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Abstract

A key advancement in model-based Reinforcement Learning (RL) stems from Transformer-
based world models, which allow agents to plan effectively by learning an internal represen-
tation of the environment. However, causal self-attention in Transformers can be computa-
tionally redundant when most relevant information lies in only a few recent steps, making it
inefficient for environments with predominantly short-term memory dependencies. This pa-
per investigates integrating alternative attention mechanisms into world models to address
these limitations. We embed inductive biases via local attention and Gaussian adaptive
attention, aiming to guide the model’s focus towards more relevant elements of the ob-
servation history. We evaluate these modified architectures in four environments on the
Atari 100k benchmark under partially observable conditions. Our results show that, in
environments where relevant information is contained within a specific recent window of
observations (i.e. a short-term memory dependency), tuning local or Gaussian adaptive
attention to that window lets them significantly outperform causal attention within a lim-
ited number of interactions. In Pong, the best performing Gaussian attention model raised
the mean return from –14.53 to –6.86, representing roughly a 53% improvement over the
baseline. The effectiveness of these mechanisms varies with the complexity and dynamism
of the influential variables within an environment, highlighting the importance of appro-
priate prior selection and flexibility. This work highlights that leveraging influence-based
principles through inductive biases can lead to more data-efficient attention mechanisms for
world models, particularly when agents must learn from limited environment interactions
in diverse RL settings.

1 Introduction

Reinforcement Learning (RL) algorithms have become one of the dominant approaches for tackling tasks in
complex environments. However, traditional model-based RL methods suffer when handling domains with
heterogeneous scenarios [1]. Recent research has focused on enhancing planning algorithms [2] with effective
predictive world models to address this issue. Notably, the MuZero-style algorithms [3, 4] have achieved
exceptional performance in board games and Atari games by planning on learned latent spaces that emulate
the real-world environments. These predictive world models are often limited by their architectural choices
and perform inadequately in environments requiring long-term memory and diverse action spaces [5].

UniZero [5] introduced self-attention mechanisms [6, 7] as part of MuZero’s backbone to leverage the diverse
backward memory capabilities of Transformers [8] along with efficient forward planning. Despite the state-of-
the-art results in multi-task domains with long-term dependencies, the new architecture raises two significant
concerns: (1) Whether standard Transformer-based world models, which inherently use causal attention
mechanisms, can effectively learn tasks characterized predominantly by short-term dependencies, and (2)
Whether the computational complexity of causal attention mechanisms is justified in settings with shorter
sequence dependencies.

We first review the limitations of UniZero’s architecture in the Atari 100k benchmark. UniZero’s Transformer
backbone underperforms in tasks where relevant information is confined to a brief observation window (i.e.,
environments with narrow memory dependencies), potentially due to inefficiencies from applying causal
attention across longer observation sequences. The global nature of the Transformer’s causal attention
mechanism increases exposure to irrelevant or noisy input tokens, potentially causing distraction and reducing
decision-making precision. This sensitivity to irrelevant information becomes more pronounced as we increase
the size of observation sequences, incrementing the complexity and computational overhead.

To address these limitations, we augment UniZero’s Transformer backbone by replacing its causal attention
with both local and Gaussian adaptive attention mechanisms [9, 10]. Both approaches aim to reduce com-
putational overhead while preserving the Transformer’s ability to model short and long-term dependencies
crucial for decision-making tasks. By introducing inductive biases about the domain through the attention
masks, the model can learn more effectively within a reduced number of environment interactions.
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Our evaluations on selected Atari 100k benchmark environments, under partially observable conditions,
demonstrate that these alternative attention mechanisms can improve performance and learning efficiency
over causal attention when the embedded inductive biases align well with an environment’s temporal depen-
dency structure, particularly in data-limited settings. However, the findings also reveal that the effectiveness
varies with complexity and the dynamic nature of each environment. With these results, we seek to answer
the following research questions:

• RQ1: What is the performance of local and Gaussian attention mechanisms compared to causal
attention in environments dominated by short-memory and long-memory dependencies?

• RQ2: How does varying the initial local window size (for local attention) and the initial distribution
(for Gaussian adaptive attention) impact the performance of these attention mechanisms?

The remainder of this paper is structured as follows. We begin by providing background on key concepts in
Section 2 and reviewing related work in Section 3. In Section 4, we analyse the temporal dependencies of
two selected environments from an influence perspective. Section 5 details the local and Gaussian adaptive
attention mechanisms. Section 6 describes our experimental setup and presents the results of our evaluations.
Finally, in Section 7, we conclude with a discussion of our findings, their limitations, and promising directions
for future work.

2 Background

Reinforcement Learning [11] is the standard for tackling sequential decision-making problems. Essentially,
RL involves an agent interacting with an environment to learn a policy π that maximises the expected
cumulative discounted rewards. The main assumption is the Markov Property, which asserts that future
states st+1 and rewards rt+1 depend solely on the current state and action, expressed by P (st+1, rt+1|st, at).
However, in real-world environments, including Atari games, the Markovian assumption is often violated due
to partial observability. Such problems can be modeled as Partially Observable Markov Decision Processes
(POMDPs) [12], defined by the tuple (S, A, T, R, Ω, O, γ, b0), where S is the set of states, A is the set of
actions, T (s′|s, a) denotes the state transition probabilities, R(s, a) specifies the reward function, Ω is the
set of observations, O(o|s′, a) is the observation probability distribution, γ ∈ [0, 1) is the discount factor and
b0 the initial belief distribution over S. In environments characterised by long-term dependencies, efficient
forward planning requires focusing on the observation history. However, this history is often truncated to a
length H, yielding observation sequences τt−H+1:t = (ot−H+1, at−H+1, . . . , ot, at), where ot ∈ Ω and at ∈ A.

