulations1. The novelty of the simple simulator is to estimate injection pressure and fracture length in 

very short time. Figure6.20(b) represents the conditions shown in Figure6.19(d) whereas, Figure6.20(a) 

shows the scenario that would occur when there is no fraction of oil/solids in injected water. So, in absence 

of any TSS, the effect of highly viscous fluid ahead of the front will cause gradual shrinkage of fracture as 

shown by blue curve in Figure6.20(a). Clearly, a closing 𝑋𝑓 curve is indicative of such phenomena.  
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(a)                                                                                        (b) 
Fig 6.20: Results from SLOFRAC model (adapted from Shell) for two cases where M>1 (unfavourable) (a) Without TSS 
fraction and, (b) With TSS fraction in injection fluid.  
 

In material science, fracture toughness 𝐾𝐼𝑐 represents the ability of a material containing a crack to resist 

fracturing17. In 𝐾𝐼𝑐, the subscript ‘I’ means mode I in which crack opens under a normal tensile stress 

perpendicular to the crack (minimum horizontal stress). It is basically a quantitative way of expressing 

material’s resistance to fracturing. In Figure6.21(a), the tolerance error is estimated as difference between 

𝐾𝐼 and constant input value 𝐾𝐼𝑐 and, is plotted with time for 100 days of iteration whereas, in Figure6.21(b), 

the tolerance error estimated as difference between 𝐾𝐼 and increasing 𝐾𝐼𝑐,𝑒𝑓𝑓 and, is plotted with time for 10 

days of injection. This is because Figure6.21(b) is obtained from fracture tip model 2 where 𝐾𝐼𝑐 is not 

constant. Here, if the error is less than 0.1 i.e. 𝐾𝐼 approaches 𝐾𝐼𝑐 value, then the fracture length will converge 

and grow over time. Newton Raphson Method is used for convergence is common for all three fracture tip 

models discussed in this thesis.                                                                                                                                    

        

(b)                                                                                        (b) 
Fig 6.21: (a) Tolerance Error (𝐾𝐼 − 𝐾𝐼𝑐) vs. time for fracture tip model 1 and, (b) Tolerance Error (𝐾𝐼 − 𝐾𝐼𝑐,𝑒𝑓𝑓) vs. time for 

fracture tip model 2. The fracture length converges if error is ≤ 0.1 in this case. 
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(a)                                                                                         (b) 

          

                                          (c)                                                                                           (d) 

          

                                     (e)                                                                                  (f)  

Fig 6.22: (a) Represents Base case for Tip Model with 𝐾𝐼𝑐 = 10 𝑏𝑎𝑟√(𝑚). Effect on 𝑋𝑓  𝑎𝑛𝑑 𝐿𝑝𝑙𝑢𝑔 with time due to change in 

(b) 𝑇𝑖𝑛𝑗 , (c) TSS, (d) Filter-cake permeability 𝑘𝑒 and, (e) Young’s modulus. (f) Shows the effect of high modulus on 𝐿𝑝𝑙𝑢𝑔. 

 

It is clear so far that fracture propagation is a self-generated recovery process in the system which is a 

consequence of damage caused to the system. In the set of results discussed in Figure6.22, the ballooning 
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effect has been modelled by including the dynamic elliptical fracture width profile unlike a constant fracture 

width mentioned earlier in Figure6.19. As we know, for the formation of plug, the volume of injected solids 

should exceed or equal the volume of fracture. In this model, this event is accompanied by increase in length 

of the fracture and widening of the fracture, so that the fracture can self-adjust its conductivity and volume 

to accommodate further newly injected solids in the next time step. It is to be noted that, if volume of fracture 

is more than volume of solids injected, the plug will not form despite fracture growing in length. This 

phenomenon is observed in the initial days of water injection where fracture volume is always more than 

volume of TSS.   

The following trends can be proposed from the above results: - 

• Figure6.22(a) represents the base case scenario for the fracture tip model 1. The main values input 

for the calculation of base case are (𝑖) 𝑘 = 1𝐷, (𝑖𝑖) 𝑇𝑆𝑆 = 30𝑝𝑝𝑚, (𝑖𝑖𝑖) 𝑘𝑒 = 10𝜇𝐷, (𝑖𝑣) 𝑇𝑖𝑛𝑗 = 10℃ 𝑜𝑟 ∆𝑇 =

−70℃ 𝑎𝑛𝑑, (𝑣) 𝐸 = 5𝐸 + 4 𝑏𝑎𝑟.  The numerical model in each case is run for 10 days.  

• Fracture size tends to increase in case of a low injection water temperature (𝑇𝑖𝑛𝑗) as shown in 

Figure6.22(b). This implies that the effect of ∆𝑇 = 𝑇𝑖𝑛𝑗 − 𝑇𝑟𝑒𝑠 will be higher i.e. higher thermo-elastic 

backstress18-20. For cold water injection, thermo-elastic stress has a negative effect on net backstress 

on the fracture face. Therefore, the resulting higher net pressure (𝑃𝑛𝑒𝑡 = 𝑃𝑓𝑟𝑎𝑐 − ∆𝜎𝑦𝑝𝑇) allows fracture 

to grow more over time. 

• Fracture length tends to increase in case of high total suspended solids present in the injected water 

as shown in Figure6.22(c). The injection of more solids causes more damage to system and leads to 

formation of larger tip plug over prolonged period of injection, that balloons the fracture even more 

over time. 

• The fracture length increases a lot if the permeability of external filter-cake is lower for the same TSS. 

This can be observed in Figure6.22(d), where 𝑘𝑒 = 1𝜇𝐷 that leads to very large increase in 𝑋𝑓 in same 

amount of time as in Figure6.22(a). The low filter-cake permeability leads to larger pressure drop 

over the fracture leading to more widening of the fracture. This may open the wormholes in the plug 

resulting in increase in net fracture conductivity. This allows more solids to be injected and increases 

the facture length over time and in turn the fracture volume as well. Also, the leak-off is lower due to 

formation of a low permeability filter-cake layer on fracture face. It is to be noted that 𝑉𝑓𝑟𝑎𝑐 > 𝑉𝑠𝑜𝑙𝑖𝑑𝑠  as 

a result, and thus there is no plug formation seen.  

• The Young’s modulus appears to have hardly any effect on the fracture size. However, change in 𝐸 

has significant effect on the injection pressure. This is because the same fracture length 𝑋𝑓 is 

observed for modulus of 5 𝐺𝑃𝑎 & 10 𝐺𝑃𝑎 in Figures 6.22(a) and 6.22(e). But, the length of tip plug is 

much more for a high modulus as seen in 6.22(f). This could be due to higher TSS accumulating 

inside the fracture for formation of higher stiffness. Also, for a high modulus case, the widening of 

fracture is less which is also responsible for lesser fracture growth.  

       

(a)                                                                                              (b) 
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                                         (c)                                                                                               (d) 

Fig 6.23: 𝑋𝑓  and 𝐿𝑝𝑙𝑢𝑔 for (a) Fracture Tip Model 2 and, (b) Fracture Tip Model 3. (c) Increasing Effective Fracture 

Toughness and Tip Stress with increasing 𝑋𝑓 for Tip Model 2 and, (d) Increasing Effective Fracture Toughness with 

increasing for a constant Tip Stress in Tip Model 3. 
 

