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Abstract. Threshold signature is a powerful cryptographic technique
with a large number of real-life applications. As designed by Boneh and
Komlo (CRYPTO’22), TAPS is a new threshold signature integrating
privacy and accountability. It allows a combiner to combine ¢ signature
shares while protecting ¢ and the signing group from the public. It also
enables a tracer to trace a threshold signature to its original signing
group. Despite being valuable, TAPS neglects the witnessing of tracing,
i.e., leaves the tracing activity unrestrained.

In this paper, we introduce Accountable and Private Threshold Sig-
nature with Hidden Witnesses (HiTAPS) that not only provides privacy
and accountability, but also incorporates witnessed tracing. In specific,
we first utilize Dynamic Threshold Public-Key Encryption (DTPKE)
and ElGamal encryption to designate a set of ¢’ witnesses for endorsing
the tracing activity. We then compute a keyed-hash tag for the ¢’ wit-
nesses to initiate the tracing activity secretly. Moreover, we present an
optimized protocol HITAPS2 to reduce communication overhead of the
combiner. We formalize the definitions, security, and privacy for HITAPS.
We formally prove its security and privacy. To evaluate the performance
of HITAPS and HiTAPS2, we build a prototype based on pypbc. Experi-
mental results show that HiTAPS takes 217 (370) ms to combine (track)
a threshold signature of 5 signers (witnesses). The optimized HiTAPS2
only takes 137 ms to combine a threshold signature of 5 signers.
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1 Introduction

1.1 Background

A Threshold Signature Scheme (TSS) [1] allows a set of n people to sign a mes-
sage via a combiner when no less than ¢ people join in the signing process. The
system model is sketched in Fig. 1. Among its multiple variants, Private Thresh-
old Signature (PTS) [2-4] and Accountable Threshold Signature (ATS) [5-§]
stand out. A PTS signature ¢ on a message m tells nothing about the group
of t signers who generated o, which is useful since security and privacy are
increasingly gaining importance [9,10]. An ATS signature o on a message m
can disclose the identity of all ¢ people who co-generate o via a tracer. For this
reason, ATS is also considered as traceable secret sharing [11]. ATS can be used
in real-world applications where accountability is required. For instance, if five
of nine cooperative manufacturers prepare to authorize a product transfer, and
all of them expect accountability in case a fraudulent transfer is consented. By
using an ATS scheme, a Threshold Signature (T'S) on a fraudulent transfer can
disclose the five manufacturers who approved of it.

(T Signature
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Fig. 1. System Model of ATS.

1.2 Motivation and Goal

Recently, Boneh and Komlo proposed a Threshold, Accountable, and Private
Signature (TAPS) [12] to achieve both accountability and privacy for threshold
signatures. It works as below: It generates a public key pk and n private keys
{sky, ska, -+ ,sky,} for n signers; t signers S = {S1, 52, ,S5:} generate ¢ sig-
nature shares for a combiner with a combining key ck to generate a complete
signature; and a tracer with a tracing key tk can identify the signing group of
a complete signature. Here, accountability guarantees that a TS that is related
to a misbehavior can be traced to its ¢ signers. Meanwhile, privacy refers to the
fact that any signing group and t¢ are kept secret from the public.

Based on the observations on TAPS, our motivation arises from two aspects.
M1. Unwitnessed Tracing. Tracing a TS o to its signing quorum is a
formidable capability that should be “kept in a box” at ordinary times. If not
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properly restrained, the “almighty” tracer can trace any o to its t signers. Fol-
lowed by the motivation above, we are driven to achieve M2. Secretly Desig-
nated Witnessing, i.e., designate another group of witnesses to sanction the
tracing while keeping their identities secret.

1.3 Possible Solutions and Technical Challenges

Intuitively, one can first ask the combiner to encrypt the TS ¢ by using the
t’ witnesses’ public keys and then ask each of them to decrypt the ciphertext
right before tracing. However, this will expose o to all witnesses and increase the
risk of leakage. In this work, we resort to the Dynamic Threshold Public-Key
Encryption (DTPKE) [13], which allows (1) a sender (combiner) to dynamically
choose the authorized group of recipients (witnesses) for a ciphertext (TS), and
(2) a set of witnesses to decrypt a ciphertext when a threshold of authorized
witnesses collaborate. Such two properties shed light on a promising approach.
Still, we have to tackle two technical challenges:

C1. How to awake the t' witnesses to share-decrypt the encrypted TS without
exposing their identities? We assume that neither the combiner nor the tracer is
aware of the ¢’ witnesses at any phase of the protocol given the identity privacy
of witnesses. It is not feasible to ask the combiner or the tracer to “contract”
the pertinent witnesses during tracing. Thus, it leaves us to design a method for
the (< t) signers to designate the t’ witnesses secretly.

C2. How to prove the validity of a TS that is already encrypted by the com-
biner via layered encryption? In TAPS, the combiner generates a Non-Interactive
Zero Knowledge Proof (NIZKP) 7 that the output signature o, is a valid ATS
signature on m. However, we intend to protect o, from public including the
tracer via DTPKE as well as a second layer of encryption due to designation.
This in turn makes it challenging for the combiner to prove the signature validity.

Background | Threshold Signature with Private Accountability
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Fig. 2. Technical Roadmap of HiTAPS.
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1.4 Owur Solutions

To solve the first challenge, we design a Keyed-Hash-Tagged and Designated
DTPKE using three carefully structured cryptographic primitives. Specifically,
we first designate ¢’ witnesses during signing, encrypt the TS o, with DTPKE
to obtain &, during combining to protect o,, from arbitrary tracing, encrypt
6 with PKE to obtain ¢’ versions of encrypted &,,, for ¢’ witnesses, and compte
t’ keyed-hash tags of the message and witness identities. In this way, we lay
the groundwork for awakening secret awakening while preserving the identity
privacy of the witnesses.

