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2 Introduction

In 1977 the RSA1 system was designed by Ron Rivest, Adi Shamir and Len Adleman [12]. The RSA
system is a part of modern cryptography. Modern cryptography makes sure that one can secure important
information - like data, communication or banking accounts - on the computer.

The main idea of the RSA system is that of a one-way function, a function that is easy to compute in
one way, but very difficult to compute the other way. This concept resembles the idea of a mailbox. If
for example Alice wants to send a message to Bob, she can send a letter to his address. But once it is in
the mailbox it is hard to get it out of there.

The encryption and decryption of information with RSA happens with a public and a private key. In
the concept of the example of the mailbox the address would be the public key and the physical key of
the mailbox would be the private key. Everyone who wants to send a letter to Bob can do so if they have
the address, but only Bob has the key of the mailbox and can read the letters.

Generating the keys for the RSA system is left to the receiver. The keys are linked to each other, such
that if the sender has encrypted the message with the public key the receiver can decrypt it with his
private key.

2.1 Structure of this thesis

This section will describe the structure of this thesis by chapter. In chapter 3 we will get into some
history of cryptography to get an idea of how encryption and decryption of messages began. Chapter
4 describes some preliminary knowledge before getting into the main concept of RSA systems. Here we
will discuss the Euler totient function, Fermat’s little theorem and continued fractions. This chapter also
gives a short explanation about time complexity of algorithms. In chapter 5 we will get into the RSA
system. We will discuss how to set up the RSA system and how to encrypt and decrypt messages with
this RSA system. We also will give a proof of correctness of the RSA system, which means that if an
encoded message is decoded the original message will be obtained. In chapter 6 the concept of signatures
with an RSA system is described, such that malicious users cannot forge a message. In chapter 7 we will
give two examples of attacks on the RSA system: the Wiener attack and Fermat factorization. The final
chapter 8 will give the conclusion and discussion of this thesis.

1abbreviation for Rivest, Shamir & Adleman
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3 History

As mentioned, RSA is part of cryptography. Cryptography is the study of securing communication
through codes such that unintended recipients can not read it. Most people may think about computers
when talking about cryptography, but cryptography has a long history before this.

For example in 400 before Christ in Greece scytales were used, especially by the Spartans in military
campaigns, see figure 3.1. The scytale is a tool consisting of a cylinder and a strip of leather or parchment.
They wound the piece of leather or parchment around a cylinder and wrote a message on it. The person
who received the leather or parchment could wrap it around a similar size cylinder and read the message.
Through the thickness and shape of the cylinder people could encrypt a message. Only the people with
the same sort of cylinder could decrypt the message. Further information about this can be found in [3].

Figure 3.1: Scytale [3].

Another quite famous sort of cryptography is the Caesar-cipher. This code was named after Julius
Caesar, who used it for his secret communication. Julius Caesar lived around 60 years before Christ.
In the Caesar-cipher code the letters of the alphabet are shifted three places in the alphabet. So for
example the letter “a” became the letter “d”, see figure 3.2. It is clear that it is very easy to decipher
this Caesar-cipher.

Figure 3.2: Caesar-Cipher code

Also later on in the Second World War cryptography was really important. Encryption was used to
encode messages in the military [1]. The most famous kind of encryption was the use of Enigma machines
by the German military. The most important messages were sent with the use of this machine. English
mathematician Alan Turing cracked the code of the Enigma machine during World War II. The whole
operation and cracking of the Enigma machine had to be kept secret, this is why there was not much
recognition for Alan Turing back then. In 1951 however Alan was elected to the Fellowship of the Royal
Society. This society of scientists is where you get elected if you did a substantial contribution to the
improvement of natural knowledge, including mathematics, engineering science and medical science. The
Fellowship of the Royal Society is mostly for English scientists. Later in 2014 there was made a famous
movie about his live and work.

The importance of encoding messages increased with the arrival of the internet. E-mail and internet
banking are examples of applications that use encoding. This is very important, because there are a lot
of malicious users on the internet.

There are two types of cryptography: symmetric or asymmetric encryption. Symmetric encryption is
encryption and decryption of a message using the same key. This is not convenient, the key needs to
be sent to the receiver over a secure connection, for example by a driver or in person. The problem
with this way of sending the key is how to make this connection secure. Until 1970 only the symmetric
encryption was known. Asymmetric encryption works with public and private keys, such that no key has
to be delivered from the sender to the receiver. The asymmetric RSA system gave a solution for this.
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Rivest, Shamir and Adleman weren’t the first to come up with the idea of the RSA system. In 1997 a
document was declassified showing that Clifford Cocks already described the idea of the RSA system in
1973.
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4 Preliminaries

4.1 The Euler totient function

The Euler totient function is an important function that is used in the RSA algorithm. Based on [4] we
get the following definition and theorems for the Euler totient function:

Definition 4.1 (The Euler totient function). The Euler totient function of an integer n counts the
number of integers between 0 and n that are relatively prime with n. It is denoted as ϕ(n).

For a prime number p the Euler totient function is equal to:

ϕ(p) = p− 1. (1)

This is clear from the fact that all numbers except for 1 and the prime number p itself are relatively
prime to the prime number p. For the calculation of the Euler totient function in setting up the RSA
algorithm we also need the following theorems about the Euler totient function:

Theorem 4.1. Let m,n integers that are relatively prime, then

ϕ(mn) = ϕ(m)ϕ(n).

Theorem 4.2. Let n be a positive integer with prime factorization: n = pk1
1 p

k2
2 · · · pkr

r , with pi prime
number for i ∈ 1, . . . , r and ki real number for i ∈ 1, . . . , r. Then

ϕ(n) = (pk1
1 − p

k1−1
1 )(pk2

2 − p
k2−1
2 ) · · · (pkr

r − pkr−1
r ).

4.2 Fermat’s little theorem

For the proof that the RSA algorithm encoding is correct we need the following theorems from [13].

Theorem 4.3 (Fermat’s little theorem). If p prime, then for any integer a we have

ap ≡ a (mod p).

and if a is not divisible by p, then

ap−1 ≡ 1 (mod p).

