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ARTICLE

Nonlinear dynamic characterization of two-
dimensional materials
D. Davidovikj 1, F. Alijani 2, S.J. Cartamil-Bueno 1, H.S.J. van der Zant 1, M. Amabili 3 &

P.G. Steeneken 1,2

Owing to their atomic-scale thickness, the resonances of two-dimensional (2D) material

membranes show signatures of nonlinearities at forces of only a few picoNewtons. Although

the linear dynamics of membranes is well understood, the exact relation between the

nonlinear response and the resonator’s material properties has remained elusive. Here we

show a method for determining the Young’s modulus of suspended 2D material membranes

from their nonlinear dynamic response. To demonstrate the method, we perform measure-

ments on graphene and MoS2 nanodrums electrostatically driven into the nonlinear regime at

multiple driving forces. We show that a set of frequency response curves can be fitted using

only the cubic spring constant as a fit parameter, which we then relate to the Young’s

modulus of the material using membrane theory. The presented method is fast, contactless,

and provides a platform for high-frequency characterization of the mechanical properties of

2D materials.
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The remarkable mechanical properties of two-dimensional
(2D) material membranes have sparked interest for
potential uses as pressure1, 2, gas3, 4, and mass5, 6 sensors.

For such applications, it is essential to have accurate methods for
determining their mechanical properties. One of the most striking
properties of these layered materials is their high Young’s mod-
ulus. To measure the Young’s modulus, a number of static
deflection techniques have been used, including atomic force
microscopy (AFM)7–10, the pressurized blister test11, and the
electrostatic deflection method12, 13. The most widely used
method is AFM, where by performing a nanoindentation mea-
surement at the center of a suspended membrane, its pre-tension
(n0) and Young’s modulus (E) are extracted from the
force–deflection curve. Despite the large number of experimental
and theoretical studies14, 15, the exact physics behind the
elasticity of 2D materials is still a subject of debate16. This debate
is mainly motivated by the large spread in values reported in
literature (Egraphene= 430–1200 GPa)14, which has been
attributed to variations in the material properties and fabrication
techniques17. As a consequence, there is a significant interest in
methods for characterizing the mechanical properties of 2D
materials.

Although AFM has been the method of choice for static stu-
dies, laser interferometry has proven to be an accurate tool for the
dynamic characterization of suspended 2D materials, with
dynamic displacement resolutions better than 20 fm/

ffiffiffiffiffiffi
Hz

p
at

room temperature18–20. As for very thin structures the resonance
frequency is directly linked to the pre-tension in the membrane,
these measurements have been used to mechanically
characterize 2D materials in the linear limit18, 19, 21, 22. At high
vibrational amplitudes, nonlinear effects start playing a role,
which have lately attracted a lot of interest23–28. In particular,
Duffing-type nonlinear responses have been regularly
observed18–20, 29, 30. These geometrical nonlinearities, however,
have never been related to the intrinsic material properties of the
2D membranes.

Here, we introduce a method for determining the Young’s
modulus of 2D materials by fitting their forced nonlinear
Duffing response. Using nonlinear membrane theory, we derive
an expression that allows us to relate the fit parameters to
both the pre-tension and Young’s modulus of the material.
The proposed method offers several advantages. First, the
excitation force is purely electrostatic, requiring no physical
contact with the membrane that can influence its shape31, 32.
Second, the on-resonance dynamic operation significantly
reduces the required actuation force, compared with
the static deflection methods. Third, the high-frequency
resonance measurements allow for fast testing by averaging
over millions of deflection cycles per second, using
mechanical frequencies in the MHz range. Lastly, the
membrane motion is so fast that slow viscoelastic deformations
due to delamination, slippage, and wall adhesion effects are
strongly reduced. To demonstrate the method, we measure and
analyze the nonlinear dynamic response of suspended 2D
nanodrums.

Results
Measurements. The samples consist of cavities on top of which
exfoliated flakes of 2D materials are transferred using a dry
transfer technique33. One of the measured devices, a few-layer
(FL) graphene nanodrum, is shown in the inset of Fig. 1a.
The measurements are performed in vacuum at room
temperature. Electrostatic force is used to actuate the membrane
and a laser interferometer is used to detect its motion, as
described in refs. 18–20, 22. A schematic of the measurement setup

is shown in Fig. 1a. The details on the sample preparation
and measurement setup are described in the “Methods” section
below.