To solve the second challenge, we carefully craft a sequence of NIZKPs for the
combiner to prove the validity of ¢’ ciphertexts sent by the combiner. Specifically,
the combiner has to prove the validity of ¢,,,, the encryption of ¢,,,, the encryption
of 6,,, and the possession of the combining key. By doing so, we pay the way for
systematically proving the validity of o, after o, is encrypted.

We portray our technical roadmap in Fig. 2. Note that, given the high com-
munication overhead of the ¢ ciphertexts, we further design an optimized version
of HiITAPS by computing an aggregated ciphertext at the combiner.

2 Related Work

In this section, we first revisit some related work, including PTS, ATS, and
TAPS. Then we discuss how our work advances the state-of-the-art.

Shoup [2] proposed an RSA threshold signature scheme that provided
unforgeability and robustness in the random oracle model and made the genera-
tion and verification non-interactive. Stern et al. [3] presented new techniques to
fully distribute RSA, i.e., generated RSA moduli for Shoup’s scheme without a
trusted dealer. Koprowski et al. [4] designed a threshold RSA scheme as efficient
as Shoup’s scheme while not depending on two previously used assumptions and
building its robustness on an intractability assumption.

Micali et al. [5] formalized Accountable-Subgroup Multisignatures (ASM)
where a subgroup S of signers was enabled to sign a message m and the result-
ing signature o provably discloses the identities of the signers in S to any verifier
without the help of any trusted third parties. Boneh et al. [6] proposed a short
signature scheme building upon Gap-Diffie-Hellman groups with small represen-
tations. Bellare et al. [7] removed the key-setup requirements (it is not necessary
for a signer to have a secret key) and proposed a multi-signature scheme in
the plain public-key model that is secure in the random-oracle model. Nick et
al. [8] presented a two-round multi-signature scheme that is secure under con-
current signing sessions, supports key aggregation, produces Schnorr signatures,
and needs two communication rounds.

TAPS [12] is a novel TS that achieves both privacy and accountability. It
protects not only the threshold ¢, but also the ¢ signers via keeping the tracking
key tk to the sole tracer. Based on TAPS, our proposed HiTAPS concentrates
on the secure authorization of tracing for TSs. It constitutes an important piece
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of the puzzle. To the best of our knowledge, this problem is not very understood
yet, and we aim to fill the gap.

3 Problem Formulation

In this section, we formalize the notion of Accountable and Private Threshold
Signature with Hidden Witnesses (HiTAPS), including the system model, def-
inition, unforgeability and accountability, and privacy. We use n for the total
number of signers, ¢ for the threshold number of required signers in combining,
t' for the threshold number of required witnesses in tracing.

3.1 System Model

The system model of HiITAPS is depicted in Fig.3. It consists of n signers
{51,852, -+ ,Sn}, t' witnesses {W1,Ws,--- Wi}, a combiner C, and a tracer
T. Next, we describe how they work in the system.

PKE.Dec(), H(), DTPKE.ValidateCT()
DTPKE.ShareDec(), PKE.Enc()

pe—— N - HiTAPS
i 01 Combiner signature
! SIR ——> PKE.Dec() i
message I S (o) ATS.Combine() » g - -
n L 2 | DTPKE.Enc() |
: ) ~  oooooo I A PKE.Enc(), H() |
: Sy R Proye() Verifier
N ) SIG.Sign() 16 Vet |
Signers V- if / |
ATS.Sign(), PKE.Enc() erify() l
:/ 7 & b 1 Tracer |
! ° ! 3 SIG.Verify() |
o —> ": a8 |—2’ Verify() —» {51,52,---, 5t} |
x : ------ : ~ DTPKE.ShareCombine() |
!
| |\ Wi & ’| t ) ATS.Trace() |
| ~ Witnesses |
| |

Fig. 3. System Model of HiTAPS.

Signer. A set of t signers S = {57,552, -+, S:} belonging to a bigger set of
signers {S1, Sa, -+, S} (t < n) decides to cooperatively generate a signature on
a message m. Each signer S; has a private key sk?. First, they select a set of ¢/
witness W = {Wy, Wa,--- Wy }. Then, each S; computes a signature share o;
on m and encrypts o; with the combiner C’s public key pk® to obtain ;. Next,
each S; sends 7; and an encrypted list W of W to C.

Witness. The selected set W belongs to a bigger set {Wy, Wa, .-, Wy}
(t' < w). Each witness W; has a public key (pk}", upk;) as his identity. Upon the
call of tracing, W; computes a keyed hash tag and compares it with the ones
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on a public bulletin. If a match is found, W; will decrypt it to have a HITAPS
signature o, verifies it, and share-decrypts it to obtain a decryption share §;.
Next, W; sends 6;, i.e., the encryption of §; under the tracer 1T’s public key pk?,
to C.

Combiner. The combiner C receives the encrypted signature shares and
encrypted lists from the signers. C' decrypts them to obtain the signature shares
{o;}!_, in plaintext. C' combines ¢ signature shares to compute an ATS signature
om and encrypts it via DTPKE and an encryption key ek®. C' also decrypts the
encrypted list W to know which witnesses to send to. After checking all the
lists, C' encrypts o, with the pk}” of ¢’ witnesses to get a triad (Ci1, Ciz, Ci3)
and computed a keyed hash tag ht;. We assume that C and each W; shares
a secret key ssk;. Furthermore, C' generates a proof 7 and a signature &, and
submits them to the public bulletin.

Tracer. The tracer T receives the encrypted decryption shares from wit-
nesses. T decrypts them to get decryption shares and then combines them to
obtain o,,. Lastly, T traces o, to its original signing group if o,, is a valid ATS
signature.

