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Axial-resolution in depth from focus digital holography

Joseph van Rooij* and Jeroen Kalkman?®

2Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands

ABSTRACT

We use digital holography to quantify surface topography of rough objects in full-field. We calculate the variance
of the intensity image as a focus metric over a set of reconstruction distances for each pixel, which results in
a focus metric curve. The distance where the variance peaks is an estimate for the depth. First we analyze
the lateral resolution of this method using the Talbot effect and argue that sub-mm axial resolution is feasible.
Then, using a Michelson setup without magnifying optics or lateral scanning we experimentally demonstrate that
sub-mm FWHM width of the focus curve can be achieved. This is significantly better than what was previously
reported using digital holography and could make this technique useful for characterising objects in art and
machine vision.

Keywords: Digital holography, metrology, Talbot effect, depth from focus

1. INTRODUCTION

Surface metrology and absolute distance measurement are essential in many applications; for example in the
field of geosciences, remote sensing aims to reconstruct the surface topology and track changes of the earth
surface over time. On a much smaller scale, optical measurement of surface metrology has become vital in
many manufacturing methods.! Depth from focus digital holography (DFF-DH) is a technique that combines
the advantages of focus variation microscopy (FVM) and digital holographic microscopy (DHM), namely the
short acquisition time of DHM (no scanning is needed) with the ability to reconstruct topographies with large
discontinuities or rough surfaces in FVM. In contrast to ordinary imaging where the focus is varied by changing
the position of the lens, in DH the image can be calculated at any plane. The DFF-DH approach is an image
processing approach that estimates the surface location from the optimum of a metric is calculated from the
digitally reconstructed image. For 3D objects the image plane depends on the distance of every part of the
object to the camera. By reconstructing the image of the object at different depths, the degree of focus of a
particular region in the image reconstruction (calculated with a focus measure) encodes the depth of the object.?
Because one can reconstruct the complete wave-field at any depth from a single digitally captured hologram, this
method does not need lateral or axial scanning and has no fundamental limit regarding the depth range that
can be measured other than the coherence length of the light source. This was first used within the context of
digital holography by Ma et al. (2004),%> who recovered object depth for every part of the object in this way
from a digital hologram. In this paper we show how the depth resolution of DFF-DH depends on experimental
setup parameters. In the next section, we first give an overview of the basic principles of DFF-DH and a
theoretical framework to analyze the precision. Then, we compare our framework with simulations where we
show that sub-mm resolution is possible. We then experimentally demonstrate the sub-mm resolution in the
results section.

2. THEORY

In digital holography the image is numerically calculated from an interferogram, instead of it being formed
optically with a lens. For an explanation of the basic principles of digital holography, we refer the reader to
Schnars and Jueptner (2005). The degree of focus in the reconstructed image depends on the reconstruction
distance and therefore encodes the distance of the object to the sensor. In contrast to ordinary imaging where
the focus is varied by changing the position of the lens, in DH the image can be calculated at any plane. Since
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the degree of focus is at its maximum when z;=z( (reconstruction distance equals recording distance), one needs
to quantify the degree of focus with a focus measure and find the optimum value as a function of reconstruction
distance. For each pixel in the object-image we can repeat this process and calculate its distance to the sensor
plane zg. Other more sophisticated ways of estimating the depth from the focus metric data have also been
applied in FVM,! but are not implemented in this paper. The degree of focus in the image as a function of
reconstruction distance z; depends on the numerical aperture (NA) of the imaging system. In digital holography,
the NA is inversely proportional to the recording distance and proportional to the dimensions of the sensor.

2.1 Focus measure

The degree of focus is quantified using image based metrics. These metrics are calculated from the image and
have their maximum when the image is in focus, and decrease rapidly when the image is out of focus. Different
focus metrics exist, see for example Tian et al. (2007) for an overview.> Variance is a focus measure that is
simple to calculate, and has been proven to be a good depth measure.® The variance of a a digital image I of n
x m pixels is given by:

n m

02 = S S () - 1) (1)

i=1 j=1

where I is the mean intensity of the image. In order to derive an analytic model for the variance as a function
of reconstruction distance, we will use the integral form which is given by

o = [ [ty - wdeay, )

