Graduation Plan

Master of Science Architecture, Urbanism & Building Sciences

Graduation Plan: All tracks

Submit your Graduation Plan to the Board of Examiners (<u>Examencommissie-BK@tudelft.nl</u>), Mentors and Delegate of the Board of Examiners one week before P2 at the latest.

The graduation plan consists of at least the following data/segments:

Personal information	
Name	Lena Balakina
Student number	4592980

Studio		
Name / Theme	Building Technology	
Main mentor	Serdar Asut	Professor at the Faculty of Architecture and the Built Environment. Expertise in collaborative robots in architecture, inventive making, computational design, digital craft, human-computer interaction, robotic fabrication, and collaborative robots.
Second mentor	Seyran Khademi	Assistant professor at the Architecture and the Built Environment faculty, interdisciplinary researcher between computer vision lab and architecture department. Has knowledge of Artificial Intelligence.
Argumentation of choice	Interest in computational design, artificial intelligence,	
of the studio	robotics, and smart houses.	

Graduation project				
Title of the graduation				
project	I A m H O M E			
	Transforming an existing house into a smart house to provide for the well-being of its residents.			
Goal				
Location:		The Netherlands		
The posed problem,		Due to high housing demand, shortage		
		in healthcare, the aging population, and		
		the inability of older people to take care		

	of themselves, this research aims to find a solution to these problems in the built environment field.
research questions and	Main research question: "How can a house be transformed into a smart house in order to improve the well-being of its resident using smart devices and the help of artificial intelligence?"
design assignment in which these results.	Transforming an existing house into a smart house to provide for the wellbeing of its resident.

Sub-questions:

- What is the state of the art regarding smart house devices and artificial intelligence used in the built environment?
- How can a smart house change the spatial relationship and function in a house?
- How can these smart and intelligent devices be implemented in the transformation of a smart house, and how will the architectural qualities of the house change?
- What are the steps to take in order to transform our current houses into smart houses?

Background questions:

- What are the differences between smart devices and intelligent devices and what are the expectations for the future?
- How does the surroundings of a house have an influence on transforming the house into a smart house?
- How does safety play a role in a smart house system?
- What are the options for the use of artificial intelligence regarding a smart house for the well-being of a resident?
- What are the benefits that a smart house system provides for the well-being of its residents?
- How can a grasshopper simulation help with the testing process in scenarios that are not possible to test in real life?

Process

Method description

Literature study: looking at the history of smart house systems, future possibilities.

Market study: what is already on the market, what does the market need, what are people developing for the future, interviewing companies to have a better understanding of the market and their needs, what is the difference between smart and intelligent devices.

Case study: A 60-year-old hypothetical citizen living in the Netherlands in the suburbs of Hoogeveen lives in a semidetached house with a history of health issues. This house will be transformed into a smart house. The resident has had some health problems in the past and is too young for elder care but needs a companion/someone/something that will take care of them and help with their needs in and around the house. This resident has inadequate nutrition, lacks physical activity, and feels lonely. A smart house with artificial intelligence applied to its devices can get to know the residents and help in and around the house to promote a better lifestyle. For the testing process, a simulation will be done with Grasshopper. The design of the transformation will eventually lead to a prototype.

Literature and general practical preference

- Abbas, A. (2023). The Advantages and Challenges of Smart Facades Toward

 Contemporary Sustainable Architecture. Journal of Engineering Research, 7(4),

 127–145. https://doi.org/10.21608/erjeng.2023.325573
- Agee, P., Gao, X., Paige, F., McCoy, A., & Kleiner, B. (2021a). A human-centred approach to smart housing. Building Research and Information, 49(1), 84–99. https://doi.org/10.1080/09613218.2020.1808946
- Agee, P., Gao, X., Paige, F., McCoy, A., & Kleiner, B. (2021b). A human-centred approach to smart housing. Building Research and Information, 49(1), 84–99. https://doi.org/10.1080/09613218.2020.1808946
- Alshammari, N., Alshammari, T., Sedky, M., Champion, J., & Bauer, C. (2017).

 OpenSHS: Open Smart Home Simulator. Sensors 2017, Vol. 17, Page 1003, 17(5), 1003. https://doi.org/10.3390/S17051003
- Arora, Y., & Pant, H. (2019). Home Automation System with the use of Internet of Things and Artificial Intelligence.
- Buckman, A. H., Mayfield, M., & Beck, S. B. M. (2014). What is a Smart Building? https://doi.org/10.1108/SASBE-01-2014-0003
- Buurt Erflanden (gemeente Hoogeveen) in cijfers en grafieken | AlleCijfers.nl. (n.d.).