4.3 Euclidean algorithm

For the calculation of the public key in the set up of the RSA algorithm we need the extended Euclidean
algorithm. Before we go to the extended Euclidean algorithm, we first explain the Euclidean algorithm.
The Euclidean algorithm finds the gcd2 of two integers. From [10] we have the following theorem:

Theorem 4.4 (Euclidean algorithm). Define for integers a and b 6= 0 a sequence of non-negative integers
r0, r1, . . . by r0 = |a|, r1 = |b| and

ri+1 = (rest of ri−1 by division by ri) if ri 6= 0. (2)

Then there exists an index k > 0 with rk = 0 and with gcd(a, b) = rk−1.

Now the extended Euclidean algorithm finds for known a and b the solution of

ax+ by = gcd(a, b). (3)

The algorithm goes as follows:
We start with the following two equations:

x0 · a+ y0 · b = r0 = |a| and x1 · a+ y1 · b = r1 = |b|. (4)

2abbreviation for greatest common divisor
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Where x0 = ±1, y0 = 0, x1 = 0 and y1 = ±1. The signs of x0 and y1 depends on the numbers a and
b, choose the sign such that the equations in (4) hold. Dividing with remainder in theorem 2 gives that
there exists an integer qi such that

ri−1 = qi · ri + ri+1

With this we have for every i = 2, 3, . . . the following formulas

xi−1 = qi · xi + xi+1,

yi−1 = yi · ri + yi+1.

We now find for i = 2, 3, . . . the following formula

axi + byi = ri.

When rk is equal to 0 for some k = 2, . . . then the solution is then equal to:

axk−1 + byk−1 = rk−1 = gcd(a, b).

Example 4.1. Let a = 65789 and b = 23456, then we have:

i Equation xi yi qi ri

0 1 · 65789 + 0 · 23456 1 0 65789
1 0 · 65789 + 1 · 23456 0 1 2 23456
2 1 · 65789− 2 · 23456 1 -2 1 18877
3 −1 · 65789 + 3 · 23456 -1 3 3 4579
4 5 · 65789− 14 · 23456 5 -14 8 561
5 −41 · 65789 + 115 · 23456 -4 115 6 91
6 251 · 65789− 704 · 23456 251 -704 6 15
7 −1547 · 65789 + 4339 · 23456 -1547 4339 15 1

Now we have our solution, because r8 = 0. We found that the gcd(a, b) is equal to 1. This means that in
this case a and b are relatively prime.

4.4 Continued fraction

Later on it will be useful to know a bit about continued fractions. Based on [9] we get the following
theory about continued fractions.

Definition 4.2. (Continued fraction of the rational numbers Q). A finite continued fraction expansion
is a fraction of the form

a0 +
1

a1 + 1
a2+

1

a3+...+ 1
am

.

Where ai are non-negative integers, for i = 0, 1, . . . ,m and a0 can be any integer. The notation of this
continued fraction is [a0, a1, a2, a3, . . . , am].

Remark 4.1. Every x ∈ Q has a finite continued fraction expansion.

Remark 4.2. In this report we will only use continued fractions of rational numbers in [0, 1). For this
reason we will only use continued fractions of the form where a0 = 0. Further in this report we will write
continued fractions as [a1, a2, a3, . . . , am], where we omit the a0.

Any rational number can be written as a continued fraction. The continued fraction of a rational
number x ∈ [0, 1) can be found in the following way, where we first initialize r0 = x, a0 = 0 and next3:

ai =

⌊
1

ri−1

⌋
, ri =

1

ri−1
− ai, for i = 1, 2, . . . n.

When ri is an integer for some i ∈ {0, 1, 2, . . .}, the continued fraction is found and x = [a1, a2, . . . , ai]
that is constructed.

3With bcc we mean c rounded down to a whole number.
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Example 4.2. (Finding the continued fraction of a rational number) Let x = 29
39 . We calculate the

continued fraction of x.

a0 = 0, r0 =
29

39
,

a1 =

⌊
1
29
39

⌋
=

⌊
39

29

⌋
= 1, r1 =

1
29
39

− 1 =
39

29
− 1 =

10

29
,

a2 =

⌊
1
10
29

⌋
=

⌊
29

10

⌋
= 2, r2 =

1
10
29

− 2 =
29

10
− 2 =

9

10
,

a3 =

⌊
1
9
10

⌋
=

⌊
10

9

⌋
= 1, r3 =

1
9
10

− 1 =
10

9
− 1 =

1

9
,

a4 =

⌊
1
1
9

⌋
=

⌊
9

1

⌋
= 9, r4 =

1
1
9

− 1 =
9

1
− 1 = 8.

r4 is equal to an integer, so now we found a continued fraction for our rational number 29
39 . 29

39 is equal
to [1, 2, 1, 9]:

x =
1

1 + 1
2+ 1

1+ 1
9

.

Definition 4.3. (Convergent) Let x = [a1, a2, . . . , am] be continued fraction. The convergent pi

qi
of x is

defined by

pi
qi

= [a1, a2, . . . ai], for some i ∈ 0, 1, . . . ,m.

There is also an algorithm to convert a continued fraction back to a rational number. Assume we have
the continued fraction x = [a1, . . . , am]. Then we can calculate all of the convergents pi

qi
= [a1, . . . , ai] of

x for i = 1, . . . ,m in the following way:

p1 = 1, q1 = a1, (5)

p2 = a2, q2 = a2a1 + 1, (6)

pi = ai · pi−1 + pi−2, qi = ai · qi−1 + qi−2, for i = 2, . . . ,m. (7)

Now we have that our x, which was equal to the continued fraction [a1, . . . , am], is equal to the rational
number pm

qm
.

Remark 4.3. Every continued fraction represents a rational number. Every rational number can be
presented as two finite continued fractions. These two representations differ only in the last term of the
continued fraction. Let x be a rational number with continued fraction [a1, . . . , an−1, am + 1], then x is
also represented by the continued fraction [a1, . . . , am−1, am, 1]. The second representation is one element
longer.

