

Delft University of Technology

No way back? An SDN protocol for directed IoT networks

Cerqueira Afonso Alves, Renan; Borges Margi, Cintia; Kuipers, Fernando

DOI
10.23919/WONS.2019.8795491
Publication date
2019
Document Version
Accepted author manuscript
Published in
2019 15th Annual Conference on Wireless On-demand Network Systems and Services, WONS 2019 -
Proceedings

Citation (APA)
Cerqueira Afonso Alves, R., Borges Margi, C., & Kuipers, F. (2019). No way back? An SDN protocol for
directed IoT networks. In 2019 15th Annual Conference on Wireless On-demand Network Systems and
Services, WONS 2019 - Proceedings (pp. 1-8). Article 8795491 (2019 15th Annual Conference on Wireless
On-demand Network Systems and Services, WONS 2019 - Proceedings).
https://doi.org/10.23919/WONS.2019.8795491
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.23919/WONS.2019.8795491
https://doi.org/10.23919/WONS.2019.8795491

No way back? An SDN protocol for directed IoT
networks

Renan Cerqueira Afonso Alves
University of São Paulo

São Paulo, Brazil
renanalves@usp.br

Cintia Borges Margi
University of São Paulo

São Paulo, Brazil
cintia@usp.br

Fernando A. Kuipers
Delft University of Technology

Delft, The Netherlands
f.a.kuipers@tudelft.nl

Abstract—The Internet of Things (IoT) has and will continue
to permeate many aspects of everyday life. However, IoT de-
vices often use wireless communication to transfer their data,
which may experience ambient noise and multipath fading.
This, together with the wide heterogeneity in types of devices,
leads to the emergence of unidirectional links in IoT networks.
Surprisingly, many routing protocols for wireless networks either
do not account for such links or employ radical mechanisms, like
blacklisting. In this paper, we leverage the features of Software-
Defined Networking (SDN) to develop a network discovery
algorithm that is able to cope with unidirectional links, while
containing the control overhead. We provide a proof-of-concept
implementation of an SDN protocol for constrained devices that
uses our algorithm and perform experiments. The experiment
results show that our solution is scalable and performs well both
for unidirectional links as well as for fully bidirectional networks.

Index Terms—Software-Defined Networking, Unidirectional
Links, Wireless Sensor Networks

I. INTRODUCTION

The Internet of Things (IoT) is quickly expanding into
a wide spectrum of human activities, from agriculture to
manufacturing and smart cities, with industry likely to invest
billions of dollars in IoT in the next few years [8]. The high
expectations for IoT have spurred a lot of research from the
academic community, for example on efficient medium access
schemes, middleware, security, and routing protocols [14].

When it comes to the design of communication protocols for
IoT networks, researchers usually assume the communication
link between devices is bidirectional. However, unidirectional
links are widely present in wireless networks and cannot be
ignored. Even in homogeneous setups, links may become
unidirectional due to non-isotropic antennas, varying ambient
noise, and multipath fading [22]. Moreover, an IoT network
tends to be composed of diverse devices with different energy
resources and radio power, further increasing the occurrence
of unidirectional links. For example, a gateway might have
stronger transmission power than the nodes it reaches.

Regardless of the cause of unidirectionality, dealing with
unidirectional links requires dedicated procedures. If a link is

Renan C. A. Alves is supported by grants #2016/21088-1 and #2018/11295-
5, São Paulo Research Foundation (FAPESP). Cintia B. Margi is supported
by CNPq research fellowship #307304/2015-9. This study was financed in
part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior -
Brazil (CAPES) - Finance Code 001.

bidirectional, receiving a message is sufficient to know the
receiver is also able to reach the sender. On the other hand,
knowledge about the presence of a unidirectional link must be
advertised back to the sender through an alternative path.

Consider the example network in Figure 1. All links sur-
rounding node 2 are bidirectional, therefore any message
received from nodes 1, 3, or 5 is enough to establish commu-
nication between them and node 2. Differently, unidirectional
links have to be advertised to be used. The directed link from
node 6 to node 3, can only be used if node 3 advertises the
link’s existence through node 7. In this case, there is a short
detour to relay the information, however the shortest path to
advertise the unidirectional link from node 4 to 7 is four hops
long (7 → 3 → 2 → 1 → 4).

Fig. 1. Network with unidirectional links. How can node 4 know it reaches 7?

The main challenge is finding a reverse path corresponding
to unidirectional links in an efficient manner. As illustrated by
the example, reverse paths could potentially be long.

An alternative approach is let a central entity decide whether
the unidirectional links should be used or not. For example, all
nodes in Figure 1 could acquire their inbound neighborhood
(therefore finding a reverse path is not necessary) and send it
to node 1, which acts as the central entity. Subsequently, node
1 could calculate and distribute the routes to the other nodes.

Centralization of route decision-making matches the
Software-Defined Networking (SDN) paradigm, a technology
with growing usage in wired networks. A key component of
SDN is the southbound protocol, which specifies the transac-
tions between a logically centralized controller and the SDN-
enabled nodes. OpenFlow [18] is an example of a popular
southbound protocol. Its specification contains message for-
mats and state machines for configuring the flow tables and
obtaining network state information. The southbound protocol
may rely on other protocols to perform tasks related to network
control, such as neighbor discovery and controller discovery.

A neighbor discovery protocol is responsible for gather-
ing and maintaining neighborhood information, i.e., learning
reachability information regarding other network nodes. This
includes estimating the link quality between adjacent nodes
and deciding when to transmit information to the controller.