In this thesis, other two fracture tip models have also been executed apart from the constant fracture 

toughness model. They have also been described in detail in Chapter 5 earlier. In the results discussed 

above, the fracture length 𝑋𝑓 and effective fracture toughness 𝐾 𝐼𝑐,𝑒𝑓𝑓  obtained from fracture tip model with 

increasing tip stress (Model 2) and with constant tip stress (Model 3) respectively have been shown.  

From Figure6.23 (a) and (b), it is observed that for the same injection time, model 2 and model 3 predict less 

fracture growth as compared to model 1. But, the main problem with model 1 is that the tip stress reduces 

with increasing 𝑋𝑓 .  On the other hand, in model 2 the tip stress gradually increases with increasing 𝑋𝑓 as 

shown in Figure6.23(c). Fracture tip model 3 assumes a constant Tip Stress and so, only effective fracture 

toughness increases with 𝑋𝑓  in this case as shown in Figure6.23(d). The same trend is also illustrated in 

Figure6.24 for different changing parameters namely ∆𝑇, 𝐸, TSS and,  𝑘𝑒 . It was also observed during 

computation of the numerical models that the iteration scheme was fastest in case of Model 3. This could 

be because the effective fracture toughness 𝐾𝐼𝑐,𝑒𝑓𝑓 increased at a fixed rate with every time step unlike other 

two models. This certainly makes the iteration scheme faster. Also, it is to be noted that the initial sharp 

increase in 𝑋𝑓 observed is simply an artefact in the model. 

 

Fig 6.24: Represents the Effective Fracture Toughness calculated by changing different parameters. It illustrates the 

increasing 𝐾𝐼𝑐,𝑒𝑓𝑓 with increasing fracture length 𝑋𝑓 . 
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6.4. Wellhead Pressure & Well Injectivity Analysis 
In the section, the computed well head pressure as a function of injection time will be discussed. The WHP 

has been evaluated from bottom-hole injection pressure obtained from the numerical model. The assumption 

of no frictional losses has been made, which implies that (BHP-WHP) value gives the hydrostatic pressure. 

The results are obtained for an impermeable tip plug case for initial WHP~100bar. These results can also be 

compared to the computed WHP under assumption of uniform permeability profile in work of Hoek et al.2. 

This is shown in Figure6.25. 

 

Fig 6.25: Comparative Plot for Calculated Wellhead Pressure (bar) between base case model with a tip plug and base 
case model with uniform fracture permeability. 

 

The computed WHP in case of tip plug is basically minimum value (lower bound) of the range of WHP 

obtained. The upper bound of WHP is obtained for uniform fracture permeability profile where the fracture 

permeability (𝑘𝑓) is iterated until fracture volume equals the solids volume. The Figure6.25 shows calculated 

WHP after 100 days of injection. It is observed that the injection pressure in case of a low permeability tip 

plug can be several times lower than in case of a uniform finite permeability fracture. Also, for most cases it 

has been observed that the gradual decline in well injectivities (𝑄𝑖𝑛𝑗/(𝐵𝐻𝑃 − 𝑃𝑟𝑒𝑠)) is lesser over time in case 

of a low permeability tip plug. This makes presence of a tip plug in a finite conductivity fracture a more 

realistic possibility over prolonged periods of injection. 

Therefore, the following trends can be proposed from the above results: - 

• Well injectivity initially does not depend on solids loading or amount of TSS in injected water. This is 

due to rapid growth of fracture initially in the model computations such that the fracture volume in 

initial stages is enough to accommodate all solids without any increase in the fracture width or 

ballooning effect. The initial injectivity depends mostly on 𝑇𝑖𝑛𝑗 and 𝑘𝑒 as they significantly effect 

propagation pressure. 

• Well injectivity will increase in case of low 𝑇𝑖𝑛𝑗  and 𝑘𝑒. This is because the increase in fracture sizes 

in both cases that leads to larger fracture volumes as discussed in section 6.3. So, lesser bottom-

hole injection pressure will be required to balloon the fractures to accommodate more solids.  

• Well Injectivity depends inversely on Young’s modulus. It is observed that for a high modulus i.e. for 

high formation stiffness, more injection pressure is needed to balloon the fracture, which explains 

the low well injectivity in such case.  

• In addition to above points, it is also observed that the WHP does not increase a lot after long duration 

of injection. The work of Hoek et al.2 also compares this observation with the results of uniform finite 

conductivity fracture model and concludes that the WHP in tip plug model is significantly lower over 

time. This means that the well injectivity in a tip plug model is much better as it barely decreases. 

This argument is supported by the PWRI experience of BP in Prudhoe field19, where they have been 

injecting produced water for over a decade without encountering any appreciable reduction in well 

injectivity. 
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7         
Conclusions & Recommendations 

 

7.1. Conclusions 
In this thesis, a semi-analytical model is presented to predict growth of a finite conductivity fracture by 

constant injection of water containing suspended solids and oil droplets. The model can be used to forecast 

long term well injectivity and fracture size for water injection wells under fracturing conditions. The primary 

model condition implemented is that at any given time, the total fracture volume is equal to the total volume 

of injected solids. This is done to serve the purpose that the fracture is able to accommodate all injected 

solids, and propagate simultaneously. In order to allow the fracture to accommodate all solids in the injected 

water, it must be able to adjust its dimensions accordingly. Since, a rectangular elliptical fracture profile is 

used in this thesis, fracture length and width are main iteration parameters based on the above mentioned 

primary model condition. When the volume of fracture and volume of solids are equal, the fracture increases 

in length based on fracture propagation criterion mentioned in section 5.2, and it may or may not increase 

in width based on fracture width profile mentioned in section 5.4. The finite conductivity of the fracture 

depends on degree of internal plugging calculated using Equation (3.18), which is modelled to increase based 

on increase in 𝑋𝑓 𝑎𝑛𝑑 𝑊𝑓(𝑥, 𝑡) over time. The adjustment is done to minimise the energy of the system or 

pressure in this case, for stability.  

The following conclusions are achieved based on the results laid out in Chapter 6, 

1. Two-dimensional pseudo-radial pressure profile with elliptical discontinuities in fluid mobilities 

𝜆𝑖  (𝑖 = 1, 2 & 3) has been calculated analytically for an infinite and finite conductivity fracture. It shows 

the elliptical symmetricity of pressure field around fracture depends on uniformity of fracture 

pressure. 

2. Two-dimensional poro-elastic stress changes at fracture face has been calculated numerically 

assuming analytical pressure profile ∆𝑝 constant along reservoir height and zero beyond elliptical 

reservoir boundary 𝜉3. The main rock mechanical property in this model is the minimum horizontal 

stress changes perpendicular to fracture face 𝜎ℎ,𝑚𝑖𝑛. It’s calculated using principle of superposition 

which is applied to calculate net poro-elastic backstress on fracture wall due to pore pressure in each 

grid block around the fracture. 

3. The comparison of analytical poro-elastic stress results to Koning’s results shows that, the analytical 

results are applicable for 
𝑋𝑓

ℎ
< 10 condition. Moreover, there is very good agreement with Koning’s 

numerical stress results too as shown in Tables 6.1 and 6.2. 

4. Thermo-elastic stress change has been calculated analytically based on work of Perkins and 

Gonzalez8. It is assumed to be uniform on the fracture face unlike poro-elastic stress that varies with 

each source point on the fracture along x.  

