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Abstract
Serverless computing is an emerging paradigm for structuring applications in such a way that
they can benefit from on‐demand computing resources and achieve horizontal scalability. As
such, it is an ideal substrate for the resource‐intensive and often ad‐hoc task of training deep
learning models. However, the design and stateless nature of serverless platforms make it diffi‐
cult to translate distributed machine learning systems directly to this new world. With KubeML,
we present a purpose‐built serverless machine learning system that runs atop Kubernetes and
seamlessly embeds into the popular PyTorch framework. Unlike alternative systems, KubeML
fully embraces GPU acceleration and is able to outperform TensorFlow, especially with smaller
local batches, while allowing for higher resource density. KubeML reaches a 3.98x faster time‐
to‐accuracy with small batch sizes, and maintains a 2.02x speedup between the top results of
both platforms for commonly benchmarked machine learning models like ResNet34.
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1
Introduction

Artificial intelligence (AI) has become a transformational force to traditional services and business
logic while at the same time enabling exciting and demanding new applications such as self‐
driving cars [4]. Due to advances in hardware technology, artificial neural networks can now
learn patterns from myriads of available sources in order to fuel data‐driven decision making
in modern organizations. The problem of training machine learning models is, however, still a
highly resource‐intensive endeavor since the demand for training data and therefore the effort
to train the model tends to grow exponentially with the size of the model [57]. At this point,
the jury is still out on whether large‐scale machine learning will follow a trajectory similar to High
PerformanceComputing (HPC) and becomemission critical enough for organizations to afford the
best available (even if custom and exotic) hardware, or if it will trend towards commoditization
and the cloud [66]. If the latter is true, we should expect scale‐out architectures to become the
dominant platform for training.
A great example of the commoditization of resources is the one of Serverless Computing. This

new computing paradigm lets users focus on the application logic while deployment andmanage‐
ment details are abstracted and handled by a cloud platform or provider. Serverless also follows
a clear scale‐out approach, opting for running complex tasks as many small functions running in
parallel instead of increasing performance by investing in more powerful hardware [22]. Its ease
of use and its unlimited scalability make serverless a tempting route to consider when imple‐
menting distributed machine learning systems. However, some obstacles prevent the adoption
of serverless as a tool for accessible distributed deep learning such as restricted communication
and hardware platforms [6].
In this work, we present KubeML, a platform that is able of providing machine learning jobs

with access to accelerators like high‐endGPUs, even inmulti‐tenant environments, while allowing
for frictionless scaling on large clusters and the cloud. KubeML is designed to operate on top of
Kubernetes¹ and offer a serverless experience to users while seamlessly embedding into into
PyTorch [52], one of the most popular machine learning libraries. By doing so, it absorbs the
complexity of partitioning the training jobs and managing the deployment to the cluster. In our
experiments, we were able to show that KubeML scales better than state‐of‐the‐art systems like
TensorFlow [1] for small and medium size models by achieving comparable accuracy in a fraction
of the time. KubeML is the first system to apply a serverless paradigm to distributed deep learning
while integrating GPUs as first‐level citizens.
With KubeML, we propose solutions for the commonly discussed drawbacks of serverless

computing which have limited its adoption in the distributed deep learning field. We investigate
a new architecture that is able to incorporate vital support for GPUs, and discuss and analyze
multiple options to improve communication efficiency while adhering to traditional serverless
restrictions. We also focus on maintaining a core principle of serverless such as ease of use.

¹https://kubernetes.io
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2 1. Introduction

1.1. Problem Statement
Based on the characteristics of Serverless Applications discussed beforehand, and the restric‐
tions derived from there, we identify the key characteristics to be implemented to focus both on
performance and usability.

1. Ease of use and portability

2. Utilization of GPU Resources

3. Efficient Communication Model

As we will observe in the coming sections, most of the work developing applications on top
of FaaS do so by using solutions provided by cloud platforms, with AWS Lambda being the most
popular. However, one of the main shortcomings of employing these proprietary cloud solutions
is the resulting vendor lock‐in of the application. With the libraries and architecture of each of
the services differing between the options, changing between providers implies migrating to the
related services offered by the alternative provider. This is a significant important obstacle to be
overcome in order to truly develop a portable and convenient solution for users.
Another issue with these platforms often experienced by practitioners is the lack of local

testing tools to develop applications. Since these platforms are proprietary, code needs to be
tested in the cloud rather than locally, thus slowing down the development process as well as
increasing the cost.
Finally, none of these platforms offer as of today support for the usage of hardware typically

used for Deep Learning such as GPUs and TPUs. We argue that for a solution to be adopted, there
needs to be a significant performance equivalence or improvement with respect to traditional
systems. In terms of Deep Learning, this translates into the requirement of GPU availability
to accelerate the training process of neural networks and putting it on par with non‐serverless
systems.
Additionaly, many of the well known deep learning systems use highly optimized collective

communication libraries to communicate efficiently between different workers, like MPI [43],
Facebook Gloo [15], or directly between GPUs wih Nvidia NCCL². With the restriction of server‐
less functions not being able to communicate directly, we must find an efficient communication
solution which compensates for the lack of optimization in this regard.

1.2. Research Questions
Taking into account the problems present nowadays in serverless computing, preventing it from
accommodating deep learning tasks, we define the following research questions which we will
address in this thesis:

(RQ1) How can we design a serverless system specialized for deep learning tasks?
(RQ2) How can we take advantage of GPU resources in a serverless environment?
(RQ3) How can we optimize communication to improve latency in a serverless environment?
(RQ4) How can we minimize configuration overhead and changes to local code to create deep

learning tasks?

(RQ5) How well does the proposed system perform when compared to state‐of‐the‐art dis‐
tributed deep learning systems?

1.3. Organization
Towards answering RQ1, we study the different approaches for distributing deep learning tasks
and developing serverless applications in Chapter 2. In Section 2.1 and Section 2.2 we focus on
distributed deep learning and its properties such as communication and statistical efficiency. We
also investigate the different options available in terms of serverless platforms in Section 2.4, and
study which frameworks allow us the flexibility that we are looking for. Based on the conclusions

²https://github.com/NVIDIA/nccl
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1.3. Organization 3

of Section 2.4, and the previous research on serverless ML that we summarize in Section 2.5, we
choose a platform that lets us include GPUs into KubeML, thus developing RQ2.
In Chapter 3, we provide an in‐depth look at KubeML’s architecture, and discuss how we can

optimize communication to make up for the inconveniences characteristic of serverless (RQ3).
We also propose a way to reduce the amount of effort needed to transition from local code to
training distributedly on KubeML by introducing a custom Python library, which streamlines job
deployment, and addresses RQ4.
Finally, we address RQ5 in Chapter 4, comparing KubeML in a variety of scenarios with a

state‐of‐the‐art deep learning system such as TensorFlow. On top of that, we also analyze prop‐
erties such as the effect of communication efficiency in the final result, and the resource usage
of KubeML.





2
Background & Related Work

In this chapter we provide an introduction to several aspects that this systems builds upon. In
Section 2.1 we provide an introduction to Deep Learning and the training process of a network,
and highlight the difficulties that arise when trying to distribute the training process. In Sec‐
tion 2.2 we summarize different approaches and algorithms used to train neural networks in a
distributed manner, and describe some systems constituting the state‐of‐the‐art in Section 2.3.
After that, in Section 2.4, we turn our attention to the other vital part of the system, serverless
computing, and discuss the currently available solutions. We end this chapter by summarizing
applications and previous work that merges these two technologies in Section 2.5.

2.1. Deep Learning
Artificial Intelligence has experienced an enormous growth in recent years. The constant drive
towards development and innovation in fields like computer vision, speech recognition and nat‐
ural language generation prompted thorough research in new methods of extracting and treating
features, since traditional machine learningmethodswere not able of achieving good enough per‐
formance. This resulted in the rapid development of Deep Learning methods, whose use quickly
showed state‐of‐the‐art performance in those tasks in which the extraction of features was not
straightforward. After these applications emerged in specific fields, Deep Learning expanded to
other areas of work, many times replacing more traditional machine learning methods.

Figure 2.1: Example of a simple neural network with a hidden layer [74]

Deep learning is a subset of machine learning algorithms in which artificial neural networks
are used to learn a function fitting the distribution of a certain dataset and match it to a certain
output. The name artificial neural networks comes from the resemblance to the neurons present
in the human brain. Each neuron is connected to a number of preceding neurons whose output
signals are used as input to the next layer of neurons. This process goes on propagating the

5



6 2. Background & Related Work

activations through the network until an output layer is reached. An example of a neural network
architecture is shown in Figure 2.1.
The main advantage of deep learning when compared to more traditional machine learning

is that it allows the automation of the feature extraction and selection step. With traditional
machine learning algorithms, the raw data had to be treated and features extracted from it using
a process called feature extraction. This process was costly and complex, with extra steps often
needed such as feature selection, which involved obtaining the right combination of features.
In contrast to this, deep learning takes care of the feature extraction and selection phases

for the user. The weights and biases of a network are automatically learned during the training
process, to model the function that best maps the input features to the output.

2.1.1. Types of Deep Neural Networks
Depending on their architecture, neural networks can be subdivided into several groups. Here
we explain the most famous types of networks.

1. Feedforward Networks. Also referred to as Multi‐Layer Perceptrons (MLP), these are the
simplest type of neural networks. They are composed of an input layer, one or more hidden
layers, and and output layer. In this networks, the layers are fully connected, that is, all
neuron outputs from a layer are used as input by all the neurons of the following layer.

2. Convolutional Networks. Also abbreviated as CNNs, are a specialized kind of MLPs, ideal
for processing datawhich follows a grid‐like topology. Some examples of data typically used
as input to CNNs are time‐series and images. Convolutional layers’ weights are referred to
as filters, one layer can have multiple filters that are applied to an input using a convolution
operation, each corresponding to a layer output. These filters are automatically learned
during the training and are used to recognize features of the input, such as edges in an
image.
The usage of the convolution operation has certain consequences that differentiate CNNs
from feedworward networks:

• Sparse interactions. By making filters smaller than the input data, neurons have only
part of the data as input. This allows the network to be more efficient in terms of
space, by having to store fewer parameters.

• Parameter sharing. Filters are shared among all the neurons in a layer. That means that
instead of each neuron having its own set of weights, neurons in a layer have their
weights tied to others.

• Equivariant representation. Due to filters being shared among neurons, a feature in the
input will be detected no matter its relative position in the input. This is useful for
example in object detection, where no matter the object’s location in an image, the
network will be able to identify it.

Figure 2.2: Architecture of an example convolutional network, the LeNet5, consisting of two convolutional layers of
decreasing filter size, and three fully connected layers [74]

3. Recurrent Networks. Similar to the way CNNs share weights across space, RNNs share
their weights across time. RNNs incorporate the notion of time into neural networks by
having an inner state that they share across timesteps. RNNs are most applied with in‐
puts that have variable length and long term dependencies, such as speech recognition or
machine translation.
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2.1.2. Training Deep Neural Networks
The process of training neural networks varies depending on the subset of machine learning prob‐
lems that we are trying to solve. These subsets of problems include Supervised Learning, where
we train on labeled data, Semi‐supervised Learning, when only a part of the data is labeled, and
Unsupervised Learning, when data is not labeled. In this section, we dive into the process of
training neural networks, specifically focusing on supervised learning tasks such as classification,
since the baselines that we will use to assess the system performance are classification tasks.
During the training of a neural network, the weights and biases of a network are trained with

the objective of fitting a function that is able to map the input features to the output labels.
Training is an iterative process which can be divided into two phases: the forward pass and the
backward pass.

The Forward Pass
In the forward pass, the inputs x are fed to the network, resulting in an output. To calculate the
result of each layer, the input vector is multiplied by the weight matrix formed by the neuronsW
and adding the bias vector b.

h =Wx + b (2.1)

However, a network that just performs weighted sums of the inputs can only ever fit linear
functions, which are often not enough to model more complex problems. For this reason, neural
networks often apply an activation function or nonlinearity (𝜎) to the result of the previous equa‐
tion. Some examples of frequently used activation functions are ReLu (Rectified Linear Unit),
Hyperbolic Tangent or the Sigmoid function.

h = 𝜎(Wx + b) (2.2)

Eventually, the forward pass reaches the last layer, which outputs the prediction of the net‐
work (ŷ). In classification tasks, a common output layer is the softmax function, which normalizes
the output into a probability distribution over the range of possible classes.

The Backward Pass
After obtaining the predictions from the network ŷ by performing the forward pass, we need to
compare these predictions with the actual labels of the inputs y. To do this, we use a loss function
ℒ to determine how erroneous the predictions of our network are, sowe can adjust its parameters
in the following iterations. Some popular loss functions include the Squared Error, Hinge Loss,
Logistic Loss, and the Cross Entropy Loss.
Once the loss is calculated, we perform the actual backward pass by calculating the gradient

of the loss with respect to the weights of the network. Performing all the calculations directly
is highly inefficient, since a lot of partial results can be reutilized for prior layers. A common
way to increase computation efficiency is to use the backpropagation algorithm [59], which uses
dynamic programming principles to memorize results and reuse them in later evaluations. After
the backward pass, we have the gradients 𝒢 of the network, which we will use to optimize the
network weights.

𝒢 = 𝜕ℒ(W; x, y)𝜕W (2.3)

Themostwell‐known algorithm to trainDeepNeural Networks is StochasticGradientDescent
(SGD). This algorithm sequentially updates the weights of a neural network based on the loss
achieved by the model on a set of datapoints. In general, instead of processing one datapoint
at a time, many of them are packed together in batches of a constant size, which are fed to the
network and used to estimate the loss for that step. This approach is calledMini‐BatchStochastic
Gradient Descent.

W(t+1) =W(t) ‐ 𝜂𝒢(t) (2.4)

After calculating the loss, the weights of the network are updated following the direction of
the loss space inwhich the gradient becomes lower. The size of this step is determined by another
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Figure 2.3: Comparison between data and model parallelism. In data parallelism each worker has an exact replica of
the network, which is trained on a different subset of the data. This makes backpropagation straightforward. In model
parallelism, each worker has a subset of the layers of the network, thus need to communicate with each other during the
forward and backward pass, increasing latency, but reducing the memory footprint since the model is not stored fully at
any worker.

vital parameter of the training process, the learning rate 𝜂. This parameter makes sure that the
steps taken are big enough that we are able to exit local minima in the loss space, and also small
enough that we can explore in detail promising areas of the loss space.

2.2. Distributing the Training Process
As could be seen in the previous section, training neural networks is mostly a sequential process.
Inputs are fed into a network to calculate the outputs, based on which gradients are computed
and the weights corrected accordingly. However, with and increase in the size of the datasets or
their complexity, comes the need for more complex models, built deeper with more layers.
These bigger models and datasets make the training process more expensive. Bigger models

include more parameters, which consequently make the forward and backward passes more time
consuming. Moreover, bigger datasets make it sometimes infeasible to train a model on a single
machine.
All these circumstances prompted the development of distributed machine learning algo‐

rithms and platforms, which convert the inherently sequential process of training a neural net‐
work into a parallelizable process using multiple GPUs or servers.

2.2.1. Types of Parallelism
There are two main approaches to distribute the training phase of a neural network, distributing
the data over multiple devices or distributing the model over several devices, we can see a visual
representation of the alternatives in Figure 2.3.

Data Parallelism. This approach divides the dataset in as many subsets as there are workers.
Each worker trains a replica of the network on a different subsets of the data. The network is
generally replicated in each of the workers and consequently, each model will have a different set
of weights after each iteration that need to be merged into a single model in order to maintain
a common view of the network. This step varies depending on the optimization algorithm used
during training. We will cover the most important ones in Section 2.2.2.

Model Parallelism. In this paradigm, different parts of themodel are fit on the complete dataset.
The complete model is thus the result of combining all the model parts. This can be done by split‐
ting the layers of the network among workers. This saves up memory, since the full model is not
stored in any single worker, however increases the communication overhead, since results from
a layer have to be shared with the workers that hold the following layer.

Generally, Data Parallelism is applicable to all problems in which the data follows an indepen‐
dent and identically distribution (i.i.d), while Model Parallelism is only applicable when the model
parameters can efficiently be separated among the workers [66]. This makes Data Parallelism
more common in distributed deep learning systems.
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Additionally, more complex parallelism methods can be applied. Some systems use a mix
of model and data parallelism [11], or use Pipeline Parallelism [24, 46] to concurrently process
multiple batches of data to increase efficiency and resource usage in model parallelism.

2.2.2. Optimization
Training neural networks in a distributed manner adds extra requirements and complications to
the training process which require the use of a specialized training algorithm to merge the model
weights found in each of the workers to reach a final model. In this section we cover the main
approaches and algorithms used to distribute the training of networks. We focus on algorithms
used with Data Parallel approaches since these are the most predominant.
In general, training algorithms will try to replicate the sequential behavior of SGD to a certain

extent by periodically synchronizing the model weights between workers. To achieve this, the
two main approaches include exchanging gradients or the model weights directly.
When exchanging gradients, workers perform a forward pass of the data, and calculate the

gradients of the weights during the backpropagation step. These gradients are then exchanged
between workers until all of them have the addition of the gradients of all workers in the system.
The mechanisms used to transmit the gradients efficiently will be covered in Section 2.2.3.
On the other hand, workers can instead communicate the weights of their layers rather than

the gradients and define the new reference model by combining each of the partial models. The
most common way of combining the models is model averaging [54, 55, 78, 34], in which the
different layers’ weights and biases are added using a weighted average whose coefficients can
be all equal or relative to some other parameter.

Distributed Optimization Algorithms
When classifying the different approaches for training deep neural networks distributedly, we
can establish two main differentiating factors: (1) the strictness of the synchronization step, and
(2) the frequency of the synchronization points.
Using the first criteria we can divide algorithms based on howmuch freedom is given to work‐

ers in terms of not having towait for others to continuewith the next iteration after synchronizing:

1. Bulk SynchronousParallel (BSP). Synchronous algorithmsmaintain a consistent view of the
model throughout the training process by synchronizing between every communication and
computation phase. Themost prominent example of this type of algorithms is Synchronous‐
SGD (S‐SGD) [8], which synchronizes workers after each iteration. Workers compute the
loss and gradients of their local batch of data, and receive the gradients obtained by other
workers. These are added and applied to each local model, resulting in all of them using the
sameweights at the start of each iteration. These algorithms offer better convergence since
they try to approximate the sequential training in a single worker, however incur in higher
communication overhead since the workers communicate after each batch is processed.
Moreover, at each sync step, all workers must have finished before the reference model
is computed. This means that sync approaches are more sensitive to straggler workers,
since the whole computation is stuck until the slowest worker finishes in each step. Some
algorithms address this by increasing the number of workers, and only wait for a subset of
them to complete before continuing to the next iteration [20].

