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Abstract Gradient-based history matching algorithms
can be used to adapt the uncertain parameters in a
reservoir model using production data. They require,
however, the implementation of an adjoint model to
compute the gradients, which is usually an enormous
programming effort. We propose a new approach to
gradient-based history matching which is based on
model reduction, where the original (nonlinear and
high-order) forward model is replaced by a linear
reduced-order forward model and, consequently, the
adjoint of the tangent linear approximation of the
original forward model is replaced by the adjoint of
a linear reduced-order forward model. The reduced-
order model is constructed with the aid of the proper
orthogonal decomposition method. Due to the linear
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character of the reduced model, the corresponding ad-
joint model is easily obtained. The gradient of the ob-
jective function is approximated, and the minimization
problem is solved in the reduced space; the procedure
is iterated with the updated estimate of the parame-
ters if necessary. The proposed approach is adjoint-
free and can be used with any reservoir simulator. The
method was evaluated for a waterflood reservoir with
channelized permeability field. A comparison with an
adjoint-based history matching procedure shows that
the model-reduced approach gives a comparable qual-
ity of history matches and predictions. The compu-
tational efficiency of the model-reduced approach is
lower than of an adjoint-based approach, but higher
than of an approach where the gradients are obtained
with simple finite differences.

Keywords Data assimilation · History matching ·
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Adjoint-free

1 Introduction

In typical reservoir simulation models, the uncertain
parameters are, e.g., grid block permeabilities and
porosities, relative permeabilities, or fault multipliers.
A prior reservoir characterization is generally based
on localized borehole and outcrop observations that
are interpolated to give regional descriptions of un-
certain geological properties. The interpolation process
introduces uncertainty in those parameters that di-
rectly translates into an uncertainty about the reser-
voir behavior. The geological model can be improved
by using surface and downhole production data (flow
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rates and bottom hole pressures) in a process called
history matching. History matching identifies the para-
meter values that minimize an objective function that
represents the mismatch between modeled and ob-
served production data. Usually the objective function
is defined as a sum of weighted squared differences
between observed and modeled data.

Due to the high computing cost of a reservoir model
simulation, history matching procedures need to in-
volve a reasonable number of model simulations to be
usable. History matching has been investigated for the
last few decades, and many algorithms have been de-
veloped, among them, gradient-based history matching
algorithms. A particularly efficient class of optimization
methods are those where a gradient of the objective
function with respect to the model parameters is cal-
culated by solving the adjoint, or co-state, problem as
introduced by Courant and Hilbert [11]. In reservoir
engineering, the adjoint method was used for the first
time by Chen et al. [9] and later applied by, among
others, Chavent et al. [8], Wasserman et al. [42], Watson
et al. [43], Lee and Seinfeld [25], Yang et al. [44], Zhang
and Reynolds [47], Li et al. [26], and Oliver et al. [31].
In the adjoint approach, the history matching problem
is treated as an optimal control problem where the con-
trol variables are the unknown model parameters and
where the objective function is minimized subject to the
constraint that the state variables obey the prescribed
reservoir model. Another use of adjoint-based methods
in reservoir engineering is for recovery optimization
or production optimization. In that case, the objective
function is ultimate recovery or net present value, and
the control variables are the well rates, well pressures,
or well valve settings. Initially, this was done for the op-
timization of tertiary recovery processes, see Ramirez
[32], later followed by water flooding optimization, see,
e.g., [3, 5, 34, 36, 45] and [15]. In both the history
matching and the recovery optimization problems, the
necessary conditions for optimality lead to the gradi-
ents, which are now the total derivatives with respect
to the controls of the objective function, modified to
include the reservoir model constraint. These gradients
can subsequently be used in gradient-based optimiza-
tion methods. The adjoint approach is computationally
very efficient because one gradient calculation requires
just a single simulation of the forward model and a sin-
gle simulation of the adjoint model backward in time,
irrespective of the number of parameters. Usually, first-
order gradient-based minimization algorithms, which
avoid explicit computation of the Hessian, are used
to perform the minimization process. In particular
with the limited-memory Broyden–Fletcher–Goldfarb–
Shanno or the Levenberg–Marquardt algorithm, the

history matching process can be performed efficiently
(see for further details [31]). This approach, however,
does have a few drawbacks: It can converge to a local
minimum rather than the global one, and it requires the
implementation of an adjoint model. Nevertheless, if
correctly implemented, it is one of the most efficient
approaches existing today to solve the history matching
problem. Usually, in reservoir models, the Jacobian
matrices of the system are available because they are
used in Newton–Raphson iteration during the forward
simulation. Even so, the implementation of the adjoint
equations is an immense programming effort which,
moreover, requires access to the simulation code. This
implies that there is a need for gradient-based, but
adjoint-free optimization methods, a requirement that
becomes even more pressing if reservoir simulation
is combined with another forward simulation, e.g., of
geomechanics or rock physics, with a code for which no
Jacobians are available. We note that the naive solution
of computing the gradients through finite differences,
i.e., by perturbing the parameters one by one and com-
puting the associated changes in the objective function,
is not a realistic option for reservoir models which
may have up to millions of parameters and which
may require several hours for a single forward sim-
ulation. A somewhat more feasible finite-difference
approach is one where reparameterization is used to
reduce the number of parameters, e.g., with the aid
of a zonation presented by Jahns [23] or with the aid
of a limited number of spatial basis functions that are
linear combinations of the original parameters pre-
sented by Dadashpour [13]. However, also in this case,
the number of forward simulations required for the
finite-difference approach may be too large for realistic
applications.

In reservoir engineering, other gradient-based,
adjoint-free methods have been proposed in recent
years. Gao et al. [19] used the simultaneous pertur-
bation stochastic approximation method of Spall [35]
where an approximate gradient is calculated using a
stochastic perturbation of all parameters together. The
same method was applied by Wang et al. [41] for
the recovery optimization problem. Another method
uses an ensemble of control variables and computes
the cross-covariance between the control variables and
the objective function which can then be used as an
approximate gradient. This “ensemble optimization”
technique was proposed for recovery optimization by
Lorentzen et al. [28] and thereafter refined by Chen
et al. [10]. For history matching, a similar approximate
gradient-based technique has gained enormous popu-
larity over the past years in the form of the ensem-
ble Kalman filter (EnKF); see [16] and [1] for recent



Comput Geosci (2011) 15:135–153 137

overviews. Although somewhat disguised, because the
EnKF assimilates data sequentially rather than all to-
gether, the basic idea of replacing an exact gradient by
an ensemble-based correlation is also present in this
method.