 Retrieved October 9, 2023, from https://allecijfers.nl/buurt/erflanden-hoogeveen/

- Chen, M., Yang, J., Zhu, X., Wang, X., Liu, M., & Song, J. (2017). Smart Home 2.0:
 Innovative Smart Home System Powered by Botanical IoT and Emotion
 Detection. Mobile Networks and Applications, 22(6), 1159–1169.
 https://doi.org/10.1007/s11036-017-0866-1
- Chi, O. H., Denton, G., & Gursoy, D. (2020). Artificially intelligent device use in service delivery: a systematic review, synthesis, and research agenda. Journal of Hospitality Marketing and Management, 29(7), 757–786. https://doi.org/10.1080/19368623.2020.1721394
- Colstra, J. (2018). The Evolving Architecture of Smart Cities.
- Deserno, T. M. (2020). Transforming Smart Vehicles and Smart Homes into Private

 Diagnostic Spaces. ACM International Conference Proceeding Series, 165–171.

 https://doi.org/10.1145/3379310.3379325
- D'Ulizia, A., Ferri, F., Grifoni, P., & Guzzo, T. (2010). Smart Homes to Support Elderly
 People: Innovative Technologies and Social Impacts. Https://Services.IgiGlobal.Com/Resolvedoi/Resolve.Aspx?Doi=10.4018/978-1-61520-765-7.Ch002,
 25–38. https://doi.org/10.4018/978-1-61520-765-7.CH002
- Dusseldorp, A., Van Bruggen, M., Douwes, J., Janssen, P. J. C. M., & Kelfkens, G. (2007). Health-based guideline values for the indoor environment. https://www.rivm.nl/bibliotheek/rapporten/609021044.pdf

- EPW Map. (n.d.). Retrieved September 21, 2023, from https://www.ladybug.tools/epwmap/
- Gezondheid en zorggebruik; persoonskenmerken, 2014-2021. (2023, January 9). https://www.cbs.nl/nl-nl/cijfers/detail/83005NED
- Ghosh, S. (2018). Smart Homes: Architectural and Engineering Design Imperatives for Smart City Building Codes.
- Gunge, V. S., & Yalagi, P. S. (2016). Smart Home Automation: A Literature Review.

 In International Journal of Computer Applications.
- Guo, X., Shen, Z., Zhang, Y., & Wu, T. (2019). Review on the Application of Artificial Intelligence in Smart Homes. https://doi.org/10.3390/smartcities2030025
- Harper, R. (2003). Inside the Smart Home: Ideas, Possibilities and Methods.
- Hawkins, L. E. (2023, April 23). Future of Smart Homes: Here's What You Need to Know | Nasdaq. https://www.nasdaq.com/articles/future-of-smart-homes:-heres-what-you-need-to-know
- Hayes, A. (2022, September 14). Smart Home: Definition, How They Work, Pros and Cons. https://www.investopedia.com/terms/s/smart-home.asp
- Heinzerling, D., Schiavon, S., Webster, T., & Arens, E. (2013). Indoor environmental quality assessment models: A literature review and a proposed weighting and classification scheme. https://doi.org/10.1016/j.buildenv.2013.08.027

- Herczeg, M. (2010). The Smart, the Intelligent and the Wise: Roles and Values of Interactive Technologies.
- Historische Kring Hoogeveen. (n.d.). Retrieved October 9, 2023, from https://www.historischekringhoogeveen.nl/geschiedenis
- Home Assistant. (n.d.). Retrieved September 11, 2023, from https://www.home-assistant.io/
- Hosseini, S. M., Mohammadi, M., Rosemann, A., Schröder, T., & Lichtenberg, J. (2019). A morphological approach for kinetic façade design process to improve visual and thermal comfort: Review. Building and Environment, 153, 186–204. https://doi.org/10.1016/J.BUILDENV.2019.02.040
- Introduction to Indoor Air Quality | US EPA. (2022). https://www.epa.gov/indoor-air-quality-iaq/introduction-indoor-air-quality
- Juliana, N., Mallongi, A., & Megasari, W. O. (2021). Analysis Of Humidity,
 Temperature, Working Period, And Personal Protective Equipment In Home
 Industry At Gold Craftsmen. Jurnal Ilmu Kesehatan, 9(2), 81–89.
 https://doi.org/10.30650/JIK.V9I2.2995
- Kaboli, A., & Shirowzhan, S. (2021). Advances and technologies in building construction and structural analysis.