3.2 Definition

Definition 1. An accountable and private threshold signature with hidden wit-
ness, or HITAPS, is a tuple of five polynomial time algorithms IT = (Setup, Sign,
Combine, Verify, Trace) where

— Setup(1*,n,w,t,t') — (PK,{sk{ ?:1,{wskj,sskj,sk;”it};f’:l,ck,tk,SK) is a
probabilistic algorithm that takes as input a security parameter A, the number
of signers n, the number of witnesses w, a threshold ¢, and another threshold
t’ to output a public key PK, a set of n signing keys {sk;}" ,, a set of witness
private keys {wsk;}’_;, a set of shared secret keys {ssk;}}_,, a set of private
keys {sk;"it};":l, three private keys ske"¢, skS€, ske"°, a combining key ck, a
tracing key tk, and a secret key SK, an encryption key F K, and a combining
key CK. -

— Sign(m, S, {ski}_;,W) — ({G;,W;}) is a probabilistic algorithm run by a
set of signers that takes as input a set of signers S and a corresponding set
of t signing keys {ski}!_,, a message m in message space M, and a set of
t’ witnesses, to output a set of encrypted signature shares {7;} on m and a
set of encrypted list {V/\Z} For simplicity, we denote {sk$}!_, as the set of ¢
secret keys from any set of ¢ signers in {Sy,S2, -, S, }.

— Combine(m, t,t', PK,S,{5;}, {V/\Z}, ck, EK) — o is a probabilistic algorithm
run by the combiner that takes as input a message m, two thresholds ¢ and ¢/,
the public key PK, a set of signers S, a set of encrypted signature shares {7;}
on m and a set of encrypted list {V/\Z}, a combining key ck, and an encryption
key EK to output a HITAPS signature o.

— Verify(PK,m, o) — {0,1} is a deterministic algorithm run by the public and
the tracer that verifies a HiTPAS signature o on a message m with respect
to the public key PK.
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— Trace(m, PK,tk,o) — S is a deterministic algorithm run by the tracer that
takes as input a message m, the public key PK, a tracing key tk, and a
HiTAPS signature o to output a set S who previously generated o or a
failure symbol L.

For correctness, we require that for all ¢ € [n], all t-size sets S, all ' € [w],
all t'-size set W, all m € M, and all the (PK, {sk{}7_,, {ssk;}_y, {sk;}iZ,, ck
tk, SK) « Setup(1*, n,t), the following two conditions hold:

Pr[Verify(m, PK, Combine(ck, sk*,m, S, Sign(m, S, {ski }i_;,W)})) = 1] =1,
Pr[Trace(m, tk, Combine(ck, sk*,m, S, Sign(m, S, {ski }.:_1, W)})) =S| = 1.

3.3 Unforgeability and Accountability

Before we dive into privacy, HITAPS must satisfy the standard notion of existen-
tial unforgeability against a chosen message attack (EUF-CMA) [14,15] like any
signature scheme, i.e., an adversary compromising fewer than t signers cannot
generate a valid message-signature pair. Meanwhile, HITAPS should be account-
able, i.e., a tracer holding a tracing key tk can output the correct set of signers
for a correct message-signature pair. We formalize these two properties in the
adversarial experiment in Fig. 4. Let Advfﬁfﬁ()\) be the probability that .4 wins

the experiment Exp ™ against the HITAPS scheme II.

Definition 2 (Unforgeability and Accountability). A HITAPS scheme II is
unforgeable and accountable if for all Probabilistic Polynomial Time (PPT)
adversaries A, there is a negligible function negl such that Advfzflgq(A) < negl(}).

1. (n,w,t,t', S, state) & A(1*) where t € [n], ' € [w], S C [n] Expunface
2. (PK, {sk{}i_,, {wsk;j, ssk;j, sk} }i\, ck, tk, SK) «+ Setup(1*,n,w,t,t')
3. (m',0") & ACC)(PK, {ski}s,es, W, {wsk;, sskj, sk} Y1y, ck, th, SK, state)
where O(S;, m;) returns Sign(mi, S;, {sk; }s;es;, Wj)
A’s winning conditions:
Let (S1,m1), (S2,m2),--- be A’s queries to O
Let S « US;, union over all queries to O(S;,m’),
if no such queries, set S; = )
let S; <+ Trace(m/,tk, PK,o’, 6’
Output 1 if Verify(m’, PK,0’,6') = 1 and either S £ SUS’ or if §; = fall

Fig. 4. Experiment of Unforgeability and Accountability.

3.4 Privacy

Now we define privacy for HITAPS. Usually, the privacy for a TSS is formalized
by requiring that a TS on a message m be computationally indistinguishable
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from a standard signature on m [16]. It ensures that a TS tells nothing about
the threshold ¢ or the set of signers that generated the TS.

We give three informal privacy requirements as below and they are further
captured by the experiments in Fig.5 and Fig. 6, respectively.

— Privacy against public: A party who only has (PK,n,w) and observes a
series of (m,o,§) triads, learns nothing about ¢, ¥ or the set of signers that
generated the observed (o, ).

— Privacy against signer: A set of all signers who only has (PK,n,w,t,t)
and observes a series of (m, o, 5) triads, learns nothing about the set of signers
that generated the observed (o, ).

Let E be the event that the experiment Exp”™? in Fig. 5 outputs 1 and E’
be the event that the experiment ExpP™"® in Fig.6 outputs 1. We define the
two advantage functions for an adversary A against the HiTAPS scheme 1I, as
a function of the security parameter A:

AdvPT(A) = [2Pr[E] — 1], AdvP(N) = [2Pr[E] — 1.