Transformers [6] have emerged as a powerful alternative to Recurrent Neural Networks (RNNs) to process
long sequences. By leveraging (self-) attention mechanisms, Transformers can model long-term dependencies
without relying on recurrence. The core idea of attention is to weigh each element in a sequence according
to its relevance to others, mimicking where the model focuses. Formally, attention computes weights using
queries Q, keys K and values V by applying a softmax function to the scaled dot product between keys and
queries:

Attention(Q, K, V ) = softmax(QKT

√
dk

)V (1)

Crucially, this mechanism is permutation invariant; it treats ordered sequences as sets. The properties of these
architectures mitigate the limitations of using truncated observation sequences by simultaneously attending
to all elements from the past. This offers a compelling opportunity for Transformers to serve as effective
world models, as they can accurately capture environmental dynamics. Results show that incorporating
Transformer-based architectures into RL frameworks substantially enhances performance in environments
with long-term dependencies [8, 1].

MuZero [3] improves upon traditional model-based RL approaches by combining Monte Carlo Tree Search
(MCTS) [2] with a RNN learned model of the environment. MuZero does not explicitly receive the environ-
ment’s rules; instead, it infers them through interactions with the environment. Despite its performance,
MuZero has three main limitations: (1) during training, only the initial observation is explicitly used to
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predict the next state, (2) at inference time, predictions rely exclusively on learned latent states as opposed
to the observations in the context, causing the incomplete context problem; and (3) capturing long-term
dependencies can become difficult as the recursion depth increases [13].

UniZero [5] replaces MuZero’s recurrent latent dynamics with a Transformer backbone that uses masked
causal attention to model sequences autoregressively [7]. Specifically, at each time step t, the sequence of
observation–action pairs

[
(o1, a1), (o2, a2), . . . , (ot, at)

]
, o1:t ∈ Ω, is fed through stacked Transformer layers

with causal (triangular) masks, so that each token may attend only to itself and preceding tokens, never
to future ones. The attention mechanisms allow every latent token at step t to attend to preceding tokens
(o1:t, a1:t), capturing long-range dependencies beyond the fixed horizon in MuZero’s RNN. UniZero’s learned
model is comprised by:

1. Encoder: zt = hθ(ot) which maps observations to latent states.

2. Dynamics Head: zt+1, rt = gθ(z1:t, a1:t) which models the environment’s latent dynamics and re-
wards.

3. Decision Head: πt, vt = fθ(z1:t, a1:t−1) which predicts the policy and the value.

Both models are characterised by the joint optimisation of the model and the policy, maintaining a soft target
world model Ŵ = (ĥθ, ĝθ, f̂θ) [14]. The new architectural changes allow the model to use the full observation
sequence at training and access complete contexts at inference, mitigating the limitations exposed in MuZero.
UniZero exhibits markedly improved memory performance on Atari games that require long-term planning
by utilising its global context. However, causal attention often suffers from attention dilution, where the
attention mechanism spreads its focus so broadly that it can underemphasise the most important tokens
[15]. Hence, the new attention leads to slight performance degradation in very short, tightly-coupled games
like Pong or Boxing.

3 Related Work

Sparse Attention Mechanisms have been introduced to focus computation on the most relevant tokens
while reducing computational overhead. In local sparse attention, each token only attends to a fixed window
of its nearest tokens, capturing short-term dependencies very efficiently [16]. Similarly, adaptive attention
dynamically learns which tokens deserve higher weight based on importance, adapting to long- or short-range
contexts when necessary [9]. Such adaptive mechanisms have been applied in sequential decision-making
settings successfully [17]. Striking a balance between modelling temporal dependencies at different scales
and keeping computational cost low is crucial for strong performance across tasks with both short- and
long-horizon requirements.

Transformer World Models. The concept of an agent learning an internal representation of its envi-
ronment (a world model) to guide decision-making [18] has been powerfully advanced by the subsequent
integration of Transformer architectures [8]. These architectures offer significant advantages in this context,
particularly their ability to model complex dynamics and capture long-range dependencies within an agent’s
observation history compared to recurrent world models. These capabilities have led to Transformer-based
world models achieving state-of-the-art performance in various challenging sequential decision-making tasks,
primarily by enabling more accurate and extended forward planning in learned latent spaces. One promi-
nent direction is the integration of sparse attention mechanisms, aiming to reduce computational overhead
without sacrificing critical information for dynamics modelling [19].

Influence-Aware Memory (IAM) architectures [20] apply concepts from Influence-Based Abstractions
(IBA) to address partial observability challenges in Deep Reinforcement Learning (DRL). IBA argues that
not all past observations are equally relevant for predicting future states [21]. Therefore, IAM focuses on
identifying and using only the most influential observations to simplify decision making.

To mitigate partial observability, DRL has employed several memory mechanisms: (1) Frame stacking,
which feeds the agent a moving window of n observations and (2) Recurrent Neural Networks (RNNs),
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which offer a more scalable solution by mapping the action-observation history into an internal hidden state
[22, 23]. However, standard RNNs might struggle to separate critical information, so IAM decouples the
learning process: a feedforward network (FFN) handles immediate decision making based on ot, while the
RNN component constructs an internal memory by filtering only the most influential spatial features of
an observation. Extending this principle, an influence-aware framework could similarly inform temporal
patterns through attention mechanisms in Transformer-based world models to aid the learning process.

4 Environments from an Influence Perspective

This section analyses two classical RL environments from an IBA perspective. Firstly, we introduce the
approaches to model the influences in partially observable environments in Section 4.1. The following sections
consider the influence dependencies in Atari Pong and Boxing.

