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Abstract—Machine learning systems (MLSys) are emerging in
the Internet of Things (IoT) to provision edge intelligence, which
is paving our way towards the vision of ubiquitous intelligence.
However, despite the maturity of machine learning systems
and the IoT, we are facing severe challenges when integrating
MLSys and IoT in practical context. For instance, many machine
learning systems have been developed for large-scale produc-
tion (e.g., cloud environments), but IoT introduces additional
demands due to heterogeneous and resource-constrained devices
and decentralized operation environment. To shed light on this
convergence of MLSys and IoT, this paper analyzes the trade-
offs by covering the latest developments (up to 2020) on scaling
and distributing ML across cloud, edge, and IoT devices. We
position machine learning systems as a component of the IoT, and
edge intelligence as a socio-technical system. On the challenges
of designing trustworthy edge intelligence, we advocate a holistic
design approach that takes multi-stakeholder concerns, design
requirements and trade-offs into consideration, and highlight the
future research opportunities in edge intelligence.

Index Terms—edge intelligence, machine learning systems,
Internet of Things, trade-offs, trustworthiness, smart services

I. INTRODUCTION

Machine learning systems are omnipresent and tireless silent
helpers that bring order to our busy modern life: they guide
us through traffic, classify and predict diseases in humans and
plants, and are our eyes and ears in situations where we cannot
see and hear. Their underlying machinery are machine learning
algorithms that fit complex functions over data to discover
patterns and correlations which can be exploited to discover
trends and relationships, and for making predictions [1]. Many
machine learning algorithms can be scaled to very large
datasets and improve with more data. This has made them
extremely successful in analysing the large volumes of data
produced by digital, online services and applications. Deep
neural networks in particular have produced state of the art
results for many perception based tasks and are now widely
used to process image, video, speech, audio and sequential
data [2]. Machine learning is a promising technique when a
system or process is not well understood, or too complex and
difficult to model explicitly, but data that can surface insights
about it has been collected [3]. Equally, if applications are
dynamic and evolve over time, machine learning systems can
use new data to discover patterns and update their predictions,
thus adapting with the application.

The Internet of Things (IoT) [4] has matured from a vision
of digitally connected devices to one of smart services [5] and
ubiquitous intelligence. For example, a security camera that
streams video footage to a remote server is no longer sufficient.
Instead, the camera is expected to provide a smart service, such
as counting people, or detecting an intruder, thus becoming an
intelligent system rather than a mere device connected to the
Internet. An intelligent system in the IoT distinguishes itself
by having data processing capabilities [6], meaning that raw
sensor data can be transformed to information and knowledge.
This kind of abstraction allows humans to infer actionable
insights about the system, which can be used to create services
that add value to society [7].

Historically, human cognition has been needed to abstract
information and knowledge from data. However, with the suc-
cess of machine learning algorithms, new types of technology-
driven intelligent systems are emerging that can deliver smart
services with reduced human intervention. Machine learning
systems are widely investigated to process sensor data and
manage system performance and operation in the IoT [8].
They can be viewed from two perspectives: machine learning
systems for the IoT support system management and organ-
isation. These systems are designed in service of the IoT
and use machine learning to improve overall system aspects
like security [9], network traffic profiling and IoT device
identification [10]. We focus on a second perspective in which
machine learning systems are viewed as technical components
of the IoT that perform advanced data processing tasks like
activity recognition, object identification or keyword detection,
in service of the greater application objective. We refer to this
perspective as edge intelligence.

This paper motivates for an interdisciplinary approach that
considers multi-stakeholder concerns, design requirements and
trade-offs to develop trustworthy edge intelligence for smart
services. In classical machine learning these are not consid-
ered, as reliable, abundant, scalable and almost-free commu-
nication networks and computing power under control and
ownership of a single entity are assumed. In Section 2 we
present an overview of machine learning systems and current
concerns arising due to training, data, inference and operations.
Section 3 highlights additional challenges that the IoT im-
poses on machine learning systems. In Section 4 we consider
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edge intelligence trade-offs from a socio-technical and multi-
stakeholder perspective. Section 5 presents an outlook for
trustworthy edge intelligence, where we take the concerns
arising both in machine learning systems and the IoT into
consideration. We then highlight opportunities for trustworthy
edge intelligence and finally conclude in Section 6.

