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Abstract We investigate the task of detecting speakers in

crowded environments using a single body worn triaxial

accelerometer. Detection of such behaviour is very chal-

lenging to model as people’s body movements during

speech vary greatly. Similar to previous studies, by

assuming that body movements are indicative of speech,

we show experimentally, on a real-world dataset of 3 h

including 18 people, that transductive parameter transfer

learning (Zen et al. in Proceedings of the 16th international

conference on multimodal interaction. ACM, 2014) can

better model individual differences in speaking behaviour,

significantly improving on the state-of-the-art performance.

We also discuss the challenges introduced by the in-the-

wild nature of our dataset and experimentally show how

they affect detection performance. We strengthen the need

for an adaptive approach by comparing the speech detec-

tion problem to a more traditional activity (i.e. walking).

We provide an analysis of the transfer by considering

different source sets which provides a deeper investigation

of the nature of both speech and body movements, in the

context of transfer learning.

Keywords Social signal processing � Wearable sensors �
Social actions � Transfer learning � Human behaviour

1 Introduction

This research addresses the analysis of social behaviour in

crowded mingling events. Such events contain a large

number of people interacting with each other closely.

These scenarios are interesting since they are concentrated

moments for people to interact, make new contacts, renew

existing ones, or even influence each other.

In this paper, we focus on the detailed analysis of how to

automatically detect whether someone is speaking in these

dense crowded scenarios using just a single wearable tri-

axial accelerometer hung around the neck. Different chal-

lenges are introduced with the dense nature of such events,

like the high non-stationary background noise from the

audio and the heavy occlusion of people in the video. On

the other hand, wearable sensors such as accelerometers are

less affected by these challenges and their easy scalability

makes their use appealing for such scenarios. Moreover,

perceptions of privacy are often more sensitive to the

recording of audio during conversations, even if the signal

is immediately converted into privacy-sensitive features. In

this paper, we focus on the use of accelerometers that could

be embedded in a smart badge such as a conference badge

and hung around the neck.

The use of accelerometers to detect speaking status is

generally under-explored in the literature. However, lim-

ited amount of studies have shown that it is possible to

detect whether someone is speaking based on just a single

An extended abstract version of this paper is published in UBICOMP

2016 with the title of ‘‘Speaking Status Detection from Body

Movements Using Transductive Parameter Transfer’’ [9]. In addition

to preliminary results presented in the UBICOMP paper, current

paper presents an analysis of connection between speech and body

movements, provides comparisons with the state-of-the-art methods

and different implementations of TPT, analyses source quality in

transfer learning and presents an analysis of effects of gender in

transfer.
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worn accelerometer [12, 13] by exploiting findings in

behavioural psychology that speakers move (e.g. gesture)

during speech [23]. One of the biggest challenges, which

has not been addressed in the literature before, is

accounting for the huge variation in ways in which people

move while speaking. This person-specific connection

between movement and speech requires special approaches

for detection, since relying on a single unified model to

predict the speaking behaviour of everyone leads to large

estimation errors as the size of the test population increa-

ses. We have chosen speech as the focus of our study since

it is a vital unit of behaviour to analyse social behaviour

between people at the conversation level [32]. Some

examples of further higher level understanding that may

follow from speech detection are the evaluation of an

individual’s social activeness, detection of conversing

groups [12], dominance and group hierarchy [15, 21] and

cohesion [14]. In this paper, we propose to use transfer

learning to enable the adaptation of a learnt ensemble

model of speaking behaviour to a new unseen subject,

based only on unlabelled data. The proposed method,

transductive parameter transfer [35], has never been used

for this problem. With this method, we provide a solution

that can generalise over large populations without requiring

personal labelled data.

The key contributions of our work are: (1) we provide a

study of speech detection through accelerometers, in a real-

world event (a snapshot is shown in Fig. 1), with 18 par-

ticipants (three hours worth of data); to our knowledge, no

similar study at such scale exists; (2) we delve deep into the

connection between body movements and speech, showing

how this problem differs from the traditional action

recognition (e.g. walking) by providing results that com-

pares the person-dependent and person-independent mod-

els; (3) we propose a transfer learning approach, which can

generalise over large populations without requiring per-

sonal labelled data, overcoming the restrictions introduced

by the person-specific nature of speech; (4) we present a

detailed analysis of the parameter transfer that connects

detection performance to personality which provides

insight into the nature of both speech and transfer learning

in this context.

2 Related work

2.1 Action recognition with accelerometers

Most research that has involved the detection of behaviour

from worn accelerometers have tended to focus on the

detection of daily activities. In 2004, Bao and Intille used

five accelerometers worn on different body locations to

detect 20 different actions which include activities like

walking, sitting, running and vacuuming [2]. The data for

the experiment were collected in a laboratory environment

for 20 different participants. Statistical and spectral fea-

tures extracted from acceleration data were used, and dif-

ferent classifiers were compared for performance. Their

results shown that even without using person-specific data,

high recognition performance was possible for such

actions.

The following year, Ravi et al. [27] presented their work

that aims to detect similar eight daily activities with single

worn accelerometer only. The data collection was semi-

controlled where the ordering of the activities was random.

Their study showed that one accelerometer worn around

the thigh area was sufficient for detecting many actions.

With the rapid development of this domain, many different

feature extraction techniques and classifiers are considered

and compared with each other, providing a solid knowl-

edge base for the detection of such activities [26].

Another research area that benefits from the utilisation

of wearable sensors is health care, where people presented

their work on automatic fall detection [8, 36]. As expected,

also in these experiments, the data collection was carried

out in a controlled environment where participants imitate

falling. Both studies reported nearly perfect recognition

scores. We show later in Sect. 8 that there are significant

differences in the nature of the data collected in controlled

and acted settings compared to less controlled ecologically

valid ones. Moreover, since such high accuracy was

already obtained across a number of different participants,

we can conclude that the nature of these tasks is much less

sensitive to person-specific variations.

Unfortunately, none of these studies focuses on

addressing the challenges of real-life crowded environ-

ments or a social action-like speech.