The goal of a controller discovery protocol is to find the
next hop towards the controller at network bootstrap. This
is necessary as the flow tables are empty at the beginning
and the nodes need to send neighborhood information and
flow requests to the controller. The controller overwrites the
decisions taken by the controller discovery protocol once it
acquires enough topological information.

SDN has not yet been widely used in the context of wireless
networks, but the few known efforts to softwarize constrained
wireless networks are not equipped with appropriate discov-
ery algorithms to support unidirectional links. Instead, nodes
discover their neighbors by receiving messages and assuming
the link is bidirectional.

The problem addressed in this paper is to find a centralized
solution for routing in networks that contain unidirectional
links. In particular, we develop neighbor and controller dis-
covery algorithms that are embedded in an SDN framework.

Our main contributions in this paper are:
• We present, in Sections II and III, the underlying dis-

covery algorithms for the centralized SDN-based solution
to deal with unidirectional links, and the corresponding
proof-of-concept implementation.

• In Section IV, we describe the experiment scenarios,
including protocols, topology and gathered metrics. We
perform various experiments in Section V to assess the
overhead, data delivery, data packet delays, and link
discovery rates of our solution.

• Our solution is shown to perform better than a naive
approach in the presence of directional links and it has
similar performance to traditional bidirectional-focused
solutions in the absence of unidirectional links.

II. IMPROVED NEIGHBOR DISCOVERY

The classic technique to perform neighbor discovery is to
broadcast beacon packets at constant intervals and to assume
the beacon sender is reachable by the receiver. However, due to
the centralized nature of SDN, this assumption is not needed.

Advantages of the beacon broadcasting approach are the
simplicity of the protocol and the asynchronous operation.
Unfortunately, this simplicity leads to a waste of resources as
beacon packets do not serve any other purpose and increase
medium congestion.

By leveraging overhearing (Section II-A) and non-constant
beacon intervals (Section II-B), we decrease the use of discov-
ery packets at the expense of a small increase in complexity.

In Section II-C, we describe how to integrate the task of
neighbor discovery with link quality estimation. Furthermore,
since discovery algorithms often focus on adding nodes in the
neighbor tables and neglect node departure detection, we de-
scribe a scheme for detecting node unreachability considering
unidirectional links in Section II-D.

A. Neighbor discovery by overhearing

Neighbor discovery by overhearing, also known as passive
neighbor discovery, is an inexpensive way of detecting sur-
rounding nodes [3], [25]. However it may yield inconsistent
discovery delays and hinder node departure detection. There-
fore, we propose to jointly use passive and active discovery.
The purpose of beacon packets is to advertise sender existence.
However, this can be achieved by any broadcast packet, as long
as the neighbor discovery protocol is informed of the reception
and the addressing information is correct. Additionally, due to
the broadcast nature of a wireless medium, unicast packets
may also be used for discovery, if the radio operates in
promiscuous mode.

Relying solely on overhearing increases the uncertainty of
the discovery delay, as there are no guarantees of packet
transmission by other protocols or applications. To overcome
this drawback, a node should send periodic beacons in the
absence of other packet transmissions. To achieve the desired
behavior, each node sets a timer to transmit a beacon packet
according to the default interval. Every time any packet is suc-
cessfully transmitted, the timer is reset, postponing the beacon
transmission. This ensures a minimum packet transmission rate
to guarantee continuous discovery, while avoiding unnecessary
beacons.

B. Adaptive beacon interval

Maintaining a constant beacon transmission rate is hardly
the optimal strategy for saving network resources. A node
should transmit more often at boot, to enforce a quick detec-
tion by peer nodes, while less packets may need to be trans-
mitted when the network connections are stable. Therefore
varying the timer interval may decrease discovery delay and
further decrease the number of discovery packets. By default,
we set the initial interval to 10 seconds plus a random value
based on the node id, to avoid repeated collisions. Every time a
beacon is transmitted, the interval is doubled up to a maximum
value (set to 2 minutes).

Using adaptive beacon intervals integrates almost seam-
lessly with overhearing. The only consequence is that, as the
transmission timer is increased when a beacon is transmitted
and the overhearing mechanism avoids beacon transmission,
it may take longer to reach the maximum beacon interval.

C. Link quality estimation (LQE)

To the best of our knowledge, there is hardly any work on
link quality estimation over unidirectional links. Most packet
reception ratio (PRR)-based estimators are based on acknowl-
edged messages and calculate the metric at the transmitter
(such as ETX [6], F-ETX [4], and EAR [13]). An alternative to
PRR-based estimators are the hardware-based estimators, such
as LQI and RSSI. However, such estimators are hardware-
dependent and inaccurate [2].

ETF (Expected number of Transmissions over Forward
links) estimates the delivery at the receiver by the ratio of
received probe packets over the transmitted probe packets [22].

However, implementation details are not provided, for ex-
ample, how a node knows the number of transmitted probe
packets, what triggers a metric calculation, and how to estimate
the time window.

In this paper we adapt the ETF mechanism by filling in
the missing gaps. In practical terms, the mechanism we use is
close to the Moving Average algorithm described by Woo and
Culler [24], but we estimate the link quality at the receiver
and do not rely on link-layer ACKs. We also make use of the
overhearing feature to reduce the number of probe packets.

The receiver node maintains the status history (success or
failure) of the last n messages from each inbound neighbor.
However, as lost messages are not detected, the history is
updated only upon successfully receiving a message.

The number of lost messages between successful receptions
are calculated according to the link-layer sequence numbers.
Since it is assumed that all packets are overheard, the dif-
ference between the current and the last received sequence
number represents the number of packet losses plus one.

The link quality is estimated as the number of losses over
the number of entries in the history. The loss rate is preferred
over the success rate to provide an additive routing metric.