Another way to avoid the implementation of the
adjoint model for the original reservoir model is to
replace it with simplified model, for which the adjoint
derivation is simpler. This approach has been proposed
in weather prediction modeling by Courtier et al. [12]
as a solution to the computationally expensive large-
scale inverse problem. They derived an incremental
approach, in which the forward solution of a high-
resolution nonlinear model is replaced by the solution
of a lower resolution, approximate linear model. The
disadvantage of this method is the need to acquire a
linear model, which is a simplified approximation of
the original model (with simplified physical parame-
terizations). Another way to obtain the approximated
model is by the use of a reduced order modeling
technique called the proper orthogonal decomposition
(POD) method, also known as the Karhunen–Loève
method, principal component analysis or the method
of empirical orthogonal functions. It is a data-driven
projection-based method. The origin of this method
goes back to 1946, when it was introduced indepen-
dently by Karhunen [24] and Loève [27] as a statistical
tool to analyze random process data. The method was
called for the first time the POD by Lumley [29], when
it was used for the study of turbulent flow. In the
POD method, a low-order projection subspace is de-
termined by processing data obtained from numerical
simulations of the high-dimensional model, which are
expected to provide relevant information about the
dynamic behavior of the system. The high-dimensional
equations are projected on the low-dimensional sub-
space resulting in a low-dimension model. The applica-
tion of the POD method reduces the CPU time of the
model simulation but does not change the complexity
of the problem and, consequently, does not solve the
implementation problem of the adjoint model. The
POD method has been successfully applied to increase
the computational efficiency of reservoir simulation
by Heijn et al. [21], Markovinovic and Jansen [30],
and Cardoso et al. [7]. Use of the POD method in
combination with adjoint-based optimization has been
investigated by, e.g., Cao et al. [6] and Fang et al. [17] in
oceanography and by Van Doren et al. [38] in reservoir
simulation.

Vermeulen and Heemink [40] proposed an approach
based on model reduction that avoids an implementa-
tion of the adjoint model of the tangent linear approx-
imation of the original nonlinear model and that shifts

the minimization into lower dimensional space. First,
they construct the reduced-order tangent linear ap-
proximation of the original forward model and, there-
after, thanks to the linear character of the reduced-
order model, they easily derive the adjoint model. In
this approach, the POD method is used to obtain an
approximate low-dimensional version of the tangent-
linear model. This is a somewhat different procedure
than the conventional application of the POD method
for state-space reduction. Afterward, the adjoint of the
reduced-order linear model can be easily implemented
and due to the reduced model size the minimization
problem is solved efficiently. Vermeulen and Heemink
[40] applied this method to groundwater flow problems
where it proved to be computationally very efficient.
Later, it was applied by Altaf et al. [2] for water depth
estimation in a coastal engineering problem and also
there it proved to be very efficient. In this paper, we
will apply this method to the reservoir model history
matching problem. This new algorithm is not better
in terms of efficiency or robustness than the classical
adjoint-based approach, but it does not require the
implementation of the adjoint code, it operates in a low-
dimensional space, which makes it much more efficient
than the naive finite-difference method, and it can eas-
ily be implemented with any simulator without having
access to simulation source code.

The paper is arranged as follows: The history match-
ing problem is defined in Section 2, the classical adjoint-
based history matching formulation is presented in
Section 3, and the proposed gradient-based history
matching formulation using model reduction is de-
scribed in detail in Section 4. Section 5 contains results
from two different twin data assimilation experiments
using the adjoint-based approach, a finite-difference-
based approach, and the model reduction-based
approach.

2 History matching as inverse modeling

The discrete model for a single simulation step of the
reservoir system from time ti−1 to time ti can be de-
scribed by an equation of the form

x(ti) = fi[x(ti−1), θ ], i = 1, ..., N, (1)

where x(ti) ∈ X ⊂ R
n denotes the state vector of pres-

sures and saturations at time ti, θ denotes the vector
of uncertain parameters, and N denotes the total num-
ber of simulation time steps. The dynamic operator
fi : R

n → R
n represents the reservoir simulator and is

nonlinear and deterministic. See, e.g., [4] for further
details. The relationship between measured production
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data y(ti) and state variables x(ti) can be described by a
nonlinear operator hi : R

n → R
m, which represents the

so-called well model (see, e.g., [4] for further details).
If we assume that observations are imperfect, then the
simulated measurements are described by

y(ti) = hi[x(ti), θ ] + vi, i = 1, ..., No, (2)

where vi is the observation error and No is the num-
ber of time steps where the observations are taken.
We note that although Eqs. 1 and 2 are presented in
explicit form, they will usually be implicit for realistic
implementations. However, this does not influence the
validity of our theory, and we use explicit formulations
to simplify the notation.

The uncertain parameters in the model can be esti-
mated by minimizing an objective function that mea-
sures the difference between simulated and observed
data d. In the case of assimilation of production data,
the data are sparse and it is not possible to cor-
rectly estimate all parameters from this information.
The parameter-estimation problem is ill-posed and can
therefore result in nonunique parameter estimates.
Moreover, such estimates are often geologically unre-
alistic. One way to make the history matching problem
well-posed is to rely on some background information
in the form of a prior estimate of the model parame-
ters [20]. The objective function then consists of two
terms—a background (prior) term and an observation
term:

J(θ , x(ti)) = 1
2

(
θb

init − θ
)TR−1

b

(
θb

init − θ
)

+1
2

No∑

i=1

[d(ti) − hi[x(ti), θ ]]T

×R−1
i [d(ti) − hi[x(ti), θ ]] , (3)

where Ri is the covariance matrix of the observation
errors at time ti, θb

init represents the prior parame-
ters, and Rb represents the covariance matrix of the
prior parameter errors and thus models the uncertainty
associated with the prior information. By minimizing
the objective function (Eq. 3), we find a model that
is close to the prior model, while it simultaneously
minimizes the misfit between the data and the model
results.

