
What Programmers Know About
Debugging And How They Use Their

IDE Debuggers

Master’s Thesis

Niels Spruit





What Programmers Know About
Debugging And How They Use Their

IDE Debuggers

THESIS

submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE

in

COMPUTER SCIENCE

by

Niels Spruit
born in Nieuwegein, the Netherlands

Software Engineering Research Group
Department of Software Technology

Faculty EEMCS, Delft University of Technology
Delft, the Netherlands
www.ewi.tudelft.nl

www.ewi.tudelft.nl


c© 2016 Niels Spruit. All rights reserved.



What Programmers Know About
Debugging And How They Use Their

IDE Debuggers

Author: Niels Spruit
Student id: 4137639
Email: N.Spruit@student.tudelft.nl

Abstract

As new bugs are discovered continuously, software developers often face the task
of locating and fixing the defect causing the failure, called debugging. Based on the
absence of behavioral studies on this subject in literature, this study aims to get more
insights into how developers think of debugging and how they debug in their IDE.
To this end, after searching for common issues with debugging on StackOverflow,
we conducted an online survey on developers’ perception on debugging. In addition,
we developed a plugin to instrument Eclipse and IntelliJ in order to look for common
debugging behavior. Amongst others, we found that while the vast majority of survey
respondents claims to be using the IDE debugger, most plugin users actually do not
use it. Furthermore, we found that the amount of testing performed or programming
experience has limited to no impact on the time spent debugging. In general, the results
give a strong indication that we need to review some commonly accepted beliefs on
debugging.

Thesis Committee:

Chair: Dr. A.E. Zaidman, Faculty EEMCS, TU Delft
University supervisor: M.M. Beller, Faculty EEMCS, TU Delft
Committee Member: Dr. C. Hauff, Faculty EEMCS, TU Delft
Committee Member: Dr. M.B. van Riemsdijk, Faculty EEMCS, TU Delft

N.Spruit@student.tudelft.nl




Preface

This thesis report is the product of my graduation project that was performed as part of my
Master Computer Science at Delft University of Technology. However, this work could not
have been completed without the help of several people. First of all, I would like to thank
the anonymous survey respondents and WatchDog 2.0 users for generating the data used
for deriving the results of this study. Next, I would like to thank Andy Zaidman, Georgios
Gousios, Moritz Beller, Annibale Panichella and Igor Levaja of the TestRoots team for
developing WatchDog, which served as a great basis for this project. In particular, I want
to thank Moritz Beller for his critical, but constructive feedback throughout the process
and for his time spend on reviewing my code. Next, I would like to thank Andy Zaidman
for this guidance and feedback throughout this project. In addition, I would like to thank
Verstoep Bouwadvies BV for providing me with an inspiring working environment during
the entire graduation project. Finally, I would like to thank my family and friends for their
unconditional support throughout my thesis as well as my study in general.

Niels Spruit
Delft, the Netherlands

July 17, 2016

iii





Contents

Preface iii

Contents v

List of Figures vii

List of Tables ix

1 Introduction 1

2 Background and Related Work 3
2.1 Debugging process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Debugging techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3 Debugging in the IDE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.4 Debugging practice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.5 Related tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.6 Topic modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 Common Debugging Issues on StackOverflow 7
3.1 Data selection and preprocessing . . . . . . . . . . . . . . . . . . . . . . . 7
3.2 Topic modelling with all posts . . . . . . . . . . . . . . . . . . . . . . . . 8
3.3 Topic modelling with ‘Java posts’ . . . . . . . . . . . . . . . . . . . . . . 8
3.4 Topic modelling with ‘general posts’ . . . . . . . . . . . . . . . . . . . . . 10

4 Developers’ Perception on Debugging 15
4.1 Research design and methodology . . . . . . . . . . . . . . . . . . . . . . 15
4.2 Survey results and their interpretations . . . . . . . . . . . . . . . . . . . . 16

5 Tracking Debugging Behavior with WatchDog 2.0 27
5.1 Existing functionality and architecture . . . . . . . . . . . . . . . . . . . . 27
5.2 New functionality and architecture . . . . . . . . . . . . . . . . . . . . . . 30

v



CONTENTS

5.3 Development process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

6 Analysing Debugging Behavior with WatchDog 2.0 39
6.1 Research design and methodology . . . . . . . . . . . . . . . . . . . . . . 39
6.2 WatchDog 2.0 results and their interpretations . . . . . . . . . . . . . . . . 40

7 Discussion 51
7.1 Interpretation of results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
7.2 Threats to validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

8 Conclusions and Future Work 55

Bibliography 57

A Other Topic Modelling Results 63
A.1 Topic modelling with all posts - 50 topics . . . . . . . . . . . . . . . . . . 63
A.2 Topic modelling with Java posts - 10 topics . . . . . . . . . . . . . . . . . 63
A.3 Topic modelling with Java posts - 30 topics . . . . . . . . . . . . . . . . . 63
A.4 Topic modelling with general posts - 10 topics . . . . . . . . . . . . . . . . 63
A.5 Topic modelling with general posts - 30 topics . . . . . . . . . . . . . . . . 66
A.6 Topic modelling with general posts - Breakpoint topic . . . . . . . . . . . . 66
A.7 Topic modelling with general posts - Java IDE topic . . . . . . . . . . . . . 66
A.8 Topic modelling with general posts - Watches topic . . . . . . . . . . . . . 66

B Online Survey - Printed Version 75

vi



List of Figures

4.1 Distribution of answers in the questions on breakpoint types (n = 143). . . . . . 18
4.2 Distribution of answers in the questions on breakpoint options (n = 143). . . . 18
4.3 Distribution of answers in the questions on debugging features (n = 143). . . . 19
4.4 Distribution of answers in the questions on unit tests (n = 176). . . . . . . . . . 19
4.5 Correlation analysis using Spearman rank correlation between several questions

with all responses (n = 176). . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.6 Correlation analysis using Spearman rank correlation between several questions

with ‘uses debugger’ responses (n = 143). . . . . . . . . . . . . . . . . . . . . 22
4.7 Occurrence frequency and relationship of all tags extracted from survey an-

swers to the open question. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.8 Occurrence frequency and normalized relationship of all tags extracted from

survey answers to the open question. . . . . . . . . . . . . . . . . . . . . . . . 25
4.9 Occurrence frequencies and normalized, strong, relationships of some tags ex-

tracted from survey answers to the open question. . . . . . . . . . . . . . . . . 25

5.1 An example of the ‘WatchDog View’ in Eclipse (source: [49]). . . . . . . . . . 28
5.2 An example of a (partial) WatchDog report (source: [49]). . . . . . . . . . . . . 29
5.3 WatchDog’s three layer architecture (source: [6]). . . . . . . . . . . . . . . . . 30
5.4 Packages in WatchDog’s existing architecture. . . . . . . . . . . . . . . . . . . 31
5.5 Breakpoint window in IntelliJ with actions that WatchDog 2.0 tracks highlighted. 32
5.6 Debug window in IntelliJ with actions that WatchDog 2.0 tracks highlighted. . . 32
5.7 Editor window in IntelliJ with actions that WatchDog 2.0 tracks highlighted. . . 33
5.8 Example of the new debugging section within WatchDog 2.0’s project reports. . 33
5.9 New ‘debugging part’ within the ‘WatchDog View’ of WatchDog 2.0. . . . . . 34
5.10 Packages in WatchDog 2.0’s new architecture. . . . . . . . . . . . . . . . . . . 35
5.11 WatchDog’s clone coverage trend as reported by Teamscale. . . . . . . . . . . 36

6.1 Possible cases of stepping over the point of interest per maximum time period
between consecutive debug intervals. . . . . . . . . . . . . . . . . . . . . . . . 49

vii





List of Tables

3.1 Topic modelling results with all posts and 20 topics. . . . . . . . . . . . . . . . 9
3.2 Topic modelling results with Java posts and 20 topics. . . . . . . . . . . . . . . 11
3.3 Topic modelling results with general posts and 20 topics. . . . . . . . . . . . . 12

4.1 Resulting tags with their frequency and (optional) description. . . . . . . . . . 23

5.1 Actions belonging to the numbers in Figures 5.5 to 5.7. . . . . . . . . . . . . . 34

6.1 Frequency tables of received events as well as the breakpoint types and options
seen in them. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

6.2 Descriptive usage statistics for important interval types. . . . . . . . . . . . . . 42
6.3 Descriptions of used acronyms for events. . . . . . . . . . . . . . . . . . . . . 45
6.4 Complete and compressed event sequences within debug intervals. . . . . . . . 46
6.5 Complete and compressed event sequences between debug intervals. . . . . . . 47
6.6 Complete and compressed breakpoint event sequences per IDE session. . . . . 47
6.7 Complete and compressed sequences of breakpoint changes per IDE session. . 48

A.1 Topic modelling results with all posts and 50 topics (part 1). . . . . . . . . . . 64
A.2 Topic modelling results with all posts and 50 topics (part 2). . . . . . . . . . . 65
A.3 Topic modelling results with all Java posts and 10 topics. . . . . . . . . . . . . 66
A.4 Topic modelling results with all Java posts and 30 topics (part 1). . . . . . . . . 67
A.5 Topic modelling results with all Java posts and 30 topics (part 2). . . . . . . . . 68
A.6 Topic modelling results with all general posts and 10 topics. . . . . . . . . . . 68
A.7 Topic modelling results with all general posts and 30 topics (part 1). . . . . . . 69
A.8 Topic modelling results with all general posts and 30 topics (part 2). . . . . . . 70
A.9 Topic modelling results with all general posts about breakpoints and 20 topics. . 71
A.10 Topic modelling results with all general posts about Java IDEs and 20 topics. . 72
A.11 Topic modelling results with all general posts about watches and 20 topics. . . 73

ix





Chapter 1

Introduction

Since the introduction of computer science, bugs seem to have become part of our daily
lives. New bugs are discovered on a daily basis and some bugs even make it to the (in-
ter)national news. Examples of such bugs include the recent ‘heartbleed bug’ that posed
a threat on the security of the internet, enabling hackers to retrieve personal information
and passwords from users [50]. Unfortunately, even more severe bugs occur every once in
a while as well. For instance, after ten years of development and an investment of seven
billion dollars, the Ariane 5 rocket crashed within a minute after its launch due to a software
bug [14]. Moreover, software bugs have even been responsible for human casualties. An
example of such a bug is the bug in the Patriot missile defence system that resulted in 28
American casualties in 1991 [43].

To prevent bugs from causing even more damage, software developers are faced with the
task of fixing the defect causing the failure, called debugging. However, Henry Lieberman
stated that debugging “is the dirty little secret of computer science” [22]. This statement can
be considered confirmed when you consider the fact that testing and debugging activities
consume 30− 90% of the labour in a project [3] and cost the U.S. about $59.5 billion a
year [48].

Based on the absence of behavioral studies on this subject in literature, the aim of this
study is to get more insights into how developers think of debugging and how they debug in
their Integrated Development Environment (IDE). To steer our research, we introduce the
following three research questions:

RQ1 What is developers’ self-assessed knowledge and conception of debugging?

RQ2 When and how long do developers debug?

RQ3 What is typical behavior during debugging?

To make (the analysis for) the last two research questions more concrete, we also define
the following set of sub research questions:

RQ2.1 How much of their active IDE time do developers spend on debugging (compared
to other activities)?

1



1. INTRODUCTION

RQ2.2 What is the (average) frequency and length of the debugging sessions performed by
developers?

RQ2.3 At what times do developers launch the IDE debugger?

RQ2.4 Do long files require more debugging?

RQ2.5 Is a small set of classes responsible for most debugging effort?

RQ2.6 Do developers who test a lot have to debug less?

RQ2.7 Do experienced developers have to debug less?

RQ3.1 Which sequences of events are commonly found within and between debugging
sessions?

RQ3.2 How do breakpoints evolve over time?

RQ3.3 How often does it occur that a developer steps over the point of interest and has to
start all over again?

To find the answers to these research questions, we first sketch the context of this study
and review the available literature on this subject in Chapter 2. To answer RQ1 we devel-
oped and conducted an online survey on the perception of debugging, of which the design
and results are described in Chapter 4. However, before designing this survey, we investi-
gate whether there are common issues with debugging amongst developers in Chapter 3 by
focussing on the data of the popular Q&A site StackOverflow1. Using this data, we might
identify commonly asked questions about debugging which would serve as an indicator of
the common debugging issues, which could form the basis of our survey.

Next, we extended the “research vehicle that tracks the testing habits of developers” [6],
WatchDog, to also track developers’ debugging behavior in order to find answers to RQ2
and RQ3 as well as their sub research questions listed above. The extension of WatchDog
to the new version, WatchDog 2.0, itself is described in more detail in Chapter 5 and in
Chapter 6 we describe how we collect and analyse the data obtained with WatchDog 2.0 as
well as the results of these analyses.

In Chapter 7 we discuss the results obtained using the survey and the WatchDog 2.0 data
on a more abstract level and we discuss possible threats to the validity of our study. Finally,
we define this study’s conclusions and implications as well as directions for future research
in Chapter 8.

1http://stackoverflow.com/

2

http://stackoverflow.com/


Chapter 2

Background and Related Work

This chapter begins with an introduction to the general debugging process, followed by a de-
scription of important debugging techniques and debugging in the Integrated Development
Environment (IDE). Next, we describe existing research studying the debugging practice
of developers. Finally, we describe tools that are related in concept to WatchDog 2.0 and
provide a short introduction to the natural language processing that is required for analysing
the StackOverflow data.

2.1 Debugging process

To reduce the time spent on finding and fixing a defect that causes a program failure, a sys-
tematic approach to debugging can be useful. An example of such an approach is TRAFFIC
by Zeller [55]. It comprises seven steps that cover any action required in the debugging
process, from the moment a problem is discovered until the moment the defect causing the
failure is corrected. The seven steps belonging to this approach are:

1. Track the problem in the database

2. Reproduce the failure

3. Automate and simplify the test case

4. Find possible infection origins

5. Focus on the most likely origins

6. Isolate the infection chain

7. Correct the defect

Steps 4 to 6 of the TRAFFIC approach comprise the often called Find-Focus-Isolate
loop, which is “by far the most time consuming” as these steps often need to be applied
iteratively in order to find the (root) cause of the failure. Therefore, much research has gone
into techniques to (partially) automate the steps in this loop in order to reduce the effort
required for debugging, which we will discuss next.

3



2. BACKGROUND AND RELATED WORK

2.2 Debugging techniques

One of the techniques that can be used in the Find-Focus-Isolate loop is called delta de-
bugging, which can be used to systematically narrow down possible infection origins by
comparing two program runs, a failing and a passing one [54]. Several variants of and im-
provements to delta debugging are described in literature as well, e.g. in [21], [47], [53]
and [55].