II. OVERVIEW OF MACHINE LEARNING SYSTEMS

Machine learning algorithms learn models from data by
approximating useful functions that transform input variables,
or features, to an output. This is called model training. Trained
models are used to calculate an output value for a new input
value, which is called inference [1]. When ground truth values,
or labels, of the output values are available and used for
training a model, the process is called supervised learning. A
typical machine learning workflow involves data processing,
model training and validation, and inference steps. Data pro-
cessing serves two purposes. Firstly, input data is cleaned by
removing outliers, missing values and errors. Secondly, data
is transformed, for example by filtering the features that are
used in the learning process. Machine learning systems must
facilitate the ongoing deployment of machine learning work-
flows, which requires that they take operational aspects into
consideration. This section highlights data, training, inference
and operational concerns that currently challenge machine
learning systems. Rather than being exhaustive, we aim to raise
important considerations that are bound to impact supervised
machine learning systems used in the IoT to provision smart
services.

A. Model Training Concerns

Supervised model training is an iterative optimization prob-
lem that aims to find generalizable patterns in data. In statisti-
cal learning, the goal of model training is to find the candidate
model from limited training data, that has the best predictive
performance on new data [11]. Practically, the training process
determines the values of those model parameters that minimize
the error between a predicted value and its corresponding real
value in the training data. In addition to parameter coefficients,
a model can also have hyperparameters that control its com-
plexity. To find the best model, a range of different model
types, parameters and hyperparameters must be explored so
that the best model can be selected. However, exploring
each of these choices requires computational power, time and
energy, resulting in trade-offs between predictive performance
and resource consumption. State-of-the-art machine learning
models, in particular deep neural networks, can have millions
of parameters. Training them takes weeks or even months, and
the computing and energy resources required are substantial.
Two important approaches for improving the performance
of machine learning systems are designing them together
with specialized hardware and distributing model training for
massive, parallel deployment across cloud servers [12].

In addition to the resources consumed during training,
supervised machine learning requires labelled training data,
which can be expensive and time consuming to collect [13].

When this is not possible, unsupervised learning which re-
quires no ground truth labels, weak supervision with auto-
mated label generation [13], and approaches that reduce the
amount of labels required [14] can be considered. Generally
these present trade-offs against predictive performance. Due
to the infrastructure requirements and cost of model training
and data labelling, many applications download pre-trained
models from online repositories, which can sometimes be used
off-the-shelf, or otherwise adapted to new domains or datasets
with transfer learning [15]. While pre-trained models speed up
the development of new applications, they present significant
security risks [16].

Classical machine learning algorithms are developed under
static, benign, closed-world assumptions: they assume that the
world does not change, that the environment is good-natured
[17], and that all categories to be predicted were known during
training and contained in the training data [18]. Obviously
this does not correspond with reality. For example, in medical
image classification, it has been established that training data
can contain unrecognised categories that are not in the labels
but that affect predictive outcomes [19]. While adversarial
machine learning [20] can be used to improve the robustness of
models under the malicious attack of an adversary, and lifelong
learning [21] provides methods for continuous learning by
accumulating and maintaining knowledge which can be used to
improve future learning, the conditions under which different
paradigms can be combined, and what vulnerabilities this may
result in, are not obvious. Despite the success of machine
learning algorithms, many challenges thus remain to train
models that generalize well and have good predictive accuracy
while also being resource-efficient, robust, and adaptive in
new, real-world environments.