The history size is a key parameter, as it directly influences
the estimator reactivity, stability and granularity. Also, in
the context of Software-Defined Wireless Sensor Networking
(SDWSN), LQE is also responsible for triggering the ND
algorithm to send a neighbor report packet to the controller due
to differences between the last reported link quality estimate
and the current estimate.

To set the history size and the controller advertisement
threshold, we simulated packet transmissions by sampling
binomial distributions with varying success rates. Based on our
results, a history size of 16 entries combined with a threshold
of 12.5% presents a reasonable tradeoff between accuracy
and reactivity. This LQE integrates well with the overhearing
feature, as more information is gathered with less signaling.

D. Node Unreachability Detection

Detecting node departure is a tricky task as both false
positives and false negatives lead to dire consequences to the
established flows, causing route recalculations and decreasing
the network packet delivery rate.

If a node knows it is moving or its battery is low, it could
send a message advertising this information to the neigh-
borhood (active departure detection). However, the devices
are usually not provided with appropriate hardware to obtain
such information. Also, the cause of the link failure is often
oblivious to the node, e.g., due to environmental changes.
Therefore, we focus on passive node departure detection. The
periodic beacon transmission is the baseline for the detection,
as it sets a minimum packet transmission rate.

A receiving node knows at least one packet was lost if it
has not received messages from a given neighbor for a time
interval greater than the current beacon interval. As the beacon
interval is not constant, the interval must be included within
the packets, increasing the beacon packet size.

A neighbor is removed from the neighbor table if it fails
to deliver messages for a period longer than a multiple of the
beacon interval, the unreachability threshold t.

The threshold t is precalculated based on the current esti-
mated loss rate r, considering a maximum false negative rate
of 1%, that is, the minimum t such that rt < 1%. The value of
t is limited to a minimum of 2, to avoid false positives, and to
a maximum of 8, to avoid extending the departure detection.

III. IMPROVED CONTROLLER DISCOVERY

The controller discovery problem is inherent to SDWSN and
requires a global algorithm to solve the general unidirectional
link case. Particularly in unidirectional circle topologies, such
as illustrated in Figure 2a, a global algorithm is required.
For example, the only way for node 7 to know it reaches
the controller directly is for that information to propagate via
node 1 throughout node 6.

(a) (b) (c)

Fig. 2. a) Unidirectional circle. b) Network with unidirectional links and a
bidirectionally connected component. c) Example network.

If the network graph contains a bidirectionally connected
component, that is, the topology graph is still connected if all
unidirectional links are removed, as the example in Figure 2b,
then controller discovery can be solved by a local algorithm.
We believe it takes very specific radio and environmental
conditions to result in a pure unidirectional network, and there-
fore the existence of a bidirectionally connected component is
plausible in practice.

With this assumption in mind, building a tree rooted at
the controller provides an efficient solution to the problem,
although nodes out of the bidirectionally connected component
are not able to join the network. Since the route set by the
controller discovery is temporary, the algorithm does not seek
the optimal route in terms of link quality and relies on hop
count to build the tree.

The controller is initialized with the minimum hop count
value, while the other nodes are initialized with the maximum
value. The controller discovery packets contain the current hop
count towards the controller and the set of known inbound
neighbors (obtained from the neighbor discovery protocol), so
the receivers can check if the link is symmetric.

Each node checks its neighbor table size at exponentially
increasing intervals (up to a maximum) and transmits con-
troller discovery packets if the number of neighbors increased.
Upon receiving a controller discovery packet, the node checks
if there is a bidirectional link to the sender and if the hop
count is better than the current value. If both conditions are
true, the next hop towards the controller and the hop count are
updated and the SDN layer is informed of the discovery. Also,

a controller discovery packet is scheduled for transmission,
regardless of neighborhood changes.

A node N1 also transmits a controller discovery packet
whenever it already knows how to reach the controller and
receives a controller discovery packet with the maximum
metric from node N2. This condition indicates N2 still does
not know a next hop towards the controller and N1 is a next
hop candidate. This procedure is intended to speed up the
discovery by late nodes and allow new nodes to join the
network after the initial bootstrap.

Although an individual node does not know whether the
other nodes already obtained a valid controller route, the con-
troller discovery algorithm eventually stops sending messages
if the network topology is stable and the nodes’ neighborhoods
remain constant.

Take the network of Figure 2c as an example. First, the
controller detects nodes 1, 2, and 3 as inbound neighbors and
transmits a controller discovery beacon with this information.
As the links are bidirectional, these nodes can reach the
controller directly. In the next round, nodes 1, 2, and 3 transmit
their own beacon with neighborhood information. Node 2 does
not switch the next hop to 1 or 3, because it is a longer route.
Node 4 sets the next hop as node 3, since the beacon received
from node 2 does not contain its address, and transmits a
beacon to advertise its discovery. At this point controller
discovery beacons are no longer transmitted as 1) the topology
is stable and the set of neighbors does not change, and 2) none
of the nodes will change their next hop towards the controller.

IV. EVALUATION METHOD

We have evaluated the performance of the proposed discov-
ery algorithms and compared them to other approaches found
in the literature, namely the Collect-based [17] and the Simple
naive protocol [1]. All algorithms were implemented on IT-
SDN [17], an SDWSN framework and southbound protocol
based on Contiki OS that allows changing the discovery
algorithms. IT-SDN was configured to use end-to-end ac-
knowledgements, source-routed control packets, and neighbor
table size of 10 entries.

The algorithms were benchmarked with the COOJA WSN
simulator/emulator tool [20], using sky mote binaries and
DGRM (Directed Graph Radio Medium) to model the radio
links. DGRM allows defining unidirectional links, opposed to
the other available radio medium models.