Figure 1b shows a set of calibrated frequency response curves
of the fundamental mode of a graphene drum (device 1, with
thickness h= 5 nm and radius R= 2.5 μm) driven at different ac
voltages (Vac). The dc voltage is kept constant (Vdc= 3 V)
throughout the entire measurement with Vdc � Vac. All
measurements are taken using upward frequency sweeps. The
RMS force FRMS is the root-mean-square (RMS) of the
electrostatic driving force. For high-driving amplitudes (FRMS>
15 pN), the resonance peak starts to show a nonlinear hardening
behavior, which contains information on the cubic spring
constant of the membrane.

Fitting the nonlinear response. We can approximate the non-
linear response of the fundamental resonance mode by the
Duffing equation (Supplementary Note 1):

meff€x þ c _x þ k1x þ k3x
3 ¼ ξFel cosðωtÞ; ð1Þ

where x is the deflection of the membrane’s center, c is the
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Fig. 1 Measurement setup and measured frequency response of device 1. a
Schematic of the measurement setup: a laser interferometer setup is used
to read out the motion of the nanodrum. The Si substrate is grounded and,
using a bias-tee (BT), a combination of ac voltage and dc voltage is applied
to electrostatically actuate the motion of the drum. This motion modulates
the reflected laser intensity and the modulation is read out by a photodiode.
Inset: an optical image of a FL graphene nanodrum (scale bar: 2 μm).
b Frequency response curves of the calibrated root-mean-square (RMS)
motion amplitude for increasing electrostatic driving force. The onset of
nonlinearity is visible above FRMS= 15 pN. The color of the curves indicates
the corresponding driving force
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damping constant, k1 and k3 are the linear and cubic spring
constants, and meff= αm and ξFel are the mass and the applied
electrostatic force corrected by factors (α and ξ) that account for
the mode shape of the resonance (for a rigid-body vertical motion
of the membrane α and ξ are both 1). As shown in the Supple-
mentary Note 1, for the fundamental mode of a fixed
circular membrane ξ= 0.432 and α= 0.269. The parameters in
the Duffing equation (Eq. (1)) are related to the resonance fre-
quency ω0 (ω0= 2πf0) and the Q-factor by Q=ω0meff/c and
ω2
0 ¼ k1=meff .
The fundamental resonance frequency (f0= 14.7 MHz) is

extracted from the linear response curves at low-driving
powers (Fig. 1b), and is directly related to the pre-tension (n0)
of the membrane: n0 ¼ 0:69π2f 20 R

2ρh, where ρ is the mass
density of the membrane (for device 1, n0= 0.107 Nm−1).
To fit the set of nonlinear response curves, the steady-state
solution of the Duffing equation (Eq. (1)) is converted to a
set of algebraic equations using the harmonic balance method
(Supplementary Note 2). Using these equations, the entire set of
curves can then be fitted by a least-squares optimization
algorithm. As N curves are fitted simultaneously, the expected
fitting error is roughly a factor

ffiffiffiffi
N

p
lower than that of single curve

fit.
The Q-factor is implicitly related to k3 by a function

Qi=Qi(k3, Amax,i, Fel,i), where Amax,i are the peak amplitudes
and Fel,i are the driving force amplitudes for each of the measured
curves34, 35 (Supplementary Note 2). The amplitudes Amax,i are
found from the experimental data and the whole dataset is fitted
using a single fit parameter: the cubic spring constant k3. The
results of this procedure are presented in Fig. 2a–d, which shows
four frequency response curves and their corresponding fits. The
solutions of the steady-state amplitude for the Duffing equation
(red curves in Fig. 2) are plotted by finding the positive real roots

x2 of:

ξ2F2
el ¼ ω2c2 þm2

eff ω2 � ω2
0

� �2� �
x2

� 3
2meff ω2 � ω2

0

� �
k3x4 þ 9

16 k
2
3x

6:

ð2Þ

A good agreement between fits and data is found using the
single extracted value k3= 1.35 × 1015 Nm−3, which demonstrates
the correspondence between the measurement and the underlying
physics. We note that at higher driving amplitudes, we also
observe a reduction in the Q-factor (by nearly 10% at the highest
measured driving amplitude). This can be a signature of
nonlinear damping mechanisms, which is in line with previously
reported measurements on graphene mechanical
resonators23, 24, 36. In the following section, we will lay out the
theoretical framework to relate the extracted cubic spring
constant k3 to the Young’s modulus of the membrane.