2.2 Transfer learning for behaviour recognition

Transfer learning is also used in some studies that focus on

activity recognition for better performance but generallyFig. 1 A snapshot from the event
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the setup of the transfer differs from our work. In their

survey, Cook et al. [6] grouped existing transfer learning

studies with respect to the modalities used: video sequen-

ces [34], wearable [11, 37] and ambient sensors [16].

Some of these studies aim to transfer knowledge

between different data acquisition setups, like van Kasteren

et al. [16]. This study is somewhat close to ours, since they

used transfer learning to exploit existing labelled datasets

to learn the parameters of a model applied in a new home.

This was done to eliminate sensor placement and individ-

ual behaviour differences in each house. However, the

sensors utilised (ambient sensors such as pressure mats,

mercury contacts and passive infrared) and the detected

actions (daily activities such as going to bed, brushing

teeth, etc.) were entirely different than ours.

Another concept studied before is the transfer between

actions. For example, Hu et al. [11] proposed a method,

which focused on cross-domain activity recognition. They

transferred the information from an available labelled data

of a set of existing activities to a different yet still related

set of activities. This was done by learning a similarity

function between activities using web search where web

pages related to these activities are extracted and further

processed to obtain a similarity measure (maximum mean

discrepancy). Similar to the former study, this study also

presented its results on daily activities and used multimodal

data streams as input.

Perhaps the closest study to ours was published by Zhao

et al. [37]. In this study, the authors presented a transfer

learning-based personalised activity recognition method.

They used accelerometers embedded in mobile phones to

gather data from different people while performing daily

activities such as standing, walking, running and going

upstairs or downstairs. In their method, they integrated

decision trees (DT) and k-means clustering where decision

trees were used to learn optimal parameters for labelled

source data. Then, the DT model was transferred to a new

user by classification, and the initial parameters for k-

means were set with respect to it. Finally, non-terminal

nodes of the DT were adapted to the new user, resulting in

a personalised model. We discuss and experimentally show

in our paper that the mentioned activities are less affected

from interpersonal differences when compared to speech.

Also, this method could only utilise a single source set for

transfer while our approach can exploit multiple sources

simultaneously. However, this study shows that transfer

learning could be a good candidate for eliminating inter-

personal differences.

2.3 Social computing with wearables

There are some studies in the literature that focus on ana-

lysing social phenomena using wearable sensors but most

of them differ from ours in some aspects like the different

modalities used as input, analysis of less crowded scenarios

and lack of focus on fine timescale detection of social

actions such as speech.

2.3.1 Large scale long-term studies

One of the first studies that utilises a wearable sensor for

analysis of social phenomena was presented by Choudhury

and Pentland [5]. Authors presented an automated method

of analysing social network structures with the so-called

sociometer, a wearable multimodal sensor that has a

microphone, IR transceiver and two accelerometers. The

data collection was done in two stages. In the first stage,

eight subjects from the same research group wore the

sociometer during working hours for 10 days. The second

stage included 23 participants from four different study

groups wearing the badge for 11 days. In the study, audio

data are used to detect speaking status, and IR transceiver

data were utilised for detecting interactions but accelera-

tion information was not used. Using the frequency and

duration of interactions detected, a social network of par-

ticipants is formed. It is shown that by analysing this net-

work, higher level information about the group structures,

such as the centrality of a participant, can be obtained.

Olguin et al. [25] obtained high level descriptions of

human behaviour like physical and speech activity, face-to-

face interaction, proximity and social network attributes

using the sociometric badge mentioned earlier. With this

high level information, the authors classified the person-

ality traits of participants, with respect to the ‘‘Big Five’’

model. The dataset included 67 participants and was col-

lected for 27 days. Microphones and accelerometers were

used to measure speech and physical activity, respectively.

Although the study presented an excellent analysis of

social phenomena throughout time, it did not focus on fine

time-grained detection of any action and aims to provide a

higher level overview of social phenomena.

In a similar study conducted by Wyatt [33], social ties

and collective behaviour of groups were investigated using

a multimodal sensing device with eight different modali-

ties. Conversational characteristics of 24 people were

analysed over 6 months. Similar to the former study,

speech detection was applied to microphone data. Since

social phenomena in a longer period of time is analysed in

these studies, we expect the speech detection results to be

quite rough. We believe participants current environment

will greatly affect the actual detection performance. Such

results are satisfactory for obtaining general statistics

throughout time but if a fine-grained analysis of speech and

interaction is required, an approach that can provide more

robust detection results of a fine scale is needed (e.g. over

just a few seconds).

Pers Ubiquit Comput (2017) 21:723–737 725

123



Apart from specialised sensor devices, some studies use

mobile phones as social sensors like Madan et al. [19].

They used proximity, call data records and cellular-tower

identifiers to investigate activities and interactions of

individuals aiming to detect social behaviour changes with

respect to illness. With the development of smart phones,

this may eliminate the need for special sensing devices and

makes scaling to bigger populations much easier.

2.3.2 Studies of short-term dense crowded social events

There are also studies that aim to analyse social behaviour

in crowded mingling settings at a short-term level (i.e.

minutes or hours rather than weeks or days). A recent study

from Alameda-Pineda et al. [1] showed that by combining

sensor data from distributed cameras and wearable sensors,

it was possible to obtain head and body pose estimation of

people in a real-life crowded event, with a fine timescale.

The proposed method combined visual input from four

cameras with noisy estimates of binary speaking status and

proximity input obtained from wearable sensors and esti-

mated the behaviour by learning from noisy incomplete

observations using a matrix completion method. They went

on to show that their automatically extracted head and body

poses could be used to infer high level information such as

detection of conversing groups or social attention

attractors.

Cattuto et al. [3] used conference badges equipped with

RFID to analyse face-to-face interactions in crowded social

gatherings. The exchange of radio packets between these

badges was used to measure proximity and ultimately

detect face-to-face interactions. The mentioned method

was highly scalable and tested in three different events that

include 25–575 people. Their analysis of the dynamics of

interaction networks in these events showed a super-linear

behaviour between the number of connections and their

durations which can be used to define super connectors.

