Master Thesis at SKF:

Lateral force estimation acting at a vehicle wheel using a hub bearing unit equipped with strain gauges and Eddy-current sensors

By: John den Engelse Date: 19 – 6 - 2013

Presentation overview

- Introduction
- Research goals
- Strain gauge measurements
- Eddy-current sensor measurements
- Field- / validation measurements
- BETSY calibration method
- Conclusions

Introduction

Introduction: Load Sensing Bearing (LSB)

- Why would we like to measure forces?
 - Monitoring the mechanical loads of a bearing.
 - Control the active safety systems in vehicles like the ABS (longitudinal force) and ESC (lateral force).
 - Measure the vertical load in, for instance, trucks.

Challenge the future 4

Introduction: Load Sensing Bearing (LSB)

• How? \rightarrow A load sensing hub bearing unit instrumented with:

- 6 strain gauges: deformation of the bearing outer ring.
- 2 Eddy-current sensors: tilting movement of the ABS-ring.

Challenge the future 5

Introduction – Research goals – Strain gauge measurements – Eddy-current sensors measurements – Field- / validation measurements - ...

Research goals

Research goals

- 1) Lateral force estimation, acting at a vehicle wheel, using strain gauges and Eddy-current sensors.
- 2) Calibration of the load sensing bearing using the Bearing Test System (BETSY)

Challenge the future 7

Strain gauge measurements

Challenge the future 8

Strain gauge measurements

• The strain gauges measure the deformation of the bearing outer ring at six places along the circumference.

• The deformation provides information about the loads acting on the bearing.

Challenge the future 9

Introduction – Research goals – Strain gauge measurements – Eddy-current sensors measurements – Field- / validation measurements - ...

Strain gauge measurements

TUDelft

Challenge the future 10

Introduction – Research goals – Strain gauge measurements – Eddy-current sensors measurements – Field- / validation measurements - ...

Warning

The following slide features a mathematical trick performed by a professional and under the supervision of a professional.

Accordingly, the <u>TU Delft</u> and the students must insist that no one attempt to recreate of re-enact any trick or activity performed on this slide.

Strain gauge measurements: MLRA

 Multivariate Linear Regression Analysis (MLRA): The output is assumed to be a linear combination of the input and higher order terms of the input.

• For one single dimension:

$$\longrightarrow$$
 $F_y = \beta_0 + \beta_1 \varepsilon + \beta_0 \varepsilon^2 + \dots + \beta_n \varepsilon^n + E$

For multi input multi output

UDelft

$$\longrightarrow \begin{bmatrix} F_{y} \\ F_{z} \end{bmatrix} = \begin{bmatrix} \beta_{F_{y}} \\ \beta_{F_{z}} \end{bmatrix} \begin{bmatrix} 1 \\ \varepsilon \\ \varepsilon^{2} \\ \cdots \\ \varepsilon^{n} \end{bmatrix} \longrightarrow [\beta] = [F][\varepsilon]^{T} ([\varepsilon][\varepsilon]^{T})^{-1}$$

The entries of F have dimensions $[1 \times N]$ with N the number of samples The entries of β have dimensions $[1 \times (6n+1)]$ with *n* the order the polynomial The entries of ε have dimensions $[(6n+1) \times N]$ with *n* the order the polynomial

Challenge the future 12

Strain gauge measurements: MLRA

1) Absolute value problem

Delft

- 2) Difference in sensitivity for $F_v < 0$ N and $F_v > 0$ N
- 3) Difference in response for 0 Hz < f < 1 Hz and 1 Hz < f < 10 Hz

Challenge the future 13

Introduction – Research goals – Strain gauge measurements – Eddy-current sensors measurements – Field- / validation measurements - ...

Strain gauge measurements: F_y estimation block diagram

Challenge the future 14

Introduction – Research goals – Strain gauge measurements – Eddy-current sensors measurements – Field- / validation measurements - ...

Eddy-current sensor measurements

Eddy-current sensor measurement

- Why (inductive) Eddy-current sensor measurements?
 - The strain gauges are subject to the absolute value problem.
 - Strain measurements are subject to low frequent thermal influences.

Challenge the future 16

Eddy-current sensor measurement

- ABS-ring integrated in the seal of the bearing. 48 holes and 48 spokes.
- The tilting movement of the ABS-ring gives an estimate of the lateral force F_v acting on the bearing.

Challenge the future 17

Eddy-current sensor measurement

• Two Eddy-current sensors are mounted into the knuckle.

Challenge the future 18

Introduction – Research goals – Strain gauge measurements – Eddy-current sensors measurements – Field- / validation measurements - ...

Eddy-current sensor measurement: Signal

- The change in the lower values provides the information about F_{y}

TUDelft

Introduction – Research goals – Strain gauge measurements – Eddy-current sensors measurements – Field- / validation measurements - ...