B. Data Provenance Concerns

The quality of a machine learning model is strongly influ-
enced by the quality and underlying distribution of the data
that was used to train it [22]. Due to this central role of data in
machine learning, common features of raw observational data,
like missing values, data redundancy and noise, significantly
impact the performance of the model that is trained. Noise, for
example, obscures the data signal and can result from random
or systematic errors in the observations, or from data that
has been tampered with. Model performance can be degraded
further by propagating data errors that were generated during
data processing through the entire machine learning workflow.
To extend a software metaphor, such data errors are to machine
learning systems what bugs are to code [23]. Once deployed,
data discovery and management are a particular challenge.
Datasets are often taken from different sources. As projects
grow, so do dependencies between datasets. Over time the
training data becomes increasingly complex to track and
version [24]. Data dependencies and feedback loops are often
hidden and can have unexpected effects that make machine
learning systems brittle and error diagnosis expensive [25].
Machine learning systems are also vulnerable to attacks that
exploit their dependency on data by polluting training data



(poisoning) or modifying input data before inference (eva-
sion) [16].

C. Inference Concerns

Trained models infer output values for new data inputs to
inform decisions or take actions on an ongoing basis. A trained
model is a reusable asset that will make thousands or even
millions of predictions before it is retrained. Unlike model
training which happens in the background of an application,
inference usually serves users directly and consequently needs
to be efficient, reliable and interpretable. Even though the
resource requirements for a single prediction are negligible
in comparison to those of training a model, the scale at
which inference happens requires efficient and optimized
processes with high throughput, low latency and graceful
performance degradation [26]. Traditionally, more attention
has been devoted to optimizing the training process rather
than inference. Recent releases of popular machine learning
platforms like TensorFlow and MXnet now offer libraries
for model optimization, but efficiency alone is not enough.
When machine learning systems make decisions and act on our
behalf, inference must also be reliable [27]. Current machine
learning systems do not offer predictable throughput, latency
and accuracy. Methods that guarantee model outputs and offer
reliable uncertainty estimates are needed to provide inference
with quality assurance [28]. Additionally, interpretable in-
ference, which can be likened to the ability of humans to
understand how a model works, is necessary for trusted, fair
and ethical decision-making based on predictions [29].

D. Machine Learning Operations (ML Ops) Concerns

The code responsible for model training and inference
is only a small component of the greater system, which
includes components for configuration, data collection, data
verification, feature extraction, machine resource management,
analysis, process management, serving infrastructure and mon-
itoring. Even though machine learning systems are constructed
from these different components, models are not modular in
the way that software is [25]. Model parameters are learned
iteratively, and as dependent on the data distribution as on
the features used for training and the hyperparameters. Due to
these dependencies, individual models are not extensible and
multiple models interact in non-obvious ways. However, mod-
els evolve as data changes, methods improve or software de-
pendencies change [30]. Ongoing deployment, customisation,
reuse and tracking are thus continuous challenges. Machine
learning systems require end-to-end software support that
facilitates the development, testing, configuration, deployment,
management and maintenance of all components that affect
data provenance, model training and inference [31].

III. IOT CHALLENGES FOR MACHINE LEARNING SYSTEMS

Machine learning systems in smart services are constrained
by the nature and requirements of the IoT: distributed,
physically-bounded and resource-limited, wireless-connected

computing devices that must deliver dynamic and context-
aware functionality over multi-layered, heterogeneous archi-
tectures [7]. For machine learning systems this is both an
opportunity and a challenge. By learning from data, they
are well suited to offer IoT applications functionality that
enables them to adapt to specific locations, environmental
or social situations and to evolve with them over time. It
could even be argued that machine learning systems are a
prerequisite for delivering smart services at scale, as explicitly
and perpetually defining and programming the logic for the
IoT and its interactions with the physical world and social
systems is impossible. At present, however, machine learn-
ing systems assume homogeneous and context-independent
cloud computing infrastructure with scalable data processing
and storage, uninterrupted and unrestricted power supply,
and low latency and high bandwidth networks. This stable
and consistent environment does not exist for the billions
of connected devices in the IoT, where data offloading to
wireless networks, distributed, heterogeneous computing in-
frastructure and resource-constrained devices with physical
hardware limitations present trade-offs against each other and
the performance of algorithms. To achieve scale, components
in the IoT must also be reusable.