5. Tip plugging damage mechanism begins once the external filter-cake has built up on the fracture 

face and, no newly injected solids can penetrate adjacent formation. So, the newly injected solids 

remain in the fracture and start to form a plug at the fracture tip. This causes reduction in fracture 

permeability, and results in larger pressure drop over the fracture. This leads to ballooning of the 

fracture i.e. width increase, which opens wormholes in the external filter-cake and tip plug. So, a 

situation transpires in which the fracture conductivity adjusts itself such that, the fracture volume 

increases to accommodate newly injected solids in the fracture.   
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6. Impermeable tip plug behind the fracture tip along with infinite conductivity unplugged zone behind 

the tip plug is taken as total fracture conductivity profile. In this case, pressure drop over the fracture 

is concentrated behind the tip unlike in case of a uniform permeability fracture profile where it is 

uniformly spread over the entire fracture length. It is concluded that, in case of a tip plug present 

more volume of fracture can be achieved at lower injection pressure. Also, it is a more realistic 

possibility between the two scenarios.  

7. The fracture tip propagation models are built on the fracture toughness criterion. The main condition 

is that at any given time, volume of fracture is equal to volume of solids injected. Once they are equal, 

the model shows that, fracture increase in length and width accordingly to increase its volume and 

accommodate more solids. This process necessarily doesn’t result in significant increase in injection 

pressure. Also, the model iteration scheme tries to minimise the (𝐾𝐼 − 𝐾𝐼𝑐) 𝑜𝑟 (𝐾𝐼 − 𝐾𝐼𝑐,𝑒𝑓𝑓) error value 

depending on the type of fracture tip model, with objective of 𝑋𝑓 to converge. 

8. In this model, the presence of tip plug suggests that over time there is lesser loss of well injectivity in 

comparison to when a clean water is injected where fracture conductivity tends to be infinite.  

9. In this model, the computed fracture length 𝑋𝑓  is relatively insensitive to the degree of internal 

plugging of fracture. It depends mainly on injected water temperature, filter-cake permeability, net 

stress conditions and fracture toughness.  

10. Implementation of all three fracture tip models shows that, method of calculating effective fracture 

toughness for each time step along with either increasing tip stress (Model 2) or a constant tip stress 

(Model 3) is more realistic approach than a constant fracture toughness model (Model1).  

 

7.2. Recommendations for Future Work 
Despite the results obtained and conclusions reached, there can be further work done to improve the present 

model. The following recommendations are suggested for future work that can be carried out: - 

1. The fracture width profile in the dynamic model for the fracture propagation case has been taken 

under several assumptions. The width profile can be modelled in a more detailed manner by using 

traditional 2D hydraulic fracturing models like PKN by Perkins, Kern and Nordgren8 and KGD by 

Khristianovic, Zheltov (1955) & Geertsma, de Klerk (1969)12. Both these models have their own 

unique geometry but PKN model is more closely related to model description in this thesis as it also 

assumes fracture with constant height and elliptical cross-section in both horizontal and vertical 

plane. Also, fluid loss is included in PKN model as well which is neglected in this model. 

2. The fracture propagation in this model is mainly based on the fracture tip model in which fracture 

toughness, 𝐾𝐼𝑐 is assumed to a constant (material property). In the calculation that follows, the tip-

stress reduces with increase in fracture length to zero over several days of injection. This is often not 

observed in practise rather a typically high or growing tip-stress is observed in time. So, two more 

fracture tip models have also been suggested in section 5.3 which give an effective fracture toughness 

that increases with fracture length. Therefore, this method can be worked on and included in this 

model in more detailed manner. 

3. The poro-elastic stress calculation in this model has been done by dividing the reservoir into 

Cartesian grid blocks or parallelepipeds under assumption that, the pressure profile is constant over 

the reservoir height. This reduces the volume integral given in Chapter 4 into a 2D surface integral. 

So, for more detailed analysis of stress, in next stage a 3D model could be generated that estimates 

backstress on each point in the entire 3D rectangular fracture.   

4. The plan view in this model is mentioned in Figure2.5, which also describes multiple zones around 

a fracture during produced water re-injection2. But, in this thesis only damage caused to fracture 

namely external filter-cake formation and internal plugging have been included. The damage zone is 

analogous to rest of the zones but it also could be significant w.r.t the injected solids and oil that 

deeply penetrates the formation, forming an internal filter-cake. In this model, all the injected solids 

and oils (TSS) are assumed to form external cake and internal tip plug.  

5. In the volume integral of poro-elastic stress calculation, the numerical accuracy depends on how 

accurate is the pressure solution at that point. So, in case of numerical model, the grid size (memory 

of system) and the time requirements (cost) can compete with the resolution needed7 to solve this 

volume integral accurately. Also, this problem may become more challenging due to presence of many 
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‘for’ loops in the model that increase the run time by many folds. So, solving the stress calculation 

in an interface like C/C++ is advised to save time more than anything else. 

6. In this thesis, the plug permeability is taken to be 𝑘𝑓2 and plug volume to be (𝑉𝑝𝑙𝑢𝑔 = 𝑇𝑆𝑆. 𝑖𝑤 . 𝑡). This 

is assuming 100% water leak-off to formations and all TSS forming external filter-cake and internal 

plug. But, if leak-off occurs through the wormholes in the plug as well i.e. if porosity of plug is 

considered, then a correction factor can be applied to the plug volume like 𝑉𝑝𝑙𝑢𝑔′ =
𝑉𝑝𝑙𝑢𝑔

1−∅
 .  

7. According to Equation (5.2), if 𝐾𝐼 < 𝐾𝐼𝑐 , then no shrinkage or propagation takes place. But, another 

concept called Quasi-static crack propagation where fracture continues to grow even when 𝐾𝐼 < 𝐾𝐼𝑐 

can be included in the model to understand behaviour of rocks that might behave in this unique way. 

8. From conclusions 5 and 7 in section 7.1, it is seen that, the tip plug is formed when volume of solids 

equals volume of fracture. This is accompanied by fracture volume increase due to ballooning effect. 

In this model, the consequence of this effect on the fracture propagation equation has not been 

included. The increased pressure drop over the fracture due to reduction in fracture conductivity 

must effect the ∆𝑃𝑓𝑟𝑎𝑐 and stress conditions. Therefore, the fracture propagation equation given by 

Equation (5.3) needs to be adjusted in the model at the time steps when 𝑉𝑠𝑜𝑙𝑖𝑑𝑠 ≥  𝑉𝑓𝑟𝑎𝑐, to include 

effects of change in injection pressure. 
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                                          Nomenclature 
 

A = major axis of ellipse 

ac = major axis of cold front 

aF = major axis of flood front 

Ap = poro-elastic constant 

AT = thermo-elastic constant 

ain, bin = Fourier coefficients in ith zone  

b = external filter-cake thickness, m 

b0 = external filter-cake thickness at fracture mouth, m 

b = minor axis of ellipse 

bc = minor axis of cold front 

bF =minor axis of flood front 

cb = compressibility of bulk rock, /bar  

cg = compressibility of rock grains, /bar 

ct = total pore compressibility, /bar 

Co = heat capacity of fluid-filled reservoir rock, kg/m3 ͦC 

Cg = heat capacity of cap and base rock, kg/m3 ͦC 

Cw = heat capacity of injection water, kg/m3 ͦC 

ec = bc/ac  

eF = aF/bF  

erf = error function 

erfc = complementary error function 

f = fraction of oil & solids in water that deeply penetrates into the formation 

G(Xf,h) = fracture geometry factor in propagation criterion  

h = reservoir height, m 

iw = total water injection rate, m3/day  

ki = effective permeability in ith zone, m2 

kro = relative permeability of oil (ko/k) 

krw = relative permeability of water (kw/k) 

ke = external filter-cake permeability, m2 

kf(x) = fracture permeability profile, m2 

KI = stress intensity factor, bar√𝑚 
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KIc =critical stress intensity factor/ fracture toughness, bar√𝑚 

