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Abstract

The term Leak-Before-Break (LBB) refers to a well-established safety criterion used to assess
whether cracked tanks or pipes can leak detectable amounts of fluid as a warning before
catastrophic failure occurs. In this research The LBB criterion was applied to the safety
assessment of spherical Liquefied Natural Gas (LNG) containment systems on ships. For
this type of LNG tanks, the International Code for the Construction and Equipment of Ships
Carrying Liquefied Gases in Bulk (IGC) requires several fracture mechanics analyses of fatigue
crack growth.

Details on how these analyses should be carried out can be found in industry codes. Al-
though these codes provide guidance on most aspects of an LBB assessment, they are not
fully satisfactory with regard to their recommendations on how to calculate the growth of
deep semi-elliptical surface cracks, on how to estimate the crack shape when the crack snaps
through the tank wall and how to assess these through-thickness cracks in the stage right
after breakthrough.

The aim of this research was to more accurately simulate the development of cracks for LBB
applications. To do so, a new numerical calculation model have been developed for the estima-
tion of crack growth, crack shape development and crack propagation after wall penetration.
In addition, Finite Element Models (FEM) have been developed to predict the Stress Inten-
sity Factor (SIF), a parameter that characterises the local stress distribution in the vicinity of
a crack-tip and is commonly used in fracture mechanics. Finite Element (FE) analyses were
conducted to evaluate existing, approximative SIF solutions for deep, semi-elliptical surface
cracks and to find a new, FE-derived SIF solution for through-thickness cracks after break-
through. Both the new FE-derived and existing SIF solutions were used in the numerical
model. The results of different SIF solutions and numerical model configurations were then
compared to experimental data from the literature in order to find recommendations for the
enhancement of existing LBB procedures.
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Chapter 1

Introduction

A well-established safety assessment criterion in the nuclear and (petro-) chemical industry
is to check that tanks and pipes have the ability to leak for a certain period of time as a
warning before catastrophic failure occurs [1]. The objective of this so-called Leak-Before-
Break (LBB)1 assessment is to analyse:

1) How and how fast an initial flaw develops into an unstable crack and whether this
instability occurs before or after penetrating through a tank or pipeline wall;

2) Whether a breakthrough crack leaks enough to get detected before becoming unstable;
3) Whether sufficient time is available after leakage detection to take emergency measures.

Figure 1-1 illustrates the stages of crack development in the wall of a tank or pipe. An
initial crack is present in the structure, and the first step is to establish the initial crack size
and shape. These could be known from inspection or could be assumed to be equal to the
minimum detectable size. The next step is to determine how the shape of the crack develops
while growing towards wall penetration, i.e. the crack growth phase. A sufficiently large crack
becomes unstable, resulting in a sudden rupture of the material. If the crack re-stabilises after
wall penetration an LBB case could be made, provided there is enough time for leak detection
before the crack reaches a critical length at which the tank or pipe catastrophically fails. The
crack growth phase after breakthrough is referred to as the crack propagation phase. Crack
development refers to both the crack growth and propagation phase.

Under normal operating conditions the nominal stresses in tanks and pipes, taken into account
a safety factor, should stay well below the yield strength of the material and failure should
not occur when a small flaw is present. Furthermore, in these predominantly tensile loaded
structures, buckling is not an issue either. Hence, apart from accidental loads, the main
threat to cyclically loaded constructions is fatigue, damaging metallic structures even when
loaded well below the yield stress. What initially may start as a small flaw, could grow into
a potentially dangerous crack.

1It would have been more appropriate to refer to this criterion as ’Leak-Before-Failure’ but this research
follows the more commonly used ’Leak-Before-Break’ terminology.
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2 Introduction

Figure 1-1: Leak-before-break diagram

In the context of welded constructions it is assumed that there are always flaws of the order
of 0.1-5 mm present because the welding process introduces slag or gas intrusions, or flaws
are introduced by the overuse or lack of welding material and other irregularities. For fatigue
calculations, rather than studying the macroscopic features of the structure, the attention
shifts to the analysis of cracks that are barely to the naked eye.

Fracture mechanics is the field of study concerned with the analysis of crack development
and fatigue. Questions related to the lifetime up to catastrophic failure as well as predictions
related to the size of the crack (opening) are both topics within the scope of fracture mechanics
and therefore this discipline is indispensable for LBB assessments. A short overview of relevant
fracture mechanics topics can be found in Appendix A.

Several codes and standards give recommendations for LBB assessments, see for instance
Annex F of the British Standard (BS) [2], the recommendations of the American Petroleum
Institute (API) [3] or the Structural Integrity Assessment Procedures for European Industry
(SINTAP) [4]. Typically, the assessment procedure involves the determination of the load
spectrum, geometry, material and temperature dependent parameters and other parameters
that can tell something about crack development.

An important parameter in the field of fracture mechanics is the SIF which determines the
local stress distribution around the crack-tip and can be used to predict the crack growth (see
for further details Appendix A). The SIF is expressed as

K = Y σ
√
πa (1-1)

in which Y is a factor that corrects for geometry, plasticity, bulging, welding, loading and/or

2



1-1 State of the art 3

other factors, σ is the nominal stress and a refers to a crack size in general, like the length or
depth of a crack. When reaching KIc, the critical SIF, a linear elastic material under plain
strain conditions2 starts to propagate in an unstable manner. Plasticity effects decrease the
critical crack size but for stress levels well below the yield stress, it is a reasonable assumption
to apply a Linear Elastic Fracture Mechanics (LEFM) model. The critical SIF depends on the
temperature, material properties and production techniques and is obtained by standardised
tests. From Eq. (1-1), the critical crack size is determined as

ac = 1
π

(
KIc

Y σ

)2
(1-2)

In a recent update of the International Code for the Construction and Equipment of Ships
Carrying Liquefied Gases in Bulk (IGC), section 4.18.2.6 in [5], it is required to carry out a
fracture mechanics analysis of flaws in LNG containment systems. It should be verified that
a crack will not reach critical dimensions before breakthrough and that it can leak detectable
amounts of LNG under a recommended 15-day load spectrum before becoming critical. This
IGC update underlines the importance of fracture mechanics for LBB assessments and the
relevance of it for the industry, including classification societies like Lloyd’s Register.

1-1 State of the art

Four different phases of crack development can be distinguished, as shown in Table 1-1.
First, an initial flaw is present in the structure. This initial flaw is usually modelled as a
semi-elliptical surface crack because this shape is both often observed and is generally more
damaging than other shapes such as embedded cracks. The initial depth and half length of
the crack are denoted as respectively a1 and c1. Next, in phase 2, the crack grows up to
the point where either the crack becomes unstable, i.e. K ≥ KIc, or the remaining cross
section (ligament) becomes very small and the crack snaps through the wall. In phase 3, the
crack is redefined as a breakthrough crack. It is still assumed that the crack shape remains
semi-elliptical but the minor axis of the ellipse is now larger than the thickness of the wall.
During phase 4 the crack further propagates up to the critical crack size.
The generic calculation procedure to predict crack growth or propagation is illustrated in
Figure 1-2 for a general crack size a that for now refers to any sort of size parameter such as
the length, radius, depth or otherwise characteristic size parameter of a crack of any shape.
The procedure requires a large number of steps k = 1, 2, 3, ..., n where n is the total number
of calculation steps (Figure 1-3). First, as shown in sub-figure I of Figure 1-2, the SIF range
is calculated

∆K = Y∆σ
√
πa (1-3)

where ∆σ denotes the nominal stress range, ∆σ = σmax − σmin.3

Next, (sub-figure II) ∆K is used in a crack growth relation that has the general form of

da
dN = fR(∆K) (1-4)

2For plain stress conditions, the critical SIF is denoted as Kc and is somewhat higher than the KIc.
3Note the difference between the SIF of Eq. (1-1) and the SIF range of Eq. (1-3) that is defined as ∆K =

Kmax −Kmin.

3



4 Introduction

Table 1-1: Phases of crack development

1) Initial semi-elliptical surface flaw

2) Growth of the crack up to breakthrough

3) Re-characterisation at breakthrough

4) Propagation up to the critical crack size

where fR(.) is a function that depends on the load ratio R, although R often does not directly
appear in the function as a variable. More on crack growth relations can be found in Section A-
4. By combining the information obtained in steps I and II, the general crack size ak can
now be related to the crack growth (da/dN)k (sub-figure III). Step IV is to find the required
number of cycles ∆Nk to grow the crack with ∆ak. This number of cycles is found through

∆Nk =
∫ ak

ak−1
dN =

∫ ak

ak−1

da
da/dN (1-5)

Commonly, a 1-point integration method is used where only the value of (da/dN)k−1 is taken
for the growth during the full increment ∆ak. After following steps I-IV for each k up to
the desired final crack size an, the next step is to find the relation between a and N by the
summation of ∆Nk (sub-figure V)

Nk =
n∑
k=1

∆Nk (1-6)

Although this procedure is described for a crack with only one crack size dimension, a, the
same steps I-V are applicable for crack growth with two crack sizes, growth in length and
depth direction will be used as an example. Consider the semi-elliptical surface crack in
Figure 1-4 where a is no longer a general crack size but denotes the depth of the crack.
Furthermore c is the half surface length of the crack, A is the deepest point and C are the
surface points of the crack. The entire crack is subjected to the same number of load cycles
N , hence ∆Na,k = ∆Nc,k.

4
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Figure 1-2: Steps to calculate the crack size versus number of stress cycles

Figure 1-3: Numbering of the calculation steps in the numerical procedure

5



6 Introduction

Figure 1-4: Semi-elliptical surface crack

Because generally ∆KA 6= ∆KC and therefore da/dN 6= dc/dN , the crack does not grow
equally fast in a and c directions. To calculate these growth differences there are two options.
One is to specify a fixed value of ∆N and vary both ∆a and ∆c as described in [6, 7].4 The
other option is to select a crack extension of an− a1 or cn− c1 in respectively a or c direction
and divide this depth or length into a large number of increments ∆a or ∆c. In [8], ∆c is
fixed into equally sized steps and the growth in a direction is subsequently calculated from
∆a = fR(∆KA)/fR(∆KC) ·∆c. The same can be done by fixing ∆a, as shown in Figure 1-5,
and in- or decreasing ∆c up to the point where ∆Na = ∆Nc.

Figure 1-5: Crack growth with a fixed ∆a and a variable ∆c

Performing steps I-V requires an expression for the SIF throughout the crack development
process. For a few geometries with specific loading conditions, an analytical solution for K is
available. Analytical solutions have been derived for: a circular or elliptical crack in an infinite
solid, a circular ligament in an infinite cracked solid, a straight edge crack in a semi-infinite
sheet, a straight crack in an infinite sheet and an infinite row of collinear straight cracks in
an infinite sheet. For all other geometries one has to rely on FE models. Collections of these
FE-derived solutions can be found in the codes or in handbooks, see for instance Annex M in
[2] or [9, 10, 11]. For the SIF solutions used in this thesis, see Appendix B.

The applicability of these analytical, load-specific solutions can be expanded to any other
loading condition by using the weight function method proposed by Bueckner as cited in
[12, 13].5 Bueckner showed that the SIF can be calculated by integrating an arbitrary stress
field σ(x) (Figure 1-6) and a weight function m(x, a)

K =
∫ a

0
σ(x)m(x, a)dx (1-7)

4If fixed, ∆N ,∆a or ∆c are often given an equal size for each step k but this is not required.
5The method is applicable to any load type. If not a stress field but a point load is applied to the crack,

the Dirac function can be used to express the ’stress field’ as a point load in Eq. (1-7).
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1-1 State of the art 7

where x is the local coordinate in along the crack face. Throughout this research, local
coordinates are indicated with {x, y, z} and global coordinates with {X,Y, Z}, see Figure A-
1. An example of the use of global coordinates can be found in Figure B-3.

Figure 1-6: Weight function notations for a crack under an arbitrary uncracked stress field

In many cases, FE solutions can also be used to derive an - evidently - non-analytical weight
function, as shown by Glinka and Shen in [14, 15]. Weight functions of a variety of crack
shapes that appear in bodies of all sorts of geometries can be expressed as

m(x, a) = 2√
2π(a− x)

[
1 +M1

(
1− x

a

)1/2
+M2

(
1− x

a

)
+M3

(
1− x

a

)3/2
]

(1-8)

where M1,M2,M3 are constants that depend on the crack shape and the geometry of the
cracked body. The benefit of a weight function is that a SIF under any load condition can
be found, not only the load case for which the handbook solution is derived. The downside
is that the method requires integration and weight function solutions often require a large
number of constants for a reasonably accurate estimate.
Returning to the semi-elliptical surface crack of Figure 1-4, handbook solutions (e.g. [8, 16]) as
well as weight functions (e.g. [17, 18]) are available. The commonly used handbook solution
for this geometry is the one presented by Newman and Raju [8]. It is suitable for both
membrane and bending stresses, includes multiple configuration parameters {W, t, a, c, ϕ}
and is validated by experiments. The equation can be found in Section B-1 as well. The
Newman-Raju (hereafter ’NR’) formula, Eq. (B-1) is derived for 0 ≤ a/t < 1.0, but it is only
validated up to 0 ≤ a/t < 0.8 - for larger values validity of the solution is not established. FE
results of other research do confirm the validity of the NR solution up to 0 ≤ a/t < 0.8 but
find errors over 10% beyond this ratio, see [16, 18].
When the depth of the semi-elliptical surface crack nearly reaches the wall thickness, the
last remaining part of the ligament shears or fractures. Sharples and Clayton [19] conducted
experiments with 2.5 and 50 [sic] meter wide stainless steel plates. These experiments showed
that fatigue cracks, as long as the crack depth over length ratio is a/c > 0.05 right before wall
penetration, cracks can grow almost up to 100% of the wall thickness. Taking into account
that the applied unidirectional, in-plane tensile stress during these experiments was close to
σy, this could be the case for cracks with even smaller a/c-ratios.
Thus, cracks do often grow beyond a/t = 0.8, making it desirable to have an accurate SIF
estimate in this deep surface crack range of a/t ≥ 0.8 to predict the shape development of
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8 Introduction

the crack. Research has shown that for cracks with an initial crack size of a1/t < 0.1 and
a1/c1 > 0.05 the length of the crack at breakthrough is predominantly influenced by the stress
ratio σb/σm [20, 21]. For LBB calculations it is important to have a reliable estimate of the
shape and size of the crack at breakthrough when estimating the leakage rate and number of
stress cycles until reaching the critical crack size. omein To some extent, codes such as the
BS, provide some guidance on how to estimate the growth of a crack from an initial crack
up to a breakthrough crack. The BS prescribes Eq. (B-1) for 0 ≤ a/t < 1.0 up to the wall
thickness or to the point where the SIF, combined with plasticity effects, exceeds the critical
value. From this point, the crack is re-characterised in accordance with the recommendations
of [22], that are shown in Figure 1-7. It is assumed that at breakthrough the surface crack
length c does not change, so 2c∗ = 2cbb where * denotes the condition at breakthrough, and
subscript bb the condition right before breakthrough.

Figure 1-7: Re-characterisation of the crack at breakthrough, c.f. [2]

After breakthrough, the BS only gives qualitative information on the development of the crack
shape and, to the best of this author’s knowledge, no other codes or standards prescribe a
calculation method for crack propagation right after breakthrough. However, review of LR’s
internal reports and the literature research yielded four ’unofficial’ solutions that will be
briefly discussed.
For the first method, described in Chapter 8 of [6], it is assumed that the NR solution may be
used up to full wall thickness. Directly after breakthrough, the crack becomes immediately a
straight through-thickness crack. This method overestimates the leakage rate as it predicts a
larger crack at the back side compared to the actual case.
Secondly, Figure 1-8 illustrates a method developed by LR [7] that cuts the crack growth
off before reaching 100% of the wall thickness and fixes the a/c-ratio afterwards. A cut-
off value of abb = 0.9t is used, a value that is also used in [22] and in a commercial LBB
software package lbb pipe. The critical crack size and crack propagation are calculated by
using Eq. (1-2) and (1-3) where Y includes, among other factors, the analytical geometry
factor for a straight centre crack of Y = 1.6 As shown in Figure 1-8 the a∗/c∗-ratio is fixed

6Note that this is lower than the geometry factor of the NR equation for surface flaws between a/t = 0.9−1.0.
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1-1 State of the art 9

after breakthrough, which is an enhancement compared to the method of [6], where simply
c∗2 = c∗ was used. The shorter length at the back, 2c2, is used to determine the crack opening
area which is in its turn is used for leakage rate estimations. Length 2c2 is taken to avoid
overestimating the leakage rate and herewith the detectability of the crack. For a short crack
(c < 5t) under a pure tensile stress load, the crack does propagate in a similar fashion to that
of Figure 1-8, as was also qualitatively described in [2, 22]. However, for longer cracks under
a pure tensile stress the a/c-ratio will actually increase. If a positive bending component is
present the a/c-ratio decreases, indicating that the method of Figure 1-8 will be estimate a
higher leakage rate, hence a better detectability of the crack, than the actual situation. This
non-conservativeness w.r.t leakage rate calculation is further aggravated by this method to
deal with combined bending and membrane stress - the bending stress is added as if it were
an extra tensile stress component, so σm = σm+ |σb|. While this is a safe assumption in terms
of estimating the critical crack size, the leakage rate will, as it was for the first method, be
overestimated.

Figure 1-8: Re-characterisation of the crack at breakthrough when a∗/c∗ is fixed.

A third solution to estimate the propagation is to come up with a SIF solution for this
particular after breakthrough-shape and use a crack growth relation to estimate the growth.
This estimate for the SIF for only tensile stresses was proposed by Ando et al. in [23, 24] and
was further developed so that it could incorporate both bending and tensile stress conditions
in [25], see also section Section B-3. Similar to the second method, the through-thickness
crack is again simplified as a semi-ellipse where a > t, as shown in Figure 1-7 and 1-8. Their
formula is not directly derived from FEM but is an assembly of other handbook solutions.

A fourth solution was found in Shingai et al.7 [20]. They use a SIF solution for the semi-

In other words, when disregarding the influence of any other factors, the estimated crack growth rate at point
C is lower compared to the recommendations of the BS (Figure 1-7)

7The article is in Japanese but the abstract, table and graphs are in English. A Dutch translation of article
is available on request.
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10 Introduction

elliptical surface crack that was proposed by Shah and Kobayashi, cited in [20]. The approach
followed by Shingai et al. is to use this SIF solution for point A and C at breakthrough
throughout the propagation phase, i.e. using a/t = 1.0 and ϕ = 90 for point A and ϕ = 0 for
point C of Figure 1-7. Since the Shah and Kobayashi formula was not intended to be used
after breakthrough and their approach is not validated with test results either, this method
is not considered further.

To summarise, the industrial codes offer only limited guidance for LBB assessments on how
to deal with deep surface cracks or semi-elliptical through-thickness cracks. In absence of
this, other solutions that are not fully satisfactory either have been proposed.

1-2 Scope of work

This research focuses on the LBB assessment of spherical aluminium LNG containment sys-
tems on ships that are commonly referred to as Moss tanks. See Figure 1-9 for a representative
example of such a tank. A description of an LBB assessment applied to this example can be
found in [26], in which two highly stressed locations in a Moss tank were assessed for their
LBB capacity and found to be safe.

Figure 1-9: LNG spherical tank with an inner diameter of 35 m, c.f. Kaufman et al. [26]

Moss tanks have a radius of approximately 20 m, a wall thickness between 27-60 mm and
are attached to the LNG carrier through a thick ’skirt’ of approximately 170 mm thickness
around the tank its equatorial ring. The LNG is stored at a temperature of -163 ◦C. The
tank is fully insulated and a gas tight barrier covering the tank insulation should contain any
leaked fluid. Although Moss tanks are equipped with gas detection devices as well, the main
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1-2 Scope of work 11

leakage warning system is a so-called ’drip tray’ which is installed under the tank and where
the liquefied gas is collected and detected.

Fatigue damage is primarily induced by the inertial loading of the liquefied gas under the
movements of the ship and by the deformation (hogging or sagging etc.) of the ship. Repeated
filling and emptying of the tank barely contributes to the fatigue damage and neither is
sloshing an issue because it a requirement that the tank is filled to almost 100% of its capacity.

When performing an LBB assessment, calculation steps like the determination of the stress
spectrum or the estimation of material parameters, are all equally important but are con-
sidered to be given input parameters within the scope of this research. The emphasis will
be on the prediction of the crack (shape) development, the first of the aforementioned three
aspects of an LBB assessment. In an indirect way this also touches upon the second and third
aspect: the amount of leakage is related to the crack opening area, so it is necessary to have
a reliable estimate of c2, and to determine whether there will be enough time to detect the
leak or take emergency measures depends on the accuracy of the estimated relation between
c and N . Howver, topics directly related to aspects 2.) and 3.) such as the estimation of the
leakage rate, assessing the adequacy of the leak detection, or the expected crack propagation
under a 15-day load spectrum, will not be considered. Calculations for these two aspects
rely heavily on the accuracy of the assumed stress spectrum in the tank, local geometry and
the availability of a reliable, experimentally obtained crack growth relation and many other
values that are material-depend and situation-specific.

For this research, both a numerical calculation scheme and an FE model are developed. In
order to keep the models manageable, the following simplifications are made:

– The geometry in the vicinity of the crack is simplified as an infinite, straight plate.
Locally, the curvature of the tank is negligible given the large diameter of the spherical
tank.

– The plate material is considered to be linear-elastic. The design stresses for plated
structures like this are much lower than the yield stress, hence plasticity is not consid-
ered to have major impact unless the depth of a surface crack almost reaches the wall
thickness or when high residual stresses are present.

– Damage mechanisms other than fatigue and fracture, like corrosion or impact load or
dynamic effects are not considered.

– There are no other discontinuities, like welds or attachments, other than the fatigue
crack.

– No multi-axial stresses but only σZ , the nominal stress in-plane of the plate material, is
considered and it varies only in X (depth) direction, see Figure 1-9 or B-3. For brevity,
subscript Z is hereafter omitted.

– The effects of nominal higher order stresses are not considered because their contribution
is small w.r.t the nominal membrane and bending stresses in LNG tanks. No external
pressures are modelled.

– The stresses are either of constant amplitude throughout the crack development or the
amplitude is a function of the crack length at the crack initiation side.

– No crack closure effects are taken into account. A plastic zone around a crack-tip can
act as a compressive, crack closing stress even when the nominal stresses are tensile.

11



12 Introduction

– Differences in the crack propagation rate that exist along the thickness (in X-direction)
are ignored.8

– Cracks grow symmetrically.

– The crack will be fully opened during all stress cycles. Roughly said, this means that
the nominal stress acting on the crack area is tensile, i.e. σmin ≥ 0.