Definition 3 (Privacy). A HiTAPS scheme is private if for all PPT adver-
saries A, Advf"fjrvlp()\) and Advf’;’lﬁs (\) are negligible functions of A.

bo & {0,1}, by & {0,1}, (to, t1, th, £, state) < A(1*) where to, 1 € [n], th, t) € [w]
(PK, {sk;}i—y, {wsk;, sskj, sk}" }ioy, ck, th, SK) < Setup(1*, n, w, tu,, t;,)

Output (b = bo) A (b = b1).
where O1(m, So, S1, Wo, Wh) returns
(0,6) < Combine(m, Sy, , Sign(m, Se,, {ski }s,e5,,, We,), ck, EK)
for Sp,S1 C [TL], ‘So‘ = to and |$1‘ =t1, Wo, W1 C [w]7 |W0‘ = t6 and |W1| = tll
Oz2(m, o,6) returns Trace(m, tk, PK, 0,0).
Restriction: if (o, 6) is returned by Oz, then (m, o, 5) will not be sent to Os.

Fig. 5. Exp®'*: Experiment of Privacy against the Public.

In Exp”**, A generates four thresholds o, t1, tj and #, in [n] and is given
PK. A submits a string of signature queries to a signing oracle 07, where each
query contains a message m and four sets Sp, S1, Wy, and W;. Then, A receives
a signature generated using either Sy or S (same for Wy or Wi). A can access
a tracing oracle O, while not being able to determine whether the string of
signatures it observed related to the left or the right sequence of sets.

In ExpP'V® A generates (¢,¢'), and is given all the signing keys. Same as
ExpP"™¥ | A cannot determine whether ©; that takes four sets Sy, S1, Wy, and
W responds using either Sy or S; (same for Wy or Wy).
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bo & {0,1}, by & {0,1}, (¢, ¢/, state) & A(1*) where to, 11 € [n], th, t; € [w]
(PK, {ski}i—1,{wsk;, sskj, sk;"it}}“:h ck,tk, SK) < Setup(1*, n,w, t,t')

Output (by = bo) A (b] = b1).
where O1(m, So, S1, Wo, W) returns 7; < PKE.Enc(pke"®, m||o;) and Wi
PKE.Enc(pke™, Ws, ) for S; € Sy, where o; <— ATS.Sign(sk;, m)
O2(m, So, S1, Wo, W1) returns
(0,6) <= Combine(m, Sy, , Sign(m, Se,, {ski }s,es,,: W, ), ck, EK)
fOI" 80,81 g [n], ‘So‘ = |Sl‘ = t, Wo,W1 g [w], ‘W0| = |W1‘ = t,
Os(m, 0, 6) returns Trace(m, tk, PK, 0,6).
Restriction: if (0, 6) is returned by O1, then (m, o,&) will not be sent to Ox.

Fig. 6. Exp™¥S: Experiment of Privacy against the Signers.

4 Preliminaries

In this section, we revisit and review some preliminaries, including notations,
ATS, DTPKE, ElGamal encryption, and hash function.

4.1 Notations

Since there are many notations used in this work, we list the key notations in
Table 1, including number of all signers n, number of required signers t, etc.

4.2 ATS

An accountable threshold signature is a tuple of five polynomial time algorithms
(Setup, Sign, Combine, Verify, Trace) invoked as
({pks, ski ) « ATS.Setup(1*,n,t), o; — ATS.Sign(sk;,m),
Om — ATS.Combine(t, {pk;}i1,m,S,{0i}ics),
{0,1} «— ATS.Verify(t, {pki}i—q,m,0m), S «— ATS.Trace(t, {pk;}i_1,m,0m).
An ATS is secure if it is unforgeable and accountable, i.e., if for every PPT

adversary A, the function Advff{rAgTs of winning an unforgeability and account-
ability attack game is a negligible function of A [12,17].

4.3 DTPKE

A dynamic threshold public-key encryption is a tuple of six polynomial algo-
rithms (Setup, Join, Encrypt, ValidateCT, ShareDecrypt, Combine) invoked as

(SK, EK,CK) « Setup(1*), (wpk, wsk) «— Join(SK,id),
(Co,C1,Cs,C3) «— Enc(Ek,t',m), {0,1} « ValidateCT(EK,t',Cq, C1),
0:q — ShareDecrypt(id, wsk, Cy, C1),
om +— Combine(CK, t',Cy,C1, Ca, C3, W, {0l bw,ew)-
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Table 1. Key Notations

Notation Meaning Notation Meaning
TSS Threshold signature scheme | TS Threshold signature
rivate threshold signature ccountable threshold signature
PTS Pri hreshold sig ATS A ble threshold sig
n Number of all signers t Number of required signers
w Number of all witnesses t’ Number of required witnesses
S; Signer ¢ W Witness j
S Set of required signers w Set of required witnesses
C Combiner T Tracer
A Security parameter PK Public key
pk}”, wpk; | W;’s public key sk:;"it, wsk; | W;’s private key
Pk, pkig C’s Public key sk, skscig C’s private key
pki"c T’s public key ski"c T’s private key
(skj,pki) | S;’s signing key pair ssk Shared secret key
SK Secret key EK Encryption key
CK Combining key m Message
ck Combining key tk Tracing key
o S;’s signature G Encrypted signature
o ATS signature Tm Encrypted ATS signature
m g yp g
W Encrypted witness list ht Keyed hash tag
5 W,;’s share decryption gz Encrypted share decryption
ks NIZKP o HiTAPS signature

Its non-adaptive adversary, non-adaptive corruption, chosen-plaintext
attacks (IND-NAA-NAC-CPA) security is based on the Multi-sequence of Expo-
nents Diffie-Hellman (MSE-DDH) assumption, where Adv;”dls'frp,fKE(l,m,t’ ) <
Adv™se (1 m 1) [13,18,19].