However, this study automatically labelled interactions

when two people came in close proximity but the accuracy

of this was never evaluated. While such methods tend to

have a very high precision, the recall is often poor, par-

ticularly when the density of the crowd is high.

Martella et al. [20] used accelerometers to predict

implicit responses of an audience to a real-life dance per-

formance. Thirty-two spectators of the event were fitted

with accelerometers hung around the neck. Aside from

analysing their direct responses to the performance, they

also analysed the effects of the dance performance on the

mingling behaviour of participants before and after the

event using proximity sensing. Although the sensor pack

was fitted with an accelerometer, no speech detection was

carried out.

2.4 Speech detection with accelerometers

Although it is hard to find studies where wearable sensors

were used for detecting speech and/or other social actions,

there exists a few. Matic et al. [22] used accelerometers for

speech detection where accelerometers were tightly

attached to the chest of participants in order to detect

acoustic phenomena from speech. This methodology

requires accelerometer to have a sample rate high enough

to detect acoustic speech-based utterances and demands

strict placement of the sensor which is impractical for

many real-life scenarios.

More similar to our work, Hung et al. [13] presented

their method for predicting social actions such as speaking,

drinking, gesturing and laughter in a crowded environment

with a single accelerometer hung around the neck. Spectral

features were used to model these actions, and HMMs were

used for classification in a non-adaptive learning approach.

In a follow-up to this study in 2014 [12], random forests

were considered for classification and proved to perform

better. In both studies, no detailed analysis to show varia-

tions of performance with respect to interpersonal differ-

ences was presented.

3 The nature of speech and body movements

In this section, we show how the person-specific connec-

tion between speech and body movements shows itself in

accelerometer readings by providing simple statistics

computed from the accelerometer readings of speech and

non-speech intervals. These statistics, by proving the

existence and personal nature of this connection, act as a

basis for our choice of an adaptive method that can elim-

inate interpersonal differences.

Similar to [12, 13], we aim to use movement informa-

tion, obtained from accelerometers hung around the neck,

as the proxy for speech. Fortunately, this assumption is

partially backed by existing studies. Prior work has shown

that it is possible to automatically classify conversing

participants with an acceptable performance using accel-

eration information only [12, 13]. The connection between

body movements and social behaviour is also extensively

studied in social psychology [4, 17, 23]. For example,

McNeill discussed that speakers tend to move noticeably

more when compared to listeners [23]. It was discussed that

gestures and speech are integrated parts of communication

where gestures are used to complement the content of

speech by providing visual stimuli acting as ‘‘symbols’’.

Multiple studies also showed that there is a strong corre-

lation and synchrony between speech and body movements

in conversing groups [4, 17].
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However, the connection between speech and body,

specifically torso, movements is not theoretically well

defined. Previous studies pointed to the existence of this

connection but none made a precise description of the torso

movement that can be exploited for automated detection that

can generalise over large populations. We believe that this

connection is highly personal and should be detectable from

accelerometer readings. To test this assumption, we calcu-

lated the variation of accelerometer magnitudes over a

sliding window (3 s with 1 s shift) of speech and non-speech

intervals for 18 different people wearing accelerometers in a

real life, crowded mingling event (see Sect. 5 for details).

Figure 2 shows the median values of the variation in

accelerometer magnitudes for speech and non-speech

intervals. Each axis of raw acceleration is normalised using

z-score standardisation before computing the magnitude

and extracting the variance values with sliding windows of

the same length and shift size. We see huge differences

between participants. One can easily see that one partici-

pants median variation of accelerometer magnitude for

speech intervals can be closer to another participants non-

speech feature. One-tailed t tests applied to this feature

during speech intervals for all pairwise combinations of

participants showed that nearly 50% of these couples have

significantly different distributions.

We also see that, for nearly all participants, the median

of the variance in acceleration magnitude tends to signifi-

cantly differ for speaking and non-speaking intervals.

However, it can be also seen that the amount of this dif-

ference varies greatly per person. These two observations

show that there is definitely a connection between speech

and body movements but the nature of this connection is

quite person specific.

This personal connection between speech and torso

movement makes the problem entirely different and more

challenging than traditional approaches to speech detection

using audio. The connection between speech and audio is

physically well defined via articulation of the vocal folds

leading directly to resonances in the vocal tract. Of course,

different speakers will have different spectral

characteristics depending on their physiology [28] but

satisfying speech detection results are already possible with

person-independent models [7].

With these findings, a traditional learning approach

where the data of different subjects are amalgamated into a

single training set will perform poorly since the decision

surface obtained in this way will not be optimal. In our

study, we propose to use transductive parameter transfer

[30, 35], an adaptive approach which uses transfer learning

to overcome this issue by computing a personalised deci-

sion surface for each subject based on the similarity of a

test subject’s data distribution with those of multiple

individuals in a training set.

4 The transductive parameter transfer method

With the findings of the last section, we propose to use an

adaptive transfer learning approach, transductive parameter

transfer, presented in [30, 35]. The authors of [30, 35] used

their method to compute personalised models for facial

expression analysis from video input. To our knowledge, we

present the first example of application of this method to

action recognition and more specifically, speech detection

from wearable sensors task. Although the main theory of the

method stays the same, we have some different implemen-

tation choices than [30, 35] which we elaborate on below.

In this approach, with feature space X and label space Y,

N source datasets with label information and the unlabelled

target dataset are defined as Ds
1; . . .;D

s
N , Ds

i ¼ fxsj ; ysjg
nsi
j¼1

and Xt ¼ fxtjg
nt
j¼1 , respectively. It is assumed that samples

Xs
i and Xt are generated by marginal distributions Ps

i and

Pt, where Pt 6¼ Ps
i and Ps

i 6¼ Ps
j . Pt and Ps

i are presumed to

be drawn from q, the space of all possible distributions

over X, with respect to meta distribution P.

This approach aims to find the parameters of the clas-

sifier for the target dataset Xt, without using any label

information of Xt, by learning a mapping between the

marginal distributions of the source datasets and the

parameter vectors of their classifiers. Main steps of the

transductive parameter transfer approach are shown in

Algorithm 1, and each step is explained in detail below.