4.1 Influence in Partial Observability Environments

In a POMDP setting, the agent cannot directly observe the true state s ∈ S but instead receives an obser-
vation o ∈ Ω which is related to s through a probability function. The agent typically maintains a history
of these interactions, Ht = (o1, a1, ..., ot−1, at−1), which is used to shape a belief state bt = P (st|Ht) which
is a probability distribution over the true states. If the belief state is the smallest possible representation
summarising the relevant information from Ht, then it qualifies as a minimal sufficient state representation
[24].

In graph theory, d-separation (directional separation) provides a formal way to determine if information can
flow between different parts of a network, often a Directed Acyclic Graph (DAG): two distinct sets of nodes,
X and Y, are d-separated by a third set Z if every path between any node in X and any node in Y is "blocked"
by the set Z [25].

A d-separating set, Zt, in decision-making, would represent a subset of the information available to the agent
at time t that is sufficient to make a target variable Targett+k conditionally independent of the rest of the
history Ht \ Zt, given the current action At [26, Sec. 8.2.2]. This can be expressed as:

P (Targett+k|Ht, At) = P (Targett+k|Zt, At). (2)

IBA offers a framework to identify such concise and influential representations from the agent’s history. By
operating on the principle that not all observations or actions are equally important, it seeks to pinpoint the
smaller subset of past observations that are most influential for predicting future outcomes, a d-separating
set [21]. Leveraging the concept of d-separation, we adapt our world models to approximate a compact
subset Zt of the agent’s history that captures the key properties of the underlying true state St.

4.2 Pong

In Pong, the agent moves a paddle vertically to intercept a ball bouncing between two paddles. The envi-
ronment exhibits partial observability, primarily from temporal dependencies, as the ball’s current velocity
and direction must be inferred from past observations for successful predictions.

Influence dependencies in Pong are relatively simple and mostly static, as the state transitions remain
consistent over time. Hence, we could define a simple approximation to the optimal d-separating set in Pong
as:

ZPong
t ≈ (yp,t, yo,t, xb,t, yb,t, vby,t), (3)

where (yp,t, yo,t) are the y-coordinates of the agent and opponent’s paddle, (xb,t, yb,t) are the coordinates of
the ball and (vby,t) is the y-velocity component of the ball. Note that in this environment, the x-component
of the ball’s velocity remains constant while the y-component is directly affected by where it hits a paddle.
Hence, only observing a few past frames is enough to estimate all the variables in ZPong

t .
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4.3 Boxing

Boxing presents a more complex scenario. In the game, the agent controls a boxer to land punches on an
opponent and score points, while also dodging the opponent’s attacks. Partial observability is significant due
to unobservable state variables, such as player velocities and the action momentum, which must be inferred
from temporal patterns in the observation history to anticipate actions.

The presence of an opponent whose hidden intentions and strategy directly influence the game state intro-
duces further complexity. To act optimally in this dynamic environment, an agent must not only track basic
coordinates (xp,t, yp,t, xo,t, yo,t) but also continuously infer opponent tendencies and predict their actions
from past observations. This requires summarising the agent’s history of observations and actions into a
compact representation that captures all information relevant for predicting future states and rewards. We
propose that such a sufficient set of historical information, crucial for decision-making in Boxing, could be
approximated by the following:

ZBoxing
t ≈ (xp,t, yp,t, stp,t, xo,t, yo,t, sto,t, scorep,t, scoreo,t, Ψ(hlocal

t )) (4)

The current stance (stp,t, sto,t) (e.g. whether the agent is punching) as well as the current scores
(scorep,t, scoreo,t) need to be integrated into the decision making for a more strategic planning. Finally,
we also assume there is a function Ψ(hlocal

t ) which extracts from the recent local history a compact repre-
sentation of how the opponent’s evolving strategy is influencing the game. The approximated d-separating
set must be flexible, continuously updating based on observed patterns in the opponent’s behaviour. Esti-
mating many of these variables, particularly the opponent’s evolving strategy captured demands integrating
information from more distant frames than would typically be required in a simpler game like Pong.

5 Influence-Aware Attention

This section details our study into attention mechanisms from an influence perspective, designed to refine how
Transformer-based world models learn. In Section 5.1, we analyse the limitations of using causal attention
mechanisms for world models. Most of these limitations involve handling short-term tasks. Section 5.2 in-
troduces local attention patterns and their implications. Finally, we consider adaptive attention mechanisms
for dynamic world models in Section 5.3.

5.1 Limitations of Causal Attention World Models

Introducing the attention mechanism has numerous implications for the agent’s training and inference pro-
cess. First, the complete observation sequence o1:t can now be used during training, enabling the world model
to learn from full contextual histories rather than truncated windows. UniZero’s backbone also explicitly
separates the latent state zt from the learned implicit history ht. In training, the Transformer processes the
context Menc = (zt−H , at−H , . . . , zt−1, at−1), where a history of length H is used. The attention mechanism
operates temporally across this sequence in a single forward pass, treating each latent state zt and action at

as a distinct token rather than attending to features within each vector. This yields an attention matrix of
size |Menc×Menc|. The model injects token positions via learned absolute positional embeddings [27]. During
inference, the encoder uses the entire observed history in a single pass to generate zt, enabling the MCTS
root to leverage the richer context Minfer = (zt−Hinfer , at−Hinfer , ..., zt, at). Figure 1 shows the architecture
details during training and inference.

All these properties combined yield outstanding results in memory-intensive tasks. For instance, UniZero
achieves a higher human-normalised median score than MuZero in 15 out of 26 Atari games [5]. How-
ever, in several games like Boxing and Pong, the new architecture degrades compared to standard MuZero.
These properties that allow UniZero to excel in memory domains are potentially responsible for its subtle
underperformance in short-dependency domains.

