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Abstract

Prediction of heat loads during hypersonic re-entry is of great interest in space exploration and more recently
in the topic of space debris as well. To date, there is no accurate method to reproduce either experimentally
or numerically the physics in re-entry conditions and large safety factors need to be used as a consequence.
On the numerical side, the recent developments in a number of areas have helped the creation of new tools
to tackle the challenges of re-entry simulation. This work focuses on a high-order discontinuous Galerkin
method, which has potential to improve results achieved with state-of-the-art finite volume methods. One
important weakness of discontinuous Galerkin methods is the occurrence of Gibbs-type oscillations around
discontinuities. A number of methods have been developed to remove these spurious oscillations, and this
work chose to focus on artificial viscosity for its simplicity, adaptability, and maturity. The aim was to obtain
an accurate heat flux prediction at the surface of a cylinder in a high Mach number flow, a challenging task
achieved only a few times with discontinuous Galerkin methods.

The artificial viscosity method used in this work contains three user-defined parameters which specify the
magnitude, location and width of the artificial viscosity. A parametric study of these parameters on a steady
inviscid wedge test case at Mach 2 showed that tuning their values is a non-trivial task and it appeared that in
some cases shock smoothness and shock sharpness need to be traded-off. Furthermore, it was observed
that sufficient refinement in mesh size or polynomial order was needed to obtain satisfying results. The
Sod problem [80] was considered to test the method in an unsteady inviscid test case. Good results were
obtained, although the shock was better resolved than the contact discontinuity. The method was also tested
on another unsteady inviscid test case, the Shu-Osher problem [79]. The latter is more challenging due to the
shock strength varying in time. Specifying the artificial viscosity parameters was challenging since the set had
to account for variation of the shock strength in time. The test case also highlighted that with strong shocks,
spurious oscillations can be large enough that artificial viscosity is not sufficient to keep the simulation stable.
Therefore, the need for a method that keeps variables within their physical bounds became clear. For both
unsteady problems, the choice of inviscid flux scheme was found to have little effect on the solution at high-
orders. This observation is consistent with discontinuous Galerkin results from the literature.

Prediction of the heat flux on the surface of a half-cylinder in a hypersonic flow was attempted. However,
this was unsuccessful and the Mach number was eventually reduced to 3.25. Strong non-physical oscillations
appeared in the heat flux profile even with smooth contour plots and pressure at the surface of the half-
cylinder. The key to obtain a smooth heat flux profile was to ensure no artificial viscosity at all is inserted in
the boundary layer. Despite a smooth heat flux profile, a symmetric mesh was needed to obtain a symmetric
profile. Overall, the heat flux results showed that it is possible to simulate this challenging test case with
discontinuous Galerkin and a combination of simple methods, including the Lax-Friedrichs flux and a basic
smoothing of the artificial viscosity field.

A new strategy to tune the user-defined parameter specifying the location of the artificial viscosity was
implemented and tested on the Shu-Osher and half-cylinder test cases. It was found to be greatly beneficial
in terms of stability and user-friendliness, but did not fully eliminate the issues in simulating these challeng-
ing test cases. This strategy allowed to run the half-cylinder test case beyond the Lax-Friedrichs flux and a
polynomial order of 1. The heat flux profile with SLAU came very close to that with Lax-Friedrichs, whereas
the difference was significant between first and second orders.
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1
Introduction

1.1. Space debris and atmospheric re-entry
At the beginning of April 2018, the re-entry of the Chinese space station Tiangong 1 into Earth’s atmosphere
made headlines. It is not uncommon for space debris to re-enter the atmosphere, but Tiangong 1 was largely
covered in the news due to its size and uncontrolled re-entry. Although the probability of the spacecraft
causing human casualties was very low, how much of the station would survive the re-entry and where would
those surviving pieces land was uncertain. This is partly why there is a growing interest in the problem of
space debris. Ideas to remove these objects are being developed and studied, but attention is being paid
into improving re-entry predictions as well. There are about 27,000 tons of space debris that re-entered the
atmosphere between 1957 and 2002 [41]. Of these, about 100 large objects re-enter our planet’s atmosphere
each year and it is estimated that 10 to 40% of their mass survive impact on ground or water [1]. Fortunately,
there are no known casualties due to space debris to date [1].