2. Stale‐SynchronousParallel (SSP).Tries to address the sensibility to stragglers of synchronous
algorithms by allowing workers to move ahead to the next iteration until reaching a maxi‐
mum number of epochs. As a result, some of the workers might operate on incomplete or
out‐of‐date parameters. With a small staleness level, these algorithms offer still strong con‐
vergence guarantees, however, these guarantees diminish with higher staleness between
workers.
Within this algorithm type we can distinguish different approaches with regards to how
staleness is understood. Some algorithms interpret staleness as the maximum number of
iterations a fast worker can be ahead of the last of the stragglers [79, 13]. In case this max
number is reached, those faster workers need to wait until all of the other workers finish
their iterations and the difference returns to the acceptable interval.
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Another way of interpreting staleness if the absolute deviation from the value of the local
model with respect to the reference model. This approach, however, is less frequently used
in deep learning since the huge number of parameters make it difficult to decide which
particular variable should define the significance of an update [66].

3. Asynchronous Parallel (ASP). Asynchronous solutions completely disregard the synchro‐
nization steps and tracking parameter staleness and allow workers to compute and update
parameters without waiting for other nodes. An example of this paradigm is Hogwild! [58],
which removes the lock preventing concurrent update of the model parameters by multiple
workers and allows them to asynchronously access and update the model parameters.
Another well known example is Elastic Averaging SGD (EASGD) [78]. This method ex‐
changes the model weights instead of the model gradients and allows each of the workers
to proceed individually and update its weights after multiple iterations instead of at ev‐
ery iteration. This delay is referred to as 𝜏 and helps to reduce communication overhead
and balance exploration and exploitation. To update both the local and reference models,
workers apply an elastic average on the model weights, hence the name of the method.
These algorithms do not force a consistent view of the model or even conflict‐less param‐
eter updates, thus provide worse convergence properties than sync and stale‐sync algo‐
rithms. However, in exchange, these algorithms improve throughput, as workers do not
need to wait for each other or even lock before updating the model before continuing with
the computation. Initially, asynchronous training was considered to be the only perfor‐
mant option, with synchronous methods being considered too slow and sensitive to strag‐
glers [11]. However, recently some studies have quantified the benefits of using asyn‐
chronous methods, showing that synchronous methods are more effective for more com‐
plex models and problems than asynchronous algorithms [69].

Relaxing Communication
Until now, we have explained algorithms that exchanged model updates in each of the iterations.
These parameter exchanges could be performed by waiting for other to complete their compu‐
tation stage, or asynchronously. However, another axis in which training algorithms can differ is
in the period in which these synchronization steps occur. Let us refer to this delay of communi‐
cation as 𝜏. Varying the value of this parameter can get different algorithms which allow workers
to compute for multiple iterations at once between communication steps:

1. 𝜏 = 1. This is equivalent to the algorithms explained previously, which synchronize at every
iteration, be it synchronously or asynchronously.

2. 𝜏 = ∞. Also known as One‐shot Averaging, averages the models only once after the training
process is complete. This effectively minimizes communication since all of the workers train
an the data for all epochs and exchange parameters only once. However, these solutions
have been proved to show sub‐optimal convergence properties, and often result in a bad
generalization performance [77, 19].

3. Variable 𝜏. This algorithm is usually referred to as Local SGD [80, 81, 63, 41]. The idea
behind this algorithm is that by synchronizing every 𝜏 iterations, communication overhead
is reduced by a factor of 𝜏, but we still have a soft guarantee that the models will be merged
periodically into a common view of the parameters, so they will not diverge and hinder
convergence. The 𝜏 parameter represents a balance between exploration and exploitation.
In [80], authors test the convergence of networks under different values of 𝜏, and reach the
conclusion that synchronizing after each iteration is not the optimal for some situations,
highlighting the benefits of allowing the different workers to explore distinct areas of the
loss space.

4. Ensemble Learning. Similar to the One‐Shot Averaging technique explained previously, en‐
semble methods minimize communication by having workers train for the entire duration of
the process without synchronizing models. However, unlike One‐Shot Averaging, ensem‐
ble learning does not average the models to obtain a reference model. Instead, ensemble
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Figure 2.4: An example of the PS architecture. Workers have their own model which they train on a subset of the data,
and periodically synchronize with the parameter servers by pushing/pulling updates. This synchronization can be either
synchronous, asynchronous or stale‐synchronous

learning methods keep the different models disjoint, and at prediction time, the outputs of
all model replicas are combined by a voting strategy, which defines the output of the whole
ensemble.

2.2.3. Communication
In the previous sectionwe explored the different algorithms available for distributed deep learning
from the point of view of how often synchronization occurs or how strict they are with workers
having to wait for each other. We did not explore, however, how the model weights or gradients
are aggregated and how the new reference model is computed. In this section, we go through
the main approaches for combining the model weights into the reference model.

Parameter Server
In the Parameter Server (PS) architecture [11, 40], some servers in the cluster hold the parameters
of the reference model, while the rest, or workers perform the training process and periodically
synchronize their parameters with the master servers. When a synchronization step is reached,
workers push the weights or gradients to the parameter servers, which are responsible for aggre‐
gating them and calculating the new reference model.
In this architecture, the parameter servers act as the epicenter of the topology, with whom

all workers communicate to synchronize and send their updates. This makes the PS architecture
a centralized architecture. Despite this, the PS architecture is widely used in distributed training,
especially when performing multi‐node training [39, 38, 23, 49].
A common problem with the PS architecture is that it suffers from communication conges‐

tion [64]. Especially with BSP algorithms, communication tends to occur in very concentrated
intervals at the time when the workers complete their iterations. This is alleviated in SSP and
ASP algorithms since workers progress more unequally, so their communication periods with the
server do not have to coincide to the same degree.

AllReduce
AllReduce algorithms try to overcome the limitations introduced by a centralized server by effi‐
ciently aggregating the gradients or weights by having workers communicate directly with each
other. To allow for latency and bandwidth efficient communication, workers are usually struc‐
tured following predetermined topologies such as trees or rings. AllReduce algorithms are in‐
spired by the popular directive in libraries such as Message Passing Interface (MPI) [43].

Ring AllReduce organizes the workers following a ring‐like topology. In this way, workers only
need to exchange parameters with their neighbors. These algorithms are bandwidth optimal,
however its latency scales linearly with the number of workers [64], so it is mainly used with a
small number of workers. An example of this is training on multiple GPUs within a single node.
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Figure 2.5: Comparison between data and model parallelism. In data parallelism each worker has an exact replica of
the network, which is trained on a different subset of the data. This makes backpropagation straightforward. In model
parallelism, each worker has a subset of the layers of the network, thus need to communicate with each other during the
forward and backward pass, increasing latency, but reducing the memory footprint since the model is not stored fully at
any worker.

Nvidia’s high performance communication library NCCL¹ used rings as their main topology until
version 2.3².
In Tree AllReduce workers are organized following a binary tree structure. In this way, they

only need to receive the partial gradients or weights from their descendants, and communicate
the updated parameters to its parent. Thus, a single sync step involves a propagation up to the
root of the tree and back to the leaves. Tree Allreduce algorithms scale better with a bigger
amount or workers in terms of latency, and are the standard in NCCL since version 2.4.
AllReduce algorithms, being inherently synchronous in their data exchange step, are not portable

to ASP and SSP algorithms, which is one of the reasons for the prevalence of the PS paradigm
especially in multi‐node training, since it provides more flexibility in terms of available distributed
communication algorithms. Another important factor is that AllReduce algorithms are very sen‐
sitive to worker failures [66].

Worker 1

Worker 2
Worker N-1

Worker N

Figure 2.6: An example of Gossip Learning. Each worker periodically exchanges information about its model with its
neighboring nodes. Notice that in this architecture, nodes can have very different models, and only eventually reach
convergence into a common view

¹https://developer.nvidia.com/nccl
²https://developer.nvidia.com/blog/massively-scale-deep-learning-training-nccl-2-4/

https://developer.nvidia.com/nccl
https://developer.nvidia.com/blog/massively-scale-deep-learning-training-nccl-2-4/


2.3. Distributed Deep Learning Systems 13

Gossip
Gossip algorithms are mainly used in peer‐to‐peer decentralized settings. A main characteristic
of these environments is that unlike in the previously explained methods, there is no reference
model, since there is no strict synchronization and workers can proceed independently. Workers
exchange their model weights with their peers or neighbors, and these updates eventually reach
the entirety of the network after subsequent communication between neighbors.

2.3. Distributed Deep Learning Systems
The increasing model and dataset size has prompted the development of Deep Learning systems
that allow to distribute the training process among multiple workers in an easy and efficient way.
In this section, we take a look at the most well‐known distributed deep learning systems and their
key characteristics.

2.3.1. DistBelief
DistBelief [11] was one of the precursors of the distributed deep learning field, built by Google.
DistBelief tries to tackle the problem of models not fitting into GPUmemory, and needing to split
them among multiple GPUs or machines efficiently to enable training. Originally, Distbelief only
supported training on CPU, but GPU support was later added to improve performance.
DistBelief represents the network and its operations as a directed acyclic graph (DAG), where

each edge represents an N‐dimensional matrix, and each vertex performs a transformation on
the inputs which defines the outputs. To distribute the computation, DistBelief relies on model
parallelism. This results in different nodes calculating the outputs of different parts of the net‐
work. In consequence, network size stops being a key limitation since no single node needs to
store all of the weights in memory. On top of model parallelism, DistBelief also incorporates data
parallelism using parameter servers to store the model weights during training, these are sharded
to increase throughput.
To train the networks, DistBelief includes implementations for a couple of asynchronous al‐

gorithms, since at the time synchronous algorithms were deemed too sensitive to stragglers to
be used at large scale in production [1]. The authors propose two asynchronous algorithms and
compare its performance:

• DownpourStochasticGradientDescent is an asynchronous algorithm, inwhich each replica
of the model iteratively fetches the most recent parameters of the model, trains on batches
of the data, and pushes its updated parameters to the parameter servers. Models do not
need to perform the synchronization of parameters at every iterations, but can be given
some leeway by setting the nfetch and npush variables, which define the number of iterations
before fetching or pushing new parameters. These quantities do not have to be equal. No‐
tice that this is in fact a method of relaxing the communication frequency as we studied
already in Section 2.2.3.
This method makes the training process more resilient to stragglers or even failures, since
in the case of failure, the remaining workers can keep training and updating the weights
without having to wait for each other, unlike in synchronous SGD methods. Additionally,
authors affirm that using Adagrad [12] to tune the learning rate to be used on different
parameters to improve convergence performance.

• Sandblaster L‐BGFS uses an extra coordinator processwhich assignswork tomodel replicas
and instructs parameter servers on which operations to perform. As implied in the name,
rather than using SGD, L‐BGFS is used as a training algorithm. The use of a coordinator helps
reduce the impact of straggling workers by assigningmorework to faster workers once they
are finished, so that fast workers end up processing more data than slower workers. This
method, however, does incur in considerably higher computational needs, making it less
effective under a limited number of CPUs.

2.3.2. TensorFlow
TensorFlow [1] is the evolution of DistBelief, also developed by Google. DistBelief enabled deep
learning applications to be distributed amongmultipleworkers, but lacked extensibility and porta‐
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bility. TensorFlow borrows the dataflow abstraction fromDistBelief, also representing neural net‐
works as a DAG whose edges carry tensors or N‐dimensional matrices, and its vertices perform
mathematical operations on them. It also uses the parameter server paradigm to synchronize the
model weights between workers. However, in TensorFlow parameter servers are not actually
servers, but a special kind of task, just as any other worker process, making deployment easier
than in DistBelief.
TensorFlow allows for easily defining new layers and algorithms, thus making experimentation

with new training techniques feasible. Moreover, operations on tensors are implemented for dif‐
ferent computational backends, which permits running TensorFlowmodels in a variety of devices
such as CPUs, GPUs, TPUs and mobile devices with the same code. The authors also consider
synchronous algorithms apart from the asynchronous options explained in DistBelief, stating that
with proper optimizations, synchronous training can be faster than asynchronous techniques.

2.3.3. MXNet
In a similar fashion to TensorFlow, MXNet [10] enables distributed deep learning using a dataflow
abstraction to represent models, and a parameter server architecture for parameter exchange.
Rather than committing to a declarative approach for defining tensor operations, MXNet allows
users to define computations in either a declarative or imperative fashion, more along the lines
of other libraries like PyTorch [52]. MXNet also implements its own parameter server: KVStore,
which implements a classic key‐value store API. Users can push new parameters and pull updates.
KVStore takes care of updating the parameters according to an update strategy defined by the
user.
MXNet’s parameter server implements additional optimizations when compared to traditional

PS architectures. Instead of having one layer of parameter servers to which all the workers send
their parameters, the authors propose a layered architecture. In eachmachine, a local server takes
care of synchronization between all the local models, while a second layer of parameter servers
communicate with the local parameter servers at a cluster‐wide scale.

2.3.4. Caffe
Caffe [27] was initially developed within UC Berkeley as a deep learning framework for training
deep models in a single machine on one or multiple CPUs or GPUs. Caffe’s abstractions remind
of the ones in TensorFlow and MXNet. Networks have two main components: blobs and lay‐
ers. Blobs store any binary data needed to perform the forward and backward passes, such as
images, parameters, or intermediate results between layers. Layers on the other hand, apply op‐
erations on these blobs to transform them to obtain an output blob. Caffe provides by default
implementations for widely used layers such as convolutional, pooling and nonlinearities.
Caffe’s limitations prompted the development of its evolution, Caffe2 [5], which allows for dis‐

tributed training past a single machine, and incorporates support for additional hardware devices.
To synchronizemodels betweenworker processes, Caffe2 uses AllReduce algorithms usingNvidia
NCCL between GPUs in a single machine, and custom code employing Facebook’s Gloo [15] col‐
lective communication library between workers in different machines [66].
From among the AllReduce algorithms (see §2.2.3), Caffe2 chooses Ring AllReduce due to its

higher bandwidth efficiency [66], this does however, make Caffe2 not tolerant to failures, since
a crash of a single worker would cause the ring information to be incomplete, hence impeding
synchronization.

2.3.5. Horovod
Horovod [60] is an extension of TensorFlow developed by Uber to address the suboptimal scaling
of TensorFlow when radically increasing the number of GPUs. Authors show that using Tensor‐
Flow’s default synchronization strategy, with some networks like ResNet‐101, communication
overhead became dominant over computation, causing more than half of the resources not being
utilized during training.
To address this, the author’s implement a Ring AllReduce algorithm using Nvidia NCCL to re‐

place TensorFlow’s communication strategy, using traditional high performance computing tools
likeMPI [43] to run multiple copies of the TensorFlow program in parallel. Though it increases av‐
erage GPU utilization throughout a variety of models, by using AllReduce instead of a parameter
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server, Horovod becomes intolerant to failures.

2.4. Serverless Computing
In this section, we provide an introduction to Serverless Computing, what its main characteristics
and benefits are, as well as it shortcomings.

2.4.1. What is Serverless?
Serverless computing, a term also frequently used interchangeably with Function‐as‐a‐Service
(FaaS) despite subtle differences [18], is a recently popularized computing paradigm which tries
to simplify cloud application development by abstracting away the underlying complexities of
deployment and provisioning, and allowing users to focus only on application logic. FaaS appli‐
cations comprise one or several functions that are configured to run after a request is made to
a configured trigger. The main benefits of cloud systems designed on top of FaaS include effec‐
tively unlimited autoscaling, with more functions being deployed automatically to compensate
for an increase in requests, and pay‐as‐you‐use pricing.
Traditionally, to account for variability in the volume of requests and avoid saturation of ser‐

vices users and companies alike had to resort to over‐provisioning of resources. Most of these
resources were not taken advantage of most of the time, and thus resulted in wasted resources
both computationally and economically. FaaS platforms provide a fully managed operational logic
by the cloud provider, hiding the deployment details from the user, such as idle virtual machine
(VM) management, slow start, VM placement, network routing, provisioning etc. Apart from the
operational benefits, FaaS platforms also introduce a brand new payment model compared to tra‐
ditional cloud platforms. Instead of paying a fixed price for the allocation of a traditional virtual
machines, FaaS resources are billed by function utilization, usually by invocation or at a millisec‐
ond granularity, meaning that if a function is not invoked, no amount is charged to the owner [18,
25].
This programming model is clearly advantageous for conveniently/embarrassingly parallel ap‐

plications. In such applications, different functions can proceed in parallel without having mutual
data dependencies that require communication and coordination between the functions, such as
map‐reduce or batch jobs [22]. Some libraries like PyWren [29] were born to facilitate the use of
serverless functions for these parallel jobs.
While simple and elegant, the model imposes noticeable limitations when developing appli‐

cations with more strict communication needs [22]. For starters, serverless functions have most
of the time a limited lifetime. In cloud platforms’ serverless offers, a running function will be
suddenly stopped after exceeding this lifetime, resulting in a loss of data that was not saved to
external storage. This makes long‐running applications complex to implement on top of FaaS,
since the internal state of running functions has to be periodically stored to prevent information
loss, which also introduces latency into the application.
Serverless functions are not directly addressable and cannot be in a server role for commu‐

nication which in practice means that functions cannot communicate with each other without an
intermediate system to exchange information and/or synchronize execution. This introduces the
need for external elements to enable communication between functions. Over the years, stor‐
age platforms like S3 [67], key‐value stores like Redis [56, 28], or application‐specific parameter
servers [7] have been used in the past to facilitate inter‐function communication. However, ac‐
cessing these external components must be done through the network, which introduces extra
latency in the application.
Looking back at the communication algorithms we described in Section 2.2.3, this restricts

the usage of AllReduce algorithms since functions do not have access to each other’s network
address, and thus cannot transfer their model parameters efficiently to each other. This is the
reason for most serverless ML platforms to recur to external storage to synchronize between
functions. Some works [28] try to replicate AllReduce in a serverless environment, but do so by
adapting it to use external storage to deposit the weights from functions instead of transmitting
them directly.
An especially sensible feature for deep learning tasks is the usage of special hardware to ac‐

celerate the training process of neural networks. Alas, current cloud solutions do not offer any
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other resources apart from CPUs, making the training of bigger networks very time consuming
when compared to using GPUs or TPUs. This makes many serverless ML solutions lack financial
benefits, since training on multiple CPU lambdas takes considerably longer to finish than using a
single GPU server, and often results more expensive [28], which limits the applicability of FaaS
to this kind of problems.