3 Adjoint-based history matching algorithms

The parameter estimation problem can be interpreted
as a constrained minimization problem, where the con-

straints are formed by the system Eq. 1, which can
be solved using iterative gradient-based minimization
methods. The minimization methods consist of the fol-
lowing iterative steps:

– Determine a direction si in parameters space, which
leads to a lower objective function

– Find the size of the step length αi along that direc-
tion, such that it minimizes J(θ i + αisi)

– Set the new estimate θ i+1 = θ i + αisi

The algorithm proceeds until the minimum of the ob-
jective function is found or certain stopping criteria
are satisfied. To determine the direction, we need to
calculate the gradient of the objective function with
respect to the parameters. The gradient can be obtained
by reformulating the minimization problem as an un-
constrained one, through inclusion of the constraints
with the aid of Lagrange multipliers; see, e.g., Oliver
et al. [31]. This leads to:

(
dJ
dθ

)T

= −
N∑

i=1

(
∂fi[x(ti−1), θ ]

∂θ

)T

λ(ti) − R−1
b (θb

init − θ)

−
No∑

i=1

(
∂hi[x(ti), θ ]

∂θ

)
TR−1

i [d(ti)−hi[x(ti), θ ]] ,

(4)

where λ represents a vector of Lagrangian multipli-
ers (or adjoint states) which satisfies the following
equation:

λ(ti) =
(

∂fi+1[x(ti), θ ]
∂x(ti)

)T

λ(ti+1)

+
(

∂hi[x(ti), θ ]
∂x(ti)

)T

R−1
i [d(ti) − hi[x(ti), θ ]] (5)

for i = N, ..., 1 with an end condition λ(tN+1) = 0.

4 Gradient-based history matching using
model reduction

Classical gradient-based history matching formulated
for a general model represents a nonlinear constrained
optimization problem that is very difficult to solve. It
can be greatly simplified with the hypothesis that the
objective function can be made quadratic by assuming
that the fi and hi operators can be linearized. The
quadratic problem has theoretical advantages since it
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involves solving only linear equations and it has a
unique solution. Therefore, the tangent linear model of
the original model is written using the first-order Taylor
formula in the vicinity of the background parameter θb ;
this results in the following equation:

�x̄(ti) = ∂fi[x(ti−1), θ ]
∂x(ti−1)

�x̄(ti−1) +
p∑

j=1

∂fi[x(ti−1), θ ]
∂θ j

�θ j,

(6)

where p is the size of the parameter space, x̄ is the lin-
earized state vector, and �x̄ is a deviation of the model
from the background trajectory. The partial derivatives
in Eq. 6 are evaluated at (xb (ti−1), θ

b ), where xb is
the nonlinear state vector with a parameter value θb ,
that is, xb (ti) = fi[xb (ti−1), θ

b ]. The Eq. 6 can be rewrit-
ten as

[
�x̄(ti)
�θ

]
=

⎡

⎢
⎣

∂fi[x(ti−1), θ ]
∂x(ti−1)

∂fi[x(ti−1), θ ]
∂θ

0 I

⎤

⎥
⎦

[
�x̄(ti−1)

�θ

]
,

(7)

which is a linear model in terms of variations.
The minimization process is now performed by the

following iterative steps:

– Linearize the model around the background geolog-
ical parameters θb

k , where k denotes the iteration
number and θb

1 = θb
init

– Find �θk, such that it minimizes the quadratic ob-
jective function

– Update θb
k+1 = θb

k + �θk

The history matching procedure turns into a scheme
that consists of two loops: an inner loop, which finds the
minimum of the quadratic objective function, and an
outer loop, where the original model is used to redefine
the model trajectory and to calculate the original objec-
tive function. It iterates until some predefined conver-
gence criteria are met. In practice, in order to make the
computation more efficient, the tangent linear model
is replaced by a simpler low-resolution linear model.
This is called the incremental approach. It has been de-
scribed in Courtier et al. [12] and is used in operational
systems for weather forecasting. The methodology pre-
sented in this paper is based on this two-loop approach.
The difference is that we do not need to acquire a
simpler linear model because we construct it by using
a reduced-order modeling technique and information
from the perturbations of the original model. Because
the reduced-order model is designed to capture the

dominant dynamics of the original system, we expect
that we can successfully use it for a fast reduction of the
objective function in the inner loop. We note, however,
that there is no guarantee that the reduced-order model
will always lead to the same response to parameter
variations as the full-order model.

4.1 Parameter reduction

Since the vector θ may consists of properties in each
grid block of the model, e.g., permeabilities or porosi-
ties, the number of uncertain parameters p can be very
large. In that case, it is necessary to reparameterize the
vector θ . In our case, we used the POD method (KL
expansion) to reparameterize the parameter space and,
consequently, to reduce the number of parameters to
be estimated. In particular, we will consider repara-
meterization of the permeability field as preparation
to the numerical example to be discussed below. The
permeability vector θ is approximated by

θ ≈ θb + �ηη ⇐⇒ �θ = �ηη, (8)

where the permeability patterns creating �η are the
first pred dominant eigenvectors of a low-rank approx-
imation of the covariance matrix of the permeability
field, represented by an ensemble of prior permeability
fields. Alternatively, other reparameterization methods
such as the discrete cosine transform [22] or a dis-
crete wavelet transform [33] may be chosen, as long as
they lead to a significant reduction in the number of
parameters.

4.2 Initialization

The initial parameter vector θb
init is chosen as a first

guess of the uncertain parameters, θb
1 = θb

init. To keep
the notation simple, we skip the index indicating the
outer iteration and we denote the reference parameters
as θb . Next, the high-order reservoir model is simulated
with parameters values θb , and the initial objective
function is calculated.

4.3 Collection of snapshots and pattern selection

The POD method is used to obtain an approximate
low-order version of the tangent-linear model. This is
a somewhat different procedure than the conventional
application of the POD method for state-space reduc-
tion. In the conventional method, a data matrix is built
from selected state vectors of a forward simulation
of the large-scale numerical model, called snapshots.
Spatial basis functions are obtained by computing a
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low-rank approximation of the covariance matrix of the
data and by selecting the leading eigenvectors. Next,
the (tangent-) linear model equations are projected
on the low-order basis formed by the basis functions.
It results in a reduced-order model, in terms of coe-
fficients multiplying the basis functions, which is still
able to reproduce the dominant dynamic behavior of
the original model, see, e.g., [7] or [38] for further
details. If the original model is nonlinear, the ma-
trix coefficients of the tangent-linear high-order model
need to be recomputed every time step before applying
the reduction, which significantly reduces the compu-
tational advantage of the POD method as compared
to the linear case. Moreover, the conventional POD
method requires the availability of the high-order tan-
gent model, i.e., of the Jacobians with respect to the
states. In our approach, we aim at obtaining a reduced-
order approximation of the tangent linear model di-
rectly by computing approximate derivatives of the
reduced-order model.