A minor caveat to the last point should be made: it is not true that a crack can only be
fully opened when σmin ≥ 0. As an example of this, consider a semi-elliptical surface crack
that is predominately subjected to a large nominal bending stress and possibly a minor -
either tensile or compressive - membrane stress component. In this case, the entire crack can
be opened despite that a small part of the crack face is subjected to a compressive stress.
’Membrane stress’ can therefore refer to both a relatively small uniform compressive stress
or a uniform tensile stress. If only the latter is considered, it is explicitly referred to as a
(uniform) tensile stress.

1-3 Research objective

The first aim of this research is to predict the crack shape of surface cracks more accurately
by using a different numerical calculation method than the ones described above. This new
scheme will be introduced in Chapter 2 where the perceived shortcomings of other methods
will be addressed. In Chapter 4 the performance of the new numerical calculation scheme is
assessed in comparison with experimentally determined results of the crack shape at break-
through. The objective is to:

1-a) Solve perceived shortcomings of other numerical calculations methods.

1-b) Improve the numerical calculation method so that it performs well in comparison with
experimentally determined results.

In order to estimate crack growth before breakthrough more accurately, several FEM are
build to assess the validity of two different expressions to predict the SIF. In Chapter 3,
semi-elliptical surface crack FEM results of the SIF are compared to two other solutions.
One is a commonly used SIF solution proposed by Newman and Raju [8], the other one was
proposed by Wang [18] and is only applicable to deep surface cracks with a depth in the range
of (0.6 ∼ 0.8) ≤ a/t < 0.95. In Chapter 4 the crack shapes at breakthrough estimated by first
only using the NR solution and then by replacing the NR solution by the one of Wang in the
range of 0.6 ≤ a/t < 0.95, will be compared to experimental results found in the literature.
The goal is then to:

1-c) Assess the influence on the accuracy of the estimations for crack shape and growth when
the SIF is not only predicted by the NR solution, but also by the Wang solution in the
range of 0.6 ≤ a/t < 0.95.

8This crack closure effect is a 3-D phenomenon influenced by plasticity: at the material surfaces where
plane stress conditions prevail, a larger plastic zone around the crack-tip is present compared to the inner
material under plane strain. Hence, a closed crack opens first mid-thickness and propagates faster. Under
variable amplitude loading, this effect is considerable. More on this thickness effect can be found in Chapter
11 of [6].
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1-3 Research objective 13

The second aim is to improve the accuracy of the estimated crack propagation after break-
through. Of the four aforementioned solutions (straight through-thickness immediately after
breakthrough; cutting growth off at abb = 0.9t and fixing a∗/c∗; using an assembly of hand-
book SIF equations to estimate the SIF for the crack after breakthrough; using the Shah
and Kobayashi formula), the second and third will be further evaluated for their accuracy in
comparison with experimental data in Chapter 4. In addition to these two methods, a new
SIF formula will be proposed in Chapter 3, one that is based upon FEM of this particular
semi-elliptical through-thickness shape. So the objective is to:

2) Develop a new FE-derived SIF solution for a crack after wall penetration and asses the
accuracy to estimate crack propagation of both this new as well as two existing solutions
in comparison with experimentally obtained data.

The results will then be used to make recommendations for improving existing LBB proce-
dures.
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Chapter 2

Numerical modelling of crack
development

The generic calculation procedure to predict crack development that was briefly introduced in
the previous chapter, will be discussed in more detail for each phase shown in Table 1-1 and
the specific features of the numerical calculation procedure that is developed for this research
will be highlighted. The next section first introduces some terminology and general aspects
for the numerical modelling of crack development.

2-1 Calculation procedure, phases, steps and calculation steps

The entire process of 1.) selecting input parameters, 2.) numerically calculating crack growth,
3.) specifying the rules for re-characterisation of the breakthrough crack and 4.) numerically
calculating crack propagation, is referred to as the numerical modelling of crack development.
If only the last three aspects are considered, this is referred to as carrying out a numerical
calculation procedure or numerical calculation scheme. The numerical calculation procedure
is carried out by matlab, a program that can quickly process a large number of numerical
calculations and can easily generate graphical output. The numerical model is subdivided
in 4 phases (Table 1-1). Phase 2 and 4, respectively crack growth and propagation, can be
modelled with the steps of Figure 1-2. The incremental steps, k = 1, 2, 3...n, as illustrated in
Figure 1-3 are referred to as calculation steps to distinguish them from the steps of Figure 1-2.
Within a calculation step, it is often necessary to use iteration steps to obtain a new value,
these are denoted in the matlab program by i.
The basic assumption to calculate crack development, is that the crack is loaded by the same
number of load cycles, i.e. Na = Nc or Nc = Nc2. The number of load cycles may vary each
calculation step k.
As shown in Figure 1-3, ∆a1,∆N1 and also ∆c1 are added as virtual increments with a value
of 0 to be consistent with the matlab program. matlab does not recognize a syntax with
calculation step number 0 and therefore a0,∆K0 cannot be attached to a value.
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16 Numerical modelling of crack development

The specific method followed for each step of Figure 1-2 will now be further explained for the
four phases.

2-2 Phase 1: Presence of an initial semi-elliptical surface flaw

Before any growth can be modelled, some input regarding crack dimensions and other inputs
are required. An overview is given in Table 2-1. More input and calculation options will be
discussed in the next sections.

The experimental data that will later be used to assess the numerical model, is given for
finite width specimens, therefore a value for W is required to correct for a finite width. When
modelling a spherical tank, the value of W should be given a value much larger than the final
crack size so that is will not affect the outcome.

As pointed out in the introduction, ligament failure can occur when the crack depth reaches
almost the wall thickness or when KA,max = Kc or KC,max = KIc. Because the scheme only
uses SIF ranges and not Kmax, the values of Kc and KIc are converted into something that
one could unofficially call ’critical SIF ranges’

∆Kc = Kc −R ·Kc (2-1a)
∆KIc = KIc −R ·KIc (2-1b)

If ∆KA is still smaller than ∆Kc at a = abb it is assumed that this very thin remaining part of
the cross section fails anyhow. This research adopted abb = 0.995t for all calculations, except
when using the ’fixed a/c ratio’ model of Figure 1-8 where it is abb = 0.9t.

2-3 Phase 2: Crack growth

As mentioned in the introduction, either ∆ak, ∆ck or ∆Nk should be known to calculate the
crack growth for a two-dimensional crack. ∆ak is selected as the ’known’ parameter in this
procedure, because the distance abb− a1 is known in advance, unlike cbb− c1.1 Using ∆Nk as
a known can be troublesome because the growth rate may vary considerable between that of
an initial flaw and one that approaches criticality. Increasing ∆Nk as k increases, would solve
this problem although it is hard to estimate the increase rate beforehand. Another solution
is to use a small ∆Nk throughout the calculation but this is requires more computation time
as the increments become increasingly small as well. Moreover, averaging the crack growth
over a reasonable number of cycles better reflects the empirical nature of growth relations
and the error margin of the approximative SIF solution. Again, it can be difficult to judge
in advance whether a selected ∆Nk is indeed small enough yet not too small for a reliable
growth estimate.

This considered, the size of ∆ak is fixed and is in most cases given an equal value for each k.
Though an equal spacing rarely causes problems for growth calculations, there is an option
in the model to use a logarithmically in- or decreasing ∆ak. For a rapidly increasing ∆KA,
the first option prevents that ∆ak becomes too small when approaching the wall thickness

1When ∆Kc is reached before the initially selected abb, the algorithm decreases abb until ∆KA < ∆Kc.
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2-3 Phase 2: Crack growth 17

Table 2-1: Input for the numerical model

Material ∆Kth Threshold SIF range
KIc,Kc Critical SIF (plain strain/stress)
Ĉ, m̂ Parameters for crack growth model
E, ν Material parameters
σy Stress level at which the material yields
NRC Newman-Raju correction in c-direction (optional)

Geometry a1, c1 Initial notch depth and length
t,W Plate thickness and width
abb Crack depth right before breakthrough if ∆K < Kc

cmax Discontinue calculation at a sub-critical crack length (optional)

Loading ∆σt,∆σb Constant or σ = f(c)
R Load ratio

Calculation ∆Na,2 No. of load cycles during the first increment
∆N∗c No. of load cycles during the first increment after breakthrough
INT 1 or 2-point integration of da/dN and dc/dN
SIFM SIF model after breakthrough (AFNTO, FIXED or FEM)
a∗/t Re-characterisation a∗/t instead of BS rules (optional)
log Use logarithmic spacing in thickness direction (optional)
TP Transition point to the Wang formula (optional)
PC Use a small scale plasticity correction for the SIF (optional)

and the increment gets ’consumed’ by the crack growth within only a few cycles which causes
relatively large errors when N is rounded-off. Similarly, when a large positive bending stress
is present, ∆KA decreases during crack growth. Decreasing ∆ak as k increases will then
reduce computation time, as less iteration steps are required to comply with ∆Na = ∆Nc.2

Step I: Relating the crack size and geometry to the SIF The SIF is estimated with the
NR formula or as a combination of the NR and Wang formula. Whether or not to use the
latter can be specified in the program by inserting a value for a/t = TP within the validity
range of the Wang formula (0.6 ≤ TP < 0.95); selecting a TP value in the range 0.95 ≤ TP ≤ 1
will result in using the NR formula in the range a/t ≤ 1.0, hence for each of the ∆Kk.

Though the crack is modelled by LEFM, the numerical model has an option to use a small
scale yielding plasticity correction (PC). This corrects for the presence of a small plastic zone
around the crack-tip by placing the crack-tip in the centre of the plastic zone, raising the stress
intensity to an effective stress intensity factor Keff . Details can be found in Section A-3.

2The first guess for ∆ck is based upon the previous value ∆ak−1, as will be explained later in this section.
Since c grows much faster than a when a large positive bending component is present, an equal spacing of size
of ∆ak would lead to rapidly increasing sizes of ∆ck. It would then require many iterative steps to arrive at
this new, increased length increment ∆ck. A decreasing ∆ak compensates for this rapidly increasing ∆ck and
therefore reduces the required number of iterative steps.
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18 Numerical modelling of crack development

Step II: Relating the SIF to the crack growth The Paris relations [27]
da
dN = ĈA(∆K)m̂ (2-2a)

dc
dN = ĈC(∆K)m̂ (2-2b)

are used to estimate the crack growth rates. One of the options is to use a different ĈC
in length direction in Eq. (2-2b) as suggested in [8]. It is therefore here referred to as the
’Newman-Raju correction’ (NRC).

ĈC = 0.9m̂ · ĈA (2-3)
Only the Paris relation is for now considered in the calculation scheme because the material
parameters Ĉ, m̂ of the experiments that will be used for validation, have been published
for this relation as well. Adding other relations does not require much effort should this be
needed for a later research.

Step III and IV: Relating the crack size to the growth and obtaining ∆Nk Two different
integration options (INT) for Eq. (1-5) are available, both shown in Figure 2-1. The first one
is the conventional 1-point integration where the crack growth rate at the beginning of the
increment is used throughout the increment

∆Na,k = ∆ak
(da/dN)k−1

(2-4a)

∆Nc,k = ∆ck
(dc/dN)k−1

(2-4b)

Figure 2-1: Integration methods to find ∆N , see also Figure 1-2

The 2-point integration method averages the values of the crack growth rate at the beginning
and end of the increment

∆Na,k = ∆ak
1
2

[
(da/dN)k−1 + (da/dN)k

] (2-5a)

∆Nc,k = ∆ck
1
2

[
(dc/dN)k−1 + (dc/dN)k

] (2-5b)
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2-3 Phase 2: Crack growth 19

Both methods require knowledge of a yet unknown ∆c. It is found by iteration, as is illustrated
in Figure 2-2. Both ∆N and ∆c are found through this calculation scheme, only for k = 2 the
program requires an initial number of load cycles ∆Na,2. Depending on the input variables,
∆Na,2 varies in the order of 102 ∼ 104 stress cycles. The number of calculation steps before
breakthrough nbb is then increased up to the point that

(abb − a1)/nbb
(da/dN)k−1

= ∆Na,2 (1-point integration) (2-6a)

(abb − a1)/nbb
1
2

[
(da/dN)k−1 + (da/dN)k

] = ∆Na,2 (2-point integration) (2-6b)

Figure 2-2: Crack growth calculation flowchart

Not shown in the flowchart is that in each calculation step it is checked whether ∆K > ∆Kth,
∆KA < ∆Kc and ∆KC < ∆KIc, with reference to Eq. (2-1).

Step V: Relating the crack size to Nk After rounding-off each ∆Nk to integers, the cycles
are summed and some checks are carried out:
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20 Numerical modelling of crack development

– The difference between Na and Nc may not exceed 0.1% of the total N ,

|Na −Nc| < max(Na, Nc) · 10−3

– The difference between ∆Na,k and ∆Nc,k may not exceed 0.1 on average,∣∣∣∣∣
∑nbb
k=2 ∆Na,k −∆Nc,k

nbb

∣∣∣∣∣ < 0.1

– The minimum number of N is 10 in each calculation step;
– The error due to the rounding to integers in each k may not exceed 0.01 on average,∣∣∣∣∣

∑nbb
k=2 ∆Nk −∆Nk,rounded

nbb

∣∣∣∣∣ < 0.01

If all conditions are met, the calculation continues to the next phase.

2-4 Phase 3: Re-characterisation of the crack at breakthrough

At breakthrough it is assumed that during a limited number of cycles (N = 10−100) the crack
suddenly snaps through. If not otherwise specified, the rules of the BS for non-ductile tearing
are followed, see Figure 2-3.3 When experimental measurements indicate that a different c∗2
should be used, a value of a∗/t in accordance with the measurement is used.

Figure 2-3: Re-characterisation of the crack at breakthrough

3The BS recommends the use of a different re-characterisation for ductile tearing situations, that occur
when the load during the stable crack growth stage is very large compared to the yield load.
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2-5 Phase 4: Crack propagation after breakthrough 21

2-5 Phase 4: Crack propagation after breakthrough

After breakthrough, the length of ∆c2,k is the unknown variable and ∆ck is now fixed. Length
cc−c∗ is known as the difference between the critical crack length cc (Eq. (1-2)) and the length
at breakthrough. Optionally, a different value for cmax can be used to cut-off the calculation
before cc. For most loading conditions, a linear spacing of ∆ck is recommended.

Step I: Relating the crack size and geometry to the SIF After breakthrough, three options
can be used for the SIF estimate. The first is to use the approximative equation of Ando,
Fujibayashi, Nam, Takahashi and Ogura (AFNTO), the authors of the first paper with this
solution [23]. Their solution is hereafter referred to as the AFNTO solution. Alternatively
one can use the ’fixed a∗/c∗ model’ or the equation that is found by FE modelling for this
research. This FEM based equation will be treated in Section 3-3.

Step II - V: Relating the SIF and crack length to the crack to the propagation rate,
obtaining ∆Nk and summation The Paris relation Eq. (2-2) is again used to estimate
crack propagation. The steps for crack propagation after breakthrough are similar to those of
crack growth. An initial ∆N∗c should be selected for the first step after breakthrough, usually
it is in the order of 80 ∼ 400.

The same procedure as shown in Figure 2-2 is followed, but {a,∆a,∆KA,∆Na} are now
replaced by respectively {c2,∆c2,∆KD,∆Nc2}, with reference to Figure 2-3. The checks are
identical to the ones for the crack growth phase.
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Chapter 3

Modelling cracks with finite elements

As mentioned in Chapter 2, crack growth can be estimated with an empirical formula that
relates the SIF range to the crack growth rate. The SIF, and subsequently the SIF range in
this relation, can be obtained through an FE analysis.

Three models that are relevant for crack growth modelling will be introduced in the next
sections. The first model shows, by comparison with an analytical solution, that the FE
method and software package are indeed suitable to accurately approximate the SIF. The
second model of a semi-elliptical surface crack compares the FEM results of the SIF to pre-
dicted SIF values by the formulae of NR and Wang. Thirdly, in order to derive a ’handbook’
solution, a set of FEM of semi-elliptical through-thickness cracks are build and used to derive
a approximative solution. This solution is then compared to the AFNTO formula, which is
only an assembly of other FE-derived handbook solutions.

All FE analyses are carried out with ansys, release 16.1. The models use three-dimensional
isoparametric solid elements with reduced integration to increase the computation speed, and
are linear-elastic.

3-1 Validation of the finite element method and software

A validation model serves two purposes: (1) it validates the FE method and software package
ansys and (2) it shows which mesh and/or element types can give the most accurate solution
in comparison with an analytical solution. As said, only a few analytical solutions exists
and all analytical solution are derived for a geometry with one or multiple boundaries at an
infinite distance from the crack. The first issue that arises is that the FE method can only
model (anti-) symmetry boundaries. The analytical solution of infinite row of collinear cracks
(Figure 3-1) limits the problem of modelling infinity to only one boundary: the infinite height
H at which the nominal stress acts. This geometry is therefore selected to validate the FE
software and model. H in the FEM is selected as H = W in order to study the effects of the
finite height.
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24 Modelling cracks with finite elements

Figure 3-1: Infinite sheet with an infinite row of collinear cracks

The SIF of an infinite row of collinear cracks is given by [9, p. 170]

K = σ
√
πa ·

√
2W
πa

tan
(
πa

2W

)
(3-1)

To investigate the influence of the mesh and element type, three different configurations
are modelled, see Figure 3-2 for examples of the meshes. An example ansys script of the
validation models is given in Appendix C. The mesh densities are chosen such that the result
does not improve much further when the mesh is further refined. Between brackets are the
element names used in ansys; reference is made to its manual for a detailed description of
these elements [28, Part I: Element Library]. The three configurations are:

– A structured mesh with 20-noded elements (SOLID 186)

– A structured mesh with 8-noded elements (SOLID 185)

– An irregular mesh with 20-noded elements (SOLID 186)

Four different crack sizes are modelled, a/W = {0.05, 0.1, 0.2, 0.4}, and W is kept constant.
The mesh density is similar the for four models with the same configuration. The SIF data
is retrieved from the crack-tip node at mid-thickness. Neither the thickness nor the number
of elements in thickness direction affect the SIF solution at this node, as was demonstrated
by the simulations.

Two ways to obtain K are compared: directly from the stress field around the crack or
through a J-contour integral. These methods are briefly explained in Appendix D. The
validation models and the models that will be presented in the next sections, are considered

24



3-1 Validation of the finite element method and software 25

Figure 3-2: Left Structured mesh with 20-noded elements; a/W = 0.05
Centre Structured mesh with 8-noded elements; a/W = 0.2
Right Irregular mesh with 20-noded elements; a/W = 0.4

to be plane strain1, so when using the J- contour method, K is found through

K =
√

JE

(1− ν)2 (3-2)

For both the stress field and J-contour integral method, the average of the first three converged
contours are used. It is commonly recommended to use only the values of the converged
contours, the non-converged ones are considered to be unreliable. The SIF is estimated in
FE software by the integration of contours. These contours are formed across a path that
connects the nodes surrounding the crack-tip node. For more details on this, reference is
made to Appendix D.

In Table 3-1 the ratios between the SIF obtained through FEM by using two different methods
and the analytical solution of Eq. (3-1) are given.

The results in Table 3-1 show that FE software package ansys can accurately approximate
K when compared to an analytical solution. The results of the two smallest cracks, a/W =
{0.05, 0.1}, show that either method and configuration give very accurate results, even when
the mesh is irregular or when a lower order element is used. When the crack size increases,
both methods increasingly overestimate K which can be explained by the increasing a/H
ratio, i.e. the limited height and the larger crack allow the model to deform more than

1In plane strain conditions, K is somewhat higher than it is under plane stress conditions: K =√
JE/(1− ν2) ≈

√
JE/(1− 0.32) ≈ 1.05

√
JE
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26 Modelling cracks with finite elements

Table 3-1: Ratios between the SIF from FEM and analytical SIF of an infinite row of collinear
cracks for different model configurations and crack sizes.

a/W KFEM/Kanalytical

KF EM through stress field KF EM through J-contour integral

20-node structured 0.05 1.001 0.999
" 0.1 1.004 1.003
" 0.2 1.016 1.013
" 0.4 1.046 1.044

8-node structured 0.05 0.994 0.990
" 0.1 1.004 1.003
" 0.2 1.029 1.027
" 0.4 1.047 1.045

8-node irregular 0.05 0.996 0.994
" 0.1 1.005 1.003
" 0.2 1.016 1.016
" 0.4 1.046 1.046

when the height is infinite and this reduced stiffness leads to more crack opening and a SIF
that is somewhat higher than the analytical one. This can be avoided by increasing the
height to approximately 10a or higher, though this consequently increases the number of
elements, nodes and computation time. The differences between the three model types are
rather small, although using a J-contour integral, 20-noded elements and a structured mesh
performs slightly better than the other configurations. This configuration is therefore selected
for all FE analyses.

It should be noted that the 20-noded element models require considerably more nodes in
comparison with the two other models, so the results do not reflect the accuracy of the
models w.r.t. the number of nodes. In hindsight, this would have been a relevant point to
consider. However, the decision to use 20-noded elements is not solely based on the results of
Table 3-1 but this is also recommended by ansys, see [28, 1.2.1.2.].

3-2 FEM of semi-elliptical surface cracks

The FEM of the semi-elliptical surface crack of Figure 1-4 is validated by the analytically
derived SIF solution of an embedded ellipse

K = σ

√
πa

Q
· fϕ (3-3)

where

fϕ =
[(

a

c

)2
cos(ϕ)2 + sin(ϕ)2

]1/4

(3-4)
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3-2 FEM of semi-elliptical surface cracks 27

and

Q =
∫ π/2

0

√√√√1−
[
1−

(
a

c

)2
]

sin2 ϕ dϕ (3-5)

A closed form solution of Q does not exist but a close approximation to Eq. (3-5) is given by

Q = 1 + 1.464
(
a

c

)1.65
(3-6)

Figure 3-3 shows both an example mesh of a validation model and a semi-elliptical surface
crack. Because of its symmetry, only 1/8th of the geometry of the embedded ellipse and 1/4th

of the surface crack needs to be modelled. The mesh of the semi-elliptical surface crack is
almost identical to the validation model, except that only the thickness t is modelled. An
example ansys script file can be found in Appendix E.