Another technique operates by following the dependencies in the dependence graph of
the program so that a developer can focus on only a subset of the statements, called a slice,
that could have caused an infected program state. This technique called slicing can be used
in two basic ways: for creating a forward slice and for creating a backward slice [55].
Several improvements to slicing have also been developed, see e.g. [58] and [59].

Another approach that is described by Zeller is to focus on anomalies, meaning that you
compare the behavior of an execution to the normal program behavior. Although abnormal
behavior does not imply incorrect behavior, it is often “a good indicator of defects” and
it therefore “wise [. . . ] to focus on anomalies for further observation or assertion” [55].
Examples of techniques related to this approach can be found in e.g. [2] and [30].

The fourth type of techniques is based on mining dynamic call graphs. A dynamic
call graph is a “concise representation of a programme execution and reflects the method-
invocation structure” [11]. Techniques based on mining these graphs can also be found in
literature, see e.g. [11] and [12].

Another type of techniques is called statistical debugging, which uses statistical meth-
ods to extract a model of the program based on the value of program predicates as branches,
loops and return values in different program executions. Then, these models are used to
identify faults by detecting misbehaviors in the program [31]. Examples of statistical de-
bugging techniques are described in e.g. [31] and [32].

A subtype of statistical debugging is spectra-based fault localization. By instrumenting
programs, data about which statements are executed and which not can be collected. Then,
a “summary of this data, often called program spectra, can be used to rank the parts of
the program according to how likely it is they contain a bug” [27]. This ranking of program
parts is based on a so-called ‘ranking metric’: a numeric function that is applied to collected
spectra. An evaluation and comparison of many different ranking metrics can be found
in [23].

The list of types of techniques mentioned above is by far not exhaustive. Other types of
techniques described in literature include angelic debugging [9], data structure repair [24],
relative debugging [1], automatic breakpoint generation [57] and automatic program fix-
ing using contracts [51]. Finally, several combinations of techniques exists as well, see
e.g. [20], [33], [34], [42] and [52].

Since these automated debugging techniques are not often found in popular IDEs and
our study focuses on debugging inside the IDE, we do not discuss them in more detail in
this report. For a more detailed explanation and evaluation of these techniques, see e.g. the
talk on automated debugging techniques by Orso [29].

4



2.3. Debugging in the IDE

2.3 Debugging in the IDE

Besides using the techniques described above, developers can also rely on symbolic debug-
gers like GDB [46] throughout the debugging process. Such debuggers allow developers to
specify points in the program where the execution should be suspended, called breakpoints.
A typical symbolic debugger supports different types of breakpoints and options to further
refine the moment when the program should be suspended, e.g. by specifying a condition
that indicates if the execution should actually be suspended at a breakpoint hit.

When the program is suspended, developers can use symbolic debuggers to, e.g., inspect
variables and the call stack, step through the code and evaluate expressions [46]. Originat-
ing from commandline symbolic debuggers like GDB, several graphical symbolic debug-
gers have been developed, e.g. DDD [56]. Most of the symbolic debugging features have
nowadays been integrated in Integrated Development Environments (IDEs) like Eclipse and
IntelliJ. This study focusses on such IDE debuggers and how developers use them.

2.4 Debugging practice

To see to what extent the methods and techniques described above have been adopted in
the real world, Siegmund et al. studied the debugging practices of professional software
developers [44]. They followed eight software developers across four different companies
during “the course of their day” by observing their methods by letting them think aloud
and answer several questions. Their results indicate that none of the developers had any
debugging-specific education or training. Furthermore, “all developers use a simplified
scientific method”, which consists of formulating and verifying hypotheses as described by
Zeller [55]. Moreover, they found that “all participants are proficient in using symbolic
debuggers” and also prefer them to using print statements. Finally, they found that none of
the developers was aware of back-in-time debuggers and the techniques described above as
well as more advanced symbolic debugging features, such as conditional breakpoints.

Subsequently, Siegmund et al. created an online survey on “debugging tools, workload,
approach and education” [35]. Based on the answers of 303 respondents, they found that
“debugging education is still uncommon, but more [...] courses started including it recently”
as there is also “a need for most developers to learn more about debugging in general”.
Furthermore, most participants only use “older debugging tools such as printf, assertions
and symbolic debuggers” while there is “almost no correlation between the programming
language used and the debugging tools used”. Finally, concurrency issues and external
libraries often seem to be the root causes of the hardest bugs. While their study focusses
mainly on debugging in general, our study is aimed specifically at debugging within the
IDE.

Piorkowski et al. studied qualitatively how programmers forage for information [38,
39] and provided a recommendation system for navigation during debugging sessions [37].
They found that developers foraged for information remarkably different when they were
asked to fix a bug versus when they had to learn enough to fix a bug, “[d]espite the subtlety
of difference”. They also found that developers spent half of their debugging time foraging
for information. This relates to our study as it shows what parts of the IDE are often used

5



2. BACKGROUND AND RELATED WORK

for gathering information during debugging, which might have an impact on the set of
debugging features being used.

2.5 Related tools

In [36], Petrillo et al. develop the Swarm Debug Infrastructure (SDI), which “provides
[Eclipse] tools for collecting, sharing, and retrieving debugging data”. Developers can then
utilize the collective swarm intelligence of previous debug sessions to “navigate sequences
of invocation methods” and “find suitable breakpoints”. Petrillo et al. evaluated SDI in a
controlled experiment, in which 10 developers were asked to debug into three faults of the
open-source software JabRef. They found that developers toggled only one or two break-
points per fault, that there were no correlations between numbers of breakpoints and de-
velopers’ expertise and task complexity. Instead developers followed diverging debugging
patterns.

Our approach for RQ2 is technically similar to SDI in that we instrument Eclipse. In
order to broaden the generalizability of our findings, we also support a second IDE, IntelliJ,
and performed a longitudinal field study of how dozens of developers debug in the wild.
To this end, we built on the existing WatchDog infrastructure by adding debug monitoring
capabilities for both Eclipse and IntelliJ in WatchDog 2.0. Beller et al. originally intro-
duced WatchDog to verify common expectations and beliefs about testing by instrumenting
developers’ IDEs and thus objectively monitoring their testing behavior [4]. More on the
extension of WatchDog to WatchDog 2.0 is described later in this report.

2.6 Topic modelling

To organize and summarize large volumes of unstructured text that “would be impossible
by human annotation” [7], automated techniques might come to the rescue. A technique
that is often applied in such situations is Latent Dirichlet Allocation or simply LDA [8].
In this technique, Latent refers to the assumption that the “cluster of words exist and are
responsible [. . . ] for the frequencies observed” in the collection of unstructured text and
Dirichlet points to the probabilistic distribution that is used to infer the distribution of the
cluster of words in the text [41]. These clusters of words are often called topics. Therefore,
the probabilistic process described above is commonly referred to as topic modelling, of
which LDA is just one example.

This relates to our study as the collection of StackOverflow questions we want to analyse
for common debugging topics is too large for manual annotation. Therefore, an automated
method is required to perform this annotation for us. As the StackOverflow questions are
unstructured, we decided to use LDA as it is “useful for analyzing large collections of
unlabelled text” [26]. In particular, we used the tool MALLET [26], as it is open source and
it fits the needs of this study. The detailed process used for this investigation and its results
will be discussed next in the following chapter.

6



Chapter 3

Common Debugging Issues on
StackOverflow

This chapter is structured as follows. First, the process of selecting and preprocessing the
input data to be used for topic modelling the StackOverflow questions is addressed in Sec-
tion 3.1. Next, the remaining sections describe the results of the topic modelling process for
a particular selection of posts that serves as the input for the process.

3.1 Data selection and preprocessing

The StackOverflow data used for this research is taken from the data dump as provided
on the Mining Software Repositories Conference website1. This data dump contains all
StackOverflow data up to September 26, 2014. To be able to query this data, we first
imported it into an SQL database using a script written by Georgios Gousios and Megan
Squire2.

By querying the resulting database, a few basic statistics can be extracted. First of all,
the entire data dump contains 21,736,594 posts. In StackOverflow’s data model, posts can
be either questions or answers. As only questions are required for this research, we filtered
out all answers. In total the data dump contains 7,990,787 questions, which is about 37%
of all posts. However, not all of these questions are relevant for the research described in
this chapter. Therefore, the following SQL query was used:

SELECT ∗
FROM p o s t s
WHERE P o s t T y p e I d = 1
AND ( T i t l e LIKE ’%debug%’
OR Body LIKE ’%debug%’ ) ;

The query above retrieves all questions of which the title and/or the question itself con-
tains the phrase ‘debug’. In this way, questions containing words like ‘debugger’ and ‘de-

1http://2015.msrconf.org/challenge_data/
2https://gist.github.com/megansquire/877e028504c92e94192d

7

http://2015.msrconf.org/challenge_data/
https://gist.github.com/megansquire/877e028504c92e94192d


3. COMMON DEBUGGING ISSUES ON STACKOVERFLOW

bugging’ are selected as well. This query results in a total of 281,562 posts, which means
that about 3.5% of the questions found on StackOverflow contain the phrase ‘debug’ and
are therefore likely about debugging. Finally, we exported these results to a CSV file for
further processing as described next.

As MALLET mainly works with text (.txt) files as input, the CSV file resulting from
the SQL query needed to be converted. Furthermore, to be able to trace back topics to
questions, a separate text file had to be created for each question. To accomplish this, we
created a Python script to extract the title and the body of each question from the CSV file,
as these are the only two fields that are useful for the analysis. In addition, this script first
unescapes all escaped characters and strips the HTML tags that are found in the question’s
body before writing the title and body to a text file. At this point, all resulting text files
could be imported into MALLET to use them as input for the topic modelling process.

3.2 Topic modelling with all posts

To get an idea of which common topics can be identified in the StackOverflow questions,
we first executed MALLET’s topic modelling function using all posts as input. To avoid
having most of the questions in a quite limited number of topics, this was done with both
20 and 50 topics as output. The resulting topic model with 20 topics is shown in Table 3.1.
This table not only contains the key words and weight belonging to a particular topic, but
it is also extended with a column that aims to give a representative label that describes the
topic based on its key words. Due to spacial concerns, a similar table for the 50-topic case
can be found in Section A.1 of Appendix A.

As can be seen in Table 3.1, most topics resulting from the topic modelling process cor-
respond to issues with a particular programming language or technology. Moreover, none
of the resulting topics gives a clear indication of the existence of common issues with de-
bugging, as the topics that are actually about debugging, e.g. ‘GDB issues’ and ‘General
debugging’, are not specific enough to pinpoint to a specific problem with debugging. In-
creasing the number of resulting topics to 50 does not achieve this as well, as the results are
quite similar to the ones with 20 topics.

3.3 Topic modelling with ‘Java posts’

To see whether making the input documents more specific makes the resulting topics more
concrete as well, we also created a topic model for a subset of the input documents, so
for a subset of the questions. For this section, the goal was to create a topic model with
the documents belonging to the two Java topics in Table 3.1, ‘Java/C# development’ and
‘Java/Node.js errors’, as input. However, selecting all documents belonging to a particular
topic is not possible in MALLET, as each document can belong to multiple topics with a
certain weight for each topic.

Therefore, an alternative solution is necessary to accomplish a similar goal. As MAL-
LET produces a composition file that for each input document contains the weight of each
resulting topic, we used these weights to find documents that belong most to a certain topic.

8



3.3. Topic modelling with ‘Java posts’

Table 3.1: Topic modelling results with all posts and 20 topics.

9



3. COMMON DEBUGGING ISSUES ON STACKOVERFLOW

Using this information, all documents can be found in which one of the two Java topics
is the topic with the largest weight of all topics. Doing this for the two Java topics using
another Python script results in a subset of 26,348 questions.

Applying the topic modelling function to these documents as input and 20 topics as
output results in the table shown in Table 3.2. For the same reasons as described in the
previous section, a topic model was also created with 10 and 30 topics as output. The results
for these numbers of topics can again be found in Appendix A in Section A.2 and A.3,
respectively.

Looking at the 20 resulting topics for the ‘Java posts’ in Table 3.2, we can draw a similar
conclusion to the one of the previous section. Also when using this particular subset of
questions, most topics still correspond to problems with particular programming languages,
environments and technologies. Furthermore, no specific issues with debugging can be
extracted from the resulting topics as well. The same conclusion can also be drawn from
the results of the other two settings for the number of topics. Therefore, making the input
more specific by selecting only the ‘Java posts’ does not make the resulting topics more
general and abstract. This suggests that making this input even more specific seems to be
of little use.

3.4 Topic modelling with ‘general posts’

Another topic in the topic model resulting from taking all posts as input that might be
interesting for further inspection is ‘General debugging’. To see whether using only the
documents about this topic as input makes the results more specific, we performed a similar
procedure to the one described above. This process resulted in a total of 71,726 StackOver-
flow questions.

For the same reasons as before, we created a topic model for these ‘General posts’ with
10, 20 and 30 topics. The results for 20 topics are shown in Table 3.3 and the results for 10
and 30 topics can again be found in Section A.4 and A.5 of Appendix A, respectively.

In contradiction to the results for the ‘Java posts’ described in the previous section,
the results for the ‘General posts’ are actually more specific as can be seen in Table 3.3
and Section A.4 and A.5. For instance, the topics ‘Breakpoint issues’, ‘Debugging Java
applications in the IDE’ and ‘Watching variable values while debugging’ in Section A.5
are quite more specific than ‘General debugging’ and might also pinpoint to more specific
common issues with debugging. So, in this case making the input documents more specific
makes the resulting topics more general and abstract as well. However, the resulting topics
are still not specific enough to pinpoint concrete debugging issues.

Therefore, we applied the same process again for the three more specific topics men-
tioned above, but now with the ‘General posts’ serving as basis. In this way, the question
was whether or not this would result in even more specific and maybe even concrete debug-
ging issues. This process resulted in inputs consisting of 3,208, 2,535 and 2,340 questions
for the topics ‘Breakpoint issues’, ‘Debugging Java applications in the IDE’ and ‘Watching
variable values while debugging’, respectively.

10



3.4. Topic modelling with ‘general posts’

Table 3.2: Topic modelling results with Java posts and 20 topics.

11



3. COMMON DEBUGGING ISSUES ON STACKOVERFLOW

Table 3.3: Topic modelling results with general posts and 20 topics.

12



3.4. Topic modelling with ‘general posts’

The topic models resulting from taking these subsets as input and 20 topics as output can
be found in Section A.6-A.8 of Appendix A. As can be seen in these tables, no descriptive
label is provided as we could not attach any meaningful label to these topics based on the
key words in the resulting topic model. Furthermore, no concrete issues with debugging
can still be identified based on these key words. Therefore, continuing in this way would no
longer make sense.

13





Chapter 4

Developers’ Perception on Debugging

To get to know the developers’ perception on debugging, this chapter first describes the
design of the online survey we conducted and the methods used for analysing its responses.
Next, we present and discuss the results of these analyses and their interpretations.