Theorem 4.5. (Legendre’s theorem) Let x ∈ Q; p, q ∈ Z, q > 0 and gcd(p, q) = 1, then∣∣∣∣x− p

q

∣∣∣∣ < 1

2q2
.

implies that p
q is equal to a convergent of x.

For the proof of this theorem we refer to [7]
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4.5 Time complexity of algorithms

The security of an RSA system depends on time complexity of algorithms. The time complexity of an
algorithm with input n is equal to a function T (n). The time complexity represents the number of units
of time that an algorithm takes for an input of size n. Because of the fact that the unit of time is different
for every computer - one computer is faster than the other - the time complexity is determined by the
maximal number of operations of an algorithm.

Example 4.3. Let’s take a look at the time complexity of the following algorithm:

Input: Natural number n and array A of real numbers
Output: The largest element of A up to and including the nth element

1 large← 0;
2 for i← 0; i ≤ n; i+ + do
3 if large < A[i] then
4 large ← A[i]

end

end
5 return large;

Algorithm 1: Calculation of the largest element of an array

This is an algorithm to get the largest element of an array up to and including the nth element. To
determine the time complexity i.e. the number of operations of the algorithm, we go through it line by
line. In the first line 1 we initialize the variable large. This is one operation. In the second line 2 we
first initialize variable i at 0, next check if i < n and finally add 1 to i. The initializing of i happens only
the first time going into the for-loop, however the other two operations happens every time before going
in the for loop. The check if i < n also happens once when the statement is not satisfied anymore and
don’t go in the for loop, this is also 1 operation. Now watching what happens inside the for-loop at lines
3 and 4 we see that we always check the statement in 3, but do not always go through line 4. So in line 3
and 4 we have to do 1 or 2 operations, because the time complexity is the worst case scenario we assume
we always have to do the operation in line 4. So line 3 and 4 give 2 operations. We are going n+ 1 times
through the for-loop, so from line 1 up to and including 4 we have 4(n + 1) + 2 operations. At the end
of line 5 we only return a variable which is only one operation. In total we have T (n) = 4(n + 1) + 3
operations.

4.5.1 Big O notation

A general notation to classify the time complexity of functions is the big O notation. The general
definition of the big O notation from [5] is as follows

Definition 4.4. (Big O notation) Let f(n) and g(n) be two real valued functions defined on some subset
of the real numbers. One writes

f(n) = O(g(n)) as n→∞

if and only if, for sufficiently large values of n, f(n) is at most a constant multiplied by g(n) in absolute
value.
That is, f(n) = O(g(n)) if and only if there exists a positive real number M and a real number n0 such
that:

|f(n)| ≤M |g(n)| for all n > n0.

Example 4.4. Assume we have an algorithm with time complexity T (n) = 3(n2 +n+ 1). Then we have
O(T ) = O(n2). To show this take n0 = 1 and M = 9. For n ≥ 1 we have 3n ≤ 3n2 and 3 ≤ 3n2. So we
have:

T (n) = 3(n2 + n+ 1) ≤ 3n2 + 3n2 + 3n2 = 9n2.

Now the definition of the big O notation implies that the time complexity of this algorithm is O(n2)

There are different classes of functions in terms of their corresponding time complexity. The following
are the most common classes with their corresponding names, where c is constant:
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time complexity Class

O(1) Constant
O(log(n)) Logarithmic
O(n) Linear

O(n log(n)) Linearithmic
O(n2) Quadratic
O(nc) Polynomial
O(cn) Exponential

The classes of these running times go from fastest to slowest. Computers can take years to solve a
problem that is for example exponential.

Remark 4.4. For the time complexity in the logarithmic class the base of the logarithm doesn’t matter,
because change of base can be done in constant time. This can be shown by proving that a log x ∈
O(blog x). For this we need the following identity for some a, b, x ∈ R:

a log x =
b log x
b log a

. (8)

By definition we need to prove that there exists a M ∈ R and a n0 ∈ R such that a log x ≤M b log x for
all n > n0. Now because b is a constant we have with (8) that:

a log x ≤ 1
b log a

b log x for all x ≥ 1.

This implies that a log x ∈ O(blog x) by definition with M = 1
b log a

and n0 = 1.

4.5.2 Time complexity of finding convergents

To look at the time complexity of the algorithm to calculate the convergents of a continued fraction
[a1, . . . , am] we first need the following lemmas:

Lemma 4.1. The nominator and denominator of the convergents of a rational number grow exponentially.

Proof. In the algorithm to find the convergents described in section 4.4 we see in equation (7) that the
denominator of a convergent pi

qi
for i = 2, . . . ,m is of the form

pi = aipi−1 + pi−2.

Let’s try pi = λi. Then we get

λi = aiλ
i−1 + λi−2 ≡ λ2 − aiλ+ 1 = 0.

This is a quadratic formula with solutions: λ1 =
−ai+a2

i+4
2 and λ2 =

−ai−a2
i+4

2 Now we get something of
the form

pm = c1(λ1)m + c2(λ2)m.

With c1 and c2 constants. We see that the nominator pi is a function of exponential growth. For the
denominator we have the same equation and in the same way find exponential growth.

Lemma 4.2. The number of convergents of a continued fraction p
q = [a1, . . . , am] is of order O(log q).

Proof. Because of the fact that the nominator and denominator grow exponentially - as we saw in lemma
4.1 - the number of convergents will be of logarithmic order. In the continued fraction p

q we assumed that
a0 is 0 in definition 4.2, this is why we have that p ≤ q. This implies that the number of convergents of
p
q is of the order of O(log q).