A. Offloading to Wireless Communication Networks

Wireless communication networks like Bluetooth and WiFi
connect devices either as a local network, or they connect
individual devices and local networks to the Internet [32].
Many IoT applications rely on wireless connections to offload
data collected by devices to the cloud, where it can be cleaned
and fused with other datasets, machine learning models can
be trained, inference can be done and the data is stored for
future use. Offloading gives access to greater computing power
and storage, but poses privacy and performance concerns.
Wireless communication links have a fixed throughput ca-
pacity and range [32], are lossy and noisy [33], and expose
new attack surfaces [34]. Network interruptions are bound to
affect IoT applications. At worst, machine learning systems
must consider the risk of completely loosing connectivity
during training or inference, making fault tolerance a necessary
consideration [28]. At best, wireless connections introduce
latency, variability, uncertainty and costs to machine learning
systems, which historically have abstracted away their iterative
communication requirements. Offloading thus weighs against
privacy and real-time inference requirements, and constrains
the frequency, size and data distribution of training updates
of machine learning systems. While the data path, timing and
transfer volumes can be optimized through routing schemes,
scheduling and data compression to minimize bottlenecks and
communication costs [35], this can reduce predictive accuracy
and may be limited by the power supply and computing
capabilities of devices [32].

B. Distribution Across Heterogeneous Devices

IoT endpoints (e.g. servers, sensors or mobile phones) that
are located at the periphery of the Internet are called the edge.



Edge computing extends the computing power of the cloud to
the endpoints [36], thus creating a geographically distributed
network of processors for model training and inference. The
edge varies in computing capabilities and connectivity from
sensing and actuator devices that observe and control the
environment at the lowest level, to gateways and cloud servers.
Data processing, model training and inference on the edge
can be device, gateway or cloud-centric [32]. Device-centric
approaches reduce offloading challenges, but processing is
limited by the computing capabilities and power supply of
devices. Gateway-centric computation requires wireless com-
munication, and introduces associated variability and uncer-
tainty. Cloud-centric approaches offer unlimited storage and
data processing capabilities, but come with copious com-
munication overheads. Edge servers present an intermediate
solution that offers stable power supply and processing closer
to the points of data collection, while reducing the data transfer
requirements that would be required by the cloud. A simple
heuristic is that the availability of data processing, memory,
storage and communication overheads all rise with increasing
distance from devices. Increasing the former is desirable, while
increasing communication overheads is not. The key challenge
of distributing machine learning systems in the IoT is to decide
whether, when and how to offload computations; that is, to find
the optimal balance between local processing and computation
offloading given unpredictable networks, and constrained and
diverse devices and servers.

C. Resource Limited Devices

Battery-powered IoT devices have limited memory, process-
ing and power supply and the resources that are available are
shared between data collection, data processing (e.g. error
detection, compression and encryption) and communication
tasks [32]. Despite these limitations, on-device machine learn-
ing aims to do inference, partial model training and retraining
locally on the device to remove the constraints associated with
wireless communication. To make machine learning tasks in
such resource constrained settings feasible, energy efficiency
is of the essence [37]. The key requirements for this are
to reduce the model size, the energy consumption and the
processing requirements of model training and inference, while
providing comparable predictive accuracy to what can be
achieved on the cloud [38]. For mobile devices, federated
learning [39] has become the standard for distributing model
training. This approach reduces privacy concerns and data
transfer volumes by processing sensitive data on devices and
only performing global parameter aggregation in the cloud.
Extensions to federated learning add differential privacy [40]
to provide privacy guarantees. In federated learning systems
for resource-constrained IoT networks, data transfer volumes,
model training time and the temperature of devices present
trade-offs [41].

Classical deep learning models can be several gigabits large.
Small models are necessary for on-device inference for two
reasons: on-device storage is low, and inference with larger
models requires more computations, which consume more

energy. To reduce the model size, quantization and pruning are
used for model compression [42]. Quantization, which reduces
the floating point precision of parameters and gradients, can
be rule-based [43] or automated [44], with mixed bitwidths or
optimized single bitwidth [45]. On the extreme end, binarized
neural networks are quantized to 1, 2 or 3 bits [46] and provide
superior efficiency, but at the cost of predictive accuracy.
Mappings of binary neural networks to look-up tables on Field
Programmable Gateway Arrays are able to reduce the energy
consumption and latency even more [47]. Model pruning
eliminates insignificant parameters from neural networks to
reduce their size. Despite its popularity, advances in and the
impact of model pruning are difficult to evaluate, as the field
lacks standardized performance benchmarks [48]. A rising
trend for on-device deep learning is the co-design of model
and hardware architectures [49], and the exploration of a large
search space of possible architectures with Neural Architecture
Search [50].