2.4.2. Current Solutions
Cloud Provider Options
Most of the time, FaaS is directly associated with serverless options offered by cloud providers
such as AWS, Google Cloud and Azure, with AWS Lambda being the leading platform for develop‐
ing FaaS applications [14]. These options are fully managed by cloud platforms, users just need to
develop the function code and set events that will trigger the execution of those functions, while
the rest of the complexities of managing the infrastructure are completely hidden from them.
In [14] the authors study the usage of different FaaS options and rank them by popularity

based on platform. According to their findings, AWS Lambda is used in 80% of FaaS deployment,
with Azure Functions comprising just 10% of use cases, and Google Cloud Functions just 3% of
the overall solutions.

AWSLambda Amazon released AWS Lambda³ in 2014, being the first FaaS system openly avail‐
able to the public and with time maintaining its position as the leader of the sector.
Lambdas are stateless functions with a limited lifetime, which can be activated using a variety

of configurable triggers. Some of these include HTTP triggers from an API Gateway, file uploads
to S3 buckets, or events from streaming platforms like AWS Kinesis. AWS lambda also offers
the widest array of available programming languages or runtimes to write functions, including
JavaScript, Go, Python, Ruby, Java and C#. Moreover, custom runtimes can be written by users
to allow writing functions in extra languages.

Azure Functions Azure Functions⁴ is Microsoft’s FaaS solution and was introduced in 2016.
Unlike AWS Lambda, the code of Azure Functions is open source, and allows for local deployment
using Kubernetes. Azure also offers an extension to its traditional serverless functions in the
shape of stateful functions called Durable Functions. Azure Functions also offer a variety of
languages to run functions with, namely C#, JavaScript, Java and Python, but still does not reach
the level of AWS in terms of allowed programming languages.

Google Cloud Functions Google released its own Function‐as‐a‐Service platform in 2016⁵ to
compete with AWS and Azure, and is as of today the least adopted of the three [14]. When com‐
pared to solutions like AWS lambda, a clear shortcoming is the number of languages available to
write functions, limited to JavaScript, Python and Go.

Another important factor to keep in mind when addressing the convenience of FaaS is the
pricing and the payment scheme. All of the studied cloud platforms follow the same pricing
structure, with two sources of cost for the user: price per invocation and price per duration.
Price per invocation is the most straightforward, based on the number of functions running, a
cost is charged to the user. Current rates are shown in Table 2.1, where the price indicated there
shows price per million invocations. Even though Google is more expensive, it offers a more
extensive free plan in which the first 400K calls are not charged to the user, therefore reducing
the price for the first million invocations, but still remaining more expensive for the consequent
calls. The other factor in pricing is related to the memory size of the function, and is charged for
the execution time of the function, normally calculated at millisecond granularity. Here we see a
comparable offer by both AWS and Azure, with Google offering a much lower price per duration.
All providers offer configurable parameters of functions, with the main parameter being mem‐

ory. In most cases, the number of CPU cycles assigned to each function is scaled according to

³https://aws.amazon.com/lambda/
⁴https://azure.microsoft.com/services/functions/
⁵https://cloud.google.com/functions

https://aws.amazon.com/lambda/
https://azure.microsoft.com/services/functions/
https://cloud.google.com/functions
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Price
Platform Memory Max. Duration Invocation* Duration (GB/s)
AWS Lambda 128MB ‐ 10GB 15 min $0.2 $1.67e‐5
Azure Functions 1.5GB** 10 min $0.169 $1.6e‐5
Google Functions 128MB ‐ 8GB 9 min $0.4 $2.5e‐6

Table 2.1: Comparison of features of the main Cloud Function Providers
* Price is given per million invocations
** With a Premium plan, memory can be increased until 14GB

the assigned memory, but the function used to determine the dedicated CPU is not clear in some
platforms like AWS Lambda. With the goal of accommodatingmore complex and expensivework‐
loads on serverless, we have seen an increase in the allowed limits both in memory size and dura‐
tion of functions. AWS increased the maximum amount of memory from 3GB to 10GB recently,
as well as increased the maximum duration from 10 to 15 minutes. This is greatly beneficial for
running tasks that before were not as good of a fit on serverless, such as machine learning.

Open Source Options
Despite the convenience of cloud provider FaaS solutions, they suffer from issues previously dis‐
cussed such as limited lifetime and the inevitable vendor lock‐in. With this in mind, open source
serverless solutions were proposed which, although slightly increasing the operational burden,
allow for an increase in flexibility and configurability. These solutions run on top of Kubernetes⁶
and implement the serverless paradigm using traditional Kubernetes abstractions such as Pods,
Deployments and ReplicaSets.
In this sectionwewill briefly explain themain concept behindKubernetes and itsmain abstrac‐

tions, before diving into the multiple options available to run serverless platforms on Kubernetes,
as well as their characteristics and architectures.

Kubernetes Virtualization has played a key part in the development of Cloud Computing, im‐
proving efficiency and flexibility over traditional bare‐metal servers [70]. Virtualization allows
providers to abstract the user’s view from the physical machines, and enables shared usage of
resources such as CPUs, memory and disk, thus increasing efficiency. With time, virtualization
techniques have also evolved and have experienced the birth of containers, providing a smaller
and more lightweight environment for running applications than full‐fledged VMs.
Containers are also tightly related to the concept of microservice architectures, which try to

split an application into its core functionalities, each running as an almost‐stateless service. These
services communicate with other through events and messages [31]. Containers provide isola‐
tion in the form of control groups (cgroups) and namespaces, which restrict the kernel features
accessible to the user, and the access to system resources respectively. But these microser‐
vice applications are composed of hundreds or thousands of instances that need to be managed
in terms of scheduling, networking, fault tolerance, monitoring, etc. To address this, Container
Orchestration Platforms were created, which automate the deployment and management of con‐
tainerized applications.
Kubernetes is an open‐source container orchestration system, developed by Google, which

automates deployment, scaling and management of containerized applications. Kubernetes fol‐
lows a master‐worker architecture, with one server in charge of scheduling tasks and managing
resources, and multiple workers that periodically update their state according to the instructions
from the master. Instead of determining the low‐level application properties such as assignation
from containers to servers, Kubernetes follows a declarative approach. The user defines the de‐
sired state of the cluster, which is then transparently maintained by the control plane and the
master.
Kubernetes offers a wide range of resources and abstractions to build distributed applications,

which are defined in the YAML modeling language:

• Namespaces define divisions between different applications or workspaces
⁶http://kubernetes.io

http://kubernetes.io
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• Pods are the smallest units within clusters. A Pod comprises one or multiple tightly‐coupled
containers, which share resources such as network and storage.

• ReplicaSets are groups of pods all performing the same task, deployed in parallel to increase
availability.

• Deployments specify the desired state of Pods by creating a ReplicaSet. Deployments also
allow to define autoscaling policies for Pods.

• Services expose a set of Pods or Deployments as a network service. Services can be con‐
figured to expose Pods as a public service through a LoadBalancer or an internal IP within
the cluster.

Using these abstractions, open‐source serverless platforms are able to orchestrate containers
as functions in cloud provider platforms, by allowing containers to execute custom code written
by the user. Generally, these solutions allow users to set limits on function resources themselves,
instead of having to adhere to enforced limited by cloud providers. Parameters like CPU, memory,
duration, and parallelism limits can be tuned or even omitted altogether. Below we list the main
options currently available and cover the basics of their architecture.

OpenFaaS OpenFaas⁷ follows the same basic structure as AWS Lambda, using a main compo‐
nent serving as the API Gateway performing the fundamental tasks such as exposing an API,
monitoring metrics, handling scaling operations and receiving requests to trigger functions. Scal‐
ing can be configured to multiple factors such as requests per second or CPU usage, which are
monitored through Prometheus and periodically scraped by the Gateway.
Functions are deployed inside Docker containers wrapping the code of the user, which is then

triggered with HTTP requests. The process of creating a function involves writing the function
code but also a configuration YAML file describing the function configuration, this adds an extra
step that is not usual in cloud provider platforms. Function code is wrapped in a programming
language‐specific docker container, whose details are abstracted away from the user⁸.

Kubeless Kubeless⁹ follows a similar design choice, using a Controller as the main component
handling the API exposure and requests. However, unlike in OpenFaaS, function requests can be
configured with different ingress types, either HTTP or events from message brokers like Kafka
or NATS. When using HTTP Triggers, functions are not hidden behind a gateway as in OpenFaaS,
but are directly exposed using a Kubernetes Service.
In terms of writing functions, Kubeless offers several different runtimes, which are Docker

containers holding the needed dependencies to write applications in a certain language. Unlike
in OpenFaaS, users do not explicitly need to write configuration files, but can simply provide the
code and the chosen runtime to be used alongside it. The function code is embedded in the
runtime container, and will be run upon a request arrival.

OpenWhisk Apache OpenWhisk¹⁰ is developed by IBM, and follows the same basic structure
as previous systems. Its main abstractions are called actions, triggers and rules. An action is the
name a function is given in OpenWhisk. Triggers are endpoints that receive requests and based
on the configured rules, are connected to one or multiple actions. This means that a trigger can
prompt the execution of one or more actions, the same way that an action can be launched by
multiple triggers.
For internal communication in OpenWhisk, we see a different strategy to other systems.

Rather than using plain HTTP, OpenWhisk relies on Apache Kafka for transmitting messages and
information to actions. Two components act as start and finish points of the invoking process.
The Controller receives the requests and sends them through Kafka to the Invoker. The Invoker is

⁷http://openfaas.com
⁸https://docs.openfaas.com/tutorials/first-python-function/
⁹https://kubeless.io/
¹⁰https://openwhisk.apache.org/

http://openfaas.com
https://docs.openfaas.com/tutorials/first-python-function/
https://kubeless.io/
https://openwhisk.apache.org/
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then responsible from taking decisions like spinning a newDocker container to serve the request,
or reuse a previous one and avoid cold start.
As with Kubeless, actions use runtimes for different programming languages, which are ex‐

tensible Docker containers containing the user code. This code is embedded in the container at
creation time, when the user deploys it using the Whisk CLI.

Fission. Fission¹¹ provides a more distributed architecture, with the principal components in
other systems being divided into smaller services with a single task, followingmore amicroservice
design approach. In line with similar systems, the Fission API is exposed by the controller, which
allows users to create, delete ormodify resources. Triggers can be configured in the shape ofHTTP
endpoints that result in the execution of a function. These triggers are registered in another
component called the router. Upon request, the router queries the function address from the
executor, which is in charge of creating or deleting function pods according to the configured
limits.
To write functions, Fission provides a variety of environments, equivalent to runtimes in other

systems. These environments hold the dependencies and the function code. A differentiating
factor is that environments are not strictly tied to the function code at creation time, instead,
the code loading is performed dynamically at runtime. Each function pod holds two containers,
the environment we already described and a fetcher container. When deployed, the environment
is nothing more than a default Docker container with a REST API, but once the pod receives a
request, the container is specialized by the fetcher, and provided the code it needs to execute. This
feature allowsmultiple functions to run using the same environment, instead of having specialized
runtimes for each function.

2.5. Combining Deep Learning & Serverless
This section discusses the previous work about using serverless for large‐scale data treatment
and machine learning. We discuss data processing frameworks created to exploit the serverless
architecture in Section 2.5.1; in Section 2.5.2 we present proposed systems that deal with run‐
ning ML workflows using serverless. In Section 2.5.3 we summarize the literature discussing the
incorporation of GPUs to serverless applications, and in Section 2.5.4 we explore previous work
using Kubernetes to to accommodate deep learning tasks.

2.5.1. Serverless Data Processing
As we briefly mentioned in Section 2.4, serverless is an especially good fit for highly parallel
applications in which different functions can move forward without having to periodically com‐
municate with each other. Out of the box, cloud platforms offer no universal way of orchestrating
functions and combining their output, which limits their applicability to cases such as map‐reduce
jobs.
There have been some platforms proposed to take advantage of serverless functions as a

way to parallelize data processing workflows, with all of them using AWS Lambda as their base
platform of choice. PyWren [29] is the main platform used in in literature to coordinate lambdas
and easily parallelize local code. PyWren is installed as a Python library and offers a high level API
for defining and executing lambda functions. The local device acts as a coordinator of the remote
functions, uploading the function code to S3 and invoking lambda functions in parallel executing
the same code. Results are output to S3 again, which can be conveniently fetched from the
local device. PyWren implements a generalist solution for code execution in lambda functions, so
extensions were proposed improving PyWren’s performance in particular tasks. Numpywren [61]
extends PyWrenwith optimizations for linear algebra operations, exposing a numpy‐like interface
for users which can execute numerical workflows with ease. For storage, it also uses S3.
In [56], authors question whether the usage of S3 for all storage during analytics workloads

is indeed the most efficient in terms of runtime and cost. They study the performance of shuf‐
fle operations in map‐reduce jobs running on AWS lambda and the compromises between using
slow storage (S3) or fast storage (Redis) deployed on AWS Elasticache as the intermediate storage
between stages. Redis offers superior throughput but is almost two orders of magnitude more

¹¹http://fission.io

http://fission.io
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expensive, so authors propose the use of Locus, a serverless platform extending PyWren, able to
perform a hybrid shuffle using a model to optimize which storage to use to perform communica‐
tion stages to provide a balance between speed and cost.

2.5.2. Serverless Machine Learning
With serverless only increasing in popularity in recent years, limitedwork has been done on imple‐
menting machine learning workflows using serverless architectures. The main use of serverless
in machine learning was at first exploiting serverless’ convenient autoscaling and pricing to per‐
form model serving. In these solutions, a previously trained model is exposed behind serverless
functions, so that when a certain model is triggered, the function loads the model and the new
input datapoints and returns the predictions from the model [26, 2, 3].
In 2018 two papers describe their vision for what running machine learning training tasks on

serverless could need to succeed and what the main limitations were at the moment. Carreira et
al. [6] describe the main limitations of serverless architectures slowing their applicability. They
state that the low memory limits and limited lifetime of functions is a major disadvantage when
deploying ML tasks. At the time of writing, lambda functions allowed for a maximum of 3GB of
memory and 512MB of disk, and could take up to 2minutes to start. They list themain challenges
going forward as the lack of GPU support and fast intermediate storage to replace S3 and pro‐
vide performance gains. Feng et al. [16] mentioned that up to their writing efforts there had not
been any proposed platform for neural network training using serverless, and envisioned what a
possible architecture would be for this problem. They propose two alternative pure‐FaaS archi‐
tectures. One with a single parameter server that is also a FaaS function, and another mimicking
tree AllReduce, with workers later acting as parameter servers for each other after completing
computation. They do however, not detail how the functions communicate with each other or
which storage platform they choose for data exchange.
Cirrus [7] materializes the serverless ML system proposed in [6], and presents a system that

uses AWS Lambda to parallelize tasks performed during a variety of stages in the ML pipeline,
from data preprocessing andmodel training to hyperparameter tuning. They build this solution by
extending PyWren and opt for a hybrid solution mixing FaaS and traditional VMs. They use S3 for
data storage but build a custom‐made parameter server to handle model updates during training
from the models. They test their solution on a variety of ML tasks using Stochastic Gradient
Descent, but do not include deep learning tasks in their experimentation.
A couple of articles tackle the problem of running deep learning tasks on AWS Lambda.

Siren [67] also builds on PyWren and opts for a pure‐FaaS approach, using S3 for all storage
both for data and for intermediate outputs between epochs. Rather than focusing on the actual
performance of the platform, the authors place their main focus on accurately predicting the per‐
formance on tasks and, using reinforcement learning, choose the optimal parameters for the task
(size of lambda function, number of workers) to balance response time and cost. A similar ap‐
proach is taken by Xu et al. [71], who propose 𝜆DNN. Authors do not highlight the convenience
of deploying the functions —handled by PyWren in other proposals— and fully concentrate on
performance modeling and optimization. Architecture‐wise, they use a hybrid approach with a
traditional VM acting as a parameter server for functions, and use the ZeroMQmessaging library
to communicate the model parameters. They test their system using deep learning tasks and
TensorFlow, and compare their resource allocation and prediction to previous approaches such
as Siren and Cirrus, improving on both.
Most recently, Jiang et al. [28] proposed LambdaML, a serverless ML platform that enables

the comparison between pure‐FaaSML systems and hybrid approaches including traditional VMs.
LambdaML allows for performing multiple ML tasks from Logistic Regression to Deep Learning,
implemented with PyTorch. It also allows for configurable optimization algorithms including SGD
and model averaging. Authors also evaluate the benefits of using different platforms for inter‐
mediate storage between functions such as Memcached, S3, Redis and DynamoDB. Focusing
on deep learning, the evaluation of the system shows that for small models (MobileNet), using
a single GPU instance clearly outperforms all FaaS configurations, reporting 8x faster and 9.5x
cheaper performance. This further highlights the need for GPUs in serverless ML to breach this
performance and cost gap and make serverless usable and affordable in ML.
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2.5.3. Usage of GPU in Serverless
As we have previously described, GPU utilization in serverless is a vital aspect to be implemented
in order to favor the convenience of serverless ML and put in on par with Infrastructure‐as‐a‐
Service (IaaS) platforms. Alas, limited work exists that is able to exploit these resources from
serverless. Given that proprietary cloud platforms do not offer the functionality of incorporating
customhardware likeGPUs or TPUs to the runtime, to exposeGPU resources, the authors needed
to resort to open‐source alternatives.
Kim et al. [32] used the open‐source platform IronFunctions¹² and Nvidia‐Docker¹³ to allow

serverless containers to access GPU resources. The system works using HTTP requests; when a
new request to execute a GPU workload, a new Docker container is started on demand and the
function code executed. The authors test their system on a variety of containers, and in terms
of deep learning run tasks on TensorFlow, Theano and PyTorch. Despite this work being the first
that combines serverless and GPU, it does so by running one workload per container, so it cannot
be classified as a distributed machine learning solution.
Naranjo et al. [45] present the OSCAR platform, designed to expose GPU resources in remote

servers and allow users to schedule workloads on those GPUs from their local machines as if the
GPUs where indeed installed locally. From an architectural perspective, OSCAR uses Kubernetes
as an orchestration system, and the open‐source OpenFaaS platform as a serverless alternative to
run onKubernetes. Apart from that, they employ rCUDA¹⁴ in their remoteGPU server to virtualize
GPU resources and provide isolated access to them. They evaluate the system using Tensorflow
for image classification, but their experimentation is limited to inference tasks. Nevertheless, the
authors argue that model training could also be a future use case of the system since it should
benefit from GPU sharing between functions and an increased parallelism.