In games with short-memory dependencies, the d-separating set is likely very small. For any given prediction
of the next state zt+1 or reward rt, only a small subset of the history is typically relevant. UniZero’s attention
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Transformer Backbone
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Complete Context

MCTS
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Figure 1: Transformer-Based World Model: The training architecture (left) , comprised of an encoder
hθ, a Transformer backbone, a decision head fθ, and a dynamics head gθ. The encoder maps an observation
ot to a latent state zt, and the Transformer backbone autoregressively processes the history of states and
actions to predict future outcomes and policies. At inference (right), the model conditions on the complete
observed context to start a Monte-Carlo Tree Search (MCTS) planning process, which computes an improved
policy πt. For learning, optimisation is guided by a soft-target model Ŵ = (ĥθ, ĝθ, f̂θ), which is maintained
as an Exponential Moving Average (EMA) of the online world model’s weights.

mechanism lacks an efficient method to initially isolate this subset, so it must learn to downweight nearly
all of the remaining history M . However, in Atari environments, without strong influence priors, learning to
focus on the few relevant frames can become particularly challenging when data is scarce.

5.2 Local Attention

Local attention mechanisms have been introduced in Transformer architectures as a solution to mitigate the
computational overhead inherent in causal attention. Local attention constraints each token to attend only
to a fixed window of neighbouring tokens of size w by masking out every other token, reducing computational
costs to ∼ O(nw), as opposed to O(n2). The inductive bias we embed by integrating is predominantly local:
the most critical information for understanding the present and predicting the immediate future is presumed
to lie in the very recent past. This contrasts sharply with causal attention, which initially assigns equal
importance to all past tokens, irrespective of their temporal distance. This draws links to Convolutional
Neural Networks (CNNs), which enforce locality through their kernel operations [28].

Formally, the local attention for token i with a local window size w is given by:

Attention(Qi, K, V ) = softmax(
QiK

T
i−w:i+w√

dk

)Vi−w:i+w (5)

where Ki−w:i+w and Vi−w:i+w are subsets restricted to tokens within the local window around the i-th token.
In this particular setting, sequence-modelling tasks require us to model the attention autoregressively, so we
prevent the model from attending to future observations. In practice, we apply a mask Wij (with entries
−∞ for |i − j| > w) on top of the causal mask to the attention logits in Eq. (1) before applying the softmax,
effectively filtering attention scores without directly calculating them.

Introducing local attention into UniZero’s backbone offers a way to approximate the environment’s d-
separating set by focusing on the most recent w tokens, regardless of incoming observations. This is especially
valuable with limited data, since a causal mechanism can struggle to extract short-term dependencies from
noisy long histories, and causal attention risks diluting crucial recent information in favour of distant, often
irrelevant context [15]. However, the model cannot capture dependencies beyond the window w.
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5.3 Gaussian Adaptive Attention

The main limitation with local, hard attention spans comes from its poor flexibility. Adaptive attention
overcomes the rigidity of hard, fixed windows by learning a soft mask for each attention head [9]. The
concept of adaptivity introduces a learnable soft mask per head: given a distance matrix ∆ij = |i − j|, the
soft mask is given by:

W
(h)
ij = min(max(R + zh − ∆ij

R
, 0), 1) (6)

where zh is a learnable span for head h and R is a fixed hyperparameter called the ramp width, which controls
how sharply the mask falls from 1 to 0. In effect, W

(h)
ij equals 1 for ∆ij ≤ zh, decays linearly to 0 over the

next R tokens, and is 0 beyond ∆ij ≥ zh + R. The mask Wij is applied to the attention logits in Eq. (1).

Because we parametrise zh = softplus(sh), for any token pair whose distance falls into the ramp region,

∂W
(h)
ij

∂sh
=

∂W
(h)
ij

∂zh

∂zh

∂sh
= 1

R

∂ softplus(sh)
∂sh

> 0, (7)

ensuring non-zero gradient flow into the span parameter.

We extend this concept to implement a related variant, the Gaussian Adaptive Attention Mechanism
(GAAM) [10], which models influence with a bell-shaped mask:

W
(h)
ij = exp(− (∆ij − µh)2

2σ2
h

) (8)

where µh and σh are head-specific, softplus-parametrized parameters (µh = softplus(mh) ∈ [0, Lmax], σh =
softplus(vh) > 0). Here, tokens with ∆ij = µh receive a mask weight of 1, and beyond µh ±3σh the attention
decays almost to zero, similar to a Gaussian distribution ∼ N (µh, σ2

h). The inductive bias being introduced
assumes that tokens whose relative distance ∆ij lies near the learned centre µh are assumed to be the most
influential for token i. This pattern offers a powerful alternative to the previous attention mechanisms by
allowing the model to shift focus towards specific observations or actions in Ht instead of shaping a window
adjacent to the current token. Each head learns to approximate the d-separating set Ẑt dynamically, based
on each token. See Figure 2 for an illustration of the different attention mechanisms.

Keys

Q
ue

rie
s

Causal Attention Local Attention Adaptive Attention Gaussian Attention
1.0

0.0

0.2

0.5

0.8

Map

Figure 2: Comparison of Attention Masks: Each map shows queries (rows) attending to keys
(columns); yellow indicates high weight, dark blue zero weight. All attention types enforce autoregres-
siveness via a causal (upper-triangular) mask, preventing access to future keys. (a) Causal attention attends
to all past tokens. (b) Local attention restricts attention to a fixed recent window. (c) Adaptive attention
learns a dynamic window defined by span zh and ramp R. (d) Gaussian adaptive attention softly weights
keys via a learned Gaussian curve with centre µh and width σh.
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6 Experiments

To evaluate the ability of the proposed attention mechanisms to model environments, we conduct evaluations
across different short- and long-memory domains. Specifically, we evaluate UniZero in the Single-Task (ST)
setting on three environments from the Atari 100k benchmark [29]. To measure whether the difference
between models is statistically significant, we employ Welch’s t-test at the α = 0.05 level [30].