Fig. 2 Median variance of acceleration magnitudes for speech and

non-speech intervals for 18 people

Algorithm 1 Transductive Parameter Transfer approach
[30]
Input: Source sets Ds

1, ...,D
s
N with labels and the target set Xt

1: Compute {θi = (wi,ci)}Ni=1 using (1).
2: Create training set τ = {Xs

i ,θi}Ni=1.
3: Compute the kernel matrix K where Ki j = κ(Xs

i ,X
s
j ) using (8).

4: Given K and τ , compute f̂ (.) solving (6).
5: Compute (wt ,ct) = f̂ (Xt ) with (7).
Output: wt,ct

Pers Ubiquit Comput (2017) 21:723–737 727
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4.1 Obtaining personalised hyperplane parameters

First, person-specific classifiers are trained on each source

dataset individually to obtain the best performing param-

eter set h. Instead of a Linear SVM used in [30, 35], we

have selected the well-known binary class L2 penalised

logistic regression classifier which minimises Eq. (1).

Since both are linear classifiers and the format of the

resulting parameters is similar, this selection does not

require any extra steps.

min
ðw;cÞ

1

2
wTwþ C

Xn

i¼1

log exp �yiðXT
i wþ cÞ

� �
þ 1

� �
ð1Þ

We have used Stochastic Average Gradient descent [31] to

solve this optimisation problem, obtaining the optimal

parameter sets fhi ¼ ðwi; ciÞgNi¼1 for each subject. The

optimal regularisation parameter C is found through k-fold

cross-validation, and the model is trained on the complete

dataset of the participant with this C value.

4.2 Mapping from distributions to hyperplane

parameters

The second step aims to learn the relation between the

marginal distributions Ps
i and the parameter vectors hi. The

assumption here is that for each participant, the hyperplane

whose parameters are defined by hi are dependent on the

underlying distribution Pi. By learning this relation, the

optimal hyperplane parameters for the target dataset can be

computed without any label information. The actual

underlying distributions are not known, neither for the

source datasets Ps
i nor the target Pt; however, they can be

approximated using the samples Xs
i and Xt. Thus, the

method aims to learn a mapping from samples to the

parameters, f̂ : 2x ! h, using the training set

s ¼ fXs
i ; hig

N
i¼1, formed after the first step of the algorithm.

Since we assume that elements in h are correlated, we

employ Kernel Ridge Regression (KRR), instead of the

multiple, independent regressors proposed in [35]. The

primal problem for ridge regression is defined as follows

[24]:

min ðy� XwÞTðy� XwÞ þ kwk2
� �

ð2Þ

where the optimal solution is given as:

w ¼ ðXTX þ kIDÞ�1 þ XTy ¼
X

i

xix
T
i þ kID

 !�1

XTy

ð3Þ

The formulation for ridge regression can be kernelised with

the following steps. First, Eq. (3) is rewritten as

w ¼ XT XXT þ kIN
� ��1

y ð4Þ

Term XXT in Eq. (4) can be directly replaced with the

Gram Matrix K, partially kernelising the equation. In order

to eliminate term XT and completely kernelise the formu-

lation of ridge regression, following dual variables are

introduced:

a � K þ kINð Þ�1
y ð5Þ

With the introduction of dual variables, Eq. (4) becomes

w ¼ XTa ¼
XN

i

aixi ð6Þ

After solving for w, the solution for any variable x can be

found as:

f̂ ðxÞ ¼ wTx ¼
XN

i

aix
T
i x ¼

XN

i

aijðx; xiÞ ð7Þ

It can be seen from Eqs. (5) and (7), a kernel j that can

define the similarities between two distributions is needed.

Instead of the density estimate kernel defined in [35], we

have selected an earth mover’s distance [29]-based kernel

which is discussed in [30]. In our implementation, each

sample is treated to be a signature where all samples have

uniform weights. The EMD kernel is defined as

jEMD ¼ e�cEMDðXi;XjÞ ð8Þ

where EMDðXi;XjÞ corresponds to the EMD between two

datasets Xi and Xj, the minimum cost needed to transform

one into another. c, a user-defined parameter is set to be the

average distance between all possible pairs of datasets and

experimentally shown to perform well.

4.3 Classification

By solving (6) for the source datasets, we learn the map-

ping f̂ : 2x ! h. For any new target dataset, we can com-

pute the parameter vector ht by plugging Xt into the

mapping function f̂ . Classification of the samples in the

target dataset is then obtained by y ¼ signðwtxþ ctÞ.

5 Dataset and feature extraction

5.1 Dataset

We recorded data in a real pub with 16 male and 16 female

volunteers during a speed dating social event. The first

phase involved having 3-min dates with each member of

the opposite sex. After this, participants could get to know

728 Pers Ubiquit Comput (2017) 21:723–737
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each other better in a mingling session. This phase has the

characteristics of a crowded mingling scenario which we

needed for our experiments. All throughout the event,

participants wore a specialised sensor pack around their

necks which collects acceleration and proximity informa-

tion. The accelerometer in the sensor pack provides 20

samples per second. In our experiments, we only used

accelerometer data. The area was fitted with multiple video

cameras facing down on the scene, covering all the area

participants who were present. The video footage was used

for labelling the ground truth.

5.2 Annotations and features

5.2.1 Annotation procedure

In this study, we will be focusing on the mingling phase. The

mingling session lasted for approximately an hour. Due to

hardware malfunctions, only 28 of the sensor packs recorded

data in this session. Although we would have preferred to

use all the data we have for the classification experiments,

the annotation of social actions (in our case, speech) is

extremely time-consuming and costly. Also, some of the

participants were at the blind spots of our cameras for the

majority of the event, making robust annotation of their data

extremely challenging. These factors forced us to use a

subset of 18 participants for our experiments. This is in

keeping with the numbers of test subjects typically used for

studies in activity recognition, where datasets of varying

sizes from 1 to 24 participants are reported [2, 13].