2.5.4. Deep Learning on Kubernetes
Deep Learning jobs are commonly run on a single machine or cluster made up of VMs, which fix
the allocation of resources from the start to the end of the job runtime. To try tomake this process
more flexible, there has been recent research on scheduling deep learning jobs on Kubernetes,
since its design allows for easy allocation and migration of containers and processes throughout
the training process. Optimus [53] is a scheduler specifically designed to maximize performance
and efficiency of Deep Learning jobs on Kubernetes. The authors envision a deep learning (DL)
cluster towhich jobs arrive in an onlinemanner, andOptimus is in charge of resizing andmigrating
containers belonging to different DL jobs in order to accommodate newcomer tasks while still
maintaining performance. The authors’ focus is on MXNet, a deep learning framework built with
the Parameter Server paradigm, in which separate processes behave as workers performing the
bulk of the computation, while others are parameter servers (PS) who aggregate the parameters.
They design a scheduler which maximizes performance by allocating worker and PS pods in the
same servers to minimize response time.
In a similar environment, Mao et al. propose SpeCon [42], a Kubernetes scheduler tailored to

deep learning workflows which approximates the convergence of jobs and migrates tasks close
to convergence to leave space for more resource‐hungry jobs. Converged jobs do not benefit as
much from extra computing cycles, so they are migrated together to avoid their interference on
newer jobs which would benefit more from added CPU cycles.
A more interesting system due to its relation with our own KubeML is Kube‐Knots [65], which

focuses on the drawbacks of GPU allocation in Kubernetes clusters. In line with our experience,
the authors state that unlike CPU and memory, which can be scheduled and guaranteed with
ease by clusters, GPU resources are not properly modeled or scheduled by Kubernetes. On top
of that, virtualization of GPU resources is currently not supported in general by cloud providers.
Because GPU resources are exposed using PCIe passthrough, bypassing the hypervisor, no

fine‐grained control can be performed by the scheduler of limits and requests for GPUs. This
results in Kubernetes treating GPUs as exclusive resources, and allocating them statically to a
single pod. This often leads to GPU underutilization, which is not a desired outcome given the

¹²https://open.iron.io
¹³https://github.com/NVIDIA/nvidia-docker
¹⁴http://www.rcuda.net
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cost of these resources. Kube‐Knots modifies the Nvidia k8s‐device‐plugin¹⁵ used for exposing
GPUs to Kubernetes in order to allowGPU sharing betweenmultiple pods. GPUs are time‐shared
in terms of compute, and space‐shared in terms of memory. Kube‐Knots uses a bin‐packing
algorithm and real‐time monitoring to safely schedule multiple pods per GPU which can coexist
without causing crashes due to excessive allocation of resources.
Complimentary to this work on GPU sharing on Kubernetes, Yeung et al. [72] propose a model

able to predict GPU usage by deep learning models, which helps to decide which models can be
co‐located in the same GPU in order to increase utilization without causing errors and slowdown
as a result of over‐allocation.

2.6. Conclusion
In this chapter, we have explained the basics of deep learning and how we can translate the
sequential process of training a deep neural network into a distributed setting using different
communication methods and architectures. We have also introduced the concept of serverless
computing and analyzed its benefits and shortcomings. This has lead us to discussing possibilities
ofmerging both technologies, enabling elastic neural network training on serverless architectures,
and we presented current applications making use of serverless and deep learning in conjunction.
As shown by the currently available literature, one of the main shortcomings preventing FaaS

from evolving into a real alternative for training ML models is the lack of GPU support. This
obstacle points us in the direction of open source serverless platforms. However, these platforms
have a higher operational cost for users, since apart from defining the logic of their ML code, they
have to still allocate a cluster and configure its components. For this reason, another objective to
be fulfilled in our work should be to breach this gap between cloud and open‐source alternatives,
providing an easy to use interface to deploy functions and start training without the need for
low‐level knowledge of cluster management and the underlying system.
Another clear idea to exploit is the one proposed in [45]. GPU resources are often under‐

utilized when training deep learning models, especially with smaller networks. With GPUs being
such expensive resources, there needs to be a way to multiplex tasks on GPUs, favoring resource
utilization and achieving higher parallelism and better performance without investing on extra
resources.
In terms of system architecture, previous work highlights the benefits of using fast storage

as an intermediate step for model weights and gradient aggregation. One of the main deter‐
rents for its usage is the increased price of cloud fast storage when compared to slower solutions
like S3 [56]. Using a containerized system like Kubernetes, we could deploy these fast stor‐
age resources co‐located with the cluster at no extra cost, thus reducing the impediments for
its usage and increasing performance. On the other hand, [28] also highlighted that for models
whose communication step is costly such as deep ResNets, standard synchronization algorithms
such as S‐SGD slow the convergence of the network since the model parameters need to be sent
through the network, with its obvious effect on latency. We shall overcome this problem to make
serverless deep learning more performant by implementing alternative algorithms studied in Sec‐
tion 2.2.2 that are able to relax the synchronization frequency but still have good convergence
properties.

¹⁵https://github.com/NVIDIA/k8s-device-plugin
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Design of KubeML

In this chapter, we analyze the requirements that must be fulfilled by KubeML¹ in terms of per‐
formance and usability. We describe which features of KubeML enable those characteristics, and
provide an overall look of the system, its components and their inner‐workings.

3.1. Overview
In line with the work studied in previous chapters, KubeML should implement features that ac‐
commodate both convenience and performance. We translate these objectives into functional
and non‐functional requirements.

3.2. Requirements
3.2.1. Functional Requirements
(FR1) Offer an Efficient Communication Model: In any distributed machine learning environ‐

ment, communication overhead is a vital aspect to optimize. Models need to be synchro‐
nized periodically to maintain a common view of the weights and biases of the network.
This is done either by sharing themodel gradients or themodel weights. This is evenmore
important in a scenario where not only are models distributed among different GPUs, but
also across multiple machines in a cluster. This implies that the model parameters need
to be sent across the network, which entails an increase in latency, and further highlights
the need to optimize the training scheme.

(FR2) AllowExecutionofConcurrent Jobs: We specifically tackle the problemofmakingKubeML
a potential replacement for shared serverless clusters on which multiple users can utilize
resources in isolation from other concurrent tasks. This means that users’ jobs should not
be affected by failures of other tasks during the training process.

(FR3) Enable Dynamic Scaling of Tasks: As in any shared environment, usage and available
resources fluctuate according to the number of tasks running at each moment and their
characteristics, as well as due to potential failures in the system. KubeML must therefore
adapt to these circumstances by scaling up and down the task parallelism during the
training process transparently and reliably.

(FR4) Utilize both CPU andGPUResources: As we have explored in the state‐of‐the‐art chap‐
ter, a major inconvenience of current serverless platforms for deep learning is the lack of
GPU support, which makes the training slow and inefficient. A key property of KubeML
should be to exploit GPU resources to accelerate training. Moreover, increasing paral‐
lelism using the same amount of resources has previously been attempted with good
results [34, 65], so we include the possible usage of GPUs by multiple processes concur‐
rently in the desired properties.

¹The source code of KubeML is available at https://github.com/DiegoStock12/kubeml
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(FR5) Offer a Unified Solution for Training and Inference: Instead of having to prepare differ‐
ent deployments and setups for training and deploying the model for inference, a single
function is enough to perform the training and inference thereafter.

3.2.2. Non‐Functional Requirements
(NFR1) Minimal Setup and Configuration Overhead: In current distributed deep learning so‐

lutions, the process of preparing the task to be distributed can imply lengthy configura‐
tions or changes to the local code, which can undesirably complicate the development
and deployment process. KubeML should allow users to prepare and setup the net‐
works with minimal effort and without extra configuration files.

(NFR2) Convenient Transition fromLocal toCloudEnvironment: Transitioning from a local de‐
velopment environment to a distributed setting should be almost transparent. KubeML
should offer tools to developers to easily convert local code into a code that can be dis‐
tributed across a Kubernetes cluster.

(NFR3) Enable Easy Testing: One of the inconveniences of traditional serverless platforms is
that testing the functions entails deploying them to the proprietary cloud platform,
be it AWS Lambda, Cloud Functions, Azure Functions, etc. KubeML, being built on
top of Kubernetes, allows testing wherever a Kubernetes cluster is available. That has
two positive consequences: (1) Functions can be tested in on‐premise clusters or even
single computers with tools such asMinikube² and Kind³. (2) There is no vendor lock‐in.
The same code and setup will work regardless of the cloud provider, making migrations
or multi‐cloud deployments easier.

3.3. Choosing a Serverless Platform
KubeML offers neural network training and inference, along with autoscaling capabilities. For
this, we rely on existing solutions for hosting containerized applications as well as an open‐source
serverless platform.
For our base platform of choice we opt for Kubernetes, given its convenience to develop

highly scalable containerized applications and its flexibility. As a second step, we had to choose
an open‐source serverless platform to deploy the deep learning functions. Several platforms are
available built on top with Kubernetes as we reviewed in Section 2.4. To decide on a serverless
platform from those available on Kubernetes, we analyzed different factors that would help clear
our decision.

F1. ThoroughDocumentation: Is there a comprehensive amount of documentation and exam‐
ples that make getting started easier?

F2. Focus on Performance: Is performance one of the platform’s main focus points?

F3. Extensible Architecture: Does the architecture favor the development of new components
that interact with its own?

F4. Component Isolation: Are the components of the platform separate and are there clear
isolated responsibilities? This means that the failure of one component would not result in
a general failure of the system. We choose this factor since the overall concept of KubeML
also tries to follow this component isolation principle.

From among the pool of candidate platforms, the chosen ones for evaluation were Kubeless
[36], OpenFaas [50], OpenWhisk [51] and Fission [17]. From the point of view of extending and
interactingwith the platform, OpenWhisk is the least favorable, given that it is written in Scala. All
others allow us to interact easily with their API as well as with the Kubernetes API natively in Go.
For performance measurements, we rely on previous studies comparing the three platforms [44].
In this paper, the authors benchmark the response time of the different platforms, with Kubeless

²https://minikube.sigs.k8s.io/docs/
³https://kind.sigs.k8s.io/
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reporting the more predictable behavior, however Fission beats the other two by a wide margin
in terms of median response time.
Moreover, Fission fully satisfies the requirements for thorough documentation and exam‐

ples available, while the other solutions fall a bit short on documentation explaining the inner‐
workings of system components, which hinders the extensible architecture requirements. Lastly,
Fission is the only one of the alternatives which separates its components into multiple contain‐
ers, as opposed to having a single controller managing the entire platform.

3.3.1. Fission Architecture
We choose Fission⁴ as our serverless platform because of its extensibility and its focus on per‐
formance [44]. Fission runs atop Kubernetes and implements the serverless paradigm using Ku‐
bernetes primitives.

ServerlessPods Serverless functions are translated into theminimumentity of Kubernetes clus‐
ters, Pods. Pods can be described as a self‐contained group of containers, all sharing common
storage and network resources. in Figure 3.1 we show the process of calling a function in Fission.

Figure 3.1: Schema of how a Fission function is invoked [17]. The fetcher loads the information and the function code
from storage (1, 2) which is put in a shared volume so it can be accessed by the environment container (3). The fetcher then
specializes the environment and makes it load the user code and prepare for execution (4, 5). When ready, the function
serves the request from the router (6).

The environment is the container in which the function code will be executed. Initially the
environment is nothing else than a generic Docker container with dependencies installed and a
REST API. When a function is invoked, the container is specialized to serve a particular function,
andwill be used for that function alone until it is idle and its resources can be returned. The fetcher
is in charge of loading the appropriate user code when a function is invoked through a trigger and
specializing the environment, which loads the code provided and executes the main function.
Generally, multiple instances of these pods are deployed simultaneously to serve requests in
parallel and in isolation for a specific function type.

Request Ingress. Similar to traditional serverless platforms, requests to execute the user code
are processed by a router. This component holds an index of the pods defined to serve each type
of request and picks one of the free pods to by triggering it and handling the response once the
pod is done processing the request. The router interacts with the executor component, which
manages the available pods and sends its choice of the optimal pod to use to the router. We
show this pod selection progress in Figure 3.2.

Scalability Oneof themain benefits of the serverless paradigmover traditional cloud computing
applications is the apparent infinite scaling based on the rate of requests to a specific function.
In Fission there are two approaches to scaling the number of pods of a function. We can use the
PoolManager executor to set a minimum number of free pods to be maintained, so that when a
new request arrives, a new serverless pod is created to keep a constant number of free resources.
Another option is to use the NewDeploy executor, which uses a Horizontal Pod Autoscaler (HPA)
⁴https://fission.io/
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Figure 3.2: How the router sends the request to a function [17]. The Executor is responsible for maintaining the pools of
available pods. The router simply queries the executor, which returns the address of a free pod. The choice of the pod
will direct the requests preferably to a pod that has already been specialized and loaded the code and dependencies. This
makes pod reuse feasible and reduces the effect of cold start.

to create pods based on resource utilization such as CPU after a set limit. For deep learning,
and as a result long‐running tasks, a single pod should handle the training on one replica of the
network, so using the PoolManager executor makes more sense as it guarantees that each of
the requests will be served by a separate container.

3.4. KubeML Architecture
KubeML interactswith the Fission components explained in Section3.3.1 to train neural networks
in a distributed manner. The overall system is divided into different Kubernetes Namespaces for
isolation, as shown in Figure 3.3.

1. Fission. Where the Fission components are deployed. The main components KubeML will
interact with to perform its duties are the controller and the router. The controller exposes
the Fission API, so requests to create, delete or modify resources such as functions and
environments will be directed to this component. The router, on the other side, behaves
similarly to an API Gateway in AWS. It registers HTTP triggers, each associated with a cer‐
tain function. Once triggered, the router will obtain the address of an available function
pod from the executor, and forward the request to said function.

2. Fission Function. This is the namespace where function pods are created. Each pod in‐
cludes a fetcher which retrieves the function code when invoked, and an environment con‐
tainer, consisting of a docker container with a REST endpoint, which handles requests from
the router. We extend this environment container to support deep learning functions by
re‐building it with custom libraries such as PyTorch, Numpy, Pandas, etc.

3. KubeML.Where the KubeML components for exposing the API, handling the training pro‐
cess, and storage reside. These will be explained more in detail in the coming subsections.

4. Monitoring. As with most applications, observability and performance measurement is
a vital aspect of KubeML. For this purpose, we use Prometheus as a metrics time series
database. This allows us to track the performance of Fission components such as function
response time or failures, as well as router requests. Moreover, we also include Grafana
in the stack for visualizing the metrics. KubeML also exposes the metrics of training jobs
in real time, so typical performance metrics such as accuracy, loss and duration is easily
followed during training.

As shown in Figure 3.3, KubeML relies on different components to perform functions ranging
from management operations to storage and tracking the training process. In this section we
provide an in‐depth explanation of each component and its task. To enable straightforward in‐
teraction with both the Fission and Kubernetes APIs, all the components except for the storage
service are written in Go. In addition, similar to Fission and the Kubernetes API, all components
expose a REST API, and communicate with each other using HTTP and JSON.
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Figure 3.3: Schema of the KubeML Components

3.4.1. Controller
Similar to the concept found in Fission, the controller acts as a gateway to the system, exposes
the KubeML API and acts as a proxy towards other components in requests. The Controller API
exposes several endpoints to create, delete and modify several resource types in the system:

• /train Receives the specifications for a training task. Each train task can be configured
with parameters such as the batch size, learning rate, dataset, function name, target accu‐
racy, etc. These requests are then validated and forwarded to the scheduler.

• /infer Receives an inference request, holding the function name and the data to be used
as input to the network. This request is also forwarded to the scheduler.

• /dataset Handles dataset creation and deletion. The dataset upload is done through a
multipart upload to handle big datasets efficiently. In these cases, the controller acts as a
reverse proxy and forwards the request to the storage service, which processes and stores
the data in a predefined format.

• /history Retrieves the history of a training job, that is, the summary of the performance
of the job throughout the training process. This includes accuracy and loss per epoch, par‐
allelism, duration, etc. for all epochs of the job.

• /task Allows the user to interact with the running jobs of the system, such as obtaining
information, listing or stopping them.
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3.4.2. Scheduler
Similarly to the Kubernetes Scheduler, the KubeML scheduler receives requests to start a training
job or perform an inference request. Once tasks arrive at the scheduler, they are queued and wait
to be processed. Once the task is popped from the queue, the scheduler executes the appropriate
actions based on the task type and the scheduler policy.

• Inference Tasks. In the case of inference tasks, the scheduler directly invokes the function
with the parameters passed alongside the requests, thus acting as a proxy towards the
function pods. Since inference will mostly be allocated to CPU resources, which will be less
utilized than GPU, the scheduler simply invokes the appropriate function in the router in
forwards the results.

• Train Tasks. In the case of train tasks, the scheduler’s purpose is to scale up and down
the parallelism of tasks based on the rules specified in the policy being used. The policy is
defined as an interface that can be extended to determine the conditions for scaling.
The current policy is a reactive one based on throughput and response time. The scheduler
will allocate a start parallelism to a task, and after every epoch, the task will send its parame‐
ters such as elapsed time and throughput to the scheduler. The scheduler will optimistically
increase the parallelism until the throughput of a task stops improving. In case the through‐
put of the task suddenly drops under a certain threshold, the parallelism is scaled down. This
is to address the possibility of multiple tasks running concurrently on the system and having
to reduce resource usage to fit all of them. This means that we can reactively scale up or
down the number of functions running in parallel at runtime without any changes to the
code, thus fulfilling FR3.

3.4.3. Parameter Server
Receives the specification of training tasks from the scheduler and starts a new Train Job for each.
Instead of sharding parameters by name, it shards them by task, so each has its own dedicated
pod to update its parameters. It forwards the updates from the scheduler to the appropriate train
job, as well as manages the lifetime of each job, from creation once the task is received to deletion
once finished to release resources.
This component is also in charge of exposing the metrics from all the jobs in the system via a

Prometheus endpoint. The jobs update the parameter server periodically with their latestmetrics,
and these are updated in the endpoint, and thus gathered in the Prometheus server.