The licence type of ansys limits the number of nodes of each model to 32,000. This is
enough to obtain reasonably accurate results compared to the analytical solution but this
limitation forces the user to find a balance between accepting some poorly shaped elements
and compromising on the distance of the boundaries that should ideally be at H/a > 10,
W/c > 10 and t/a > 10. An element is for instance poorly shaped when the aspect ratio
becomes too large (i.e. one of the three dimensions is much smaller or larger than the other
two dimensions) or when it is very skewed. To avoid a large number of poorly shaped elements,
the distance of the boundaries is less than ideal in each direction. For all models W = 4c and
the half height is of the order H = 2c ∼ 4c. The thickness of the model of an embedded ellipse
is T = 6c+2a. W,H and T are selected such that they barely affect the stress field around the
crack-tip. Nevertheless, the models still have a less-than-ideal thickness, height and width,
and therefore a correction factor for this is applied as well. The following correction factor is
originally only used for the NR solution (see Eq. (B-4) or [8]), but is here considered to be a
reasonable approximation for an embedded ellipse as well

fw =
[
cos

(
πc

2W

√
a

t

)]−1/2
(3-7)

To make a comparison with the plots in [18], a/c = {0.2, 0.4}. Correcting Eq. (3-3) with fw
of Eq. (3-7), the reference solution for the elliptical validation models becomes2

Kref = σ

√
πa

Q
· fφ · fw (3-8)

The SIFs of the elliptical validation models are within 1.0% error with respect to Kref for
each node along the crack-tip when obtained through the J-contour integral. When K is
retrieved through the stress field, K has a maximum 1.2% error with respect to Kref for each
node.

2Inserting W = 4c; t = T/2 = 3c + a and a/c in Eq. (3-7), fw = cos (π/32)−1/2 ≈ 1.0024 and fw =
cos{(π/8)

√
2/17}−1/2 ≈ 1.0046 for respectively a/c = 0.2 and a/c = 0.4, hence the impact of the finite

boundaries on the SIF is still rather small and is even smaller if the actual thickness T instead of T/2 had
been used.
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28 Modelling cracks with finite elements

Figure 3-3: Top - Left Embedded ellipse where a/c = 0.2 for validation of the semi-elliptical
surface crack with a/t = 0.7
Top - Right Semi-elliptical surface crack with a/c = 0.2, a/t = 0.7
Bottom Close-up of the first layer of elements

The loading, shown in Figure 3-4, is expressed as

σ(X) = σ

(
1− X

a

)n
(3-9)

A uniform (n = 0) and a linear (n = 1) stress distribution are considered.

The Boundary Correction Factor (BCF) of present FEM results as well as the NR and the
Wang formula (Section B-2) for a/c = 0.2 and a/c = 0.4, for both the deepest point A and
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3-2 FEM of semi-elliptical surface cracks 29

Figure 3-4: Stress distribution σ(X) applied to the FEM of a
Left Semi-elliptical surface crack
Right Semi-elliptical through-thickness crack

the surface point C, are plotted in Figures 3-5 and 3-6. The BCF is here defined as

Y = K

σ
√
πa/Q

(3-10)

Figures 3-5 and 3-6 also show the FEM results of Wang and Isida et al. [16].3,4 The width
correction fw is divided out of the plotted results so the shown BCF is for a plate with an
infinite width.

The FEM results of Wang are likely to be more accurate because these are not only validated
by an embedded ellipse but also by a degenerated 2-D model of the crack. This 2-D model
result is compared to a handbook solution of a deep edge crack. Furthermore, the Wang
FEM are higher and wider and hence better resemble an infinite solid. Despite some minor
differences, the Isida et al. and present FEM confirm the predictions of the NR solution up
to a/t = 0.8 but for deeper cracks, the Wang formula predicts the FE results better.

3The FEM results Isida et al. are shown if available, otherwise the BCF found by their FEM derived
prediction formula is taken.

4In the article of Wang [18], FE results are added in a similar fashion. The source is cited as [16], except
that in the Wang article the names of the authors of this source are given as Shiratori, M. , Niyoshi, T.
and Tanikawa, K. However, the original source cites the authors as Isida, M. , Noguchi, H. and Yoshida, T.
Furthermore, in the Wang article, FE solutions are given for both point A and C but only for the special
case of a/c = 1.0 solutions for point C are given in [16]. The article of Wang gives the impression that all
BCF of ’Shiratori’ in Figures 3 - 6 is obtained through FEM but in [16] some FEM results are omitted and
approximated by a FEM derived formula instead.
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30 Modelling cracks with finite elements

Figure 3-5: Comparison between the BCFs predicted by formulae and by FEM for a/c = 0.2
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3-2 FEM of semi-elliptical surface cracks 31

Figure 3-6: Comparison between the BCFs predicted by formulae and by FEM for a/c = 0.4
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32 Modelling cracks with finite elements

3-3 FE models of semi-elliptical through-thickness cracks and com-
parison with the AFNTO model

The third set of models aim to estimate the SIF of semi-elliptical through-thickness cracks
(Figure 3-7). These estimated K will be fitted into BCF prediction formulae. This set of
FE-derived BCF formulae is then compared to AFNTO SIF solution found in the literature
(see also Section B-3).

Figure 3-7: Semi-elliptical through-thickness cracks

The stress field applied to the FEM, shown in Figure 3-4, is given by

σ(X) = σ

(
1− X

t

)n
(3-11)

where n = 0 for a uniform, and n = 1 for linearly decreasing tensile stress field. To avoid any
contact between the crack surfaces, the crack is only loaded by tensile stresses.

Similar to the semi-elliptical surface crack where the growth is solely determined by the SIF
at the depth and surface points, it is assumed that the SIF at points C and D only are
sufficient to predict shape development of the propagating crack. The shape is assumed to
remain semi-elliptical.

The BCF is defined as the Y in Eq. (1-1).5 It is assumed that the BCF depends on four
different input variables: the first is the loading condition (n = 0 or n = 1), the second is the
location (point C or D) and the other two are the ratios a/c and a/t. a/t can be expressed
in terms of c2/c as well

c2
c

=
√

1−
(
t

a

)
(3-12)

5The BCF, which is the normalised SIF is expressed as in Eq. (3-10) when it is normalised to the analytical
solution of a circular crack in an infinite solid. In this case the BCF is normalised to the analytical solution of
a straight through-thickness crack in an infinite plate.
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3-3 FEM of semi-elliptical through-thickness cracks 33

The following ratios are analysed: a/c = {0.4, 0.6, 0.8, 1.0, 1.25, 1.5, 1.75, 2.0} and c2/c =
{0.24, 0.28, ..., 0.92}, c2/c = {0.94, 0.95, ..., 0.99} so a total of 8 × 24 = 192 models are used
for curve fitting a BCF-relation.

The models are validated by the analytical solution for a straight, through-thickness centre
crack that is corrected for its finite width, see also Section B-4. The reference solution for the
validation model is then given by

Kref = σ
√
πc · fw

(
c

W

)
(3-13)

where the width correction fw for a straight centre crack is given by

fw

(
c

W

)
=
[
1− 0.025

(
c

W

)2
+ 0.06

(
c

W

)4
] [

cos
(
π

2
c

W

)]−1/2
(3-14)

All models have a width of W = 6c. For the (straight) validation models the correction is
therefore constant at fw = 1.01683. Hence, also Kref remains uniform along the thickness.
For the semi-elliptical through-thickness models fw varies along the crack-tip because instead
of c in Eq. (3-14), the ’local’ c is used, i.e. the respective Y -coordinates of each of the crack-tip
nodes.

The SIF values are obtained by the J-contour integral. This method is not suitable to retrieve
the SIF value at the nodes where three free surfaces meet (i.e. point C and D), see Appendix
D for a brief explanation why this is the case. The SIFs at these points are therefore assumed
to have the same value as the first neighbouring crack-tip node.

The through-thickness models cannot be constructed in a similar way as the surface crack
models, i.e. by extruding a typical, semi-squared ’spider web’ type of mesh from the crack
initiation side along (a part of) a semi-elliptical line, as for instance shown in the close-up in
Figure 3-3. However, as shown in Figure 3-8, this extrusion heavily distorts the spider-web
shape at the back side and is therefore not suitable for sharply curved through-thickness
cracks. To avoid this distortion, the elliptical lines at and around the crack-tip are approxi-
mated by a reasonably large number of straight lines, see Figure 3-9.

This latter model can be modified into a validation model when the crack-tip mesh is extruded
along a straight line perpendicular to the surface and not along the curved ’elliptical’ line.
In Figure 3-10 an example can be found of the model and its validation mesh. An example
ansys script file can be found in Appendix F.

This mesh type is by no means the best mesh possible but it does allow for a - at least
some sort of - comparison with a validation model. Models similar to that of Figure 3-10 are
therefore used for all FEM.
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34 Modelling cracks with finite elements

Figure 3-8: Crack volumes (lighter grey) created by extruding a semi-squared spider web mesh
from the crack initiation side along a part of a semi-elliptical line. a/c = c2/c = 0.4

Figure 3-9: Crack volumes (lighter grey) created by extruding a typical, semi-squared ’spider web’
mesh from the crack initiation side along straight lines that approximate a part of a semi-elliptical
curve. a/c = c2/c = 0.4
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3-3 FEM of semi-elliptical through-thickness cracks 35

Figure 3-10: Model and validation model for a/c = c2/c = 0.4
Top - Left Model of a semi-elliptical through-thickness crack
Top - Right Close-up of the first layer of elements
Bottom - Left Validation model (straight centre crack)
Bottom - Right Close-up of the first layer of elements
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36 Modelling cracks with finite elements

The limitation on the number of nodes one can use means that for each of the 192 models
there is a trade-off between the following:

A very curved crack front is more accu-
rately modelled by a large number of nodes
around the crack front area. ⇔

Using a large number of nodes around crack
front area implies that less nodes remain for
the other parts, leading to poorly shaped
elements elsewhere.

Since K at the surface cannot be obtained
through a J-integral, it is approximated by
using the K of the crack-tip node next to
the surface crack-tip node. This neighbour-
ing node should be as close as possible to
the surface for a better approximation.

⇔

Elements that are small in X-direction re-
quire a large number of elements in Y,Z-
direction to avoid large aspect ratio ele-
ments.

A small radius r for the spider-web shaped
crack-tip mesh improves the accuracy and
convergence of the J values. ⇔

A small r requires a large number of ele-
ments in Y,Z-direction to avoid large as-
pect ratio elements.

The model is as high as possible to approx-
imate an infinite plate ⇔

A high model requires a large number of el-
ements in Z-direction to avoid large aspect
ratio elements

A close-up of the mesh around the crack-tip is shown in Figure 3-11. The models have no
particular units attached to its dimensions, but all have the same thickness t. So to give an
idea of the range of used radii, r is expressed in terms of t as is also shown in Figure 3-11.

Figure 3-11: Crack-tip mesh used for all FEM
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3-3 FEM of semi-elliptical through-thickness cracks 37

By comparison of the results of the validation model and the reference solution, the extent
to which elements with a large aspect ratio can still give accurate solutions can be analysed.
In Figure 3-12 the results of the validation model of Figure 3-10 is shown. Only the averaged
values of the converged contours - in this example the 3rd, 4th and 5th - are used throughout
this research. For this particular case, the maximum deviation from the reference solution
w.r.t the converged contours is 6.8%, and is below 7.0% for all 192 models.

Figure 3-12: Ratio between the FEM obtained K and the reference solution of Eq. (3-13) of
five contours around the crack-tip of the validation model of Figure 3-10. Contours 3 and 4 lay
on the same curve as contour 5.

Clearly, the SIF is not constant along the thickness. In Figure 3-13 two other validation
FEM contour results are shown: for a crack that is respectively small and one that is large
in comparison with t. In Figure 3-14 the meshes of these two models are shown.6

Similarly, contours can also be retrieved from the semi-elliptical through-thickness cracks, see
for some examples Figure 3-15. An intuitive explanation for this variation along the crack-tip
of the BCF can be given: a crack tends to grow towards a shape that minimizes the amount
of surface energy. In this case, when considering a uniform tensile load, maintaining a curved
crack front requires more energy than a straight crack front. The more curvy fronts therefore
have a tendency to grow faster and must accordingly have a higher BCF. The less curvy parts
have a slightly lower BCF because the crack-front is longer compared to the straight crack

6Though no clear explanation was found to explain this variation of KF EM along the thickness, it is possible
that shear may cause this behaviour. For a crack that is short compared to t, e.g. the one on the left side
of Figure 3-14, the crack opening is more constrained by the surrounding material and this results in a that
KF EM varies less along the thickness. For a relatively long crack w.r.t t, e.g. Figure 3-14 on the right, the crack
opening is constrained to a lesser extent and displays a larger variability of KF EM . It is therefore hypothesised
that fluctuations in crack opening displacements along the thickness cause the material to shear in the X −Z
plane and that this will affect the value of KF EM .
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38 Modelling cracks with finite elements

Figure 3-13: KF EM/Kref for five contours of the validation model for
Left a/c = 2.0 and c2/c = 0.28
Right a/c = 0.6 and c2/c = 0.98

to which it is normalised, hence more fracture energy is needed to create a new surface along
this longer front.

For each of the FEM, the SIF is found for point C and D, and for a uniform and linear stress
distribution. The SIF values are normalised as

YC,0 = KFEM

σm
√
πc · fw

(
c
W

) (3-15a)

YC,1 = KFEM

(σm + σb)
√
πc · fw

(
c
W

) (3-15b)

YD,0 = KFEM

σm
√
πc2 · fw

(c2
W

) (3-15c)

YD,1 = KFEM

(σm + σb)
√
πc2 · fw

(c2
W

) (3-15d)

Weight functions As mentioned in the introduction, FE results of several types of crack
geometries can be used to find a weight function with the method of Glinka and Shen [15].
They showed that when the SIF for two different load cases (e.g. uniform and linear stress)
is known, a weight function can be approximated by determining the constants in a standard
equation, Eq. (1-8). The main assumption when using this equation of Glinka and Shen
is that σ(x) only varies along the x-coordinate of a general crack size a (Figure 1-6). A
modified version of their formula for the semi-elliptical surface crack, Eq. (B-6 and B-7) was
based upon the analytical solution for an embedded ellipse, because this still allows for an
expression that does only depend on x and crack depth a. However, for the semi-elliptical
through-thickness crack the stress distribution is expressed in global coordinates, σ(X), and
this translates into σ(x, y) when using the local coordinates of Figure A-1. Hence, for this
type of cracks the standard weight function equation cannot be used and only uniform and
linear stresses can be predicted with the current FE results.
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3-3 FEM of semi-elliptical through-thickness cracks 39

Figure 3-14: (Top) Full validation FEM, (Centre) close-ups of the first layer of elements of the
validation and (Bottom) crack model

Left a/c = 2.0 and c2/c = 0.28
Right a/c = 0.6 and c2/c = 0.98
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Figure 3-15: KF EM/Kref for five contours of the semi-elliptical through-thickness crack model
for a uniform (Left) and a linear (Right) nominal stress distribution (Eq. (3-11))

Top a/c = 0.4 and c2/c = 0.4
Centre a/c = 2.0 and c2/c = 0.28
Bottom a/c = 0.6 and c2/c = 0.98
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3-3 FEM of semi-elliptical through-thickness cracks 41

The normalised results of Eq. (3-15) are curve-fitted into four formulae. The expression is
chosen such that it minimises the number of constants and yet has a minimal error w.r.t the
FE results and an adjusted r2 of at least 0.99. The equations have a maximum error w.r.t
the FE results of 6.6%, but much better in most cases. The formulae are

YC,0 =1.50− 0.536
(
a

t

)−0.008246
+
[
0.09782− 0.0882

(
a

c

)−1.081
](

a

t

)−1.289
(3-16a)

YC,1 =0.77 + 0.2843
(
a

t

)−0.7473
− 0.2529

(
a

c

)−0.4966 (a
t

)−0.9227
+

0.0005974
(
a

c

)(
a

t

)
(3-16b)

YD,0 =1.271
(
a

t

)−26.73
+ 1.304

(
a

c

)−0.4908 (a
t

)−3.082
+ 1.33

(
a

c

)−0.2891
+

0.1523 ln
(
a

t

)(
a

c

)
− 0.3052 ln

(
a

t

)
(3-16c)

YD,1 =− 89.04
(
a

t

)−3.857
+ 89.25

(
a

c

)−0.003415
[1/(a/t)]3.867 +

0.3383
(
a

c

)−0.4113
− 0.135 ln

(
a

t

)
+ 0.01466

(
a

c

)(
a

t

)
(3-16d)

The validity range of Eq. (3-16) is (0.4 ≤ a/c ≤ 2.0), and (1.030 ≤ a/t ≤ 7.089) or -
equivalently - (0.24 ≤ c2/c ≤ 0.99). In the range (0.99 < c2/c < 0.999), the BCF is assumed
to linearly in- or decrease towards the analytical solution for a straight centre crack. As
previously stated, a straight centre crack has a BCF of Y = 1. For a straight centre crack
under pure bending and t/c→ 0, the BCF is analytically derived as [29]

Kb = 1 + ν

3 + ν
· σb
√
πc (3-17)

The Poisson’s ratio is fixed at ν = 0.3 to get the analytical value where the approximative
BCF converges towards. Furthermore, the linear stress distribution of Eq. (3-11) is obtained
by setting σm = σb. Therefore YC,1, YD,1 converge to

lim
t/c→0

YC,1 = σm + σb(1 + 0.3)/(3 + 0.3)
σm + σb

= 0.697

lim
t/c→0

YD,1 = σm − σb(1 + 0.3)/(3 + 0.3)
σm + σb

= 0.303

For c2 ≥ 0.999 or (c2 − c)/t < 0.01, i.e. when the average ’slope’ of the crack is very small,
the crack is assumed to be a straight through thickness crack.

In Figure 3-16 and 3-17 some results of the equations Eq. (3-16) are shown, together with the
AFNTO solution. The linear stress field used in both equations is that of Eq. (3-11). The
differences between the AFNTO and FEM equations are considerable but both curves do at
least follow a similar trend and their values are in the same order. Though no conclusions can
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be drawn on the accuracy or reliability of either two models, this similarity does indicate that
the model scripts do not contain unacceptably large flaws and that no significant calculation
errors have been overlooked.

Figure 3-16: Estimated BCF for point C by Eq. (3-16a-b) and AFNTO Eq. (B-8)
Top Uniform stress distribution
Bottom Linear stress distribution
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Figure 3-17: Estimated BCF for point D by Eq. (3-16c-d) and AFNTO Eq. (B-8)
Top Uniform stress distribution
Bottom Linear stress distribution
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Chapter 4

The accuracy of predictive models in
comparison with experiments

For an LBB analysis, both the estimation of the number of stress cycles to attain a certain
crack shape as well as the prediction of the crack shape at and after breakthrough during
the crack development are of primary interest to calculate the leakage rate and the number
of cycles before reaching the critical crack size. In this chapter the models to estimate the
crack shape at and after breakthrough will be compared to experimental data found in the
literature. In Appendix G the input values for all experimental data-sets are given. Not
all of these sets were complete in the sense that all information was available to run the
numerical model. Educated guesses have been made to fill in missing information so that
these experiments could nonetheless be used. The methods used to fill the gaps are further
explained in Appendix H.

4-1 Comparison between the estimated breakthrough shape and
experiments

Numerical simulations of other research [21, 22] indicated that the breakthrough shape is
predominantly affected by the ratio between membrane and bending stresses. The numerical
model of [21] has been validated with experimental crack shape development data. The
calculation scheme of this previous research is essentially identical to the numerical calculation
procedure described in Chapter 2. Calculations of this experimentally validated numerical
model indicated that the shape up to and at breakthrough is largely insensitive to the:

– Material constants, like Ĉ and m̂ in Eq. (2-2)

– Initial crack size, as long as a1/c1 > 0.1

– Initial crack depth, as long as it is not too deep a1/t < 0.1 yet large enough for the SIF
and growth models to be applicable.
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46 The accuracy of predictive models in comparison with experiments

Table 4-1: Input for the prediction model for the breakthrough shape

Material ∆Kth,KIc,Kc 0, 100, 200 [MPa
√
m]

ĈC 10−10 [
(MPa

√
m)−3.0 ·m

]
m̂ 3.0 [ - ]

Geometry a1, c1 5 · 10−3, 6.25 · 10−3 [m]
t,W 0.050, 10 [m]
abb 0.995 · t [m]

Loading ∆σt,∆σb {0 ∼ 55}, {−5 ∼ 50} [MPa]

Calculation ∆Na,2 {600 ∼ 1800} [Cycles]
INT 2-point integration of da/dN , dc/dN
TP at a = 0.6t or no transition
PC No plasticity correction

In these cases, relative differences stay within 10% error when {∆Kth,KIc,Kc, Ĉ, m̂, a1, c1, t,
W} are varied. Hence, almost regardless of the initial crack dimensions or material properties,
predictive models and experimental data on the breakthrough shape can be compared to each
other. This allows for a comparison between the predictive value of different configurations
of the numerical model that was described in Sections 2-2 and 2-3.

Tough the numerical model is largely insensitive to most of the input values, two variables
that do give significant differences are selected to predict the breakthrough shape. The first
is a transition from the NR formula to the Wang formula in the range (0.6 ≤ a/t < 0.95).
The results of Section 3-2 showed that the current FE results are closer to the Wang SIF
prediction than to the NR prediction, so a transition to the Wang formula possibly improves
the accuracy of the estimates for these breakthrough shapes. The second variable is whether
or not to use the Newman-Raju correction (NRC) to the crack growth relation in length
direction, Eq. (2-3). So in total four different calculation models are compared to published
breakthrough shapes from experiments. The remaining input for the prediction models is
given in Table 4-1. The values are more or less arbitrarily selected, though all are within a
normal range for engineering applications.

In Figure 4-1 and 4-2 experimental data is plotted together with the estimates. The data-sets
of Nam et al. [25] for combined bending and tension were tested under a variable amplitude
bending stress range, although up to breakthrough ∆σb(c)/∆σm was fairly constant. The
average of this ratio up to breakthrough is used in Figure 4-1.

The predictive value of the numerical models are evaluated by the coefficient of determination
r2, i.e. the fraction of the variation of the experimental values that can be explained by the
prediction model.1 The results are given in Table 4-2. The model with the best predictive
result uses only the NR and no NRC. Slightly worse results were found for the two models
that do use this NRC. It should be noted that this outcome is based upon only 17 experiments
and that the r2 outcomes are relatively favourable to data-points that are both well predicted
and have a high variance. Moreover, though the predictions are largely insensitive to most of

1Note that r2 is not the squared radius r. r2 = 1 means that the curve perfectly matches the data and
r2 = 0 means that none of the variability in the data is explained by the model. For more explanation,
reference is made to http://www.mit.edu/~6.s085/notes/lecture3.pdf, Section 3.4 Model Evaluation.
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4-1 Comparison between the estimated breakthrough shape and experiments 47

Figure 4-1: Relation between ∆σB/∆σF and the shape at breakthrough according to different
estimation methods and experimental data

the input values, they can still differ up to 10%, so no firm conclusions should be drawn from
this results yet.