4.4 ElGamal Encryption

The ElGamal encryption scheme PKE is a tuple of three polynomial algorithms
(KeyGen, Enc, Dec) invoked as

(Skvpk) — KeyGen(l)\)a (00701) — Enc(pk:,m), m < DEC(Slﬁ (00701))'
The ElGamal encryption scheme is secure against Chosen Plaintext Attack
(CPA) if the decisional Diffie-Hellman (DDH) problem [17].
4.5 Hash Function

A cryptographic hash function with output length {(\) is a tuple of two polyno-
mial algorithms (Gen, H) invoked as

k — Gen(\), {0, 1} — H(k,m), m € {0,1}*.

A hash function H is preimage resistant if for every PPT adversary A, there
is a negligible function negl such that Pr[Hash-pre 4 ;(\) = 1] < negl()\) [17].
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4.6 PKE, COM, and SIG

A commitment scheme COM is a pair of algorithms (Comm, Verify) invoked as
com — Comm(z,r), {0,1} « Verify(x,r, com).

A COM scheme is secure if it is unconditionally hiding and computationally
binding, i.e., for every PPT adversary A, Advl‘i‘l%%M (\) is negligible.
A signature scheme SIG is a triple of algorithms (KeyGen,Sign, Verify)

invoked as
(pk, sk) «— KeyGen(1%), o « Sign(sk,m), {0,1} « Verify(pk,m, o).

A SIG scheme is strongly unforgeable if for every PPT adversary A,
AdvEE2()) is negligible.

5 The Proposed Scheme HiTAPS

We show the construction of HITAPS in Fig.7. In Setup, all system parame-
ters are generated for the ATS, DTPKE, commitment scheme COM, ElGamal
encryption PKE, signature scheme SIG, hash function H, including the secret
keys, public keys, shared secret keys, and a commitment.

In Sign, t signers from one signer set S generate t signature shares {o;}gs,cs
on a message m. The signature shares are further encrypted into {5;} with C’s
public key pk£"® and then sent to C along with encrypted witness lists W.

In Combine, C first decrypts W to collect encrypted signature shares belong-
ing to some signer set S and then decrypts them to recover {o;}s,cs. Next, C
combines them to obtain an ATS signature o, and encrypts it into &, with
DTPKE. Then, C encrypts (Cp,C1) in 7, with the public keys of witnesses in
W. Here, (Cy, C1) is encrypted because they can be used to recover Cy = k to
decrypt Cs. For instance, EIGamal.Enc(pky’,Cy) = (Cio,C11) = (Cog® '™, g™)
where pk{’ = ¢g*F1'". C also computes ¢’ hash tag ht; = H(ssk;, m||[W;) (W; € W)
as a secret token to awake W; into share-decrypt o,,. Here, the t’ witnesses do
not actively participate in the process. C' generates a NIZPK 7 to prove the
validity of a TS. For example, to prove Cjo = Cog®*' ™ while keeping Cy, ski’, ry
secret, we first transfer it into C'g = ¢g®¢g**1 ™ = ¢*+tsk'"1 for simplicity. Now the
combiner (Prover) and a verifier proceed as follows. Prover: (1) set A = Cpg®Fi'™
where Cy = ¢g%; (2) compute B = g, § = H(g||A), C = ¢°, and D = glzt+ski'm)/o,
Verifier: check e(A, B) L e(C, D).

In Verify, a verifier verifies the validity of o by checking the signature n and
the proof m. If they are both valid, then the validity of ¢ is guaranteed.

In Trace, each W; computes a hash tag ht; and compares it with the ones
in {ht;}w,es. If one tag is found to be the same, W; continues to verify the
validity of o to decide whether this signature is worthy of tracing. If so, W;
share-decrypts (Cp, C1) and sends an encrypted decryption share gj to T'. After
decrypting {SJ} € S, T verifies whether (Cyp, C1) is a valid ciphertext w.r.t. EK
and t’. If so, T combines all decryption shares to obtain o,, and traces S.
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Setup(1*, n, w, t,t') — (PK, {sk;}y, {wsk;, ssk;, sk;’-m}}":l, ck,tk, SK)

1. ({pks,ski}) « ATS.KeyGen(1*,n,t), set pk = (t, {pk;}1y)

. Tpk < R, compy < COM.Comm ({pk; }i=1, 7pk)

. (SK,EK,CK) + DTPKE.Setup(1?)

. (pk&, sk +— PKE.KeyGen(1%), (pk", ski") < PKE.KeyGen(1*)

. (pk3E, sk3®) + SIG.KeyGen(1%), (pk}™, sk}™) + PKE.KeyGen(1%), j € [w]

. (wpkj,wsk;) + DTPKE.Join(SK,id;), id; € [w]

ek ({pki Hiy, SkE™, sh3%, ¢/, comy, e, th < ({phi Yo, sk§™, pkee)

. sskj + Gen(A), for W; e W

- PK « (comyy, pki&, pke™, pk§™, {wpk;, pk}™ } 1)

10. Output (PK, {sk;i }i=1, {wsk;, ssk;, sk;"it}le, ck,tk, SK)

Sign(m, S, {sk{}s,es, W) = (53, W) :

1. 0; < ATS.Sign(ski,m) for S; € S

2. 0; < PKE.Enc(pk™®, m||os), Wi « PKE.Enc(pke™, W) for S; € S

Combine(m, t,t', S, PK, {7:}s,es, {Wi}s,es, ck, EK) = o

1. W « W, < PKE.Dec(W;, sk™) for S; € S

2. (m||o;) < PKE.Dec(d;, sk™) for S; € S

3. om < ATS.Combine({pk; }i=1,m, S, {0i}s,es)