Xf or Lf = fracture half-length, m 

Xfu or Lfu = fracture half-length of unplugged part, m 

Lp = fracture length of plugged part (Xf-Xfu) or (Lf-Lfu), m 

N = number of Fourier coefficients 

N1 = total number of days injected 

P = Pressure around the fracture, bar 

Pres = initial reservoir pressure, bar  

ΔP = P-Pres, pressure around the fracture, bar 

ΔPf = fluid pressure in fracture, bar 

ΔPfp = fluid pressure in plugged part of fracture, bar 

ΔPfu = fluid pressure in unplugged part of fracture, bar 

ΔPe = pressure drop over external filter-cake, bar 

ql = total leak-off rate from fracture into reservoir, m3/day 

rw = wellbore radius, m  

Re = radius of external boundary, m 

rhog = density of rock, kg/m3 

rhoo = density of oil, kg/m3 

rhow = density of water, kg/m3 

σini = initial total minimum in-situ stress, bar  

σh,min = min. horizontal reservoir rock stress, bar 

σp = poro-elastic backstress on fracture face, bar 

σpp = poro-elastic backstress on plugged part, bar 

σpfu = poro-elastic backstress on unplugged part, bar 

σT = thermo-elastic backstress, bar 

σpT = sum of poro-elastic and thermo-elastic backstress, bar 

Sor = residual oil saturation, % 

Swi = connate water saturation, % 

t = injection time, days  

Tinj = injection temperature, ͦC 

ΔT = Tinj-Tres, change in temperature with respect to initial temperature, ͦC 

Vfrac = fracture volume, m3  

w0 = fracture width at fracture mouth, m 

w(x) = fracture width profile, m 
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Wi = total injected water volume, m3 

x, y = Cartesian coordinates, m 

ξi = ξ coordinate of boundary between zones i and i+1 

 

Greek 

ap = linear poro-elastic expansion coefficient  

aS = thermal diffusivity of cap and base rock  

aT= linear thermal expansion coefficient  

ξij = Kronecker delta  

ƞ = hydraulic diffusivity   

λi = fluid mobility of ith zone   

μi = viscosity of ith zone  

Ф = porosity, %  

ξ, ƞ = elliptical coordinates 

ξu, ƞu = elliptical coordinates using Xfu 

  

Subscripts  

1 cold fluid zone  

2 warm fluid zone  

3 oil zone  

D dimensionless  

c cold front  

F flood front  
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                                       Appendix A  
 

 

The Appendix provides the calculations of pressure field solution in and around a finite conductivity fracture. 

The fracture fully penetrates permeable formation and is assumed to be bounded by impermeable layers. 

The concepts are discussed in detail in Chapter 3 earlier. The calculations given in the appendix are based 

on work of Hoek et al.2. 

A.1. Calculation of Pressure Solution in and Around a Finite Conductivity Fracture 
A semi-analytical model has been developed to solve for the pressure field in and around the finite 

conductivity fracture. In this case, the pressure drop over the fracture will be nonzero due to non-uniform 

fracture pressure, that will disturb the elliptical symmetry of pressure field around the fracture. The pressure 

profile Δp(ξ) must satisfy the full Laplace Equation given by Equation (3.19). Clearly, the pressure field 

depends on both the elliptical coordinates ξ and ƞ.  

The governing Equation is discussed in section 3.4 given by Equation (3.20). The boundary conditions used 

to solve the Laplace Equation are given by Equation (3.10) and (3.11). As mentioned earlier, Fourier series 

is used to express the pressure solution such that, the boundary conditions and elliptical symmetry in ƞ are 

satisfied. The Fourier coefficients are required to model the pressure equations. So, the pressure solutions 

𝛥𝑝(𝜉) given by Equation (3.20) are substituted into the boundary conditions followed by multiplication with 

cos(2ƞ), and then it is integrated over ƞ between (0,
𝜋

2
). This gives the five Fourier coefficients required to solve 

pressure Equations for the three zones around the fracture. They are given by Equation (3.21). In order to 

calculate all the unknown Fourier coefficients 𝑎1𝑛 , 𝑎2𝑛, 𝑏1𝑛 ,  𝑏2𝑛, 𝑎𝑛𝑑 𝑏3𝑛, we only have four Equations derived 

by above mentioned calculations. A fifth Equation is derived by local fluid balance in the finite conductivity 

fracture2.  

A.1.1. Pressure solution without external filter-cake on fracture face 
The 1D fracture is divided into uniform grids along the x-direction. According to the local fluid balance in 

the fracture, 

                                                                                        𝑄𝑙𝑜𝑐𝑎𝑙(𝑥) = 𝑄𝑖𝑛𝑗 − 𝑄 𝑙𝑒𝑎𝑘𝑜𝑓𝑓                                                                                       (𝐴. 1) 

where,  𝑄𝑙𝑜𝑐𝑎𝑙(𝑥) means the fluid rate along fracture at position x, 𝑄𝑖𝑛𝑗 is the constant injection flow rate also 

represented by 𝑖𝑤 , and 𝑄 𝑙𝑒𝑎𝑘𝑜𝑓𝑓 is the leak-off between (0, x). This has been expressed mathematically in work 

of Hoek et al.2 by, 

                                                        −
1

2
ℎ. 𝑤(𝑥).

𝑘𝑓(𝑥)

𝜇1

.
𝜕∆𝑝𝑓(𝑥)

𝑑𝑥
=

𝑖𝑤

4
+  ∫ 𝑑𝑥′

𝑘1

𝜇1

 
𝑥

0

ℎ
𝜕∆𝑝1(𝑥′, 𝑦)

𝑑𝑦
|𝑦 = 0                                          (𝐴. 2) 

where, ∆𝑝𝑓(𝑥) is the fracture pressure due to fluid pressure inside the fracture, 𝑤(𝑥) represents the fracture 

width profile given in section 5.4 in Chapter 5, and 𝑘𝑓(𝑥) is the assumed fracture permeability profile (step 

function). If an elliptical fracture width profile is used, then 𝑤(𝑥) can also be expressed as, 

                                                               𝑤(𝑥) = 𝑤0 √1 − (
𝑥

𝑋𝑓

)

2

   𝑜𝑟, 𝑤(ƞ) = 𝑤0 sin(ƞ)                                                                 (𝐴. 3) 

So, Equation (A.2) can be modified and expressed in elliptical coordinates as, 

                                                                 
𝑑∆𝑝𝑓(ƞ)

𝑑ƞ
=

2𝑋𝑓

𝑤0𝑘𝑓(ƞ)
 {

𝜇1𝑖𝑤

4ℎ
− 𝑘 1 ∫ 𝑑ƞ′ 

𝜕∆𝑝1(𝜉, ƞ′)

𝜕𝜉
|𝜉 = 0

ƞ

𝜋
2

}                                                 (𝐴. 4) 

Equation (A.4) is now the main Equation for carrying out local fluid volume balance. To include the effect of 

absence of external filter-cake the following Equation is used, 
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                                                          ∆𝑝𝑓(ƞ) =  ∆𝑝1(𝜉 = 0, ƞ)    𝑜𝑟,    ∆𝑝𝑓(𝑥) =  ∆𝑝1(𝑥, 𝑦 = 0)                                                               (𝐴. 5) 

where, ∆𝑝1 is the pressure drop in the adjacent formation to the fracture or cold zone. 