Table 4-2: r2 of the numerical models for crack growth

Model r2∗

Only NR SIF equation and ĈA = ĈC 0.806
Only NR SIF equation and ĈC = 0.9m̂ · ĈA 0.753
NR + Wang SIF equation between 0.6 ≤ a/t ≤ 0.95 0.655
NR + Wang SIF equation between 0.6 ≤ a/t ≤ 0.95 and ĈC = 0.9m̂ · ĈA 0.782

∗One result of the breakthrough shape of a crack under a pure bending stress (∆σB/∆σF = −1.0) Shingai
et al. of is left out of the r2 calculation because the numerical calculation scheme cannot model crack growth
with the Wang formula if ∆σB/∆σF < −0.2. This experiment is therefore left out of all r2 calculations.
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Figure 4-2: Close-up of Figure 4-1

4-2 Comparison between the predicted N and experiments

The same four models of the previous section are also evaluated for their predictive value of
the number of cycles up to and directly after breakthrough. Again, it is assumed that the
crack grows until reaching a depth of abb = 0.995t before suddenly breaking through the wall.
Right after breakthrough, in accordance with the experimental data, the ’depth’ axis of the
semi-elliptical through-thickness crack is assumed to have a value in the order of a∗ = 1.005t,
which is roughly 1/10th of the crack length at the non-breakthrough side. See also Figure 2-3.
After breakthrough, the AFNTO SIF model is applied to make a comparison of the complete
data-set and the experimental results. The results are shown in Figures 4-3 to 4-4. Only
data-set TH-3 (Figure 4-3) shows the growth data from crack initiation; for the other three
cases the growth was measured after c had grown 1.3 mm.

In most cases, the articles of the data-sets also published some predictive calculations that
used the NR SIF solution. For the TB data-sets it is stated that the same crack growth model
in length and depth direction has been applied [25]. The articles of two other data-sets, TH
and THL, do not explicitly mention whether this NRC is used or not but the predictions of
the shape development indicate that this correction was not applied [23, 24]. Because of the
limited information on their numerical procedure, their predictions could not be reproduced
here.

The models with an NRC are performing better in all cases. Using the Wang equation in the
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range 0.6 ≤ a/t ≤ 0.95 solution did not improve the prediction.

Figure 4-3: Prediction and experimental data of crack growth for data-sets TH-1 and TH-3
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Figure 4-4: Prediction and experimental data of crack growth for data-sets THL-1 and TB-7

4-3 Comparison between the predicted crack propagation and ex-
periments

For crack propagation after breakthrough, three models are compared to experimental data:
– ’AFNTO’, that uses the AFNTO solution to estimate the SIF;
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– ’Fixed a/c’, that fixes ratio a∗/c∗ throughout crack propagation, see Figure 1-8;
– ’FEM’, that uses the curve-fitted FEM results of Eq. (3-16) to estimate the SIF;

The characterisation of the crack shape after breakthrough, i.e. the values used for a∗, c∗, was
in accordance with the measurements from experiments, usually the depth axis of the ellipse
was in the order of a∗ = 1.005t. The predictive models use these two known values so that the
after-breakthrough models are not affected by the numerical procedure up to breakthrough.
The AFNTO model is also used for the ’FEM’ model when a/t < 1.030, the range where the
FEM-model is not valid.
The predictive results by the authors of the data source, the researchers who also developed
the AFNTO model, could not exactly be reproduced. However, for the specimens under a
tensile load, the results of the current numerical scheme in combination with the AFNTO
model are convincingly close enough to rule out any large differences in either numerical
scheme. The calculated crack growth under tension at the front and the back of the specimen
of both the current model and - if given- the prediction of the authors of the experiments is
shown in Figure 4-6. The legend for these and all other remaining figures in this chapter is
shown in Figure 4-5.
The differences between the current AFNTO model predictions and the AFNTO model pre-
dictions in the article with data-sets for specimens loaded by combined bending and tension
are larger than the differences for data-sets under tension. This is caused by insufficient
information regarding the data-sets, for instance on the applied bending stress range.
The experimental data of the crack length at the breakthrough side c2, the predictions in the
data-articles as well as the results from the current three models for specimens under combined
bending and tension are given in Figures 4-7 and 4-8. From these data it is clear that overall
the AFNTO model has te best predictive results for combined bending and tension. Using
a fixed a/c ratio after breakthrough is in all but one case (TH-3) overestimating the growth
rate of the crack, which is to a lesser extent also the case for the FEM curve-fit model. No
clear ’winner’ can be identified in the case of pure tension (Figure 4-6).

Figure 4-5: Legend for Figures 4-6 to 4-8. Note that the symbol-colour combination for each
experimental data-set is unique, and that the ’prediction from [23,24,25] ’ line (-.-.-.-.) adopts
the colour from the data-set-symbol. Shown is the example of data-set TH-1.
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Figure 4-6: Predicted and measured data of crack growth after breakthrough (tension)
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Figure 4-7: Predicted and measured crack growth at the breakthrough side (tension and bending)

53



54 The accuracy of predictive models in comparison with experiments

Figure 4-8: Predicted and measured crack growth at the breakthrough side (tension and bending)
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Chapter 5

Analysis of the data, conclusions and
recommendations

5-1 Analysis of the data taken from external sources

The present thesis relies heavily on three publications from the same group of researchers that
also introduced the AFNTO SIF model, these articles will first be reviewed in this chapter. For
a brief discussion on a smaller issue related to the AFNTO formula for combined membrane
and bending stress, reference is made to Section B-3. Hereafter, the authors of [23, 24, 25]
will be referred to as ’the authors’, and the research of these articles is referred to as ’their’
research or experiments.
Unfortunately, their experiments have a different configuration for each new experiment, thus
none of the experiments was repeated. This repeating is necessary to estimate the scatter of
the results and to assess the performance of the models when more than one test result is
available. As a consequence, the unknown confidence level for the outcomes is a limitation.
As mentioned, crack growth can be estimated by using a crack growth relation. The authors
use the commonly applied Paris relation, but their method to find Ĉ and m̂ in Eq. (2-2)
is questionable. As pointed out in Section A-4, one cannot simply obtain Ĉ and m̂ from a
manufacturer’s specification but one has to conduct experiments for each batch of material
in order to reliably estimate these. These experiments had been carried out by the authors
but in such a way that the values they obtained for Ĉ and m̂ may be unreliable.
Before breakthrough, they use the NR equation to estimate ∆K using their measured crack
depth and length. Some criticism can be given to this:

– The NR equation in itself has an error margin of 5.0% up to a/t ≤ 0.8, and, as discussed
in Section 3-2, possibly larger error margins beyond this ratio. For other crack shapes
∆K can be found with much higher or even analytical precision.

– The crack depth was determined afterwards from the typical ’beach marks’ that fatigue
cracks sometimes leave on the crack surface. These marks may be hard to identify or
measure precisely.
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56 Analysis of the data, conclusions and recommendations

– Estimating ∆K requires a precise estimate for both a and c, whereas other crack shapes
can be characterised by a single crack size, like for instance the centre cracked specimen
described in Section B-4.

– The authors did not indicate to what extent the actual crack deviated from the semi-
elliptical modelled crack so the applicability of the NR solution is unknown.

– In the article of Newman and Raju, it is recommended to use a corrected value in length
direction, ĈC = 0.9m̂ · ĈA. Despite this recommendation, the authors did not use this
correction when they curve fitted their results of the crack growth in length direction.
One could argue that this type of material is better described without this correction,
or perhaps the authors had other reasons to disregard this advice, but they did not
discuss this option in their publications.

Two of their articles only derived a relation for dc/dN = ĈC(∆KC)m̂ and applied it to growth
in both length and depth direction. Only in the article for combined bending and tension,
they plotted not only the growth relation in length direction but also showed the results for
da/dN = ĈA(∆KA)m̂. They concluded that the growth relation for the length was indeed
applicable to model the growth in depth direction as well.

The applicability of a model is open for interpretation and whether a fit "[..] agrees relatively
well with the results from the surfaces"[25], is a matter of engineering judgement rather than
an exact science. This said, in particular the data-sets with a load ratio R = 0.5 do not
appear to be in good agreement with the fitted model, see Figure 5-1.1 More objectively, the
goodness-of-fit of the original Paris relations can be assessed by the coefficient of determination
r2, of which the results can be found in Table 5-1. Clearly, both fits of Nam et al. have a
very low r2 value, or in other words: they barely describe the trend of the data-points.

Table 5-1: Coefficients of determination r2 of the fitted relations between the SIF range versus
the crack growth rate versus in depth direction loaded by a different load ratio R

Curve fit R r2

Nam et al. [25] 0.1 0.35
Current research 0.1 0.87
Nam et al. [25] 0.5 0.10
Current research 0.5 0.97

The question that now arises is whether these newly fitted and better matching Paris curves
in depth direction will improve the predictions for the crack shape development. Calculations
of this development (before breakthrough) is for instance shown in Figure H-2 in which the
original, by the authors derived Paris relation constants have been used. Nevertheless, while
using a better matching relation should result in a closer approximation to the experimental
data, this is not the case but rather the contrary (not shown in the figure). This could indicate

1No raw data is available, therefore the data-points are retrieved from the pdf-file of the article with software
engauge digitizer 9.5. Thus, the straight lines through the data-points (shown as dashed lines in Figure 5-1)
were digitally retrieved as a dozen of points on the graph, and these points were again curve fitted. Is was
verified that Ĉ and m̂ could be approximated within the 95% confidence bounds of the fitted Paris curves of
the original figures by Nam et al. by digitally retrieving data that was subsequently matlab curve fitted. In
absence of any raw experimental data, this alternative method to approximate the data is considered accurate
enough to be used for this research.
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5-1 Analysis of the data taken from external sources 57

Figure 5-1: Relation between crack growth rate versus SIF range in depth direction as found by
[25] and present curve fitting.

that the ∆KA values that were obtained through measurements of the crack shape and the
use of the NR equation, are indeed ill-suited to be used for estimating the Paris relation
parameters Ĉ and m̂.

A better testing method that limits the number of variables to a minimum, is to use a
standardised test method with a compact tension or centre cracked specimen. For these
cracked shapes, ∆K can be estimated with much more precision than with the NR solution
and the growth relation can therefore be derived with more reliability. In addition, these
standardised specimens can be characterised by only one crack size, which also adds to the
reliability of the tests. To sum, other crack shapes than the semi-elliptical surface crack are
more suitable for the derivation of a crack growth relation.

Though the followed approach for the estimation of ∆K may be troublesome, one can still
argue that the NR equation is well established and that the observed crack shape was such that
the NR SIF model was applicable. Assuming that the beach marks were clearly distinguishable

57



58 Analysis of the data, conclusions and recommendations

and precisely measured, their method could, in this best case scenario, give usable ∆K values.

However, after breakthrough, the authors used their own, non-validated and newly developed
SIF formula to estimate Ĉ and m̂. For one of their test materials, SS 41 steel, they actually
found a considerably higher value for m̂ in the Paris relation after breakthrough but this
was "thought to be attributable to the fact that the [...] sample of the SS 41 steel suffered an
overall general yielding prior to penetration of the crack" [23]. Though this could indeed be
an explanation, they did not consider the option that their formula for the SIF might not be
a proper one to be used. For the other material used in their experiments, high tension steel,
they did fit the data into a single Paris relation and concluded that it was therefore appropriate
to predict crack growth and propagation with their new formula. Because the calculated and
measured results agreed fairly well, they also concluded that "[...] the behaviour of fatigue
cracks after through-thickness can be evaluated quantitatively using the stress intensity factor
assessment method proposed in this report." [23].

Their conclusion is highly questionable: fitting a line through data-points does not prove
that their SIF model is correct, it merely shows that the parameters of a fitted curve can be
adjusted in such a way that the data-points on a graph can be reasonably well approximated
by a single line. In other words, Ĉ and m̂ are chosen such that the NR and AFNTO model
accurately predict crack growth and propagation. The growth rate from actual measurements
(∆c/∆N) is attached to a value ∆K from the NR or AFNTO SIF, which in its turn is later
used to estimate this growth or propagation. It is therefore no surprise that the AFNTO
model performs well for crack propagation estimations but this could equally well be caused
by the chosen values for Ĉ and m̂. It does not yet say anything about the validity of the
AFNTO SIF model.

5-2 Conclusions I: Estimating surface crack growth and break-
through shape

The first aim of this research, developing a numerical calculation scheme to predict surface
crack growth more accurately compared to existing numerical methods, can now be assessed
by answering the following questions:

1-a) To what extent does the numerical calculation scheme developed in this research solves
perceived shortcomings of other methods?

1-b) How does this numerical calculation scheme perform in comparison with experimentally
determined results of the breakthrough shape?

1-c) What is the influence on the accuracy of the estimations for crack shape and growth
when the SIF is not only estimated by the NR solution, but also by the Wang solution
in the range of (0.6 ≤ a/t < 0.95)?

1-a The ’other methods’ in 1-a, refer to numerical calculation schemes that were briefly
mentioned in the Chapter 1, i.e. Chapter 8 of [6] and [8, 7, 22, 25]. Because these methods
are only described in a broad outline, the real limitations or inaccuracies remain unidentified,
hence the wording ’perceived shortcomings’ is preferred.
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The numerical scheme of Chapter 2 solves the issue of selecting values for the ’knowns’ to
solve the ’unknowns’ in two dimensional crack growth models. Experimental results of [19]
indicate that in most practical cases the crack can grow up to almost 100% of the thickness.
With this information, it is convenient to divide the remaining cross section in depth direction
abb−a1 into a large number of increments ∆ak to serve as a known to solve the unknowns ∆ck
and ∆Nk. To solve both unknowns, an extra requirement is necessary: ∆Na,k = ∆Nc,k. One
of the shortcomings of the other methods is that they require that ∆Nk is known in advance
as well, but this number of cycles is difficult to estimate beforehand. Selecting a small ∆Nk

may result in a large number of calculation steps. On the other hand, a large ∆Nk results
in large increments ∆ak,∆ck and this weakens the assumption that the increment is small
enough to assume that ∆KA,k and ∆KC,k remain constant. The current numerical scheme
limits the selection of knowns and the build-in checks verify that the selected input results in
an outcome that is within pre-set limits for errors.
Besides this assistance with the selection of input values, the current numerical model offers
some other benefits. One of the options is the 2-point integration. This option does not
only averages between the growth rates at the beginning and end of the increment, but also
iteratively finds new values for ∆KA,k,∆KC,k that are consistent with the new values of ak, ck.
Other options include a logarithmically in- or decreasing spacing of ∆ak or the use of a small
scale plasticity correction factor.

1-b The accuracy of the prediction depends on much more than just the numerical scheme.
Selecting an appropriate crack growth relation and determining the material constants in these
empirical relations make the difference between a reliable prediction or an entirely inadequate
estimate of the number of load cycles up to breakthrough.
On the other hand, it was found that the predictions of the crack shape at breakthrough is
in most cases not much affected by the growth relation or material constants. In comparison
with the breakthrough shapes from experiments that were reported in the literature, the
predictions of the numerical models were reasonably accurate. The best estimates are found
for the model with only the NR SIF equation and the same material constants in respectively
length and depth direction. The difference with two other models that use the NRC is small.
The number of experiments is limited so no firm conclusions should be drawn from these
results yet. It does show, however, that the numerical calculation model can be used to
roughly estimate the shape at breakthrough.
As said, the growth model and material parameters do affect the prediction of load cycles
and the growth during and up to breakthrough to a large extent. The material values Ĉ, m̂
and the used crack growth model were taken from the literature and used as an input in the
numerical model. As highlighted in the previous section, the reliability of these values is open
to doubts, but presuming they were correct, it is found that using a different value for the
growth rate in length direction, i.e. the NRC, improved the accuracy of the estimated number
of load cycles versus crack length. The use of the Wang SIF equation did not improve the
results, but this could equally well be attributed to the applied method to obtain Ĉ, m̂.
It is known that the rolling direction of the material and other inhomogeneities affect the
growth rate of the crack. An interesting question would be if the results could be further
enhanced by using different growth models in length and depth direction that are based on
actual measurements instead of the empirical NRC. The NRC is only a roughly estimated
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correction from crack growth data of a broad range of materials. In absence of these tests, it
is recommended to use the NRC.

1-c No evidence is found that the Wang formula is more accurate than the sole use of the
NR SIF equation, despite the finding that the SIFs from current FE analysis are closer to
the SIF values obtained by the FEM of Wang and Isida et al.. The effect was negligible
when considering the estimated number of load cycles versus crack growth. Although again
an explanation can be sought in the applied method to obtain the material values, neither
the largely Ĉ, m̂ independent breakthrough shape predictions did improve with the Wang
solution. Only the combination with an NRC gave reasonable results. Overall, considering
the experimental data of this research, no clear advantages of using the Wang equation for
deep surface cracks have been found.

5-3 Conclusions II: Estimating crack propagation after wall pene-
tration

2) How do the newly FE-derived SIF solution and two existing methods that consider a
crack after wall penetration perform in comparison with experimentally obtained data?

Unfortunately, due to the used methods to obtain Ĉ, m̂, no firm statements or conclusions
can be drawn. As said, the values of Ĉ, m̂ are such that, regardless of the actual accuracy of
the model, the results will be biased towards the AFNTO SIF model. A slight modification
of Ĉ, m̂ affects the results considerably. This means that these reported material values
are neither suitable as provisional, educated guesses. Because of this, neither model can be
recommended or rejected at this point. Instead of a comparison with experimental data, which
would have been much more relevant when making recommendations for a LBB assessment,
all that remains is therefore a comparison on how the models perform relative to each other.

The fixed a/c model predicts the highest crack growth rate at the front and back side of
the specimens. It predicts that the crack reaches criticality within much less cycles than the
AFNTO and FEM solutions. Presuming that the reported Ĉ, m̂ are more or less realistic, it
would also mean that the growth rate is overestimated by a factor two or more in most cases.
When taking into account that the mean material values are used in the current predictions
whereas for LBB calculations often design values will be used, this will lead to an unnecessary
cautious estimate that is perhaps not viable from an economical perspective. For leakage rate
predictions, which depend on the crack length at the back side, it is the other way around:
the crack is not leaking as much as estimated and will likely get detected later than predicted.
Similar conclusions can be drawn for the FEM model, though to a lesser extent. The AFNTO
SIF equations tend to estimate c2 the best. To emphasise: this is only true if the crack growth
constants happen to be accurate.

In absence of any official recommendations regarding crack shape propagation, it is probably
safe - not to say very safe - to use the fixed a/c model for the determination of crack propaga-
tion and herewith for estimations of the number of cycles before the crack reaches criticality.
It is furthermore advised to use the AFNTO SIF model for leakage rate predictions, as this
model is likely to give a safer estimate for the crack opening area at the back of the wall.

60



5-4 Recommendations for further research 61

5-4 Recommendations for further research

It is highly recommended to carry out new experiments in a different test set-up so that these
three solutions can be evaluated for their performance on crack propagation estimates. It
appears that the fixed a/c model overestimates the actual growth rate. New experiments can
provide a reliable crack propagation rate estimate, which in its turn can identify a model that
predicts crack propagation both safe and economically viable.

It is recommended that these new experiments are carried out with large, rectangular, Moss
tank-aluminium test samples under a temperature that is -163 ◦C so that it resembles the
actual environment. The crack growth relation should be obtained with a standardised test
sample and testing procedure, preferably with different test samples that correspond with
the depth and length direction of the crack, for any likely orientation a crack may have in
a spherical tank. It is furthermore recommended that both tensile and bending stresses are
applied and that the amplitude of the stress range remains constant during the test. The same
test configuration must be repeated at least a couple of times to determine the variability
of the experiments. With this experimental data it can then be assessed which - if any - of
the three suggested models give a reasonable estimate. Once this is known, other influencing
factors such as multi-axial loading, the presence of welds or the curvature of the plates can
be further researched and added to the models.
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Appendix A

Fracture mechanics

A material fractures when the work applied to it is high enough to overcome the attractive
forces between the atomic bonds. When this atomic bond force is exceeded, the fracture
energy is converted into energy to create two new surfaces. When predicting the fracture
forces at atomic bond level, all sorts of micro and macro flaws act as stress raisers, therefore
global stresses in a material are ill-suited to predict when a material will break. An important
part of fracture calculations is therefore the analysis of flaws and local stresses.

A-1 Stress intensities

Figure A-1 shows an arbitrarily shaped the crack surface with its local coordinate system
around the crack-tip. Global coordinates are indicated by {X,Y, Z}. Very close to the crack
front the curvature of the crack is negligible and the three-dimensional crack front may be
approximated by a two-dimensional coordinate system. The stresses around the crack-tip
are expressed in polar coordinates {r,θ} and a stress intensity factor K accounting for the
geometry of the crack and cracked body. The stress field depends on the fracture mode.
Three fracture modes (Figure A-2) can be distinguished: an opening Mode I where the crack
opens orthogonal to the crack face, a sliding Mode II where the crack faces slide in opposite
x-direction and a tearing Mode III, where the crack faces slide relative from each other in
y-direction. For Mode I, the stress fields are given below, where the higher terms are omitted

σx = KI√
2πr

[
cos θ2

(
1− sin θ2 sin 3θ

2

)]
(A-1a)

σy = 0 (plane stress) ; ν(σx + σz) (plane strain) (A-1b)

σz = KI√
2πr

[
cos θ2

(
1 + sin θ2 sin 3θ

2

)]
(A-1c)

σxz = KI√
2πr

cos θ2 sin θ2 cos 3θ
2 (A-1d)
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64 Fracture mechanics

Figure A-1: Local {x, y, z} and global {X,Y, Z} coordinate system for an arbitrary crack face
(top) in three dimensions, (bottom) in two dimensions

The displacements u are given by

ux = KI

2µ

√
r

2π

[
cos θ2

(
κ− 1 + 2 sin2 θ

2

)]
(A-2a)

uz = KI

2µ

√
r

2π

[
sin θ2

(
κ+ 1− 2 cos2 θ

2

)]
(A-2b)

where

µ = E

2(1 + ν)

κ = 3− ν
1 + ν

(plane stress)

κ = 3− 4ν (plane strain)

µ is the shear modulus, ν Poisson’s ratio and κ a parameter introduced to simplify the
equations. The derivation of Eq. (A-1) can be found in several works on Fracture Mechanics,
see for instance [30, 31].