• Train Job Management. Given that KubeML should be able to host concurrent jobs from
different users, one key property of the platform should be job isolation. The failure of one
job should not affect the overall usability of the platform.
To achieve this, the Parameter Server creates the Train Jobs in a new pod isolated from the
rest of the components of the system to satisfy FR2. At creation time, using the Kubernetes
API and a custom ClusterRole, the Parameter Server creates a new pod for the job, as well
as a new Kubernetes service. The creation of the service facilitates referencing the job from
the serverless functions by providing the pod a DNS name and entry in the cluster DNS.
During the training process, the Parameter Server will act as an intermediary between the
scheduler and all the jobs, handling the new parameters such as the parallelism degree sent
from the scheduler.
Lastly, once the job finishes, the parameter server cleans up the job resources such as the
pod and service, and clears the metrics from the Prometheus endpoint.

• Metric Collection. Apart from managing the pods and services, the Parameter Server also
serves as a single publishing point for the metrics of all the jobs running in the system. After
each iteration, the jobs communicate with the parameter server their latest measurements
of the defined metrics. The default metrics reported to the server are validation loss, accu‐
racy, train loss, parallelism and epoch duration.
The metrics are then exposed in a custom Prometheus endpoint to be fetched periodically
by Prometheus. These metrics can be then queried and manipulated, as well as analyzed
with tools with Grafana, to follow the training progress of jobs.



3.4. KubeML Architecture 29

3.4.4. Train Jobs
The Coordination of the deployment of new serverless functions to run during the next epoch
is based on the abstraction of Training Jobs. Jobs maintain the reference model, the common
view of the network weights and parameters. In a Data Parallel approach, different replicas of
the same network are trained on disjoint subsets of the dataset, thus fitting only a subset of the
overall distribution of datapoints. Periodically, during the training job, functions will synchronize
their current views of the model resulting in an average model combining the views from all
networks, which will be used as the starting point for the next iteration.

Function Invocation Jobs invoke a number of functions at the start of each epoch, this number
is defined by the job parallelism level. During the epoch, the job will listen for requests sent by
the functions to its API updating the partial models and requesting a model average. The job
effectively acts as a synchronization point between the functions, and concurrently merges the
models and notifies functions to continue with the next iteration.

Weight Aggregation Running the training process in a serverless environment adds extra re‐
strictions, since functions cannot communicate directly with each other, thus requiring an inter‐
mediate component that performs the aggregation of the model weights or gradients. This role
could be performed by a traditional parameter server [7] or with an intermediate storage [61, 28].
In KubeML, the same function pod is used for the entire duration of a training epoch, which

can havemultiple synchronization points. In each synchronization point, functions notify the train
job, which proceeds to average the models. The train job communicates with the functions only
through the router, so it does not effectively know the exact addresses of the currently running
functions.
For this reason, we decide to rely on RedisAI⁵ as a high performance storage for the reference

model and the function models during training, used to communicate the weights from the func‐
tions to the job and vice versa. We will describe in more detail in Section 3.5 how the weights
are communicated and combined into the reference model.

3.4.5. Storage Service
In order to provide a transparent experience, users upload their datasets in the same format as
they would use locally to the KubeML dataset storage service. The storage service is in charge
of preprocessing the datasets uploaded by the users to optimize the training process and make it
easier to distribute the subsets to different functions.
Users can use the KubeML CLI⁶ to upload a dataset to KubeML. The storage service is the only

component written in Python so it can modify the uploaded data. The storage service accepts
files in the most common formats such as .npy and .pkl. Once uploaded, the service divides
the dataset in fixed size subsets of a manageable size like 64 datapoints, which are then saved in
multiple documents to the storage backend. This allows to easily distribute the datasets among
functions by loading just the subsets that a function needs to train on. These subsets pertaining to
each of the functions is easily calculated using the function id and the number of functions in the
system. A detailed explanation of the function inner‐workings will be provided in the following
sections.
KubeML relies on two different storage platforms to maintain both datasets uploaded by the

user and model parameters of the different deep learning functions during a job. We opt for a
hybrid storage solution using a document store for dataset storage due to its convenience for
organizing labels and targets of a dataset in a single entity, and a fast key‐value store for inter‐
mediate storage given the advantages that it has shown in other work performance‐wise [56].

3.4.6. Dataset &Model Storage
KubeML relies on two different storage platforms to maintain both datasets uploaded by the user
and model parameters of the different deep learning functions during a job.

⁵https://oss.redislabs.com/redisai/
⁶We will cover in more detail the usage of the KubeML CLI in Section 3.8.1

https://oss.redislabs.com/redisai/
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• Dataset Storage. The dataset storage holds the datasets uploaded by the user and pro‐
cessed by the storage service. The datasets are stored divided in multiple subsets of a fixed
size to allow easy access to the corresponding batches of data by each of the deep learning
functions.
When selecting the storage platform for datasets, three main requirements were consid‐
ered:

1. The platformmust allow for straightforward storage of binary data. The storage service
divides the dataset inmultiple subsets and saves in each subset the arrays representing
the features and labels in binary format. The database must allow for easy storage and
retrieval and also filtering by range of subset id.

2. High read throughput. The usage of the dataset storage consists of predominantly
read operations, thus it should offer fast read performance.

3. Collocationwith functions. The storage platform should be available close to the func‐
tions to maximize read performance.

Given these conditions, we settled onMongoDB as themain dataset storage solution, given
its performance on read operations and the easy containerized deployment in the same
Kubernetes cluster as the functions. In the future, other storage backend solutions could
be implemented, such as MinIO⁷, or S3 in case the Kubernetes cluster is deployed in AWS.
Each dataset is saved as a MongoDB database comprising two collections, the train and
test collections. Each collection holds several documents, each consisting of an id, and a
data and labels field, containing the binary representation of a subset of features and labels
of the dataset.

• Model Storage. Each deep learning function trains a replica of the model in a subset of the
data, these models have to be combined to produce the reference model periodically by
sending the gradients or weights to the parameter server. In KubeML this task is performed
by the Train Job. In KubeML, rather than directly communicating with each of the functions
and sending the model N times through the network, the Train Job and the functions used
a high performance storage platform, RedisAI⁸ as an intermediary to communicate each of
their models.
RedisAI is amodule for the Redis key‐value storewhichmakes interactingwith tensorsmuch
easier by abstracting away conversions between programming languages and libraries. Re‐
disAI also brings the benefit of high read and write throughput, which improves the perfor‐
mance of the model merging part of the training.
The choice of RedisAI allows us to introduce optimizations to improve tensor loading in the
Train Job, decreasing latency and increasing concurrency. We employ connection pooling,
which allows us to maintain a pool of ready connections which saves initialization costs
when wanting to access the tensor storage. Moreover, using multiple connections allows
us to increase concurrency, by having P threads load the model weights concurrently from
the functions with a parallelism degree P. On top of that, transmitting the tensors one by
one is a costly operation. Especially when transmitting hundreds of small tensors, commu‐
nication overhead starts playing a dominating role compared to computation. We resort to
pipelining to perform the tensor fetch calls asynchronously, so we are able to performmulti‐
ple commands in a row without having to wait for previous results, consequently increasing
throughput.

3.4.7. Deep Learning Functions
KubeML uses a data‐parallel approach to accelerate the training process of neural networks. This
means that a replica of the network is initialized with the same weights as the reference model in
each iteration, and trained on a different subset of the data. The functions then synchronize the
models again and continue the training process.

⁷https://min.io/
⁸https://oss.redislabs.com/redisai/

https://min.io/
https://oss.redislabs.com/redisai/
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KubeML functions are written in Python, using PyTorch. Users can reuse the same code they
would use to train the network locally and upload it to the Kubernetes cluster with the help of the
CLI. PyTorch code is wrapped using the KubeML Python library, which provides a simple interface
allowing using the same local code. More details on how the module works will be provided in
Section 3.7.
We take advantage of PyTorch only using as much GPU memory as needed for training to

allowmultiple serverless functions to be allocated in the same GPU.With small models, a big part
of the GPU resources remain unused, so this approach will increase resource utilization as well
as improve performance without additional hardware resources. We follow a similar approach to
[65] by configuring Nvidia Docker to allowmultiple pods to be scheduled in the sameGPU.We do
not reach the same level of optimization as in thatwork, since thatwould involve the development
of a new Kubernetes Scheduler and a new Fission Executor that could decide which serverless
pod to use for deep learning functions tominimize the chance of over‐allocation errors. Using this
approach we address FR4 by incorporating GPUs into the serverless deep learning ecosystem.

Function Lifecycle A key aspect when designing a serverless application is to account for the
function slow start time. Slow start is a characteristic of serverless platforms, which occurs after
a request arrives for a function without an available container ready to serve it. In these cases,
the platform needs to start a new VM or container to serve that function, which results in a delay
in function execution.
In KubeML, a single invocation of a function will perform the training for a whole epoch. After

this, the statistics for that specific function are returned as the HTTP response, and the pod is
returned to the pool of available ones. In order to maximize performance and reduce the chance
of slow start taking place, we configure Fission so that requests performed soon after the pod
is freed can still reuse the same container. This approach circumvents the process of importing
libraries, initializing connections and importing the user code.
Fission’s executor component keeps the state of the pods being used and performs sticky

routing, meaning that if a pod is already set to serve requests for a given endpoint, new requests
will be directed to these running pods instead of initializing new ones.

StickyGPUChoice As explained above, reusing function pods before its resources are returned
results in considerable time savings at invocationtime. WhenusingGPUs, another time‐consuming
operation is creating the model and allocating it to the GPU. This is done PyTorch through the
.cuda() method, and can be a lengthy operation for larger networks. On top of that, we also
want to minimize the different allocations performed by functions when training on GPU. This
means that the device used by a function should be the same in subsequent invocations.
To solve this, we use the function id (fid) parameter passed to each pod as a tool to define

the GPU to be used. In each server, with a number of GPUs equal to g, we choose the GPU to
be used by that specific function by calculating the modulo of the id with respect to the number
of devices such as gpuid = fid mod g. However, in the subsequent invocations of that pod, the
function id could differ, resulting in allocating memory in another GPU. To avoid this, we set an
environment variable which is read at the start of each invocation, which makes each function
reuse the memory allocation used in previous iterations, thus increasing initialization speed.

Throughout the training process of a network, several steps must be performed. The first
time a network is created, its weights and biases can be initialized in a predetermined way to help
convergence. Later, during the training process, the iterative process of training and evaluating
the network on the train and validation data is performed until the target number of epochs is
reached. Lastly, after the network is fully trained, it is commonplace to perform inference by
having the network predict new data. In KubeML, the same function code can be run to perform
each of these steps. The Train Job, with each call to the functions, passes certain arguments
along with the HTTP request that provide the function with context for the request, and makes
it execute a certain task.

• Init Function. The init function’s task is to create and initialize the weights of the network,
and save the initial model to the model storage. This first model is then used as the base for
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creating the reference model in the Train Job. This function is invoked once in each train
job before the training process starts.

• Train Function. Performs the training of the function on a subset of the data. Depending
on the parallelism of the job, each function calculates the number and id of the subsets
that it must load from the dataset storage, and loads the reference model from the model
storage. During training, functions might synchronize the model multiple times per epoch,
marked by a k parameter, which indicates the number of batches before sync. This is done
via an HTTP request to the Train Job service. More details of the training algorithm and its
benefits will be covered in Section 3.5.

• Validation Function. This function tests the model on the validation dataset and returns
the validation loss and the accuracy of the network on the unseen data.

• Inference Function. Given a new set of datapoints, the inference function loads the trained
model and returns the outputs for those new datapoints.

3.5. Training Algorithm
There have beenmany proposed algorithms to handle the distributed training of neural networks.
The most well‐known of them might be Distributed Synchronous SGD (S‐SGD) [8]. In S‐SGD,
multiple models are trained on different batches of the data, and after each forward pass, all
of the models are synchronized before the next iteration. This approach mimics the behavior
of sequentially training the network given that all workers have a common view of the reference
model at the start of each iteration. This frequent syncing, although reporting good final accuracy,
makes the training process slower and more sensitive to stragglers.
To mitigate these problems and provide the workers some leeway in terms of syncing, asyn‐

chronous methods were proposed, which allow workers to continue to the next iteration after
syncing without waiting for all workers to be finished. This maintains the same communica‐
tion overhead, however it improves the handling of straggler workers. Cases of these include
Elastic Averaging SGD (EASGD) [75], bounded staleness methods [79], and lock‐free optimistic
approaches [58]. Although these methods generally increase performance in terms of time, they
also make it harder for the model to converge. Most recently, it has been argued that Async‐SGD
methods lose benefits once used with bigger models, given their limited speed improvement and
worse accuracy [69].

3.5.1. Implementing Local SGD
In KubeML, functions are deployed in multiple containers spread across machines in a cluster,
having to communicate through the network. This further underlines the need to minimize com‐
munication to reduce latency. Moreover, we also want the benefits of synchronous SGD. To allow
this, we use a synchronous algorithmwhich combines characteristics from EASGD (synchronizing
after multiple batches) with strong convergence properties from synchronous methods.
We use Local SGD [80, 81, 63, 41] , also known as K‐AVG SGD or Parallel SGD. In Local SGD,

each worker trains for multiple epochs before syncing with the reference model. The number
of epochs before sync is commonly referred to as k, hence the name K‐AVG. This parameter k
represents a balance between exploration (each worker exploring a concrete region of the loss
space) with big k and exploitation (all workers exploring the same region of the loss space) with
small k. In our case, we define the maximim value for k to be one epoch, which we represent as
k = ∞. For merging the models into a single reference model, instead of aggregating the gradients
like in other solutions, we take the approach of performing model averaging [34]. During the
sync step, the models from all of the workers are averaged to obtain the new reference model,
following Equation (3.1).

w̃(t+1) =
1
N

N

∑
i=1

w(t)i (3.1)

Where w̃ represents the new reference model weights, and N is the number of workers, being
wi
t each of the workers’ weights. An intuitive representation of the operations performed during
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Figure 3.4: Overview of the Local SGD Training Algorithm

the training process can be seen in Figure 3.4. Each of the functions trains for k batches, and saves
its model to the model storage. The Train Job waits for all functions to be ready, and reads and
averages all the models from the functions. Finally, the train job publishes the model weights and
the functions proceed to the next iteration. This effectively reduces communication overhead by
a factor of k compared to synchronous SGD.
One important decision is the choice of the k parameter. Interestingly, in [80], authors prove

that Local SGD scales better thanmethods like Async‐SGD and EASGDwith the number of work‐
ers, but that the maximum accuracy is often reached with a k parameter bigger than 1, which
would be equal to S‐SGD, thus highlighting the benefits of exploration of different loss spaces by
the different models. We experiment with the values of k and their influence in performance for
different networks in Chapter 4. By using Local SGD, we offer the choice of prioritizing commu‐
nication efficiency by increasing the k parameters, which results in a linear decrease in commu‐
nication overhead. This addresses the requirement for efficient communication (FR1) needed to
tackle the excessive latency introduced by sending the gradients over the network.

3.6. Implementation Details
We implement the core components of KubeML in Go, to enable simple integration with the
Kubernetes and Fission APIs and to favor performance. The storage service and the KubeML
library are implemented in Python to enable interaction with common deep learning libraries.
The summary of the components and their code size can be seen in Table 3.1.

Component Written In Lines of Code
KubeML Core Go 4.5K
Storage Service Python 100
KubeML Library Python 440

Table 3.1: Lines of Code for each of the components

3.7. The KubeMLModule
As mentioned in the motivation for the system, one of the focus points should be to make dis‐
tributed deep learning straightforward and accessible, avoiding the need to perform lengthy con‐
figuration of algorithms or servers. We also want to let users reuse as much as their code devel‐
oped for local testing without having to rewrite considerable parts of the training logic. For this
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reason, we developed the KubeML⁹ Python module, which lets users convert their PyTorch code
into distributed code with minimal overhead, addressing NFR2.

3.7.1. The KubeML Classes
As part of the KubeML library, the users are provided with two classes that serve as abstractions
for KubeML objects and transparently distribute the learning task once deployed in a Kubernetes
cluster.

1. KubeDataset. Responsible from abstracting the process of loading the appropriate dataset
chunks for the function from the dataset storage. The KubeDataset class extends the Py‐
Torch Dataset class and implements the KubeML logic. This allows it to be used with all
other PyTorch objects such as a DataLoader, thus minimizing the needed code changes.

2. KubeModel. Wraps a PyTorch model and abstracts away the process of synchronizing with
the train job periodically, as well as loading and saving themodel in themodel storage during
the training process. The KubeModel is defined as an abstract class in which users define
the train, validate, infer and initmethods according to their preference. These
methods are then invoked interleaved with the distributed logic, allowing the user to use
the same code as locally. This means that the same function can be reused for all of the
operations from training to inference without the need to separate the inference logic, thus
satisfying FR5.

3.7.2. Detailed Component Interaction
As described in the previous section, we develop the KubeML module to accommodate the same
local code without any significant changes and make it scale to multiple GPUs or nodes in a com‐
pletely transparent way. In this section, we explain the basic inner‐workings of the library, and
how the data and iterations are handledwithout the user having to know about what is happening
under the hood.
Remember that all communication in both Fission and KubeML is handled through HTTP, this

makes it convenient to embed information in requests to define the behavior of the serverless
functions. This is how the component in charge of invoking the functions, the Train Job, trans‐
fers the parameters needed by the functions at the start of each epoch. We define a helper
class KubeArgs that parses the arguments encoded in the request URL, which are used by the
KubeModel to prepare the model and data at the start of the epoch.

KubeDataset. Acts as a wrapper that transparently handles loading the appropriate subsets of
data that will be needed to train the network before the next synchronization point. With Local
SGD, a function might need to synchronize periodically after k forward passes with the Train Job.
To save memory, the KubeDataset performs a lazy loading of the data. Rather than fetching
all the datapoints when instantiated, a KubeDataset object exposes two methods that given
the first and last dataset subset to load, performs a range query to the database, loads the data
and exposes it through the data and labels member variables. This operation is triggered by
the KubeModel, which calculates the needed subsets and indicates whether to load validation
or train data.