4.1 Research design and methodology

This section first describes how we set up the online survey and how we tried to attract
as many developers as possible. Next, we describe the methods used for analysing the
responses to this survey.

4.1.1 Survey design

To investigate developers’ self-assessed knowledge and conception on debugging for RQ1,
we set up an online survey1, of which a printed version can be found in Appendix B. The
survey consisted of four different question sections. The first collected general information
about the respondents, such as their programming experience. The second part asked par-
ticipants if and how they use the IDE-provided debugging infrastructure in general, as well
as its particular features. We introduced a branching condition in the survey: Developers
who do not use the IDE-provided debugging infrastructure were asked for the reason why,
while others got questions on specific debugging features. These questions asked how well
the respondent knows and uses several types of breakpoints. In addition, we asked ques-
tions about other debugging features ranging from stepping through code to more advanced
features like editing code at runtime (hot swapping).

The third part, presented to all respondents again, assessed the position of (unit) testing
in the debugging process. The three questions within this section asked if the developer
uses tests for reproducing the bug, checking progress during the debugging process and/or to
verify possible bug fixes. The last part consisted of an open, non-mandatory question asking
the participants’ opinion on the following statement: “the best invention in debugging still
was printf debugging”. Survey research has shown that asking a controversial, concrete

1http://goo.gl/forms/WkLCAHmmFBMRupJE2

15

http://goo.gl/forms/WkLCAHmmFBMRupJE2


4. DEVELOPERS’ PERCEPTION ON DEBUGGING

statement evokes participants’ emotions and leads to more insightful answers [10]. As we
found no common debugging issues on StackOverflow, no questions were added based on
that analysis. Before releasing the survey to the public, we made several internal iterations,
sharpened the IDE focus, and ran it across six programmers not involved in its design.

To attract as many survey respondents as possible, we spread the link to the survey
through social media, especially via Twitter. In addition, we contacted several people by
email to ask them to retweet the link to reach an even larger audience. Finally, to create an
incentive for developers to fill out our survey, we advertised that we will raffle of three 15
Euro Amazon vouchers among the survey respondents.

4.1.2 Analysis of survey responses

To analyse the obtained survey responses, we exported them and imported them into R for
further analysis. First, we analysed the responses to each question in isolation, followed by
an analysis of the relations between pairs of questions. For several dependency analyses, we
used the Spearman rank-order correlation test, which we preferred over other alternatives
as it is non-parametric, it works with both continuous and discrete (ordinal) variables and it
does not only look at linear relationships [19].

For interpreting the results of these dependency analyses we performed using the Spear-
man rank-order correlation test, we use Hopkins’ guidelines [16]. These guidelines tell that
a value (ρ) resulting from the Spearman rank-order correlation test indicates no correla-
tion for 0 ≤ |ρ| < 0.3, a weak correlation for 0.3 ≤ |ρ| < 0.5, a moderate correlation for
0.5≤ |ρ|< 0.7 and a strong correlation for 0.7≤ |ρ| ≤ 1.

For the final analysis of the survey responses, we used the responses to the open ques-
tion to perform an open card sort [45] in which the first two persons agreed on an initial,
mutually shared set of tags, which we then used to tag individual responses. Finally, a third
person sampled 20% of the responses and tagged them again independently, without seeing
the tags assigned by the first two persons. Then, we converged our tag sets to arrive at a
homogeneous classification.

4.2 Survey results and their interpretations

This section presents the results and their interpretations of the different analysis methods
described above. First, we report on the results of the analysis of questions in isolation,
followed by the dependency analysis of pairs of questions. Finally, we will discuss the
results of the open card sort.

4.2.1 Demographics

In total, 176 software developers filled out the entire survey over a period of seven weeks.
The vast majority of them have at least three years of experience in software development:
less than 1 year (2.8%), 1-2 years (6.8%), 3-6 years (31.8%), 7-10 years (21.6%) and more
than 10 years (36.9%). Regarding the languages used by most respondents: 84.1% indicated
that they use Java, followed by 55.1% for JavaScript and 39.2% for Python. The languages

16



4.2. Survey results and their interpretations

PHP, C, C++ and C# were all selected by around 25% of the developers. The least selected
languages are R (16.5%), Swift (6.3%) and Objective-C (5.1%). Finally, 44 developers
indicated the use of another, in total 24 different languages, of which Scala (11) is the most
mentioned, followed by Ruby (8). The most selected IDE is Eclipse (31.8%), followed by
IntelliJ (30.7%) and Visual Studio (11.9%).

4.2.2 Description and interpretation of survey answers

Next, we asked the developers whether or not they use their IDE debugger. 143 developers
(81.3%) indicate that they use the IDE-provided debugging infrastructure, 15 (8.5%) indi-
cate they do not use it and 18 developers (10.2%) indicate that their selected IDE does not
have a debugger. The most selected answer besides using the IDE debugger that the respon-
dents indicate they use for debugging is examining log files (72.2%), followed closely by
using print statements (71.6%). Other answers included the usage of an external program
(21.0%) or additional other techniques (30.1%). In addition, 19 developers indicate the use
of another method, of which adding or running tests and using web development tools built
in to the browser were mentioned most (both four times).

Most software developers claim to be using the IDE-provided debugging infrastructure
in conjunction with examining log files and using print statements.

Furthermore, of the 15 developers not using the debugging infrastructure, 8 think that
print statements are more effective/efficient, 6 find techniques other than print statements
more effective/efficient, 6 use an external program they find more effective/efficient, 4 do
not know how to use the debugger and one thinks his program is impossible to debug.

Developers not using the IDE-provided debugging infrastructure find external pro-
grams, tests, print statements, or other techniques more effective or efficient.

The 143 developers that indicated that they use the IDE-provided debugging infras-
tructure were asked more detailed questions on whether or not they know and use specific
debugging features. The results for these questions are shown in Figures 4.1 to 4.3 for
the questions on breakpoint types, breakpoint options and other debugging features, re-
spectively. Regarding the questions on the usage of (unit) tests throughout the debugging
process, Figure 4.4 visualizes the results based on all 176 responses.

Figure 4.1 shows that most developers are familiar with line, exception, method and field
breakpoints, while temporary line breakpoints and class prepare breakpoints are known by
much less developers. In addition, while line breakpoints are also used by the vast majority
of developers, other types of breakpoints are used by less than half of the respondents to
even by almost none of them.

17



4. DEVELOPERS’ PERCEPTION ON DEBUGGING

1%

17%

28%

24%

45%

75%

90%

57%

48%

45%

31%

6%

9%

25%

24%

31%

24%

20%

Line breakpoint

Temporary line breakpoint

Class prepare breakpoint

Method breakpoint

Exception breakpoint

Field watchpoint

100 50 0 50 100

Percentage

Response I don’t know I know I know and I use

Figure 4.1: Distribution of answers in the questions on breakpoint types (n = 143).

17%

34%

68%

57%

23%

13%

25%

43%

19%

Specifying a condition

Specifying a hit/pass count

Setting the suspend policy

100 50 0 50 100

Percentage

Response I don’t know I know I know and I use

Figure 4.2: Distribution of answers in the questions on breakpoint options (n = 143).

Line breakpoints are used by the vast majority of developers, while other, more ad-
vanced types are not and are even unknown to many developers.

Figure 4.2 indicates that the majority of developers specify conditions on the breakpoint
to only let the program execution be suspended if the condition is true. However, specifying
a hit count that makes sure the program execution is only suspended after the line is executed
the specified number of times, or setting a suspend policy that indicates whether the entire
program or just one thread needs to be suspended once the breakpoint is hit, are both known
less and used.

18



4.2. Survey results and their interpretations

1%

2%

3%

6%

14%

12%

19%

90%

90%

80%

73%

60%

60%

47%

10%

8%

16%

20%

26%

28%

34%

Stepping through the code

Inspecting variable values

Inspecting the call stack

Defining watches

Evaluating expressions

Modifying variable values

Editing code at runtime

100 50 0 50 100

Percentage

Response I don’t know I know I know and I use

Figure 4.3: Distribution of answers in the questions on debugging features (n = 143).

19%

25%

47%

81%

75%

53%

Reproducing bug

Checking debugging progress

Verifying possible bug fixes

100 50 0 50 100

Percentage

Response No Yes

Figure 4.4: Distribution of answers in the questions on unit tests (n = 176).

Most developers claim to be familiar with breakpoint conditions, but not with the hit
count and suspend policy.

The results in Figure 4.3 show that over 80% of the developers seem to know all major
debugging features found in most modern IDEs. However, the more advanced the features
get, like e.g. defining watches or editing code at runtime, the less they seem to be used
according to the respondents.

Although most developers claim to known all common debugging features, these fea-
tures are used less as they get more advanced.

19



4. DEVELOPERS’ PERCEPTION ON DEBUGGING

Looking at the responses for the (unit) testing questions, Figure 4.4 indicates that tests
are often used at the start and end of the debugging process, for reproducing bugs and
verifying bug fixes, respectively, and a bit less throughout the process.

Developers claim that testing is an integral part of the debugging process, especially at
the beginning and end.

4.2.3 Dependency analysis of survey responses

To examine the relationship between the categorical survey answers, we first computed a
pair-wise dependency test and then, if found to be dependent, the strength of their rela-
tionship. For example, this allows us to understand whether and how strongly programmer
experience correlates with the use of debugger features like breakpoints, watches or the use
of testing to guide debugging.

For the dependency test between survey answers, we used a Pearson Chi-Squared test
of independence as we are dealing with categorical variables. In order to be able to compute
the strength of their relationship with a Spearman rank-order correlation test, we had to
convert each categorical answer to an ordinal scale using a linear integer transformation
describing its rank. This was sound because our predefined answer options have a naturally
ranked order (e.g., “I don’t know” = 1, “I know” = 2, “I know and use” = 3). Figure 4.5
shows the correlation strength ρ on all n = 176 survey responses and Figure 4.6 visualizes
the strength on all n = 143 respondents that indicated to use the debugger. These figures
allow for an intuitive overview of the relations. The more intense the color and the flatter
the ellipses are above its diagonal, the higher is the strength of the correlation, which is
reported numerically below the diagonal. Empty cells correspond to non-significant results
of the chi-squared (χ2) test at a 95% confidence interval (α = 0.05).

For n independent cross-correlations we perform on a given significance level α, there is
a 1− (1−α)n likelihood for at least one relationship to have occurred by chance. Plugging
in our standard α = 0.05 and 110 correlation pairs from Figure 4.6, we receive a 99.6%
likelihood of at least one acclaimed dependency according to our χ test that does not hold
in reality. While this does not affect the general validity of our results, one must recheck
the results through additional sources or mixed methods when reasoning about a single
relationship from Figure 4.6.

Based on the results in Figures 4.5 and 4.6 and Hopkin’s guidelines described above, we
find that there is no correlation between the usage of the IDE-provided debugging infras-
tructure or (unit) tests for debugging and experience in software development. However,
there is a weak correlation between experience and specifying hit counts and a moderate
correlation between experience and the usage of watches during debugging.

Experience has limited to no impact on the usage of the IDE-provided debugging in-
frastructure and tests.

20



4.2. Survey results and their interpretations

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

E
x
p
e
ri

e
n
c
e

U
s
e
 d

e
b
u
g
g
in

g
 i
n
fr

a
s
tr

u
c
tu

re

U
s
e
 t
e
s
ts

 f
o
r 

re
p
ro

d
u
c
in

g
 b

u
g

U
s
e
 t
e
s
ts

 f
o
r 

c
h
e
c
k
in

g
 p

ro
g
re

s
s

U
s
e
 t
e
s
ts

 f
o
r 

ve
ri

fy
in

g
 b

u
g
 f
ix

e
s

Experience

Use debugging infrastructure

Use tests for reproducing bug

Use tests for checking progress

Use tests for verifying bug fixes

0.06

0

0

0.24

0

0

0

0.59

0.71 0.41

Figure 4.5: Correlation analysis using Spearman rank correlation between several questions
with all responses (n = 176).

In addition, we find that there is a moderate correlation between the usage of tests at
the beginning and end of the debugging process to reproduce bugs and verify bug fixes,
respectively, and a weak to moderate correlation between using tests at the beginning or end
and throughout the process for checking progress.

Developers using tests for reproducing bugs are likely to use them for checking progress
and very likely to use them for verifying bug fixes as well.

Figure 4.6 shows many more examples of weak and moderate correlation between the
knowledge and usage of several debugging features. One thing to note is that there is quite

21



4. DEVELOPERS’ PERCEPTION ON DEBUGGING

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

E
x
p
e
ri

e
n
c
e

L
in

e
 b

re
a
k
p
o
in

t

T
e
m

p
o
ra

ry
 l
in

e
 b

re
a
k
p
o
in

t

E
x
c
e
p
ti
o
n
 b

re
a
k
p
o
in

t

M
e
th

o
d
 b

re
a
k
p
o
in

t

F
ie

ld
 w

a
tc

h
p
o
in

t

C
la

s
s
 p

re
p
a
re

 b
re

a
k
p
o
in

t

S
p
e
c
if
y
in

g
 a

 c
o
n
d
it
io

n

S
p
e
c
if
y
in

g
 a

 h
it
/p

a
s
s
 c

o
u
n
t

S
e
tt
in

g
 t
h
e
 s

u
s
p
e
n
d
 p

o
lic

y

S
te

p
p
in

g
 t
h
ro

u
g
h
 t
h
e
 c

o
d
e

In
s
p
e
c
ti
n
g
 v

a
ri

a
b
le

 v
a
lu

e
s

In
s
p
e
c
ti
n
g
 t
h
e
 c

a
ll 

s
ta

c
k

D
e
fi
n
in

g
 w

a
tc

h
e
s

E
va

lu
a
ti
n
g
 e

x
p
re

s
s
io

n
s

M
o
d
if
y
in

g
 v

a
ri

a
b
le

 v
a
lu

e
s

E
d
it
in

g
 c

o
d
e
 a

t 
ru

n
ti
m

e

U
s
e
 t
e
s
ts

 f
o
r 

re
p
ro

d
u
c
in

g
 b

u
g

U
s
e
 t
e
s
ts

 f
o
r 

c
h
e
c
k
in

g
 p

ro
g
re

s
s

U
s
e
 t
e
s
ts

 f
o
r 

ve
ri

fy
in

g
 b

u
g
 f
ix

e
s

Experience

Line breakpoint

Temporary line breakpoint

Exception breakpoint

Method breakpoint

Field watchpoint

Class prepare breakpoint

Specifying a condition

Specifying a hit/pass count

Setting the suspend policy

Stepping through the code

Inspecting variable values

Inspecting the call stack

Defining watches

Evaluating expressions

Modifying variable values

Editing code at runtime

Use tests for reproducing bug

Use tests for checking progress

Use tests for verifying bug fixes

0

0

0

0

0.21

0.22

0.27

0.33

0

0

0

0

0.4

0.17

0

0.22

0

0

0

0

0.33

0.26

0.25

0

0.3

0

0

1

0.91

0.61

0.36

0.56

0.44

0.34

0

0

0

0

0.23

0.16

0.29

0.34

0.24

0

0

0

0

0

0

0.21

0.3

0.18

0

0

0.42

0.22

0.36

0.36

0.42

0.28

0.32

0.26

0.37

0.3

0.41

0.42

0.31

0

0

0

0.32

0.34

0.37

0.51

0.26

0.26

0.21

0.27

0.35

0.38

0.41

0.34

0

0

0

0.22

0.33

0.39

0.17

0.25

0.19

0.26

0.46

0.33

0.31

0.34

0

0

0

0.3

0.36

0.41

0

0

0

0

0

0.19

0.26

0

0

0

0.54

0.23

0.31

0.36

0.4

0.4

0.49

0.42

0.37

0

0

0

0.34

0

0

0

0.35

0.32

0.37

0.34

0

0

0

0

0

0

0.31

0

0

0.36

0

0

0

0.92

0.62

0.37

0.56

0.44

0.34

0

0

0

0.61

0.36

0.5

0.39

0.3

0

0

0

0.49

0.61

0.35

0.37

0

0.22

0.15

0.56

0.41

0.36

0

0

0

0.52

0.42

0.01

0

0

0.47

0

0

0

0.13

0

0

0.59

0.69 0.39

Figure 4.6: Correlation analysis using Spearman rank correlation between several questions
with ‘uses debugger’ responses (n = 143).

a strong correlation between the following three features: line breakpoint, stepping through
the code and inspecting variable values.