The nodes were positioned to form square grid and ran-
dom topologies. The random topologies were generated with
NPART [19], using the default parameters for Berlin networks.

The baseline scenarios were fully bidirectional networks,
without any unidirectional links. We used three approaches
to introduce unidirectional links in the baseline topologies:
1) random links turned unidirectional (15% of all links)
2) random nodes with increased range (the range of 20% of
all nodes is doubled), and 3) only controller with increased
range (reaching all network nodes).

We tested with increasing topology sizes to check the
algorithms sensitivity to the number of nodes in the network.

This parameter ranged from 16 to 100 nodes (square numbers
only). All nodes in the network transmitted CBR data, except
the data sink and the controller node. The data payload
size was 10 bytes, transmitted at 1 packet per minute. The
controller was positioned at a grid corner, while the data sink
was placed at the grid midpoint. The positioning of these nodes
was random in the random topologies.

The controller software ran on the host machine and con-
nected with the network through the COOJA serial server
extension. It calculated the best routes according to link quality
values provided by the neighbor discovery protocol.

We have considered the following performance metrics:
• Data delivery: the global percentage of data packets that

successfully reached their destination.
• Data delay: the average time between the data packets

transmission and reception (at the application layer, there-
fore queuing and flow setup delays are included).

• Control overhead: the total number of non-data packets
transmitted in the network, which is related to the dis-
covery algorithm’s efficiency.

• Link discovery rate: the percentage of existing links
that the neighbor discovery algorithm was able to detect
throughout the simulation. The discovery rate is measured
at the controller, considering its global representation.

• Bootstrap transient duration: the time elapsed since the
beginning of the simulation until the controller internal
representation of the network contains all possible nodes.

For each parameter combination, ten 60-minute-long simu-
lation runs were executed to achieve statistical significance.
The graphs presented in the following section show 95%
confidence intervals.

V. RESULTS AND DISCUSSION

The results presented in this section are organized with
one graph for every pair of metric, and link type (fully
bidirectional, controller to all, nodes with increased range
and random unidirectional links), each graph containing the
evolution of metric values as the network size grows for the
combinations of neighbor discovery algorithm (collect, naive,
and this work) and topology type (random or grid).

Let us start the analysis with the link discovery rate,
displayed in Figure 3. Our approach discovered nearly all links
in all topologies (100% on 75% of the test cases, minimum
92%), while the collect-based discovery failed to find most
of the unidirectional links, and the naive algorithm presented
scalability issues, consistently presenting discovery above 80%
only on networks up to 36 nodes.

A neighborhood larger than the neighbor table capacity
causes our algorithm to discover less than 100% of the links,
as the exceeding links are ignored. The other reason for
undetected links is the lack of a bidirectionally connected
component, as the nodes without a bidirectional path towards
the controller are unable to send neighbor report packets (49-
nodes and 81-nodes random links scenarios, Figure 3d).

The naive algorithm performed worse on random than grid
topologies, as the number of links per node can be large,

16 25 36 49 64 81 100
Number of nodes

0

20

40

60

80

100

Li
n
k
d
is
co
v
e
ry
 r
a
te
 [
%
]

Collect - Random

This work - Random

Naive - Random

Collect - Grid

This work - Grid

Naive - Grid

(a) Fully bidirectional

16 25 36 49 64 81 100
Number of nodes

0

20

40

60

80

100

Li
n
k
d
is
co
v
e
ry
 r
a
te
 [
%
]

Collect - Random

This work - Random

Naive - Random

Collect - Grid

This work - Grid

Naive - Grid

(b) Controller to all

16 25 36 49 64 81 100
Number of nodes

0

20

40

60

80

100

Li
n
k
d
is
co
v
e
ry
 r
a
te
 [
%
]

Collect - Random

This work - Random

Naive - Random

Collect - Grid

This work - Grid

Naive - Grid

(c) Some nodes with increased range

16 25 36 49 64 81 100
Number of nodes

0

20

40

60

80

100
Li
n
k
d
is
co
v
e
ry
 r
a
te
 [
%
]

Collect - Random

This work - Random

Naive - Random

Collect - Grid

This work - Grid

Naive - Grid

(d) Random unidirectional links

Fig. 3. Link discovery rate.

quickly depleting the limited amount of memory reserved
to store reachability information. From 64-node scenarios
onward, the number of links is just too large, hampering whole
network discovery.

Collect-based discovery performed as good as our algorithm
for fully bidirectional networks, the difference is that it stores
the outbound neighbors while we store the inbound neighbors,
causing the small difference for the 100-node random topol-
ogy (Figure 3a). On the other hand, collect failed to detect
unidirectional links, degrading the observed performance on
the other test cases.

16 25 36 49 64 81 100
Number of nodes

0

100

200

300

400

500

600

700

C
o
n
v
e
rg
e
n
ce
 t
im

e
 [
s]

Collect - Random

This work - Random

Naive - Random

Collect - Grid

This work - Grid

Naive - Grid

(a) Fully bidirectional

16 25 36 49 64 81 100
Number of nodes

0

100

200

300

400

500

600

700

C
o
n
v
e
rg

e
n
ce

 t
im

e
 [
s]

This work - Random

Naive - Random

This work - Grid

Naive - Grid

(b) Controller to all

16 25 36 49 64 81 100
Number of nodes

0

100

200

300

400

500

600

700

C
o
n
v
e
rg

e
n
ce

 t
im

e
 [
s]

This work - Random

Naive - Random

This work - Grid

Naive - Grid

(c) Some nodes with increased range

16 25 36 49 64 81 100
Number of nodes

0

100

200

300

400

500

600

700

C
o
n
v
e
rg
e
n
ce
 t
im

e
 [
s]

This work - Random

Naive - Random

Collect - Grid

This work - Grid

Naive - Grid

(d) Random unidirectional links

Fig. 4. Discovery algorithms convergence time.