KubeModel. At creation time, the KubeModel receives three main parameters: the torch mod‐
ule representing the network, a KubeDataset object that will hold the data used for training,
and a flag of whether the training will use GPUs. After the components are initialized, the Kube-
Model exposes a start()method, which under the hood triggers the request arguments to be
parsed, and depending on the task flag in the request, it results in the execution of a given hook
provided by the user (Listing 1).
Each of the private methods executed as a result of the start()method act as wrappers to

the user hooks. The infer method parses the JSON attached to the request body holding the
new feature arrays into a numpy array and executes the forward pass of the network, returning
the predictions. The initmethod simply applies the user init hook to the model weights, before
⁹https://pypi.org/project/kubeml/

https://pypi.org/project/kubeml/
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publishing the model weights to the model storage. The behavior of the train and validate
methods is more complex, since it needs to handle all the logic from the Local SGD algorithm and
synchronization with the Train Job.

def start(self)
”””
Start executes the function invoked by the user
based on the request context flags
”””
# parse arguments and initialize network logger
self._read_args()
self._get_logger()

# depending on the task flag, execute one of the
# registered hooks by the user
if self.task ^= ”init”:

layers = self.^_initialize()
return jsonify(layers), 200

elif self.task ^= ”train”:
loss = self.^_train()
return jsonify(loss=loss), 200

elif self.task ^= ”val”:
acc, loss, length = self.^_validate()
return jsonify(loss=loss, accuracy=acc, length=length), 200

elif self.task ^= ”infer”:
preds = self.^_infer()
return jsonify(predictions=preds), 200

else:
self._redis_client.close()
raise KubeMLException(f”Task {self.task} not recognized”, 400)

Listing 1: Underlying code of the KubeModel to trigger the multiple actions.

Taking thetrainmethod as an example, theKubeModel first calculates the ids of the subsets
that the network will train on before the next synchronization step. This is easily calculated using
the total number of functions or parallelism N and the function id fid ∈ {0, 1,… ,N ‐ 1}. Once the
assigned subsets are defined, the function needs to know how many subsets it should train on
before the next synchronization step, to minimize memory usage by only loading those. This is
easily calculated since the k parameter and the batch size (B) are passed in the URL arguments
following Equation (3.2).

Nsubsets = ⌈
B × k
S ⌉ (3.2)

Where S represents the subset size in the storage, or how many datapoints are stored in each
document in the database. This amount is set to 64 by default, to try to balance the number of
requests needed to load data but also limit the size of each document in the database.
With the number of subsets per iteration and the interval of subsets assigned to each function,

the network proceeds to the training stage. At the start of each iteration, the KubeModel loads
the appropriate subsets into the KubeDataset and the latest model weights from the model
storage. Then trains the model iteratively using the user‐provided hook until reaching the next
synchronization point. At this stage, it saves the model to storage and requests the Train Job to
average the models and publish the new reference model. In the meantime, the model keeps
track of the intermediate metrics of the training, and aggregates them and returns them after an
entire epoch is complete. A simplified version of the code for Local SGD training is shown in
Listing 2.
These abstractions allow users to use the same code that they would use to train the network

locally while transparently distributing the training of the network across any number of CPUs,
GPUs, nodes, or both. In the following sections, we will provide examples of how simple it is to



36 3. Design of KubeML

for i in intervals:

# load the appropriate data batches from the dataset storage
self._dataset._load_train_data(i)
loader = DataLoader(self._dataset, batch_size=self.batch_size)

# load the reference model and reset
# optimizer state
self._on_iteration_start()

for idx, batch in enumerate(loader):
# send the batch to the appropriate device, preventing the user
# from having to know which physical device the model is running on
batch = self._batch_to_device(batch)

# call the train hook defined by the user with the batch already
# moved to the GPU or CPU, based on the network location
loss += self.train(batch, idx)

# publish the local model to be averaged
self._on_iteration_end()

# in intermediate sync points, request average to
# the train job
if i ^= intervals[-1]:

self.^_send_finish_signal()

self._on_train_end()
return loss / num_iterations

Listing 2: Simplified code depicting the logic behind the train process.

write functions in KubeML, following one of the main benefits of serverless as is the convenience
that it provides to users compared to alternative paradigms.

3.7.3. Writing KubeML Functions
When wanting to transition to a distributed training job on Kubernetes, a user needs to write a
serverless function and embed their local code in it. The steps to be followed towrite a distributed
network are:

Define the Dataset object. The user must create a dataset object extending the KubeDataset
class, same as would be done with a traditional PyTorch dataset. There, the user defines the
name of the dataset as uploaded to the dataset storage and defines custom functionality like
dataset transformations. The dataset exposes the data and labelsmember variables with the
features and labels loaded from the dataset storage. An example of a Dataset object can be seen
in Listing 3.

Create the KubeModel. As with the dataset class, the user must extend the KubeModel class
and implement the network’s initialization, training and inference functionality. This is done as
shown in Listing 4. As can be seen in the example, the code used to define the training behavior
of the model is the same that could be used to train locally, which takes away the complication
of using alternate classes and algorithms to train distributedly.

Write the Main Function. After defining the dataset and model classes, the user must define
the mainmethod runwhen invoking the functions. An example of this is given in Listing 5. There,
a PyTorch model is created, alongside the dataset created in Listing 3. These are then fed to the
network defined in Listing 4, and the start method is invoked to start the training.
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class MnistDataset(KubeDataset):

def ^_init^_(self):
# Provide KubeML dataset name
super().^_init^_(”mnist”)
self.transf = transforms.Compose([

transforms.ToTensor(),
transforms.Normalize((0.1307,),

(0.3081,))
])

def ^_getitem^_(self, index):
x = self.data[index]
y = self.labels[index]

return self.transf(x), y.astype('int64')

def ^_len^_(self):
return len(self.data)

Listing 3: Python code to define a KubeDataset, which takes care of loading the appropriate data samples for each
iteration during the training and validation phase. The user can define custom transformations and return any number of
objects in the ___getitem___method, since passing the batch arguments to the desired backend (CPU or GPU) will be
transparently handled by KubeML.

class KubeLeNet(KubeModel):

def ^_init^_(self, network, dataset):
super().^_init^_(network, dataset, gpu=True)

def configure_optimizers(self):
sgd = SGD(self.parameters(),

lr=self.lr,
weight_decay=1e-4)

return sgd

def train(self, batch, batch_index):
x, y = batch
self.optimizer.zero_grad()

output = self(x)
loss = F.cross_entropy(output, y)
loss.backward()
self.optimizer.step()

return loss.item()

def validate(self, batch, batch_index):
x, y = batch

output = self(x)
_, predicted = torch.max(output.data, 1)
test_loss = F.cross_entropy(output, y).item()
correct = predicted.eq(y).sum().item()

accuracy = correct * 100 / self.batch_size
return accuracy, test_loss

Listing 4: Example definition of a KubeModel. Boilerplate code is avoided and users just need to define the forward pass.

3.8. Deploying Jobs to KubeML
Just like the process of writing the distributed functions, the process of deploying the functions
to the cluster should be as straightforward as possible. In the first place, we take advantage of
Kubernetes’ convenience and create Helm¹⁰ charts for KubeML. Helm is a package manager for

¹⁰https://helm.sh/

https://helm.sh/
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def main():
# create a PyTorch network and the dataset
lenet = LeNet()
dataset = MnistDataset()

# initialize the KubeModel and start
kubenet = KubeLeNet(lenet, dataset)
return kubenet.start()

Listing 5: Main method run by the serverless functions

Kubernetes, which allows deploying all of the components of a containerized application to a
Kubernetes cluster using a single command. This streamlines the installation of KubeML in both
cloud and local clusters, and satisfies NFR3, since KubeML can be deployed in any Kubernetes
cluster for testing.
As for deploying the functions written in the previous sections, we wanted to avoid having

to write YAML files as is common with other Kubernetes applications, as we saw in Section 2.4
with OpenFaaS. To solve this, we created the KubeML CLI. This command line interface allows
to deploy and start a training job with a couple of commands without the need of writing con‐
figuration files or any having to know low‐level implementation details about Kubernetes or the
system itself. With this, we also satisfy the requirement for straightforward deployment and in‐
teraction with serverless functions (NFR1), thus completing all of the requirements summarized
in Section 3.2.

3.8.1. The KubeML CLI
Like with other serverless systems, the KubeML CLI is the easiest way to create and manage
resources such as functions, datasets and train jobs. Additionally, KubeML also offers a Go API
with which users can interact, exposed by the controller both inside and outside the cluster.
The commands available are summarized in Figure 3.5. Tasks like uploading a function and

dataset are completely automated and can be performed with just a single command, as well as
starting a train task. Throughout this section, we will provide a brief guide of how a user can
utilize the CLI to quickly set up a new deep learning job without in‐depth knowledge of either
Kubernetes, Fission or KubeML’s implementation, following the serverless principle of simplicity.

3.8.2. Deploying Functions
Once the function code is written as explained in Section 3.7.3, users can deploy them to the
cluster with a single command by referencing the Python file. The CLI interacts with the Fission
components of the cluster to package the source code and create the needed HTTP triggers for
the function to be accessible. An example of deploying a function is given in Listing 6 By default,
the CLI will create a new code package using Fission’s storage API, so that the code can be loaded
at runtime by the fetcher.
KubeML by default creates two HTTP triggers to enable both training and inference. A GET

endpoint will be used when triggering the function’s init, train or validate methods, and
the POST endpoint will be used when uploading the new datapoints for the infer method.
Likewise, users can delete functionswith one command, whichwill clear all the created resources.

$ kubeml fn create ^-name lenet ^-code lenet.py

Listing 6: Command to deploy a function to a cluster

3.8.3. Uploading a Dataset
In the sameway that functions can be transparently uploaded, the CLI enables uploading datasets
to the cluster in a single command. The user needs to divide the dataset in features and labels
both for train and validation data, before using the dataset subcommand referencing the data
as shown in Listing 7. The data can be saved in common formats like .npy or .pkl.
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kubeml
function (Create/Delete functions)

create
delete
list

dataset (Create/ Delete datasets)
create
delete
list

history (Inspect histories of past jobs)
get
delete
list
prune

train (Create a train job)
infer (Send an inference job)
task (Inspect currently running tasks)

list
prune
stop

logs (Access logs of train jobs)

Figure 3.5: Commands and functionality available in the KubeML CLI

$ kubeml dataset create ^-name mnist
^-traindata x-train.npy
^-trainlabels y-train.npy
^-testdata x-test.npy
^-testlabels y-test.npy

Listing 7: Command to upload a dataset to KubeML

After the command is executed, the CLI performs a multipart upload, so bigger datasets can
also be handled efficiently. Internally in the cluster, the controller proxies the handling of the
dataset upload to the Storage Service, which divides the data in subsets so they can be easily
handled by the functions at train time.

3.8.4. Starting the Training Process
After the function has been deployed and the dataset uploaded as shown in the previous sections,
the training job can be started using the train command of the CLI as shown in Listing 8. The
train job is run asynchronously, the CLI returns the ID assigned to the train job, which will be used
to index the job during training and fetch the results once the job is finished.

$ kubeml train ^-function lenet
^-dataset mnist
^-batch-size 64
^-lr 0.01
^-epochs 10

Listing 8: Command to start a training job

Apart from these basic parameters, other extra options are provided to customize the training
process, which are shown in Table 3.2.
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Option Type Description
^-parallelism int Initial parallelism level
^-static bool Whether to keep parallelism fixed
^-validate-every int Period of validation
^-K int Define synchronization period
^-target-accuracy float Target Accuracy to be reached

Table 3.2: Options for the training job

3.8.5. Monitoring Function Performance
KubeML runs train jobs asynchronously since deep learning jobs can take hours to days to finish
for some more complex networks and datasets. Consequently, it must offer a way to follow the
progress of the job andmetrics such as loss and accuracy. Users can track which tasks are running
at a single point in time using the kubeml task list command. They can also interrupt a task
before it has finished using the kubeml task stop ^-id <id> command.
For a more detailed summary, however, KubeML utilized Prometheus and Grafana. As was

described when introducing the parameter server component in Section 3.4.3, train jobs period‐
ically communicate their statistics to the PS which exposes them using a Prometheus endpoint.
These metrics are gathered by the Prometheus server located in the Monitoring namespace,
and can be visualized with Grafana using a custom‐made dashboard.

3.8.6. Examining Function Results
Once the train job has finished, the results from the training job such as the job parameters and
the metrics gathered during training are stored in the job history and saved to storage. These
histories summing up the job behavior can be fetched with the help of the CLI to analyze the
results with the history command.

$ kubeml history get ^-id b71b1d11

Listing 9: Command to fetch a train history

An example of a train history saved to storage can be seen in Listing 10. There, the epoch‐by‐
epoch metrics of the network as well as the job parameters and options can be quickly analyzed.

3.9. Conclusion
In Chapter 2wewent through the basics of distributed deep learning and the serverless paradigm.
From there, and with the help of previous work on merging both of these technologies, we de‐
vised a series of objectives to be solved by KubeML, such as incorporating GPUs into the system,
implementing an efficient communication protocol, and allowing straightforward creation and
deployment of deep learning tasks.
In this chapter, we have presented KubeML, which tries to solve all of the issues present in

previous work and highlighted by the authors. KubeML builds on top of Fission, an open‐source
serverless platform focused on extensibility and performance, which itself runs atop Kubernetes.
Serverless functions run in the form of Kubernetes Pods holding Docker containers. This allows
to create a custom container image with dependencies for running PyTorch applications and ex‐
ploit GPUs. KubeML uses Nvidia Docker to expose GPU resources of cluster nodes so that the
serverless pods can take advantage of these resources. On top of that, following the approach of
previous work [45, 65], we allow multiple pods to use the same GPU, with the aim of improving
utilization and efficiency.
To solve the communication overhead problem, we opt for an algorithm which lets us adjust

the communication period such as Local SGD. The Train Job component is in charge of invoking,
synchronizing, and publishing the functions and its results. Functions run for an entire epoch in
each invocation, possibly synchronizing at multiple intermediate points to average their partial
models, specified by the k parameter.
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Lastly, we develop the KubeML library in Python, as well as the KubeML CLI to ease the
process of developing and deploying functions to the cluster. Users can plug in their PyTorch code
used to train locally and, with minor adjustments, convert it into a distributed training program,
able to scale to multiple GPUs, nodes, or both transparently without configuring extra daemons
or parameters. Once the function code is ready, users can create serverless functions and upload
datasets with a single command using the CLI. Finally, starting the training can be done with a
single command, and parameters such as parallelism and autoscaling can be configured at deploy
time.

{
”id”: ”b71b1d11”,
”task”: {

”model_type”: ”lenet”,
”batch_size”: 128,
”epochs”: 5,
”dataset”: ”mnist”,
”lr”: 0.01,
”function_name”: ”lenet”,
”options”: {
”default_parallelism”: 5,
”static_parallelism”: true,
”validate_every”: 0,
”k”: 10,
”goal_accuracy”: 90

}
},
”data”: {

”validation_loss”: [
0.2873407344818115

],
”accuracy”: [
91.4

],
”train_loss”: [
3.2260020107030867,
1.1191881984472274,
0.6412935853004456,
0.533321401849389,
0.43479404859244825

],
”parallelism”: [
5,
5,
5,
5,
5

],
”epoch_duration”: [
5.311429519,
2.815807104,
2.785033174,
3.161798912,
2.781011169

]
}

}

Listing 10: Example of a train history





4
Experiments

In this section, we evaluate the performance of KubeML training on different environments and
models. Our evaluation focuses on threemain aspects: performance, efficiency and convenience.
First, we test the performance during training tasks against TensorFlow using smal, medium and
big networks on a variety of datasets. With these experiments we intend to study the viability
of using Local SGD to train networks of different parameter sizes, and whether the increased
parallelism of the training process can have a degrading effect on the convergence of the network.
We also evaluate the efficiency reached by KubeML in comparison to TensorFlow by analyzing
the usage of resources of both systems. Lastly, we demonstrate the superior convenience of
KubeML by showing how the same code can be reused with minimal changes to migrate the
training settings from single to multiple machines with GPUs or CPUs.

4.1. Experimental Setup
Platform For our multi‐GPU server, we use a machine configuration with 2 NVIDIA RTX 2080
Ti and two 32‐core AMD EPYC2 CPUs with SMT‐2 enabled (128 hardware threads in total). As
a system baseline, we compare the performance of KubeML against TensorFlow. We use the
version 2.2 of TensorFlow and in all experiments use the MirroredStrategy to distribute the
training load between both GPUs. The MirroredStrategy is an implementation of Data Par‐
allel synchronous training, where the global batch is divided among the GPUs, which synchronize
after each forward pass to keep a common view of parameters.

Network Num. Parameters Dataset
LeNet5 44K MNIST
ResNet34 21M CIFAR10
VGG16 134M CIFAR10
ResNet32 0.46M CIFAR10

Table 4.1: Networks and Datasets Used in the Evaluation

Models & Datasets Throughout the experiments we use several networks representing com‐
mon baselines and a variety of network sizes and architectures. A summary of the models, their
size and related datasets used can be found in Table 4.1. We use the LeNet5 [37] as an example
of a small network and train it using the MNIST dataset for written character recognition. The
MNIST dataset holds 60K train and 10K test images of hand‐written numerical characters in black
and white, each image of dimensions 28x28.
To test KubeML’s performance on bigger and deeper networks, we use the Resnet34¹ network

proposed in [21]. This network, with its more than 20 million parameters, should portray better

¹We use the torchvision.models implementation in PyTorch and the one in https://github.com/raghakot/
keras-resnet for TensorFlow.

43

https://github.com/raghakot/keras-resnet
https://github.com/raghakot/keras-resnet
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Figure 4.1: TensorFlow convergence over time

the benefits of the Local SGD algorithm to reduce communication overhead as a result of less
frequent synchronizations. Alongside the ResNet34, we use the CIFAR10 dataset [35], consisting
of 50K train and 10K test images with 10 classes. Each image has 3 color channels and a size of
32x32.
Finally, to explore the performance on very big networks we use the VGG16² network first

described in [62]. With 134million parameters, this network will show howwell Local SGD scales
with the number of parameters in terms of communication overhead and accuracy. We also use
the CIFAR10 dataset in this case.
Additionally to the experiments comparing KubeML’s performance against TensorFlow, we

also train the ResNet32³ network [21] to assess the performance of KubeML on longer training
tasks and the effect of the parameter k on the convergence and the final results achieved.