Since the reduced-order model is used for parameter
estimation, the snapshots should be able to represent
the behavior of the system for modified parameter val-
ues. Therefore, snapshots are created in the following
way:

x j(ti) = fi
[
xb (ti−1), θ

b + φ j
ηη j

] − fi
[
xb (ti−1), θ

b ]
, (9)

where φ
j
η is the jth pattern in matrix �η and η j is the size

of the perturbation. Then snapshots are put as columns
in matrix

X = {x1(t1), ..., x1(tN), ..., xpred(t1), ..., xpred(tN)} (10)

of size n × s, where s is the total number of snapshots.
The given set of snapshots spans a subspace on which
the reduced-order model is built. To find a basis of this
subspace, the eigenvalue problem

(XXT)φi = λiφi; i ∈ {1, ..., s} (11)

should be solved. The eigenvectors corresponding to
the largest eigenvalues of matrix XXT represent the
dominant directions present in the snapshots, called
patterns. For each pattern, its relative importance αi,
defined as the percentage of the eigenvalues in the total
sum of eigenvalues, is calculated, that is, αi = λi∑s

j=1 λ j
. By

choosing the nred patterns with the largest relative im-
portance an orthonormal projection matrix � is created
by taking vectors φi as its columns, for i ∈ {1, ..., nred},
where nred ≤ s. The snapshots reconstructed from only
nred patterns approximate the elements in the set X
optimally (in some average sense). It means that if

x̂ j is a reconstruction of x j ∈ X defined as a linear
combination of nred patterns, then the average error
1
s

∑s
j=1

∥
∥x j − x̂ j

∥
∥ is minimal among any other linear

reconstruction of the dimension nred.
Since typically s 	 n, instead of solving the eigen-

value problem given by Eq. 11, the reduced eigenvalue
problem

(XTX)wi = λiwi; i ∈ {1, ..., s} (12)

is solved. The eigenvalues of those problems are the
same, and the following relationship holds between

the eigenvectors: φi = λ
− 1

2
i Xwi, for i ∈ {1, ..., s}. Alter-

natively, instead of solving the eigenvalue problem in-
volving the product of the matrices (XXT or XTX), a
singular value decomposition directly on the snapshot
matrix X can be performed. Then the matrix X is
decomposed as X = U�VT , where U ∈ R

n×n, V ∈ R
s×s

are orthogonal matrices and � ∈ R
n×s is a pseudodi-

agonal having on its diagonal nonnegative elements
arranged in decreasing order. It can be shown that the
eigenvectors of the matrix XXT can be computed as
the left singular vectors, i.e., elements of U, and their
sorted eigenvalues are equal to squared elements of the
diagonal of �.

In order to select the number nred, we use the relative
importance αi. nred is chosen as the smallest number,
such that

∑nred
j=1 α j ≥ αe, where αe is some percentage

of the total relative importance. The accuracy of a
reduced model increases with an increase in the number
of patterns in the matrices �. For a given number
of snapshots, the highest accuracy is achieved by tak-
ing αe equal to one. On the other hand, the use of
more patterns means lower computational efficiency.
Therefore, there is a trade-off between efficiency and
accuracy. One can notice that if the last eigenvector
which is included in the set of patterns � has the same
eigenvalue as the next eigenvector which is not selected
because the required level of relative importance is
satisfied, then this procedure is not uniquely defined
and depends on the sorting routine used to order the
eigenvalues. Hence, one may check the next eigenvalue
and include a corresponding eigenvector if the eigen-
values are equal.

4.4 Building the reduced-order linear model

A model can be reduced by reconstructing the incre-
mental state �x̄(ti) according to

�x̄(ti) = �z(ti), (13)
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where � is the projection matrix derived in the previous
subsection and z ∈ R

nred is the reduced state vector.
Combining Eqs. 13, 6, and 8 results in

z(ti) = Niz(ti−1) + Nθ
i η, (14)

where

Ni = �T ∂fi[x(ti−1), θ ]
∂x(ti−1)

�, (15)

Nθ
i = �T ∂fi[x(ti−1), θ ]

∂θ
�η, (16)

and where z represents the response of the original
model to a perturbation of parameters, such that we can
write:
[

z(ti)
η

]
=

[
Ni Nθ

i
0 I

] [
z(ti−1)

η

]
. (17)

The partial derivatives in formulas 15 and 16 can not
be easily computed explicitly and should be approxi-
mated by

[
∂fi[x(ti−1), θ ]

∂θ

]

j

≈ fi[xb (ti−1), θ
b +εθ iθj ]−fi[xb (ti−1), θ

b ]
εθ

, (18)

and
[
∂fi[x(ti−1), θ ]

∂x(ti−1)

]

j

≈ fi[xb (ti−1) + εij, θb ] − fi[xb (ti−1), θ
b ]

ε
(19)

where ε and εθ are the intervals in which the partial
differentials are linearized and ij and iθj are the jth
columns of identity matrices with dimension, n × n and
p × p, respectively. Of course, those perturbations are
too expensive for large-scale models. From Eq. 15,
however, we see that there is no need to calculate
those partial derivatives explicitly, and instead of ap-
proximating terms ∂fi[x(ti−1),θ ]

∂x(ti−1)
, we approximate the terms

∂fi[x(ti−1),θ ]
∂x(ti−1)

� as

∂fi[x(ti−1), θ ]
∂x(ti−1)

φ j

≈ fi[xb (ti−1) + εφ j, θ
b ] − fi[xb (ti−1), θ

b ]
ε

, (20)

where φ j is the jth column of �. In the same manner,
we approximate the terms ∂fi[x(ti−1),θ ]

∂θ
�η as

∂fi[x(ti−1), θ ]
∂θ

φ j
η

≈ fi[xb (ti−1), θ
b + εθφ

j
η] − fi[xb (ti−1), θ

b ]
εθ

, (21)

where φ
j
η is the jth column of �η. It results in a reduced-

order model which is linearized along the patterns.
The dimension of the reduced-order model depends
on the number of patterns nred and on the number of
variables pred to be estimated, which are both expected
to be small (see Section 4.1). Moreover, the matrices
in the reduced-order model are known explicitly and
the reduced-order model is linear. Therefore, the CPU
time of a single reduced-order model simulation is
negligible. However, the computational overhead to
construct the reduced-order model may be significant.

We described how to build the reduced-order lin-
ear model, which is a low-order approximation to the
high-order tangent linear approximation of the original
reservoir model. We presented the formulation of the
method using an explicit form of the reservoir equa-
tions motivated by the resulting simplification in the de-
scription of the method. An explicit method calculates
the state of a system at a current time step from the
parameters and the state of the system at the previous
time step, while an implicit method finds a solution by
solving an equation involving both the current state of
the system and the previous one. Since, the tangent
linear model in both cases can be rewritten such that it
calculates the approximate state at a current time step
from the approximate state at the previous time step,
and from the parameters, the choice of an explicit or an
implicit method is irrelevant.