D. Component Reusability

Reusability is an important design consideration in the
IoT and a necessity for deploying smart services at massive
scale [7]. This means that IoT components must be discov-
erable and useable by third parties to deploy new services.
Components that lend themselves to reuse are hardware, data,
models and the execution environments. For model training,
raw data, features, sensing and processing devices can be
shared. Similarly, for inference the sensors and processors,
observational and transformed data streams, and models can
be shared. Shared devices reduce the cost of hardware acqui-
sition and system life-cycle cost (e.g. maintenance activities),
which is an advantage. However, shared components bring
their own challenges. Shared hardware and models challenge
machine learning systems to consider hardware heterogeneity
and utilization, workload allocation and prioritization, process
scheduling and isolation, resource management and security.
When many devices operate in close proximity, interference
can affect data transmission, leading to increased energy
consumption of devices, reduced service quality and com-
munication delays. Shared data additionally poses questions
of anonymity and control, governance and persistence: for
example, who grants access to your phone’s geolocation data
to track your digital footsteps through the city? Do those that
see your trail know it’s you? And are you able to wipe your
trace when you want to?

Sensing devices and smart services can be mapped in one-
to-one, one-to-many, many-to-one and many-to-many configu-
rations [32]. Training and inference workloads can be mapped
to processing devices in a similar fashion. Collaborative in-
ference with data inputs from multiple sensing devices, and
multi-tenant processing which allocates and schedules multiple
workloads over one or more resources, are the logical exten-
sion of pervasive sensing and edge intelligence to ubiquitous
intelligence. Distributed machine learning operations for edge
intelligence are bound to be complex and complicated. The
heterogeneous and geographically dispersed IoT will amplify



the operational challenges already observed in the cloud.
Moreover, sharing presupposes the involvement of multiple
stakeholders, which inherently implies that ownership, gover-
nance, accountability and trust matter.

IV. MULTI-STAKEHOLDER TRADE-OFFS

The IoT is not only a complex collection of technologies,
but a socio-technical system in a multi-stakeholder environ-
ment [51] with networks of independent actors consisting
of users, data generators, network providers, data processors,
application service providers and many others. With so many
players involved, data and device use, management, mainte-
nance and ownership are heterogeneous and can change. This
multi-stakeholder environment gives rise to conflicting require-
ments and priorities between actors that must be considered
when designing edge intelligence for smart services.

A. Design Aspects and Stakeholder Concerns in the IoT

Engineered systems are designed to deliver reliable, pre-
dictable and robust performance within acceptable bounds of
confidence, in an unpredictable world. For example, boarding
a plane when a thunderstorm is brewing, you have confidence
that you will arrive at your destination because you have a
justified belief that the plane was carefully designed, that it
is operated by a well trained pilot and that the air traffic
control system abides by internationally regulated standards
of excellence. In its vision of smart services and ubiquitous
intelligence, the IoT1 serves as subsystem to larger, yet again
socio-technical, engineered systems. Its hybrid cyber-physical
nature however means that actions in the cyber realm carry
consequences in the physical environment and can influence
our experience of the world, like getting cold when a heating
system is deactivated. This imposes more stringent require-
ments on its design than what would be the case for purely
physical or solely cyber systems.

Specifications for the IoT are captured in standards (e.g. see
references listed in [51]). A useful approach for identifying
system requirements is through concerns that are of interest
to one or more stakeholders [51]. Table I lists concerns,
grouped into aspects based on common attributes, that have
been developed to provide a comprehensive framework for
the design of hybrid cyber and physical systems, like the
IoT. Concerns are related and composable. For example, in
considering the uncertainty concern, the latency imposed by
specifying and managing uncertainty must also be considered.
Typically concerns present trade-offs and stakeholders are
likely to prioritize them differently. Requirements can be used
to express system properties that address relevant concerns.