Now, to solve for the coefficient b1m the following steps are executed, 

Step 1: Equation (A.5) and 1st Equation of set of Equations (3.20) are substituted in Equation (A.4). This 

gives the following output, 

                                               − ∑ 2𝑚. 𝑑1𝑚 . sin(2𝑚ƞ) = 

∞

𝑚=1

2𝑋𝑓

𝑤0. 𝑘𝑓(ƞ)
 {

𝜇1

𝜇
 𝑘ƞ + 𝑘1  ∑ 𝑐1𝑚 sin(2𝑚ƞ)

∞

𝑚=1

}                                             (𝐴. 6) 

where, we get two new coefficients which are defined by, 

                                   𝑑1𝑚  ≡ 𝑎1𝑚 cosh(2𝑚𝜉1) + 𝑏1𝑚 sinh(2𝑚𝜉1) ,   𝑐1𝑚  ≡ 𝑎1𝑚 sinh(2𝑚𝜉1) + 𝑏1𝑚 cosh(2𝑚𝜉1)                       (𝐴. 7) 

Step 2: To calculate 𝑏1𝑚, Equation (A.7) is expressed only in terms of coefficient 𝑏1𝑚. This is done by 

substituting Equation (3.21) in Equation (A.7) and is given by, 

        𝑑1𝑚  = (
𝑘1

𝑘2
tanh[2𝑚(𝜉2 − 𝜉1)] cosh(2𝑚𝜉1) + sinh(2𝑚𝜉1)) 𝑏1𝑚  ,   

                                                        𝑐1𝑚  = (
𝑘1

𝑘2
tanh[2𝑚(𝜉2 − 𝜉1)] sinh(2𝑚𝜉1) + cosh(2𝑚𝜉1)) 𝑏1𝑚                                               (𝐴. 8) 

Step 3: Equation (A.8) is substituted in the derived Equation from step 1. This gives an Equation which is 

only in terms of b1m. 

− ∑ 2𝑚 ((
𝑘1

𝑘2
tanh[2𝑚(𝜉2 − 𝜉1)] cosh(2𝑚𝜉1) + sinh(2𝑚𝜉1)) 𝑏1𝑚 ) sin(2𝑚ƞ)

∞

𝑚=1

=
2𝑋𝑓

𝑤0 ∗ 𝑘𝑓(ƞ)
 {

𝜇1

𝜇
 𝑘 ƞ + 𝑘1  ∑ ((

𝑘1

𝑘2
tanh[2𝑚(𝜉2 − 𝜉1)] sinh(2𝑚𝜉1) + cosh(2𝑚𝜉1)) 𝑏1𝑚) sin(2𝑚ƞ)

∞

𝑚=1

} 

                                                                                                                                                                                                                                    (𝐴. 9) 

Step 4: Equation (A.9) is multiplied by sin (2𝑛ƞ) and is then integrated over ƞ = (0,
𝜋

2
). This provides the 

following result, 

                                      −
𝜋

2
𝑛 𝑑1𝑛 =

2𝑋𝑓

𝑤0

𝑘

𝜇
 ∫ 𝑑ƞ

𝜇1

𝑘𝑓(ƞ)
 ƞ sin(2𝑛ƞ) +

2𝑋𝑓

𝑤0

 ∑ 𝑐1𝑚 ∫ 𝑑ƞ
𝑘1

𝑘𝑓(ƞ)
sin(2𝑚ƞ) sin(2𝑛ƞ)             (𝐴. 10)

𝜋
2

0

∞

𝑚=1

𝜋
2

0

 

The fracture permeability in this model is assumed by a step function given by Equation (3.18). This 𝑘𝑓(ƞ) is 

used along with d1m and c1m from Equation (A.8) to solve Equation (A.10) for b1m. The combination of 

Equation (A.10) and (A.8) gives a linear set of Equations relation of the form 𝐴𝑥 = 𝐵 for the coefficient  𝑏1𝑚. 

So, the linear set of Equations is modelled in MATLAB to solve this with x equal to 𝑏1𝑚, B being a constant 

vector and, A being coefficient matrix of  𝑏1𝑚. Once 𝑏1𝑚 is calculated, the other coefficients of Fourier sum 

are simply calculated using Equation (3.21). 

From the above Equations, it can be deduced that for an infinite conductivity case,𝑘𝑓(ƞ)  ≡  ∞ due to which 

the RHS in Equation (A.10) equals zero. Therefore, all three coefficients of Fourier sum 𝑏1𝑚, 𝑏2𝑚, 𝑎1𝑚  are zero. 

Thus, Equation (3.20) reduces to Equation (3.12) for an infinite conductivity fracture.  

A.1.2. Pressure solution with external filter-cake on fracture face 
The external filter-cake layer on fracture face is built over time due to deposition of TSS. The filter-cake in 

this model is assumed to have elliptical thickness profile 𝑏(𝑥) given by Equation (3.14) and uniform filter-

cake permeability 𝑘𝑒 . The presence of external filter-cake results in additional pressure drop over the fracture. 

This pressure drop ∆𝑝𝑒 is uniform for an infinite conductivity fracture because of uniform pore pressure 

distribution1 ∆𝑝(𝜉) around the fracture given by Equation (3.12). The ∆𝑝𝑒 is therefore given by, 



       

67 

 

                                                                                     ∆𝑝𝑒  =
∂∆𝑝(𝜉)

𝜕𝜉
|𝜉 = 0. 𝑏0                                                                                            (𝐴. 11) 

But, for finite fracture conductivity case, due to the non-uniformity of pore pressure distribution around the 

fracture the pressure drop over the external filter-cake is now given by, 

                                                                         ∆𝑝𝑒  = (
k1

𝑘𝑒

) (
𝑏0

𝑋𝑓

)
∂∆𝑝1(𝜉, ƞ)

𝜕𝜉
|𝜉 = 0                                                                                    (𝐴. 12) 

So, the fracture permeability Equation (A.5) modifies to, 

  ∆𝑝𝑓(ƞ) = ∆𝑝1(𝜉 = 0, ƞ) − (
k1

𝑘𝑒

) (
𝑏0

𝑋𝑓

)
∂∆𝑝1(𝜉, ƞ)

𝜕𝜉
|𝜉 = 0  𝑜𝑟, ∆𝑝𝑓(𝑥) =  ∆𝑝1(𝑥, 𝑦 = 0) −  (

k1

𝑘𝑒

) 𝑏(𝑥)
∂∆𝑝1(𝑥, 𝑦)

𝜕𝑦
|𝑦 = 0   

(𝐴. 13) 

where, 0 ≤  η ≤ (
π

2
) 

Now, to solve for the coefficient b1m the following steps are executed, 

Step 1: Equation (A.13) and 1st Equation of set of Equations (3.20) are substituted in Equation (A.4). This 

gives the following output, 

                         − ∑ 2𝑚 (𝑑1𝑚 + 2𝑚 (
k1

𝑘𝑒

) (
𝑏0

𝑋𝑓

) 𝑐1𝑚) sin(2𝑚ƞ) = 

∞

𝑚=1

2𝑋𝑓

𝑤0. 𝑘𝑓(ƞ)
 {

𝜇1

𝜇
 𝑘ƞ + 𝑘1  ∑ 𝑐1𝑚 sin(2𝑚ƞ)

∞

𝑚=1

}                     (𝐴. 14) 

where, 𝑑1𝑚 and 𝑐1𝑚 are given by (A.8). 