Theory. The nonlinear mechanics of a membrane can be related
to its material parameters via its potential energy. The potential
energy of a radially deformed circular membrane with isotropic
material properties can be approximated by a function of the
form:

U ¼ 1
2
C1n0x

2 þ 1
4
C3ðνÞ EhπR2

x4; ð3Þ

where R and h are the membrane’s radius and thickness,
respectively. Bending rigidity is neglected, which is a good
approximation for h/R< 0.00137. C1 and C3(ν) are dimensionless
functions that depend on the deformed shape of the membrane
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Fig. 2 Measurements and fits of the nonlinear frequency response curves of device 1. Measured traces (blue scatter plot) and the corresponding fits (red
curves) showing both the stable (solid line) and the unstable (dashed line) solutions of the Duffing equation. a–d Frequency response curves of the device
from Fig. 1 at four different driving forces, denoted in the top left corner of each panel, along with the extracted Q-factors. The extracted cubic spring
constant is k3= 1.35 × 1015 Nm−3
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and the Poisson’s ratio ν of the material. The term in Eq. (3)
involving C1 represents the energy required to stretch a mem-
brane under a constant tensile pre-stress, the C3 term signifies
that the tension itself starts to increase for large membrane
deformations. The out-of-plane mode shape for the fundamental
resonance mode of a circular membrane is described by a zero-
order Bessel function of the first kind (J0(r)). Numerical calcu-
lations of the potential energy (3) of this mode give C1= 1.56π
and C3(ν)= 1/(1.269 − 0.967ν − 0.269ν2) (Supplementary Note 1;
Supplementary Fig. 1). Using Eq. (3), the nonlinear
force–deflection relation of circular membranes is given by

F ¼ dU
dx

¼ k1x þ k3x
3 ¼ C1n0x þ C3ðνÞ EhπR2

x3: ð4Þ

The functions C1 and C3 have previously been determined for
the potential energies of statically deformed membranes by
AFM9, 38 and uniform gas pressure39, 40. Their functional
dependence depends entirely on the shape of the deformation
of the membrane. In Table 1, we summarize the functional
dependences of k1 and k3 for the three types of membrane
deformation.

By combining Eq. (4) with the obtained functions for C1 and C3

from Table 1 (last row), the Young’s modulus E can be
determined from the cubic spring constant k3 by

E ¼ ð1:27� 0:97ν � 0:27ν2ÞR2

πh
k3: ð5Þ

From this equation, with the value of k3 extracted from the fits,
a Young’s modulus of E= 594± 45 GPa is found, which is in
accordance with literature values, which range from 430 to 1200
GPa14, 17. By calculating the standard deviation out of nine
repeated measurements, the measurement error was determined
to be 8%, which is comparable to other methods for determining
the Young’s modulus of 2D materials7. The numerical error in the
Young’s modulus from the fitting procedure is typically <0.5%
(defined as the 95% confidence interval of the fit), as determined
from the raw data and the fits, like those shown in the
Supplementary Figs. 7–15. Our measurement error is therefore
mainly experimental. Using E= 594 GPa, the nonlinear dynamic
response of the system can be modeled for different driving
powers and frequencies. Figure 3 shows color plots representing
the RMS amplitude of the motion of the membrane center as a
function of frequency and driving force. Excellent agreement is
found between the experiment (Fig. 3a) and the model (Fig. 3b).

To confirm the validity of the method, we performed an AFM
nanoindentation measurement on the same graphene drum. A

force–deflection measurement, taken at the center of the drum, is
plotted in Fig. 4 (black dots). The curve is fitted by the AFM
force–deflection equation given in Table 1, yielding E= 591 GPa
and n0= 0.093 Nm−1 (red curve in Fig. 4). The blue curve shows
the expected force–deflection curve based on the values for the
Young’s modulus and pre-tension extracted from the nonlinear
dynamic response fits. The two curves are in close agreement.