B. Implications for the Design of Edge Intelligence

Edge intelligence integrates machine learning systems into
the cyber system of the IoT. Unlike the low risk analytical

1The definitions of the IoT and cyber physical systems (CPS) have been
converging over time [52]. We take a unified perspective of the two fields and
refer to them collectively as IoT, to retain focus on machine learning systems.

TABLE I
ASPECTS AND CONCERNS OF IOT/CPS [51]

Aspects Concerns

functional actuation, communication, controllability,
functionality, manageability, monitoriablity,
performance, physical, physical context,
sensing, states, uncertainty

business enterprise, cost, environment, policy, quality,
regulatory, time to market, utility

human human factors, usability
trustworthiness privacy, reliability, resilience, safety, security
timing logical time, synchronization, time aware-

ness, time-interval and latency
data data semantics, identity, operations on data,

relationship between data, data velocity, data
volume

boundaries behavioural, networkability, responsibility
composition adaptability, complexity, constructivity, dis-

coverability
lifecycle deployability, disposability, engineerability,

maintainability, operability, procurability,
producibility

settings in which statistical machine learning has been devel-
oped, this can have real-world, potentially harmful or even
life-threatening repercussions if the system malfunctions or
fails. As a component of the IoT, it is thus necessary that
machine learning systems for edge intelligence conform to the
requirements of the IoT. And as with other software systems,
specifying the target system behaviour during a requirements
analysis process is essential. Machine learning systems in the
wearables domain already incorporate explicit requirements
analysis processes to specify system requirements upfront [53].
This is not the norm in other domains, and the opportunity
exists to develop approaches for navigating conflicting design
concerns and requirements trade-offs. These will need to con-
sider the multi-layered and complex component technologies
for edge intelligence, the limitations that they present individ-
ually and collectively, and the design choices that satisfy the
prioritized requirements of stakeholders.
Opportunity: Frameworks and processes are needed to elicit
stakeholder requirements, navigate conflicting design concerns
and prioritize trade-offs to make informed design choices for
edge intelligence.

True to its statistical heritage, the (implicit) design of
machine learning systems in the IoT focuses primarily on
feature engineering, algorithm selection, parameter optimiza-
tion and architecture design, with the goal of optimizing pre-
dictive performance. From an IoT perspective, this addresses
the performance concern of the functional aspect, but falls
short on measuring and optimizing for other concerns. On-
device machine learning (see Section III-C) already broad-
ens concerns to account for physical contexts with resource
limitations. Likewise, wireless offloading raises uncertainty,
privacy, security, latency, data velocity and volume concerns,
while distribution and device heterogeneity introduce con-



trollability and synchronization concerns. Within a service
paradigm, quality plays an important role, as it is viewed as
a discriminating factor by which users choose services [7].
Providing ways for estimating uncertainty and for measuring,
controlling and guaranteeing quality of service thus carry
particular significance for smart services.
Opportunity: Metrics and benchmarks beyond predictive
performance are needed so that machine learning systems for
edge intelligence can be specified, designed and evaluated.

Issues of fairness, accountability and transparency are en-
demic to machine learning systems [54], where the data quality
and distribution is integral to the model that is learnt. Models
learned from data have the unfortunate drawback that they
propagate the biases of the data collection process. Moreover,
some machine learning algorithms, like deep neural networks,
are considered to be ”black box” algorithms, meaning that the
inner workings of the algorithm according to which predictions
are made are poorly understood and not controllable by hu-
mans. At present, IoT concerns do not consider concerns such
as fairness, transparency, explainability and interpretability,
that arise due to the data-centric nature of machine learning
systems. They need to be accounted for to avoid becoming a
blind spot in the design of edge intelligence.
Opportunity: To be relevant to edge intelligence, concerns
and aspects of the IoT need to be expanded to incorporate well
known challenges due to the data-centric nature of machine
learning systems.