Step 2: Similar steps are followed again to deduce the linear set of Equations. However, the presence of 

external filter-cake slightly changes the linear set of Equations given by Equation (A.10). 

     −
𝜋

2
𝑛 (𝑑1𝑛 + 2𝑛 (

k1

𝑘𝑒

) (
𝑏0

𝑋𝑓

) 𝑐1𝑛)        

=  
2𝑋𝑓

𝑤0

𝑘

𝜇
 ∫ 𝑑ƞ

𝜇1

𝑘𝑓(ƞ)
 ƞ sin(2𝑛ƞ) +

2𝑋𝑓

𝑤0

 ∑ 𝑐1𝑚  ∫ 𝑑ƞ
𝑘1

𝑘𝑓(ƞ)
sin(2𝑚ƞ) sin(2𝑛ƞ)                                (𝐴. 15)

𝜋
2

0

∞

𝑚=1

𝜋
2

0

 

Therefore, a new linear set of Equations of the form 𝐴𝑥 = 𝐵 is generated and modelled in MATLAB to evaluate 

the coefficient of Fourier sum 𝑏1𝑚, ∆𝑝(𝜉), and ∆𝑝𝑓(ƞ) using 𝑘𝑓(ƞ). 
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                                       Appendix B  
 

The Appendix provides the calculations of poro-elastic and thermo-elastic backstresses on fracture face. The 

concepts are discussed in detail in Chapter 4 earlier. The calculations of numerical model for poro-elastic 

backstress given in the appendix are based on Equations formulated by Koning1 in Appendix 3-B of his 

thesis. The thermo-elastic backstress calculations for elliptical zones confocal with fracture tips are based 

on work Perkins and Gonzalez8. The thermo-elastic stress is calculated for uniform change in temperature. 

The temperature profile is assumed to be a step function. Inside the cold zone, a uniform temperature 

decrease is taken and outside the cold zone the initial reservoir temperature prevails.   

B.1. Numerical Calculation of Poro-elastic backstress at the Fracture Wall 
After the evaluation of pressure profiles or the pressure field around the fracture, the poro-elastic backstress 

is calculated numerically. The following general expression is given by Hoek et al.2 to solve it, 

                                                                    𝜎𝑝(𝑥) = 𝐴𝑝 ∗ ∆𝑝(𝑥) +
𝐴𝑝

4𝜋

𝜕2

𝜕𝑦2
 ∭

∆𝑝(𝑥′)

|𝑥 − 𝑥′|
 𝑑3𝑥′                                                                  (𝐵. 1)  

where, 𝐴𝑝 is the poro-elastic constant. 

In this model, the above volume integral is calculated only in two-dimensions along the length of fracture 

and perpendicular to the fracture throughout the reservoir. Since, the analytical pressure profile is constant 

along the reservoir height, the integral over the third dimension drops out. As discussed in Chapter, the 

reservoir or coordinate space has been divided into parallelepipeds with edges of length 2𝑎1,2𝑎2,2𝑎3 in the x, 

y, z directions respectively. In this model, equal size grids have been used which means the edges are of 

equal length. The horizontal stress 𝜎𝑖𝑗𝑝  given by Equation (4.9) has been taken from Appendix 3-B of Koning’s 

thesis1. The solution of integrals in Equation (4.9) are given by, 

                    𝐼𝑖𝑗 (𝑢1, 𝑢2, 𝑢3) =  ∫ 𝑑𝑘 1 ∫ 𝑑𝑘 2

𝑎2

𝑎2

𝑎1

𝑎1

∫ 𝑑𝑘 3

𝑎3

𝑎3

𝜕2

𝜕𝑘 𝑖𝜕𝑘𝑗

[(𝑢1 − 𝑘1)2 + (𝑢2 − 𝑘2)2 + (𝑢3 − 𝑘3)2]−(
1
2

)
               (𝐵. 2) 

where, 𝑢1 = 𝑥0 − 𝑥, 𝑢2 = 𝑦
0

− 𝑦, 𝑢3 = 𝑧0 − 𝑧 are the displacements in all three directions between the source 

point on the fracture and the field point in space. In Equation (B.2), I11 represents the coefficient integral of 

maximum horizontal stress ∆𝜎𝑥𝑝 and I22 represents the coefficient integral of minimum horizontal stress 

∆𝜎𝑦𝑝. In this thesis, only the minimum horizontal stress perpendicular to the fracture in of interest. The 

analytical calculation of  𝐼𝑖𝑗 is given by Nowacki16. For completeness I11 and I22 are given by, 

𝐼11 = atan (
𝑢2 − 𝑎2

𝑢1 − 𝑎1

)
𝑢3 − 𝑎3

𝑟(+1,+2,+3)
−  atan (

𝑢2 − 𝑎2

𝑢1 − 𝑎2

)
𝑢3 + 𝑎3

𝑟(+1,+2,−3)
−  atan (

𝑢2 + 𝑎2

𝑢1 − 𝑎1

)
𝑢3 − 𝑎3

𝑟(+1,−2,+3)
+  atan (

𝑢2 + 𝑎2

𝑢1 − 𝑎1

)
𝑢3 + 𝑎3

𝑟(+1,−2,−3)

− atan (
𝑢2 − 𝑎2

𝑢1 + 𝑎1

)
𝑢3 − 𝑎3

𝑟(−1,+2,+3)
+ atan (

𝑢2 − 𝑎2

𝑢1 + 𝑎1

)
𝑢3 + 𝑎3

𝑟(−1,+2,−3)
+ atan (

𝑢2 + 𝑎2

𝑢1 + 𝑎1

)
𝑢3 − 𝑎3

𝑟(−1,−2,+3)

− atan (
𝑢2 + 𝑎2

𝑢1 + 𝑎1

)
𝑢3 + 𝑎3

𝑟(−1,−2,−3)
                                                                                                                                            (𝐵. 3) 

𝐼22 = atan (
𝑢1 − 𝑎1

𝑢2 − 𝑎2

)
𝑢3 − 𝑎3

𝑟(+1,+2,+3)
−  atan (

𝑢1 − 𝑎1

𝑢2 − 𝑎2

)
𝑢3 + 𝑎3

𝑟(+1,+2,−3)
−  atan (

𝑢1 + 𝑎1

𝑢2 − 𝑎2

)
𝑢3 − 𝑎3

𝑟(+1,−2,+3)
+  atan (

𝑢1 + 𝑎1

𝑢2 − 𝑎2

)
𝑢3 + 𝑎3

𝑟(+1,−2,−3)