Eddy-current measurement: Low value algorithm

- Algorithm to retrieve these lower values.
 - Based signal derivative
 - Maximum change per time sample $\Delta \gamma_{max}$
 - An initial condition y_0 (the equilibrium value)

 The LSB equipment has been built in a BMW E60 and tests have been performed at the test track at SKF

Challenge the future 22

Eddy-current sensors measurements - Field- / validation measurements - BETSY calibration method - Conclusions

• Movie: Circle run at 30 km/h

Challenge the future 23

...- Eddy-current sensors measurements - Field- / validation measurements - BETSY calibration method - Conclusions

• A Kistler VELOS force measuring wheel is used as reference

Challenge the future 24

...- Eddy-current sensors measurements - Field- / validation measurements - BETSY calibration method - Conclusions

Field measurements: Tilt vs F_y

- Eddy-current sensor measurement.
- Data is approximated by a 2nd and a 6th order polynomial: Accuracy vs extrapolation characteristics

Strain measurement

Challenge the future 26

..- Eddy-current sensors measurements - Field- / validation measurements - BETSY calibration method - Conclusions

Field measurements : F_v estimation

- Two force estimation algorithms. Both for an in-situ calibration and a BETSY calibration.
 - 1) Using 4 MLRA on the strain gauges and use the Eddycurrent sensors for the determination of the direction.
 - 2) Using both the Eddy-current sensors and the strain gauges for the force estimation.

Challenge the future 27

Eddy-current sensors measurements – **Field- / validation measurements** – BETSY calibration method - Conclusions

Field measurements : Algorithm 1

• Using 4 MLRA on the strain gauges and use the Eddy-current sensors for the determination of the direction.

Challenge the future 28

...– Eddy-current sensors measurements – Field- / validation measurements – BETSY calibration method - Conclusions

Field measurements: Algorithm 2

 Using both the Eddy-current sensors and the strain gauges for the force estimation

Challenge the future 29

...– Eddy-current sensors measurements – Field- / validation measurements – BETSY calibration method - Conclusions

Estimated force vs time for both algorithms.

Challenge the future 30

- Eddy-current sensors measurements – Field- / validation measurements – BETSY calibration method - Conclusions

TUDelft

Estimated force vs measured force for both algorithms.

Challenge the future 31

- Eddy-current sensors measurements – <u>Field- / validation measurements</u> – BETSY calibration method - Conclusions

TUDelft

Estimation errors

Frequency content	Method	RMS Error [N]	Error [%]
0 Hz - 10 Hz	Algorithm 1	232,00	20,09
<u>0 Hz - 10 Hz</u>	Algorithm 2	216,82	18,78
Frequency content	Method	RMS Error [N]	Error [%]
	MLRA	188,82	16,46
0 Hz - 1 Hz	Tilt 2nd order	229,84	20,04
	Tilt 6th order	174,47	15,21
Frequency content	Method	RMS Error [N]	Error [%]
1 Hz - 10 Hz	MLRA	130,89	141,82

In-situ calibration

Challenge the future 32

...– Eddy-current sensors measurements – Field- / validation measurements – BETSY calibration method - Conclusions

Strain gauge measurements: BETSY

- What is BETSY and why do we want to use it?
- The Bearing Test System is a 5 Degree of Freedom (DoF) system, where forces and moments are applied in 5 DoF by hydraulic actuators.

Challenge the future 34

Eddy-current sensors measurements – Field- / validation measurements – **<u>BETSY calibration method</u>** - Conclusions

BETSY calibration: strain

• $\varepsilon_{vehicle} = c_1 \cdot F_y + c_2$ $\varepsilon_{BETSY} = c_3 \cdot F_y + c_4$

•
$$F_{y,test} = \frac{\mathcal{E}_{BETSY} - C_4}{C_3} = \frac{\mathcal{E}_{vehicle} - C_2}{C_1}$$

•
$$\mathcal{E}_{BETSY} = \frac{C_3 \cdot \mathcal{E}_{vehicle} - C_3 \cdot C_2}{C_1} + C_4 \neq C_A \cdot \mathcal{E}_{vehicle} \neq C_B$$

BETSY calibration: Eddy-current sensors

Challenge the future 36

• Estimated F_v vs time for both algorithms

Challenge the future 37

- Eddy-current sensors measurements – Field- / validation measurements – **BETSY calibration method** - Conclusions

TUDelft

• Estimated F_v vs measured F_v for both algorithms.