V. OUTLOOK: TRUSTWORTHY EDGE INTELLIGENCE

Trust-in-technology research extends trust beyond social
systems to non-human, artificial entities. Technologies vary
in their perceived ”humanness”, and users trust technologies
differently based on this [55]. If the perceived humanness of
a technology is high, then human-like trust constructs such as
benevolence, integrity and ability, are good measures of trust.
Congruently, if the perceived humanness is low, then system-
like trust constructs like helpfulness, reliability and function-
ality are more appropriate measures. While related, trust and
trustworthiness represent different concepts [56]. Trust is a
psychological state that indicates whether a trustor is willing
to take risks for a trustee in the absence of monitoring or
external control. Trustworthiness is a necessary condition for
choosing to trust someone and focuses on the characteristics of
a trustee. Trustworthiness concerns are essential considerations
in both AI and the IoT, but they are approached from different
perspectives in the two fields.

A. Trustworthiness in AI

Technologies that create the perception of social presence
of other humans, that facilitate social behaviour (e.g. engaging
in dialogue or receiving affection), and that enable interactions
with other people are perceived to be more human-like [55].
Artificial intelligence technologies, which encompass machine
learning systems, are thus human-like by definition and de-
sign. Heightening public mistrust has lead governments and
organisations to rapidly develop AI frameworks to specify

principles for trustworthy AI. The core themes that emerge
from prominent frameworks are: privacy, accountability, safety
and security, transparency and explainability, fairness and non-
discrimination, human control of technology, professional re-
sponsibility, and promotion of human values [57]. These trust
constructs resonate with the perspective that AI technologies
are perceived to be human-like. While the frameworks lay the
theoretical ground work, to be useful trustworthy AI needs to
develop measurable trustworthiness concerns that can lead to
practical and enforceable specifications.
Opportunity: Trustworthiness concerns of machine learning
systems need to be standardized and operationalized so that
they can be incorporated in specifications and evaluated
objectively in applications.

B. Trustworthiness in the IoT

In contrast, trustworthiness concerns in the IoT are agreed
on across the industry, captured in standards, and formally de-
fined as safety, security, privacy, reliability and resilience [51].
The concerns serve to assure that systems behave as expected
under various operating conditions. They support the view that
the IoT is perceived to be less human-like, and more system-
like. Other properties such as controllability, manageability,
functionality, performance and uncertainty are considered as
functionality concerns, rather than trustworthiness concerns.

C. Opportunities for Trustworthy Edge Intelligence

Neither trustworthy AI, nor trustworthiness concerns in the
IoT address the full spectrum of trustworthiness concerns that
arise in edge intelligence. For example, a machine learning
system may fail to make correct predictions under open world
assumptions, which can include new categories, unseen exam-
ples, black swan events and foreign attack models. To be able
to perform fault diagnosis in such scenarios, explainability is a
necessary requirement. Or consider a smart camera installed in
a new context where the population does not resemble the peo-
ple that were represented in the training data of the deployed
model. The machine learning system may fail to recognize
members of that population and the trust constructs of fairness
and non-discrimination will directly impact the functionality of
the application. On the other hand, intermittent and unreliable
data transfer over wireless channels can result in missing
values that limit inference quality and affect system level
predictive performance. A voice assistant that alerts emergency
response when you cry for help, will need to perform reliably
even in those settings. Trustworthy edge intelligence thus
requires that trust constructs for machine learning systems
and trustworthiness concerns arising in the IoT are considered
together. As with other design requirements, trustworthiness
concerns will be composable and pose trade-offs against each
other and against other stakeholder concerns. There is thus a
need to:

• analyze the trustworthiness concerns that arise in machine
learning systems for edge intelligence and smart services

• explore the overlap and trade-offs of trustworthiness
concerns between machine learning and IoT systems



• characterize the interactions and trade-offs between trust-
worthiness concerns and other stakeholder concerns

• expand research into trustworthy machine learning to also
address the diverse spectrum of challenges and trade-offs
that arise in edge intelligence