Only Mode I is considered in this research. Not only is this mode is the most damaging of all
three modes, but also is the structure under consideration, a spherical LNG tank, primarily
loaded by stresses normal to the crack face. The commonly used subscripts for the SIF
KI ,KII ,KIII to indicate the fracture mode are therefore omitted and all K refer to KI .
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Figure A-2: Mode I, II and III

A-2 Energy release rate and the J integral

As previously mentioned, fracture of materials can be explained from an energy perspective.
A useful concept for engineering problems is to express the energy available for incrementing
a crack as the energy release rate that is defined as

G = −dΠ
dA (A-3)

where dΠ is the change in potential energy with respect to the increase of crack area A.
Ignoring dissipation and kinetic energy, the potential energy Π is defined as

Π = U − F (A-4)

where U is the elastic strain energy and F is the work done by external forces. To illustrate
the use of G, consider the loaded, cracked plate of Figure A-3, where a � W . First assume
that the plate is loaded by a fixed load P . The change in potential energy in this plate is

dΠ = dU − dF = 1
2Pdu− Pdu = −1

2Pdu (A-5)

The crack area A = at and assuming that t is constant, inserting Eq. (A-5) in Eq. (A-3) gives

G = −1
t

(dΠ
da

)
Pfixed

= P

2t

(du
da

)
Pfixed

(A-6)

Next, it is assumed that the displacement is fixed

dΠ = dU − dF = 1
2udP − 0 = 1

2udP (A-7)

Inserting Eq. (A-7) in Eq. (A-3) results in

G = −1
t

(dΠ
da

)
ufixed

= − u2t

(dP
da

)
ufixed

(A-8)
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66 Fracture mechanics

Figure A-3: Relation between load P and elongation u for a linear elastic materials for a plate
with a crack

When rewriting Eq. (A-6) and Eq. (A-8) in terms of the compliance C= u/P , it is clear that
both expressions are equal and can be expressed as

G = P 2

2t

(dC
da

)
(A-9)

By using Eq. (A-1) for the stresses and displacements around the crack-tip, it can be shown
(e.g. [30, 32]) that G is related to K by

G = K2

E′
(A-10)

with E′=E for plane stress and E′ = E/(1 − ν2) for plane strain conditions. For non-linear
elastic materials the same relation holds but G is then replaced by J in Eq. (A-10)

J = K2

E′
(A-11)

For (non)-linear elastic-plastic materials J may be used as well. The energy release rate is
then expressed in the form of a J-contour integral, here presented in two-dimensions as shown
in Figure A-4

J =
∫

Γ

(
Wnx − Ti

∂ui
∂x

)
dΓ (A-12)

66



A-3 Linear and non-linear fracture mechanics 67

where ui are the displacements in x, z-direction. The strain energy density W and the com-
ponents of the traction vector Ti are defined as

W =
∫ εij

0
σijdεij

Ti = σijnj

where i, j refer to the components in x, z-direction, ε to the strain and ni are the normal
vector components in x, z-direction.
The J-integral is contour independent which means that the solution is not affected by the
distance of Γ from the crack-tip, which makes this definition of the strain energy release rate
well-suited to be used within finite element models.

Figure A-4: Arbitrary contour around a crack-tip

A-3 Linear and non-linear fracture mechanics

Although fracture mechanics can be used for non-linear and/or elasto-plastic material models,
the calculations simplify considerably when a LEFM model is applied. However, a simple
solution to incorporate some sort of plasticity effects can be used within an LEFM model.

Small scale plasticity correction For very sharp cracks, i.e. r → 0 in Eq. (A-1), the stresses
become infinite around the crack-tip. In reality, materials are never fully linear-elastic and a
small plastic zone around the crack-tip limits the maximum stress to σy, see Figure A-5. For
the high strength steel used in the experiments, the radius of the plastic zone rp is in the order
of 0.1 mm or smaller, much smaller than a, c, indicating that a linear-elastic calculation is a
reasonable assumption. Only the first couple of cycles immediately after breakthrough, when
c∗2 is still very small and the ligament around the crack-tip very thin, rp is large compared to
the crack length. Since this only occurs during a few cycles, all stages of crack development
are modelled by LEFM.
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68 Fracture mechanics

Figure A-5: Small scale plasticity correction

This small plastic zone around the crack-tip acts as a stress raiser. This raised stress level can
be incorporated into LEFM calculations by using Keff by virtually extending the crack-tip
to the centre of the plastic zone aeff = a+ rp. Eq. (1-1) then becomes

Keff = Y (aeff )σ√πaeff (A-13)

For most geometries, finding Keff involves an iterative calculation but for two geometries a
closed-form solution is available: the embedded elliptical flaw and the straight centre crack in
an infinite sheet. As an assumption, the plasticity correction of the embedded elliptical flaw
is used for the semi-elliptical surface crack as well. Keff is then obtained by substituting Q
(Eq. (3-6)) in either the NR or Wang solution by

QPC = Q− 0.212
(
σ

σy

)
(A-14)

For the crack after breakthrough, Keff is calculated with the closed-form solution of a straight
centre crack in an infinite sheet

Keff = K√
1− 1

2(σ/σy)2
(A-15)

A-4 Relation between the SIF and crack growth

Crack growth and/or propagation rates (hereafter: ’crack growth rates’) depend on both
a general crack size a and the applied stress range ∆σ. It was observed by Paris et al.
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(cited in [6]) that crack growth rates of specimens loaded by different ranges of cyclic stresses
exhibited similar growth rates, but these overlapping growth rates occurred at different crack
lengths. Paris et al. introduced the idea of relating ∆K to the growth rate. It was found
that specimens with the same ∆K had a similar da/dN . Growth rates depend on both the
severity of the stress distribution around a crack-tip and the difference between σmin and
σmax, so it was found that crack growth can be conveniently expressed as a relation between
da/dN = f (Kmax,Kmin). This relation can also be expressed in terms of da/dN = f (∆K,R)
because ∆K = Kmax −Kmin and R = Kmin/Kmax. Because R is not always explicitly used
as a variable in crack growth relations but the function does depend on R, the general form
of the crack growth relation is expressed as

da
dN = fR(∆K) (A-16)

Three regions, shown in Figure A-6, can be distinguished: a threshold region, a Paris region
and a stable tearing crack growth region. For stress intensities approaching the ∆Kth value,
the crack growth becomes increasingly small, and for ∆K < ∆Kth it is assumed that a macro
crack, i.e. a crack having a size of at least 1 mm, does not propagate any further. This ∆Kth

is an experimentally determined value, depending on the material as well as the load ratio.
Because this threshold value is determined by an obviously time restricted test, in reality
’non-propagating’ corresponds with a very small growth rate of the order of 10−10 m/cycle.
A threshold value only applies to macro cracks. On a micro-scale, cracks can grow even below
∆Kth as discussed in chapter 8 of [6]. By extrapolation of the Paris curve below the threshold
region a conservative estimation can be obtained.

The interval where the growth is approximately proportional to a power function is referred
to as the Paris region, after the relation described by Paris and Erdogan [27]

da
dN = Ĉ(∆K)m̂ (∆Kth � ∆K � KIc) (A-17)

where Ĉ and m̂ are constants that depend on R and many other factors. It is important to
stress that ’material constants’ do not cover the full meaning behind Ĉ and m̂ in the Paris
relation. They depend not only on the chemical composition of the material, but on a wide
range of influence factors, such as temperature, fabrication process, rolling direction and grain
size. Even material with the same properties from the same manufacturer, can still display
different fatigue growth properties, as discussed in Chapter 8 of [6].

For values of ∆K in the stable tearing region, the crack grows increasingly fast but still in a
stable fashion, up to the point critical stress intensity Kc or KIc is reached. An alternative
crack growth relation that accounts for this asymptotic behaviour towards criticality and also
incorporates R is proposed by Forman et al. [33] as

da
dN = Ĉ(∆K)m̂

(1−R)Kc −∆K (R ≥ 0) (A-18)

One should keep in mind that relations like Eq. (A-17) and (A-18) are in fact no more than
curve fittings between data points. In order to make a better fit to the data, Kc in Eq. (A-18)
is not necessarily the same as a Kc found in fracture toughness experiments. Furthermore,
Ĉ and m̂ are found by fitting the data to a specific crack growth relation and may not used
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70 Fracture mechanics

Figure A-6: Crack growth rate as a function of ∆K

in other relations. Given their empirical nature, many variations on Eq. (A-17) and (A-18)
exist, see for instance section 8.2.3 of [2] and [34]. Even though none of these relations are
justified by a physical laws, they have proven to be useful to estimate crack growth.
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Appendix B

Stress intensity factor solutions

The nominal stress distribution as shown in Figure B-1 applies to all SIF solutions. The
nominal stress is uniform in Y -direction.

Figure B-1: Nominal stress distribution for all SIF solutions.

B-1 Newman-Raju solution for a semi-elliptical surface crack

Source: [8]
Accuracy: For (a/t) < 0.8 and 0 ≤ (a/c) ≤ 1.0 : better than 5.0 % in comparison with

FE solutions.
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See Figure B-2 and B-3 for the definitions. The SIF is estimated as

K = (σm +Hσb)
√
πa

Q
· Y

(
a

t
,
a

c
,
c

W
,ϕ

)
(B-1)

for 0 ≤ (a/t) < 1.0; (c/W ) < 0.5 and 0 ≤ ϕ ≤ π. The shape factor Q for an elliptical crack
in Eq. (B-1) is approximated by

Q =


1 + 1.464

(
a

c

)1.65 (
a

c

)
≤ 1[

1 + 1.464
(
a

c

)−1.65
](

a

c

)2 (
a

c

)
> 1

(B-2)

Figure B-2: Semi-elliptical surface crack

Function Y in Eq. (B-1) is given as

Y =
[
M1 +M2

(
a

t

)2
+M3

(
a

t

)4
]
fϕgfw

where

M1 = 1.13− 0.09
(
a

c

)
M2 = −0.54 + 0.89

0.2 + (a/c)

M3 = 0.5− 1.0
0.65 + (a/c) + 14

(
1.0− a

c

)24

g = 1 +
[
0.1 + 0.35

(
a

t

)2
]

(1− sin(ϕ))2

where ϕ is the parametric angle of the ellipse and fϕ is the analytically derived function for
an elliptical crack in an infinite solid given as

fϕ =
[(

a

c

)2
cos(ϕ)2 + sin(ϕ)2

]1/4

(B-3)
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Figure B-3: Definitions for a semi-elliptical surface crack in a finite plate

The correction for a geometry with a finite width is given as

fw =
[
cos

(
πc

2W

√
a

t

)]−1/2
(B-4)

Function H in Eq. (B-1) is expressed as

H = H1 + (H2 −H1) sin(ϕ)p

where

p = 0.2 + a

c
+ 0.6a

t

H1 = 1− 0.34
(
a

t

)
− 0.11a

c

(
a

t

)
H2 = 1 +G1

(
a

t

)
+G2

(
a

t

)2

73



74 Stress intensity factor solutions

with

G1 = −1.22− 0.12
(
a

c

)
G2 = 0.55− 1.05

(
a

c

)0.75
+ 0.47

(
a

c

)1.5

B-2 Wang solution for a deep semi-elliptical surface crack

Source: [18]
Accuracy: For 0.6 ≤ (a/t) ≤ 0.95 and 0.05 ≤ (a/c) ≤ 2.0 : better than 2.0 % in

comparison with FE solutions.

The SIF can be found through

K =
∫ a

0
σ(x)m(x, a)dx (B-5)

in which the expression for a approximate weight function according to Glinka and Shen [15]
for the deepest point of the crack is given as

mA(x, a) = 2√
2π(a− x)

[
1 +M1A

(
1− x

a

)1/2
+M2A

(
1− x

a

)
+M3A

(
1− x

a

)3/2
]

(B-6)

and for the surface points C it changes to

mC(x, a) = 2√
πx

[
1 +M1C

(
1− x

a

)1/2
+M2C

(
1− x

a

)
+M3C

(
x

a

)3/2
]

(B-7)

Any stress distribution can be inserted in Eq. (B-5). The constants1 in Eq. (B-6) are deter-
mined as

M1A = π√
2Q

(4Y0 − 6Y1)− 24
5

M2A = 3

M3A = 2
(

π√
2Q

Y0 −M1A − 4
)

where Q is the same as in B-2. Y0 and Y1 are given as

Y0 = B0 +B1

(
a

t

)2
+B2

(
a

t

)4
+B3

(
a

t

)6

Y1 = A0 +A1

(
a

t

)2
+A2

(
a

t

)4
+A3

(
a

t

)6

1The equations presented here differ from the original paper. The constants as given in [18] do not result
in their plotted figures. The most likely errors are in constants C1 and A0. By changing the signs of constants
-0.009223 in A0 and + 5.0199 in C1 the K values are in a normal range and the same as plotted in the paper.
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where

B0 = 1.0011− 0.0769
(
a

c

)
+ 0.0009842

(
a

c

)−1
+ 0.0394

(
a

c

)2
+ 0.001157

(
a

c

)−2

B1 =− 10.5675 + 19.155
(
a

c

)
+ 3.2358

(
a

c

)−1
− 13.2618

(
a

c

)2
− 0.2772

(
a

c

)−2
+

2.9778
(
a

c

)3
+ 0.006956

(
a

c

)−3

B2 = 22.7713− 43.4715
(
a

c

)
− 6.4663

(
a

c

)−1
+ 30.4802

(
a

c

)2
+ 0.6335

(
a

c

)−2
−

6.8711
(
a

c

)3
− 0.01642

(
a

c

)−3

B3 =− 13.4448 + 27.0787
(
a

c

)
+ 3.6922

(
a

c

)−1
− 19.2574

(
a

c

)2
− 0.3930

(
a

c

)−2
+

4.3610
(
a

c

)3
+ 0.01042

(
a

c

)−3

A0 = 0.7857− 0.6852
(
a

c

)
− 0.0871

(
a

c

)−1
+ 0.3506

(
a

c

)2
+ 0.009223

(
a

c

)−2
−

0.07046
(
a

c

)3
− 0.0002351

(
a

c

)−3

A1 =− 2.0162 + 2.9982
(
a

c

)
+ 0.8834

(
a

c

)−1
− 2.0495

(
a

c

)2
− 0.07842

(
a

c

)−2
+

0.4547
(
a

c

)3
+ 0.001778

(
a

c

)−3

A2 = 2.1751− 3.8937
(
a

c

)
− 0.8975

(
a

c

)−1
+ 2.9923

(
a

c

)2
+ 0.1326

(
a

c

)−2
−

0.6916
(
a

c

)3
− 0.003140

(
a

c

)−3

A3 =0.6706− 0.5836
(
a

c

)
− 0.1854

(
a

c

)−1
− 0.0175

(
a

c

)2
− 0.03417

(
a

c

)−2
+

0.03872
(
a

c

)3
+ 0.0007787

(
a

c

)−3

For point C, the constants in Eq. (B-7) are as follows

M1C = π

2
√
Q

(30F1 − 18F0)− 8

M2C = π

2
√
Q

(60F0 − 90F1) + 15

M3C = −(1 +M1C +M2C)
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F0 and F1 are given as

F0 =
[
C0 + C1

(
a

t

)2
+ C2

(
a

t

)4
+ C3

(
a

t

)6
]√

a

c

F1 =
[
D0 +D1

(
a

t

)2
+D2

(
a

t

)4
+D3

(
a

t

)6
]√

a

c

where

C0 =2.1439− 1.9529
(
a

c

)
− 0.2288

(
a

c

)−1
+ 1.3968

(
a

c

)2
+ 0.02022

(
a

c

)−2
−

0.3306
(
a

c

)3
− 0.0006248

(
a

c

)−3

C1 =− 5.0199 + 11.7551
(
a

c

)
+ 2.0923

(
a

c

)−1
− 10.1262

(
a

c

)2
− 0.2000

(
a

c

)−2
+

2.6195
(
a

c

)3
+ 0.006486

(
a

c

)−3

C2 = 2.8767− 10.0641
(
a

c

)
− 1.4926

(
a

c

)−1
+ 10.7036

(
a

c

)2
+ 0.1577

(
a

c

)−2
−

3.0476
(
a

c

)3
− 0.006872

(
a

c

)−3

C3 =3.7162− 5.8901
(
a

c

)
+ 0.004638

(
a

c

)−1
+ 2.3415

(
a

c

)2
+ 0.004395

(
a

c

)−2
−

0.2057
(
a

c

)3
+ 0.001692

(
a

c

)−3

D0 = 2.0778− 2.0802
(
a

c

)
− 0.2559

(
a

c

)−1
+ 1.4577

(
a

c

)2
+ 0.02443

(
a

c

)−2
−

0.3372
(
a

c

)3
− 0.0007403

(
a

c

)−3

D1 =− 6.9548 + 13.4218
(
a

c

)
+ 2.3860

(
a

c

)−1
− 10.3911

(
a

c

)2
− 0.2266

(
a

c

)−2
+

2.5595
(
a

c

)3
+ 0.006981

(
a

c

)−3

D2 = 8.1685− 15.9579
(
a

c

)
− 2.7831

(
a

c

)−1
+ 13.0352

(
a

c

)2
+ 0.2760

(
a

c

)−2
−

3.3388
(
a

c

)3
− 0.009454

(
a

c

)−3

D3 =− 0.7752 + 0.5602
(
a

c

)
+ 1.0412

(
a

c

)−1
− 1.1856

(
a

c

)2
− 0.09758

(
a

c

)−2
+

0.4606
(
a

c

)3
+ 0.004009

(
a

c

)−3
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B-3 Ando, Fujibayashi, Nam, Takahashi and Ogura solution for a
semi-elliptical through-thickness crack

Source: [25]
Accuracy: Unknown for the assembled solution Eq. (B-8). Eq. (B-12) and Eq. (B-14)

are resp. 0.3% and 0.6% or better in comparison with FE solutions for any η.

A solution for a semi-elliptical through-thickness crack under both bending and membrane
stresses was developed by Nam, Ando, Ogura and Matui [25], but the first formula for mem-
brane stresses was found by Ando, Fujibayashi, Nam, Takahashi and Ogura [23], hence the
abbreviation ’AFNTO’. This solution also appears in [24, 35, 36].

The SIF is given as follows, with reference to Figure B-4

KC = Km
C +Kb

C (B-8a)
KD = Km

D +Kb
D (B-8b)

where the SIF of the membrane stress is given by

Km
C = δ(ce)

δ(c) · fw(η1) · σm
√
πc (B-9a)

Km
D = δ(ce)

δ(c2) · fw(η2) · σm
√
πc2 (B-9b)

and the SIF of the bending stress by

Kb
C = fw(η1) · Φ(1) · σb

√
πc (B-10a)

Kb
D = fw(η2) · Φ(1) · σb

√
πc2 (B-10b)

The crack lengths in Eq. (B-9) and (B-10) are

ce =
√

3c2 + c2
2/2 (B-11a)

c2 = c
√

1− (t/a)2 (B-11b)

The finite width correction for a centre cracked plate is taken from [9] as

fw(η) = 1− 0.5η + 0.370η2 − 0.044η3
√

1− η (B-12)

where and fw(η1), fw(η2) can be found by substituting η1 or η2 respectively in Eq. (B-12),
which are defined as

ηe = ce/W (B-13a)
η1 = c/W (B-13b)
η2 = c2/W (B-13c)

The crack opening displacement is approximated by an FE derived expression as well

δ(ce) = 4σce(1− ν2)
E

· V (η) (B-14)
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Figure B-4: Definitions for a semi-elliptical through-thickness surface crack

where

V (η) = −0.071− 0.535η + 0.169η2 + 0.020η3 − 1.071(1/η) ln(1− η) (B-15)

where δ(c), δ(c2) can be found by substituting {c, η1} or {c2, η2} respectively in Eq. (B-14)
and (B-15).2

The function Φ(1) in Eq. (B-10) accounts for the influence of the plate thickness. The authors
of the AFNTO solution do not specify how they obtained the value of Φ(1) and only refer to
the original source of this function, [29]. Finding the variation of Φ(1) as a function of the plate
thickness is not straightforward as it involves the numerical integration of a Fredholm integral
equation of the second kind which can be solved by Liouville - Neumann series. A matlab
algorithm to solve this type of function can be found online together with the explanation of
the algorithm in the accompanying paper [37].3 However, the kernel of the Fredholm integral
consists of a multiplication of two Bessel functions and a third function and attempts to solve
this kernel numerically failed because of computation speed issues. The authors of the AFNTO
solution did manage to solve this equation somehow, without having access to this algorithm
or the computation capacity of a modern day computer. And, somewhat surprisingly given
the considerable effort it takes to solve Φ(1), they made four times the same typo by using
Φ(I) instead of Φ(1). Nevertheless, to circumvent this elaborate numerical integration process,
a curve-fitted approximation of a graph of the normalized thickness versus the bending SIF
that is found in [38], is used instead. The approximation is shown in Figure B-5.

B-4 Solution for a centre crack in a finite width-plate

Source: [9, p. 41]
Accuracy: For any c/W : better than 0.1% in comparison with FE solutions.

2The accuracy is found to be 0.6% or better for a slightly different expression of Eq. (B-15): V (η) =
−0.071−0.535η+0.169η2−0.090η3 +0.020η4−1.071(1/η) ln(1− η). This variation was published in [9, p.43],
the newer third edition of The stress analysis handbook than the in the AFNTO articles cited first edition.

3http://homepage.divms.uiowa.edu/~atkinson/ftp/Fie.package/
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Figure B-5: Approximation of the analytical BCF Φ(1) for an infinite plate under bending

For a straight centre crack in a finite width-plate (Figure B-6) a solution for fw, is given by

Y = fw(η) =
(
1− 0.025η2 + 0.06η4

) [
cos
(
π

2 η
)]−1/2

(B-16)

where η = c/W .

Figure B-6: Definitions for a centre crack in a finite plate

79



80 Stress intensity factor solutions

80



Appendix C

Ansys script for the validation models

Parts of the following code are copied from the verification manual ’VM256’ of ansys [28].
The example code is for a crack of size a = 1.