Thus, speaking status for these 18 participants was

carefully labelled using the video for 10 min of the min-

gling phase with a time resolution of one twentieth of a

second. A qualitative inspection revealed a rich dataset

including participants with differing levels of expressive-

ness, interacting in dyads, larger groups or hardly inter-

acting with someone at all, covering different types of

personal characteristics and interactions possible in such an

event. Detailed inspection of the annotations also showed

that the speaking turn lengths per person vary greatly, from

few seconds to more than half a minute, further showing

the variety captured in the dataset.

5.2.2 Feature extraction

Before feature extraction, each axis of the acceleration

input is standardised to have zero mean and unit variance.

We selected our features from the literature and ensuring

that were as simple as possible so as to avoid overfitting the

data of the participants. The selected features can be

grouped into two categories: statistical and spectral. As our

statistical features, we calculated mean and variance val-

ues. As the spectral features, the power spectral density

(PSD) was computed in the same way as [13], using eight

bins with logarithmic spacing from 0 to 8 Hz. These were

extracted from 3-s windows with on third overlap for each

axis of the raw acceleration, absolute value of the accel-

eration, and magnitude of the acceleration. The length of

the window was selected to be big enough to capture the

speaking action while preserving a fine temporal resolu-

tion. All features were concatenated to obtain a 70-di-

mensional feature vector per window.

5.2.3 Dataset analysis

Using the annotations and acceleration from this 10-min

interval, we have extracted features for each participant.

This resulted in the total of 18 feature vectors, each having

299 samples with 70 dimensions, with varying class dis-

tributions. The class distributions for each participant are

shown in Fig. 3. The mean percentage of the positive

samples (speech) across all participants is found to be 33,

with a standard deviation of 10%. Participant 11 had the

least number of positive samples (14%), whereas person 13

had the highest percentage (51%). This imbalance in class

distribution, which is also person specific, introduces a new

difficulty for robust detection of speech.

In order to see how person-specific nature of speech

affects the distribution of samples in feature space, we have

applied dimensionality reduction to samples of four partic-

ipants and plotted them for the first two principal compo-

nents. To standardise the plots, samples from the four

participants were collectively normalised with z-score stan-

dardisation. We can see from Fig. 4 even after preprocess-

ing, distributions are close to each other in the feature space,

while the distribution of samples and the characteristics of

the data still vary greatly between different participants.

6 Experimental results

In this section, we will discuss and compare the perfor-

mance obtained with different classification setups and

approaches. When presenting classification performance,

Fig. 3 Percentages of speaking and non-speaking samples
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we have specifically selected area under curve (AUC) since

it provides a more valid performance estimate in the

presence of our imbalanced binary classification problem.

Also, while training any classifier, class weights are set to

be inversely proportional to the number of samples in the

class so as to remove any bias caused by imbalanced class

sizes. Of the all setups discussed in this section, only

person-dependent one uses the data from a single partici-

pant, for training and testing, in a Leave-One-Sample-Out

manner. Other setups, person independent and TPT, use

data from other participants. Thus, person-dependent setup

is expected to act as an upper bound on the performance

since it is a personalised setting by nature.

6.1 Person-dependent performance

In the person-dependent setup, each participant is trained and

tested on their own data. Since we do not have enough data to

come up with distinct training and test sets, we applied Leave-

One-Sample-Out cross-validation scheme for performance

evaluation. Based on the findings reported in [10], we made

sure that training set is not contaminated. This means for each

fold, any adjacent samples to the test sample are eliminated

from the training set. With this elimination, we aim to provide

an unbiased performance estimate. We have used a logistic

regressor as classifier where the optimal regularisation

parameter C in Eq. (1) is found by nested k-fold cross-

validation.

The procedure is applied to each participants’ data

separately, obtaining performance evaluations for each.

This resulted in varying performance scores, ranging from

an AUC score of 55–79%. The mean performance across

all participants is 68% ± 6. Individual scores for each

participant are shown in Fig. 5.

The variation in performance scores can be linked to two

different factors we have already discussed. The first is the

personal connection between speech and body movements

read through the accelerometer. As expected, the problem

becomes harder for people with more subtle movements,

resulting in lower performance. Still, each participants’

performance score is higher than random (50% AUC),

proving that our features are still discriminative.

Second factor is related to the class distributions. As

shown in Fig. 5, some participants’ class distributions are

highly skewed towards the negative class. We cannot say

that such imbalance always guarantees low performance,

since it may still be possible to train robust models from

small numbers of highly informative samples. However,

we already see negative effects of this imbalance in our

results. The participants with the lowest performance

scores have small number of positive samples. There are

only two participants with AUC scores lower than 60%

(P12: 55% and P15: 57%), and they have the second and

third lowest percentages of positive samples (25 and 16%,

respectively) in the whole dataset. So, for these two par-

ticipants, we cannot be sure if the low performance is

caused by subtle movement while speaking or the small

number of positive samples.

We expect these results to act as an upper-unbiased limit

for speech detection performance.

6.2 Person-independent performance

In the person-independent setup, we have used Leave-One-

Subject-Out cross-validation for performance evaluation,

Fig. 4 First two principal

components of four participants

(18, 17, 10, 11)
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where each participants’ samples are classified with the model

obtained from other participants’ data. So, the training set is

formed by concatenating and standardising all other partici-

pants data. Similar to the person-dependent setup, logistic

regressor is used as the classifier and optimal regularisation is

then found on the training set with cross-validation.

With this setup, we obtained an average AUC score of

58%, with a standard deviation of 7%. The individual

scores for participants varied from 45 to 60%. The indi-

vidual scores obtained with the person-independent setup

are also shown in Fig. 5, together with the results of other

setups. Apart from two participants (7 and 8), where the

person-independent setup yielded slightly better AUC

scores than the dependent one, the person-dependent setup

always outperforms the independent setup. We compared

the performances of person-dependent and person-inde-

pendent setups per person using a paired one-tailed t test.

As expected, the result of the t test showed that the person-

dependent setup yields significantly better results than the

independent one (p\0:01).