VI. CONCLUDING REMARKS

Ever-growing, densely populated urban centers need to
monitor, track, care for and nurture their social, natural and
artificial systems. Smart services, informed by ubiquitous in-
telligence, are viewed as a way of doing this. Machine learning
systems can enable smart services by provisioning the IoT
with edge intelligence, giving rise to ubiquitous intelligence.
This paper presents challenges and trade-offs that arise when
designing trustworthy edge intelligence for smart services.
Despite the maturity of machine learning systems and the
IoT, combining the two technologies presents new concerns
for edge intelligence. One the one hand, many machine
learning systems have been deployed in large-scale production
environments, and the model training, data provenance, infer-
ence and ongoing operational challenges are known. These
challenges prevail when deploying machine learning systems
in the IoT, but are not considered in existing IoT design
frameworks. On the other hand, additional challenges arise due
to communication offloading, distributed, heterogeneous and
resource-constrained devices, and the need to share and reuse
components in the IoT. These challenges are not addressed by
classical machine learning, or large scale, cloud-based machine
learning systems.

We position machine learning systems as a component of
the IoT, and edge intelligence as a socio-technical system. We
motivate that multi-stakeholder concerns, design requirements
and technology trade-offs should be taken into consideration
when developing edge intelligence, and highlight opportunities
that exist to facilitate this. With an outlook on trustworthiness,
we demonstrate that an interdisciplinary perspective is essen-
tial, as trust constructs are considered differently in machine
learning systems and the IoT. By combining perspectives, and
taking multi-stakeholder concerns, design requirements and
trade-offs into considerations, it is possible to perceive of a
future where holistic, trustworthy edge intelligence and smart
services are possible.
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[6] J. E. Ibarra-Esquer, F. F. González-Navarro, B. L. Flores-Rios, L. Burt-
seva, and M. A. Astorga-Vargas, “Tracking the evolution of the in-
ternet of things concept across different application domains,” Sensors
(Switzerland), vol. 17, no. 6, pp. 1–24, 2017.

[7] A. Bouguettaya, B. Medjahed, M. Ouzzani, F. Casati, X. Liu, H. Wang,
D. Georgakopoulos, L. Chen, S. Nepal, Z. Malik, A. Erradi, M. Singh,
Y. Wang, B. Blake, S. Dustdar, F. Leymann, M. Papazoglou, M. Huhns,
Q. Sheng, H. Dong, Q. Yu, A. G. Neiat, S. Mistry, and B. Benatallah,
“A service computing manifesto: the next 10 years,” Communications
of the ACM, vol. 60, no. 4, pp. 64–72, 2017. [Online]. Available:
https://dl.acm.org/doi/10.1145/2983528

[8] F. Samie, L. Bauer, and J. Henkel, “From cloud down to things: An
overview of machine learning in internet of things,” IEEE Internet of
Things Journal, vol. 6, no. 3, pp. 4921–4934, 2019.

[9] M. A. Al-Garadi, A. Mohamed, A. K. Al-Ali, X. Du, I. Ali, and
M. Guizani, “A Survey of Machine and Deep Learning Methods for
Internet of Things (IoT) Security,” IEEE Communications Surveys and
Tutorials, vol. 22, no. 3, pp. 1646–1685, 7 2020. [Online]. Available:
https://ieeexplore.ieee.org/document/9072101

[10] L. Cui, S. Yang, F. Chen, Z. Ming, N. Lu, and J. Qin, “A survey on
application of machine learning for Internet of Things,” International
Journal of Machine Learning and Cybernetics, vol. 9, no. 8, pp.
1399–1417, 2018. [Online]. Available: http://dx.doi.org/10.1007/s13042-
018-0834-5

[11] C. M. Bishop, Pattern Recognition and Machine Learning, M. Jordan,
J. Kleinberg, and B. Scholkopf, Eds. Springer, 2006.

[12] J. Verbraeken, M. Wolting, J. Katzy, J. Kloppenburg, T. Verbelen,
and J. S. Rellermeyer, “A survey on distributed machine learning,”
ACM Comput. Surv., vol. 53, no. 2, Mar. 2020. [Online]. Available:
https://doi.org/10.1145/3377454

[13] A. Ratner, C. De Sa, S. Wu, D. Selsam, and C. Ré, “Data programming:
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