FINISH
/CLEAR
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
! PLATE WITH COLLINEAR CRACKS, SOLID 186 ELEMENT, Structured mesh
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
/TITLE, STRESS INTENSITY - WIDE PLATE WITH COLLINEAR CRACKS, A = 1
/PREP7
SMRT,OFF
/COM,*** PLATE WITH COLLINEAR CRACKS IN 3-D USING SOLID186
/COM,
!--------------------
! INPUT VARIABLES
!--------------------
A = 1 ! HALF CRACK SIZE
W = 20 ! HALF WIDTH OF THE PLATE
H = W ! HALF HEIGHT OF THE PLATE
T = 0.5 ! PLATE THICKNESS
PI = 3.141592654

EMOD = 30E6 ! YOUNGS MODULUS
NU = 0.3 ! POISSONS RATIO
ET,1,PLANE183 ! PLATE ELEMENT 183 (will be deleted later)
ET,2,186 ! SOLID ELEMENT 186
MP,EX,1,EMOD
MP,NUXY,1,NU

!--------------------
! MODEL GEOMETRY
!--------------------
CSYS,1 ! CYLINDRICAL COORDINATE SYSTEM
K,1,0,0,0
KGEN,6,1,,,,,,10,0 ! 6 x KP AT (0,0,0) NUMBERED 1,11,21,31,41,51
K,6,1
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K,46,1,180
KFILL,6,46,3,16,10 ! FILL LINE BETWEEN NODE 6 AND 46 WITH A NODE AT

! 1/4 OF THE DISTANCE FROM 16 (+10) TO 46
CSYS,0 ! CARTESIAN COORDINATE SYSTEM
KFILL,1,6,4,2,1,3
CSYS,1 ! CYLINDRICAL COORDINATE SYSTEM
KGEN,5,1,5,1,0,180/4,0,10,1,0
CSYS,0 ! CARTESIAN COORDINATE SYSTEM
K,27,0 ,H,0
K,7 ,W-A,0,0
KMODIF,15, 0.82*cos(PI/4),0.82*sin(PI/4),0
KMODIF,35,-0.82*cos(PI/4),0.82*sin(PI/4),0
K,16, A,tan(PI/4),0
K,36,-A,tan(PI/4),0
A,2 ,12, 1,1
A,12,22,11,11
A,22,32,21,21
A,32,42,31,31
A,2 , 3,13,12,
A,12,13,23,22,
A,22,23,33,32,
A,32,33,43,42,
A,3 ,13,14,4,
A,13,23,24,14,
A,23,33,34,24,
A,33,43,44,34,
A,4 ,14,15,5
A,14,24,25,15
A,24,34,35,25
A,34,44,45,35
A,5 ,15,16,6
A,15,25,26,16
A,25,35,36,26
A,35,45,46,36
ASEL,ALL
AGLUE,ALL
L,26,27
L,6,7
LSEL,S,LOC,Y,1
ADRAG,ALL,,,,,,5
ALLSEL,ALL
LSEL,S,LOC,X,A
ADRAG,ALL,,,,,,6
ASEL,ALL
AGLUE,ALL

!-----------------------------------------
! MESH AREAS
!-----------------------------------------
NUMMRG, KP,,,,
LSEL,S,LOC,X,A+0.1,W-A-0.1
LESIZE,ALL,,,11,4
LSEL,S,LOC,Y,1.1 ,H-0.1
LSEL,R,LOC,X,-A-0.1,W-A-0.1
LESIZE,ALL,,,11,4
ALLSEL,ALL
LESIZE,53,,,11,1/4
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LESIZE,12,,,2,1
LESIZE,8,,,2,1
LESIZE,41,,,2,1
LESIZE,44,,,2,1
LESIZE,46,,,2,1
LESIZE,48,,,2,1
LESIZE,56,,,2,1
ASEL,ALL
CM,REMOVEAREAS,AREA
MSHKEY,1
AMESH,ALL

!---------------------------------------------
! EXTRUDE TO VOLUME AND MESH
!---------------------------------------------
TYPE,2
ESIZE,,2 ! Specifies the default number of line divisions
VEXT,all,,,0,0,T ! Extrude areas to volumes
ALLSEL
ESEL,S,ENAME,,183 ! Select elements of type plane 183
ACLEAR,REMOVEAREAS ! Delete these elements
ALLSEL

!-----------------------------
! DEFINING CRACKTIP
!-----------------------------
NSEL,S,LOC,X,0
NSEL,R,LOC,Y,0
CM,CRACKTIP,NODE ! CRACK TIP NODE COMPONENT

!-------------------------------------------------
! BOUNDARY CONDITIONS
!-------------------------------------------------
ALLSEL,ALL
NSEL,S,LOC,X,-A
DSYM,SYMM,X ! SYMMETRY BOUNDARY CONDITIONS
NSEL,S,LOC,X,0,W
NSEL,R,LOC,Y,0
DSYM,SYMM,Y ! SYMMETRY BOUNDARY CONDITIONS
NSEL,S,LOC,X,W-A
DSYM,SYMM,X ! SYMMETRY BOUNDARY CONDITIONS

!-------------------------------------------------
! LOADS
!-------------------------------------------------
ALLSEL,ALL
D,ALL,UZ,
ALLSEL,ALL
NSEL,S,LOC,Y,H
SF,ALL,PRES,-1/((A*PI)**0.5) ! SURFACE PRESSURE
ALLSEL,ALL
FINI
/SOLU

!-------------------------------------------------
! SOLVE SYSTEM AND RETRIEVE K AND J-INTEGRAL DATA
!-------------------------------------------------
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AUTOTS,ON
NSUBST,10
OUTRES,ALL,ALL
CINT,NEW,1 ! CRACK ID
CINT,TYPE,SIFS ! DEFINE CRACK TYPE
CINT,CTNC,CRACKTIP,NODE(-1,0,0) ! DEFINE CRACK TIP COMPONENT
CINT,NCON,6 ! NO OF CONTOURS
CINT,SYMM,ON ! SYMMETRY ON
CINT,NORM,0,2 ! CRACK PLANE NORMAL
CINT,LIST
CINT,NEW,2 ! CRACK ID
CINT,TYPE,JINT ! DEFINE CRACK TYPE
CINT,CTNC,CRACKTIP,NODE(-1,0,0) ! DEFINE CRACK TIP COMPONENT
CINT,NCON,6 ! NO OF CONTOURS
CINT,SYMM,ON ! SYMMETRY ON
CINT,NORM,0,2 ! CRACK PLANE NORMAL
CINT,LIST
ALLSEL,ALL
/NERR,0,,,,
SOLVE
FINI
/POST1
/OUT,
PRCINT,1,NODE(0,0,T/2),K1 ! PRINT K VALUES
PRCINT,2,NODE(0,0,T/2),JINT ! PRINT J-INTEGRAL VALUES
*GET,K1_3,CINT,1,CTIP,NODE(0,0,T/2),CONTOUR,3,DTYPE,K1
*GET,K1_4,CINT,1,CTIP,NODE(0,0,T/2),CONTOUR,4,DTYPE,K1
*GET,K1_5,CINT,1,CTIP,NODE(0,0,T/2),CONTOUR,5,DTYPE,K1
*GET,J1,CINT,2,CTIP,NODE(0,0,T/2),CONTOUR,1,,
*GET,J3,CINT,2,CTIP,NODE(0,0,T/2),CONTOUR,3,,
*GET,J4,CINT,2,CTIP,NODE(0,0,T/2),CONTOUR,4,,
*GET,J5,CINT,2,CTIP,NODE(0,0,T/2),CONTOUR,5,,
K = (K1_3 + K1_4 + K1_5)/3
*STATUS,K ! Lists the current parameters and abbreviations
J = (ABS(J3)+ABS(J4)+ABS(J5))/3
K_J = (J*(EMOD/(1-NU*NU)))**0.5
K_J1 = (ABS(J1)*(EMOD/(1-NU*NU)))**0.5

!--------------------------
! WRITE DATA TO TABLE
!--------------------------
*STATUS,J
*DIM,LABEL,CHAR,3,
*DIM,VALUE,,3,3
LABEL(1,1) = ’K SIF’,
LABEL(2,1) = ’K J-INT’
LABEL(3,1) = ’K J1-INT’
TARGET = (TAN(PI*A/(2*W))/(PI*A/(2*W)))**0.5
*VFILL,VALUE(1,1),DATA,TARGET ! STRESS INTENSITY FROM REFERENCE
*VFILL,VALUE(1,2),DATA,K
*VFILL,VALUE(1,3),DATA,ABS(K/TARGET)
*VFILL,VALUE(2,1),DATA,TARGET
*VFILL,VALUE(2,2),DATA,K_J
*VFILL,VALUE(2,3),DATA,ABS(K_J/TARGET)
*VFILL,VALUE(3,1),DATA,TARGET
*VFILL,VALUE(3,2),DATA,K_J1
*VFILL,VALUE(3,3),DATA,ABS(K_J1/TARGET)
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SAVE,TABLE_1
!PLCINT,front,2,,,JINT ! Plot J-contours

FINISH
/CLEAR, NOSTART ! CLEAR DATABASE FOR 2nD SOLUTION
/OUT,

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
! PLATE WITH COLLINEAR CRACKS, SOLID 185 ELEMENT, Structured mesh
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
/CLEAR
/TITLE, STRESS INTENSITY - WIDE PLATE WITH COLLINEAR CRACKS A = 1
/PREP7
SMRT,OFF
/COM, *** PLATE WITH COLLINEAR CRACKS IN 3-DIMENSIONS USING SOLID185
/COM,
!--------------------
! INPUT VARIABLES
!--------------------
A = 1 ! HALF CRACK SIZE
W = 20 ! HALF WIDTH OF THE PLATE
H = W ! HALF HEIGHT OF THE PLATE
T = 0.5 ! PLATE THICKNESS
PI = 3.141592654

EMOD = 30E6 ! YOUNGS MODULUS
NU = 0.3 ! POISSONS RATIO
ET,1,SOLID185 ! SOLID 185 ELEMENT
ET,2,SOLID185 ! ELEMENTS AROUND THE CRACK-TIP
MP,EX,1,EMOD
MP,NUXY,1,NU

!--------------------
! MODEL GEOMETRY
!--------------------
CSYS,1 ! CYLINDRICAL COORDINATE SYSTEM
N,1,0,0,0
NGEN,9,20,1 ! Generates additional nodes from a pattern of nodes,

! 9 x node at 0,0,0 with numbers 1, 21, 41 , 61 ... ,161
N,11,0.8
N,171,0.8,180
FILL,11,171,7,31,20 ! Fill line between node 11 and 171 with a node

! at 1/7 of the distance, from 31 (+20) to 151
CSYS,0 ! CARTESIAN COORDINATE SYSTEM
FILL,1,11,9,2,1,9,20,4 ! 4 is last step/first step, unequal spacing
N,19,W-A,0,0
N,79,W-A,H,0
FILL,19,79,2,39,20
N,159,-A,H,0
FILL,79,159,3,99,20
N,172,-A,0
FILL,159,172,9,181,-1,,,.034 ! Increment is -1. decreasing divisions
FILL,11,19,7,,,7,20,15
NGEN,2,200,1,181,,,,T
E,2,22,1,1,202,222,201,201
EGEN,8,20,-1
E,2,3,23,22,202,203,223,222

85



86 Ansys script for the validation models

EGEN,8,20,-1
EGEN,9,1,-8
EGEN,9,1,73,78
E,171,151,173,172,371,351,373,372 ! 111
E,151,131,174,173,351,331,374,373 ! 112
E,131,132,175,174,331,332,375,374 ! 113
EGEN,7,1,-1
E,138,139,159,181,338,339,359,381
TYPE,2
EMODIF,1 ! MODIFY ELEMENTS 1 TO 8 FROM TYPE 1 TO TYPE 2
*REPEAT,8,1
NUMMRG,NODE ! MERGE COINCIDENT NODES
ALLSEL,ALL

!-----------------------------
! DEFINING CRACKTIP
!-----------------------------
NSEL,S,LOC,X,0
NSEL,R,LOC,Y,0
NLIST ! node 1 and 201
CM,CRACKTIP,NODE ! CRACK TIP NODE COMPONENT, name is cracktip

!-------------------------------------------------
! BOUNDARY CONDITIONS
!-------------------------------------------------
ALLSEL,ALL
NSEL,S,LOC,X,-A
DSYM,SYMM,X ! SYMMETRY BOUNDARY CONDITIONS
NSEL,S,LOC,X,0,W
NSEL,R,LOC,Y,0
DSYM,SYMM,Y ! SYMMETRY BOUNDARY CONDITIONS
NSEL,S,LOC,X,W-A
DSYM,SYMM,X ! SYMMETRY BOUNDARY CONDITIONS
ALLSEL,ALL
D,ALL,UZ,0

!-------------------------------------------------
! LOADS
!-------------------------------------------------
ALLSEL,ALL
NSEL,S,LOC,Y,H
SF,ALL,PRES,-1/((A*PI)**0.5) ! SURFACE PRESSURE
ALLSEL,ALL
FINI

!-------------------------------------------------
! SOLVE SYSTEM AND RETRIEVE K AND J-INTEGRAL DATA
!-------------------------------------------------
/SOLU
AUTOTS,ON ! Is default, automatic time stepping
NSUBST,10 ! Specifies the number of substeps
OUTRES,ALL,ALL
CINT,NEW,1 ! CRACK ID
CINT,TYPE,SIFS ! DEFINE CRACK TYPE
CINT,CTNC,CRACKTIP,NODE(-1,0,0) ! DEFINE CRACK-TIP COMPONENT

! any node on the open side of the crack
CINT,NCON,6 ! NO OF CONTOURS
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CINT,SYMM,ON ! SYMMETRY ON
CINT,NORM,0,2 ! CRACK PLANE NORMAL
CINT,LIST
CINT,NEW,2 ! CRACK ID
CINT,TYPE,JINT ! DEFINE CRACK TYPE
CINT,CTNC,CRACKTIP,NODE(-1,0,0) ! DEFINE CRACK-TIP COMPONENT
CINT,NCON,6 ! NO OF CONTOURS
CINT,SYMM,ON ! SYMMETRY ON
CINT,NORM,0,2 ! CRACK PLANE NORMAL
CINT,LIST
ALLSEL,ALL
SAVE
/NERR,0,,,,! supresses warnings
SOLVE
FINI

/POST1
/OUT,
PRCINT,1,NODE(0,0,T/2),K1 ! PRINT K VALUES
PRCINT,2,NODE(0,0,T/2),JINT ! PRINT J-INTEGRAL
*GET,K1_3,CINT,1,CTIP,NODE(0,0,T/2),CONTOUR,3,DTYPE,K1
*GET,K1_4,CINT,1,CTIP,NODE(0,0,T/2),CONTOUR,4,DTYPE,K1
*GET,K1_5,CINT,1,CTIP,NODE(0,0,T/2),CONTOUR,5,DTYPE,K1
*GET,J1,CINT,2,CTIP,NODE(0,0,T/2),CONTOUR,1,,
*GET,J3,CINT,2,CTIP,NODE(0,0,T/2),CONTOUR,3,,
*GET,J4,CINT,2,CTIP,NODE(0,0,T/2),CONTOUR,4,,
*GET,J5,CINT,2,CTIP,NODE(0,0,T/2),CONTOUR,5,,
K = (K1_3 + K1_4 + K1_5)/3
*STATUS,K ! Lists the current parameters and abbreviations
J = (ABS(J3)+ABS(J4)+ABS(J5))/3
K_J = (J*(EMOD/(1-NU*NU)))**0.5
K_J1 = (ABS(J1)*(EMOD/(1-NU*NU)))**0.5

!--------------------------
! WRITE DATA TO TABLE
!--------------------------
*STATUS,J
*DIM,LABEL,CHAR,3,
*DIM,VALUE,,3,3
LABEL(1,1) = ’K SIF’,
LABEL(2,1) = ’K J-INT’
LABEL(3,1) = ’K J1-INT’
TARGET = (TAN(PI*A/(2*W))/(PI*A/(2*W)))**0.5
*VFILL,VALUE(1,1),DATA,TARGET ! STRESS INTENSITY FROM REFERENCE
*VFILL,VALUE(1,2),DATA,K
*VFILL,VALUE(1,3),DATA,ABS(K/TARGET)
*VFILL,VALUE(2,1),DATA,TARGET
*VFILL,VALUE(2,2),DATA,K_J
*VFILL,VALUE(2,3),DATA,ABS(K_J/TARGET)
*VFILL,VALUE(3,1),DATA,TARGET
*VFILL,VALUE(3,2),DATA,K_J1
*VFILL,VALUE(3,3),DATA,ABS(K_J1/TARGET)
SAVE,TABLE_2

FINISH
/CLEAR, NOSTART ! CLEAR DATABASE FOR 3RD SOLUTION
/OUT,
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!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
! PLATE WITH COLLINEAR CRACKS, SOLID 186 ELEMENT, irregular mesh
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
/PREP7
SMRT,OFF
/TITLE, STRESS INTENSITY - PLATE WITH COLLINEAR CRACKS A = 1
/COM,*** PLATE WITH COLLINEAR CRACKS IN 3-D USING SOLID186

!--------------------
! INPUT VARIABLES
!--------------------
A = 1 ! HALF CRACK SIZE
W = 20 ! HALF WIDTH OF THE PLATE
H = W ! HALF HEIGHT OF THE PLATE
PI = 3.141592654
T = 0.5 ! PLATE THICKNESS
EMOD = 30E6 ! YOUNGS MODULUS
NU = 0.3 ! POISSONS RATIO
ET,1,PLANE183 ! PLATE ELEMENT 183, WILL BE REMOVED LATER
ET,2,186 ! SOLID ELEMENT 186
MP,EX,1,EMOD
MP,NUXY,1,NU

!--------------------
! MODEL GEOMETRY
!--------------------
K,1,0 ,0,0 ! DEFINE KEYPOINTS AND LINE SEGMENTS
K,2,W-A,0,0
K,3,W-A,H,0
K,4,-A ,H,0
K,5,-A ,0,0
L,1,2
L,2,3
LESIZE,2,,,4
L,3,4
LESIZE,3,,,4
L,4,5,
LESIZE,4,,,6,.2
L,5,1

!-----------------------------------------
! MESH AREAS
!-----------------------------------------
ESIZE,,5
KSCON,1,.125,0,8 ! DEFINE CRACK-TIP with singular elements
AL,1,2,3,4,5
AMESH,1
TYPE,2
ESIZE,,2 ! Specifies the default number of line divisions
VEXT,1,,,0,0,T
ALLSEL
ESEL,S,ENAME,,183 ! Select elements of type plane 183
ACLEAR,1 ! Delete these elements

!-----------------------------
! DEFINING CRACKTIP
!-----------------------------
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ALLSEL
NSEL,S,LOC,X,0
NSEL,R,LOC,Y,0
NLIST
CM,CRACKTIP,NODE ! CRACK-TIP NODE COMPONENT

!-------------------------------------------------
! BOUNDARY CONDITIONS
!-------------------------------------------------
ALLSEL,ALL
NSEL,S,LOC,X,-A
DSYM,SYMM,X ! SYMMETRY BOUNDARY CONDITIONS
NSEL,S,LOC,X,0,W
NSEL,R,LOC,Y,0
DSYM,SYMM,Y ! SYMMETRY BOUNDARY CONDITIONS
NSEL,S,LOC,X,W-A
DSYM,SYMM,X ! SYMMETRY BOUNDARY CONDITIONS
ALLSEL,ALL
D,ALL,UZ,0

!-------------------------------------------------
! LOADS
!-------------------------------------------------
ALLSEL,ALL
NSEL,S,LOC,Y,H
SF,ALL,PRES,-1/((A*PI)**0.5) ! SURFACE PRESSURE
ALLSEL,ALL
FINI

!-------------------------------------------------
! SOLVE SYSTEM AND RETRIEVE K AND J-INTEGRAL DATA
!-------------------------------------------------
/SOLU
AUTOTS,ON
NSUBST,10
OUTRES,ALL,ALL
CINT,NEW,1 ! CRACK ID
CINT,TYPE,SIFS ! DEFINE CRACK TYPE
CINT,CTNC,CRACKTIP,NODE(-1,0,0) ! DEFINE CRACK TIP COMPONENT
CINT,NCON,6 ! NO OF CONTOURS
CINT,SYMM,ON ! SYMMETRY ON
CINT,NORM,0,2 ! CRACK PLANE NORMAL
CINT,LIST
CINT,NEW,2 ! CRACK ID
CINT,TYPE,JINT ! DEFINE CRACK TYPE
CINT,CTNC,CRACKTIP,NODE(-1,0,0) ! DEFINE CRACK TIP COMPONENT
CINT,NCON,6 ! NO OF CONTOURS
CINT,SYMM,ON ! SYMMETRY ON
CINT,NORM,0,2 ! CRACK PLANE NORMAL
CINT,LIST
ALLSEL,ALL
SAVE
/NERR,0,,,,
SOLVE
FINI
/POST1
PLNSOL, S,INT
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/OUT,
PRCINT,1,NODE(0,0,T/2),K1 ! PRINT K VALUES ID = 1
PRCINT,2,NODE(0,0,T/2),JINT ! PRINT J-INTEGRAL VALUES ID = 1
PRCINT,1,NODE(0,0,T/2),K1 ! PRINT K VALUES ID = 2
PRCINT,2,NODE(0,0,T/2),JINT ! PRINT J-INTEGRAL VALUES ID = 2
*GET,K1_3,CINT,1,CTIP,NODE(0,0,T/2),CONTOUR,3,DTYPE,K1
*GET,K1_4,CINT,1,CTIP,NODE(0,0,T/2),CONTOUR,4,DTYPE,K1
*GET,K1_5,CINT,1,CTIP,NODE(0,0,T/2),CONTOUR,5,DTYPE,K1
*GET,J1,CINT,2,CTIP,NODE(0,0,T/2),CONTOUR,1,,
*GET,J3,CINT,2,CTIP,NODE(0,0,T/2),CONTOUR,3,,
*GET,J4,CINT,2,CTIP,NODE(0,0,T/2),CONTOUR,4,,
*GET,J5,CINT,2,CTIP,NODE(0,0,T/2),CONTOUR,5,,
K = (K1_3 + K1_4 + K1_5)/3
*STATUS,K ! Lists the current parameters and abbreviations
J = (ABS(J3)+ABS(J4)+ABS(J5))/3
K_J = (J*(EMOD/(1-NU*NU)))**0.5
K_J1 = (ABS(J1)*(EMOD/(1-NU*NU)))**0.5

!--------------------------
! WRITE DATA TO TABLE
!--------------------------
*STATUS,J
*DIM,LABEL,CHAR,3,
*DIM,VALUE,,3,3
LABEL(1,1) = ’K SIF’,
LABEL(2,1) = ’K J-INT’
LABEL(3,1) = ’K J1-INT’
TARGET = (TAN(PI*A/(2*W))/(PI*A/(2*W)))**0.5
*VFILL,VALUE(1,1),DATA,TARGET ! STRESS INTENSITY FROM REFERENCE
*VFILL,VALUE(1,2),DATA,K
*VFILL,VALUE(1,3),DATA,ABS(K/TARGET)
*VFILL,VALUE(2,1),DATA,TARGET
*VFILL,VALUE(2,2),DATA,K_J
*VFILL,VALUE(2,3),DATA,ABS(K_J/TARGET)
*VFILL,VALUE(3,1),DATA,TARGET
*VFILL,VALUE(3,2),DATA,K_J1
*VFILL,VALUE(3,3),DATA,ABS(K_J1/TARGET)
SAVE,TABLE_3
FINISH
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!--------------------------
! WRITE DATA TO .TXT FILE
!--------------------------
RESUME,TABLE_1
/COM
/OUT,Results_collinearcrack,txt
/COM,---RESULTS COMPARISON PLATE WITH COLLINEAR CRACKS A = 1 ---
/COM,
/COM, | TARGET | Mechanical APDL | RATIO
/COM,
/COM, **********************************************************
/COM, USING SOLID 186 ELEMENT - Structured mesh
/COM, **********************************************************
/COM,
*VWRITE,LABEL(1,1),VALUE(1,1),VALUE(1,2),VALUE(1,3)
(1X,A8,’ ’,F10.5,’ ’,F14.5,’ ’,F15.4)
/NOPR
RESUME,TABLE_2
/GOPR
/COM,
/COM, **********************************************************
/COM, USING SOLID 185 ELEMENT - Structured mesh
/COM, **********************************************************
/COM,
*VWRITE,LABEL(1,1),VALUE(1,1),VALUE(1,2),VALUE(1,3)
(1X,A8,’ ’,F10.5,’ ’,F14.5,’ ’,F15.4)
/NOPR
RESUME,TABLE_3
/GOPR
/COM,
/COM, **********************************************************
/COM, USING SOLID 186 ELEMENT - Irregular mesh
/COM, **********************************************************
/COM,
*VWRITE,LABEL(1,1),VALUE(1,1),VALUE(1,2),VALUE(1,3)
(1X,A8,’ ’,F10.5,’ ’,F14.5,’ ’,F15.4)
/NOPR
/COM,
/COM,-----------------------------------------------------------
/OUT
FINISH
*LIST,Results_collinearcrack,txt
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Appendix D

The finite element method

For many engineering problems where no analytical solution is available, one has to resort
to numerical methods such as the boundary element method or the finite element method to
approximate a field quantity, (e.g. stresses, displacements, strain etc.) in a body or region.
Both can be used for fracture mechanics but he boundary element method is more suitable
for problems with a small surface/volume ratio. For the geometries in this thesis, this is not
really the case, hence using the FEM is considered to be more appropriate.
The FEM essentially comes down to the subdivision of a body into a large number of smaller
elements. It is assumed that the actual field quantity within these elements can be approx-
imated by expressions that are not very complex such as a constant, linear or quadratic
expression. Elements are connected to each other at their points through nodes and this
assembly of nodes and elements forms the mesh. If a large gradient of a field quantity is ex-
pected, the mesh needs to be more refined in these areas so that the simple expressions within
an element can still approximate the field quantity reasonably well. Alternatively, a special
element type can be used. For a cracked body, stress, strain and displacement gradients are
very high around the crack-tip and therefore special crack-tip elements can be considered for
fracture problems.
Three methods to find the SIF will also be briefly discussed here: the virtual crack extension
method, the J-integral method and crack-tip field methods.