- Kim, M. J., Cho, M. E., & Jun, H. J. (2020). Developing Design Solutions for Smart Homes Through User-Centered Scenarios. Frontiers in Psychology, 11, 516355. https://doi.org/10.3389/FPSYG.2020.00335/BIBTEX
- Kraus, M. A., & Drass, M. (2020). Artificial intelligence for structural glass engineering applications overview, case studies and future potentials. Glass Structures and Engineering, 5(3), 247–285. https://doi.org/10.1007/s40940-020-00132-8
- Krüger, E. L. (2015). Urban heat island and indoor comfort effects in social housing dwellings. Landscape and Urban Planning, 134, 147–156.

 https://doi.org/10.1016/J.LANDURBPLAN.2014.10.017
- Kum, S. W., Kang, M., & Park, J. II. (2016). Iot delegate: Smart home framework for heterogeneous iot service collaboration. KSII Transactions on Internet and Information Systems, 10(8), 3958–3971. https://doi.org/10.3837/tiis.2016.08.029
- Ladybug Light Analysis TOI-Pedia. (n.d.). Retrieved September 16, 2023, from http://wiki.bk.tudelft.nl/toi-pedia/Ladybug_Light_Analysis
- Ladybug Tools | Home Page. (n.d.). Retrieved September 11, 2023, from https://www.ladybug.tools/
- Lee, D. S., Koo, S. H., Seong, Y. B., & Jo, J. H. (2016). Evaluating thermal and lighting energy performance of shading devices on kinetic façades.

 Sustainability (Switzerland), 8(9). https://doi.org/10.3390/su8090883

- Liao, J., Cui, X., & Kim, H. (2023). Mapping a Decade of Smart Homes for the Elderly in Web of Science: A Scientometric Review in CiteSpace. Buildings, 13(7), 1581. https://doi.org/10.3390/buildings13071581
- Life expectancy The Netherlands on the European scale | 2019 | CBS. (n.d.).

 Retrieved April 29, 2023, from https://longreads.cbs.nl/european-scale2019/life-expectancy/
- Lin, H., & Bergmann, N. W. (2016). IoT privacy and security challenges for smart home environments. Information (Switzerland), 7(3). https://doi.org/10.3390/info7030044
- Lin, V. Z., & Parkin, S. (2020, December 14). Transferability of privacy-related behaviours to shared smart home assistant devices. 2020 7th International Conference on Internet of Things: Systems, Management and Security, IOTSMS 2020. https://doi.org/10.1109/IOTSMS52051.2020.9340199
- Ma, C., Guerra-Santin, O., & Mohammadi, M. (2022). Smart home modification design strategies for ageing in place: a systematic review. Journal of Housing and the Built Environment, 37(2), 625–651. https://doi.org/10.1007/S10901-021-09888-Z/TABLES/2
- Majumder, S., Aghayi, E., Noferesti, M., Memarzadeh-Tehran, H., Mondal, T., Pang, Z., & Deen, M. J. (2017). Smart homes for elderly healthcare—Recent advances and research challenges. In Sensors (Switzerland) (Vol. 17, Issue 11). MDPI AG. https://doi.org/10.3390/s17112496

- Moffeq, M., Al-Sarraf, A., Alobeidi, M. M., & Alsarraf, A. A. (2018). The Impact of the use of Smart Materials on the Facades of Contemporary Buildings.

 International Journal of Engineering & Technology, 744–750.

 https://doi.org/10.13140/RG.2.2.18405.65764
- Mohtashami, N., Mahdavinejad, M., & Bemanian, M. (2016). Contribution of City

 Prosperity to Decisions on Healthy Building Design: A case study of Tehran.