The next metric is the convergence time of the discovery
algorithms, shown in Figure 4. With fully bidirectional, our
algorithm converged 33% faster than collect on average. Once
again, the lack of scalability of the naive algorithm is clear, as
the convergence time grew fast and did not converge in larger

networks. Note that missing points in the graphs indicate the
algorithm did not converge at all.

Convergence time in random topologies is usually larger
than in grids, due to the larger network diameter. Regardless
of the topology, our algorithm convergence time displays a
linear trend regarding the number of nodes, but with a mild
slope (for example, the convergence time increases 1.5 times
on average, comparing 100-node and 16-node scenarios). The
scenarios without convergence are due to the neighbor table
limitation, causing the only link connecting certain nodes to
be left out (Figure 4c) or due to the lack of a bidirectional
path to the controller (Figure 4d).

Considering the naive algorithm, the discovery time in-
creases about 3.1 times considering the 16-node and largest
scenario with convergence. It converges on grids with more
nodes in comparison to random topologies, as the algorithm
is aided by the grid regularity.

As collect is not adapted to unidirectional links, it is unable
to converge on most scenarios. It may detect a unidirectional
link as bidirectional, causing packet losses and preventing the
control packets from reaching the most distant nodes.

16 25 36 49 64 81 100
Number of nodes

0

20

40

60

80

100

D
a
ta
 d
e
liv
e
ry
 [
%
]

Collect - Random

This work - Random

Naive - Random

Collect - Grid

This work - Grid

Naive - Grid

(a) Fully bidirectional

16 25 36 49 64 81 100
Number of nodes

0

20

40

60

80

100

D
a
ta
 d
e
liv
e
ry
 [
%
]

Collect - Random

This work - Random

Naive - Random

Collect - Grid

This work - Grid

Naive - Grid

(b) Controller to all

16 25 36 49 64 81 100
Number of nodes

0

20

40

60

80

100

D
a
ta
 d
e
liv
e
ry
 [
%
]

Collect - Random

This work - Random

Naive - Random

Collect - Grid

This work - Grid

Naive - Grid

(c) Some nodes with increased range

16 25 36 49 64 81 100
Number of nodes

0

20

40

60

80

100
D
a
ta
 d
e
liv
e
ry
 [
%
]

Collect - Random

This work - Random

Naive - Random

Collect - Grid

This work - Grid

Naive - Grid

(d) Random unidirectional links

Fig. 5. Data delivery results.

The data delivery results (Figure 5) are partially explained
by the last two examined metrics. Links unbeknownst to the
controller limit the paths possibilities, increasing the chances
of congestion and collisions. Moreover, all data transmission
attempts from undiscovered nodes fail. Undiscovered nodes
are the main cause of decreasing delivery as the network size
increases for the naive algorithm. In large random topologies,
no data is delivered as the sink does not make it into the
controller network representation.

It is noticeable that all algorithms tend to perform worse
on random topologies in comparison to grids, especially for
the naive algorithm. This highlights the importance of testing
algorithms in different setups. Our algorithm performed up to
6.4% worse on random topologies in comparison to grids.

In the fully bidirectional links scenario, our solution per-
forms up to 2.2% less than the collect algorithm. The reason
behind this result is that the flows take longer to be installed on
the nodes, causing losses at the network startup. The flows take
longer to be installed because, whenever a node asks a flow
in the collect algorithm, the controller already has a route to
answer the request, while in our approach this may be not true,
as the forward and backward links are informed separately.
The other factor is we disabled link-layer acknowledgements
to support unidirectional links properly. This increases the
link-layer losses, causing more retransmissions of flow setup
packets, thus contributing to the initial flow setup delay.

16 25 36 49 64 81 100
Number of nodes

0

2000

4000

6000

8000

10000

D
a
ta

 d
e
la

y
 [
m

s]

Collect - Random

This work - Random

Naive - Random

Collect - Grid

This work - Grid

Naive - Grid

(a) Fully bidirectional

16 25 36 49 64 81 100
Number of nodes

0

2000

4000

6000

8000

10000

D
a
ta

 d
e
la

y
 [
m

s]

Collect - Random

This work - Random

Naive - Random

This work - Grid

Naive - Grid

(b) Controller to all

16 25 36 49 64 81 100
Number of nodes

0

2000

4000

6000

8000

10000

D
a
ta

 d
e
la

y
 [
m

s]

Collect - Random

This work - Random

Naive - Random

Collect - Grid

This work - Grid

Naive - Grid

(c) Some nodes with increased range

16 25 36 49 64 81 100
Number of nodes

0

2000

4000

6000

8000

10000

D
a
ta

 d
e
la

y
 [
m

s]

Collect - Random

This work - Random

Naive - Random

Collect - Grid

This work - Grid

Naive - Grid

(d) Random unidirectional links

Fig. 6. Data delay results.

Figure 6 shows the delay of data packets. Our algorithm
is outperformed by collect in most of the scenarios in which
collect delivered data packets, but often it did not. Scrutinizing
the data, we observed the delay from the delivery of the first
data packets of some nodes cause the difference in the delay
average. After the flows are properly set, the remaining delays
are very close, regardless of the discovery protocols.