Developers that use line breakpoints also step through the code and inspect variable
values during debugging.

4.2.4 Results of open card sorting

In total, 108 respondents gave a response to the statement that “the best invention in debug-
ging still was printf debugging”. After performing the open card sorting as described above,
we identified 34 different tags, of which the name, frequency and (optional) description are

22



4.2. Survey results and their interpretations

Name Frequency Description

advanced debugging techniques 5 Use more advanced techniques than printf debugging
agree 20
avoid debugging 6
before debugger 4 Use some techniques before using the debugger
combination of techniques 19 Use multiple techniques for debugging
concurrency 4 Concurrent environment
crash dump 1 Use a crash dump for debugging
debugger jittery 3 Debugger interferes with thinking process
debugger overhead 6 Debugger has (too much) impact on performance
debuggers better 30
debuggers interference 4 Debugger interferes with program execution
depends 8 Used technique depends on bug or situation
disagree 31
easy 11 Technique is easy to apply
embedded 1 Embedded systems environment
external libraries 1 Environment with external libraries
fast 12 Technique is fast
first printf 6 First use printf, then other techniques if necessary
great web dev tools 3 Use web developer tools for debugging
hard problems 4 Use debugger for hard(er) problems
live IDE 4 Use a live IDE instead of debugging
logging 8 Use logging for debugging
outdated 3 Printf is outdated
partial agree 27
printf not enough 10
printf not good practice 7
printf when no debugger 4
profiler 1 Use a profiler for debugging
program state 6 Debugger allows for inspecting the program state
remote 7 Remote environment
REPL 3 Use a Read-Execute-Print Loop for debugging
testing better 7 Use tests instead of other techniques
time-consuming 3 Technique is time-consuming to apply
uses printf 51 Use printf for debugging

Table 4.1: Resulting tags with their frequency and (optional) description.

given in Table 4.1. To see which tags often co-occur and therefore to see which arguments
are commonly given by developers, if any, we analysed the co-occurrences between all pairs
of tags. To visualize these relations, we decided to use a graph representation in which the
vertices correspond to the tags and the undirected, weighted edges to the co-occurrences of
two tags. The size of the vertices in this graph is determined by the occurrence frequency
of the tag, while the weight of the edges is determined by the number of co-occurrences.
Figure 4.7 shows the graph resulting from this process.

However, in this representation, vertices with a relatively low occurrence frequency can
never have an edge with a relatively high weight. Nevertheless, these vertices might actually

23



4. DEVELOPERS’ PERCEPTION ON DEBUGGING

advanced debugging techniques

agree

avoid debugging

before debugger

combination of techniques

concurrency

crash dump
debugger jittery

debugger overhead
debuggers better

debuggers interference

depends

disagree

easy

embedded

external libraries

fast

first printf

great web dev tools

hard problems

live IDE

logging
outdated

partial agree

printf not enough

printf not good practice

printf when no debugger

profiler

program state

remote

REPL

testing better

time-consuming

uses printf

Figure 4.7: Occurrence frequency and relationship of all tags extracted from survey answers
to the open question.

have a very strong connection with other tags, which means that if the tag is listed, it often
co-occurs with one or more other tags. To improve the visualization, this shortcoming was
fixed by normalizing the weights of the edges using the following formula:

wnorm =
w

max( fsource, fdestination)
(4.1)

where wnorm is the normalized edge weight, w the original edge weight and fsource and
fdestination the occurrence frequency of the source and destination tag, respectively. The
result of this normalization is shown in Figure 4.8.

As the graph in Figure 4.8 is still too dense to clearly see all connections, we filtered out
all edges for which wnorm < 0.25 and removed the vertices that did not have any outgoing or
incoming edges after this filtering process. The resulting graph, in which only the relatively
strong connections between tags remain, is shown in Figure 4.9

Based on the connected subgraphs in Figure 4.9, which indicate that some tags are often
mentioned together in answers to the open question, we can identify (at least) the following
different types of responses:

• Debuggers are not suitable for finding bugs in a concurrent environment as they in-
terfere too much.

• Avoid debugging by using tests instead.

• Using IDE debuggers is better than using print statements.

24



4.2. Survey results and their interpretations

advanced debugging techniques

agree

avoid debugging

before debugger

combination of techniques

concurrency

crash dump

debugger jittery

debugger overhead

debuggers better

debuggers interference

depends

disagree

easy

embedded

external libraries

fast

first printf

great web dev tools

hard problems

live IDE

logging

outdated

partial agree

printf not enough

printf not good practice

printf when no debugger

profiler

program state

remote

REPL

testing better

time-consuming

uses printf

Figure 4.8: Occurrence frequency and normalized relationship of all tags extracted from
survey answers to the open question.

advanced debugging techniques

agree

avoid debugging

before debugger

combination of techniques

concurrency

debugger jittery
debugger overhead

debuggers better

debuggers interference

depends

disagree

easy fast

first printf

great web dev tools

hard problems

live IDE

logging

partial agree

printf not enough

printf when no debugger

remoteREPL

testing better

uses printf

Figure 4.9: Occurrence frequencies and normalized, strong, relationships of some tags ex-
tracted from survey answers to the open question.

25



4. DEVELOPERS’ PERCEPTION ON DEBUGGING

• Use logging for debugging remote applications.

• Printf debugging is not enough, a combination of techniques is required.

• A live IDE with a REPL is better than using print statements.

• First use print statements for debugging, then use a debugger or other advanced de-
bugging techniques for harder bugs.

• Printf debugging is the best for debugging as it is fast and easy.

• Debuggers can have (too much) overhead and are jittery.

26



Chapter 5

Tracking Debugging Behavior with
WatchDog 2.0

This chapter on extending WatchDog to WatchDog 2.0 is structured as follows. First, Sec-
tion 5.1 will give an overview of WatchDog’s functionality and design at the start of this
study. Then, Section 5.2 will present WatchDog 2.0’s new features and architecture at the
end of the study. Finally, Section 5.3 will describe the process of how we added these new
features.

5.1 Existing functionality and architecture

In this section we first discuss the purpose of WatchDog and its main features. Then, we
take a closer look at its internals by describing its software architecture.

5.1.1 Purpose and functionality

WatchDog, as developed by Beller et al., is “a research vehicle that tracks the testing habits
of developers” [6]. In particular, it is a plugin for Eclipse and IntelliJ that records all devel-
oper behavior related to reading and writing production code as well as reading, writing and
executing test code. Their purpose for developing these plugins is to understand “how de-
velopers test and how to better support them in practice” by collecting “usage data related to
developer testing” on a larger scale than what is possible by looking over their shoulders [5].

To incentivize developers to install WatchDog, it also provides its users with “immedi-
ate testing and development analytics” [6]. In particular, developers can open the so-called
‘WatchDog View’ that provides them with some basic statistics on their development be-
havior. An example of what this view might look like is given in Figure 5.1. In addition,
users can also request a report that contains more detailed statistics on their development
behavior for their registered project. An example of such a (partial) report is shown in
Figure 5.2. Not only the developer’s own statistics are shown, but also the mean statistics,
which enables developers to compare themselves with others.

27



5. TRACKING DEBUGGING BEHAVIOR WITH WATCHDOG 2.0

Figure 5.1: An example of the ‘WatchDog View’ in Eclipse (source: [49]).

5.1.2 Global architecture

As explained in [6], WatchDog has a 3-layer architecture that is visualized in Figure 5.3.
The figure reveals the three layers that make up WatchDog: the client, the server and the
analytics pipeline.

The client is the actual plugin that lives inside the IDE. As plugins need to be tailored
to the host IDE, a separate client has to be implemented for each supported IDE. Currently,
separate clients are available for both Eclipse and IntelliJ. To avoid having lots of duplicate
code, all clients share are common core that contains all IDE-independent functionality as
well as specifications for functionality that should be implemented by all clients.

The server is the entity that controls the storage of intervals, users and projects in a
Mongo database. These three concepts form the heart of WatchDog as intervals capture the
actual development behavior, while users and projects are used to link intervals to individual
developers or software projects. Whenever a new interval is closed, e.g. the user stopped
reading code and started writing, it is first recorded in a local database. Then, at a regular
rate, all contents of this database are transferred to the remote server in order to permanently
store the recorded intervals.

To give some more insights into how WatchDog is structured and functioning internally,

28



5.1. Existing functionality and architecture

Figure 5.2: An example of a (partial) WatchDog report (source: [49]).

Figure 5.4 shows a package diagram of the main packages that form the client, both in
the common core and the IDE-specific projects. This diagram clearly indicates that all
three parts have similar package names. This is because the common core often contains
only specifications or basic implementations of certain entities that can only be (further)
implemented using the IDE-specific functionality. Using the same package names then
makes it much clearer what parts are related to each other.

29



5. TRACKING DEBUGGING BEHAVIOR WITH WATCHDOG 2.0

Figure 5.3: WatchDog’s three layer architecture (source: [6]).

5.2 New functionality and architecture

This section first explains the differences in purpose and functionality between WatchDog
and WatchDog 2.0. Then, we will describe the differences between their architectural de-
signs as well.

5.2.1 New functionality

The main difference in terms of functionality between WatchDog and WatchDog 2.0 is that
WatchDog 2.0 also tracks the developer’s debugging behavior in addition to its testing be-
havior. In particular, WatchDog 2.0 records when and for how long the user launches the
debugger. In addition, it tracks which actions the user performs within and between these
debugging sessions with regards to breakpoints and debugging features. To get an idea of
which specific actions we track with WatchDog 2.0, Figures 5.5 to 5.7 highlight some of
these actions in the breakpoint, debug and editor window of IntelliJ, respectively. To see
which actions belong to the numbers shown these figures, see Table 5.1. Similar actions
exist in Eclipse, which we also track in WatchDog 2.0. As the figures show, multiple ways
of performing the same actions are tracked.

To create an incentive for users to update to or install WatchDog 2.0 in the first place,

30



5.2. New functionality and architecture

Figure 5.4: Packages in WatchDog’s existing architecture.

we decided to update both the ‘WatchDog View’ and the project reports that are generated
on a daily basis. For the project reports we included three new statistics: the number of
debugging sessions the user performed as well as their total and average duration. Just like
in the existing reports, the mean values over all projects are also shown to let users compare
their debugging behavior with others. An example of what this new section in the reports
look like can be found in Figure 5.8.

For updating the ‘WatchDog View’, we decided to add the following two components
to the existing view: some basic debugging statistics and a Gantt chart showing the events
that occurred during the selected debugging interval. In particular, the following debugging
statistics are shown to the user: the number of debugging intervals in the selected time
period, the total amount of time spent in the debugger as well as its percentage of the
active IDE time and the average length of a debugging session in seconds. The Gantt chart
visualizes each event that occurred during the selected debug interval on a timeline in such
a way that a user can see what he or she has actually done during a debugging session. The
debug interval of which the events should be visualized can be selected from a dropdown
that shows the ten latest debug intervals. Finally, the view was also separated in three parts
called ‘General’, ‘Testing’ and ‘Debugging’ in order to create a clear separation between
the purpose of the different charts. An example of the debugging part that was added in
WatchDog 2.0 can be seen in Figure 5.9.

31



5. TRACKING DEBUGGING BEHAVIOR WITH WATCHDOG 2.0

Figure 5.5: Breakpoint window in IntelliJ with actions that WatchDog 2.0 tracks highlighted.

Figure 5.6: Debug window in IntelliJ with actions that WatchDog 2.0 tracks highlighted.

32



5.2. New functionality and architecture

Figure 5.7: Editor window in IntelliJ with actions that WatchDog 2.0 tracks highlighted.

Figure 5.8: Example of the new debugging section within WatchDog 2.0’s project reports.

5.2.2 New architecture

The overall 3-layer architecture of WatchDog is still in place in WatchDog 2.0. However,
both the common core as well as IDE-specific plugins were significantly adapted and ex-
tended. To get an impression of how the project structure changed, Figure 5.10 shows the
package diagram of WatchDog 2.0, in which the new packages are highlighted. In this way,
the main architectural changes between WatchDog and WatchDog 2.0 become apparent.

As the package diagram shows, we captured the tracking of the actions shown in Ta-
ble 5.1 in the concept of an event. These events are generated whenever a developer clicks
a button or presses the key(s) belonging to a particular debugging or breakpoint action and
contain the type of the event, its timestamp and some optional other properties like e.g. the
breakpoint type for ‘Add breakpoint’ events.

33



5. TRACKING DEBUGGING BEHAVIOR WITH WATCHDOG 2.0

Number Action(s)

1 Add breakpoint
2 Remove breakpoint
3a Enable or disable breakpoint
3b Set suspend policy of breakpoint
3c Enable or disable the breakpoint condition
3d Change the breakpoint condition
3e Add or remove the hit count of a breakpoint
3f Change the hit count of a breakpoint
4 Suspend the program execution
5 Resume the program execution
6 Step over the current line
7 Step into the current line
8 Step out of the current frame
9 Inspect a variable
10 Define a watch
11 Evaluate an expression
12 Modify a variable value

Table 5.1: Actions belonging to the numbers in Figures 5.5 to 5.7.