 Frontiers of Architectural Research, 5(3), 319–331.

 https://doi.org/10.1016/j.foar.2016.06.001
- Nearly three quarters of the Dutch population use smart devices | CBS. (2022, January 25). https://www.cbs.nl/en-gb/news/2021/48/nearly-three-quarters-of-the-dutch-population-use-smart-devices
- Nederlanders hebben gemiddeld 53 vierkante meter woonoppervlakte Vastgoed Actueel. (n.d.). Retrieved September 15, 2023, from https://vastgoedactueel.nl/nederlanders-hebben-gemiddeld-53-m2-woonoppervlakte/
- Needham, M. (2022, April 25). Worldwide Smart Home Devices Market Grew 11.7% in 2021 with Double-Digit Growth Forecast Through 2026, According to IDC. https://www.idc.com/getdoc.jsp?containerId=prUS49051622
- Nicklas, J.-P., Mamrot, M., Winzer, P., Lichte, D., Marchlewitz, S., & Wolf, K.-D. (2016). Use Case based Approach for an Integrated Consideration of Safety and Security Aspects for Smart Home Applications.

- Nikoofard, S., Ugursal, V. I., & Beausoleil-Morrison, I. (2011). Effect of external shading on household energy requirement for heating and cooling in Canada. Energy and Buildings, 43, 1627–1635. https://doi.org/10.1016/j.enbuild.2011.03.003
- Norman, D. (2013). THE DESIGN OF EVERYDAY THINGS REVISED AND EXPANDED EDITION.
- Onio Figueiredo, A., Figueira, J. E., Vicente, R., & Maio, R. (2016). Thermal comfort and energy performance: Sensitivity analysis to apply the Passive House concept to the Portuguese climate.

 https://doi.org/10.1016/j.buildenv.2016.03.031
- Osama, Y. (2014). INTERACTIVE MOVEMENT IN KINETIC ARCHITECTURE (Vol. 42, Issue 3).
- Osibona, O., Solomon, B. D., & Fecht, D. (2021). Lighting in the home and health: A systematic review. In International Journal of Environmental Research and Public Health (Vol. 18, Issue 2, pp. 1–20). MDPI AG. https://doi.org/10.3390/ijerph18020609
- Ouderenzorg onder grote druk: nog meer ouderen moeten voor zichzelf zorgen.

 (2022, November 24). NOS. https://nos.nl/nieuwsuur/artikel/2453794ouderenzorg-onder-grote-druk-nog-meer-ouderen-moeten-voor-zichzelfzorgen

- Over Hoogeveen Gemeente Hoogeveen. (n.d.). Retrieved October 9, 2023, from https://www.hoogeveen.nl/over-de-gemeente/over-hoogeveen
- Phong House / VHL.Architecture | ArchDaily. (n.d.). Retrieved June 10, 2023, from https://www.archdaily.com/889686/phong-house-vhrchitecture
- Pille, A. E. (2019). Empower people's perception of air and their ability to improve indoor air quality.
- Planbureau, S. en C., & Roeters, A. (2018). Personal care | Time use in the Netherlands: Edition 1. Time Use in the Netherlands: Edition 1. https://digital.scp.nl/timeuse1/personal-care
- Prognose: in 2035 vooral meer inwoners in en om grotere gemeenten | CBS. (2022). https://www.cbs.nl/nl-nl/nieuws/2022/27/prognose-in-2035-vooral-meer-inwoners-in-en-om-grotere-gemeenten
- Qian, K., Zhang, Z., Yamamoyo, Y., & Schuller, B. W. (2021, July). Artificial

 Intelligence Internet of Things for the Elderly.

 https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9467679
- Razzaghmanesh, M., Beecham, S., & Salemi, T. (2016). The role of green roofs in mitigating Urban Heat Island effects in the metropolitan area of Adelaide, South Australia. Urban Forestry & Urban Greening, 15, 89–102. https://doi.org/10.1016/j.ufug.2015.11.013

- Reaz. (2013). Artificial Intelligence technologies for advances smart home impelemtation.
- Rego, A., Ramírez, P. L. G., Jimenez, J. M., & Lloret, J. (2022). Artificial intelligent system for multimedia services in smart home environments. Cluster Computing, 25(3), 2085–2105. https://doi.org/10.1007/s10586-021-03350-z
- Ross, D. A., Hinton, R., Melles-Brewer, M., Engel, D., Zeck, W., Fagan, L., Herat, J., Phaladi, G., Imbago-Jácome, D., Anyona, P., Sanchez, A., Damji, N., Terki, F., Baltag, V., Patton, G., Silverman, A., Fogstad, H., Banerjee, A., & Mohan, A. (2020). Adolescent Well-Being: A Definition and Conceptual Framework. Journal of Adolescent Health, 67(4), 472–476. https://doi.org/10.1016/j.jadohealth.2020.06.042
- Sam Kubba. (2010). Indoor Environmental Quality. https://doi.org/10.1016/B978-1-85617-691-0.00007-2
- Sepasgozar, S., Karimi, R., Farahzadi, L., Moezzi, F., Shirowzhan, S., Ebrahimzadeh, S. M., Hui, F., & Aye, L. (2020). A systematic content review of artificial intelligence and the internet of things applications in smart home. Applied Sciences (Switzerland), 10(9). https://doi.org/10.3390/app10093074
- Smart home statistics & facts | Statista. (n.d.). Retrieved April 29, 2023, from https://www.statista.com/topics/2430/smart-homes/#topicOverview
- Smart Homes That Use Domotics To Improve Quality of Life | ArchDaily. (n.d.).