where p is the mean of the image and is given by

w=[ [1pazay 3)
2.2 Depth Estimation

The focus metric for a planar object as a function of reconstruction distance is a curve that peaks when the
reconstruction distance equals the recording distance. Here we derive an expression for a reflecting planar object
with a uniform spatial frequency spectrum and random phase for each spatial frequency. First we consider a
single spatial frequency at recording distance zy as input to the holographic imaging system, which we reconstruct
at reconstruction distance z;. In order to keep the expressions concise we will consider a one dimensional input,
although a generalization to two dimensions is straightforward. Neglecting the finite extent of the aperture, we
consider an object described by the reflection

t, = %[1 + mcos(2mn&/L) + ¢y, (4)

where ¢,, is a random phase term, n/L is the spatial frequency and m is an amplitude factor and ¢ is the lateral
spatial coordinate in the input plane. In principle n can be any number, although in practice it is an integer
value due to discrete sampling. The reconstructed holographic wavefield is calculated using Fresnel diffraction
according to the treatment of Goodman (1996)7 and is given by

iﬂknz(zo+zl)

2+ 2me™ L2 cos (% + gzﬁn)

UTL(€721) = AN . (5)

The intensity of the reconstructed wavefront is given by:
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This reduces to |t,|? for distances

z21 = —20+ h (7)

which means that the input grating is replicated at fixed distances, also called ”self-imaging”. This occurs for
periodic inputs in general and is a manifestation of the Talbot effect” appearing in holographic reconstruction.
The variance for one spatial frequency as a function of reconstruction distance is then found by calculating the
integral in one dimension (Eq. (2)) over the integration range 0 to L, which yields

(8)

21 An?
02(21) = a + b cos (7Tn(ZO+21)>

12
where m is assumed to be equal to one, and

9L (2L? — 4L + 3)

“= 128N 4 (9)
and
L
_ 1
b= Tona (10)

For every spatial frequency n/L the variance is thus periodic as a function of reconstruction distance z;. For
this reason we will refer to such a curve as a Talbot curve. We now assume that the object is composed of many
spatial frequencies:

N

tN—%Z
n=1

[1 4+ mecos(2mn&/L) + ¢,] (11)

N |

According to the superposition principle, the reconstructed field intensity is

N 2
In(g21) = |3 Unle 1) (12)
7]1\;1
=> U, +ZZUU* — Opm) (13)
n=1 n=1m=1

Due to the random phase term ¢, the first term in Eq. (13) and the last term are independent random
variables. Using the property that o2(a + b) = 02(a) + 0?(b) if a and b are independent random variables, we
can write the variance of the reconstructed field intensity as:

N N N
2(Iy) = > 0 (1Uaf?) + 02 (Z > UnlUn (1~ 6n,m>> ! (14)

n=1 n=1m=1
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We argue based on the independence of the random phase terms random phase term ¢,, that this can be
approximated as a linear sum of Talbot curves (see Eq. (8)):

2mAn(z0 + m)) ’ (15)

N
a?v(zl):A+ZBcos< 2
n=1

with A and B constants. In the next section we verify the validity of this approximation in a simulation. Equation
15 provides a physical understanding of the width of the focus curve. The sum of cosines gives rise to a peak at
z1 = —2g, the virtual image plane. For larger N, either because of a larger numerical aperture or more spatial
spatial frequencies in the input, the peak width becomes smaller. The result in Eq. (15) gives a limit for the
precision that can be achieved by depth from focus digital holography in terms of the peak width. In Fig. 1,
the focus curve Eq. (15) in this ideal case is plotted as a function of reconstruction distance. In a real case
scenario the peak is broadened, as in the preceding analysis starting from Eq. (11) it is assumed that the object
has an ideal flat power spectrum, and the phases ¢,, for spatial frequencies n/L were assumed to be statistically
independent (ideal white noise input). For a real object the spatial frequency distribution of the object may
be less ideal leading to less terms contributing to the summation in 15 and therefore resulting in a wider peak.
Finally, the summation is limited by the numerical aperture and sampling of the imaging system. When the
recording distance equals the critical sampling distance, the maximum spatial frequency that can be imaged is
equal to the Nyquist frequency

=— (16)
and in the summation of Eq. (15) this limits the DFF-DH peak width.