Element types The analysis of a curved crack front is a 3-D problem which needs to be
modelled with solid elements. Of these, a variety of shapes are available, such as tetrahedra,
pyramids, prisms and hexahedra. The first two shapes are not recommended to be used in
ansys. The predominantly rectangular shape of the model in this thesis is best modelled
by brick elements, prismatic elements are only used to connect the fine brick elements with
the coarser ones. A lower order brick element is the 8-node solid, which is the 3-D version
of the 4-node plane element shown bottom left in Figure D-1. Correspondingly, the 20-node
higher order solid is the 3-D equivalent of the 8-node plane element shown at the top-left of
Figure D-1. Varieties such as a 27-node element with an extra node mid-plane and mid-body
exist but are not widely applied in FE analysis.
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Special crack-tip elements For linear elastic conditions, the stresses in the vicinity of a
crack-tip are inversely proportional to

√
r, as can be seen from Eq. (A-1). To describe this

singular behaviour for FE as well, special crack-tip elements can be used around the crack-tip.
Higher order elements, which are element types that have more nodes than only the ones at
the extremes of the element, can be adjusted in a way that they can describe this singular
behaviour when r → 0. Some of the extra nodes that would have otherwise be located mid-
side are re-positioned closer to the crack-tip the in the ratio 1:3, so at a quarter of the length of
the element side. Lower order elements have an extra node collapsed into the crack-tip node.
Examples of these special crack-tip elements are shown in Figure D-1 for two-dimensional
element types. For a derivation that confirms that the strains at the crack-tip of a higher
order element indeed become infinite and share the 1/

√
r singularity of the analytical solution

of Eq. (A-1a), reference is made to [30, 11.4.1].

Figure D-1: Examples of quarter point and collapsed elements
Top - Left 8-node plane element
Top - Centre 8-node quarter point element
Top - Right 6-node quarter point element
Bottom - Left 4-node plane element
Bottom - Centre 8-node collapsed quarter point element
Bottom - Right 4-node collapsed element

Virtual crack extension method This method finds K through the energy release rate and
is the numerical equivalent of Eq. (A-3). Reference is also made to Figure A-3. The crack is
virtually extended by ∆a, and the elongation of the plate is fixed, so F = 0. It is assumed
that the stress states around the crack-tip do not significantly change, only the stiffness of the
plate is affected by this virtual crack extension. The energy release rate is then approximately

G = −1
t

(dU
da

)
δfixed

≈ −1
t

(U (a+ ∆a)− U (a)
∆a

)
(D-1)
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Note that, as the crack grows, elastic strain energy stored in the body decreases, so G becomes
positive. Once G is known, it can be related to K by Eq. (A-10).
Similarly, to avoid computing the stiffness matrix twice, FE programs often only calculate
the differences in stiffness directly around the crack-tip. Because of this, it is important to
use crack-tip elements in this area.

J-integral method In Section A-2 the 2-D contour integral is shown. In three dimensions,
it essentially comes down to the calculation of a surface integral S, as shown in Figure D-2.
When the contours are positioned a bit further away from the crack-tip, it is not necessary to
use special crack-tip elements. ansys determines the first contour as the first layer of nodes
perpendicular to the crack face in its x− z plane, hence in crack growth direction; the second
contour as the second layer of nodes etc.

Figure D-2: Surface for computing a J integral in 3-D.

As shown in Figure D-3 and with reference to Figure 3-9 and 3-11,the contour-finding pro-
cedure may cause errors for the determination of the J-contour around the crack-tip at the
breakthrough side, because the software may not find all node-layers. This problem occurs
in particular for very sharp cracks. It can be solved by using a small crack-tip mesh-radius, a
very dense element spacing in the vicinity of the breakthrough side and by disregarding the
contours further away from the crack-tip.
Only converged J values, typically obtained from contours that are a somewhat further away
from the crack-tip, should be used. Close to the crack-tip, the J value is less accurate. As
long as the contours are not too close to the crack-tip, it is not needed to use special crack-tip
elements. The J values of the nodes at the free surfaces should not be used because the J
value for a node is obtained by using the some values of the neighbouring nodes as well. For
an explanation how these neighbouring nodes affect the J value, reference is made to [12].
It should furthermore be noted that the J-integral in this thesis is in fact a G-integral because
no plasticity or non-linearities are included in the models, as explained in Section A-2. It is
nevertheless referred to as a J-(contour) integral, since ansys does not distinguish between
G and J , as only the general case of the J-integral method can be selected in the program.
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96 The finite element method

Figure D-3: Illustration of an issue with the J integral at the breakthrough side

Crack-tip field methods Two variations are available in ansys: the displacement extrapola-
tion method that is illustrated in Figure D-4 and the interaction integral method. 1 The latter
applies volume integration in a similar fashion as the J-contour does for 3-D problems. It is
contour independent as well, but has a slightly different formulation as the J-integral. This
formulation is used in this thesis as well, because no special crack-tip elements are required.

Figure D-4: Stress field extrapolation

1Operated in ansys through respectively the KCALC and CINT command.
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Appendix E

Ansys script for a semi-elliptical
surface crack

FINISH
/CLEAR
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
! SEMI - ELLIPTICAL CRACK MODELLED WITH SOLID 186 ELEMENT
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
/TITLE, A/C = 0.2 ; A/T = 0.7
/PREP7
/UIS, MSGPOP,3
/COM,
/VIEW,,-1,-1,1
/VUP,,Z
BTOL,3E-4 ! TOLERANCE FOR GLUE COMMANDS
BOPTN,NWARN,1 ! SUPPRESS WARNING IF GLUE OPERATION FAILS

!--------------------
! INPUT VARIABLES
!--------------------
EMB = 1 ! SEMI-ELLIPSE (0) OR EMBEDDED ELLIPSE (1)
N = 0 ! FOR TENSION: N = 0 ; FOR BENDING N = 1
A = 35 ! HALF AXIS OF THE ELLIPS - SHORT
C = 175 ! HALF AXIS OF THE ELLIPS - LONG
W = 4*C ! HALF WIDTH OF THE SOLID (in Y-direction)
H = 2.4*C ! HEIGHT OF THE BLOCK
T = 50 ! THICKNESS OF THE PLATE (in X-direction)
R = 2.2 ! RADIUS AROUND CRACKTIP
R2 = 7.2 ! OUTER RADIUS > R
R3 = 6.8 ! INNER RADIUS > R
SIGMA = 100 ! STRESS
DIV = 46 ! NUMBER OF ELEMENTS ALONG THE CRACK LINE
*IF,EMB,EQ,0,THEN

/COM, ****** SEMI-ELLIPTICAL CRACK IN A FINITE WIDTH PLATE
*ELSEIF,EMB,EQ,1

/COM, ****** EMBEDDED ELLIPTICAL CRACK IN A LARGE SOLID
T2 = 3*C + A ! THICKNESS OF THE SOLID (IN X-DIRECTION)
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98 Ansys script for a semi-elliptical surface crack

*ENDIF
PI = 3.141592654
ET,1,186 ! SOLID ELEMENT 186 - 20 NODE HEXAGONAL
EMOD = 207E3 ! YOUNGS MODULUS
NU = 0.3 ! POISSONS RATIO
MP,EX,1,EMOD
MP,NUXY,1,NU

!--------------------
! MODELLING GEOMETRY
!--------------------
WPOFFS, 0, C, 0
WPROTA,-90,90,0 ! ROTATE THE WORKING PLAN
CSWPLA,11,1 ! DEFINE LOCAL COORDINATE SYSTEM 11
K,1,0,0,0
KGEN,5,1,,,,,,10,0 ! 5 x KP AT (0,0,0) NUMBERED 1,11,21,31,...

K,4,R*0.8,0,0
K,44,R*0.8,180,0
KFILL,4,44,3,14,10 ! FILL THE ’LINE’ BETWEEN NODE 4 AND 44 WITH A NODE

! AT 1/4 OF THE DISTANCE NUMBERED FROM 14 (+10) TO 44
KFILL,1,4,2,2,1,1.0
KGEN,5,1,4,1,0,180/4,0,10,1,0

CSWPLA,12,0 ! DEFINE LOCAL COORDINATE SYSTEM 12, CARTHESIAN
K, 5, R,0,0
K, 6, R3,0,0
K,15, R,R,0
K,16, R3,R,0
K,25, 0,R,0
K,35, -R,R,0
K,45, -R,0,0
K,46,-R2,0,0
KMODIF,14, R*0.62,R*0.62,0
KMODIF,34,-R*0.62,R*0.62,0
A, 2,12, 1, 1 !
A,12,22,11,11
A,22,32,21,21
A,32,42,31,31
A, 2, 3,13,12, !
A,12,13,23,22,
A,22,23,33,32,
A,32,33,43,42,
A, 3,13,14, 4, !
A,13,23,24,14,
A,23,33,34,24,
A,33,43,44,34,
A, 4,14,15, 5 !
A,14,24,25,15
A,24,34,35,25
A,34,44,45,35
A, 5, 6,16,15 !

K,36,-R2,R,0
A,45, 46,36,35

ASEL,ALL
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AGLUE,ALL

WPSTYL,DEFA
WPSTYL, , , , , , 0, 0, 0,
CSYS,0
K, 7,0,0,0
K,100,A,0,0

LOCAL,13,1,0,0,0,,,,C/A ! ELLIPTICAL COORDINATE SYSTEM
L,1,100

CSYS,0
ASEL,ALL
VDRAG,ALL,,,,,,5 ! EXTRUDE AREAS TO VOLUMES
LDELE,5 ! REMOVE LINE

L, 6,7
L,49,7
NUMMRG,KP, , , ,
AL,5,99,111
VDRAG,79,,,,,,41,
VGLUE,14,19 ! GLUE VOLUMES

BLOCK, 0, T, 0, C+3*R2, 0, R
VSEL,S,VOLU,,19
CM,BOTTOMVOLUME1,VOLU

BLOCK, 0, T, C+3*R2,W , 0, R
VSEL,D,VOLU,,21
CM,BOTTOMVOLUME2,VOLU

ALLSEL,ALL
VSEL,U,VOLU,,BOTTOMVOLUME1,
VSEL,U,VOLU,,BOTTOMVOLUME2,
CM,SUBTRACTVOLUME,VOLU

VSEL,ALL ! SUBTRACT VOLUMES FROM VOLUMES
VSBV,BOTTOMVOLUME1,SUBTRACTVOLUME,,DELETE,KEEP
CMDELE,SUBTRACTVOLUME

VSEL,S,VOLU,,20
CM,CORNERVOLUME,VOLU
VSEL,S,VOLU,,14
CM,INNERRAD,VOLU
VSEL,S,VOLU,,15
CM,OUTERRAD,VOLU
VSEL,S,VOLU,,22
CM,BOTTOMVOLUME1,VOLU
VSEL,S,VOLU,,21
CM,BOTTOMVOLUME2,VOLU

*IF,EMB,EQ,0,THEN
VSEL,ALL
VGLUE,ALL
ALLSEL,ALL
NUMMRG,kp, , , ,

*ELSEIF,EMB,EQ,1
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100 Ansys script for a semi-elliptical surface crack

BLOCK, T, T2, 0,C+3*R2,0,R
BLOCK, T, T2,C+3*R2, W,0,R
VSEL,ALL
VGLUE,ALL
ALLSEL,ALL
NUMMRG,KP, ,
VSEL,S,VOLU,,19
CM,BOTTOMVOLUME3,VOLU
VSEL,S,VOLU,,23
CM,BOTTOMVOLUME4,VOLU

*ENDIF

!-----------------------------
! MESH CRACK AREA
!-----------------------------
LSEL,S,LOC,X,0.1,A+R
LSEL,R,LOC,Y,0.1,C+R
LESIZE,ALL,,,DIV,1.0 ! DIVIDE CRACK TIP LINE
ESIZE,,1
VSEL,ALL
VSEL,U,VOLU,,CORNERVOLUME
VSEL,U,VOLU,,INNERRAD
VSEL,U,VOLU,,OUTERRAD
VSEL,U,VOLU,,BOTTOMVOLUME1
VSEL,U,VOLU,,BOTTOMVOLUME2
*IF,EMB,EQ,1,THEN

VSEL,U,VOLU,,BOTTOMVOLUME3
VSEL,U,VOLU,,BOTTOMVOLUME4

*ENDIF
MSHKEY,1 ! MAPPED MESHING
VMESH,ALL

ALLSEL,ALL
KSEL,S,KP,,1
LSLK,S,0
LSEL,R,LOC,X,0.01,A+R ! SELECT LINE AT CRACK TIP
NSLL,S,1
CM,CRACKTIP,NODE ! DEFINE COMPONENT FOR CRACK TIP
ALLSEL

!-----------------------------
! MESH THE OTHER VOLUMES
!-----------------------------
SMRT,OFF
LSEL,S,LOC,X,0
LSEL,R,LOC,Y,C+R2
LESIZE,ALL,,,1
LSEL,S,LOC,X,0
LSEL,R,LOC,Y,C+R+0.1,C+R2-0.1
LSEL,R,LOC,Z,0,R
LESIZE,ALL,,,1,
VSWEEP,OUTERRAD ! MESH OUTER RADIUS

LSEL,S,LOC,X,0
LSEL,R,LOC,Y,C-R3
LESIZE,ALL,,,1
LSEL,S,LOC,X,0
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LSEL,R,LOC,Y,C-R3+0.1,C-R-0.1
LSEL,R,LOC,Z,0,R
LESIZE,ALL,,,1,
VSWEEP,INNERRAD ! MESH INNER RADIUS

SMRT,10
LSEL,S,LOC,Y,0.1,C-R-0.1
LSEL,R,LOC,X,0
LESIZE,ALL,,,DIV-13,1.1,,,,0
LSEL,S,LOC,X,0.1,A-R3-0.1
LSEL,R,LOC,Y,0
LESIZE,ALL,,,3,1.0,,,,0
VSWEEP,CORNERVOLUME ! MESH VOLUMES ABOVE THE CRACK

LSEL,S,LOC,X,0.1,T-0.1
LSEL,R,LOC,Y,C+3*R2,
LESIZE,ALL,,,8
LSEL,S,LOC,X,T
LSEL,R,LOC,Y,0.1,C+R2-0.1
LESIZE,ALL,,,24,,,,,0
VSWEEP,BOTTOMVOLUME1 ! MESH VOLUMES IN LENGTH DIRECTION

ESIZE,,1
LSEL,S,LOC,X,0
LSEL,A,LOC,X,T
LSEL,R,LOC,Y,C+3*R2+0.1, W-0.1,
LESIZE,ALL,,,6,
ALLSEL, ALL
VSWEEP,BOTTOMVOLUME2 ! MESH VOLUMES IN DEPTH DIRECTION

*IF,EMB,EQ,1,THEN
LSEL,S,LOC,X,T+0.1,T2-0.1
LSEL,R,LOC,Y,0,
LESIZE,ALL,,,5,5,,,,0
LSEL,S,LOC,X,T+0.1,T2-0.1
LSEL,R,LOC,Y,C+3*R2,W
LESIZE,ALL,,,5,1/5,,,,0
LSEL,S,LOC,X,T2 ! LONG SIDE, AWAY FROM CRACK
LSEL,R,LOC,Y,0.1,C+3*R2-0.1
LESIZE,ALL,,,1,,,,,0
VSWEEP,BOTTOMVOLUME3
VSWEEP,BOTTOMVOLUME4 ! MESH REMAINING VOLUMES IN DEPTH DIRECTION

*ENDIF

!---------------------------------------------
! EXTRUDE TO FULL HEIGHT AND MESH OTHER AREAS
!---------------------------------------------
ALLSEL,ALL
ESIZE,,7
ALLSEL,ALL
ASEL,S,LOC,Z,R
VEXT,ALL, , , , ,H-R
ALLSEL,ALL
VSEL,S,LOC,Z,R,H
VSWEEP,ALL
ALLSEL,ALL
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102 Ansys script for a semi-elliptical surface crack

!----------------------------------
! BOUNDARY CONDITIONS
!----------------------------------
*IF,EMB,EQ,0,THEN

*IF,N,EQ,0,THEN
NSEL,S,LOC,X,T/2-1,T/2+0.1
NSEL,R,LOC,Z,H
D,ALL,UX,0

*ELSEIF,N,EQ,1
NSEL,S,LOC,X,A
NSEL,R,LOC,z,H
NSEL,R,LOC,Y,0
D,ALL,UX,0 ! CONSTRAIN UX DOF

*ENDIF
*ELSEIF,EMB,EQ,1

NSEL,S,LOC,X,0
D,ALL,UX,0 ! CONSTRAIN UX DOF

*ENDIF

ALLSEL
NSEL,S,LOC,Y,0
D,ALL,UY,0 ! CONSTRAIN UY DOF
ALLSEL

KSEL,S,KP,,42,46 ! CONSTRAIN AREAS THAT ARE NOT PART OF THE CRACK
LSLK,S,0
LSEL,R,LOC,Z,0
ASLL,S,0
ASEL,A,LOC,Y,C+R,W

*IF,EMB,EQ,0,THEN
ASEL,A,LOC,X,A+R,T

*ELSEIF,EMB,EQ,1
ASEL,A,LOC,X,A+R,T2

*ENDIF

ASEL,R,LOC,Z,0
CM,CONSTRAINAREAS,AREA
CMSEL,S,CONSTRAINAREAS,AREA
NSLA,S,1
D,ALL,UZ,0 ! CONSTRAIN UZ DOF

!-------------------------------------------------
! LOADS
!-------------------------------------------------
*IF,N,EQ,0,THEN ! TENSION

ALLSEL
NSEL,S,LOC,Z,H
SF,ALL,PRES,-SIGMA ! SURFACE PRESSURE LOADING

*ELSEIF,N,EQ,1
P = (SIGMA+SIGMA*(T-A)/A)/T ! BENDING
ALLSEL
SFGRAD,PRES,0,X,A,P ! PRESSURE LOAD GRADIENT
NSEL,S,LOC,Z,H
SF,ALL,PRES,0 ! SURFACE PRESSURE LOADING

*ENDIF
ALLSEL
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FINISH

!-------------------------------------------------
! SOLVE SYSTEM AND RETRIEVE K AND J-INTEGRAL DATA
!-------------------------------------------------
/SOLU
AUTOTS,ON
NSUBST,10
OUTRES,ALL,ALL
CINT,NEW,1 ! CRACK ID
CINT,TYPE,SIFS ! DEFINE CRACK TYPE
CINT,CTNC,CRACKTIP,NODE(0,0,0),0 ! DEFINE CRACK-TIP COMPONENT
CINT,NORM,0,3 ! CRACK PLANE NORMAL - Z
CINT,NCON,5 ! NO. OF CONTOURS
CINT,SYMM,ON ! SYMMETRY ON
CINT,LIST
CINT,NEW,2 ! CRACK ID
CINT,TYPE,JINT ! DEFINE CRACK TYPE
CINT,CTNC,CRACKTIP,NODE(0,0,0),0 ! DEFINE CRACK TIP COMPONENT
CINT,NORM,0,3 ! CRACK PLANE NORMAL - Z
CINT,NCON,5 ! NO. OF CONTOURS
CINT,SYMM,ON ! SYMMETRY ON
CINT,LIST
ALLSEL,ALL

SAVE
/NERR,0,,,,
SOLVE
FINI

/POST1
EPLOT
!PLCINT,FRONT,1,,,K1

SET,LAST,LAST
CMSEL,S,CRACKTIP,NODE
*GET,NNUM,NODE,0,COUNT
*GET,NMIN,NODE,0,NUM,MIN
*DIM,VALUE,ARRAY,NNUM,4
I = 1

*DO,I,1,NNUM
NCUR = NMIN
*GET,X_COOR,NODE,NCUR,LOC,X
VALUE(I,1) = X_COOR
*GET,Y_COOR,NODE,NCUR,LOC,y
VALUE(I,2) = Y_COOR
*GET,K2,CINT,1,CTIP,NCUR,,2,,K1
*GET,K3,CINT,1,CTIP,NCUR,,3,,K1
*GET,K4,CINT,1,CTIP,NCUR,,4,,K1
K = ABS(K2+K3+K4)/3
VALUE(I,3) = K
*GET,J2,CINT,2,CTIP,NCUR,,2,,JINT
*GET,J3,CINT,2,CTIP,NCUR,,3,,JINT
*GET,J4,CINT,2,CTIP,NCUR,,4,,JINT
J = ABS(J2+J3+J4)/3
KJ = (J*EMOD/(1-NU*NU))**0.5
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VALUE(I,4) = KJ
I = I+1
*GET,NMIN,NODE,NCUR,NXTH