4.5 Improving parameters in reduced space

When the reduced-order approximate linear model is
available, the adjoint model is easy to implement (due
to its linear character) and is governed by the following
equation

λ(ti) = NT
i+1λ(ti+1) +

(
∂hi[x(ti), θ ]

∂x(ti)
�

)T

×R−1
i

[
d(ti) − hi[xb (ti), θb ] − ∂hi[x(ti), θ ]

∂x(ti)
�z(ti)

−∂hi[x(ti), θ ]
∂θ

�ηη

]
, (22)
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where λ represents a vector of the reduced adjoint
state and λ(tN+1) = 0. The objective function for the
reduced-order model is

Ĵ(η, z(ti))

= 1
2

No∑

i=1

[
d(ti) − hi

[
xb (ti), θb ] − ∂hi[x(ti), θ ]

∂x(ti)
�z(ti)

−∂hi[x(ti), θ ]
∂θ

�ηη

]T

× R−1
i

[
d(ti) − hi[xb (ti), θb ] − ∂hi[x(ti), θ ]

∂x(ti)
�z(ti)

−∂hi[x(ti), θ ]
∂θ

�ηη

]

+1
2

[
θb

init − θb − �ηη
]TR−1

b

[
θb

init − θb − �ηη
]
,

(23)

and the gradient is
(

dĴ
dη

)T

= −
N∑

i=1

(
Nθ

i

)T
λ(ti) − �T

η R−1
b

[
θb

init−θb −�ηη
]

−
No∑

i=1

(
∂hi[x(ti), θ ]

∂θ
�η

)T

−R−1
i

[
d(ti)−hi[xb(ti), θb ]− ∂hi[x(ti), θ ]

∂x(ti)
�z(ti)

−∂hi[x(ti), θ ]
∂θ

�ηη

]
. (24)

Here, we can approximate the partial derivatives of the
observation model in the same manner as we did for the
forward model, namely

∂hi[x(ti), θ ]
∂x(ti)

φ j ≈ hi[xb (ti) + εφ j, θ
b ] − hi[xb (ti), θb ]
ε

(25)

and

∂hi[x(ti), θ ]
∂θ

φ j
η ≈ hi[xb (ti), θb + εθφ

j
η] − hi[xb (ti), θb ]

εθ

.

(26)

The minimization is performed using a quasi-Newton
optimization where the Hessian of the objective func-
tion is updated using the BFGS method; see [18]. No
scaling of the parameters in BFGS is used. Since each
iteration of the line search algorithm requires a run
of a simulator, we need to minimize that number of

iterations. Therefore, instead of using an exact line
search, we use a backtracking search routine, which
is best suited to be used with quasi-Newton optimiza-
tion algorithms; see [14]. The minimization algorithm
requires convergence criteria to terminate. We decided
that the algorithm terminates when

– The objective function almost ceases to change, i.e.,

| Ĵ(ηk+1) − Ĵ(ηk)|
max{| Ĵ(ηk+1)|, 1} < εJ, (27)

– The estimates almost stop to change, i.e.,

|ηk+1 − ηk|
max{|ηk+1|, 1} < εp, (28)

where εJ = 10−4 and εp = 10−4.

4.6 Improving parameters in high-order space

The solution of the inner loop is an optimum for the
reduced-order linearized system but not necessarily for
the original one. Therefore, we check the value of
the original objective function for the new parameters
θb

i+1 = θb + �ηηopt, where ηopt is the solution of mini-
mization process. The process is repeated as long as the
objective function satisfies

mNo − 2
√

2mNo ≤ 2J(θb
i+1) ≤ mNo + 2

√
2mNo. (29)

This convergence criterion is a consequence of the
assumption that the model is linear and θ has a normal
distribution. Moreover, model errors are not consid-
ered. In this case, the minimum of objective function
J has a χ2 distribution with mNo degrees of freedom.
It is reasonable to assume that this fact also approx-
imately applies in the nonlinear case. The constraint
(Eq. 29) tells us that the objective function should fall
in the interval of two standard deviations (2

√
2mNo)

distance from the mean expected value (mNo). If J
has a χ2 distribution with mNo degrees of freedom,
then as mNo tends to infinity, the distribution of J
tends to a standard normal distribution. This property
justifies the interval of two standard deviations, which
implies that if we would repeat the numerical experi-
ment with different random measurement errors drawn
from the same distribution, about 95% of the results
would be within two standard deviations away from
the mean. If the objective function does not obey the
stopping criterion, then the process is iterated with a
new background parameter θb

i+1. Since a relationship
exists between patterns and model parameterization,
whenever the background parameter is changed, a new
background state and a new set of patterns need to
be identified. Thereafter, a new reduced-order model
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is built and the inner loop is performed again. The
advantage of this criterion compared to the alternative
criteria is that it works even if only a single outer loop is
performed. The history matching algorithm described
in this section has been summarized by the flow chart
in Fig.1.

4.7 Computational complexity

The overall computational costs of the model-reduced
approach consists of two parts:

(a) Preprocessing costs of constructing the reduced-
order model:

– Cost of generating representative snapshots
which span a large portion of the variability
of the permeability field
The generation of “good” snapshots is an im-
portant part of the POD method. Our strat-
egy is as follows: First, we check the range
of the permeability values that are present
in the ensemble of prior realizations. Then,
we choose a number of permeability patterns,

Fig. 1 Model-reduced gradient-based history matching
algorithm

which we change during one simulation. We
try to reduce the CPU time by changing a few
patterns per simulation during initial outer
loops. The size of the perturbation depends on
the number of outer iteration as well, namely
we perturb with the maximum range in first
loop and we reduce it in subsequent loops. We
have not yet established a fully systematic ap-
proach which guarantees the best compromise
between efficiency and representativeness of
the snapshots, but from our experience, the
described approach works well.

– Cost of solving the reduced eigenvalue
problem
This cost is equivalent to the cost of a singular
value decomposition of matrix X, which is
O(n × s2) [37]. Since in our case s is a low
number, this cost is low. Moreover, we may
use a Lanczos procedure to only compute the
nred largest singular values.

– Cost of approximating partial derivatives
along patterns
This is computationally the most expensive
part of the proposed procedure and its CPU
time is comparable to the time of pred + nred

simulations of the high-order model.

(b) Cost of solving the reduced system and simplified
history matching problem

– Cost of solving the reduced system
The cost of solving a system of nred linear
equations is equal to O

(
(nred)

2
)
, which can be

neglected in our case.
– Cost of the optimization procedure

In case of a quadratic objective function, the
quasi-Newton routine iterates approximately
pred + 1 times; see [18].