Network Optimizer Momentum Learning Rate Weight Decay
LeNet5 SGD 0.9 0.01 1e‐4
ResNet34 SGD 0.9 0.1 1e‐4
VGG16 SGD 0.9 0.01 5e‐4
ResNet32 SGD ‐ 0.1* 1e‐4

Table 4.2: Networks and Datasets Used in the Evaluation
*The starting LR is 0.1 but we use a Learning Rate Scheduler as in the original paper [21].

Hyperparameters For the comparison with TensorFlow, we want to maintain the configuration
as straightforward as possible to avoid differences in implementation between classes in both
deep learning frameworks, PyTorch, used in KubeML, and TensorFlow. To assure this, we perform
only basic data transformation operations on both systems, such as feature‐wise standardization
of samples, and keep hyperparameters fixed during training. All our comparisons will be based
on the per‐worker or local batch (b) for fairness, since KubeML and TensorFlow declare the batch
size in different ways.
In TensorFlow, withmultiple devices, the provided batch size is interpreted as the global batch.

Hence, a batch of 64 using two GPUs will result in each GPU training on 32 datapoints at a time
in between synchronization points. In contrast, in KubeML the specified batch size will be used
as the local batch, so a batch of 64 means that each worker trains locally on 64 datapoints at a
time.
When training the LeNet or VGG16, the learning rate is fixed at 0.01, while for the ResNet34

we fix it at 0.1 and vary the weight decay according to literature. For the training algorithm, we
use SGD. An overview of the parameters used can be seen in Table 4.2.

²For the PyTorch implementation, we also use themodel in torchvision.models but changing the last layer to produce
10 outputs rather than 1000. For TensorFlow we follow the description of the paper and make sure both have the exact
same number of parameters.
³The implementation used is available at https://github.com/akamaster/pytorch_resnet_cifar10

https://github.com/akamaster/pytorch_resnet_cifar10
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Figure 4.2: Training Performance Comparison of LeNet

Metrics In our comparison against TensorFlow, our main metric is Time‐To‐Accuracy (TTA), de‐
fined as the time it takes for the validation accuracy to reach a certain amount. To settle on the
target accuracy that will serve as objective for the comparison, we train all the networks used as
comparison on Tensorflow until consistently reaching a plateau in terms of validation accuracy.
We show these results in Figure 4.1, with the baselines for each network being: 99% for LeNet,
70% for the ResNet34 and 80% for VGG16. We also compare both systems by the final train and
validation loss reached during training. In terms of efficiency, we record the average usage of
GPUs for both systems, and analyze the ability KubeML to extract extra performance from GPU
resources by multiplexing tasks on GPU.

4.2. Comparison with TensorFlow
Small Networks In Figure 4.2 we compare the results obtained when training on the LeNet, all
batches reported correspond to the local batch size of each worker. For KubeML, we provide the
best results achieved with the best parameter combination in terms of parallelism and k.
As a first particularity of the results, all of the optimal parameter combinations for KubeML

use a k = ∞, meaning that functions train locally for the entire duration of an epoch and only
synchronize once before continuing the training process. As can be seen in Figure 4.2a, the per‐
formance improvement has a tight relationship with the batch size. With bigger local batch sizes
TensorFlow performs better than KubeML in terms of TTA. With smaller batches however, we
see that KubeML outperforms TensorFlow and is 1.41x faster with a batch of 32, and 2.75x faster
to the target accuracy with a local batch of 16. In these two cases, the best result is achieved
with a parallelism of 8, that is, 4 models per GPU, showing that Local SGD is able to converge
faster and without a loss in accuracy even with multiple workers scheduled per GPU.
Another relevant insight is the relationship between the train and the validation loss sum‐

marized in Figures 4.2b and 4.2c. We can see that even though KubeML consistently performs
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Figure 4.3: Training Performance Comparison of ResNet34

worse that TensorFlow in terms of train loss, it often results in a lower validation loss. This finding
could corroborate the findings of [41], where the authors discuss that the local updates of Local
SGD inject noise to the training dynamics, resulting in a convergence to flatter minima than tradi‐
tional SGD. These flat minima are characterized by a better generalization than the sharp minima
reached with other methods [30]. We will explore this in more detail in the following section.

MediumNetworks The benefits of using Local SGD should be accentuatedwhen training bigger
networks whose communication step takes a considerable amount of timewhen compared to the
computing step, and this is the exact trend observed using the ResNet34 as shown in Figure 4.3.
With regards to the TTA, KubeML is consistently equal or better performing than TensorFlow, with
the same improvement we sawwith the LeNet taking place with small batches. With a local batch
of 32, KubeML is 3.98x faster to 70% (Figure 4.3a). Additionally, if we take into consideration only
the best results from each system (b = 128 for KubeML and b = 256 for TensorFlow), KubeML is
still 2.02x faster to the target accuracy.
Analyzing the losses of Figures 4.3b and 4.3cwe reach the same conclusion as before. KubeML

overfits less and generalizes better than TensorFlow, which translates into lower validation loss
despite bigger train loss.

Big Networks The weakest point of KubeML and other serverless systems is the communi‐
cation overhead and latency. In these experiments, TensorFlow uses the MirroredStrategy
to exchange model gradients. This makes communication between GPUs very fast since it uses
NCCL to optimize throughput by using PCIe lanes to efficiently send the parameters. This perfor‐
mance advantage really shows when training on an extremely big network such as the VGG16.
Unlike the ResNet, the VGG uses more fully connected layers, translating into a higher param‐
eter count. The first fully connected layer alone has over 102M parameters, which means that
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Figure 4.4: Training Performance Comparison of VGG16

sending it implies sending more than 400MB of data for that layer alone.
We show the results of training the VGG16 network in Figure 4.4. Unlike with the other net‐

work sizes, we observe that KubeML is not able to exploit Local SGD in this problem to accelerate
convergence. In fact, as we can see in Figure 4.4a, KubeML is not able to reach the baseline ac‐
curacy of 80% objective described in Figure 4.1c, so we lower the objective to 77% accuracy.
Despite this, we see that TensorFlow is able to achieve the target accuracy faster on average
than the best configuration of KubeML.
Looking at Figure 4.4b we see that despite the synchronization steps being lengthier, at al‐

most 3 seconds to synchronize all the layers, KubeML is 1.5x to 2.7x faster to finish 40 epochs,
however with such a sparse averaging strategy, the network does not converge as well as seen
with previous networks, as we can appreciate in Figures 4.4c and 4.4d. KubeML with the faster
spec of k = ∞ reports a higher train loss, but is not able to generalize better as indicated by a
higher validation loss. We will analyze the results with the VGG16 network further in Section 4.3
to dig deeper in the behavior with bigger networks.

4.3. Speedup Analysis of Hyperparameters
KubeML uses two main hyperparameters apart from the traditional deep learning ones, paral‐
lelism and k. Parallelism sets the number of workers that will receive part of the dataset and
train a replica of the network in parallel, be it in the same GPU as other workers or in different
GPUs across multiple servers. On the other side, k defines the synchronization interval between
functions, sync‐SGD would be equivalent to running Local SGD with k = 1. In this section we an‐
alyze the impact of these hyperparameters on the performance regarding the time and accuracy
achieved at the end of training. We focus on two networks in particular, the ResNet34 and the
VGG16, since the LeNet behaves similarly to the ResNet34 as was seen in the previous section.
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Figure 4.5: Influence of the communication delay K and the parallelism on the resulting time and accuracy. In our ex‐
periments, KubeML scales well with the number of workers both in terms of time (showing close to linear speedup) and
accuracy. This experiment uses ResNet34.

ResNet34
The influence of the hyperparameters for the ResNet34 model is depicted in Figure 4.5. In Fig‐
ures 4.5a and 4.5b we can see that both the parallelism and the k can provide near‐linear speedup
in training tasks when increased, with smaller batches obviously benefiting more from the in‐
creased parallelism or synchronization period. With bigger parallelism and k KubeML allows for
small‐batch training, usually preferred for statistical efficiency, while still maintaining the speed
improvements of training with larger batches.
However, a distributed training algorithm’s performance should not be measured solely based

on the speedup resulting from additional workers or sparser synchronization. Speedup without
good convergence properties is often not enough to effectively train neural networks in a dis‐
tributed setting, this is a drawback which affects async‐SGD and its variants [69].
KubeML and its Local SGD algorithm take advantage of the sparse communication and ex‐

tra workers also in the convergence aspect. As shown in Figure 4.5c, for the same global batch
(resulting from multiplying the number of workers time the local batch b), adding extra workers
does not seriously degrade the final accuracy reached within a certain number of epochs, and
often results in a better generalization. Moreover, in our experiments, a bigger k consistently
yields similar or better generalization than more frequent synchronization, as described by Fig‐
ure 4.5d. This effectively means that KubeML is able to scale out and reduce communication
while maintaining the same level of performance as synchronous SGD variants.
In the previous section, we saw that one of the most surprising benefits of using KubeML and

Local SGD is the superior generalization performance of the models. KubeML is able to achieve
a better validation performance with a sometimes considerably higher train error. Moreover, all
of the best results achieved with KubeML and shown in Figures 4.2 and 4.3 where achieved with
sparse averaging or k = ∞. We study this phenomenon in more detail in Figure 4.6.
Looking at Figures 4.6a and 4.6b we can see that generally, with higher parallelism the train
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(a) Train Loss varying parallelism, k is fixed at∞.
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(b) Validation Loss varying parallelism, k is fixed at∞.
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(c) Train Loss varying k, parallelism is fixed to 4.
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(d) Validation Loss varying k, parallelism is fixed to 4.

Figure 4.6: Progress of the train and validation loss with different levels of parallelism and k. Parallelism does not have
a strong effect on generalization, however a larger k prevents overfitting by the network. These plots use the ResNet34
with b = 128

loss tends to be worse than with smaller parallelism. With a higher degree of parallelism, there
are more functions that explore their own area of the loss space, leading to a higher inconsistency
in model updates. However, despite reporting higher train loss, the validation loss is the same for
all parallelisms, with negligible differences.
We observe a more drastic difference when analyzing the influence of k on the model gen‐

eralization. In Figure 4.6c we can see that as the value of k increases, the train loss does too.
However, in Figure 4.6d we see the superior generalization performance of sparse averaging.
Smaller values of k, after a certain point, start increasing in validation loss, or overfitting to the
training data, and the effect is also inversely proportional to the value of k. In fact, sparse aver‐
aging is the only setting in which the loss never increases, and overall ends up being the lowest
loss overall.
In general, these results confirm that KubeML can exploit speedup both in terms of adding

additional workers and reducing communication frequency without degrading performance, and
even improving generalization as a result.

VGG16
With a considerably higher parameter count, we saw that the VGG16, unlike other networks, was
not easily trained using Local SGD to reach better results than with TensorFlow. With the VGG,
communication overhead is higher than the ResNet34, and plays a bigger part in the total runtime.
We can see that looking at Figure 4.7a. Doubling the number of workers no longer represents as
big of an improvement as with the ResNet, but diminishing the synchronization steps provides an
even bigger speedup as shown by Figure 4.7b, since communication is the main bottleneck with
a network as big as the VGG16.
Also in contrast with the other tested networks, the VGG16 is the only network in which a

smaller communication period actually translates into a higher final accuracy, as shown in Fig‐
ure 4.7c, where averaging every 32 iterations consistently ends up providing a higher accuracy
than once per epoch. We cannot clearly state that the increase in parameters is the root cause
of the generalization gap. Previous work has been done trying to understand the generalization
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Figure 4.7: Influence of the communication delay K and the parallelism on the resulting time and accuracy using the
VGG16 network. Unlike with other networks, the VGG no longer benefits with sparse averaging and reports better
accuracy with more frequent synchronization. With the VGG16 being a much bigger network, increasing communication
frequency greatly affects the time to finish the 40 epochs as shown in (b).
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(b) Validation Loss varying parallelism, k is fixed at∞.
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(d) Validation Loss varying k, parallelism is fixed to 4.

Figure 4.8: Progress of the train and validation loss with different levels of parallelism and k using the VGG16 network
and b = 128. Parallelism or k do not have a strong effect on generalization, but in this case k = ∞ no longer behaves best
and overfits

behavior and its relationship with the number of parameters in neural networks [76, 47, 48], find‐
ing no clear relationship that guarantees a more complex model to overfit more to the data. Also,
some generalization analysis of Local SGD [41] shows the superior generalization on a variety of
tasks, but the authors do not use models as big as the VGG16.
Looking at the lines showing the progression of the loss in Figure 4.8, we can observe a cou‐

ple of differences compared to the other networks. As seen in Figures 4.8a and 4.8b, bigger
parallelism ends up resulting in the same train loss, but generally results in a better validation
loss. Nonetheless, both of the configurations cause the validation loss to increase at the end of
training, a behavior that we did not see with the other models.
We see a similar behavior when analyzing the performance with varying k in Figures 4.8c and

4.8d. Unlike with other networks, we see that the best validation error is achieved by the more
frequent communication, as was already shown by Figure 4.7. Moreover, we stop seeing the
property of sparse averaging which made the validation loss not increase unlike more frequent
synchronization, since both show an increase in validation error at the end of the training process.
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4.4. Training Resnet32
To assess performance on longer optimization tasks we use a common benchmark using the
ResNet32 network on the CIFAR10 dataset. We use a weight decay of 1e‐4 and a local batch
of 32 with 4 workers, which translates to the usual global batch of 128 used when training the
ResNet32 on the CIFAR10 dataset. We apply the usual transformations to CIFAR10 introduced
in [21], during training, which include random cropping with padding and random horizontal flips
to the data, before standardizing each of the image channels. It should be noted that adding these
transformations to the KubeDataset class is trivial, since it is fully interoperable with PyTorch
transformations, and allows to set up different transformations during training abd validation. As
for the learning rate, we apply the common scheduling practices, we start with a learning rate
of 0.1, divide it by 10 at epoch 100 and epoch 150, and finish training at 200 epochs. For this
experiment we use SGD without momentum.
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Figure 4.9: Performance on ResNet32 when varying k, the number of forward passes between synchronizations

The results can be seen in Figure 4.9, where we plot the convergence against the time with
different values of the synchronization period k. As was discussed in previous sections with small
and medium networks, we again see the pattern of better results being obtained when synchro‐
nizing once per epoch (k = ∞), which not only accelerates convergence but also makes it more
stable with fewer oscillations of the accuracy value, and a higher final accuracy of roughly 90%.
More frequent synchronization results in a noisier convergence and a lower final accuracy.
These results are in line with best results in literature obtained training the ResNet32 on

CIFAR10 with standard SGD, and are also in line with the results we obtained performing the
training in a single device and thread, at around 89% accuracy. KubeML does not reach state‐
of‐the‐art performance as listed in the original paper [21], since distributed training has to deal
with some issues when using momentum and other stateful optimizers, which have been shown
to not only accelerate convergence, but render a higher accuracy than standard SGD [73]. We
discuss these issues in the coming section.

4.5. The Issue with Optimizer State
In these experiments with ResNet32 we use SGD without momentum, despite common practice
when training on a single machine including a momentum value of 0.9. This is due to a common
problem when training in a distributed environment using stateful optimizers. Unlike traditional
SGD, which simply performs a step towards the direction of the negative gradient based on the
statistics of a single iteration, other optimizers have their own state, which holds statistics of
updates in previous iterations with the aim of accelerating the convergence. This is the case of
more complex optimizers such as Adam [33] and its variants, but also SGD with momentum.
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Figure 4.10: Effect of Momentum when Training with SGD, In our case, when using momentum, we opt for the simpler
approach of resetting the optimizer state after each model loading step.

With the optimizer having its own state to help convergence, training in a distributed setting
has to take care not only of the model weights being carried to be updated and used in the next
iteration, but also the optimizer state should be carried to mimic local training. The problem of
optimizer state has been studied previously and some solutions have been proposed, such as
using block momentum [9, 68] which divides momentum in a global part and a local part that is
reset at the start of each iteration. An alternative solution involves averaging the optimizer state
in conjunction with the model weight [73].
None of these solutions were, however, studied in a serverless setting. With function con‐

tainers or VMs not guaranteed to be the same as used in previous epochs, carrying a global
momentum and saving the current state for the next iteration proves difficult to manage.
The simplest approach of resetting the optimizer state, or saving the previous state suffer

from similar issues. Being at a different point in the loss space after model averaging, it often
leads to taking steps in a suboptimal direction. We see this in Figure 4.10. Far from improving
convergence, using momentum results in noisier updates after merging the models and a much
lower final accuracy, which makes stateful optimizers not advantageous in general without extra
optimizations in serverless environments.

4.6. Resource Utilization
Another important factor when training neural networks on GPUs is the utilization of resources.
GPUs are expensive resources, and fitting one model per GPU often results in poor utilization,
leading to a waste of both hardware and economic resources [34]. KubeML makes multiple func‐
tions share the same GPU by means of the parallelism setting to improve resource usage.
We evaluate how KubeML affects the usage of resources for the networks used in previous

sections. The results are plotted in Figure 4.11.
As can be seen, with more workers per GPU, the performance increases for LeNet, especially

with smaller batches (Figure 4.11a). This could be due to being easier interleaving small tasks on
theGPU, reaching 6x better utilization than TensorFlow. With bigger networks however, although
observing that same improvement with small batches, KubeML stays on the same utilization level
as TensorFlow (Figures 4.11b and 4.11c). A cause for this could be the added communication time
resulting from a bigger model counteracting the throughput gains with more workers, since the
addition of extra workers also adds extra communication overhead [64] (the sync time for LeNet
is less than 10ms, while for the ResNet34 and VGG16 it takes in the order of a few seconds).
We investigate this issue further in Figure 4.12, where we plot the GPU usage as a function

of time, to see more clearly the evolution of GPU usage as well as its variability during the com‐
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Figure 4.11: GPU utilization comparison between TensorFlow and KubeML with different number of workers
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(a) GPU usage of LeNet using local batch b = 16
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(b) GPU usage of ResNet34 when using local batch b = 64
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(c) GPU usage of VGG16 when using local batch b = 64

Figure 4.12: GPU utilization comparison between TensorFlow and KubeML with different number of workers. In both
cases k is fixed at∞
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munication periods of the functions. Figure 4.12a confirms that KubeML is able to consistently
maintain a higher utilization of resources with small networks such as the LeNet. GPU utilization
scales linearly with the number of workers, doubling from the two models used by TensorFlow
to KubeML with p = 4, and close to doubles again with p = 8. With small number of parameters,
communication finishes in matter of milliseconds and does not affect the mean utilization.
In Figure 4.12b we can see why in Figure 4.11b the GPU utilization stops improving with

more workers. Despite KubeML reaching almost 100% utilization of resources with P = 8, the
communication cost with extra workers and the sheer size of the network parameters make the
synchronization counteract the increase in utilization during the computation phase. TensorFlow,
usingNCCLAllReduce to synchronizemodels in the same device, is able to scale betterwith larger
models than the parameter server used in KubeML. Still, this should be tested again with multiple
nodes in the cluster, and TensorFlow having to employ a different algorithm to Ring AllReduce,
as the results could be more similar in terms of communication cost.
Lastly, we see a similar behavior with the VGG16 model in Figure 4.12c. KubeML is able

to achieve a greater maximum utilization of the GPUs compared to TensorFlow, but due to the
increased communication overhead, the average utilization remains the same or lower. In the
case of VGG16, we can see that also TensoFlow’s synchronization steps temporarily reduce the
utilization of the GPUs, however the parameter exchange is much faster than in KubeML.