6.1 Setup

Codebase: All experiments are implemented on top of the LightZero codebase1. All the implemented
attention mechanisms can be found under /lzero/model/unizero_world_models. Additional analytics
scripts to aggregate and show results can be found in /analysis.

Environments: The models are evaluated on 4 different Atari environments: Pong, Boxing, BankHeist
and MsPacman. The first 2 represent short-memory, tightly-coupled environments, while the last 2 are
environments where long-memory capabilities are advantageous. The agents interact with each environment
for 100k environment steps in training, and an evaluation is initialised every 10k environment steps. The
shared hyperparameters can be found in Appendix A.

Computational Cost: All experiments were conducted on the DelftBlue cluster2 configured with a single
NVIDIA Tesla A100 / V100 GPU, 15-20 CPU cores, and 60-80 GB of RAM. Training an Atari agent for
100k environment steps requires approximately 4-5 hours.

Baseline: The new attention mechanisms are compared against vanilla UniZero: the original Transformer-
based world model with causal attention [5].

6.2 Attention Mechanisms Benchmark on Atari Games

We evaluate causal (baseline), local, and Gaussian adaptive attention mechanisms across four Atari games
to assess their performance on tasks requiring different memory dependencies. Table 1 summarises the
mean scores and standard errors for each model across all environments. We align the attention bias to
each environment’s memory needs: in Pong we use local w = 2 and Gaussian ∼ N (2, 1); in Boxing local
w = 6 and Gaussian ∼ N (6, 1); and both BankHeist, MsPacman with local w = 10 and Gaussian
∼ N (10, 2). These configurations are the best performing in each environment. More in-depth analysis of
the configurations can be found in Section 6.4.

Table 1: Atari Benchmark Score: Mean episode returns (± standard error) for UniZero variants using
causal (baseline), local, and Gaussian adaptive attention across four Atari games. Best performing models
are marked in bold.

Environment UniZero (Baseline) Local UniZero (Ours) Gaussian UniZero (Ours)
Pong -14.53 ± 0.66 -9.35 ± 0.76 -6.86 ± 1.82
Boxing 0.14 ± 0.63 0.62 ± 0.91 0.83 ± 1.10
MsPacman 643.93 ± 35.66 624.68 ± 59.89 928.12 ± 128.43
BankHeist 91.34 ± 28.03 191.30 ± 33.00 94.08 ± 35.80

Short-Term Memory Tasks: In Pong (Fig. 3, top), both Gaussian (p-value = 0.0093) and local attention
(p-value = 0.0008) significantly outperform vanilla causal attention within 100 k steps by focusing on the most
recent frames; moreover, Gaussian’s learned µh settles to a value well below its initial value. By contrast,
Boxing has no significant sample-efficiency gap, and the learned Gaussian µh exhibits high variability (Fig.
4, top) with large standard deviations, evidence that dynamic action patterns and more diverse attention
space demands more flexible attention. Overall, when an attention bias aligns with an environment’s true
short-term dependencies, the model learns more efficiently.

1Code can be found in: github.com/daniallegue/UniZero.
2Delftblue Documentation: doc.dhpc.tudelft.nl/delftblue
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Figure 3: Learning curves for the UniZero model variants across four Atari games: Pong, Boxing,
BankHeist, and MsPacman. The curves depict mean episode returns (± standard error) versus environment
steps. Local and Gaussian adaptive attention mechanisms generally outperform or match the performance
of vanilla causal attention, highlighting task-specific benefits of tailored attention windows and offsets. All
experiments used 7 seeds.

Memory-Intensive Tasks: In BankHeist (Fig. 3, bottom), local attention with w = 10 remains signif-
icantly more sample-efficient than vanilla UniZero (p-value=0.0439), while Gaussian heads learn µh ≈ 10
across all heads, anchoring on their initial span and yielding no significant performance gain. Conversely, in
MsPacman the learned µh values fan out from short (∼ 4) to longer (∼ 11) offsets (Fig. 4, bottom), allowing
Gaussian attention to capture both immediate and distant dependencies and significantly outperform the
baseline (p-value=0.0487), whereas fixed-window attention only matches the baseline. These results suggest
that simple windows can suffice to model longer-term dependencies, but Gaussian adaptivity pays off when
it can flexibly allocate attention across varying dependencies.

6.3 Comparative Analysis of Attention Mechanisms

In Pong (Fig. 5, top), causal attention distributes weight broadly over many past frames (broad diagonal);
local attention (w = 2) confines all weight to the two most recent tokens (sharp, narrow diagonal); and Gaus-
sian attention (µh = 2, σh = 1) peaks at a two-step offset and smoothly decays, blending strict locality with
slight flexibility. These patterns confirm that a tight locality bias best matches Pong’s short-term dynam-
ics. In Boxing (Fig. 5, bottom), causal attention shows variable, sometimes long-range dependencies; local
attention remains narrowly focused; and Gaussian attends immediate and distant frames, better capturing
the environment’s dynamic dependencies. Full attention maps for Pong are in Appendix C.

We further verify that these localised attention patterns do not compromise predictive accuracy: Appendix
D contains full example trajectories for both local and Gaussian world models (Figures 11 and 12), show-
ing reward predictions remaining exactly zero and correct paddle actions under MCTS, on par with the
causal attention baseline. Thus, constraining attention to the nearest timesteps improves efficiency without
sacrificing the fidelity of state, reward, or policy predictions in Pong.
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Figure 4: Mean learned mean-offsets per attention head for Layer 0 (blue) and Layer 1 (red) in Pong
and Boxing (top row), BankHeist and MsPacman (bottom row), with standard-deviation error bars and the
initial offset shown as a dashed line. MsPacman and Boxing environments benefit from head divergence to
capture both short- and long-range dependencies, while Pong and BankHeist learn offsets close to the initial
value.