In the ideal learning paradigm, training with more

samples should yield a better, more robust model, contra-

dicting what we see. However, it is also assumed that the

samples in the dataset are coming from the same inde-

pendent and identically distributed (i.i.d.) probability dis-

tribution. From what we see from Figs. 3 and 4, it is more

likely that every participant has their own probability dis-

tribution that their samples are drawn from. Thus, con-

catenating the data of all participants and training a model

on this dataset results in an unreasonable and impractical

decision boundary. These person-independent results

strengthen our claim of the personal nature of connection

between speech and body movements and motivate the

requirement of an adaptive model.

6.3 Transductive parameter transfer performance

Our TPT experiments also employed a Leave-One-Subject-

Out setup, where each participant is treated to be the target

dataset while all other participants acted as source sets.

This setup is similar to the person-independent one, since

the labels of only other participants are used for classifi-

cation. With TPT, an average AUC of 65% ± 6 is

obtained. Individual performance values are included in

Fig. 5, in addition to those of the person-dependent and

person-independent setups.

It is clearly seen that TPT outperformed the person-

independent setup for majority of the participants (16 out

of 18), providing an AUC score close to the person-de-

pendent setup. One-tailed t test between the TPT and the

person-independent scores showed that TPT is significantly

better than the other (p\0:01). For few cases, TPT even

outperforms the person-dependent setup (participants 2, 7,

8, 11); however, the person-dependent results are still

significantly better than TPT (p\0:02). This result is quite

interesting and might be caused by different factors. When

the performance for participants 7 and 8 is inspected, it can

be seen that even the person-independent setup outper-

forms that of the person-dependent one. This suggests that

for these participants, using more data (even belonging to

other participants) provides a better estimation of the

decision boundary. In such a case, we may expect TPT to

outperform all other setups. Although the same pattern is

not present for participants 2 and 11, we might still argue

that these participants have benefited from the use of the

data of other participants, most probably the ones having a

similar distribution.

These results prove that it is still possible to generalise

over unseen data, with an acceptable performance, if an

adaptive method like TPT is employed. In 10 min, one

might argue that there is relatively little variation in an

individuals’ behaviour. However, assuming that between-

person variation remains fairly high over this interval, as it

can be seen from Figs. 2 and 3, it is particularly interesting

that we get good results, showing the robust generalisation

ability of our method even with a limited amount of data.

With the proposed transfer learning approach, performance

results that are always better than the random baseline are

Fig. 5 Performance in terms of AUC for speech detection. Person-

dependent setup uses data from the same participant for training and

testing and expected to act as an upper bound for the performance.

Person-independent and TPT setups use data from other participants

in a Leave-One-Subject-Out manner
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obtained and statistical significance tests showed that our

proposed method guarantees to perform better than tradi-

tional non-adaptive person-independent learning.

6.4 Comparison with the state of the art

This section compares the performance of our transductive

parameter implementation with the state-of-the-art

approaches. Firstly, we present the person-independent

results obtained with Random Forests (RF) and Hidden

Markov Model (HMM)-based approaches proposed in [12].

Secondly, we present the results obtained with the TPT

implementation given in [35] and discuss in detail how our

different choices affected the final performance. Individual

performance scores obtained with all four methods,

including ours, can be seen in Fig. 6.

6.4.1 Non-adaptive person-independent methods

We have implemented the methods presented in [12]. We

have used the exact same setup they defined which includes

the features they used (PSD 0–8 Hz), window sizes for

feature extraction (5 s for RF, 3.5 s for HMM), number of

trees in Random Forest classifier (500) and number of

states in HMM (2). We compare with the Leave-One-

Subject-Out cross-validation setup reported in [12].

With the RF, we obtained an average AUC score of

55% ± 6. The HMM performed slightly better, providing

an average AUC of 59% ± 6. When compared to our

person-independent results obtained with logistic regres-

sion, neither RF nor HMM provided a significantly better

result. This is an interesting finding since it shows that a

linear model is as powerful as a nonlinear model for the

speech detection problem, in a Leave-One-Subject-Out

setup. Our proposed TPT method, on the other hand, sig-

nificantly outperforms both of these methods. There are

only three participants that have better performance scores

than our proposed implementation of TPT; participants 1

and 3 for RF and participants 1 and 11 for HMM. One-

tailed t tests between our TPT results and both RF and

HMM showed TPT performs significantly better (p\0:01

for both RF and HMM). The authors of [12] applied their

non-adaptive method on a limited dataset that includes only

nine people. We believe, with the increasing number of

participants, the person-specific nature of speech is mag-

nified and the requirement for adaptive methods increases.

6.4.2 Detailed comparison with state-of-the-art TPT

implementation

Our proposed TPT implementation improves upon that

presented in [35]. Although the basic framework of the

method remains, our implementation choices made the

method more suitable to the nature of our problem, as

demonstrated by the performance results. We have used the

implementation provided by [35] and obtained perfor-

mance results with that setup, resulting in an AUC of

62% ± 6. Our implementation outperforms it for 15 out of

18 participants. The paired one-tailed t test between per-

formance scores shows that our implementation is signifi-

cantly better than [35] (p\0:01).

There are four main differences between our imple-

mentation and the one in [35]. TPT implementation in [35]

uses: (1) a SVM instead of logistic regression (LR), (2)

independent support vector regressors (SVRs) instead of

KRR, (3) a density kernel (DK) instead of EMD kernel, (4)

support vectors (SV) instead of the whole data (WD) to

estimate distributions of source sets. To investigate which

modification affected the performance most, we carried out

four follow-up experiments. In these experiments, we

replaced one of our choices with the original one in [35].

Table 1 shows the average AUC and standard deviation

over all participants obtained with each of these modifi-

cations. One-tailed t tests were used to quantify differences

between our full implementation and one of the modified

approaches.

Table 1 shows that the most effective change uses a

logistic regressor instead of a linear SVM. The two setups

where our logistic regressor is replaced by a SVM (SVM

and SV in Table 1) have the lowest performances. It is an

Fig. 6 Comparison with the state of the art as presented in [11] (RF and HMM) and [33] (TPT)
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unexpected result since the two classifiers are quite similar.