Figure 5.9: New ‘debugging part’ within the ‘WatchDog View’ of WatchDog 2.0.

5.3 Development process

In this section we give some more insights into the process of transforming WatchDog to
WatchDog 2.0. In particular, we discuss the refactoring performed at the beginning of the
project followed by its implementation and testing process.

34



5.3. Development process

Figure 5.10: Packages in WatchDog 2.0’s new architecture.

5.3.1 Refactoring

As described above, WatchDog’s architecture has a common core that is shared by both
clients in order to alleviate “the maintenance difficulties of two forks” [6]. However, while
familiarizing with the codebase in order to be able to extend it later on, we noticed that still
quite some duplicate code existed between the Eclipse and IntelliJ project. Having duplicate
code should be avoided according to the Don’t Repeat Yourself (DRY) principle [17]. Fur-
thermore, duplicate code is also one of the code smells that should be refactored according
to Fowler et al [13].

Therefore, by following Uncle Bob’s Boy Scout Rule of leaving the code in a better state
than you found it [25], the existing architecture was refactored. In particular, quite some
duplicate code was refactored away by pulling it into the common core. To be able to locate
the duplicate code the PMD Copy/Paste Detector (CPD) [18] was used. The result of this
refactoring was a significant drop in the clone coverage percentage as reported by Team-
scale [15]. The clone coverage trend belonging to WatchDog is visualized in Figure 5.11.

35



5. TRACKING DEBUGGING BEHAVIOR WITH WATCHDOG 2.0

Figure 5.11: WatchDog’s clone coverage trend as reported by Teamscale.

In this figure you can see that the clone percentage became 16.7% on August 24, which
is the moment when support for IntelliJ was added to the codebase. Before the refactorings
that started on December 11, the clone coverage percentage was 14.3%, which is still quite
high. As can be seen by the dropping line in the figure around December 16, the refactorings
significantly reduced the clone coverage to an acceptable 4.9%.

5.3.2 Implementation process

To apply structure to the development process of WatchDog 2.0, it was split up into four
phases based on the research question they are supposed to (partially) answer. In this way,
we created several different smaller tasks instead of one big project, which also makes the
process more manageable. The four resulting phases that are required to answer the two
main research questions were:

1. Add support for tracking debug intervals (for RQ2).

2. Add support for tracking breakpoint events (for RQ3).

3. Add support for tracking debugging events (for RQ3).

4. Visualize the new data in the ‘WatchDog View’ and the project report.

The first phase, of which the changes can be found in Pull Request 2351, was the sim-
plest to complete and also did not require any architectural changes. The second phase
contained the largest changes as it required the creation of the functionality for creating,
storing and transferring events. Furthermore, this phase required quite some research to get
to know which type of breakpoints exist in both Eclipse and IntelliJ and which events we can
listen to using the IDE-specific functions and how. The changes we made for this phase can
be found in Pull Request 2362. At the start of phase three, we again performed extensive
research to get to know which debugging features are supported and can also be listened
to in both Eclipse and IntelliJ. Support for tracking these events was added by the changes
made in Pull Request 2393. Changes we made for phase four can be found in Pull Request

1https://github.com/TestRoots/watchdog/pull/235
2https://github.com/TestRoots/watchdog/pull/236
3https://github.com/TestRoots/watchdog/pull/239

36

https://github.com/TestRoots/watchdog/pull/235
https://github.com/TestRoots/watchdog/pull/236
https://github.com/TestRoots/watchdog/pull/239


5.3. Development process

2424. During the implementation process, we improved and refactored the new functional-
ity several times in order to improve both WatchDog 2.0’s internal as external quality. An
example of such improvements can be found in Pull Request 2535.

5.3.3 Testing

To ensure the new functionality described above works as expected and that the existing
functionality was not changed throughout the process, several testing procedures were in
place. First of all, the existing codebase already contained quite some JUnit tests, also
ones that use Mockito6 to mock external dependencies. Therefore, we used these tests for
regression testing. In addition, WatchDog’s development process ensures that the main
branch is always working by using Travis CI7 for continuous integration. In this way, code
changes are only merged into the main branch when this build is marked as successful,
which means that all binaries can be build and that all tests pass. Furthermore, several static
analysis tools are in place to monitor the internal quality of the code base.

For testing the new functionality itself, we added unit tests during the phases of the
development process. For instance, before adding the events endpoint to the server in phase
two, we first extended the RSpec tests to also test for this endpoint. Then, we added the
actual functionality until all of these tests passed. Also during the development of the client,
we implemented new unit tests along the way. In this way, the new functionality was not
only tested once, but we also included these new tests for regression testing.

Besides these automated testing techniques, we also relied on quite some manual test-
ing during the development of the debug event tracking. This was necessary because the
listeners for such events cannot (easily) be tested using automated techniques as actual
user interactions are required to fire the events. Therefore, we performed these interactions
manually and then we checked the generation of the actual events in WatchDog 2.0 using
either log statements or by setting breakpoints inside the listeners in order to inspect more
complex events. For the similar reasons the extension of the IDE-specific parts of the new
‘WatchDog View’ were also tested manually.

4https://github.com/TestRoots/watchdog/pull/242
5https://github.com/TestRoots/watchdog/pull/253
6http://mockito.org/
7https://travis-ci.org/

37

https://github.com/TestRoots/watchdog/pull/242
https://github.com/TestRoots/watchdog/pull/253
http://mockito.org/
https://travis-ci.org/




Chapter 6

Analysing Debugging Behavior with
WatchDog 2.0

To get to know how developers debug in their IDE, this chapter first describes how we used
WatchDog 2.0 to collect the required behavioral data. Then, the results we found in the
collected data will be described and interpreted.

6.1 Research design and methodology

This section first discusses how we collected the data using WatchDog 2.0. Next, we de-
scribe the analysis methods used for answering the sub research questions we described in
the introduction.

6.1.1 Data collection

To collect as much data on the debugging behavior of developers as possible, we tried to
attract as many WatchDog 2.0 users as possible. Therefore, we first rebranded WatchDog
to WatchDog 2.0 by updating both the project’s website1 and the plugin descriptions on the
Eclipse MarketPlace2 and IntelliJ Plugin Repository3. In this way, we informed potential
new WatchDog 2.0 users on the new functionality for tracking debugging behavior.

As WatchDog already has a relatively large userbase, we also tried to convince those
users to update their installation to WatchDog 2.0. For this, we used the existing function-
ality in WatchDog to inform users of a major update to the plugin. In this way, we showed
all users a dialog that informs them of the update and provides them with a button to imme-
diately apply this update.

1https://testroots.org/
2http://marketplace.eclipse.org/content/testroots-watchdog
3https://plugins.jetbrains.com/plugin/7828

39

https://testroots.org/
http://marketplace.eclipse.org/content/testroots-watchdog
https://plugins.jetbrains.com/plugin/7828


6. ANALYSING DEBUGGING BEHAVIOR WITH WATCHDOG 2.0

6.1.2 Data analysis methods

To analyse the data collected with WatchDog 2.0, we integrated the new required debugging
analyses into the existing analysis pipeline of WatchDog. This pipeline basically extracts
the data from the Mongo database and stores all necessary information in CSV files using
R. Then, this data can be loaded back into R and analysed, which is exactly what we did for
the analyses required for answering the sub research questions. The analysis methods we
used for some of these research questions require some more explanation.

For example, for RQ2.3, we assessed the intervals that occur right before a debugging
session is started. We chose a time period of 16 seconds as there is an inactivity timeout
of 16 seconds in WatchDog, meaning that activity-based intervals like reading or typing
intervals are automatically closed after this period of inactivity to account for e.g. coffee
breaks.

Furthermore, for RQ2.4 and RQ2.5 we consider a file “under debugging” if we receive
reading or typing intervals during a debugging interval on it, i.e. for all the files the user
steps through, reads, or otherwise modifies during a debugging session.

Finally, for RQ2.4, RQ2.6 and RQ2.7 we again used the non-parametric Spearman
rank-order correlation test for analysing dependencies. To interpret the results of these
dependency analyses, we again use Hopkins’ guidelines [16] as described in the analysis
methods used for the online survey.

6.2 WatchDog 2.0 results and their interpretations

In this section we first describe the demographics of the observed data and extract some
basic results from it. Then, we describe the results and their interpretations per sub research
question.

6.2.1 Demographics and basic results

Since the release of WatchDog 2.0 on 22 April 2016, we collected user data for a period
over two months, until 28 June 2016. In this period, we received 1,155,189 intervals,
from 458 users in 603 projects. Of these, 3,142 were debug intervals from 132 developers.
In total, we recorded 18,156 hours in which the IDE was open, which amounts to 10.3
observed developer years based on the average of 1,770 working hours per year for OECD
countries4. We also collected 54,738 debugging events spread over 192 users, 218 projects
and 723 IDE sessions. In total, we recorded both at least one debug interval and one event
for 108 users. The number of occurrences of the different event types as well as the types
of breakpoints added and the types of breakpoint changes can be found in Table 6.1.

As the results above indicate, only 132 of the 458 users (28.8%) used the IDE debugger
during the data collection period even though their IDE actually provides one, with no
significant difference between Eclipse (28.9%) and IntelliJ (27.6%) users. Moreover, only
108 WatchDog 2.0 users (23.6%) have used the debugger and at least one of its features.

4http://stats.oecd.org/index.aspx?DataSetCode=ANHRS

40

http://stats.oecd.org/index.aspx?DataSetCode=ANHRS


6.2. WatchDog 2.0 results and their interpretations

Breakpoint type Frequency Change type Frequency

Class prepare 99 Change condition 3
Exception 37 Disable condition 1
Field 78 Enable condition 19
Line 4229 Disable 180
Method 77 Enable 40
Undefined 24 Change suspend policy 4

4544 247
Event type Frequency Event type Frequency

Add breakpoint 4544 Resume client 8292
Change breakpoint 247 Suspend by breakpoint 13276
Remove breakpoint 4362 Suspend by client 16
Define watch 343 Step into 3480
Evaluate expression 101 Step over 19543
Inspect variable 179 Step out 351
Modify variable value 4

54738

Table 6.1: Frequency tables of received events as well as the breakpoint types and options
seen in them.

The vast majority of WatchDog 2.0 users is not using the IDE-provided debugging
infrastructure.

The results shown in Table 6.1 indicate that line breakpoints are by far the most used
breakpoint type. The other, likely more advanced, types account for less than 7% of all
breakpoints set during the collection period. Furthermore, line breakpoints are used by
most developers using the debugging infrastructure, while the other types of breakpoints
are used by only 7.6−20.5% of these developers.

Line breakpoints are used most and by most developers, other breakpoint types are used
much less and by much less developers.

Looking at the breakpoint change type frequencies in Table 6.1, we see that almost all
of these changes are related to the enablement of the breakpoints. The other change types
account for only 10.9% of all breakpoint changes. Furthermore, the number of users that
generated these events range from 1 (0.8%) to 12 (9.1%). Moreover, the events related to
specifying a hit count on the breakpoint have not been recorded at all during the collection
period.

41



6. ANALYSING DEBUGGING BEHAVIOR WITH WATCHDOG 2.0

Breakpoint options are not used by most WatchDog 2.0 users; the most frequently used
option is changing their enablement.

Table 6.1 shows that most of the recorded events are related to the evolution of break-
points, hitting them during debugging and stepping through the source code. The more ad-
vanced debugging features like defining watches and modifying variable values have been
used much less. Furthermore, the same holds for the number of users generating these
events: the majority of users have added and/or removed breakpoints and stepped through
the code, while only 2.3− 15.2% modified variable values, evaluated expressions and/or
defined watches.

Setting breakpoints and stepping through the code is done most and by most developers
using the debugger, other debugging features are used much less and by much less
developers.

6.2.2 RQ2.1: How much of their active IDE time do developers spend on
debugging (compared to other activities)?

For RQ2.1, we first computed the total duration of all intervals of a particular type and
based it on the total duration of ‘IDE open’ intervals (18,156.9 hours, 100%) in the col-
lection period. We recorded 25.2 hours of running unit tests (0.14%), 721.5 hours of de-
bugging intervals (3.97%), 2,568.8 hours of reading (14.15%), and 1,228.6 hours of typing
(6.77%). More generic interval types include e.g. ‘WatchDog open’ (0.12%) and ‘IDE ac-
tive’ (28.92%). Next, we analysed the durations and percentages on a per user basis. For
the users with at least one debug interval, the descriptive statistics of the resulting durations
and percentages are shown in Table 6.2. This table also shows the corresponding values for
reading, typing and JUnit intervals.

Variable Unit Min 25% Median Mean 75% Max Histogram
Debugging Hours (%) 0.00 (0.00%) 0.03 (0.06%) 0.30 (0.49%) 5.47 (2.50%) 1.42 (2.36%) 333.70 (30.81%)

Reading Hours (%) 0.00 (0.02%) 0.14 (1.65%) 0.60 (3.22%) 5.70 (4.89%) 2.07 (5.68%) 591.10 (52.71%)

Typing Hours (%) 0.00 (0.01%) 0.21 (1.46%) 1.01 (3.59%) 2.95 (4.84%) 2.78 (6.87%) 63.87 (28.25%)

Running JUnit tests Hours (%) 0.00 (0.00%) 0.00 (0.00%) 0.01 (0.01%) 0.68 (0.21%) 0.56 (0.16%) 9.19 (2.13%)

Table 6.2: Descriptive usage statistics for important interval types.

Looking at the results shown in Table 6.2 and the fact that the total recorded active IDE
time was 5250.7 hours, we see that, in total, debugging consumes 13.7% of the active in-
IDE development time, while reading or writing production or test code and running tests
take 48.6%, 23.4% and 0.5%, respectively.

42



6.2. WatchDog 2.0 results and their interpretations

Debugging consumes, on average, less than 14% of the in-IDE development time.

6.2.3 RQ2.2: What is the (average) frequency and length of the debugging
sessions performed by developers?

For RQ2.2 we first analysed the number of debug intervals per user for the 132 developers
that have used the debugger during the collection period. The resulting numbers range from
a single debug interval to 598 debugging sessions, with an average of 23.8 and a median
of 4 debug intervals per user. Next, we analysed the durations of the 3,142 debug intervals
and found values ranging from 3 milliseconds to 90.8 hours, with an average and median
duration of 13.8 minutes and 42.3 seconds, respectively.

Based on these results, we find that about half of the users using the IDE-provided de-
bugging infrastructure have launched the debugger four times or less during the two months
of data collection, while 21% of the developers launched their debugger more than 20 times,
making them responsible for over 80% of the debugging sessions.

About 20% of the developers are responsible for over 80% of the debugging intervals
in our sample.

Furthermore, about half of the debugging sessions take at most 40 seconds, while about
12% of them last more than 10 minutes.

Most debugging sessions do not take much time, only 12% of them take more than ten
minutes.