In Figure 6, you can see that the learned Gaussian delay perfectly matches the Boxing environment’s action-
effect latency. When the agent presses “punch” at a7 (just after Frame 7), the visual effect appears in Frame
8, and the glove only reaches full extension by Frame 10. By placing its Gaussian µh = 6 at a fixed 6
token shift (i.e. three states/actions), the head automatically aligns a10 (the moment the punch arc is at
its peak) with a7 (the button press that initiated it), as evidenced by the bright green square at (19, 13).
This fixed 3-frame look-back in Gaussian attention mitigates the temporal credit-assignment problem [31].
So the model knows which punch press produced which impact and gives the agent the exact timing it needs
to execute and learn effective actions under delayed feedback.

6.4 Hyperparameter Sensitivity in Attention Mechanisms

We analyse hyperparameter sensitivity for local and Gaussian attention mechanisms in Pong, Boxing and
MsPacman (Table 3). Narrowly focused attention yields substantial gains, especially in Pong, aligning closely
with its short-term dynamics. Deviating from these optimal settings, by broadening the local window or
increasing the Gaussian width, leads to clear performance declines. Boxing benefits most from moderate
attention spans, while MsPacman requires wider Gaussian windows to capture longer-range dependencies.
Specifically, fixing µh = 2 and increasing σh from 1 to 4 significantly worsens performance in Pong and
Boxing; similarly, in MsPacman, increasing σh from 2 to 4 at µh = 10 decreases performance by over
26%. This highlights the crucial role of carefully matching attention parameters to environment dynamics.
This ablation study offers an initial exploration of the sensitivity of the attention parameters; however, a
more comprehensive hyperparameter optimisation is reserved for future work to establish more generalisable
principles. A summary of the results and full learning curves for Pong are provided in Appendix B.
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Figure 5: Example attention maps in Pong (top row) and Boxing (bottom row). Left: Causal
attention attends broadly across past tokens, forming a wide diagonal band. Centre: Gaussian attention
peaks at a two-step lag with smooth decay, blending tight focus and flexibility. Right: Local attention
strictly confines weights to the w immediately preceding tokens, yielding a sharp, narrow diagonal. In all
maps, yellow denotes higher attention from query (y-axis) to key (x-axis), and dark blue denotes zero weight.
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Figure 6: Example Attention Head (right) in the Boxing environment learns a fixed 3-frame Gaussian delay:
when processing the action at time step 10 (a10, the query), the head attends most strongly to the punch
initiation at time 7 (a7, the key), as illustrated by the arrow and the bright green square in the bottom of
the attention map. This alignment perfectly captures the action-to-impact delay.

7 Conclusions and Future Work

This paper investigates integrating alternative attention mechanisms into Transformer-based world models
to enhance data efficiency in model-based RL. Causal attention can be sample inefficient when environments
have short-term memory dependencies, since it must learn to ignore irrelevant history within a limited
number of interactions. To address this, we replaced it in UniZero’s Transformer with local and adaptive
Gaussian attention as strong inductive biases that focus the model on temporally relevant information.
On the Atari 100k benchmark, when these biases align with an environment’s dynamics, such as Pong’s
strictly short-term memory, sample efficiency improves significantly over the baseline. In BankHeist, local
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attention’s fixed window suffices to capture the game’s longer-range dependencies, yielding gains without
any need for Gaussian adaptivity. In environments with dynamic memory demands like Boxing, where
local attention fails to capture long-range dependencies, and MsPacman, which requires both short and long
memory dependencies, Gaussian adaptive attention excels. These findings show that simple influence-based
priors can make world models far more resource-efficient in data-limited regimes, pointing toward more
targeted world model designs.

7.1 Discussion

Our evaluation reveals that the effectiveness of influence-aware attention mechanisms is determined by the
alignment between the embedded inductive bias and the environment’s temporal dynamics.

In environments with highly localised dependencies like Pong, providing a strong, correctly matched inductive
bias via narrow local or Gaussian attention spans led to significant performance gains over the baseline. This
demonstrates that when the model’s focus is correctly constrained, it can learn critical short-term patterns
with substantially greater data efficiency. Conversely, in Boxing, a game with more dynamic and a more
diverse action space, the rigidity of these fixed priors offered no significant advantage over causal attention.
This finding points to a crucial trade-off: the same strong inductive biases that make the model highly efficient
when correctly matched with the environment can become a rigid constraint that hinders performance when
faced with more dynamic and unpredictable memory dependencies.

Interestingly, in long-memory tasks such as BankHeist and MsPacman, both local and Gaussian attention
with moderately sized spans proved competitive with the original attention model. In MsPacman, Gaussian
attention’s learned combination of short and long spans enables effective modelling of both immediate cues
and extended dependencies. This suggests that attending to the full context history is not always necessary
and that these mechanisms can effectively approximate longer-memory dependencies, often at a reduced
computational cost.

This aligns with the theoretical principles of Influence-Based Abstraction (IBA), where identifying and
focusing on subsets of relevant information can lead to more efficient learning. Local attention provides a
fixed approximation of the influential variables, while adaptive mechanisms like Gaussian attention learn a
flexible approximation based on each observation. Our work suggests that applying these principles to find
temporal dependencies can make Transformer-based world models more data-efficient.

7.2 Limitations

This study has several limitations. The hyperparameter settings for the attention mechanisms (window
sizes, initial Gaussian parameters) were chosen based on an initial analysis of the environments but were not
exhaustively tuned. A more thorough ablation study, as indicated in Section 6.4, is needed to understand the
sensitivity to these parameters. Furthermore, future work should incorporate a greater number of repetitions
for each experiment to support the statistical robustness of our findings. Evaluating the proposed attention
mechanisms across a more diverse suite of environments, encompassing a broader spectrum of short-term
and long-term memory demands, would also be crucial for assessing their generalisability. Specifically, to
robustly evaluate performance in memory-intensive domains, future studies should also employ continuous-
control environments such as those available in the DeepMind Control Suite [32]. Additionally, conducting
comparative analyses with state-of-the-art models like DreamerV3 [33] would provide deeper insights into
the relative effectiveness and limitations of our approach.