To demonstrate the versatility of the method, additional
measurements on two MoS2 nanodrums from the same flake are
presented in Fig. 5a and b. The extracted Young’s moduli are: (a)
E= 315± 23 GPa and (b) E= 300± 18 GPa. As with device 1, the
measurement error was determined by taking the standard
deviation from nine repeated measurements. These numbers are
also in agreement with literature values (EMoS2 ¼ 140� 430
GPa9, 14). The extracted pre-tension of the drums is (a) n0= 0.22
Nm−1 and (b) n0= 0.21 Nm−1.

Discussion
There are several considerations that one needs to be aware of
when applying the proposed method. In an optical detection
scheme, as the one presented in this work, the cavity depth has to
be optimized so that the photodiode voltage is still linearly related
to the motion at high amplitudes and the power of the readout
laser has to be kept low to avoid significant effects of optothermal
back-action41. The proposed mathematical model assumes that
the bending energy is much smaller than the membrane energy.
This is valid for membranes under tension (thickness-to-radius
ratio h/R< 0.001)37, as is most often the case with suspended 2D
materials18, 19, 21. It is noted that the electrostatic force also has a
nonlinear spring-softening component due to its displacement
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Fig. 3 Comparison between the measured and the modeled response.
Comparison of the RMS motion amplitude (xRMS) between experiment (a)
and model (b) using the fitted value for the Young’s modulus
(E= 594 GPa) for the device shown in Fig. 1 (device 1)

Table 1 Values for k1 and k3 for different deformation shapes

k1 k3 Def. shape

AFM πn0 1
ð1:05�0:15ν�0:16ν2Þ3

Eh
R2

ΔP 4πn0 8π
3ð1�νÞ

Eh
R2

This work 1.56πn0 π
1:27�0:97ν�0:27ν2

Eh
R2

k1 and k3 for AFM nanoindentation (AFM), bulge testing of membranes (ΔP) and the nonlinear
dynamics method (this work) for the fundamental resonance mode. The corresponding
deformation shape, which determines the functional dependence of k1 and k3, is shown on the right
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amplitude dependence. However, in the current study, the
vibration amplitudes are much smaller than the cavity depth and
this contribution can be safely neglected (see Supplementary
Note 3 for derivation). In addition, the method requires knowl-
edge of the mass of the resonator, which might be affected by
contamination. In the presented data, the close agreement
between the extracted Young’s modulus and the one determined
by AFM (which is independent of the mass of the membrane)
suggests that the mass estimate is accurate and effects of con-
tamination are small.

Compared to conventional mechanical characterization meth-
ods7–13, the presented method provides several advantages. First,
no physical contact to the flake is required. This prevents effects
such as adhesion and condensation of liquids between an AFM
tip and the membrane, that can influence the measurements.
Moreover, the risk of damaging the membrane is significantly
reduced. The on-resonance operation allows the usage of very
small actuation forces, as the motion amplitude at resonance is
enhanced by the Q-factor. Unlike AFM, where the force is con-
centrated in one point, here the force is more equally distributed
across the membrane, resulting in a more uniform stress dis-
tribution. In addition, for resonators with a high-quality factor,
the mode shape of vibrations is practically independent of the
shape or geometry of the actuator.

The high-frequency nature of the presented technique is
advantageous, since it allows for fast characterization of samples,
and might even be extended for fast wafer-scale characterization
of devices. Every point of the frequency response curve corre-
sponds to many averages of the full force–deflection curve
(positive and negative part), which reduces the error of the
measurement and eliminates the need for offset calibration of the
zero point of displacement34. The close agreement between the
AFM and nonlinear dynamics value for the Young’s modulus E
indicates that viscoelasticity, and other time-dependent effects
like slippage and relaxation, are small in graphene. Therefore, the
dynamic stiffness is practically coinciding with the static stiffness.
For future studies, it is of interest to apply the method to study
viscoelastic effects in 2D materials, where larger differences
between AFM and resonant characterization measurements are
expected.