4.7. Multi‐Node Training
To show the convenience of KubeML, we deploy it on a 6‐node Kubernetes cluster running on
Google Cloud Platform (GCP) and train the LeNet for 30 epochs with the same hyperparameters
as before. Each node has 8 vCPUs and 8GBmemory, andwe limit each function to use 1.5 vCPUs.
We highlight that the code is the same as was used before, just setting gpu=False in Listing 4,
and the same code can be used to train on any number of workers, which will be transparently
divided among nodes.
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Figure 4.13: Results after training on a multi‐node cluster

We show the results in Figure 4.13, where we see that the network is able to be trained
effectivelywithmultipleworkers, with limited loss in accuracy (4.13b). In Figure 4.13awe see that
from 4 to 8 workers we see linear scaling, but with more workers the results start to get worse.
Since we used a small network, there is this tipping point at which stragglers start to become
more prevalent and the increasing communication cost starts to dominate the total runtime [64].

4.8. Cost Comparison
Apart from performance, another key aspect that KubeML should cover compared to traditional
serverless platforms is deployment cost. In this section we compare the monetary cost of run‐
ning a serverless application to train a neural network on KubeML and AWS Lambda using two
theoretical scenarios. We analyze two different settings with two different training tasks varying
in network complexity and communication cost. As in previous sections, we use the LeNet5 to
analyze performance on small networks, and the ResNet34 and VGG16 to analyze performance
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on bigger networks, whose computational cost should mark the difference between training on
CPUs and GPUs.
In our experiments, we used GCP to deploy a Kubernetes cluster and train the networks using

CPU nodes, while we used an on‐premises server to run the GPU workloads. To compare the
pricing in a fair way, we need to translate these testbeds into equivalent cloud resources. In our
CPU experiments, we limited each of the running pods to use 1.5 vCPUs, which, with lambda
functions receiving between 1 and 2 vCPUs up until 3GB of memory⁴, we consider adequate to
translate the performance obtained in the GCP CPU experiments to AWS Lambda in terms of
runtime. To choose the size of lambda to be used, which also affects the final price, we observe
that functions during training use around 1GB and 2.5GB memory each when training the LeNet
and ResNet/VGG16 respectively, so we settle for functions with 1.5GB and 3GB memory each.
For the KubeML configuration, we analyze the CPU usage while running the chosen task, and

obtain an average CPU usage of 8% CPU for the LeNet and 15% for the ResNet, and memory
usage of 10% for both. That translates to an equivalent 5 and 10 CPU cores respectively and
13GB of memory during training. From among the suite of N1 instances in GCP, the only ones
suppoting GPUs, we opt for the n1-standard-8 with 8 vCPUs and 30GB of memory for the
LeNet and the n1-standard-16with 16 vCPUs and 60GB of memory for the ResNet and VGG.
To these instances we incorporate 2 NVIDIA K80 GPUs, which have the same amount of GPU
memory as our 2080 Ti’s and a slightly higher count of CUDA cores. A summary of the systems
used in this comparison are provided in each section.

4.8.1. Small Networks
We first analyze the theoretical results using a small network such as the LeNet. We use the re‐
sults of training the LeNet on the MNIST dataset for 30 epochs with both systems and compare
performance and cost. We choose results with a high parallelism to accelerate training on CPUs,
and use k = ∞ and batch size of 64 due to the good performance we’ve observed in other exper‐
iments of sparse averaging. As already mentioned, we use the n1-standard-8 with two Tesla
K80 GPUs as the KubeML testbed, and 8x 1.5GB lambdas as the AWS Lambda testbed.

Resource Cost KubeML AWS Lambda
Number of Resources 1 8
Price per invocation ‐ $2e‐7

Price per duration $0.38/h $2.5e‐6/s
GPU Price 2 × $0.45/h ‐
Additional Cost $0.1/h ‐
Runtime (s) 69.3 263.56
Total Cost (10‐3$) 26.76 5.27

Table 4.3: Final cost comparison after running 30 epochs training the LeNet on the MNIST dataset

The results of the experiments are summarized in Table 4.3. The lambda price is calculated
considering that we invoke a new function at the start of each epoch, amounting to 8×30 = 240
invocations and a runtime of 263.56 seconds, which is multiplied by the parallelism to obtain
the function runtime that will be charged to us: 8 × 263.56 = 2108.48 seconds. That equates
to a total of $0.00527 for the training. The invocation cost at this scale is almost negligible at
$0.000048.
In contrast, with KubeMLwe deploy a single instancewith twoNvidia Tesla K80s, and a cluster

hourly administrative cost of $0.1. The usage of GPUsmakes KubeML finish much faster than the
CPU lambdas, however with the LeNet being a lightweight network, the speedup does not fully
compensate for the increased cost of provisioning GPUs, and makes KubeML more expensive for
training small networks. It should be highlighted, that for communication to be as efficient in the
AWS Lambda system as in KubeML, we would need to provision also a high‐throughput storage
additionally to the functions, which would add to the overall cost of the lambda deployment.
⁴https://gist.github.com/saidsef/882647c6589e868b81f0cced4041b132

https://gist.github.com/saidsef/882647c6589e868b81f0cced4041b132
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4.8.2. Medium Networks
We now compare the performance of both alternatives using a considerably‐sized network such
as the ResNet34. This network has 477x more parameters than the LeNet, translating into a
higher computational cost. Hence, this could boost the benefit of using GPUs further than in
the previous experiment. The increase in network and dataset size makes us increase the cost of
both deployments. We now use an n1-standard-16 with twice the CPUs and memory of the
previous KubeML deployment, and switch to 3GB lambdas.
In both cases, we train the ResNet34 network on the CIFAR10 dataset for 40 epochs, using

again a parallelism of 8 and k = ∞, and this time with a batch size of 128.

Resource Cost KubeML AWS Lambda
Number of Resources 1 8
Price per invocation ‐ $2e‐7

Price per duration $0.76/h $5e‐6/s
GPU Price 2 × $0.45/h ‐
Additional Cost $0.1/h ‐
Runtime (s) 470.77 17,326
Total Cost ($) 0.23 0.69

Table 4.4: Final cost after training for 40 epochs the ResNet34 on the CIFAR10 dataset

The results of the experiments are summarized in Table 4.4. The lambda price is calculated
considering that we invoke a new function at the start of each epoch, amounting to 8×40 = 320
invocations and a runtime of 17,326 seconds, which is multiplied by the parallelism to obtain the
function runtime that will be charged to us: 8 × 17, 326 = 138, 611 seconds. That equates to a
total of $0.69 for the training. Again the invocation cost at this scale is negligible at just $0.00006.
As can be seen, with bigger networks, the use of GPUs makes KubeML finish much faster

than the CPU lambdas, which more than compensates for the increase in cost due to GPUs. In
the end, KubeML finishes 36x faster and costs 3x less than AWS Lambda.

4.8.3. Big Networks
Lastly, we compare the performance of both alternatives using a big network such as the VGG16.
Wemaintain the same configuration as with the ResNet34, using 3GB lambdas and the same n1-
standard-16 instance given the memory requirements of the network.
In both cases, we train the VGG16 network on the CIFAR10 dataset for 40 epochs, using

this time a parallelism of 4 and k = ∞, since the VGG uses approximately 4GB of GPU memory,
preventing us from fitting more models per GPU. We also use a batch size of 128.

Resource Cost KubeML AWS Lambda
Number of Resources 1 4
Price per invocation ‐ $2e‐7

Price per duration $0.76/h $5e‐6/s
GPU Price 2 × $0.45/h ‐
Additional Cost $0.1/h ‐
Runtime (s) 1035 38,409
Total Cost ($) 0.506 0.768

Table 4.5: Final cost after training for 40 epochs the ResNet34 on the CIFAR10 dataset

The results of the experiments are summarized in Table 4.5. The total invocations are now
4×40 = 160 and the runtime runtime of 38,409 seconds, which with 4 functions, translates into
4 × 38, 409 = 153, 636 total billable seconds. That equates to a total of $0.768 for the training.
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Similarly to the previous examples, the usage of GPUs in KubeML shows a great benefit in
terms of runtime, with a 37x faster completion of the training. In terms of cost, we also see a
reduction, though not as significant as with the ResNet given the reduced parallelism which cuts
the Lambda costs in half.

4.9. Conclusion
In this section we have analyzed the performance of KubeML on a wide variety of networks
of different sizes and depth. We benchmarked the performance both in terms of convergence
speed, final accuracy and resource utilization by comparing it with a state‐of‐the‐art deep learning
platform such as TensorFlow. Moreover, we analyze the cost of deploying KubeML in the cloud
and compare it with AWS Lambda by performing a theoretical analysis based on the performance
on GPU and CPU on different testbeds of all networks.
Overall, we see that KubeML clearly outperforms TensorFlow using small and medium sized

networks in terms of TTA, shining especially with small batches, where KubeML is able to im‐
prove runtime, generalization and resource usage. In contrast, TensorFlow performs better than
KubeML with huge networks such as the VGG16. Even though KubeML is able to reduce total
runtime using Local SGD, this does not translate into an increase in accuracy as seen with smaller
models. The cause of this decrease in performance is yet to be confirmed, since studies about the
generalization of Local SGD do not cover models as big as the VGG16. Moreover, KubeML’s lack
of low‐latency synchronization methods also causes GPU utilization to suffer with bigger mod‐
els, while TensorFlow is able to take advantage of NCCL and AllReduce to speed up parameter
exchanges, KubeML has to rely on slower transmission of data through the network due to the
restrictions of serverless architectures. We could see a decrease in communication efficiency in
TensorFlow when using multiple servers and having to send the parameters using a technique
different to NCCL, which could level the efficiency of both platforms.
Lastly, we compared the cost of running KubeML using a Kubernetes cluster running on a GPU

instance on Google Cloud Platform against running the samemodels on CPU using AWS Lambda.
In our theoretical calculations, we reach the conclusion that, despite using costly GPUs, a GPU
KubeML setup would still be better both from a cost and a runtime standpoint compared to CPU
Lambdas. For smaller network as the LeNet, CPU functions are still able of training the network
fast enough to justify the usage of Lambda as it is much cheaper than using a GPU instance.
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Discussion & Future Work

5.1. Discussion
In this work we have introduced KubeML as a possible alternative for democratizing distributed
deep learning by using a serverless architecture. We have adapted the design of KubeML to
the restrictions and requirements from the communication standpoint, and measured its perfor‐
mance against state‐of‐the‐art ML systems with good results. We are now ready to summarize
our conclusions with regards to the research questions introduced in Chapter 1:

(RQ1) How can we design a serverless system specialized for deep learning tasks?
We have introduced common deep learning practices in Section 2.2 and the downsides
of serverless platforms in Section 2.4. From our research we concluded that the key
properties of a serverless platform specialized for deep learning should be its ease of use,
performance and efficient communication model. With serverless restricting communi‐
cation between functions, we resorted to a well‐known and widely utilized paradigm for
distributed ML such as the parameter server architecture. Also learning from previous
work from Section 2.5, we opted for a hybrid storage approach, using a flexible but slower
storage for datasets, and a faster key‐value cache for communicating results between the
functions and the train jobs.

(RQ2) How can we take advantage of GPU resources in a serverless environment?
Previous work like [6] and [28] showed that the lack of GPU resources was a key obstacle
stopping a wider adoption of serverless in distributed deep learning. Studying the tradi‐
tional cloud provider options, we found that we would have to rely on providers enabling
this extension to additional hardware platforms, so instead we opted for open‐source
alternatives such as Kubernetes and Fission.
By default, Kubernetes assigns GPUs as exclusive resources, meaning that only one pod
can access the GPU at the same time. This limits the parallelism we can incorporate into
KubeML, andwas already studied in previouswork [65]. Tomake up for this, we configure
Nvidia Docker so that we can bypass the restrictive allocation and allow multiple pods
to run deep learning jobs concurrently. This results in a higher hardware efficiency as
shown in Section 4.6, since we can fit multiple smaller networks that alone would greatly
underutilize the GPUs, and extract extra performance from the same hardware.
The addition of GPUs and the ability of multiplexing multiple tasks per GPU allows us
to outperform state‐of‐the‐art systems like TensorFlow in terms of performance con‐
sistently, and report higher maximum utilization, although suffering to maintain it with
bigger networks.

59



60 5. Discussion & Future Work

(RQ3) How can we optimize communication to improve latency in a serverless environment?
A popular way of optimizing communication in distributed deep learning is the use of high
performance collective communication libraries like MPI [43] and algorithms like AllRe‐
duce. However, the restriction imposed by serverless does not allow us to communicate
between workers directly. Same goes for using GPU to GPU communication libraries
such as NCCL. At each epoch, the physical location of each of the function pods might
vary, so we cannot rely on static addressing of resources.
Using the parameter server architecture we overcome the communication problem. We
create a DNS entry for each train job and the RedisAI storage so the functions can com‐
municate with them without low‐level details. From among the multiple available algo‐
rithms, wewanted to focus on synchronous alternatives given the latest trend being using
synchronous approaches given their convergence benefits [69]. However, in serverless
when training on multiple nodes, sending the weights through the network at each iter‐
ation could hinder performance by adding considerable latency. To solve this, we relax
communication by using Local SGD, which trains for multiple iterations k before synchro‐
nizing model weights, as had already been seen in explained algorithms such as Down‐
pour SGD [11] and EASGD [78].
Later in our experiments in Section 4.3, we found out that against what could be ex‐
pected, a bigger synchronization period, far from worsening performance, is in many
cases beneficial, since it allows for a wider exploration by the workers and consistently
improves generalization.

(RQ4) How canweminimize configuration overhead and changes to local code to create deep
learning tasks?
We also wanted KubeML to incorporate the benefits of cloud provider serverless op‐
tions by allowing easy testing and transition into a highly distributed environment. Some
previous work had already focused on offering an amicable interface to write serverless
applications [7], so we wanted to go in that line by offering a familiar interface that re‐
quired minimal changes to the local code.
To address this we developed the KubeML Python module. Following the structure of
PyTorch classes, KubeML classes can fully interact with the interfaces that the users are
used to when creating deep learning jobs. Writing a distributed job no longer requires
configuring daemon processes in each of the servers as is the case in TensorFlow, or
writing lengthy YAML files that slow the deployment process as in tools like KubeFlow.
Users simply define hooks for the different operations done during training, and can reuse
the same code to create the KubeDataset and KubeModel classes.
In addition, the KubeML CLI further eases the deployment process by handling all the
complexities in a transparent way, and offering users to start their distributed jobs only
with a couple of intuitive commands.

(RQ5) How well does the proposed system perform when compared to state‐of‐the‐art dis‐
tributed deep learning systems?
In Chapter 4 we compared the performance of KubeML against a state‐of‐the‐art sys‐
tem like TensorFlow. In our experiments, we observe that KubeML is in most cases able
to beat TensorFlow in terms of Time‐to‐Accuracy (TTA) for small and medium networks,
seeing an even more pronounced gain when training with small batches. KubeML gen‐
eralizes better thanks to its Local SGD algorithm, and is able to better utilize resources
thanks to scheduling multiple jobs per GPU unlike its rival.
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5.2. FutureWork
In this work we were able to present a new approach to serverless deep learning, for the first
time incorporating techniques such as Local SGD and the usage of GPUs. However, throughout
this work we came across areas in which deeper research is needed in order to provide a more
well‐rounded and holistic solution for serverless deep learning.

1. Despite KubeML being able to incorporate GPUs into serverless, our solution at this point
does not provide clever scheduling of GPUs, let alone handlingmultiple jobs accessingGPUs
safely. As we have shown, an effective and fair scheduler for these cases is still an open
problem [65]. To implement a clever scheduler like this, we would need to build a custom
Kubernetes scheduler that created the serverless pods having GPUs and their resources
into account, as well as a custom version of the Fission Executor, which distributed the
requests equally between GPUs rather than randomly like it is done now.

2. Also in line with the previous point, KubeML does offer flexible scaling at runtime using
the Scheduler, however this also has to be done in a more intelligent way than the reactive
policy implemented currently. A new policy should monitor the resources available in real
time as done in [65], and scale up and down the tasks accordingly. Still, preventing crashes
from over‐allocation becomes increasingly difficult with more jobs running concurrently.

3. In terms of performance, we saw in Section 4.6 that once we train bigger networks with
more parameters, it is difficult to fully utilize the GPUs by multiplexing tasks since com‐
munication becomes so dominant that it makes the GPUs idle for long periods of time. To
fix this, we should investigate extra methods to make communication more efficient. From
the training algorithm point of view, methods like quantization or sparsification or weights
before transmission could help reduce the communication overhead [64]. We could also
try a new variation of Local SGD in which we give workers a little more leeway allowing a
certain degree of staleness. In the PS architecture, this is beneficial since we could avoid
the congestion from all workers communicating at the same time.

4. We would also like to increase the flexibility of both the Go and Python part of the libraries.
To enable experimentation with different optimization algorithms like proposed in point 3,
wemust make the API more flexible and allow common interfaces that make including extra
features easy without an in‐depth knowledge of the entire system. In the same line, the
Python library is mostly addressed towards a certain subset of metrics and tackling mostly
supervised learning problems, we should also offer solutions for a wider range of problems.

5. Lastly, wewould have liked to perform bigger experimentswith potentially tens or hundreds
of GPU nodes to truly analyze the scaling properties of KubeML and the PS architecture.
This could also help in coming up with new points that could be improved in future work.
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