7.3 Future Work

Building on our findings, we identify several promising opportunities for future research. A primary direction
is to conduct a large-scale evaluation of the proposed attention mechanisms across the entire Atari 100k
benchmark [29]. This will rigorously test their generalisability and performance in environments with more
diverse and complex memory dependencies.
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Furthermore, we plan to develop more sophisticated hybrid architectures. This includes designing models
that dynamically combine local and adaptive attention patterns through learned gating mechanisms, enabling
automatic adaptation to environment-specific temporal influences [34]. A natural extension of this is to make
the local attention window itself learnable and adaptive, rather than a fixed hyperparameter [9]. We also
aim to integrate principles of memory-augmented attention systems [35] to more efficiently store and retrieve
important temporal information.

Finally, we will investigate methods to improve the data efficiency and rapid adaptation of these models
through meta-learning [36]. This involves developing targeted regularisation techniques to better initialise the
Gaussian adaptive attention parameters (µh, σh), allowing the model to quickly adapt to new environments
from minimal interaction data.

8 Responsible Research

This section addresses considerations related to the reproducibility of this study and the ethical implications
associated with the use of transformer-based models in RL tasks.

Reproducibility. The main repository extends from the LightZero [37] codebase. The codebase can
be found in: github.com/daniallegue/UniZero. Detailed information regarding implementations, training
procedures, hyperparameters, and data generation is thoroughly documented within the ReadMe file of the
codebase and this paper. When performing n runs, we used random seeds 1–n. LLM tools (Gemini 2.5 Pro)
were used exclusively for several tasks: summarising and synthesising text, searching for related literature
work, generating plotting scripts and assisting with data processing from Wandb.

Ethical Considerations. Our work primarily explores theoretical enhancements in the data efficiency
of transformer-based reinforcement learning world models, specifically focusing on attention mechanisms.
While these improvements do not inherently entail direct ethical risks, Transformer models can generalise
widely, and their deployment in sensitive environments warrants cautious ethical consideration. We highlight
the importance of monitoring for unintended biases. Moreover, computationally intensive training of these
models has environmental implications due to energy consumption; thus, all experiments were conducted on
efficient computing clusters, and resources were utilised responsibly. All steps taken have been motivated
using referenced literature, and the limitations of the results have been discussed in Section 7.2 to ensure
maximal integrity of the results arrived at in this paper.

Acknowledgments. I would like to thank my professor, supervisor, and fellow research peers for their
valuable feedback, ongoing support and enjoyable collaboration throughout this project.
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A Hyperparameters

Table 2: Key Hyperparameters. The values are aligned with those in [5] for Atari environments. The
section on Attention refers to the newly added parameters.

Hyperparameter Value
Planning
Number of MCTS Simulations (sim) 50
Inference Context Length (Hinfer) 4
Temperature 0.25
Dirichlet Noise (α) 0.3
Dirichlet Noise Weight 0.25
Coefficient c1 1.25
Coefficient c2 19652
Environment and Replay Buffer
Replay Buffer Capacity 1,000,000
Sampling Strategy Uniform
Observation Shape (Atari) (3, 64, 64) (stack1)
Reward Clipping True
Number of Frames Stacked 1 (stack1)
Frame Skip 4
Game Segment Length 400
Data Augmentation False
Architecture
Latent State Dimension (D) 768
Number of Transformer Heads 8
Number of Transformer Layers (N) 2
Dropout Rate (p) 0.1
Activation Function LeakyReLU (encoder); GELU (others)
Reward/Value Bins 101
SimNorm Dimension (V ) 8
SimNorm Temperature (τ) 1
Optimization
Training Context Length (H) 10
Replay Ratio 0.25
Buffer Reanalyze Frequency 1/50
Batch Size 64
Optimizer AdamW [38]
Learning Rate 1 × 10−4

Next Latent State Loss Coefficient 10
Reward Loss Coefficient 1
Policy Loss Coefficient 1
Value Loss Coefficient 0.5
Policy Entropy Coefficient 1 × 10−4

Weight Decay 10−4

Max Gradient Norm 5
Discount Factor 0.997
Soft Target Update Momentum 0.05
Hard Target Network Update Frequency 100
Temporal Difference (TD) Steps 5
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(continued)
Hyperparameter Value
Evaluation Frequency 10k Collector Steps
Attention
Rotary Positional Embeddings (rotary_emb) False
Local Window Size (local_window_size) Varied across models
Initial Gaussian Mean Offset µ
(init_adaptive_mu)

Varied across models

Initial Gaussian Standard Deviation σ
(init_adaptive_sigma)

Varied across models

Diversity Regularization
(gaam_span_diversity_coeff)

0.0
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B Attention Hyperparameter Ablation
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Figure 7: Learning curves illustrating hyperparameter sensitivity for UniZero’s attention mech-
anisms in Pong. Top-left: Ablation of Local attention window size (w). Top-right: Ablation of Gaussian
attention mean offset (µh). Bottom: Ablation of Gaussian attention standard deviation (σh). Optimal
hyperparameter choices consistently yield faster convergence and higher returns, confirming the significance
of precise parameter tuning aligned with environment-specific temporal dynamics. The horizontal line rep-
resents the mean return of vanilla UniZero at the 100k environment step. 5 seeds were used for each
configuration. Note: For w = 12 in the first ablation (top-left), we plot evaluations after the 30k step only
for computational ease.
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Table 3: Hyperparameter Ablation (100k steps). Mean episode returns (± standard error) for UniZero
variants on Pong, Boxing and MsPacman, evaluated over 5 seeds. We compare local attention with window
sizes w ∈ {2, 6, 10, 12} and Gaussian adaptive attention with (µh, σh) ∈ {2, 6, 10, 12} × {1, 2, 4}. The best
result per game is underlined; “–” indicates a configuration that was not evaluated. No configuration yields
a statistically significant improvement in Boxing.