*ENDDO

!-----------------------------
! WRITE K VALUES TO .TXT FILE
!-----------------------------
*CFOPEN,X_Y_K_KJ,TXT ! CREATE FILE
*VWRITE,VALUE(1,1),VALUE(1,2),VALUE(1,3),VALUE(1,4) ! WRITE ARRAY TO FILE
(f10.6,3x,f10.6,3x,f10.5,3x,f10.5) ! FORMAT 3X (3X A BLANK SPACE)
*CFCLOSE ! CLOSE FILE

NSEL,ALL
ESEL,ALL

FINISH
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Appendix F

Ansys script for a semi-elliptical
through-thickness crack

FINISH
/CLEAR
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
! VERY FINE - 24 ELEMENTS IN X-DIRECTION
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
/TITLE, A/C = 0.4 ; C2 = 0.40*C
/PREP7
/UIS, MSGPOP,3
/COM,
/VIEW,,-1,-1,1
/VUP,,Z
!--------------------
! INPUT VARIABLES
!--------------------
CENTRE = 1 ! BREAKTHROUGH (0) OR CENTRE (1) CRACK
N = 0 ! TENSION: N = 0 ; BENDING N = 1
A = 109.1089451 ! HALF AXIS OF THE ELLIPS - SHORT
C = A/0.4 ! HALF AXIS OF THE ELLIPS - LONG
W = 6*C ! HALF WIDTH OF THE SOLID (IN Y-DIRECTION)
H = 7.3*C ! HEIGHT OF THE PLATE
T = 100 ! THICKNESS OF THE PLATE
R = 5.00 ! RADIUS AROUND CRACKTIP
RO = 1.45*R ! OUTER RADIUS > R
ROO = 2.18*RO ! TRANSITION TO COARSER MESH > RO
RT = 1.50*ROO ! TRANSITION TO COARSER MESH II
RI = A/5.55 ! INNER RADIUS > R (towards crack area)
SIGMA = 10 ! STRESS
ET,1,186 ! SOLID ELEMENT 186 - 20 NODE HEXAGONAL
EMOD = 207E3 ! YOUNGS MODULUS
NU = 0.3 ! POISSONS RATIO
MP,EX,1,EMOD
MP,NUXY,1,NU

!--------------------
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! MODEL GEOMETRY
!--------------------
WPOFFS, 0, C, 0
WPROTA,-90,90,0 ! ROTATE THE WORKING PLANE
CSWPLA,11,1 ! DEFINE LOCAL COORDINATE SYSTEM 11
KGEN,5,1,,,,,,10,0 ! 4 x KP AT (0,0,0) NUMBERED 1,11,21,31,...
K,1,0,0,0
K,4,R*0.85,0,0
K,44,R*0.85,180,0
KFILL,4,44,3,14,10 ! FILLS THE ’LINE’BETWEEN NODE 4 AND 44
KFILL,1,4,2,2,1,1.0
KGEN,5,1,4,1,0,180/4,0,10,1,0
CSWPLA,12,0 ! DEFINE LOCAL COORDINATE SYSTEM 12, CARTHESIAN
K, 5, R,0,0
K, 6, RI,0,0
K,15, R,R,0
K,16, RI,R,0
K,25, 0,R,0
K,35, -R,R,0
K,36,-RO,R,0
K,45, -R,0,0
K,46,-RO,0,0
KMODIF,14, R*0.70,R*0.70,0
KMODIF,34,-R*0.70,R*0.70,0
A, 2,12, 1, 1 !
A,12,22,11,11
A,22,32,21,21
A,32,42,31,31
A, 2, 3,13,12,!
A,12,13,23,22,
A,22,23,33,32,
A,32,33,43,42,
A, 3,13,14, 4,!
A,13,23,24,14,
A,23,33,34,24,
A,33,43,44,34,
A, 4,14,15, 5 !
A,14,24,25,15
A,24,34,35,25
A,34,44,45,35
A, 5, 6,16,15 !
A,45,46,36,35
ASEL,ALL
AGLUE,ALL
WPSTYL,DEFA
WPSTYL,,,,,,0,0,0,
CSYS,0
*IF,CENTRE,EQ,0,THEN

K,100,A,0,0
K,101,T,0,0
K,102,T,C,0
LOCAL,13,1,0,0,0,,,,C/A ! ELLIPTICAL COORDINATE SYSTEM
L,1,100
CSYS,0
L,101,102
LPTN,5,6
LDELE,11,12
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LDELE, 8,9 ! TO GET THE SAME NUMBERING AS FOR A CENTRE CRACK
LOCAL,13,1,0,0,0,,,,C/A ! ELLIPTICAL COORDINATE SYSTEM
L,1,7
KDELE,100,102

*ELSEIF,CENTRE,EQ,1
K,7,T,C,0
L,1,7

*ENDIF
WPROTA,,,90 ! ROTATE THE WORKING PLANE
WPOFFS,,,0.050*T ! DIVIDE THE LINE
LSBW,5, , ! the divisions are different for almost all models
WPOFFS,,,0.090*T
LSBW,8, ,
WPOFFS,,,0.089*T
LSBW,5, ,
WPOFFS,,,0.088*T
LSBW,8, ,
WPOFFS,,,0.080*T
LSBW,5, ,
WPOFFS,,,0.074*T
LSBW,8, ,
WPOFFS,,,0.069*T
LSBW,5, ,
WPOFFS,,,0.061*T
LSBW,8, ,
WPOFFS,,,0.0575*T
LSBW,5, ,
WPOFFS,,,0.0515*T
LSBW,8, ,
WPOFFS,,,0.0455*T
LSBW,5, ,
WPOFFS,,,0.040*T
LSBW,8, ,
WPOFFS,,,0.035*T
LSBW,5, ,
WPOFFS,,,0.028*T
LSBW,8, ,
WPOFFS,,,0.021*T
LSBW,5, ,
WPOFFS,,,0.0172*T
LSBW,8, ,
WPOFFS,,,0.016*T
LSBW,5, ,
WPOFFS,,,0.014*T
LSBW,8, ,
WPOFFS,,,0.013*T
LSBW,5, ,
WPOFFS,,,0.0125*T
LSBW,8, ,
WPOFFS,,,0.0122*T
LSBW,5, ,
WPOFFS,,,0.012*T
LSBW,8, ,
WPOFFS,,,0.0118*T
LSBW,5, ,
WPSTYL,DEFA
WPSTYL, , , , , , 0, 0, 0,
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CSYS,0
LSEL,U,LOC,X,0
LDELE,ALL,,,0
L,1,8 ! CREATE LINES FOR THE CRACK-TIP
L,8,9
L,9,10
L,10,11
L,11,17
L,17,18
L,18,19
L,19,20
L,20,21
L,21,26
L,26,27
L,27,28
L,28,29
L,29,30
L,30,31
L,31,37
L,37,38
L,38,39
L,39,40
L,40,47
L,47,48
L,48,49
L,49,50
L,50,7
ASEL,ALL
CM,EXTRUDEAREAS,AREA ! DEFINE COMPONENT
LSEL,S,LOC,X,0.01,T
CM,DRAGLINE,LINE
VDRAG,EXTRUDEAREAS,,,,,,DRAGLINE ! EXTRUDE AREAS TO VOLUMES (cracktip area)
VEXT,66,1446,60,0,-C, ! EXTRUDE AREAS TO VOLUMES (crack area)
WPOFFS, 0,0, 0
WPROTA,0,90,0 ! ROTATE THE WORKING PLANE
VSBW,ALL,,DELETE
WPSTYL,DEFA
WPSTYL,,,,,,0,0,0,
VSEL,S,LOC,Y,0,-C
VDELE,ALL,,,1

!-----------------------------------------------------------
! FROM 24 TO 12 LANES OF VOLUMES
!------------------------------------------------------------
ASEL,S,AREA,,70,1450,60
VEXT,ALL,,,0,ROO-RO
KSEL,S,KP,,653,697,4
KSEL,A,KP,,654,698,4
KMODIF, ALL, ,C+ROO-0.04*T,
KSEL,S,KP,,655,699,4
KSEL,A,KP,,656,700,4
KMODIF, ALL, , C+ROO,
BLOCK, 0, T, C+ROO-0.04*T, C + ROO, 0, R
VSEL,S,VOLU,,433,456,1
VSEL,A,VOLU,,481
VSBA, ALL, 1655, , DELETE, DELETE ! SUBTRACT AREA FROM VOLUMES
VSEL,S,LOC,Y,C+ROO-0.04*T-0.01,C+ROO
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VSBV,481,ALL,,DELETE,KEEP ! SUBTRACT VOLUMES FROM VOLUMES
ASEL,S,LOC,Y,C+ROO-0.01,C+ROO+0.01
VEXT,ALL,,,0,RT

!------------------------------
! FROM 12 TO 6 LANES OF VOLUMES
!-------------------------------
KSEL,S,KP,,784,804,4
KSEL,A,KP,,787,803,4
KSEL,A,KP,,781
KMODIF,ALL,,C+ROO+RT-0.08*T,
BLOCK,0,T,C+ROO+RT-0.08*T,C+ROO+RT, 0, R
VSEL,S,VOLU,,445,456,1
VSEL,A,VOLU,,481
VSBA, ALL, 1827, , DELETE, DELETE ! SUBTRACT AREA FROM VOLUMES
VSEL,S,LOC,Y,C+ROO+RT-0.08*T-0.01,C+ROO+RT
VSBV,481,ALL,,DELETE,KEEP ! SUBTRACT VOLUMES FROM VOLUMES
ASEL,S,LOC,Y,C+ROO+RT-0.01,C+ROO+RT+0.01
VEXT,ALL,,,0,W-C-ROO-RT
ALLSEL
NUMMRG, KP,

!-----------------------------------------
! MESH AREA AROUND THE CRACK-TIP
!-----------------------------------------
VSEL,S,VOLU,,1,432,
VSEL,U,VOLU,,14,428,18
VSEL,U,VOLU,,15,429,18
ESIZE,,1
MSHKEY,1 ! MAPPED MESHING
VMESH,ALL

!-----------------------------
! MESH THE INNER RADIUS
!-----------------------------
LSEL,S,LOC,Y,C-R-0.01,C-RI-0.01
LSEL,R,LOC,X,0,
LSEL,R,LOC,Z,0,
LESIZE,ALL,,,1
LSEL,S,LOC,Y,C-R-0.01,C-RI-0.01
LSEL,R,LOC,X,0,
LSEL,R,LOC,Z,R,
LESIZE,ALL,,,1
LSEL,S,LINE,,123,1664,67
LSEL,A,LINE,,41
LESIZE,ALL,,,1,
VSEL,S,VOLU,,14,428,18
VSWEEP,ALL

!-----------------------------
! MESH THE OUTER RADIUS
!-----------------------------
LSEL,S,LINE,,126,1667,67
LSEL,A,LINE,,43
LESIZE,ALL,,,1,
LSEL,S,LINE,,128,1669,67
LSEL,A,LINE,,44
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LESIZE,ALL,,,1,
LSEL,S,LINE,,130,1671,67
LSEL,A,LINE,,45
LESIZE,ALL,,,1,
VSEL,S,VOLU,,15,429,18
VSWEEP,ALL

!------------------------------
! MESHING THE CRACK AREA
!------------------------------
LSEL,S,LOC,Y,0.1,C-RI-0.1
LSEL,R,LOC,X,0
LESIZE,ALL,,,6,
VSEL,S,VOLU,,457,480
VSWEEP,ALL

!-----------------------------
! MESH THE OTHER AREAS
!-----------------------------
LSEL,S,LOC,Y,C+RO+0.1,C+ROO-0.06*T-0.01
LSEL,R,LOC,X,0
LESIZE,ALL,,,6,,,,, ! ROO
VSEL,S,VOLU,,506,529
VSWEEP,ALL
LSEL,S,LOC,Y,C+ROO+0.1,C+ROO+RT-0.08*T-0.1
LESIZE,ALL,,,1,,,,, ! RT
VSEL,S,LOC,Y,C+ROO+0.1,C+ROO+RT-0.08*T-0.1
VSWEEP,ALL
LSEL,S,LOC,Y,C+ROO+RT+0.1,W-0.1
LESIZE,ALL,,,13,,,,, ! W
VSEL,S,LOC,Y,C+ROO+RT+0.1,W
VSWEEP,ALL
VSEL,S,LOC,Y,C+ROO-0.04*T-0.01,C+ROO+0.01
MSHKEY,0
MSHAPE, 1,3D
VMESH,ALL
VSEL,S,LOC,Y,C+ROO+RT-0.08*T-0.01,C+ROO+RT+0.01
MSHKEY,0
MSHAPE, 1,3D
VMESH,ALL

!---------------------------------------------
! EXTRUDE TO FULL HEIGHT AND MESH
!---------------------------------------------
ASEL,S,LOC,Z,R
VEXT,ALL, , , , ,R
ESIZE,,9
ASEL,S,LOC,Z,2*R
VEXT,ALL, , , , ,H-2*R

!-----------------------------
! DEFINE CRACK-TIP
!-----------------------------
CMSEL,S,DRAGLINE,LINE
NSLL,S,1
CM,CRACKTIP,NODE ! DEFINE COMPONENT FOR CRACKTIP
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!-------------------------------------------------
! BOUNDARY CONDITIONS
!-------------------------------------------------
NSEL,S,LOC,Y,0
D,ALL,UY,0 ! CONSTRAIN UY DOF
*GET,X_CONSTR,KP,20,LOC,X ! LOCATION TO CONSTRAIN X AT KP 20, more or less halfway T
NSEL,S,LOC,X,X_CONSTR ! CONSTRAIN UX DOF
NSEL,R,LOC,Z,H ! CONSTRAIN UX DOF
D,ALL,UX,0
*IF,CENTRE,EQ,0,THEN

ASEL,S,AREA,,77,1457,60
ASEL,A,AREA,,36,1416,60
ASEL,A,AREA,,49,1429,60
ASEL,A,AREA,,62,1442,60
ASEL,A,AREA,,69,1449,60
ASEL,A,AREA,,1745,1800,5
ASEL,A,AREA,,1747,1802,5
ASEL,A,LOC,Y,C,W ! CONSTRAIN AREAS THAT ARE NOT PART OF THE CRACK
ASEL,R,LOC,Z,0
CM,CONSTRAINAREAS,AREA
CMSEL,S,CONSTRAINAREAS,AREA
NSLA,S,1
D,ALL,UZ,0 ! CONSTRAIN UZ DOF

*ELSEIF,CENTRE,EQ,1
NSEL,S,LOC,Y,C-0.1,W
NSEL,R,LOC,Z,0
D,ALL,UZ,0 ! CONSTRAIN UZ DOF

*ENDIF

!-------------------------------------------------
! LOADS
!-------------------------------------------------
*IF,N,EQ,0,THEN ! TENSION

NSEL,S,LOC,Z,H
SF,ALL,PRES,-SIGMA ! SURFACE PRESSURE LOADING

*ELSEIF,N,EQ,1 ! BENDING
SFGRAD,PRES,0,X,T,SIGMA/T ! PRESSURE LOAD GRADIENT
NSEL,S,LOC,Z,H
SF,ALL,PRES,0 ! SURFACE PRESSURE LOADING

*ENDIF
ALLSEL
FINISH

!-------------------------------------------------
! SOLVE SYSTEM AND RETRIEVE K AND J-INTEGRAL DATA
!-------------------------------------------------
/SOLU
CINT,NEW,1 ! CRACK ID
CINT,TYPE,SIFS ! DEFINE CRACK TYPE
CINT,CTNC,CRACKTIP,NODE(0,0,0),0 ! DEFINE CRACK TIP COMPONENT
CINT,NORM,0,3 ! CRACK PLANE NORMAL - Z
CINT,NCON,5 ! NO OF CONTOURS
CINT,SYMM,ON ! SYMMETRY ON
CINT,LIST
CINT,NEW,2 ! CRACK ID
CINT,TYPE,JINT ! DEFINE CRACK TYPE
CINT,CTNC,CRACKTIP,NODE(0,0,0),0 ! DEFINE CRACK TIP COMPONENT
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CINT,NORM,0,3 ! CRACK PLANE NORMAL - Z
CINT,NCON,5 ! NO OF CONTOURS
CINT,SYMM,ON ! SYMMETRY ON
CINT,LIST
ALLSEL,ALL
SAVE
/NERR,0,,,,
SOLVE
FINI
/POST1
EPLOT
SET,LAST,LAST
CMSEL,S,CRACKTIP,NODE
*GET,NNUM,NODE,0,COUNT
*GET,NMIN,NODE,0,NUM,MIN
*DIM,VAL,ARRAY,NNUM,8 ! CREATE ARRAY FOR VALUES
I = 1
*DO,I,1,NNUM

NCUR = NMIN
*GET,X_COOR,NODE,NCUR,LOC,X
VAL(I,1) = X_COOR
*GET,Y_COOR,NODE,NCUR,LOC,Y
VAL(I,2) = Y_COOR
*GET,K1,CINT,1,CTIP,NCUR,,1,,K1
*GET,K2,CINT,1,CTIP,NCUR,,2,,K1
*GET,K3,CINT,1,CTIP,NCUR,,3,,K1
*GET,K4,CINT,1,CTIP,NCUR,,4,,K1
*GET,K5,CINT,1,CTIP,NCUR,,5,,K1
K = (K3+K4+K5)/3
VAL(I,3) = K
*GET,J1,CINT,2,CTIP,NCUR,,1,,JINT
*GET,J2,CINT,2,CTIP,NCUR,,2,,JINT
*GET,J3,CINT,2,CTIP,NCUR,,3,,JINT
*GET,J4,CINT,2,CTIP,NCUR,,4,,JINT
*GET,J5,CINT,2,CTIP,NCUR,,5,,JINT
KJ1 = (J1*EMOD/(1-NU*NU))**0.5
VAL(I,4) = KJ1
KJ2 = (J2*EMOD/(1-NU*NU))**0.5
VAL(I,5) = KJ2
KJ3 = (J3*EMOD/(1-NU*NU))**0.5
VAL(I,6) = KJ3
KJ4 = (J4*EMOD/(1-NU*NU))**0.5
VAL(I,7) = KJ4
KJ5 = (J5*EMOD/(1-NU*NU))**0.5
VAL(I,8) = KJ5
I = I+1
*GET,NMIN,NODE,NCUR,NXTH

*ENDDO

!--------------------------
! WRITE DATA TO .TXT FILE
!--------------------------
*CFOPEN,X_Y_K_KJ1_KJ2_KJ3_KJ4_KJ5,TXT ! CREATE FILE
*VWRITE,VAL(1,1),VAL(1,2),VAL(1,3),VAL(1,4),VAL(1,5),VAL(1,6),VAL(1,7),VAL(1,8)
(f10.6,3x,f10.6,3x,f10.5,3x,f10.5,3x,f10.5,3x,f10.5,3x,f10.5,3x,f10.5) ! 3X BLANK SPACE
*CFCLOSE ! CLOSE FILE
FINISH
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Appendix G

Input for the numerical model

The input (Table G-1) for the models is taken from [23] for series TH, [24] for THL and
from [25] for series TB. Table G-2 shows the other input values, either published with the
experimental data or estimated values. The latter have no or only limited influence on the
results and are only given here for completeness.

Table G-1: Input for the models

∆σm ∆σb ĈC m̂ a1, c1 t W

[MPa] [MPa]
[
(MPa

√
m)−m̂ ·m

]
[ - ] [m] [m] [m]

×10−12 ×10−3 ×10−3 ×10−3

TH-1 211.9 0 2.45 3.11 2 10 25
TH-3 132.4 0 2.45 3.11 7 10 25
THL-1 212 0 4.05 2.94 11 25 100
TB-2 126 1.54 3.33 5 10 35
TB-3 126 1.54 3.33 5 10 35
TB-6 126 1.54 3.33 5 10 35
TB-7 126 1.54 3.33 1 10 35
TB-8 70 2.56 3.33 5 10 35
TB-9 70 2.56 3.33 5 10 35
TB-11 70 2.56 3.33 2.5 10 35
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Table G-2: Other model input

σy ν E ∆Kth Kc KIc

[MPa] [-] [MPa] [MPa
√
m] [MPa

√
m] [MPa

√
m]

TH, THL 824 0.3 207× 103 12 200 200
TB 943.4 0.3 207× 103 9 or 5 200 132
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Appendix H

Dealing with incomplete data-sets

The data-sets of series TB are subjected to a bending stress that varies during crack develop-
ment. This variation is only published as a function of crack growth and propagation at the
crack initiation side of the specimen [25]. However, this variation of the bending stress ratio
∆σb/∆σm = f(c) is only plotted for four of the seven data-sets. In Figure H-1 the measured
values as well as the fitted functions of the four known data-sets are shown as well as the
assumptions for the variation of three unknown bending stress ratios. The three other curves
are estimated by combining the four known curves. Another clue for the estimates is the
statement that [25]:

As the crack propagates, the bending stress decreases and approaches zero at a
very high rate after penetration. The decrease of the bending stress increases as
eccentricity, e, increases.

The load ratio R is varied and the load is applied with an eccentricity w.r.t. the centreline
of the cracked part of the specimen. Obviously, a higher eccentricity corresponds to a larger
bending stress ratio. The used e and R are given in Table H-1.

For data-set TB-2 and TB-7, both ∆σb/∆σm = f(c) and the calculated crack development
a/c = f(a/t) are plotted in [25]. To confirm that this curve fitted variation of ∆σb/∆σm =
f(c) with a fixed value for ∆σm is indeed used in the predictive models of the data source,

Table H-1: Eccentricity and load ratio for the specimens loaded by bending and tension

e [mm] R ∆σb/∆σm = f(c) known? a/c = f(a/t) known?

TB-2 -0.2 0.1 X X
TB-3 0.6 0.1 X -
TB-6 2.3 0.1 - -
TB-7 3.0 0.1 X X
TB-8 -0.1 0.5 - -
TB-9 1.0 0.5 - X
TB-11 3.0 0.5 X -
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Figure H-1: Relation between crack length at the initiation side and bending stress ratio.
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Figure H-2: Crack shape development before breakthrough

the source and current calculations of a/c = f(a/t) are plotted in Figure H-2, together with
the values that were measured from the experiments. Current calculations data-set TB-2 and
TB-7 are in reasonable accordance with the those of Nam et al.. With this correspondence
of calculation methods being confirmed, estimates of the bending ratio can be made for the
remaining three data-sets.

By comparing the plots of TB-7 and TB-11 that both have an e of 3.0 mm, it is assumed
that a higher R leads to a lower eccentricity. Therefore, it is expected that TB-8 should have
approximately the same bending ratio as TB-2. By using the information of the development
of a/c = f(a/t), a reasonable assumption for TB-9 can be made. For instance, a rapid
decrease in a/c corresponds to a high bending ratio. The curve of TB-6 is, given its e and
R, expected to be positioned between TB-3 and TB-7. The estimates are optimized in such
a way that they approximate the calculations of Nam et al. in Figures 4-7 to 4-8.
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