Lemma 4.3. The time complexity of calculating convergents of a continued fraction [a1, . . . , am] with
(5), (6) and (7) is of order O(m).
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Proof. An efficient way to calculate the convergents of a continued fraction of at least length 2, is with
the following algorithm, where array A contains the coëfficients of the continued fraction:

Input: Array A and some integer k between 1 and m
Output: The kth convergent

1 P [1]← 1;
2 Q[1]← A[1];
3 P [2]← A[2];
4 Q[2]← A[2] ·A[1] + 1;
5 for i← 3; i ≤ k; i+ + do
6 P [i]← A[i][i− 1] + P [i− 2];
7 Q[i]← A[i] ·Q[i− 1] +Q[i− 2];

end

8 convergent = P [k]
Q[k] ;

9 return convergent;
Algorithm 2: Calculation convergents of a continued fraction

The first lines 1 up to and including 4 are 4 initialize assignments, this are 4 operations. Initializing i in
the for loop in line 5 only costs 1 operation, however the other two operations happens every time before
going in the for loop. The check if i ≤ k also happens once when the statement is not satisfied anymore
and don’t go in the for loop, this is also 1 operation. Line 6 and 7 are both also 1 operation. We are
going k− 3 times through the for-loop, so from line 5 up to and including 7 give 4(k− 3) + 2 operations.
The initialization of convergent in line 8 also fives one operation and so does the return statement in
line 9. In total we then have T (k) = 4(k − 3) + 8 operations. This means that our algorithm is of order
O(k). Now because of the fact that k ≤ m we have that the calculation of the convergent of a continued
fraction is of order O(m).

Theorem 4.6. The time complexity of finding all convergents of a continued fraction p
q = [a1, . . . , am]

is of order O(q log q)

Proof. In lemma 4.2 we saw that the number of convergents of a continued fraction is of order O(log q).
According to lemma 4.3 the calculation of the convergent takes order O(m). Now because of the fact
that m ≤ q, we have that finding all convergents of a continued fraction is of order O(q log q).
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5 The RSA algorithm

5.1 Key generation

To set up a secure connection with the RSA algorithm the first thing to do is to generate the public and
private keys. The public key consists of two integers (n, e) and the private key of one (d). The generation
of the keys goes with the following algorithm:

1. Generate two prime numbers p and q.

2. Calculate the so-called modulus n by

n = p · q.

3. Calculate ϕ(n). From (4.2) it is clear that:

ϕ(n) = (p− 1)(q − 1). (9)

4. Choose the private key d such that:

1 < d ≤ ϕ(n) and gcd(d, ϕ(n)) = 1

where gcd stands for the greatest common divisor.

5. The public key e is a multiplicative inverse of d with respect to ϕ(n). So e is chosen such that

e · d ≡ 1 (mod ϕ(n)). (10)

The public key can be calculated using the Euclidean algorithm, see (4.4).

5.2 Encryption and decryption

To send a message one first has to represent the message as a number between 0 and n. This representation
of this message is not part of the encoding and is made public. The ASCII4 or binary code are examples
of methods to represent a message in a number.

Encryption happens with the encryption function E, which is defined as

E(M) ≡Me (mod n), (11)

where M is the message to be send and e and n form the public key (n, e).
The decryption also happens with a function. Let C = E(M) be the encrypted message, then the

decryption function D is defined as:

D(C) ≡ Cd (mod n). (12)

where d is the private key.

Example 5.1. To understand the algorithm it is good to consider an example. First we generate the
keys:

1. Choose two prime numbers, for example:

p = 3 and q = 11.

2. Compute n = p · q:

n = 3 · 11 = 33.

3. Compute ϕ(n).

ϕ(33) = ϕ(3 · 11) = (3− 1) · (11− 1) = 2 · 10 = 20.

4ASCII stands for American Standard Code for Information Interchange, see http://www.asciitable.com/
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4. Choose the private key d such that gcd(d, (p− 1)(q − 1)) = gcd(d, 20) = 1. Choose for example

d = 7.

In this case it would also have been correct to choose d = 3, 9, 11, 13, 17 or 19. d = 1 is left out of
these options, because with this key you would just send the original message.

5. Finally the public key e must be such that e · d ≡ 1 (mod ϕ(n)). In this case e such that e · 7 ≡ 1
(mod 20). Then:

e ≡ d−1 (mod ϕ(n)) ≡ 3 (mod 20).

The public and private keys are now created. The public key is equal to (33, 3) and the private key to (7).
Suppose we want to send the letter ‘i’, then we first have to describe this message in an integer between
0 and n. Say for example that we convert ‘i’ to the integer 9. Now the message can be encrypted as
follows:

C = 93 (mod 33) ≡ 729 (mod 33) ≡ 3.

Decoding this again gives:

M = 37 (mod 33) ≡ 2187 (mod 33) ≡ 9.

5.3 Correctness

A correct RSA system has to guarantee that every encoded message can be decrypted such that the right
message appears again. In other words the RSA system is correct when:

D(E(M)) = M.

The correctness of the RSA algorithm can be shown using Fermat’s little theorem.

Theorem 5.1. The algorithm of RSA is correct, i.e. with E and D as in (11) and (12) and M between
1 and n, if we have:

D(E(M)) = M.

Proof. Euler’s totient function is a multiplicative function, see (4.1), together with (1) we find:

ϕ(n) = ϕ(p) · ϕ(q),

= (p− 1) · (q − 1).

In the RSA algorithm the e and d were chosen such that they were each other’s multiplicative inverse
with respect to ϕ(n):

e · d ≡ 1 (mod ϕ(n)).

This implies that e · d can be written as k ·ϕ(n) + 1, with k some integer. Decoding an encoded message
gives the following:

D(E(M)) ≡ (E(M))d ≡ (Me)d (mod n) = Me·d (mod n).

So we have to proof that Me·d (mod n) = M . So the encrypted and decrypted message can be written
as:

Me·d (mod n) ≡Mk·ϕ(n)+1 (mod n).

Fermat’s little theorem 4.2 imply the following for all M that are not divisible by p:

Mp−1 ≡ 1 (mod p).