However, the logistic regressor was more successful than

the linear SVM when person-specific classifiers were being

trained which we believe resulted in this performance

difference.

Since our features are often correlated with each other,

we preferred to use a KRR instead of the SVRs which is

also supported by [30]. The performances shown in

Table 1 back our decision since our method with KRR

performed significantly better than the SVRs method. The

average performance difference between two methods

could be low, but our method provides significantly better

results.

Finally, we can see that replacing EMD with a density

kernel (DK) does not affect the performance at all. For our

data, a density kernel was as successful as the EMD kernel

in estimating the similarities of distributions. This is quite

different than the findings in [30], but we believe it is

related to the distribution characteristics of our data.

7 Comparing speech detection with walking

We investigated how different the nature of the speech

detection problem was compared to other more traditional

actions in the action detection literature to see if speech

detection from body motion really requires a different

approach. To address this question, we have conducted a

follow-up experiment where we compared the speech

detection results to an action which is widely studied in the

action detection literature, walking.

Here, we used the same setup from our speech detection

experiments. Similar to the former section, we obtain two

performance scores for each participant; one for each of the

person-dependent and person-independent setups. We used

a subset of the participants from nine people who had

enough walking samples. In order to obtain an accept-

able number of samples, we only included participants that

continuously walked more than 3 s with at least 15 s total

walking time. To make the problem similar to our speech

detection experiments, we added a random number of non-

walking samples to each participant, creating possibly

imbalanced distributions. The performances for this

experiment are shown in Fig. 7.

The person-dependent setup yielded an average AUC of

83% ± 6. With the person-independent setup, we have

obtained an average AUC of 80% ± 7. We have also

applied TPT to the walking data with the same Leave-One-

Participant-Out setup of the former experiments where data

from other participants acted as sources for the transfer.

TPT obtained an average AUC of 84% ± 7. The pairwise

t tests between setups showed that no single setup is sig-

nificantly better than the others and all might provide better

performance for an unseen participant. From Fig. 7, we can

see that the pattern here is entirely different than the speech

detection one. First, both person-independent and person-

dependent setups yielded relatively high performances,

when compared to performances of the speech detection

experiments reported in Sect. 6 (average AUC of 68% ± 6

vs. 83% ± 6 for the person-dependent setup and 58% ± 7

vs. 80% ± 7 for the person-independent one). This is an

expected result, since the connection between speech and

body movements is not as universally characterisable as the

connection between walking and body movements. Sec-

ondly, in many cases, better performances than the person-

dependent setup are actually obtained with the independent

one.

Interestingly, the best overall performance score is

obtained with the TPT, resulting in an average score

slightly higher than the person-dependent one. This is

definitely different than the speech detection problem

where the person-dependent setup and TPT performed

significantly better than the person-independent one. We

can still argue that the relatively smaller sample sizes

compared to the speech detection experiments might have

caused the person-dependent setup to perform sub-opti-

mally, explaining the cases where person-independent and

TPT setups outperformed the dependent one. Yet, these

experimental results show that the detection of walking is

less challenging and is not influenced by personal differ-

ences as much as speech-related body movements and it is

still possible to achieve high performance with a non-

Table 1 Performance and significance of the four modified TPT

implementations compared to ours, which had an average AUC score

of 65% ± 6 (**p\0:01; *p\0:05)

SVM (LR) SVRs (KRR) DK (EMD) SV (WD)

Modification (our implementation)

AUC ± SD 60 ± 4** 63 ± 7* 65 ± 7 61 ± 5**
Fig. 7 Performance in terms of AUC for walking
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adaptive model, unlike our speech detection task. In addi-

tion, high performances obtained with the TPT, even for a

problem that seemed to be less person specific, show that

the proposed method is quite robust and still preferable to

the traditional person-independent setup in such cases.

8 Comparing controlled and in-the-wild settings

To experimentally demonstrate the restrictions introduced

by a real event, we organised a small controlled experiment

where one participant imitated speaking, walking and

standing in a structured way while wearing an accelerom-

eter. The participant alternated between actions where each

action is performed for at least 15 s, resulting in a dataset

that has 125, 139 and 110 s of standing, speaking and

walking, respectively. The participant did not exaggerated

any action to make them distinguishable from others. It

should be noted that the standing parts also include the

imitation of listening, where head–hand gestures and body

shifts natural to listening were randomly acted by the

participant.

We have used the same experiment setup of the person-

dependent experiments discussed in former section. Thus,

the logistic regressor is used as the classifier, and the same

set of features and Leave-One-Sample-Out evaluation

scheme are utilised. Even though we had three different

classes, we treated the problem as a binary classification

task, where the samples corresponding to walking and

standing formed the negative class. This results in roughly

one third of the samples being positive.

Using this controlled data, we achieved an AUC score of

84%. More detailed analysis shows that 4% of walking

samples and one third of standing samples are misclassified

as speech. This is consistent with former experiments,

showing that distinguishing between speech and walking is

relatively easy. On the other hand, listening–standing is

often confused, probably because similar gestures occur in

both. Still, the majority of standing samples are classified

correctly. Also, the trained model is quite robust in

detecting speech, only misclassifying 8% of speech sam-

ples as non-speech.

The performance score obtained in a controlled envi-

ronment outperforms all our previous experiments with

real in-the-wild data. We believe this is related to the two

main differences between the setups. First, in the controlled

environment we have precise annotations for each action.

The noise introduced in the annotation procedure tends to

affect the learning procedure. Even it is not guaranteed,

since we do not have a robust way of measuring the quality

of the annotations we have for the real-life event; better

annotations may increase performance. However, the

annotation quality may also not be related to the essence of

the difference between the real-life and controlled events.

Secondly, the actions performed by the participant in the

controlled experiment is highly structured and limited.

However, the actions of participants in a real-life event are

completely unstructured. There is no limit to the type of

actions they may perform and transition between. Partici-

pants can even perform multiple actions at the same time. It

is nearly impossible to cover all the possibilities that may

happen in a real-life event in a controlled environment. So,

we believe that the results obtained from controlled

experiments will be always positively biased and would not

reflect the true phenomena as it occurs in the wild.