4. (Co, C1, k, AES.Enc(k,0m)) +— DTPKE.Enc(EK, {wpk; }w;ew, om)

5. (Cjo, Cj1) = EIGamaI.Enc(pk}Vit, CQ), (ng, 0]5) = EIGamaI.Enc(pk}”it, 01),

ht; = H(sskj, m||Wj;)) for W; € W
6. Generate a proof by using Prove for the relation:
R((comyp, m, Co, C1); (pk, Ty Oy {15 }oy)) = 1 ifF
COM . Verify(pk, rpk, comp) = 1, ATS.Verify(pk,m,om) =1

ElGamal.Enc(pk}™, Co) = (Cjo, Cj1), for W; € W
ElGamal.Enc(pk}™,C1) = (Cj2, C3), for W; € W

7. 0m = ({Cjo,ojh ng, ng, htj}, AES.EHC(.I'{Z7 Um)) for Wj ew

8. 1 < SIG.Sign(skS&, (m, G, m))

9. Output o < (Gm, ™, N)

Verify(PK, m,o = (Gm,m,n)) — {0,1}

1. Accept o if SIG.Verify(pkS€, m, G.m, m,n) = 1 and Verify(m) = 1; reject otherwise.

Trace(m, PK, tk = ({pk{ Y11, ski™, pk38), 0 = (G, T, 7)) = S

1. If Verify(PK, m,0) # 1, output fail and return.

© 00 O Uk W N

2. ht; = H(ssk;, m||W;) by W; € W and compare with {ht;}w;ew

3. (Co, C1)=(ElGamal.Dec(sk}"™*, Cjo, Cj1), ElGamal.Dec(sk}™, Cj2, C;3)) for each j
4. ¢; < DTPKE.ShareDecrypt(W;, wsk;, Co, C1) for W; € W

5. 6; < PKE.Enc(pk$"™, §;) for W; € W

6. 5; + PKE.Dec(sk™,3;) for W, € W

7.{0,1} « DTPKE.ValidateCT(EK, ', Co, C1)

8. om  DTPKE.Combine(CK, ', Co,C1,Ca, Cs, W, {o}, }w,ew)

9. § + ATS.Trace({pk;i }iz1,m,0om).

Fig. 7. The HiTAPS scheme
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6 The Optimized Scheme HiTAPS2

For each encrypted ATS signature &,,, C has to encrypt it 2¢’ times via ElGamal
encryption, resulting in much time on encryption and produces 4t' ciphertexts.
Intuitively, such a process is optimizable and we improve it by leveraging the
homomorphic feature of ElGamal encryption. Specifically, C encrypts &,, with
the public keys of all ¢’ witnesses and 2¢' random numbers:

EIGamaI.Enc(pk;"it, Col|Cy) :(C'ngkimr11 coegPRI T Oy PR L PR
gty g gt ’g’"zﬂ).

In this way, the number of ciphertexts is reduced to 2t + 2. For
tracing, each witness W; is awakened by the hash tag, but partially
decrypts the first two ciphertexts in the above equation by sending
((ghj)—l’kfit, (g’”2.7)—11’fyit) = (9—7'1Pk}yit’g—7‘2jpkyit) to T. Next, T recov-
ers (Cp,C7) by removing gSk‘lmr11 -~-gpkzv’it7'1t’ and gpk‘lmw1 -~-gpk3itT2t' from
CogPPi" T ... PR T and O gPRL™ 21 ... gPRU T2 step by step, respectively.

7 Security and Privacy Analysis

Theorem 1. The HiTAPS scheme II in Fig. 7 is unforgeable, accountable, and
private, assuming that the underlying ATS is secure, the DTPKE is IND-NAA-
NAC-CPA secure, the PKE is semantically secure, the hash function is preimage
resistant, the (Prove, Verify) is an argument of knowledge and Honest Verifier
Zero Knowledge (HVZK), the COM is hiding and binding, and the SIG is strongly
unforgeable.

The proof of Theorem 1 is captured in the following three lemmas.

Lemma 1. The HiTAPS scheme II is unforgeable and accountable if the ATS
is secure, the (Prove, Verify) is an argument of knowledge, and COM is blinding,
i.e., for all PPT adversaries A, A1, and As, such that

AR < (AdvEErs () + AdviEtou(V) - a() + 80, (1)
where a and (§ are the knowledge error and tightness of the proof system.

Proof. Proof. We prove Lemma 1 by defining three experiments.

Ept 0. It is the unforgeability and accountability experiment in Fig. 4 applied
to II. If FEwvtg is the event that 4 wins in Ept 0, then

Adv'E(N) = Pr[Buty). (2)

Ept 1. Let PK = (comyy, pkS€, pke, pkene, {wpkj,pk;”it}?’:l) be the public
key and let th « ({pk$}"_,, sk, pkS€) be he tracing key that are given to A.
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Ept 1 is identical to Ept 0 except that we strengthen the winning condition

over Exp 0: to win Exp 1, A has to produce a valid forgery ( ' ol ) where
= (O, (A5} 7' n'), along with a witness (pk”,r ., o, {r} t_ ) such that

R((Compk’m/7circé) ( k//’ glm o 7{7‘;’/}?:1)) =1
We construct an adversary A’ from A in Exp 0. It invokes A and answers
to all A’s queries until it receives from A the (m’,d},) to provide a statement
(compr, m',C1,C5). A’ executes an extractor Ext for (P, V) on A’s remaining
execution. Fxt produces a witness wt = (pk”,r! k, - {7‘” ¢ 1). A’ uses wt and
sk>'® to generate 7’ and 7’ such that o/, = (¢/,,, {ht;} ' n ) is a valid signature
on m’. A" outputs (m’,o},) and wt. If Evt; stands for A" wins Exp 1, then