− atan (
𝑢1 − 𝑎1

𝑢2 + 𝑎2

)
𝑢3 − 𝑎3

𝑟(−1,+2,+3)
+ atan (

𝑢1 − 𝑎1

𝑢2 + 𝑎2

)
𝑢3 + 𝑎3

𝑟(−1,+2,−3)
+ atan (

𝑢1 + 𝑎1

𝑢2 + 𝑎2

)
𝑢3 − 𝑎3

𝑟(−1,−2,+3)

− atan (
𝑢1 + 𝑎1

𝑢2 + 𝑎2

)
𝑢3 + 𝑎3

𝑟(−1,−2,−3)
                                                                                                                                            (𝐵. 4) 

where, 𝑟(∓1,∓2,∓3)  =   [(𝑢1 ∓ 𝑎1)2 + (𝑢2 ∓ 𝑎2)2 +  (𝑢3 ∓ 𝑎3)2]
1

2 

Also, the coefficient 𝐼22 is obtained by interchanging 𝑢1 ↔ 𝑢2 and 𝑎1 ↔ 𝑎2 in coefficient 𝐼11.  
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B.2. Calculation of Axes of Elliptical Fluid Fronts 
In this section, the solution for the major and minor axes of elliptical temperature and flood fronts are 

calculated. The method incorporated by Perkins and Gonzalez8 is used to obtain the axes values. The 

elliptical coordinates for thermal zone is calculated from heat balance whereas, for flood front it is calculated 

from volume balance.  

First, the volume of an arbitrary elliptical front is given by, 

                                                                          𝑉𝑖 =  𝜋 𝑋𝑓
2ℎ sinh (𝜉𝑖) cosh(𝜉𝑖) , 𝑖 = 𝑐, 𝐹                                                                     (𝐵. 5) 

where, c= cold/temperature front zone and F= flood front zone  

From heat balance, we get the volume of the cold front given by, 

                                                                                 𝑉𝑐 =
𝑀𝑤

𝑀𝑟

 𝑞 𝑡                                                                                                                          (𝐵. 6) 

Where, Mw = Heat capacity of injected water and, Mr = Heat capacity of fluid filled reservoir rock. 

We know, in the zone ahead of the cold zone and behind the flood front, connate water is mobile with oil at 

residual saturation i.e. 𝑆𝑜 = 𝑆𝑜𝑟 . The volume of flooded zone equals the volume of displaced mobile oil. So, 

the volume of waterflooded region includes the volumes of injection water and connate water3. From volume 

balance, we get the volume of the flood front by the following relation, 

                                                                                  𝑉𝐹 =
1

𝜑(1 − 𝑆𝑜𝑟 − 𝑆𝑤𝑐)
 𝑞 𝑡                                                                                              (𝐵. 7) 

We know, in elliptical system major axis is given by 𝑎𝑖 = 𝑋𝑓 cosh(𝜉𝑖) and, minor axis is given by 𝑏𝑖 = 𝑋𝑓 sinh(𝜉𝑖) 

from Equation (B.6) and (B.7) it follows that, 

                                                              𝑎𝑖 =
𝑋𝑓

2
(√𝐹𝑖 +

1

√𝐹𝑖

)   and, 𝑏𝑖 =  
𝑋𝑓

2
(√𝐹𝑖 −

1

√𝐹𝑖

)                                                              (𝐵. 8) 

where,                                                           𝐹𝑖 =
2   𝑉𝑖

𝜋 𝑋𝑓
2ℎ

+ 0.5√(
4   𝑉𝑖

𝜋𝑋𝑓
2ℎ

)
2

+ 4  , 𝑖 = 𝑐, 𝐹                                                                               (𝐵. 9) 
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                                       Appendix C  
 

 

In this Appendix, the computational sequences implemented in MATLAB for all the fracture tip propagation 

models have been illustrated. The concepts of fracture propagation and fracture propagation criteria have 

been earlier discussed in Chapter 5 in detail. The models have been built for both analytical and numerical 

expressions for all three cases. Due to high computational time for numerical models, the results for 

analytical fracture propagation model have only been discussed in Chapter 6 for few cases.  

The general fracture propagation Equation using which the above fracture tip models are solved is given by, 

                         
1

√𝜋𝑋𝑓
 ∫ 𝑑𝑥 [𝑃𝑓𝑟𝑎𝑐(𝑞, 𝑡, 𝑋𝑓 , ℎ, 𝑥) −  𝜎𝑖 − ∆𝜎𝑝𝑇(𝑞, 𝑡, 𝑋𝑓 , ℎ, 𝑥)]√

𝑋𝑓+𝑥

𝑋𝑓−𝑥
 =  𝐺(𝑋𝑓 , ℎ) 𝐾𝐼𝑐                        (𝐶. 1)

𝑋𝑓

0
  

where, 𝐺(𝑋𝑓, ℎ) is the Fracture Geometry Factor that depends on the length of the fracture. In this model, a 

slow growing fracture has been assumed for which 𝐺(𝑋𝑓, ℎ) = 1. Also, the integral in Equation (C.1) is 

evaluated using the Trapezoidal rule in MATLAB. In this model, the volume of fracture and volume of injected 

solids are also evaluated at each time step to estimate the plug length under the condition that 𝑉𝑠𝑜𝑙𝑖𝑑𝑠 ≥ 𝑉𝑓𝑟𝑎𝑐 . 

The following Equations are used to do so, 

                                                                 𝑉𝑓𝑟𝑎𝑐(𝑡) =  𝜋  ℎ ∫ 𝑋𝑓(𝑥, 𝑡). 𝑤(𝑥, 𝑡)
𝑋𝑓

0

 𝑑𝑥                                                                 (𝐶. 2) 

                                                                                𝑉𝑠𝑜𝑙𝑖𝑑𝑠(𝑡) =  𝑇𝑆𝑆. 𝑖𝑤 . 𝑡                                                                                     (𝐶. 3) 

C.1. Fracture Tip Model with Constant Fracture Toughness, 𝐾𝐼𝑐 
  

                              

Input Intial guess of 𝑋𝑓 and constant 𝐾𝐼𝑐 value at 
t=0

Compute 𝑃𝑓𝑟𝑎𝑐 𝑞, 𝑡, 𝑋𝑓 , ℎ, 𝑥 𝑎𝑛𝑑 ∆𝜎𝑝𝑇 𝑞, 𝑡, 𝑋𝑓 , ℎ, 𝑥

Calculate Stress Intensity Factor, 𝐾𝐼 using 
Fracture Prpagation Equation (C.1)

𝑋𝑓 iterated using Newton-Raphson Method until 
𝐾𝐼 − 𝐾𝐼𝑐 ≤ Tolerance Limit

Record Converged value of 𝑋𝑓 for next time step

Calculate 𝑉𝑓𝑟𝑎𝑐 and 𝑉𝑠𝑜𝑙𝑖𝑑𝑠 using eqs (C.2) and (C.3) 

If 𝑉𝑓𝑟𝑎𝑐 ≤ 𝑉𝑠𝑜𝑙𝑖𝑑𝑠, 𝐿𝑝𝑙𝑢𝑔 will build with time 

t = t+1  
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C.2. Fracture Tip Model with Increasing Tip-Stress, ∆𝜎𝑡𝑖𝑝 

 

                                 

C.3. Fracture Tip Model with Constant Tip-Stress, ∆𝜎𝑡𝑖𝑝 

 

                                