3. SIMULATION

We compare a well-known method of Fresnel diffraction calculations, namely the transfer function approach, with
the analytic model of Eq. (15). For background information and actual code we refer the reader to the work of
Voelz (2011).% The input image in the simulation is given by Eq. (11), where the input object support L is 200
pixels, the number of pixels in the recording plane is N=1000, the number of unique spatial frequencies in the
input image is L/2 — 1, the wavelength A=633 nm, the pixelsize A{=6.45 microns and the recording distance zq
at NAE? /) (critical recording distance). These are parameters used in a typical experimental realization. The
variance as a function of reconstruction distance is shown in Fig. 1. The simulated focus curve describes the
analytic model of Eq. (15) well around the centre z1 = zg, and deviates towards the edges due to finite aperture
effects that occur in the simulation, but are not accounted for in the analytic model. Both approaches lead to the
same focus curve peak-width of approximately 450 microns, indicating the possibility of sub-mm axial resolution
with DFF-DH without magnification.

4. MATERIALS AND METHODS
4.1 Setup

The digital holography setup is shown in Fig. 2 and consists of a Michelson interferometer in order to illuminate
the object normal to the surface. No lenses or objectives are used in the imaging process, except to expand
and collimate the illuminating laser beam to a width (FWHM) of approximately 1.5 cm. The object was placed
approximately 7 cm away from the sensor plane. The light source is a HeNe laser with a wavelength of 633 nm
and an output power in the order of 3 mW. The mirror in the reference arm is mounted onto a piezoelectric
transducer controlled by a computer for phase-shifting digital holography, where we capture four holograms with
a phaseshift of 7/2 of the reference beam between each subsequent hologram. In this way we can use the full
image plane and maximize the lateral resolution in the reconstructed image. The digital holograms were captured
by a CCD camera (ORCA ER, Hamamatsu) with 1344 x 1024 pixels with a pixel size of 6.45 microns.
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4.2 Sample

We use a brass reflector with a rough surface (obtained by briefly sandblasting the object) as a test target to
demonstrate sub-mm axial resolution. The total area of the square sample is 25 mm?. We characterise the
surface using a white light interferometer (WLI, Bruker ContourGT-K). The measured roughness parameters S,

(average roughness) and S, (root mean square roughness) are 3.571 microns and 11.597 microns respectively.

4.3 Digital holographic reconstruction

Even though the lateral sample dimensions are smaller than the sensor and thus the transfer function approach
can be used, there is the possibility of the sample holder (which extends to beyond the sensor plane) appearing
in the reconstructed image. Reconstruction of the digital holograms was performed using the S-FFT method®
for this reason, since it does not restrict the reconstruction plane to the dimensions of the sensor.

5. RESULTS

Figure 3 shows a focus metric curve obtained from the experimental data. The experimental curve has a full
width at half maximum of approximately 750 microns, which is significantly broader than the width of the
simulated curve in Fig. 1 which has a width of around 200 microns. We attribute this to the fact that the
frequency content of the object is not constant. In that sense, Fig. 1 represents a limiting case with uniform
spatial frequency power spectrum in the input image. The spatial frequency content of the experimental input is
estimated by taking the Fourier transform of the optimal in focus intensity image. The logarithm of the power
spectrum in Figure 4 shows that indeed the power spectrum is not flat, but instead shows a significant drop off
in power for high spatial frequencies.

6. CONCLUSIONS

We argued that the DFF curve as a function of reconstruction depth can be approximated by the sum of Talbot
curves for every spatial frequency. Analytic theory and numerical simulation verified this approximation and
indicated that the axial precision in terms of the peak width can be brought down to well below the millimeter
range using a basic digital holography setup without imaging optics and magnification. Finally, we showed that
sub-mm axial resolution is indeed possible based on a focus curve calculated from experimental data.
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Figure 1. Comparison between the focus (variance) curves resulting from the Fresnel diffraction simulation (blue) and the
analytic model Eq.15 (red). The difference between the two is due to the finite aperture used in the simulation. .
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Figure 2. Michelson interferometer setup for acquiring the digital holograms. S=HeNe laser (633 nm), BS=pellicle beam-
splitter, C=CCD camera (1344x1024 pixels), M=piezo mounted mirror and O=object, L=lens, ND=variable neutral
density filter.
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Figure 3. DFF-DH focus metric curve obtained from experimental data for a planar surface.
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Figure 4. Logarithm of the object image power spectrum when reconstructed in focus. In contrast to what is assumed in
DFF-DH the power spectrum is not flat.
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