Pr[Evt1] > (Pr[Evtg] — a(N))/B(N). (3)

Ept 2. We strengthen the winning condition by requiring pk” = (¢, {pk{};).
Given the binding property of COM, we have COM.Verify(pk,r,x,comps) =
COM . Verify(pk”, 1, ,compy,) = 1. If pk” # pk, we find an attack on the bind-
ing property of COM. Specifically, let Evts be the event that A’ wins Ept 2 and F
be the event that pk # pk”, then Pr[Evts] = Pr[Evt; A —E] > Pr[Evt,] — Pr[E].
We assume that there is an adversary A, such that Pr[E] = AdvafCOM()\)

We construct an adversary A; that invokes A and answers to A’s queries.
When A outputs a forgery (m’,07,) and a witness (pk”, ), o5, {7 }5_ ) that
meet the winning condition of Exp 1 and Exp 2, A; outputs (m/, o’ ’m) By R,
we have ¢!/ is a valid signature on m’ with respect to pk”. By Exp 2, we have
pk = pk”. Therefore, if A wins Exp 2, then (m/,0})) is a valid forgery for the
ATS scheme. Since the ATS is secure, we have

AdvP®,1o(\) > Pr[Evty). (4)
Conclusively, combining (2), (3), (4), and (5) proves (1). O

Lemma 2. The HiTAPS scheme II is private against the public if the PKE is
semantically secure, the SIG is strongly unforgeable the (Prove, Veriy) is an argu-
ment of knowledge and HVZK, the COM is hiding, the H is preimage resistant,
and the DTPKE is IND-NAA-NAC-CPA secure, i.e., for all PPT adversaries A,
there exists adversaries A;, Az, As, A4, As, and Ag such that

ri ind-cpa euf-cma VZ.
Advi(\) <2 (3AdVA1,§§E()\) +AdVEIGR (A) + Q- Advi e vy (V)
Fea () AV + AdVE e (V)
where €(\) 4, is hiding statistical distance of COM and @ is query number.

Proof. We prove Lemma 2 by defining seven experiments.
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Exp 0. It is the experiment of privacy against the public ExpP"'f defined in
Fig. 2 applied to II. If Evty stands for A wins Exp 0, then

AdvP (M) = [2Pr[Buto] — 1. (6)

Exp 1. It is identical to Exp 0 except that the signing oracle
01(So, 81, No, N1, m) is modified such that step 2 of Sign in Fig.5 now returns
0; « PKE.Enc(pk$,0), where 0 is encrypted instead of (m||o;). Since PKE is
semantically secure, A;’s Adv in Exp 1 is indistinguishable from its Adv in
Exp 0, i.e., say Fvt; stands for A; wins Exp 1,

|Pr[Evt;] — Pr[Evto]| < Adv; e (). (7)

Exp 2. It is identical to Exp 0 except that responses to O2(m, o, 5) are fail.
If SIG is strongly unforgeable, A;’s Adv in Exp 2 is indistinguishable from its
Adv in Exp 1, i.e., say Fvts stands for A; wins Exp 2,

Pr[Evty] — Pr[Evty]| < Advyr e (\). (8)

Exp 3. It is identical to Exp 2 except that O1(m, Sy, S1,No, N1) is modified
such that step 6 of Combine now generates a proof 7 by using the simulator, which
is given (comyy, m, C1, Ca) as input. Since the simulated proofs are computation-
ally indistinguishable from real proofs, A3’s Adv in Exp 3 is indistinguishable
from its Adv in Exp 2, i.e., say FEvts stands for As wins Exp 3,

[Pr[Evts] — Pr[Euvty]| < Q - Advy e vy (V). (9)

Exp 4. It is identical to Exp 3 except that step 2 of Setup in Fig. 5 is modified
such that 7y, «<— Ry, com,y, < COM.Comm(0, 7)), where 0 is committed instead
of pk. Since COM is hiding, the adversary’s Adv in Exp 4 is indistinguishable
from its Adv in Exp 3, i.e., say Fvts stands for A, wins Exp 4,

|Pr[Evty] — Pr[Evts]| < ea,(N). (10)

Exp 5. This step resembles Exp 1, but the first part step 5 of Combine now
returns ElGamal.Enc(pk}™,0), ElGamal.Enc(pk}'™*, 0), and

|Pr[Evts) — Pr[Evty]| < 2Adv3 eRE (). (11)

Exp 6. It is identical to Exp 5 except that the signing oracle
O1(m, Sy, 81, No, N1) is modified such that the second part of step 5 of Combine
now returns H(0). Since the H is preimage resistant, Ag’s Adv in Exp 6 is
indistinguishable from its Adv in Exp 5, i.e., say Evtg stands for Ag wins
Exp 6,

Pr[Evts] — Pr[Evts]| < AdviiP(\). (12)

Exp 7. It is identical to Exp 6 except that O1(m, Sy, S1,No, N1) is modified
such that step 4 of Combine now returns 6 < DTPKE.Enc(EK,0, o,,). Since
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DTPKE is secure, A7’s Adv in Exp 7 is indistinguishable from its Adv in Exp
6, i.e., say Evt; stands for A7 wins Exp 7,

|Pr[Evt7] — Pr[Evtg]] < Advy g, e (V). (13)
In Exp 7, A7’s view is independent of b, i.e.,
Pr[Evt;] = 1/2. (14)
Lastly, combining (6)-(14) proves (5). This completes the proof of lemma 2. O
Lemma 3. The HiTAPS scheme II is private against the signer.

The proof of Lemma 3 is almost identical to the proof of Lemma 2 and is
omitted. Combining Lemma 1, Lemma 2, and Lemma 3, we prove Theorem 1.