6.2.4 RQ2.3: At what times do developers launch the IDE debugger?

In order to find an answer to RQ2.3, we assessed the intervals that occur right before a
debugging session is started. The resulting frequencies and their percentages of all intervals
occurring before any debug interval are: 119 (1.24%) for other debug intervals, 46 (0.48%)
for running unit tests, 4,991 (51.94%) for reading and 1,802 (18.75%) for typing intervals.

Therefore, we find that about 70% of the debugging sessions are started after reading or
writing code. Furthermore, only 0.5% of them are started after a failing or passing test run.

Most debugging sessions start after reading or changing the code, not after running
tests.

43



6. ANALYSING DEBUGGING BEHAVIOR WITH WATCHDOG 2.0

6.2.5 RQ2.4: Do long files require more debugging?

For RQ2.4, we researched whether there is a correlation between the file size of a class
(in SLOC [28]), and the number of times it is used for debugging. At ρ = −0.75, we
find a strong negative correlation. We also investigated the relation between the file sizes
and the duration of the debug intervals in which they are opened and found no correlation
(ρ = 0.19).

Classes are opened more during debugging as they get smaller.

6.2.6 RQ2.5: Is a small set of classes responsible for most debugging effort?

For RQ2.5 we compared the number of classes being debugged in a debug interval to:
1. the total number of classes we observed with WatchDog for this project (also through
other intervals such as reading, writing, or running tests); and 2. the number of different
classes that have been debugged during any debug interval of the project.

For 1., we found that on average, only 4.83% (median: 1.66%) of all project classes
were ever debugged. The value ranges from 0.22% to 100%, where low values are found
in projects with very few classes while the 100% cases stem from projects with only one
or two classes. For 2., the results range from 0.81% to 100% with an average of 14.47%
(median: 4.55%). Both results seem to indicate that debugging is focused on a relatively
small set of classes in the project.

In addition, we find that in 75% of the debugging intervals at most 5% of the project’s
classes are opened. Furthermore, in 75% of these intervals, less than 15.8% of the classes
that are ever debugged in the project are opened.

In most cases less than 5% of the project’s classes are debugged in a debug interval.

6.2.7 RQ2.6: Do developers who test a lot have to debug less?

In RQ2.6, we first investigated the relation between the total duration of running unit tests
and the debug intervals per user. We performed a Spearman rank-order correlation test using
the 144 developers having at least one debug interval or one unit testing interval, resulting
in no correlation (ρ = 0.11). Then, we only considered the 25 developers with at least one
debug interval and one unit testing interval. At ρ = 0.58, we find a moderate correlation
between the two durations.

Developers who spend a lot of time running tests are likely to debug a lot as well.

Next, we studied the relation between the amount of time the user spends inside test
classes and the debugging time, again by performing a Spearman rank-order correlation

44



6.2. WatchDog 2.0 results and their interpretations

test. For the 248 developers with at least one debug interval or one opened test class, we
find no correlation at ρ = −0.08. Furthermore, we find no correlation (ρ = 0.23) when
focussing on the 84 users with both at least one debug interval and one opened test class.

Developers who spend a lot of time within test classes are not likely to debug less or
more.

6.2.8 RQ2.7: Do experienced developers have to debug less?

For answering RQ2.7, we first computed the total duration of all debug intervals per user.
Then, we performed a Spearman rank-order correlation test using these values and the pro-
gramming experience the user entered during WatchDog 2.0’s registration process by first
applying a linear integer transformation similar to the one for the dependency analysis of
the survey answers. For the 58 users that have entered their experience and have generated
at least one debug interval, this resulted in a weak correlation (ρ = 0.38).

More experienced developers are likely to spend a bit more time debugging.

6.2.9 RQ3.1: Which sequences of events are commonly found within and
between debugging sessions?

For RQ3.1 we first created a frequency table of the sequences of events that occurred dur-
ing a debugging session. Next, we did the same for the sequences in which all consecutive
events of the same type are collapsed into a single event in order to reduce the number of
sequences that only occur once. Finally, the sequences were compressed even further by
collapsing all different kinds of stepping events into a single one. Parts of these three fre-
quency tables are shown in Table 6.4. For a description of the acronyms used, see Table 6.3.

Acronym Description
BA Breakpoint added
BR Breakpoint removed
CC Condition changed
CE Condition enabled
DS Breakpoint disabled
EN Breakpoint enabled
RC Resumed by client
SB Suspended by breakpoint
SO Stepped over
STEP Stepped over, into or out

Table 6.3: Descriptions of used acronyms for events.

45



6. ANALYSING DEBUGGING BEHAVIOR WITH WATCHDOG 2.0

Complete Frequency Compressed Frequency
No events 1995 No events 1995
SB 89 SB 125
SB→RC 48 SB→RC 56
SB→SB 25 RC→SB 24
RC→SB 18 SB→SO 20
864 other sequences 967 722 other sequences 922

3142 3142
More compressed Frequency
No events 1995
SB 125
SB→RC 56
SB→STEP 35
STEP→SB→STEP 28
662 other sequences 903

3142

Table 6.4: Complete and compressed event sequences within debug intervals.

In all cases shown in Table 6.4, the empty sequence occurs most, which means that
no debugging features were used during the debug interval. Next, the sequence consisting
of a single ‘suspended by breakpoint’ event had the highest frequency, followed by the
sequence of ‘suspended by breakpoint’ followed by ‘resumed by client’. In the tables of
both compressed sequences, these two sequences were followed by the sequences consisting
of a repetition of the sequence ‘suspended by breakpoint’ followed by a stepping event.

Next, we did a similar analysis for the events that occur between two debug intervals,
in which events occurring after a single interval are ignored. We also compressed these
sequences once in the same way as described above. The most frequent sequences and their
frequencies are presented in Table 6.5. The descriptions of the acronyms can again be found
in Table 6.3.

In both cases shown in Table 6.5, the most frequent sequence was again the empty se-
quence, followed by the sequence consisted of the addition of at least one breakpoint. Fol-
lowing these sequences are the sequences consisting of several combinations of breakpoint
additions and removals.

No debugging features are used within and between most debugging sessions.

Programs are mostly suspended and stepped through during debugging and breakpoints
are mainly added in between debugging sessions.

46



6.2. WatchDog 2.0 results and their interpretations

Complete Frequency Compressed Frequency
No events 2548 No events 2548
BA 102 BA 134
BA→BA 28 SB 27
SB 20 BR 25
BR 18 BA→BR 18
333 other sequences 426 285 other sequences 390

3142 3142

Table 6.5: Complete and compressed event sequences between debug intervals.

6.2.10 RQ3.2: How do breakpoints evolve over time?

For RQ3.2 we first analysed the sequences of breakpoint events in a similar way as for
RQ3.1, but per IDE session instead of per debugging session. Parts of the resulting fre-
quency tables for the cases of complete and compressed sequences can be found in Ta-
ble 6.6, which uses the acronyms from Table 6.3.

Complete Frequency Compressed Frequency
No events 344 No events 344
BA 24 BA 38
BA→BR 16 BA→BR 31
BR 9 BA→BR→BA 17
BA→BA 9 BR→BA 17
174 other sequences 321 71 other sequences 276

723 723

Table 6.6: Complete and compressed breakpoint event sequences per IDE session.

Table 6.6 shows that the most frequent sequence after the empty sequence is in both
cases the addition of at least one breakpoint, followed by the sequence(s) consisting of at
least one breakpoint addition followed by at least one breakpoint removal.

To see how breakpoints are changed over time, we also looked at the sequences of
breakpoint changes during the IDE sessions in the same way. The resulting frequency tables
are (partially) presented in Table 6.7, using the acronyms from Table 6.3.

Based on the results in Table 6.7, we find that the non-empty sequences found most are
the ones in which one or more breakpoints are disabled, followed by the sequences in which
a condition is added to one or more breakpoints.

Most breakpoints that are changed over time are disabled or become conditional.

47



6. ANALYSING DEBUGGING BEHAVIOR WITH WATCHDOG 2.0

Complete Frequency Compressed Frequency
No events 578 No events 578
DS 5 DS 14
DS→DS 4 CE 5
CE 3 DS→EN→DS→. . . 2
DS→DS→DS 2 CE→CC→EN→. . . 1
16 other sequences 131 9 other sequences 123

723 723

Table 6.7: Complete and compressed sequences of breakpoint changes per IDE session.

6.2.11 RQ3.3: How often does it occur that a developer steps over the point
of interest and has to start all over again?

During our research into debugging, we sometimes heard anecdotal reports of frustrated
developers stepping over the point of interest while debugging. To this end, we seeked
objective data to support how severe of a problem it really is by looking for possible cases
of stepping over the point of interest for RQ3.3, which means that the developer steps one
time too many and has to start debugging all over again. For this we created a set of debug
intervals that satisfy the following two conditions: 1. the last event occurring within the
debug interval is a stepping event; and 2. the interval is followed by another debug interval in
the same IDE session. Then we created several subsets of this debug intervals by imposing
a maximum time period between two consecutive debug intervals. Figure 6.1 shows the
possible cases of stepping over the point of interest for the subsets with a maximum time
period between one second and 15 minutes.

The trend line in Figure 6.1 shows that the amount of new possible cases of stepping over
the point of interest starts to decrease significantly after about four minutes. At this point,
about 150 possible cases can be identified, which corresponds to 4.8% of the debugging
intervals.

Developers might step over the point of interest and have to start over again in less than
about 5% of the debugging sessions.

48



6.2. WatchDog 2.0 results and their interpretations

0

50

100

150

200

0 250 500 750

Maximum time between debug intervals (in seconds)

N
u
m

b
e
r 

o
f 
p
o
s
s
ib

le
 c

a
s
e
s

Figure 6.1: Possible cases of stepping over the point of interest per maximum time period
between consecutive debug intervals.

49





Chapter 7

Discussion

This chapter first discusses the results obtained in Chapters 4 and 6 on a more abstract level
and by comparing the results of both datasets. Next, we describe the limitations and possible
threats affecting the validity of our study.

7.1 Interpretation of results

Usage of the IDE Debugger. In the results described in Chapter 4, we found that the vast
majority of survey respondents claims to be using the IDE-provided debugging infrastruc-
ture and the integrated debugging features. However, in the results for WatchDog 2.0 we
found that most developers are actually not using their IDE debugger and its features. This
contradiction points to a difference between the perception and reality of debugging behav-
ior, similar to what Beller et al. observed for testing [5]. However, although unlikely, it
might be that most of the observed developers did not have to fix a bug during the observa-
tion period.

Furthermore, the low observed use of the IDE-provided debugging infrastructure is a
result in itself. In the survey, many respondents claimed to be using print statements and
log files. In addition, many respondents that are not using the IDE debugger find techniques
like these more effective or efficient. By analysing the responses to the statement that
“the best invention in debugging still was printf debugging”, we also found that some like
using print statements over IDE debuggers as they are fast and easy, others like using tests
to avoid debugging better and some believe that debuggers are jittery or not suitable in
concurrent environments or have too much overhead. Therefore, these results might explain
the low observed debugger usage. However, other respondents find that using debuggers is
required as printf debugging is not enough (for harder bugs) or they find them simply better.
These differences of opinion point to a division in the developer community that needs to
be explored further in future research.

Usage of Debugging Features. The survey results also indicated that most developers
use line breakpoints, but do not use more advanced breakpoint types like class prepare
breakpoints. The same conclusion can also be drawn from the data obtained with WatchDog
2.0. This raises the following question: do developers find the unused breakpoint types

51



7. DISCUSSION

useless or are they simple unknown? Figure 4.1 shows that most developers actually claim
to know most of these other breakpoint types. So, are these types actually useless or do
developers that know them not know how to apply them in practice?

Regarding the usage of breakpoint options, we found that most developers are familiar
with specifying conditions, but not with setting the hit count or suspend policy. A similar
result was extracted from WatchDog 2.0’s data. However, the number of developers using
them was much lower than the survey indicated, as shown in Figure 4.2. This gap might
be explained by the fact that the survey was targeted at debugging specifically, which might
have attracted more experienced users than in the general WatchDog 2.0 population.

A similar result is visible in both the survey and WatchDog 2.0 data about the usage of
other debugging features like stepping through the code. In both cases we found that these
features get used less at they get more advanced. However, the observed numbers on the
usage of these features are much lower than the claimed usage visualized in Figure 4.3. For
example, while 60% of the survey respondents indicated to define watches during debug-
ging, only 15.2% of the WatchDog 2.0 users that use the debugger have defined a watch.

Usage of Tests for Debugging. In the survey, most respondents think (unit) testing is
an integral part of the debugging process, especially for reproducing bugs at the beginning
of the process. Moreover, one respondent even thinks that “the best invention is to elimi-
nate the need for debugging by maintaining a test suite”. However, this usage of tests is not
visible in the data obtained with WatchDog 2.0 as shown by the results for RQ2.3. Regard-
ing the results of RQ2.6 which relates the time spend on testing with debugging, we found
that developers spending more time on running tests in their IDE are likely to spend more
time on debugging. This might indicate that these developers often execute tests during the
debugging process. However, this is again not supported by the results for RQ2.3 as well
as by the other results for RQ2.6. Therefore, developers do not seem to actually use tests
during the debugging process. This raises the following question: why are they not using
tests for debugging or do they use and/or define these tests outside of the IDE?

Effects of Experience on Debugging. Based on the survey responses, we found that
experience in software development has limited to no impact on whether or not the devel-
oper uses the IDE debugger and its features as well as (unit) tests. However, one survey
respondent indicates that he or she has “the feeling that as I get more experienced I use the
debugger less and less”. Nevertheless, the results for RQ2.7 obtained with WatchDog 2.0
also report a limited impact of programming experience on the time spend on debugging.
Therefore, there seems to be no significant relation between experience and debugging be-
havior within the IDE, which, combined with previous results, might mean that experienced
developers do not absolutely have more knowledge on IDE debugging than less experienced
ones. This again might point to a lack of education on debugging amongst many software
developers ranging from beginners and CS students to experts.

Dependencies between Debugging Features. In the analysis of the survey results, we
found that developers claiming to use line breakpoints likely also step through the code. The
same relation is visible in the data obtained with WatchDog 2.0. In fact, these two events
are part of common debugging behavior as indicated by e.g. Tables 6.1 and 6.4.

Results of Sub Research Questions. For RQ2.1 we found that developers, in total,
spend less than 4% of the time their IDE is open on debugging and less than 14% of the

52



7.2. Threats to validity

time they are actively working in the IDE. If you would consider all tracked users as being
part of a single project, then the result is quite a bit lower than the 30−90% for testing and
debugging as reported by Beizer [3]. So, is debugging not such a “dirty little secret” [22]
after all or is much of the debugging effort performed outside of the IDE?