The explanation for the increased initial delay for our
algorithm is similar to the reason why some packets are lost
at the network start-up. That is, it takes longer to successfully
deliver flow setup packets with our algorithm, because the
link-layer acknowledgements are disabled, and the forward
and backward links are informed separately (for bidirectional
links). The failure to deliver flow setup packets may also cause
transient loops in the network, further increasing the delay to
set the initial flows. Initial flow setup delay is more evident as
the network gets larger, since the paths from the controller
to the nodes get longer. The random topology aggravates
network congestion as some nodes are highly connected,
which explains the performance difference between random
and grids at large networks.

It is noticeable that some scenarios presented a high dis-
persion, represented by the confidence interval. As the afore-

mentioned delays of initial flow setups depend on essentially
random events, some simulations yielded a high delay, typi-
fying an outlier among the data. This randomness affects the
stability of the collect protocol in networks with unidirectional
links, for example causing the spike observed in Figure 6c.

The “controller to all” link type showed little variation for
our algorithm, as the initial setup delay is largely mitigated by
the unidirectional link from the controller to the other nodes.
The faster flow configuration also causes the overall delay to
be lower than the other scenarios, indicating that increasing the
controller radio power is beneficial for starting the network.

The naive algorithm once again shows disadvantageous re-
sults in most of the scenarios, also presenting larger dispersion.
The low packet delivery rate causes the delay to be small in
large networks, as only the nodes near the sink are able to
deliver packets. At least it get results while collect often not.

16 25 36 49 64 81 100
Number of nodes

0

10000

20000

30000

40000

50000

60000

70000

80000

C
o
n
tr
o
l
o
v
e
rh
e
a
d
 [
#
 p
a
ck
e
ts
]

Collect - Random

This work - Random

Naive - Random

Collect - Grid

This work - Grid

Naive - Grid

(a) Fully bidirectional

16 25 36 49 64 81 100
Number of nodes

0

10000

20000

30000

40000

50000

60000

70000

80000

C
o
n
tr
o
l
o
v
e
rh
e
a
d
 [
#
 p
a
ck
e
ts
]

Collect - Random

This work - Random

Naive - Random

Collect - Grid

This work - Grid

Naive - Grid

(b) Controller to all

16 25 36 49 64 81 100
Number of nodes

0

10000

20000

30000

40000

50000

60000

70000

80000

C
o
n
tr
o
l
o
v
e
rh
e
a
d
 [
#
 p
a
ck
e
ts
]

Collect - Random

This work - Random

Naive - Random

Collect - Grid

This work - Grid

Naive - Grid

(c) Some nodes with increased range

16 25 36 49 64 81 100
Number of nodes

0

10000

20000

30000

40000

50000

60000

70000

80000

C
o
n
tr
o
l
o
v
e
rh
e
a
d
 [
#
 p
a
ck
e
ts
]

Collect - Random

This work - Random

Naive - Random

Collect - Grid

This work - Grid

Naive - Grid

(d) Random unidirectional links

Fig. 7. Control overhead results.

Lastly, let us investigate the control overhead generated by
each discovery algorithm, exhibited in Figure 7. Our algo-
rithm transmits less than the other algorithms, except in the
following scenario: 100-node networks with controller-to-all
links. In fully bidirectional grids, our algorithm transmits 52%
less control messages on average. However, the number of
control packets shown in the graphs accounts for every kind of
control packet, including discovery beacons, neighbor reports
to the controller, flow requests and flow setups. Analyzing the
distribution of the control packet types gives further insight
into the behavior of each algorithm.

With respect to discovery beacons, our algorithms transmits
at least 68% less packets than collect, 92% on average. This
is the effect of the beacon reducing mechanisms implemented
in our approach (overhearing and dynamic beacon intervals).

On the other hand, the number of neighbor report packets
the nodes send to the controller is larger in our approach,
notably at controller-to-all link type. This indicates that our
link quality estimator is more sensitive than the collect’s LQE,

thus, there is room for fine-tuning our estimator parameters.
For example, the controller transmits a lot of packets, causing
the calculated LQE to vary in controller-to-all link scenarios.

More neighbor report packets reaching the controller may
lead to route recalculation, thus triggering transmission of
flow setup packets. We notice a correlation between the
transmission frequency of these packet types. On the one hand,
the naive algorithm does not estimate the link quality, therefore
it transmits very few neighbor report and flow setup packets.
On the other hand, it is not equipped with any mechanism to
curb the overhead of the discovery packets, which is its major
source of control overhead.

VI. RELATED WORK

In this section, we present works focused on enabling
routing over unidirectional links. A strategy is to reduce the
scope of the problem and provide a solution that works only
in specific conditions [5], [12]. Another strategy is to find
an alternative path to the unidirectional link by flooding the
network [11], [21].

Chen et al. proposed a probabilistic routing algorithm
focused on many-to-one traffic [5]. The network is sliced into
concentric stripes centered at the destination. Nodes transmit
every packet multiple times, and the receivers forward with
a certain probability. A node closer to the sink may overhear
the packet and opportunistically transmit it to the sink, even
if the link is unidirectional. The main drawbacks of this work
are restriction to many-to-one traffic and waste of resources
due to multiple transmissions of the same packet [5].

Kim et al. assume a network with a single sink able to
reach any node in the network in one hop (but not the other
way around). The objective is to provide efficient and reliable
downward data transmission. However, the main assumption
is not easy to generalize to the case where any link could be
unidirectional [12].

Bidirectional Routing Abstraction (BRA) provides full sup-
port for unidirectional links by searching through the network
for multihop reverse paths to the unidirectional links. It uses a
Distributed Bellman–Ford algorithm, which floods the network
with distance vector information. To curb the control overhead,
the maximum length of the reverse path is limited. The
simulation results, based on the IEEE 802.11 standard, show
that the AODV protocol performs better with BRA than using
the traditional blacklisting mechanism [21].