Model Pong Boxing MsPacman
Vanilla UniZero −14.53 ± 0.65 0.14 ± 0.63 643.93 ± 35.66
Local (w = 2) −9.35 ± 0.76 −1.32 ± 1.00 764.44 ± 73.27
Local (w = 6) −14.36 ± 0.84 0.62 ± 0.91 851.7 ± 253.2
Local (w = 10) - - 624.68 ± 59.89
Local (w = 12) −15.83 ± 0.78 0.45 ± 1.37 -
Gaussian (µh = 2, σh = 1) −6.86 ± 1.79 −0.13 ± 1.69 -
Gaussian (µh = 6, σh = 1) −8.78 ± 1.04 0.83 ± 1.10 -
Gaussian (µh = 12, σh = 1) −9.25 ± 1.26 1.00 ± 1.03 -
Gaussian (µh = 2, σh = 2) - - 778.7 ± 79.8
Gaussian (µh = 6, σh = 2) - - 707.78 ± 152.14
Gaussian (µh = 10, σh = 2) - - 928.12 ± 128.43
Gaussian (µh = 2, σh = 1) −6.86 ± 1.79 0.22 ± 0.78 -
Gaussian (µh = 2, σh = 2) −7.78 ± 0.69 −0.67 ± 2.11 -
Gaussian (µh = 2, σh = 4) −10.17 ± 1.96 −0.78 ± 1.85 -
Gaussian (µh = 10, σh = 1) - - 898.9 ± 239.9
Gaussian (µh = 10, σh = 2) - - 928.12 ± 128.43
Gaussian (µh = 10, σh = 4) - - 706.67 ± 58.34
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C Attention Map Analysis
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Figure 8: Causal attention maps for a two-layer, eight-head Transformer world model on a single Pong
trajectory. The first eight heatmaps show layer 1 heads, the next eight show layer 2. Yellow indicates
high attention, while dark blue indicates no attention weight. In every head, queries (y-axis) overwhelmingly
attend to keys (x-axis) from the most recent frames; especially the immediately preceding latent state/action
pair, reflecting Pong’s inherently short-term dynamics and demonstrating that information from the last few
timesteps suffices for accurate state prediction and policy/value learning. However, most heads still suffer
from attention dilution by attending to distant frames considered irrelevant in this environment.
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Figure 9: Gaussian adaptive attention maps for a two-layer, eight-head Transformer world model on a
single Pong trajectory (µ = 2, σ = 1). Yellow indicates high attention, while dark blue indicates no attention
weight. As before, the top eight heatmaps are layer 1 and the bottom eight are layer 2. Here, each head’s
attention is sharply concentrated in a narrow band around a two-step look-back (the Gaussian mean), with
minimal weight on distant frames. This localised focus, especially on the immediately preceding latent-
state/action tokens, demonstrates how Gaussian initialisation enforces short-range dependencies, reducing
attention dilution and further emphasising the sufficiency of recent timesteps for accurate state prediction
and policy/value learning.
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Figure 10: Local-window attention maps for a two-layer, eight-head Transformer world model on a
single Pong trajectory (window size w = 2). Yellow indicates high attention, while dark blue indicates no
attention weight. The top eight heatmaps are layer 1 heads, and the bottom eight are layer 2. Here, each
query (y-axis) is allowed to attend only to keys (x-axis) within two tokens behind, producing a narrow
diagonal band of width two in every head. This strict locality further enforces Pong’s short-term dynamics
by entirely ignoring distant frames and confirms that just the two most recent state/action pairs suffice for
accurate state prediction and policy/value learning.
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D World Model Analysis

In Figure 11, we examine a single Pong trajectory under the Gaussian attention world model. The top
panel plots true versus predicted rewards over ten timesteps: both remain identically zero, since no scoring
events occur, and it correctly maintains this constant prediction. The second panel shows the original game
frames, each resized to 64×64 from the raw Atari input (note slight visual distortion). In the third panel,
the predicted prior policy gradually shifts probability toward the upward “action 2” around timestep 7, but
remains relatively spread across actions. The bottom panel displays the MCTS-refined policy: here, the
world model sharply concentrates its probability mass on action 2, peaking near 0.6 at t=7, and the agent
indeed executes this action to bounce the ball back at t=8, illustrating strong policy improvement via MCTS.

In Figure 12, we present the same Pong trajectory analysed with the local attention world model. Again,
predicted and true rewards are perfectly aligned at zero throughout, accurately reflecting the absence of
points. The resized image frames in the second row confirm consistent visual input. The prior policy in
the third row shows a more modest buildup toward action 2, only reaching about 0.25 probability at t=7,
while the MCTS policy in the fourth row amplifies this to roughly 0.35. Although this refinement is less
pronounced than with Gaussian attention, the agent still selects action 2 at the critical moment (t=8) and
successfully returns the ball, demonstrating that even with lower prior confidence. Local’s model supports
effective short-term decision making.
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Figure 11: Predictions of the Gaussian attention world model in a single Pong trajectory are shown:
in the first row, predicted and true rewards; in the second, the reconstructed image frames; in the third,
the model’s prior action probabilities; and in the fourth, the policy refined by MCTS from the priors in the
third row.
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Figure 12: Predictions of the local attention world model in a single Pong trajectory are shown: in
the first row, predicted and true rewards; in the second, the reconstructed image frames; in the third, the
model’s prior action probabilities; and in the fourth, the policy refined by MCTS from the priors in the third
row.
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