Theorem 2. The HiTAPS2 scheme is unforgeable, accountable, and private.

The proof is Theorem 2 is almost identical to the proof of Theorem 1 except that
the step 5 and step 6 of Combine are altered, leading to changes in corresponding
experiments.

8 Performance Analysis

8.1 Experiment Settings

Dataset and Parameters. Considering the validity and observability of the
results, we comprehensively provide the parameters. We change the number of
signers n and the maximum number of witnesses w from 20 to 100, the length
of the signer message m from 50 KB to 400 KB, the threshold ¢ from 5 to 15,
and the number of participating witnesses ¢’ from 5 to 40, and finally change ¢
and ¢’ from 3 to 5.

Setup. We implemented HiTAPS using Intel(R) Core(TM) i5-10210U CPU @
1.60GHz 2.11 GHz on a Linux server running Ubuntu 18.04. We use HMAC-
SHA256 as the pseudo-random function to implement the hash function and
AES as the symmetric encryption.

8.2 Computational Cost

HiTAPS counsists of (Setup, Sign, Combine, Verify, Trace). We measured the time
required for each phase under the given parameters.

In Setup, HiTAPS generates all keys. As shown in Fig. 8(a), Setup takes 314
ms when n = 100 and w = 100. In Sign, signers calculate signature shares, and
in Fig. 8(b) we can see that it takes 154 ms to sign a message with a length of
400 KB. In Combine, the combiner combines signatures from ¢ signature shares
and constructs zero-knowledge proofs. By observing Fig. 8(c), we can find that
as t increases, the time required for Combine also increases. When ¢’ = 5 and
t = 5, 100 groups of signers takes 22.3s, while HITAPS2 only takes 13.6s. In



Threshold Signatures with Private Accountability 405
350 155 7
pe
. ]
300 150
[} ./
l/ e ~
?250 . - 145 W
E} E
(] - ./ g ./
E 200 = e
a . £ 140 >
/ }
150 /
/- 135 4
] e
v
100 - "
T T T T T 130 T T T T T T T T
20 40 60 80 100 50 100 150 200 250 300 350 400
Number of signers and witnesses Length of message (KBytes)
(a) Setup (b) Signing
30 7
[ HiTAPS (t=5) [N HiTAPS2 (t=5) 1000 7 HiTAPS
ZZA HiTAPS (t=10) B HiTAPS2 (t=10) o— HiTAPS?2
25 1RXJ HiTAPS (t=15) B HiTAPS2 (1=15) -
> A 800
g20 B | £
E =
';E: =600
- | 9
S5 s
3 S 400
E 2
s &
5 200
e— o o o O 0 o —©
0 0 T T T T T T T T
10 20 30 40 50 60 80 90 100 5 10 15 2 25 30 35 40
Number of threshold signatures Length of message (KBytes)
(¢) Combining (d) Verifying
40 7 40 7
[0 HiTAPS (¢=3) [ HiTAPS2 (t=3) [ HiTAPS (¢’ =3) [ HiTAPS2(t’ =3)
35 H{EZA HiTAPS (t=4) A HiTAPS2 (t=4) 35 +{ZZA HiTAPS (1" =4) A HiTAPS2 (t' =4)
R HiTAPS (t=5) BRR HiTAPS2 (t=5) R HiTAPS (t” =5) BR HiTAPS2 (' =5)
~ 30 . —  —~30 w— Tk
z z
- S M| — R
§ 25 % 25
=P e B
[ a G
o D (=]
i< E ]
E A =
= X A
K
X
X
X
X
X
A K | | d
10 20 30 40 50 60 70 8 90 100 10 20 30 40 50 60 70 8 90 100
Number of threshold signatures(t’=5) Number of threshold signatures (t=5)

(e) Tracing with varying ¢

(f) Tracing with varying ¢’

Fig. 8. Computational Costs.

Verify, the verifier verifies the threshold signature and the zero-knowledge proof
given by combiner. As shown in Fig.8(d), as ¢’ increases, the time required for
Verify changes from 131 ms to 928 ms, while the verification time of HiITAPS2
stabilizes at 41 ms. In Trace, the tracer traces a signing group. In Fig. 8(e) and
Fig. 8(f), we can see that tracking 100 groups of signers at t = 5 and ¢’ = 5 takes
37.8s (HiTAPS) and 25.9s (HiITAPS2), respectively.
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8.3 Communication Overhead

We analyze communication overhead by calculating the length of messages trans-
mitted by each party in a signing group.

In Sign, the signer sends plaintext m, signature 7;, and encrypted witness
sequence W;. In Combine, the combiner outputs a message m, an encrypted
threshold signature o, and the threshold signature contains (&,,, {ht;},m,n). In
Verify, the verifier outputs 1 bit. In Trace, the witness gives his partial decryption
key ¢;, and the tracer combines the keys to trace and gives the signer sequence
S. We record the communication overhead in Table 2.

Table 2. Communication Overhead

Phase Signing Combining | Verifying | Tracing

Party Signer Combiner | Verifier | Witness | Tracer
Theory | [m|,|ai|, Wil [ml, o] | [b] 1951 S|
Practice | 1.969 KB 1.165 KB |1 bit 0.461 KB | 0.445 KB

9 Conclusions

In this work, we have proposed HiTAPS, a new threshold signature scheme
that achieves unforgeability, accountability, and privacy (against the public and
signers). HITAPS builds on TAPS and moves forward by facilitating witnessed
tracing and securely designating witnesses. We formally prove the security and
privacy of HiTAPS. Experimental results obtained from running a prototype
show that HiTAPS is practical and efficient, HITAPS?2 is even better in Combine
and Verify, e.g., HITAPS2 stabilizes Verify at around 41 ms.
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