 Retrieved September 23, 2023, from

- https://www.archdaily.com/906374/smart-homes-that-use-domotics-to-improve-quality-of-life
- Steeds meer Nederlanders gebruiken slimme apparaten | Centraal Bureau voor
 Statistiek. (2022, December 16). https://www.cbs.nl/nlnl/nieuws/2022/50/steeds-meer-nederlanders-gebruiken-slimme-apparaten
- Suzuki, H., Kiyonobu, Y., Mogi, T., Matsushita, K., Hanada, M., Suzuki, R., & Niijima, N. (2018). An Updated Watch-over System Using an IoT Device, for Elderly People Living by Themselves.
- van der Staak, M., Schilder, F., & Daalhuizen, F. (2020). Samen en oud in 2030.
- Vazquez, F. I., & Kastner, W. (2012). Advances in Intelligent and Soft Computing 153

 Editor-in-Chief. http://www.springer.com/series/4240
- Verkocht: Meerval 39 7908 WT Hoogeveen [funda]. (n.d.). Retrieved May 25, 2023, from https://www.funda.nl/koop/verkocht/hoogeveen/huis-42934048-meerval-39/
- Vrooman, R. M. (2017). Enhancing Privacy in Smart Home Ecosystems Using

 Cryptographic Primitives and a Decentralized Cloud Entity.

 http://repository.tudelft.nl/.
- "Welkom in de slimste woning van Nederland." (n.d.). Retrieved August 30, 2023, from

- https://www.thuiscomfort.nl/content/thuiscomfort/interviews/smarthomes-slimste-woning-van-nederland-.html#
- Wilson, C., Hargreaves, T., & Hauxwell-Baldwin, R. (2017). Benefits and risks of smart home technologies. Energy Policy, 103, 72–83. https://doi.org/10.1016/J.ENPOL.2016.12.047
- Woningvoorraad; woningtype op 1 januari, regio. (n.d.). Retrieved September 15, 2023, from https://www.cbs.nl/nl-nl/cijfers/detail/85035NED
- Woonplaats Hoogeveen in cijfers en grafieken | AlleCijfers.nl. (n.d.). Retrieved
 October 9, 2023, from https://allecijfers.nl/woonplaats/hoogeveen/
- Yang, H., Lee, W., & Lee, H. (2018). IoT Smart Home Adoption: The Importance of Proper Level Automation. Journal of Sensors, 2018.

 https://doi.org/10.1155/2018/6464036
- Yang, R., & Newman, M. W. (2013). Learning from a learning thermostat: Lessons for intelligent systems for the home. UbiComp 2013 Proceedings of the 2013
 ACM International Joint Conference on Pervasive and Ubiquitous Computing, 93–102. https://doi.org/10.1145/2493432.2493489
- Yang, T., Zhao, L., Li, W., Wu, J., & Zomaya, A. Y. (2021). Towards healthy and cost-effective indoor environment management in smart homes: A deep reinforcement learning approach. Applied Energy, 300. https://doi.org/10.1016/j.apenergy.2021.117335

Zainuddin, N., Daud, M., Ahmad, S., Maslizan, M., & Abdullah, S. A. L. (2021). A study on privacy issues in internet of things (IoT). 2021 IEEE 5th International Conference on Cryptography, Security and Privacy, CSP 2021, 96–100. https://doi.org/10.1109/CSP51677.2021.9357592

Reflection

- 1. The relation between the MSc Building Technology and this graduation topic is that a building technologist provides technical building design services; in this case, an existing house will be transformed into a futuristic house: a smart house.
- 2. Population aging and solutions are needed for the well-being of the elderly. These solutions can be developed in every field, including architecture and building technology.