We also found in RQ2.4 that classes are likely to be visited during debugging more as
they get smaller, which is quite surprising as long classes are often considered as a ‘code
smell’ [13]. However, we found no correlation between the length of a file and the amount
of required debugging time.

In the results for RQ2.5 we found that only a small set of classes is often responsible for
all recorded debugging effort. This result might be used as a starting point for developing a
new or improved automated debugging technique by e.g. keeping track of this set of classes
and only show the results of slicing or spectra-based fault localization for the statements in
this set.

Finally, we found that in less than about 5% of the debugging sessions the developer
might have stepped over the point of interest and had to start debugging all over again. This
indicates that there is a limited, but existent gap in the debugging process that might be
filled with so-called back-in-time debuggers (e.g. [40]) that allow developers to step back in
the program execution in order to arrive at the point of interest.

7.2 Threats to validity

In this section we discuss both the limitations as well as the construct, internal and external
validity of our study.

Limitations of this study include the fact that over 80% of the survey respondents seems
to be from the Java community. Therefore, little survey data is available about communities
focussing on other programming languages. The same holds for the analysis of the Watch-
Dog 2.0 data, as our tool is currently only available for Eclipse and IntelliJ. Therefore, data
generated by other (Java) IDEs is not included in our analysis.

Furthermore, the group of survey respondents is different from the group of WatchDog
2.0 users we tracked. This means that the results obtained by both methods stem from
different populations, which makes a comparison of these results harder.

Construct validity deals with the threats originating from the way in which we collect
our data. As the WatchDog 2.0 implementation is build on top of the original WatchDog ver-
sion, possible errors in the original tool might still exist. Furthermore, the implementation
of the new functionality is prone to human errors.

To minimize these risks, the automated test suite of WatchDog was extended to also test
for the correctness of the new functionality. Furthermore, we use this test suite for regres-
sion testing to make sure existing functionality is not broken throughout the process. In
addition, extensive manual testing has been performed to verify whether or not the inter-
vals and events are properly generated, stored and transferred. Finally, we performed code
reviews before changes were actually integrated.

53



7. DISCUSSION

Internal validity is concerned with the threats that are inherent to the study described
in this report. The first threat is that we might not have found common debugging issues
on StackOverflow because StackOverflow’s question guidelines12 forbid users to ask gen-
eral, open-ended questions. Furthermore, although we have run the analyses with different
numbers of topics, the arbitrarily chosen number of topics might still have led to imprecise
results.

The first threat regarding the survey analysis is the risk that one person under- and/or
overuses some of the tags in the open card sorting process. To mitigate this risk, we first
performed the card sorting with two persons in close collaboration. Afterwards, we sampled
some of the responses and had another person sort the cards, independently of the existing
tags. Then, we compared the results and checked the inter-rater agreement. We found that
the differences between the results were mainly caused by having different interpretations
of some tags.

Furthermore, the mentioned set of different answers to the open survey questions based
on analysing the tags resulting from the open card sorting cannot be taken as conclusive.
This is because respondents might (not) have thought about and mentioned these key words
at random. Therefore, these answer types only serve as an indication of their opinions.

Finally, as WatchDog 2.0 is not (yet) able to determine which classes are being de-
bugged, we approximated this for RQ2.4 and RQ2.5 by looking at the classes that are
opened for reading or typing during a debug interval. However, as it seems reasonable to
assume that a possible bias is constant across all debug intervals, the ordering of the result-
ing percentages is not affected by such a bias. A similar argument holds for approximating
the number of classes in a project by counting the unique classes ever seen in an interval for
that project.

External validity deals with the extent to which the results of this study are general-
izable. During a data collection period of more than two months we collected 1,155,189
intervals with a total duration of over ten developer years, spread over 458 users. However,
the results do likely still not hold for all individual developers and organizations. Further-
more, the collected data is only generated by Eclipse and IntelliJ, meaning that the results
could not hold for other Java IDEs. Moreover, they could be very different for users outside
of the Java community or when including debugging behavior outside of the IDE.

1http://stackoverflow.com/help/dont-ask
2http://stackoverflow.com/help/on-topic

54

http://stackoverflow.com/help/dont-ask
http://stackoverflow.com/help/on-topic


Chapter 8

Conclusions and Future Work

As debugging is still necessary and automated techniques are not there yet (see e.g. [29])
and are also not widely used [35], techniques like symbolic debugging in the IDE are still
required. However, we are not aware of the existence of any study on the debugging behav-
ior of software developers in IDEs. To this end, we studied the developers’ perception on
(IDE) debugging by conducting an online survey after having searched for common issues
with debugging on StackOverflow. In addition, we looked for (the absence of) common
debugging behavior by instrumenting Eclipse and IntelliJ to collect behavioral data using
WatchDog 2.0.

Based on the resulting datasets, we found several similarities as well as differences and
contradictions between the developers’ perception on their debugging habits and the actual
IDE debugging behavior. For instance, the vast majority of the survey respondents claims to
be using the IDE-provided infrastructure, but we found that the vast majority of developers
we collected data from does not actually use this infrastructure. Furthermore, we found
several other, some even surprising, results based on using just one of the two datasets. For
example, we found no correlation between the time spend in test classes and the required
debugging time. In addition, we found that programming experience has limited to no
impact on the usage of IDE-provided debugging features. In general, our study has the
following implications:

Software Developers should be aware that they tend to overestimate their usage of the
IDE-provided debugging infrastructure. Furthermore, they should know that more debug-
ging features and techniques exist and can be applied in practice than the ones they are
using.

IDE creators should know that the debugging features they provide are likely not used
by most developers. Moreover, they should be aware that some features are used far more
frequent than others. This knowledge could be used to, e.g., give them a more prominent
place in the IDE. In addition, they should know that developing or integrating back-in-time
debuggers might fill a gap in the debugging process.

Educators/Reseachers should be aware that developers’ perceptions can be quite dif-
ferent from their actual behavior. Furthermore, they should know that some common beliefs

55



8. CONCLUSIONS AND FUTURE WORK

on debugging and testing do not seem to hold in practice. Finally, they should be aware of
the apparent lack of knowledge on debugging among software developers, which probably
requires a more prominent place for debugging in curricula.

Based on the respondents’ answers to the open survey question as well as the results of
the survey and the WatchDog 2.0 data in general, we formulated several preliminary conclu-
sions and hypotheses. To test these hypotheses, we plan to interview several developers and
IDE creators. Furthermore, to increase the generalizability of this study, we plan to collect
WatchDog 2.0 data over a longer period of time. Next, to overcome the limitation of only
collecting data on Eclipse and IntelliJ and therefore mainly Java developers, we would like
to support even more IDEs, especially non-Java ones. Finally, to be able to better compare
the perception on debugging of developers and their debugging behavior, we plan to link
the survey responses to the WatchDog 2.0 data to have data originating from the same popu-
lation. We already set up the infrastructure to support this. However, at the time of writing,
too few responses were available to draw significant results.

In conclusion, the hypotheses and results we obtained in this study need to be tested
and researched more in future work to increase their credibility and generalizability. How-
ever, the surprising results of this study show that we might need to review our commonly
accepted beliefs on debugging and open up new possibilities for research.

56



Bibliography

[1] David Abramson, Clement Chu, Donny Kurniawan, and Aaron Searle. Relative de-
bugging in an integrated development environment. Software: Practice and Experi-
ence, 39(14):1157–1183, 2009.

[2] Anton Babenko, Leonardo Mariani, and Fabrizio Pastore. Ava: Automated interpre-
tation of dynamically detected anomalies. In Proceedings of the Eighteenth Interna-
tional Symposium on Software Testing and Analysis, ISSTA ’09, pages 237–248, New
York, NY, USA, 2009. ACM.

[3] Boris Beizer. Software testing techniques. New York, ISBN: 0-442-20672-0, 1990.

[4] Moritz Beller, Georgios Gousios, Annibale Panichella, and Andy Zaidman. When,
how, and why developers (do not) test in their ides. In Proceedings of the 2015 10th
Joint Meeting on Foundations of Software Engineering, ESEC/FSE 2015, pages 179–
190, New York, NY, USA, 2015. ACM.

[5] Moritz Beller, Georgios Gousios, and Andy Zaidman. How (much) do developers
test? In Proceedings of the 37th International Conference on Software Engineering
(ICSE), NIER Track, pages 559–562. IEEE, 2015.

[6] Moritz Beller, Igor Levaja, Annibale Panichella, Georgios Gousios, and Andy Zaid-
man. How to catch em all: Watchdog, a family of ide plug-ins to assess testing. In
ICSE 2016, Austin, USA, 14-22 May 2016; Authors version. ACM/IEEE, 2016.

[7] David M Blei. Probabilistic topic models. Communications of the ACM, 55(4):77–84,
2012.

[8] David M Blei, Andrew Y Ng, and Michael I Jordan. Latent dirichlet allocation. the
Journal of machine Learning research, 3:993–1022, 2003.

[9] Satish Chandra, Emina Torlak, Shaon Barman, and Rastislav Bodik. Angelic debug-
ging. In Software Engineering (ICSE), 2011 33rd International Conference on, pages
121–130. IEEE, 2011.

57



BIBLIOGRAPHY

[10] Marcel Das, Peter Ester, and Lars Kaczmirek. Social and behavioral research and the
internet: Advances in applied methods and research strategies. Routledge, 2010.

[11] Frank Eichinger, Klaus Krogmann, Roland Klug, and Klemens Böhm. Software-
defect localisation by mining dataflow-enabled call graphs. In Machine Learning and
Knowledge Discovery in Databases, pages 425–441. Springer, 2010.

[12] Frank Eichinger, Victor Pankratius, Philipp WL Große, and Klemens Böhm. Local-
izing defects in multithreaded programs by mining dynamic call graphs. In Testing–
Practice and Research Techniques, pages 56–71. Springer, 2010.

[13] Martin Fowler, Kent Beck, J Brant, William Opdyke, and Don Roberts. Refactoring:
Improving the design of existing programs, 1999.

[14] James Gleick. Little bug, big bang. http://www.nytimes.com/1996/12/01/
magazine/little-bug-big-bang.html, 1996. [Online; accessed 30 June 2016].

[15] Lars Heinemann, Benjamin Hummel, and Daniela Steidl. Teamscale: Software quality
control in real-time. In Companion Proceedings of the 36th International Conference
on Software Engineering, pages 592–595. ACM, 2014.

[16] Will G Hopkins. A new view of statistics. http://newstatsi.org, 1997. [Online;
accessed 16 March 2015].

[17] Andrew Hunt and David Thomas. The pragmatic programmer: from journeyman to
master. Addison-Wesley Professional, 2000.

[18] InfoEther Inc. Pmd - finding copied and pasted code. http://pmd.sourceforge.
net/pmd-4.3.0/cpd.html. [Online; accessed 3 May 2016].

[19] A Lehman, N ORourke, L Hatcher, and EJ Stepanski. Jmp for basic univariate and
multivariate statistics: A step-by-step guide. sas institute. Inc., Cary, NC, 2005.

[20] Yan Lei, Xiaoguang Mao, Ziying Dai, and Chengsong Wang. Effective statistical fault
localization using program slices. In Computer Software and Applications Conference
(COMPSAC), 2012 IEEE 36th Annual, pages 1–10, July 2012.

[21] Jie Li, Changhai Nie, and Yu Lei. Improved delta debugging based on combinatorial
testing. In Quality Software (QSIC), 2012 12th International Conference on, pages
102–105, Aug 2012.

[22] Henry Lieberman. The debugging scandal and what to do about it (introduction to the
special section). Commun. ACM, 40(4):26–29, 1997.

[23] Lucia Lucia, David Lo, Lingxiao Jiang, Ferdian Thung, and Aditya Budi. Extended
comprehensive study of association measures for fault localization. Journal of Soft-
ware: Evolution and Process, 26(2):172–219, 2014.

58

http://www.nytimes.com/1996/12/01/magazine/little-bug-big-bang.html
http://www.nytimes.com/1996/12/01/magazine/little-bug-big-bang.html
http://newstatsi.org
http://pmd.sourceforge.net/pmd-4.3.0/cpd.html
http://pmd.sourceforge.net/pmd-4.3.0/cpd.html


Bibliography

[24] Muhammad Zubair Malik, Junaid Haroon Siddiqi, and Sarfraz Khurshid. Constraint-
based program debugging using data structure repair. In Software Testing, Verification
and Validation (ICST), 2011 IEEE Fourth International Conference on, pages 190–
199. IEEE, 2011.

[25] Robert C Martin. Clean code: a handbook of agile software craftsmanship. Pearson
Education, 2009.

[26] Andrew Kachites McCallum. Mallet: A machine learning for language toolkit.
http://mallet.cs.umass.edu, 2002.

[27] Lee Naish, Hua Jie Lee, and Kotagiri Ramamohanarao. A model for spectra-based
software diagnosis. ACM Trans. Softw. Eng. Methodol., 20(3):11:1–11:32, August
2011.

[28] Vu Nguyen, Sophia Deeds-Rubin, Thomas Tan, and Barry Boehm. A sloc counting
standard. In COCOMO II Forum, volume 2007, 2007.

[29] Alessandro Orso. Automated debugging: Are we there yet? https://www.youtube.
com/watch?v=WJHQnzLpVXk&feature=youtu.be, 2014. [Online; accessed 11 July
2016].

[30] Saeed Parsa and Somaye Arabi Naree. A new semantic kernel function for online
anomaly detection of software. ETRI Journal, 34(2):288–291, 2012.

[31] Saeed Parsa, Mojtaba Vahidi-Asl, Somaye Arabi, and Behrouz Minaei-Bidgoli. Soft-
ware fault localization using elastic net: A new statistical approach. In Advances in
Software Engineering, pages 127–134. Springer, 2009.

[32] Saeed Parsa, Mojtaba Vahidi-Asl, and Maryam Asadi-Aghbolaghi. Hierarchy-debug:
a scalable statistical technique for fault localization. Software Quality Journal,
22(3):427–466, 2014.

[33] Saeed Parsa, Farzaneh Zareie, and Mojtaba Vahidi-Asl. Fuzzy clustering the back-
ward dynamic slices of programs to identify the origins of failure. In Experimental
Algorithms, pages 352–363. Springer, 2011.

[34] Michael Perscheid and Robert Hirschfeld. Follow the path: Debugging tools for test-
driven fault navigation. In Software Maintenance, Reengineering and Reverse Engi-
neering (CSMR-WCRE), 2014 Software Evolution Week-IEEE Conference on, pages
446–449. IEEE, 2014.

[35] Michael Perscheid, Benjamin Siegmund, Marcel Taeumel, and Robert Hirschfeld.
Studying the advancement in debugging practice of professional software developers.
Software Quality Journal, pages 1–28, 2016.