To test the robustness of the method, we perform a set of nine
measurements on another graphene drum (device 4, with thick-
ness h= 8 nm and radius R= 2 μm), under different conditions.
Each of the measurements (blue and red dots in Fig. 6a) repre-
sents a fit of eight nonlinear response curves at different driving
powers for a fixed dc voltage (raw data and fits are shown in
Supplementary Figs. 7–15). The same set of measurements are
presented in the histogram given in Fig. 6b. The extracted average
value of the Young’s modulus is 559± 23 GPa, which is in the
same order of magnitude as the one for device 1 (where all nine
measurements were taken at a single dc voltage). In Fig. 6c, we
plot the raw data (black dots) and the fit (red curve) of the
nonlinear response curve at Vdc= 0.9 V and FRMS= 0.42 nN
using the extracted average Young’s modulus from Fig. 6a and b.
The data and the fit show good agreement, which confirms that
the method is robust against measurement parameter variations.
The robustness of the method can also be assessed qualitatively
from the effect of the Young’s modulus on the linear response
curve as shown in Supplementary Note 4 and Supplementary
Fig. 2. There we plot the predicted response of the drum using
different values of the Young’s modulus to visualize its effect on
the shape of the nonlinear frequency response curves.

In Table 2, we show a summary of the measurements of the
four devices presented in this work. In all four cases, the error in
the Young’s modulus (σE/E) is <8% and the values of the Young’s
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moduli of the two graphene and the two MoS2 drums are within
each other’s error bars. The presented method can prove to be
useful for fast statistical analysis of the spread in material
properties13, 42–44 and variability of device properties in future 2D
material-based products.

In conclusion, we provide a contactless method for char-
acterizing the mechanical properties of suspended 2D materials
using their nonlinear dynamic response. A set of nonlinear
response curves is fitted using only one fit parameter: the cubic
spring constant. Mathematical analysis of the membrane
mechanics is used to relate the Duffing response of the membrane
to its material and geometrical properties. These equations are
used to extract the pre-tension and Young’s modulus of both
graphene and MoS2, which are in close agreement with nanoin-
dentation experiments. The non-contact, on-resonant, high-
frequency nature of the method provides numerous advantages,
and makes it a powerful alternative to AFM for characterizing the
mechanical properties of 2D materials. We envision applications
in metrology tools for fast and non-contact characterization of 2D
membranes in commercial sensors and actuators.

Methods
Sample fabrication. A chip with cavities is fabricated from a thermally oxidized Si
wafer, with a SiO2 thickness of 285 nm, using standard lithographic and metal

deposition techniques. Circular cavities are etched into the oxide by using a 100 nm
gold-palladium (Au0.6Pd0.4) hard mask, which also functions as an electrical
contact to the 2D flake. The final depth of the cavities is g= 385 nm and their radii
are R = 2–2.5 μm. The flakes of graphene and MoS2 are exfoliated from natural
crystals.

Measurement setup. The sample is mounted in a vacuum chamber (2 × 10−6

mbar) to minimize damping by the surrounding gas. Using the silicon wafer as a
backgate, the membrane is driven by electrostatic force and its dynamic motion is
detected using a laser interferometer (see ref. 20). The detection is performed at the
center of the drum (using a laser power of 0.42 mW), using a Vector Network
Analyzer (VNA). A dc voltage (Vdc) is superimposed on the ac output of the VNA
(Vac) through a bias-tee (BT), such that the small-amplitude driving force at fre-
quency ω is given by Fel(t) = ξε0R2πVdcVac cos(ωt)/g2. Even though the determi-
nation of the force is mathematically straightforward, the calculated force does not
always match the force felt by the resonator, because of uncertainties in deter-
mining the gap size g (due to membrane slack), the dc voltage Vdc (due to residual
charge on the 2D flake), and the capacitance of the device (due to fringe fields). To
cross-check the value of the driving force, we employ a second method to deter-
mine that it is based on the peak RMS amplitude ðxRMSjω¼ω0

Þ of the calibrated
linear frequency response curves using FRMS ¼ ω0

2meff
Q xRMS. The procedure is dis-

cussed in more detail in the Supplementary Note 5 and an example of the force
derivation is shown in Supplementary Fig. 3. The measured VNA signal (in V/V) is
converted to xRMS, using a calibration measurement of the thermal motion taken
with a spectrum analyzer18, 20, 45. The calibration procedure and the uncertainties
stemming from the assumption of linear transduction are discussed in detail in
Supplementary Notes 6 and 7 and Supplementary Figs. 4 and 5. The temperature
increase due to laser heating is estimated in Supplementary Fig. 6.

Data availability. The raw data that support the findings of this study are available
from the corresponding authors on request.
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