Input Intial guess of 𝑋𝑓 , constant initial 𝐾𝐼𝑐 and 
minimum tip-stress ∆𝜎𝑡𝑖𝑝,𝑖𝑛𝑖𝑡values at t=0

Compute 𝑃𝑓𝑟𝑎𝑐 𝑞, 𝑡, 𝑋𝑓 , ℎ, 𝑥 and ∆𝜎𝑝𝑇 𝑞, 𝑡, 𝑋𝑓 , ℎ, 𝑥

Calculate Stress Intensity Factor, 𝐾𝐼 using 
Equation (C.1), ∆𝜎𝑡𝑖𝑝,𝑒𝑓𝑓using Equation (5.6) 

and, 𝐾𝐼𝑐,𝑒𝑓𝑓 using Equation (5.7)

𝑋𝑓 iterated using Newton-Raphson Method until 

𝐾𝐼 − 𝐾𝐼𝑐,𝑒𝑓𝑓 ≤ Tolerance Limit

Record Converged value of 𝑋𝑓 for next time step

Calculate 𝑉𝑓𝑟𝑎𝑐 and 𝑉𝑠𝑜𝑙𝑖𝑑𝑠 using eqs (C.2) and 
(C.3) 

If 𝑉𝑓𝑟𝑎𝑐 ≤ 𝑉𝑠𝑜𝑙𝑖𝑑𝑠 , 𝐿𝑝𝑙𝑢𝑔 will build with time 

t = t+1  

Input Intial guess of 𝑋𝑓 , constant initial 𝐾𝐼𝑐 and 
constant tip-stress ∆𝜎𝑡𝑖𝑝values at t=0

Compute 𝑃𝑓𝑟𝑎𝑐 𝑞, 𝑡, 𝑋𝑓 , ℎ, 𝑥 and ∆𝜎𝑝𝑇 𝑞, 𝑡, 𝑋𝑓 , ℎ, 𝑥

Calculate Stress Intensity Factor, 𝐾𝐼 using 
Equation (C.1) and 𝐾𝐼𝑐,𝑒𝑓𝑓using Equation (5.8)

𝑋𝑓 iterated using Newton-Raphson Method until 

𝐾𝐼 − 𝐾𝐼𝑐,𝑒𝑓𝑓 ≤ 𝑇𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒 𝐿𝑖𝑚𝑖𝑡

Record Converged value of 𝑋𝑓 for next time step

Calculate 𝑉𝑓𝑟𝑎𝑐 and 𝑉𝑠𝑜𝑙𝑖𝑑𝑠 using eqs (C.2) and 
(C.3) 

If 𝑉𝑓𝑟𝑎𝑐 ≤ 𝑉𝑠𝑜𝑙𝑖𝑑𝑠, 𝐿𝑝𝑙𝑢𝑔will build with time 

t = t+1  
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                                       Appendix D 
 

In this Appendix, the key simulation parameters model properties are defined for clarity of concept and 

complete understanding of the thesis and model’s essential elements. 

D.1. Simulation Parameters 
NAME DESCRIPTION 

Depth (L) Total Vertical Depth (TVD) of reservoir 

Fracture Gradient (P/L) Initial 𝜎 ℎ,𝑚𝑖𝑛 gradient for fracture propagation 

Hydrostatic Gradient (P/L) Pbhp  =  Pwhp  +  P hyd–  Δploss 

Temperature Difference (ΔT) ΔT =  Tinj −  Tres 

Maximum Drainage Radius (L) 𝑅𝑒 = 1.5 √(ƞ𝑡)   
Time Step (Δt) ∆𝑡 = 𝑡𝑖 + 1 −   𝑡𝑖 

Initial Fracture half-length (L) 𝑋𝑓𝑖 = Initial guess 

Injection Rate (L3/t) iw = Constant Injection Rate  

 

D.2. Rock Properties 
NAME DESCRIPTION 

Reservoir Porosity (-) ∅ = (Void Volume)/(Bulk Volume)  
Young’s Modulus of Formation (P) E=Elasticity Modulus, Measure of Stiffness  

Poisson’s Ratio (-) 
𝜈 =  −

Transverse Strain

Longitudional Strain
due to Axial compression 

Tip Stress (P) 𝜎𝑡𝑖𝑝 = Stress at tip to overcome Pfrac 

Fracture Toughness (P.L0.5) 𝐾𝐼𝑐 =  𝜎 𝑡𝑖𝑝√(𝜋𝑋𝑓) 

Initial Total In-Situ Stress (P) 𝜎𝑖𝑛𝑖𝑡𝑖𝑎𝑙  (before injection starts) 
Single Phase Permeability (L2) Permeability of Formation in Darcy 

External Filter-cake Permeability (L2) 𝑘𝑒 in micro-Darcy  

Grain Density (M/ L3) 𝜌𝑔 = Density of Rock Grains 

 

D.3. Fluid Properties 
NAME DESCRIPTION 

Cold Water Viscosity (P.t) μc = Viscosity of Cold Injection Fluid in Pa.s 

Warm Water Viscosity (P.t) μw = Viscosity of Heated Injection Fluid in Pa.s 

Oil Viscosity (P.t) μo = Viscosity of Reservoir Fluid in Pa.s 

Residual Water Saturation (-) Swi = Irreducible Injection Fluid Saturation 

Residual Oil Saturation (-) Swii = Irreducible Reservoir Fluid Saturation 

Injection Fluid Density (M/L3) ρw = Density of Cold Injection Fluid Phase 

Oil Density (M/L3) ρw = Density of Reservoir Fluid 

Injection Fluid Relperm (-) Relative Permeability of Cold Injection Fluid Phase 

Total Suspended Solids (-) TSS (ppm) = Fraction of Solids in Injection Water 

Initial Reservoir Pressure (P) 𝑃𝑟𝑒𝑠  (before injection starts) 

 

D.4. Poro-elastic Parameters 
NAME DESCRIPTION 

Grain Compressibility (1/P) Cg  =  Relative Change in Grain Volume by ΔP 

Water Compressibility (1/P) Cw  =  Relative Change in Injection Fluid Volume by ΔP 

Oil Compressibility (1/P) CO   =  Relative Change in Reservoir Fluid Volume by ΔP 

Biot Coefficient (-) 𝛼𝐵  ≈   (0.4 − 1.0) 
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D.5. Thermo-elastic Parameters 
NAME DESCRIPTION 

Thermal Expansion Coefficient (1/T) Relative change in Saturated Rock due to ΔT 

Water Specific Heat (E/M/T) 𝐶𝑎𝑝ℎ𝑤 = Mass Specific Heat of Injection Fluid 

Grain Specific Heat (E/M/T) 𝐶𝑎𝑝ℎ𝑔 = Mass Specific Heat of Rock Grains 

Oil Specific Heat (E/M/T) 𝐶𝑎𝑝ℎ𝑜 = Mass Specific Heat of Reservoir Fluid 

Heat Capacity of Injection Fluid (E/ L3/T) 𝐶𝑤 = 4200
𝐾𝐽

𝑚3 /℃  

Heat Capacity of Fluid Filled Rock (E/ L3/T) 𝐶𝑤 = 2500
𝐾𝐽

𝑚3 /℃  

Heat Capacity of Reservoir Fluid (E/ L3/T) 𝐶𝑤 = 2100
𝐾𝐽

𝑚3 /℃  
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