Unidirectional Link Counter (ULC) is actually a cross-layer
protocol, as it mixes functionality from medium access and
routing layers. The protocol is similar to AODV in the sense
that Route Request and Route Response messages are used
to discover routes, i.e., it is a flooding-based protocol. In
addition, these messages are used to perform link discovery.
If a link is unidirectional, the forwarding node relegates the
forwarding task to its neighbors, expecting that at least one of
them is able to contour the unidirectionality and find a reverse
path. Both simulations and testbed results show performance
enhancements in comparison to AODV [11].

It is noteworthy that BRA and ULC are focused on
MANETs and use flooding-based messages. In the context of
WSN it is desired to avoid flooding in order to diminish the
number of control packets throughout the network.

There are several Software-Defined Wireless Sensor Net-
working frameworks in the literature, but the neighbor dis-
covery process is not detailed in most of them. The earlier
proposals were adaptations of the Openflow protocol [18] to
WSN, namely FlowSensor [16] and Sensor Openflow [15].
Neither of them mentions the discovery process, although one
could infer they use a variation of the Link Layer Discovery
Protocol (LLDP), since it is the OpenFlow default.

TinySDN is a southbound protocol specification based on
flow labeling, built on top of TinyOS ActiveMessage compo-
nent [7]. Neighbor and controller discovery are relegated to the
Collection Tree Protocol (CTP) [10], which in turn builds a
tree rooted at the controller. Link quality is obtained from the
TinyOS 4-bit link estimator, requiring bidirectional links. The
authors do not detail the criteria for transmitting neighborhood
information to the controller due to link quality variations.

IT-SDN is based on TinySDN, but with the goal of being
OS-independent and to allow for replaceable discovery algo-
rithms [17]. The default configuration is to use a CTP-like
protocol for neighbor discovery, which is similar to TinySDN
and presents the same drawbacks. A node sends topological
information to the controller if the CTP link quality estimation
differs more than 20% from the last reported value.

In a previous work, we introduced the naive neighbor and
controller discovery algorithms for networks with unidirec-
tional links [1]. This work is an improvement, we fixed the
scalability issues (as shown in the results section), added a
link quality estimation and neighbor unrechability detection.

SDN-Wise executes controller and neighbor discovery as a
single operation by implementing its own topology discovery
protocol [9]. The (possibly) multiple controllers start the
construction of a tree by transmitting Topology Discovery
packets. The tree is rebuilt periodically to obtain fresh topol-
ogy information. Nodes transmit topology information to the
controller based on a fixed periodic interval. The authors
analyzed the overhead of shortening this interval.

The main shortcomings of the SDN-Wise discovery protocol
are assuming links are bidirectional, unnecessary transmission
of control packets due to the lack of adequate criteria to
send topological information to the controller, fixed Topology
Discovery transmission interval, and use of RSSI as link metric
(hardware dependent).

Theodorou and Mamatas proposed two discovery protocols,
which they called “neighbor advertisement” and “neighbor
request” [23]. The controller is responsible for starting either
algorithm by transmitting a unicast message to its neighbors,
which in turn broadcasts a discovery packet. In the “neighbor
advertisement” each receiving node advertises the discovered
link to the controller, while in the “neighbor request” each
receiving node answers back to sender, which is responsible
for reporting the controller about the links. The controller
transmits a unicast packet to the newly detected nodes, until all

network nodes are discovered. However, they do not specify
how to perform the link quality assessment, how the controller
discovery process occurs and how to deal with unidirectional
links. Also, the paper focuses only on initial discovery and
does not discuss when to re-collect the neighborhood infor-
mation.

Our work improves on the existing neighbor discovery
algorithms for SDWSN as we employ techniques to reduce the
overall overhead associated with the task, while we properly
support discovery of unidirectional links. We also integrated
the task of link quality assessment and node departure de-
tection, providing details on how to calculate the ETF and a
criterion to send new topology update messages to the con-
troller. Table I summarizes the main features of the discovery
algorithms found in SDWSN frameworks.

TABLE I
SDWSN NEIGHBOR DISCOVERY COMPARISON.

Work Approach Unidir
link LQE Criteria

to controller
Neighbor
departure

[7] Collect No ETX Undisclosed Long timer
[17] Collect No ETX ETX variation Long timer

[9] Periodic No RSSI Periodic Periodic
recollection

[23] Controller No RSSI Undisclosed Undisclosed
[1] Periodic Yes Hop New nodes Undisclosed

This
work

Periodic +
overhearing Yes ETF LQE variation Based

on LQE

VII. CONCLUSION

Unidirectional links are a reality in constrained networks
due to heterogeneity of devices, different radios, and multipath
fading. Nonetheless, most existing routing protocols either do
not account for such links or employ blacklisting mechanisms.
The few algorithms that make use of unidirectional links are
tailored to specific network topologies or depend on flooding
to find a reverse path to the unidirectional link.

We argue that a centralized approach is both general purpose
and flooding free. Therefore, we have proposed an SDN-based
solution, imbued with controller and neighbor discovery mech-
anisms, to make use of unidirectional links. The discovery
algorithms are designed to generate low control overhead,
while providing link quality estimation.

Simulation results show that our solution performs well in
the presence of unidirectional links and is more scalable than
an existing discovery algorithm for unidirectional networks.
Also, considering fully bidirectional networks, we are com-
petitive with traditional discovery algorithms, while the latter
perform poorly under unidirectional links.