4.8 Additional issues

Pressure and saturation variables have a totally
different physical behavior, a different order of numer-
ical values, and generally a different variability in their
values. The POD procedure favors variables which val-
ues show greater variability; this can have negative con-
sequences on the pattern identification. If all variables
are of the same kind, then the data can be preprocessed
before the POD procedure by normalizing them to
have unit variance. Therefore, we decided to collect
snapshots for pressures and saturations separately, fol-
lowing Van Doren et al. [38]. Instead of solving one
eigenvalue problem to obtain the POD matrix �, we
solve two separate eigenvalue problems (one for the
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matrix of pressure snapshots Xp ∈ R
n
2 ×s and one for the

matrix of saturation snapshots Xs ∈ R
n
2 ×s). It yields two

different POD matrices, �p ∈ R
n
2 ×np and �s ∈ R

n
2 ×ns

for pressure, and saturation, respectively, and the final
POD matrix � is formed as

� =
[

�p 0 n
2 ×ns

0 n
2 ×np �s

]
∈ R

n×nred ,

where np and ns are number of patterns for pressure
and saturation, respectively, and nred = np + ns.

5 Numerical experiments

5.1 Model settings

We performed a numerical “twin experiment” in which
we used the model-reduced gradient-based approach
to estimate the uncertain permeability field of a 3D
reservoir model from synthetic noisy production data.
The model, originally introduced by Van Essen et al.
[39], describes iso-thermal slightly compressible two-
phase (oil–water) flow, in a channelized reservoir with
eight injection and four production wells; see Fig. 2.
The model is based on the assumptions that the effects
of capillary pressure can be neglected, that the perme-
ability is isotropic, and that the porosity, permeability,
viscosity, and density are pressure independent.

– Reservoir geometry
The reservoir model is a part of a quadrilateral of
the size 480 × 480 × 28 m, divided into 60 × 60 × 7
uniform Cartesian grid blocks, of which there are
18,553 active, forming an egg-shaped domain with
no-flow boundaries.

Fig. 2 The “true” reservoir permeability field with well locations.
Producers are indicated in red, injectors in blue

– Reservoir properties
The porosity is assumed to be uniform and equals
0.2. The “true” permeability field on a log scale is
shown in Fig. 3. The permeability contrast between
the channels and the background fill is relatively
mild (about a factor of 10). The rock compressibil-
ity cr = 0 × 1/Pa.

– Initial conditions
The initial reservoir pressures is 40 MPa and the
initial water saturation is taken as connate water
saturation Swc = 0.2.

– Well locations and constraints
Water is injected at a rate of 32 m3/day in the eight
vertical injectors, while the four vertical producers
are operated at constant bottom-hole pressures of
39.5 MPa. All wells are perforated at each layer of
the reservoir.

– Fluid properties
The oil and water viscosities are identical: μo =
μw = 10−3 Pa s and so are the compressibilities:
cw = co = 10−101/Pa. The densities of oil and water
are given by ρo = 900 kg/m3 and ρw = 1,000 kg/m3.

– Relative permeabilities
We assumed Corey-type relative permeabilities
with Corey exponents for oil and water: no = 4
and nw = 3. The residual oil saturation was taken
as Sor = 0.15 and the connate water saturation as
Swc = 0.2.

5.2 History matching settings

The assimilation period was chosen to be 3 years
during which observations were taken from four

Fig. 3 Log of true permeability field in the fourth layer [m2]
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production and eight injection wells every 60 days,
resulting in 18 time instances. During this assimilation
period, water breakthrough occurred in one well, after
about 500 days. Noisy observations were generated
from the model with the “true” permeability field and
consisted of bottom-hole pressures in the injectors and
water and oil rates in the producers, with a random
normally distributed noise of 5% of their values. It
resulted in 72 oil rates and five water rates measured in
the producers and 144 bottom-hole pressures measured
in the injectors, which gives in total 221 data points.
In the assimilation procedure, the errors statistics were
assumed to be known, i.e., errors were represented by a
normal distribution with zero mean and a standard de-
viation equal to 5% of the observed data. Moreover, it
was assumed, correctly, that distinct observations were
affected by physically independent noise, resulting in a
diagonal covariance matrix for the observation errors.
The ensemble of reservoir models was created using in-
house geostatistical software with an anisotropic vari-
ogram. We used an ensemble of 100 realizations which
are Gaussian distributed random fields in each layer,
conditioned to the well data corrupted with an error
in the order of 10−4 of the true value. All realizations
were conditioned to the same hard data. Each layer
had a randomly oriented ellipsoidal covariance with
randomly chosen correlation length between four to
eight grid blocks for each layer at each realization. No
vertical correlation was assumed. An ensemble of 100
permeability fields was used to create the background
permeability θb

init, taken as the ensemble average, and
to estimate the background error covariance matrix.
The permeability field was reparameterized using a
KL-expansion described above, resulting in 22 perme-
ability patterns with 22 corresponding parameters. Such
a small number of parameters to represent the 18,553
grid block permeability values is motivated by the fact
that the available data are very sparse, which implies
that the identifiability of the parameter space is very
low [46].

5.3 Reduced model settings

Additional numerical parameter settings are required
for the model-reduced approach, in particular, the

Table 1 Experiment 1: model-reduced gradient-based history
matching

Outer iter J nred pred nsim

0 338 − 22 1
1 113 65 22 98(= 11 + 54 + 11 + 22)

pred the number of parameters, nred the number of patterns, nsim
the number of simulations

Fig. 4 Experiment 1. Log of prior permeability field in the fourth
layer [m2]

number of snapshots and the number of patterns used
to build the reduced-order model. In order to cover the
dynamic behavior of the system, snapshots should be
collected during all the assimilation times for different
ranges of the permeability fields. However, to get
a rough idea of the direction of the parameter up-
date, we started with a lower number of snapshots
in the first outer iteration (reducing also the dimen-
sion of the eigenvalue problem) and we increased it
in the successive ones. We selected a snapshot every
60 days from 11 simulations, where each simulation
was based on a different permeability field created by
perturbing two different parameters per simulation. We

Fig. 5 Experiment 1. Log of permeability field from the model-
reduced approach in the fourth layer [m2]
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Fig. 6 Experiment 1. Oil rate in the production wells, obtained
with the prior permeability field (blue), the true permeability
field (red), and the estimated permeability field (green) using the
model-reduced approach. The black vertical lines indicate the end
of the assimilation period

collected snapshots for pressures and saturations sep-
arately, which resulted in 200 snapshots for pressures
and 200 snapshots for saturations, and two eigenvalue
problems to be solved. This separation allowed us to
choose different relative importance levels for pressure
and for saturation, which varied over the iterations.
We started with a lower relative importance in the first
outer iteration and increased it in the successive ones.
The relative importance for the pressures was initiated
at 85% for the first iteration and was set to increase
5% in each successive iteration up to 95%. Because the
saturation field displays a much larger spatial variability
than the pressure field, it results in a higher number
of patterns for the same level of relative importance.
We fixed the relative importance for saturation to 80%
in the first iteration, increasing it in the successive
iterations up to 90%, in steps of 5%.