59

https://www.youtube.com/watch?v=WJHQnzLpVXk&feature=youtu.be
https://www.youtube.com/watch?v=WJHQnzLpVXk&feature=youtu.be


BIBLIOGRAPHY

[36] Fabio Petrillo, Zphyrin Soh, Foutse Khomh, Marcelo Pimenta, Carla Freitas, and
Yann-Gal Guhneuc. Understanding interactive debugging with swarm debug infras-
tructure. In Proceedings of the 24th International Conference on Program Compre-
hension, pages 1–4. ACM, 2016.

[37] David Piorkowski, Scott Fleming, Christopher Scaffidi, Christopher Bogart, Margaret
Burnett, Bonnie John, Rachel Bellamy, and Calvin Swart. Reactive information for-
aging: An empirical investigation of theory-based recommender systems for program-
mers. In Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, CHI ’12, pages 1471–1480, New York, NY, USA, 2012. ACM.

[38] David Piorkowski, Scott D. Fleming, Christopher Scaffidi, Margaret Burnett, Irwin
Kwan, Austin Z. Henley, Jamie Macbeth, Charles Hill, and Amber Horvath. To fix or
to learn? how production bias affects developers’ information foraging during debug-
ging. In Proceedings of the 2015 IEEE International Conference on Software Main-
tenance and Evolution (ICSME), ICSME ’15, pages 11–20, Washington, DC, USA,
2015. IEEE Computer Society.

[39] David J Piorkowski, Scott D Fleming, Irwin Kwan, Margaret M Burnett, Christopher
Scaffidi, Rachel KE Bellamy, and Joshua Jordahl. The whats and hows of program-
mers’ foraging diets. In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, pages 3063–3072. ACM, 2013.

[40] Guillaume Pothier and Éric Tanter. Back to the future: Omniscient debugging. IEEE
software, 26(6):78–85, 2009.

[41] Allen B Riddell. How to read 22,198 journal articles: Studying the history of german
studies with topic models. Distant Readings: Topologies of German Culture in the
Long Nineteenth Century. Camden House, pages 91–114, 2014.

[42] Jeremias Rößler, Gordon Fraser, Andreas Zeller, and Alessandro Orso. Isolating fail-
ure causes through test case generation. In Proceedings of the 2012 International Sym-
posium on Software Testing and Analysis, ISSTA 2012, pages 309–319, New York,
NY, USA, 2012. ACM.

[43] Eric Schmitt. U.s. details flaw in patriot missile. http://www.nytimes.com/1991/
06/06/world/us-details-flaw-in-patriot-missile.html, 1991. [Online; ac-
cessed 30 June 2016].

[44] Benjamin Siegmund, Michael Perscheid, Marcel Taeumel, and Robert Hirschfeld.
Studying the advancement in debugging practice of professional software developers.
In Software Reliability Engineering Workshops (ISSREW), 2014 IEEE International
Symposium on, pages 269–274. IEEE, 2014.

[45] Donna Spencer. Card sorting: Designing usable categories. Rosenfeld Media, 2009.

[46] Richard Stallman, Roland Pesch, Stan Shebs, et al. Debugging with GDB. Free Soft-
ware Foundation, 10 edition, 2011.

60

http://www.nytimes.com/1991/06/06/world/us-details-flaw-in-patriot-missile.html
http://www.nytimes.com/1991/06/06/world/us-details-flaw-in-patriot-missile.html


Bibliography

[47] Roykrong Sukkerd, Ivan Beschastnikh, Jochen Wuttke, Sai Zhang, and Yuriy Brun.
Understanding regression failures through test-passing and test-failing code changes.
In Proceedings of the 2013 International Conference on Software Engineering, ICSE
’13, pages 1177–1180, Piscataway, NJ, USA, 2013. IEEE Press.

[48] G Tassey. Economic impacts of inadequate infrastructure for software testing, plan-
ning report 02-3. Prepared by RTI for the National Institute of Standards and Tech-
nology (NIST), 2002.

[49] TestRoots. Testroots - watchdog eclipse plugin. https://testroots.org/
testroots_watchdog.html. [Online; accessed: 4 July 2016].

[50] Jane Wakefield. Heartbleed bug: What you need to know. http://www.bbc.com/
news/technology-26969629, 2014. [Online; accessed 30 June 2016].

[51] Yi Wei, Yu Pei, Carlo A. Furia, Lucas S. Silva, Stefan Buchholz, Bertrand Meyer, and
Andreas Zeller. Automated fixing of programs with contracts. In Proceedings of the
19th International Symposium on Software Testing and Analysis, ISSTA ’10, pages
61–72, New York, NY, USA, 2010. ACM.

[52] Kai Yu, Mengxiang Lin, Jin Chen, and Xiangyu Zhang. Practical isolation of failure-
inducing changes for debugging regression faults. In Automated Software Engineering
(ASE), 2012 Proceedings of the 27th IEEE/ACM International Conference on, pages
20–29. IEEE, 2012.

[53] Kai Yu, Mengxiang Lin, Jin Chen, and Xiangyu Zhang. Towards automated debugging
in software evolution: Evaluating delta debugging on real regression bugs from the
developers perspectives. Journal of Systems and Software, 85(10):2305 – 2317, 2012.
Automated Software Evolution.

[54] Andreas Zeller. Isolating cause-effect chains from computer programs. In Proceedings
of the 10th ACM SIGSOFT symposium on Foundations of software engineering, pages
1–10. ACM, 2002.

[55] Andreas Zeller. Why Programs Fail, Second Edition: A Guide to Systematic Debug-
ging. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2nd edition, 2009.

[56] Andreas Zeller and Dorothea Lütkehaus. Ddda free graphical front-end for unix de-
buggers. ACM Sigplan Notices, 31(1):22–27, 1996.

[57] Cheng Zhang, Juyuan Yang, Dacong Yan, Shengqian Yang, and Yuting Chen. Auto-
mated breakpoint generation for debugging. Journal of Software, 8(3), 2013.

[58] Xiangyu Zhang, Neelam Gupta, and Rajiv Gupta. Locating faulty code by multiple
points slicing. Software: Practice and Experience, 37(9):935–961, 2007.

[59] Yiji Zhang and Raul Santelices. Prioritized static slicing for effective fault localization
in the absence of runtime information. Technical report, Technical Report TR 2013-
06, CSE, U. of Notre Dame, 2013.

61

https://testroots.org/testroots_watchdog.html
https://testroots.org/testroots_watchdog.html
http://www.bbc.com/news/technology-26969629
http://www.bbc.com/news/technology-26969629




Appendix A

Other Topic Modelling Results

This chapter contains all results of the topic modelling process with MALLET that are
mentioned but not visually presented in Chapter 3. Presenting all results in Chapter 3 would
overflow the chapter with tables due to the space required for all tables containing the topic
modelling results. Therefore, these other results are presented here. Each of the following
sections shows the results of a particular setting, which is a combination of the StackOver-
flow posts selected as input and the number of topics selected as output.

A.1 Topic modelling with all posts - 50 topics

The results visualised in this section are the results when using all posts selected by the
process described in Section 3.1 as input and setting the number of topics in the output to
50. As the resulting table is too large to be readable when put on a single page, the results
are split up into two parts. The first part can be found in Table A.1 and the second part in
Table A.2.

A.2 Topic modelling with Java posts - 10 topics

This section presents the results of the topic modelling process with all posts in the Java
category as input and 10 topics in the output. The results are shown in Table A.3.

A.3 Topic modelling with Java posts - 30 topics

Similar to the previous section, this section shows the results when using the Java posts as
input, but now with 30 topics in the output. As the resulting table is again too large for a
single page, Table A.4 shows the first part and Table A.5 the second.

A.4 Topic modelling with general posts - 10 topics

This section presents the results of the topic modelling process with all posts in the general
category as input and 10 topics in the output. The results are shown in Table A.6.

63



A. OTHER TOPIC MODELLING RESULTS

Table A.1: Topic modelling results with all posts and 50 topics (part 1).

64



A.4. Topic modelling with general posts - 10 topics

Table A.2: Topic modelling results with all posts and 50 topics (part 2).

65



A. OTHER TOPIC MODELLING RESULTS

Table A.3: Topic modelling results with all Java posts and 10 topics.

A.5 Topic modelling with general posts - 30 topics

Similar to the previous section, this section shows the results when using the general posts
as input, but now with 30 topics in the output. As the resulting table is again too large for a
single page, Table A.7 shows the first part and Table A.8 the second.

A.6 Topic modelling with general posts - Breakpoint topic

The results of the topic modelling process when selecting all posts from the general category
that belong to the subtopic about breakpoints are shown in Table A.9. As can be seen in the
table, the number of topics in the output is 20.

A.7 Topic modelling with general posts - Java IDE topic

Similar to the previous section, the results shown in this section are based on a subtopic of
the general category, but now the selected subtopic is ‘Java IDE’. The 20 resulting topics
can be found in Table A.10.

A.8 Topic modelling with general posts - Watches topic

The results shown in Table A.11 are again obtained in a similar way as the previous two
sections, but now for the subtopic that is about watches.

66



A.8. Topic modelling with general posts - Watches topic

Table A.4: Topic modelling results with all Java posts and 30 topics (part 1).

67



A. OTHER TOPIC MODELLING RESULTS

Table A.5: Topic modelling results with all Java posts and 30 topics (part 2).

Table A.6: Topic modelling results with all general posts and 10 topics.

68



A.8. Topic modelling with general posts - Watches topic

Table A.7: Topic modelling results with all general posts and 30 topics (part 1).

69



A. OTHER TOPIC MODELLING RESULTS

Table A.8: Topic modelling results with all general posts and 30 topics (part 2).

70



A.8. Topic modelling with general posts - Watches topic

Table A.9: Topic modelling results with all general posts about breakpoints and 20 topics.

71



A. OTHER TOPIC MODELLING RESULTS

Table A.10: Topic modelling results with all general posts about Java IDEs and 20 topics.

72



A.8. Topic modelling with general posts - Watches topic

Table A.11: Topic modelling results with all general posts about watches and 20 topics.

73





Appendix B

Online Survey - Printed Version

A printed version of our online survey on the perception of debugging can be found on the
next page.

75



The Perception of Debugging
This survey investigates how software developers debug. Its results will be compared to 
TestRoots WatchDog data [1]. 

It takes 5 minutes to complete and is hassle-free. By entering your e-mail address at the 
end of the survey you can win one of the three €15 Amazon vouchers.

Niels Spruit
MSc Computer Science
Delft University of Technology
n.spruit@student.tudelft.nl
twitter.com/n_spruit

[1] http://testroots.org/testroots_watchdog.html

*Required

Background information

Experience in software development *

Mark only one oval.

<1 year

1-2 years

3-6 years

7-10 years

>10 years

1. 

B. ONLINE SURVEY - PRINTED VERSION

76



Programming languages you use *

Tick all that apply.

Java

Python

PHP

C#

C++

C

JavaScript

Objective-C

Swift

R

Other:

2. 

Integrated Development Environment (IDE) you use or like most, which we will
call 'your IDE' from now on *

Mark only one oval.

Eclipse

Visual Studio

Vim

Xcode

NetBeans

Sublime Text

IntelliJ

Komodo

Xamarin

Emacs

Other:

3. 

IDE-provided debugging infrastructure (1/3)

Do you use the debugging infrastructure provided by your IDE? *

Mark only one oval.

Yes After the last question in this section, skip to question 7.

No After the last question in this section, skip to question 6.

My IDE does not have a debugger. After the last question in this section,

skip to question 10.

4. 

77



For debugging ... *

Tick all that apply.

I use an external program (e.g. GDB).

I use the IDE debugger.

I use print statements.

I examine the log files.

I use additional other techniques.

none of the above applies.

Other:

5. 

IDE-provided debugging infrastructure (2/3)

I do not debug in the IDE, because ... *

Tick all that apply.

I use an external program that I find more effective/efficient.

print statements are more effective/efficient.

techniques other than print statements are more effective/efficient.

I don't know how to use it.

my program is impossible to debug.

I don't debug my programs.

Other:

6. 

Skip to question 10.

IDE-provided debugging infrastructure (3/3)
The purpose of this section is to get to know which of the debugging features provided by 
many IDEs you (don't) know. Moreover, this section aims to answer which of these 
features are actually used by developers in practice.

Breakpoint types *

Mark only one oval per row.

I don't know I know I know and I use

Line breakpoint

Temporary line breakpoint

Class prepare breakpoint

Exception breakpoint

Method breakpoint

Field watchpoint

7. 

B. ONLINE SURVEY - PRINTED VERSION

78



Breakpoint options *

Mark only one oval per row.

I don't know I know I know and I use

Specifying a condition

Specifying a hit/pass count

Setting the suspend policy

8. 

Other debugging features *

Mark only one oval per row.

I don't know I know I know and I use

Stepping through the code

Inspecting variable values

Inspecting the call stack

Defining watches

Evaluating expressions

Modifying variable values at
runtime
Editing code at runtime (hot
swapping)

9. 

Debugging using unit tests

Do you write small unit tests to be able to reproduce bugs and start
debugging? *

Mark only one oval.

Yes

No

10. 

Do you use unit tests to check your progress during the debugging process? *

Mark only one oval.

Yes

No

11. 

Do you use unit tests to verify the correctness of a possible bug fix? *

Mark only one oval.

Yes

No

12. 

Final remarks

79



Powered by

"The best invention in debugging still was printf debugging." What is your
opinion? If you want to share something else on debugging, feel free to use the
answer field below.

13. 

If you are interested in winning a €15
voucher for Amazon, enter your e-mail
address below. We might contact you
for a (non-obligatory) follow-up
interview.

14. 

B. ONLINE SURVEY - PRINTED VERSION

80


	Preface
	Contents
	List of Figures
	List of Tables
	Introduction
	Background and Related Work
	Debugging process
	Debugging techniques
	Debugging in the IDE
	Debugging practice
	Related tools
	Topic modelling

	Common Debugging Issues on StackOverflow
	Data selection and preprocessing
	Topic modelling with all posts
	Topic modelling with `Java posts'
	Topic modelling with `general posts'

	Developers' Perception on Debugging
	Research design and methodology
	Survey results and their interpretations

	Tracking Debugging Behavior with WatchDog 2.0
	Existing functionality and architecture
	New functionality and architecture
	Development process

	Analysing Debugging Behavior with WatchDog 2.0
	Research design and methodology
	WatchDog 2.0 results and their interpretations

	Discussion
	Interpretation of results
	Threats to validity

	Conclusions and Future Work
	Bibliography
	Other Topic Modelling Results
	Topic modelling with all posts - 50 topics
	Topic modelling with Java posts - 10 topics
	Topic modelling with Java posts - 30 topics
	Topic modelling with general posts - 10 topics
	Topic modelling with general posts - 30 topics
	Topic modelling with general posts - Breakpoint topic
	Topic modelling with general posts - Java IDE topic
	Topic modelling with general posts - Watches topic

	Online Survey - Printed Version