As ϕ(n) = (p− 1)(q − 1), ϕ is divisible by p− 1. This implies

Mkϕ(n)+1 ≡M (mod p). (13)
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If M does divide p the following holds: M ≡ 0 (mod p). This implies that Mkϕ(n)+1 ≡ M (mod p), so
the equation (13) holds for all M . The same holds for the other prime number q:

Mkϕ(n)+1 ≡M (mod q). (14)

Consequently, with equations (13) and (14) it follows that:

Me·d ≡Mkϕ(n)+1 ≡M (mod n). (15)

Now we have what we need to prove the correctness. This yields

D(E(M)) = M.

This proves the correctness of the RSA algorithm for all M , where 0 < M < n.

5.4 Security

The security of the RSA algorithm is very important. If one sends a message to a certain person, no one
else should be able to read it.

For security it is very important that the parameters in the RSA algorithm are chosen in a certain
way. If some parameters are very small it is easy to crack this encryption. On the other hand choosing
parameters very large slows down the calculations in the RSA algorithm and then sending a message
takes a long time. So you want the parameters to be big enough to prevent people from cracking it, but
small enough to let the communication go fast.

The reason why the RSA system is hard to crack is that it depends on a one-way function. A one-way
function is a function that is easy to compute in one way, but very hard in the other way.

The one-way function in the RSA system is the generation of the modulus n. n is equal to the product
of two primes. A multiplication is done in linear time and is relatively easy. But the other way around,
so getting the two primes from the modulus n depends on factorizing n. Factorizing a number can be
very hard if the number is big enough. With hard we mean that there is no good algorithm such that
the prime factor can be calculated quickly when the modulus n is growing.

One of the fastest algorithm to find the prime factors is the algorithm using number field sieve [11].

This algorithm has a time complexity of O(ec·(logn)
1
3 (log logn)

2
3 ). If n is very large this will blow up.
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6 Signature

A beautiful property of the RSA system is that messages can be sent with a signature. Even the recipient
of the message can’t forge the signature of the sender.

This concept of signature is based on the fact that encryption and decryption of the message gives the
same result as first decryption of the message and then encryption:

E(D(M)) ≡ (D(M))e ≡ (Md)e (mod n) = Me·d (mod n).

Assume Alice wants to send a message to Bob just like before. Alice has the public key (nA, eA) and
private key (dA) and Bob has the keys (nB , eB) and (dB). Alice wants to send a signed message S. First
she applies her decryption function:

S = MdA (mod nA).

and only then apply the encryption function of Bob to the signed message S:

C = SeB (mod nB).

To let Bob know that the message came from Alice one can add text to the signature S.
Now C is going to be sent to Bob. When Bob receives this message he first decodes it with his own

private key dB :

S = CdB (mod nB).

Now Bob has the signed message S of Alice. Subsequently Bob can find the message with the public key
from Alice:

M = SeA (mod nA).

If Alice really sent the message, it should now appear unscrambled. If Bob wants to modify the message
of Alice, he needs the dA from Alice, which is private.

Example 6.1. Let’s say Alice wants to send the message “14” to Bob. They both set up their RSA
system. For example Alice has the following keys:

(nA, EA) = (143, 97) and dA = 73.

And Bob has the keys:

(nB , EB) = (221, 85) and dB = 61.

Alice first applies the decryption function to her message with her private key:

S = 1497 mod 143 = 27.

next she encodes the message with the public key from Bob:

C = 2785 mod 221 = 40.

Alice now sends the encoded message “40” to Bob. When Bob receives this message he first decodes the
message with his private key:

S = 4061 mod 221 = 27.

Next he applies the encoding function to the message with the public key from Alice:

M = 2797 mod 143 = 14.

As you can see Bob received the right message.
But what happens when, say Carol modified the message in between Alice and Bob. So he changed the
message “40” into say “32”. Then Bob decodes the message with his private key:

S = 3261 mod 221 = 14.

Next he encodes the message with the public key from Alice:

M = 1497 mod 143 = 53.

Bob now ends up with the message “53”. This was not the message Carol wanted to send. With big
messages this last message will make no sense for Bob and he will notice that something is wrong.
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7 Attacks

There are several attacks on the RSA system where the private key can be cracked. In this section two
of such attacks are discussed.

7.1 Wiener attack

In 1990 Michael J. Wiener [14] found a way to solve the RSA encryption when d isn’t large enough, to

be precise, when d is smaller than 1
3n

1
4 . This proof is taken from [2].

Theorem 7.1. (Wiener’s attack) Assume an RSA system is such that p and q are about the same size,

p < q < 2p and e < ϕ(n). When d is smaller than 1
3n

1
4 , so

d <
1

3
n

1
4 . (16)

then the private key from this RSA system can be calculated in O(n log n)

Proof. Equation (10) is equivalent with saying that there exists an integer k such that

ed = kϕ(n) + 1. (17)

Since n = p · q > p2 we have that
√
n > p (18)

With (9) we have the following inequality:

−ϕ(n) = −n+ p+ q − 1

< −n+ 3p− 1

(18)
< −n+ 3

√
n.

So

n− ϕ(n) < 3
√
n. (19)

Now together with k(n− ϕ(n)) > 0, we have the following estimate for
∣∣ e
n −

k
d

∣∣:∣∣∣∣ en − k

d

∣∣∣∣ =

∣∣∣∣kd − e

n

∣∣∣∣ (20)

=

∣∣∣∣kn− ednd

∣∣∣∣
(17)
=

∣∣∣∣k(n− ϕ(n))− 1

nd

∣∣∣∣
(19)
<

3k

d
√
n
. (21)

Together with (17) and the fact that we chose e < ϕ(n) we now find that k < d in the following way:

kϕ(n) = ed− 1 < ed < dϕ(n).

Since k < d and by the assumption d < 1
3n

1
4 we have 3k < 3d < n

1
4 . So with (21) we have the following

estimate for
∣∣ e
n −

k
d

∣∣ ∣∣∣∣ en − k

d

∣∣∣∣ < n
1
4

d
√
n

=
1

dn
1
4

. (22)

Furthermore we have with assumption (16) that 2d < 3d < n
1
4 , so 1

2d > 1

n
1
4

and this implies together

with (22) ∣∣∣∣ en − k

d

∣∣∣∣ < 1

2d2
.
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Now the theorem of Legendre 4.5 implies that k
d is a convergent of e

n . With theorem 4.6 and the fact
that e < ϕ(n) < n we see that finding all convergents of a fraction e

n has a time complexity of order
O(n log n).
Let’s now look at the test that a guess for k

d is correct. Let x
y be a convergent of e

n and so a guess for k
d .