Table 2 Experiment 1: model-reduced gradient-based history
matching with fewer patterns

Outer iter J nred pred nsim

0 338 − 22 1
1 114 35 22 68(= 11 + 29 + 6 + 22)

pred the number of parameters, nred the number of patterns, nsim
the number of simulations

Fig. 7 Experiment 1. Successive iterations of the objective func-
tion value

5.4 History matching results

5.4.1 Experiment 1

It was noticed in [21, 38] and [7] that the pressure
behavior can be well represented by a few patterns
but that the situation is worse for the saturation be-
havior, which is caused by the moving fluid interface.
A significantly larger number of patterns is therefore
required to satisfy the chosen accuracy level. We se-
lected 54 + 11 patterns for the first iteration (54 for
saturation and 11 for pressure), which means that the
reduced-order model operates in dimension 65 + 22.
The results of the first data assimilation experiment are
summarized in Table 1.

The initial value of the objective function was 338
and resulted from a simulation with the prior parame-
ters, as depicted in Fig. 4. The first outer iteration termi-
nated with parameters for which the original objective
function decreased to 113. The stopping criterion for
the outer loop (Eq. 29) was satisfied (179 ≤ 2J(θb

1 ) ≤
263), and the procedure terminated. The computa-
tional cost of the model-reduced approach was about
equal to the time required to simulate 98 high-order
model evaluations. More precisely, 98 is a summation
of 11 simulations during which snapshots are collected,
54 + 11 simulations required to approximate the par-
tial derivatives along saturation and pressure patterns,

Table 3 Experiment 1: classical adjoint-based history matching

Iterations J pred nsim

0 338 22 1
15 97 22 79(= 15 × 2 + 49)

pred the number of parameters, nsim the number of simulations
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Fig. 8 Experiment 1. Log of permeability field from the adjoint-
based approach in the fourth layer [m2]

and 22 simulations required to approximate the partial
derivatives with respect to the parameters.

The final estimate is presented in Fig. 5. From a
geological point of view, the obtained estimate does
not represent the true reservoir (see Figs. 3 and 5).
Clearly, the information coming from sparse well data
is not sufficient to capture the complicated geological
structure, a well-known issue in petroleum reservoir
history matching. However, if we consider the match

Fig. 9 Experiment 1. Oil rate in the production wells, obtained
with the prior permeability field (blue), the true permeability
field (red), and the estimated permeability field (green) using the
adjoint-based approach. The black vertical lines indicate the end
of the assimilation period

Table 4 Experiment 1: finite-difference based history matching

Iterations J pred nsim

0 338 22 1
6 111 22 141(= 6 × 23 + 3)

pred the number of parameters, nsim the number of simulations

between observed data and predictions in Fig. 6, we
see that the history matching exercise resulted in an
improved match for past data in all four producers
and improved predictions in three out of the four pro-
ducers. In an attempt to further reduce the computing
time, we repeated the model-reduced history matching
exercise with an even smaller number of patterns to
build the reduced-order model. We obtained similar
results in approximately 68 iterations; see Table 2 for
further details. Next, we compared the results with
those of the classical approach using the adjoint of
the tangent linear model. Because the convergence
of any minimization problem strongly depends on the
number of estimated parameters, we used the same
reparameterization for the adjoint-based case as for the
model-reduced case. It was stopped according to the
criterion defined by Eqs. 27 and 28. The adjoint-based
history matching exercise converged after 15 iterations
(see Fig. 7 and Table 3). The minimization was per-
formed using a quasi-Newton optimization where the
Hessian of the objective function was updated using the
BFGS method; see [18]. It required 15 evaluations of
the adjoint model and 49 evaluations of the forward
model (additional evaluations of forward model were
caused by the line-search procedure) and obtained a

Fig. 10 Experiment 1. Log of permeability field from the finite-
difference-based approach in the fourth layer [m2]
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Fig. 11 Experiment 1. Oil rate in the production wells, obtained
with the prior permeability field (blue), the true permeability
field (red), and the estimated permeability field (green) using the
finite-difference-based approach. The black vertical lines indicate
the end of the assimilation period

minimal value of the objective function of 97. The esti-
mated parameters and the liquid rates are presented in
Figs. 8 and 9, respectively. The results closely resemble
those of the model-reduced approach. Both methods
converged to solutions that give good matches for all
producers and good predictions for three out of four
producers. In both cases, the difficulty in the prediction
is related to the same well, located in the region that
is swept least, and for which the observed production

Fig. 12 Experiment 1. Log of permeability field from the model-
reduced approach with fewer patterns in the fourth layer [m2]

Table 5 Experiment 2: model-reduced gradient-based history
matching

Outer iter J nred pred nsim

0 838 − 22 1
1 100 51 22 84(= 11 + 47 + 4 + 22)

pred the number of parameters, nred the number of patterns, nsim
the number of simulations

rates are the lowest. Summarizing, for the example
considered, the approximate derivatives as obtained
from the model-reduced approach resulted in a similar
behavior of the optimizer as the “exact” derivatives
obtained from the adjoint-based approach.

In order to compare the computational effort of the
model-reduced approach, we performed an additional
computation using a finite-difference approach. We
iterated the optimization until we obtained a value
of the objective function comparable to the result of
the model-reduced approach. Table 4, Figs. 10, and
11 represent those results. As expected, the numerical
performance of the adjoint-based approach is better
than that of the model-reduced approach. In this ex-
ample, we required 79 and 98 simulations for each of
the methods, respectively. In fact, we could have used
less iterations in the adjoint-based case to achieve a
similar reduction in the objective function as for the
model-reduced case: See Fig. 7 which indicates that
we could have used just seven iterations. In that case,
the adjoint-based approach would have required only
about seven forward, seven backward, and an estimated
five-line search iterations bringing the total to 19, i.e.,
the adjoint-based approach would then be about five

Fig. 13 Experiment 2. Log of prior permeability field in the
fourth layer [m2]
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Fig. 14 Experiment 2. Oil rate in the production wells, obtained
with the prior permeability field (blue), the true permeability
field (red), and the estimated permeability field (green) using the
model-reduced approach. The black vertical lines indicate the end
of the assimilation period

times as efficient as the model-reduced approach. At
the other hand, there is also scope to improve the
efficiency of the model-reduced approach: As indicated
by Table 2, an almost identical objective function value
could have been obtained with 35(= 29 + 6) patterns,
which reduces the number of iterations from 98 to 68.
The obtained estimate is presented in Fig. 12.