We have identified the “controller-to-all” topology as a
useful technique to decrease the overall data delivery delay
and initial network setup at the expense of increasing link layer
congestion. Thus, coupling a radio power control mechanism
to the controller, with the objective of balancing this trade-off,
could be a good direction for future research.

REFERENCES

[1] R. C. A. Alves and C. B. Margi. Discovery protocols for SDN-based
wireless sensor networks with unidirectional links. In XXXV SBrT, São
Pedro, Brazil, 2017. Sociedade Brasileira de Telecomunicações.

[2] N. Baccour, A. Koubâa, H. Youssef, and M. Alves. Reliable link
quality estimation in low-power wireless networks and its impact on
tree-routing. Ad Hoc Netw., 27(C):1–25, Apr. 2015.

[3] G. Barrenetxea, F. Ingelrest, G. Schaefer, and M. Vetterli. The hitch-
hiker’s guide to successful wireless sensor network deployments. SenSys
’08, pages 43–56, New York, NY, USA, 2008. ACM.

[4] S. Bindel, S. Chaumette, and B. Hilt. F-ETX: An Enhancement of ETX
Metric for Wireless Mobile Networks. Communication Technologies for
Vehicles, 9066:117–128, 2015.

[5] X. Chen, Z. Dai, W. Li, and H. Shi. Performance guaranteed routing
protocols for asymmetric sensor networks. IEEE Transactions on
Emerging Topics in Computing, 1(1):111–120, June 2013.

[6] D. S. J. De Couto, D. Aguayo, J. Bicket, and R. Morris. A high-
throughput path metric for multi-hop wireless routing. Wirel. Netw.,
11(4):419–434, July 2005.

[7] B. T. de Oliveira, C. B. Margi, and L. B. Gabriel. TinySDN: Enabling
multiple controllers for software-defined wireless sensor networks. In
LATINCOM, pages 1–6, Nov 2014.

[8] Forbes. 2017 roundup of internet of things forecasts.
https://www.forbes.com/sites/louiscolumbus/2017/12/10/
2017-roundup-of-internet-of-things-forecasts, 2017. Accessed on
August 27th 2018.

[9] L. Galluccio, S. Milardo, G. Morabito, and S. Palazzo. SDN-WISE :
Design , prototyping and experimentation of a stateful SDN solution for
WIreless SEnsor networks. INFOCOM, pages 513–521, 2015.

[10] O. Gnawali, R. Fonseca, K. Jamieson, D. Moss, and P. Levis. Collection
tree protocol. SenSys ’09, New York, NY, USA, 2009. ACM.

[11] R. Karnapke and J. Nolte. Unidirectional link counter - a routing
protocol for wireless sensor networks with many unidirectional links.
In MED-HOC-NET, pages 1–7, June 2015.

[12] H.-S. Kim, M.-S. Lee, Y.-J. Choi, J. Ko, and S. Bahk. Reliable and
energy-efficient downward packet delivery in asymmetric transmission
power-based networks. ACM TOSN, 12(4):34:1–34:25, Sept. 2016.

[13] K.-H. Kim and K. G. Shin. On accurate measurement of link quality in
multi-hop wireless mesh networks. MobiCom ’06, pages 38–49, New
York, NY, USA, 2006. ACM.

[14] J. Lin, W. Yu, N. Zhang, X. Yang, H. Zhang, and W. Zhao. A survey
on internet of things: Architecture, enabling technologies, security and
privacy, and applications. IEEE IoT Journal, 4(5), Oct 2017.

[15] T. Luo, H.-P. Tan, and T. Q. S. Quek. Sensor openflow: Enabling
software-defined wireless sensor networks. IEEE Communications
Letters, 16(11):1896–1899, 2012.

[16] A. Mahmud and R. Rahmani. Exploitation of openflow in wireless sen-
sor networks. In Computer Science and Network Technology (ICCSNT),
volume 1, pages 594–600, 2011.

[17] C. B. Margi, R. C. A. Alves, G. A. N. Segura, and D. A. G. Oliveira.
Software-defined wireless sensor networks approach: Southbound pro-
tocol and its performance evaluation. OJIOT, 4(1):99–108, 2018.

[18] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner. Openflow: Enabling innovation
in campus networks. SIGCOMM, 38(2):69–74, Mar. 2008.

[19] B. Milic and M. Malek. NPART - Node Placement Algorithm for Re-
alistic Topologies in Wireless Multihop Network Simulation. Simutools
’09, pages 9:1–9:10, 2009.

[20] F. Osterlind, A. Dunkels, J. Eriksson, N. Finne, and T. Voigt. Cross-level
sensor network simulation with cooja. Nov 2006.

[21] V. Ramasubramanian and D. Mosse. Bra: A bidirectional routing
abstraction for asymmetric mobile ad hoc networks. IEEE/ACM Trans-
actions on Networking, 16(1):116–129, Feb 2008.

[22] L. Sang, A. Arora, and H. Zhang. On link asymmetry and one-
way estimation in wireless sensor networks. ACM Trans. Sen. Netw.,
6(2):12:1–12:25, Mar. 2010.

[23] T. Theodorou and L. Mamatas. Software defined topology control
strategies for the internet of things. (NFV-SDN), Nov 2017.

[24] A. Woo and D. Culler. Evaluation of efficient link reliability estimators
for low-power wireless networks. Technical Report UCB/CSD-03-1270,
EECS Department, University of California, Berkeley, 2003.

[25] A. Woo, T. Tong, and D. Culler. Taming the underlying challenges of
reliable multihop routing in sensor networks. SenSys ’03, pages 14–27,
New York, NY, USA, 2003. ACM.