Then we can calculate ϕ(n) if the guess of the convergent is correct with (17) like

ϕ(n) =
ey − 1

x
.

Then we calculate a guess for p+q
2 with the following identity:

n− ϕ(n) + 1

2
=
pq − (p− 1)(q − 1) + 1

2
=
p+ q

2
(23)

If the guess for p+q
2 is not an integer, then the guess for k and d is wrong. Next we can guess p−q

2 using
the following identity (

p+ q

2

)2

− pq =

(
p− q

2

)2

. (24)

If the guess for p−q
2 is now an integer the guess for k and d is correct. It is easy to obtain p and q from

p+q
2 and p−q

2 . The test to see whether a guess for k
d is correct is in constant time. Together with the time

complexity of finding the convergents we have that the private key can be found in order O(n log n)

Example 7.1. Let the public key (n, e) be equal to (26667829759, 13173097379). We assume that

d < 1
3n

1
4 ≈ 134. Calculation of the continued fraction of e

n gives

[2, 40, 1, 22, 13, 24, 1, 1, 11, 1, 2, 3, 1, 1, 25, 3].

The convergents of the continued fraction of e
n are:

1

2
,

40

81
,

41

83
,

942

1907
,

10403

21060
,

11345

22967
,

21748

44027
, . . .

We are going to use the Wieners test to check if a convergent is the correct guess for k
d . Let’s start with

the first guess x
y = 1

2 . Calculation of the Euler totient function with (17) gives then

ϕ(n) =
13173097379 · 2− 1

1
= 26346194757

Then with the identity (23) we find the guess for p+q
2 :

26667829759− 26346194757 + 1

2
=
p+ q

2
= 160817501.5

This guess is not an integer, so the guess 1
2 for k

d is wrong.
Now we check the next convergent that is equal to 40

81 . The Euler totient function is now equal to

ϕ(n) =
13173097379 · 81− 1

40
= 26675522192.45

This can not be the case, because ϕ(n) should always be an integer, so this choice for k
d is also incorrect.

The next convergent is equal to x
y = 41

83 For ϕ(n) we now have:

ϕ(n) =
13173097379 · 83− 1

41
= 26667489816

This guess will give the following outcome for p+q
2

p+ q

2
=

26667829759− 26667489816 + 1

2
= 169972.

For the calculation of p−q
2 we use (24) and get:

p− q
2

=
√

1699722 − 26667829759 = 47145.

From these two equations we get p = 217117 and q = 122827. The convergent was the right choice so we
also found the private key d = 83.
We can do a little check to see if this choice of d is correct. Let’s encrypt for example the message
M = 196. The encoded message becomes C = 19613173097379 mod 26667829759 = 15142018378. If we
now decode this with our found d we find: M = 1514201837883 mod 26667829759 = 196.
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7.2 Fermat’s factorization algorithms

Fermat factorization algorithm [6] gives a way of breaking the RSA code fast when the prime factors are
too close to each other. The algorithm depends on the following identity, where n = pq:

(p+ q)
2 − (p− q)2 = p2 + 2pq + q2 +−p2 + 2pq +−q2 = 4pq = 4n.

So

4n = (p+ q)
2 − (p− q)2 .

To find p and q we rewrite the equation a little with two new variables x and y to:

4n = x2 − y2. (25)

The idea now is to find a solution for x and y of the equation (25). If we have x and y we can easily get
p and q. Initially we choose x equal to d2

√
ne5 and y = 0. Next we look at identity (25) and rewrite it a

little introducing a new variable df such that:

df = x2 − (y2 + 4n).

Now the algorithm can distinguish three different cases.
Case 1: df = 0

If df = 0, then we have n = x
2
2 − y

2
2
. In this case we have found the two prime numbers such that

p = x+y
2 and q = x−y

2 .
Case 2: df > 0

If df > 0, then we have that x2 is bigger than y2 + 4n. This is why we increase y by 2. We increase y by
2 because p+ q is an even number. This correction we also have to apply to the df . df decreases in this
case by 4y + 4.

Case 2: df < 0
If df > 0, then we have that x2 is smaller than y2 + 4n. This is why we increase x by 2. We increase x
by 2 because p − q is an even number. This correction we also have to apply to the df . df increases in
this case by 4x+ 4.

Formally this looks as follows:

Input: n
Output: n: p and q
x = d2

√
ne;

y = 0;
df = x2 − (y2 + 4n);
while df 6= 0 do

if df > 0 then
df = df − (4y + 4);
y = y + 2;

else
df = df + (4x+ 4);
x = x+ 2;

end

end

p = x+y
2 ;

q = x−y
2 ;

Algorithm 3: Fermat’s factorization algorithm

The time complexity of the Fermat factorization algorithm depends on how long we stay in the while
loop. If df > 0 we stay in the while loop until x is at our desired p + q. Because we increase x every
iteration by 2, this means we have p+q

2 − (
√
n− 1) iterations in the while loop for df > 0. For df < 0 we

proceed in the same way, because we stay in the while loop until y is at our desired p − q. Because we
increase y every iteration by 2, this means we have p−q

2 − 1 iterations in the while loop for df > 0. So the

5With dce we mean c rounded up to a whole number.
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total number of operations is p− (
√
n+ 1). So the algorithm has time complexity O(p−

√
n). Fermat’s

factorization will be especially fast if p and q are very close to each other, then p and
√
n will lie very

close to each other and the order of the algorithm will then become almost of the order O(1).

Example 7.2. Let’s run this algorithm with modulus n = 11021. The factorization of this modulus is
n = 107 · 103, so p = 107 and q = 103. These prime numbers lie very close to each other so we would
expect to be done very fast. Let’s apply the algorithm.