More importantly, the model-reduced approach is
more effective than a finite-difference approach, even
when using the reparameterization as applied in our

Fig. 15 Experiment 2. Log of permeability field from the model-
reduced approach in the fourth layer [m2]

Table 6 Experiment 2: classical adjoint-based history matching

Iterations J pred nsim

0 838 22 1
13 92 22 59(= 13 × 2 + 33)

pred the number of parameters, nsim the number of simulations

example. A finite-difference approach required six it-
erations and one additional function evaluation for the
line search routine, which gives 6 × (22 + 1) + 3 = 141
simulations which makes the model-reduced approach
with 35 patterns more than twice as efficient as a finite-
difference approach.

5.4.2 Experiment 2

In the second experiment, we repeated the history
matching procedure with a different initial guess for
the permeability field. All other settings for model
reduction and history matching stayed the same. For
this case, we assumed, following Van Essen et al. [39],
that the main direction of the channels was known,
e.g., from seismic measurements, but that no specific
knowledge about the channel configuration was avail-
able. The set of 100 realizations of the reservoir were
sketched by hand based on the geological insight, with
a strong vertical correlation, and each realization dis-
played an alternative channel configuration. The gen-
erated ensemble of permeability fields was used to
create the background permeability θb

init, taken as the
ensemble average, and to estimate the background er-
ror covariance matrix. The results of this experiment
are summarized in Table 5. We selected 51 (= 47 + 4)

patterns for the first outer iteration (47 for saturation
and four for pressure), which means that the reduced
model operates in dimension 51 + 22. We observed
again that the pressure behavior is well represented
by a few patterns, only four, but that the saturation
requires significantly more patterns, namely 47. The ini-
tial value of the objective function was 838, and it
resulted from the prior parameter field presented in
Fig. 13. The first outer iteration terminated with para-
meters for which the objective function decreased to
100. The stopping criterion for the outer loop (Eq. 29)
was satisfied (179 ≤ 2J(θb

1 ) ≤ 263), and the procedure
was terminated. In this example, the computational cost

Table 7 Experiment 2: finite-difference-based history matching

Iterations J pred nsim

0 838 − 22 1
11 101 − 22 254(= 11 × 23 + 1)

pred the number of parameters, nsim the number of simulations
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Fig. 16 Experiment 2. Log of permeability field from the adjoint-
based approach in the fourth layer [m2]

of the model-reduced approach was about the time re-
quired to simulate 84 high-order model evaluations (11
simulations during which snapshots are collected, about
47 + 4 simulations required to approximate the par-
tial derivatives along saturation and pressure patterns
and 22 simulations required to approximate the partial
derivatives with respect to parameters). In Fig. 14,
the comparison of oil production curves resulting from
different permeability fields is depicted. The estimate is
able to reproduce the past data from all four producers,
while the prediction is nearly perfect for two wells (top

Fig. 17 Experiment 2. Log of permeability field from the finite-
difference-based approach in the fourth layer [m2]

Fig. 18 Experiment 2. Oil rate in the production wells, obtained
with the prior permeability field (blue), the true permeability
field (red), and the estimated permeability field (green) using the
adjoint-based approach. The black vertical lines indicate the end
of the assimilation period

left and top right plots) and improved for one well
(bottom right plot). Similar to the first experiment, the
worst predictions were obtained for the well depicted
on the bottom left plot. The final estimated parameters
are presented in Fig. 15. Also for this second example,
we checked the performance of the model-reduced

Fig. 19 Experiment 2. Oil rate in the production wells, obtained
with the prior permeability field (blue), the true permeability
field (red), the estimated permeability field (green) using the
finite-difference-based approach. The black vertical lines indicate
the end of the assimilation period
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Fig. 20 Experiment 2. Successive iterations of the objective func-
tion value

approach in comparison to the classical adjoint-based
approach and a finite-difference approach (see Tables
5, 6, and 7), respectively. Comparison of Figs. 15, 16,
and 17 and comparison of Figs. 14, 18, and 19, respec-
tively, show that in the second example the results of
the model-reduced approach and of a finite-difference-
based approach come very close to those of the adjoint-
based approach.

The adjoint case converged after 13 iterations (see
Fig. 20). It required 13 evaluations of the forward
model, another 13 of the adjoint model, and 33 line
searches, bringing the total to 59 iterations to reach
the minimal objective function value of 92. Just like in
example one, we could have used fewer iterations, five
in this case, to obtain a similar value of the objective
function, which would have brought the total number
of iterations for the adjoint-based case to about 15. In
other words, for this second example, the adjoint-based
approach is up to about six times as efficient as the
model-reduced approach. However, also in this case,
there is scope to improve the efficiency of the model
reduction by further reducing the number of patterns.
Moreover, the model-reduced approach is now about
three times more efficient efficient than the finite-
difference approach.

6 Conclusion

We presented a model-reduced gradient-based history
matching procedure based on the POD method. The
reduction technique identifies a low-dimensional sub-
space of the state space, in which the dynamics of
the reservoir state are well represented. Subsequently,
linearized reservoir equations are constructed and re-

peatedly solved in a low-dimensional space during the
optimization procedure to minimize the mismatch be-
tween observed and simulated output.

The method was used to adapt the permeability field
in a two-phase (oil–water) reservoir simulation model
containing 18,553 grid blocks. The results from two nu-
merical experiments with different prior permeability
fields showed that the model-reduced approach gives
results comparable to those of a classical adjoint-based
history matching procedure. In the examples consid-
ered, the adjoint-based approach was about five to six
times as efficient as the model-reduced approach, but
the latter was about two to three times as efficient as
a finite-difference approach. Moreover, in case of a
larger number of wells, allowing for the estimation of a
larger number of (reparameterized) model parameters,
it is expected that the efficiency compared to a finite-
difference approach improves.

The classical gradient-based history matching proce-
dure is a very efficient one, but for complex models, it
is very difficult to implement. The model-reduced ap-
proach is computationally more expensive, but it does
not require access to the simulation code and is easy to
implement. The classical adjoint-based approach gives
the exact gradients of the objective function with re-
spect to the parameters. The model-reduced history
matching procedure uses a simplified reduced-order
forward model and a corresponding reduced-order ad-
joint model, and therefore, the calculated gradients are
not exact, but they proved to be accurate enough to
decrease the objective function in all iteration steps.
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