9 Analysis of transfer source quality

While using TPT, we employed a Leave-One-Subject-Out

learning scheme where data of all other participants acted

as sources. Some source sets might be more informative

than others. Conversely, some source sets may negatively

affect the mapping function learnt, dropping the final per-

formance. Thus, we hypothesised that there might be

optimal source subsets for each participant. To check this

hypothesis, we classified each participant with every pos-

sible triads of source sets. Then, we selected the top 10 best

performing triads for each participant. We should note that

all of these setups were somewhat optimal, performing

better than the setup where all sources were used.

Figure 8 visualises links between the best performing

subset where the size of each node indicates the number of

times it was in one of the best performing source sets. A

directed edge from node A to B (where end of the edge is

slightly wider) means that participant B was at least in one

of participant A’s best performing source sets. The width of

the edges is proportional to the number of times B was in

A’s source sets.

From Fig. 8, we can see that participants 3, 4, 8 and 13

are the optimal sources for the majority of others. Still, the

directed edges show that there is no single perfect source

for everyone, meaning multiple sources are needed to cover

a larger population. When we inspected the person-de-

pendent performances and class distributions for these

participants, we did not see any distinguishing features to

indicate their quality as sources. Closer inspection of the

video of the event confirmed no spatial connection or the

presence of interaction was necessary for one participant to

act as a good source for another. We believe these findings

show that the success of these participants as sources

comes from something more inherent, most probably

related to connection between speech and torso

movements.
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We analysed whether being a good source might be

related to personality. Each participant filled in the HEX-

ACO personality inventory [18] before the event. The

HEXACO scale measures personality in six dimensions

and can broadly be considered similar to the more well-

known Big Five personality traits except with an additional

sixth dimension measuring humility or honesty. The

dimensions are mapped onto a 5-point Likert scale. We

observed that all these four participants have relatively

high extroversion (3.8, 3.6, 3.9, 3.6) and openness (4.1, 3.6,

4.2, 3.4) scores which may contribute to them being good

sources. Further analysis of the connection between per-

sonality and transfer is left for future work.

10 Analysis of gender differences in transfer

One interesting aspect we have not investigated in the

former sections is how gender-specific attributes affect the

proposed method. In all of the former TPT experiments, we

either used all remaining participants as sources or fetched

all possible triads without considering the gender of the

participants. In a traditional speech detection setup, where

audio recordings are used as input, gender is expected to be

a distinctive feature because of the frequency differences in

male and female voices. In this section, we present a

detailed analysis to see if such a difference exist for our

method which relies on accelerometer readings instead of

sound. Luckily, we have a balanced dataset in terms of

gender, nine females (Participant IDs 1–9 in Figs. 5, 6) and

nine males (Participant IDs 10–18 in Figs. 5, 6).

In order to check if there are any gender-specific char-

acteristics affecting our method, we devised three different

experiment setups. The first setup is entirely same as the

one presented in Sect. 6.3, where we use all other partici-

pants as sources. For the second setup, we only use par-

ticipants as sources who are the same sex with the target

participant. The last setup is the reverse of the second one

where all sources are the opposite sex of the target

participant. Figure 9 shows the performances for all these

three setups applied on male and female participants. The

items in the legend correspond to all three setups where all

correspond to setup 1, F2F (female sources, female targets)

and M2M (male sources, male targets) are setup 2 (same

gender transfer) and M2F (male sources, female targets)

and F2M (female sources, male targets) are setup 3

(transfer from the opposite gender).

As it can be seen from Fig. 9, there seems to be no

significant difference between any of these setups. When

we use the all participants as sources, the average AUC

scores for female and males are 66% ± 6 and 64% ± 6,

respectively. For the same gender transfer, F2F and M2M

setups, the average AUC scores are 66% ± 8 and

63% ± 6. Finally, for the opposite sex transfer, M2F and

F2M, we have obtained average AUC scores of 65% ± 4

and 63% ± 7, respectively. The individual performances

of participants seem to be slightly changing with respect to

the setups; however, there is no apparent pattern suggesting

a convincing effect of gender on the transfer quality. This

is further proved by the t tests between all different pairs of

setups that showed no significant difference.

These results are somehow expected since we are not

trying to infer speech from vibrations in the chest which

might be strongly affected by the frequency differences of

sound between genders. Our method is based on the con-

nection between body (mostly torso) movements and

speech which is expected to be affected less by any gender-

specific differences. These results are also on par with the

analysis of the last section where we identified optimal

sources for transfer. Three out of four optimal sources were

found to be females in this analysis; however, they were

good sources for participants from all genders. Thus, we

can conclude that even though there might be some gender-

specific gesturing, we have not seen any strong effects of it

on the success of transfer in our data.

11 Conclusion and future work

In this study, we presented a transfer learning approach for

detecting speech in real-world crowded environments,

using accelerometers. By comparing speech detection task

to a traditional action recognition problem (e.g. walking),

we have shown the requirement for a specialised approach

that can address the person-specific nature of the speech

and body movements. As a novel contribution, for the first

time, transductive parameter transfer [35] was used to

address the person-specific patterns of estimating speech

from body acceleration. We also analysed the parameter

transfer in detail by considering different source sets,

providing insights into the nature of transfer and the task of

speech detection.

Fig. 8 Visualisation of optimal source sets for each person
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Results obtained with the proposed method outper-

formed the state of the art, providing performance scores

close to person-dependent setups. We discussed the chal-

lenges that are introduced by a more ecologically valid

setting when compared to controlled experiments and

experimentally showed how they affected the detection

performance. Analysis of transfer quality demonstrated that

an optimal subset of sources could be identified for each

target set. Moreover, we found that some participants

generally acted as good sources for subsets of the popu-

lation in our data. We observed that this connection was

not related to the spatial distance or to their corresponding

interaction partners but something more inherent in the

individuals.

As future work, we plan to explore automated methods

of selecting source sets for each target. Another direction

we would like to pursue is testing our method in a different

environment, for example, a seated scenario where differ-

ent variety of actions can be examined.
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