Try 1 2 3

Difference df 44100 - 4·11021 = 16 16 - (4·0 + 4) = 12 12 - (4·2 + 4) = 0
x 210 210 210
y 0 2 4

So we have x = 210 and y = 4 and with this p = x+y
2 = 214

2 = 107 and q = x−y
2 = 206

2 = 103.
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8 Conclusion and discussion

8.1 Conclusion

This thesis explained the concept of the RSA system and focused on two attacks on this system.
The RSA system is hard to crack, because it depends on a one-way function. This function is the

factorization of the modulus n. It is easy to compute the modulus with two prime numbers p and q, but
factoring n is hard. The fastest known algorithm that is found is based on the number field sieve. This
algorithm has a time complexity that is exponential, which still takes many years to run.

With Wiener’s attack we saw that it is possible to crack the RSA system, using Legendre’s theorem
4.5, in a time complexity that is linearithmic, when the private key was very small.

Another attack we saw was based on Fermat’s factorization algorithm. This algorithm could find the
prime factors of the modulus n in a time complexity that is between logarithmic and linear. Fermat’s
factorization algorithm will especially be a problem when the two prime lies very close to each other.
Then the time complexity will almost become constant

There are several other attacks on the RSA system. However in practice these threats are easy to avoid
by taking the parameters of the system in the right way and the RSA system is still used a lot.

8.2 Discussion

The security of the RSA system is not fully guaranteed. One of the reasons for this is that the security
of this algorithm depends on the fact that our computers are not yet so fast that they can crack the
RSA system in reasonable time. But innovation of the computers goes fast. Scientists are working on a
quantum computer. Not only is this computer much faster the the computers nowadays, but there also
exists an algorithm such that the RSA system can be attacked in linear time. This algorithm is called
Shor’s algorithm6. Shor’s algorithm makes a guess for a number where you can get the prime numbers
from. Now Shor’s algorithm tries to make a better guess from this old guess. The reason why this cannot
be done on the current computers relies on superposition. Quantum computers feature superposition
and the current computers not. With superposition the computer can be at several states at the same
time. The idea is that with superposition the wrong guesses destructively interfere with each other. The
current computers will go through all of these guesses and that takes ages. It could be that in a couple
of years the RSA system isn’t as safe as it is nowadays.

There is also no proof that the algorithm to factor the modulus using the number field sieve is the
fastest one. There might be an algorithm to factor the modulus even faster. This would mean that the
RSA system can be cracked in a decent time on the current computer. So in time it could well be possible
that the RSA system is not so safe anymore.

6Shor’s algorithm was founded in 1994 by Peter Shor. For more information about Shor’s algoritme, see [8]
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A Appendix

A.1 Elucidation code RSA system

For this report a simulation of the RSA system was made in Python (version 3.9.6), see appendix A.2
for the code. The program is simple, which means that it doesn’t work in practice for very large prime
numbers. It is just for the purpose of understanding the algorithm better.

The program consists of 11 functions:

function input Explanation

GiveInputPrimes inputprime
Asks the user to give two prime numbers and checks if the input
is correct.

GiveInputMessage message, n
Asks the user to give a message for encryption and checks if the
input is correct.

IsPrime p Checks if p is prime
Divisor p Finds the first divisor of p that is not 1

Gcd p, q Finds the greatest common divisor of p and q
EulerTotient n Finds the Euler totient function of n

OptionD phin Finds and chooses an option for an private key
PublicExp d, phin Calculates the public key

Encode m, e, n Encodes the message
Decode c, d, n Decodes the message
Final p, q Asks input from the user and creates the RSA system

When running the program the first thing the program asks is to give two primes. Next the program
runs the Final function with these two primes. From there the other functions are called.

The RSA system created by the program is not unique, because there can be several other cases
depending on the choice of the public key e an the private key d. The program chooses these parameters
random.

Example A.1. Let’s run the program one time. The first thing the program asks is to give two primes.
Let’s say we choose the first prime number equal to 3 and the second to 11. Now the program sets up an
RSA system. Now the system will ask which message you want to encrypt, say you want to send 28 for
example. The system encrypts this message and decrypts it and we see that we get 28 out of the system
after encyption and decryption. In figure (A.1) we see the output of the program that is just described.

Figure A.1: RSA program running
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A.2 Code RSA system (RSASystem.py)

”””
This program implements the RSA a lg or i t hm .

F i r s t i t g e n e r a t e s the RSA keys in the f o l l o w i n g way :
1 . Let the user choose two primes p and q .
2 . C a l c u l a t e the modulus n = pq .
3 . C a l c u l a t e phi (n) = (p−1)(q −1).
4 . Choose a p r i v a t e key r e l a t i v e l y prime to phi (n) such t h a t gcd (d , phi (n ) ) = 1.
5 . C a l c u l a t e the p u b l i c key e = dˆ(−1) mod ( phi (n ) ) .

Next i t e n c r y p t s and d e c r y p t s the input message ( message i n t e g e r between 1 and n ) .
Encryption o f a message M: Mˆe mod n .
Decrypt ion o f a encrypted message C: Cˆd mod n .
”””

import random

def GiveInputPrimes ( inputprime ) :
”””
Asks the user to g i v e two prime numbers and checks i f the input i s c o r r e c t .
”””
while True :

p = int ( input ( inputprime ) )
i f not ( IsPrime (p ) ) :

print ( ” Sorry , t h i s l a s t input i s not a prime number” )
i f p < 1 :

print ( ”A prime number must be b igge r or equal to one” )
print ( ” Please g ive a prime number as input ” )

else :
dp = Div i so r (p)
print ( str (p) + ” i s the product o f ” + str (dp) + ” and ” + str (p//dp ) )
print ( ” Please g ive a prime numbers as input ” )
continue

else :
break

return p

def GiveInputMessage ( message , n ) :
”””
Asks the user to g i v e a message ( message i n t e g e r between 1 and n) f o r encryp t ion .
and checks i f the input i s c o r r e c t .
”””
while True :