Challenge the future 38

- Eddy-current sensors measurements – Field- / validation measurements – <u>BETSY calibration method</u> - Conclusions

TUDelft

Estimation errors using a BETSY calibration

Frequency content	Method	RMS Error [N]	Error [%]
0 Hz - 10 Hz	Algorithm 1	335,29	29,04
0 Hz - 10 Hz	Algorithm 2	374,55	32,44
Frequency content	Method	RMS Error [N]	Error [%]
	MLRA	191,44	16,69
0 Hz - 1 Hz	Tilt 2nd order	261,23	22,78
	Tilt 6th order	342,64	29,88
Frequency content	Method	RMS Error [N]	Error [%]
1 Hz - 10 Hz	MLRA	265,34	287,49

So we can use BETSY for calibration?

Challenge the future 39

- Eddy-current sensors measurements – Field- / validation measurements – **<u>BETSY calibration method</u>** - Conclusions

Reproducibility: strain

 Reproducibility is necessary for calibration of a whole production line of LSB

Challenge the future 40

..- Eddy-current sensors measurements - Field- / validation measurements - BETSY calibration method - Conclusions

Reproducibility: Eddy-current sensors

 Reproducibility is necessary for calibration of a whole production line of LSB

..- Eddy-current sensors measurements – Field- / validation measurements – **BETSY calibration method** - Conclusions

Conclusions

Challenge the future 42

Conclusions: lateral force estimation

- In the semi-static frequency range the strain gauges as well as the Eddy-current sensors can be used for force estimation with errors ranging from 15 % - 20 %.
- In the dynamic frequency range the lateral force is not correlated with the strain and ABS-ring deflection.
- Regarding the Eddy-current sensors BETSY can be used for calibration.
- Regarding the strain gauges sensors BETSY cannot be used for calibration.

Challenge the future 43

· Eddy-current sensors measurements – Field- / validation measurements – BETSY calibration method - Conclusions

Questions?

Thank you for your attention !

Backup slides

Introduction: Load Sensing Bearing

- What forces act on a vehicle?
- 3 forces:
 - $F_x =$ longitudinal force
 - $F_v = lateral force$
 - F'_z = vertical force

- 3 moments:
 - M_x = moment around the x-axis
 - $M_v =$ moment around the y-axis
 - M_z^{\prime} = moment around the z-axis

Strain gauge measurements: Applied loads

- Cycle consisting of 24 load steps.
- Load steps with 10 seconds of duration.
- Between each load step a 10 seconds interval of running without load is inserted.
- Combinations of static and dynamic forces are applied.

Strain gauge measurements: Signal conditioning process

- Filtering
- Static offset and drift
- Inverted signal strain gauge 3
- No-load intervals
- Scaling to physical dimensions

BETSY

• Field

BETSY and field

- Some differences are present
- How can we compensate for those differences.

Challenge the future 49

..- Eddy-current sensors measurements – Field- / validation measurements – **BETSY calibration method** - Conclusions

By describing both sides of the V-shape by a 1st order polynomial two coefficients, C_a and C_b , can be derived for both positive and negative F_y to transform te one to the other. (So 4 coefficients in total).

BETSY

$$\varepsilon_{right,BETSY} = c_{1,right} \cdot F_{y,right} + c_{2,right}$$

$$E_{left,BETSY} = c_{1,left} \cdot F_{y,left} + c_{2,left}$$
Field
$$\varepsilon_{right,Field} = c_{3,right} \cdot F_{y,right} + c_{4,right}$$

$$E_{left,field} = c_{3,left} \cdot F_{y,left} + c_{4,left}$$

$$F_{y,right} = \frac{\varepsilon_{right,BETSY} - c_2}{c_1} = \frac{\varepsilon_{right,field} - c_4}{c_3}$$

$$\varepsilon_{BETSY} = \frac{c_1 \cdot (\varepsilon_{vehicle} - c_4)}{c_3} + c_2 = \frac{c_1 \cdot \varepsilon_{vehicle} - c_1 \cdot c_4}{c_3} + c_2 = \frac{c_{A,right}}{c_3} \cdot \varepsilon_{vehicle} + c_{B,right}$$

Delft

• By describing both sides of the V-shape by a 1st order polynomial two coefficients, C_a and C_b , can be derived for both positive and negative F_v to transform te one to the other. (So 4 coefficients in

BETSY calibration: Eddy-current sensors

Estimation errors distributions

Summary: lateral force estimation

• F_v estimation summary:

0 Hz – 1 Hz					
Calibration	Strain	Tilt 2 nd order fit	Tilt 6 th order fit		
In-situ	16.5 %	20.0 %	15.2 %		
BETSY	16.7 % *	22.8 %	29.9 %		

Challenge the future 54

...- Eddy-current sensors measurements - Field- / validation measurements - BETSY calibration method - Conclusions

Recommendations

- Errors obtained with estimation using the Eddy-current sensor are mainly caused by the rubber seal and low value algorithm.
- This research focused on F_y . Next: F_x , F_z
- Online testing
- Excite with higher amount of dynamic forces

Questions?

Thank you for your attention !

Questions?

Thank you for your attention !