M = int ( input ( message ) )
i f (M> n−1 or M<=0):

print ( ” Sorry , the message has to be between 1 and ” + str (n−1))
else :

break
return M

def IsPrime (p ) :
”””
Checks i f p i s prime .
”””
i f p > 1 :

for i in range (2 , p ) :
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i f (p % i ) == 0 :
return False

else :
return False

return True

def Div i so r (p ) :
”””
Finds the f i r s t d i v i s o r o f p t h a t i s not 1 .
”””
for i in range (2 , p+1):

i f (p % i ) == 0 :
return i

def Gcd(p , q ) :
”””
Finds the g r e a t e s t common d i v i s o r o f p and q .
”””
k=1
for i in range (2 , p+1):

i f (p%i )==0:
i f ( q%i )==0:

k=i
return k

def EulerTot ient (n ) :
”””
Finds the Euler t o t i e n t f u n c t i o n o f n .
”””
k = 1
i f n==1:

return 1
else :

for i in range (2 , n ) :
i f Gcd(n , i ) == 1 :

k = k+1
return k

def OptionD ( phin ) :
”””
Finds and chooses an opt ion f o r an p r i v a t e key .
”””
optiond = [ ]
for i in range (2 , phin ) :

i f Gcd( i , phin )==1:
optiond . append ( i )

d = random . cho i c e ( optiond )
return d

def PublicExp (d , phin ) :
”””
C a l c u l a t e s the p u b l i c key .
”””
for i in range (2 , phin ) :

i f (d∗ i % phin ) == 1 :
return i

def Encode (m, e , n ) :
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”””
Encodes the message .
”””
return (m∗∗ e % n)

def Decode ( c , d , n ) :
”””
Decodes the message .
”””
return ( c∗∗d % n)

def Fina l (p , q ) :
”””
Asks input from the user and c r e a t e s the RSA system .
”””
n = p ∗ q
phin = EulerTot ient (n)
d = OptionD ( phin )
e = PublicExp (d , phin )
print ( ”The pub l i c key i s equal to (n , e ) = ( ” + str (n) + ” , ” + str ( e ) + ” ) ” )
print ( ”The cho i c e made f o r the p r i v a t e key d i s equ l to d = ” + str (d ) )
print ( ”The pub l i c exponent i s the equal to ” + str ( e ) )
print ( ”Now we can s t a r t sending a message ! ” )
M = GiveInputMessage ( ”What i s the message that A l i c e wants to send ?” +

” ( has to be an i n t e g e r between 1 and ” +
str (n−1) + ” ) ” , n)

C = Encode (M, e , n )
print ( ”Bob r e c e i v e d the message : ” + str (C) )
print ( ” I f Bob decodes t h i s message he r e c e i v e d the message : ” + str ( Decode (C, d , n ) ) )

p = GiveInputPrimes ( ”Choose a prime number p = ” )
q = GiveInputPrimes ( ”Choose a prime number q = ” )
Fina l (p , q )
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A.3 Elucidation code Fermat factorization (FermatFactorization.py)

Appendix A.4 contains the code of the program of the Fermat factorization in Python (Version 3.9.6).
The program asks a modulus and next factors this with Fermat’s method. This program only make use
of one function: FermatFactorization. The first thing the program does is ask for the modulus input from
the user and next the program runs the Fermat factorization with the function FermatFactorization.

The program consists of 4 functions: When running the program the first thing the program asks is

function input Explanation

GiveInputModulus inputmodulus
Asks the user to give a modulus that they want to factor and
checks if the input is correct.

IsPrime p Checks if p is prime
FermatFactorization n Executes Fermat’s factorization.

Final n
Asks input from the user and executes Fermat’s factorization func-
tion.

to give the modulus you want to factor. Next the program runs the Final function with this modulus.
From there the other functions are called.

Example A.2. Let’s run the program with the example (7.2) from before. In this example the modulus
was 11021 and the factors were p = 107 and q = 103. If we fill in the modulus 11021 in the program we
get the correct output as one can see in figure (A.2).

Figure A.2: RSA program running
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A.4 Code Fermat factorization

”””
This program implements the Fermat F a c t o r i a t i o n to crack the RSA system .
”””

import math
def GiveInputModulus ( inputmodulus ) :

”””
Asks the user to g i v e a modulus t h a t they want to f a c t o r and checks i f the input i s c o r r e c t .
”””
while True :

n = int ( input ( inputmodulus ) )
primes = FermatFactor izat ion (n)
p = int ( primes [ 0 ] )
q = int ( primes [ 1 ] )
i f not ( IsPrime (p) and IsPrime ( q ) ) :

print ( ” Sorry , t h i s modulus i s not the product o f two prime numbers” )
continue

else :
break

return n

def IsPrime (p ) :
”””
Checks i f p i s prime .
”””
i f p > 1 :

for i in range (2 , p ) :
i f (p % i ) == 0 :

return False
else :

return False
return True

def FermatFactor izat ion (n ) :
”””
Executes Fermat ’ s f a c t o r i z a t i o n .
”””
x = 2∗ math . c e i l (math . s q r t (n ) )
y = 0
df = x∗x − ( y∗y+4∗n)
t = 0
while df != 0 :

t=t+1
i f df > 0 :

df = df − (4∗y+4)
y = y+2

else :
d f = df + (4∗x+4)
x = x+2

i f t == n :
return (0 , 0)

p = ( x+y )/2
q = (x−y )/2
return (p , q )

def Fina l (n ) :
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”””
Asks input from the user and e x e c u t e s Fermat ’ s f a c t o r i z a t i o n f u n c t i o n .
”””
primes = FermatFactor izat ion (n)
p = primes [ 0 ]
q = primes [ 1 ]
print ( ”The f i r s t prime in the f a c t o r i a t i o n o f n i s equal to p = ” + str ( int (p ) ) )
print ( ”The second prime in the f a c t o r i a t i o n o f n i s equal to q = ” + str ( int ( q ) ) )

n = GiveInputModulus ( ”Choose the modulus to apply to the Fermat f a c t o r i z a t i o n n = ” )
Fina l (n)
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