Due to the small but non-zero risk that space debris pose to the population, the casualty risk for spacecraft
which are due to re-enter the Earth’s atmosphere at their end-of-life must remain under 10−4 [25]. Estimation
methods are necessary to ensure compliance with this requirement, especially for medium and large size
spacecraft [25]. A number of tools exist, namely NASA’s Debris Assessment Software (DAS) and Object Re-
rentry Survival Analysis Tool (ORSAT), and ESA’s Spacecraft Atmospheric Re-entry and Aero-thermal Breakup
(SCARAB) and Debris Risk Assessment and Mitigation Analysis (DRAMA) [51]. For tools such as these to
provide more precise results, one needs accurate simulations of the aerodynamic and thermal loads on the
spacecraft.

Accurate simulation of aerodynamic and thermal loads is also crucial in space exploration. Spacecraft
need to be able to survive the harsh environments occurring during hypersonic re-entry to protect the pay-
load. To cope with the extremely large temperatures characteristic of decent in a planet’s atmosphere such as
Mars, Jupiter, or Earth, a thermal protection system (TPS) is used. The TPS is a layer of material that is usually
either reusable or ablative. The Space Shuttle’s heat shield made of ceramic tiles is an example of reusable
TPS. Ablative materials, on the other hand, protect the spacecraft from the heat loads by degradation. They
were used in missions with high entry velocities such as the Mars Science Laboratory or Apollo. An under-
designed TPS would lead to mission failure as the rest of the spacecraft would not be able to cope with the
high temperatures. However, over-designing the TPS should be avoided too as it increases the weight of the
spacecraft and thus limits the amount of useful payload that can be carried on board. Therefore, accurate
simulation tools are needed to optimise the design of the TPS.

These simulations are difficult due to the complex multi-physical phenomena that occur during re-entry.
Even today, predicting accurately the heat load the TPS needs to withstand remains a challenging task. On
one hand, experiments allow to reproduce different aspects of the flow conditions separately. For example,
hypersonic cold wind tunnels can be used to investigate the aerodynamics of the spacecraft and Induced
Coupled Plasma wind tunnels can reproduce the high enthalpy conditions to study the material response
[75]. On the other hand, numerical codes are based on simplified models that are not able to simulate the
full conditions either. Nowadays, the large majority of heat flux predictions are based on second-order finite
volume methods which require a carefully designed mesh and a careful choice of several features such as the
inviscid flux scheme and the limiting used [15]. However, recent results by Ching et al. [15] suggest high-order

1



2 1. Introduction

methods could be less sensitive to part of these features. The next section will introduce high-order methods
in more detail.

1.2. High-order methods and the discontinuous Galerkin approach
To present high-order methods, the first step is to explain what high-order means. The order r of a method is
related to the error by

e ≤C hr (1.1)

where C is a constant, h is the cell size and e is the error. In the aerospace community, there seems to be
a consensus that high-order corresponds to r Ê 3 [88]. In industry, second-order methods are widely used as
they benefit from decades of development and have now become robust and efficient. However, interest in
high-order methods has increased considerably in the last 20 years because increasing the order (refining in r )
can be more efficient than refining in h to achieve a given level of accuracy [88]. Wang et al. [88] also mention
that low-order methods are insufficient for a number of applications, such as the computation of vortices at
the tip of helicopter’s rotors. Despite the potential benefits of and the recent progress in high-order methods,
Wang et al. [88, p843] identify four critical areas that need improvement:

1. Mesh generation: generating unstructured high-order meshes near curved geometries represented by
high-order polynomials currently lacks robustness. The challenge is in cells that can overlap each other
near curved boundaries.

2. Hp-adaptations: effective methods for hp adaptation (adapting the size h and polynomial order p lo-
cally depending on the problem needs) exist but improvements are needed in 3D. It would also be
beneficial to develop adaptation methods free of user-specified parameters and that can estimate the
error of key flow parameters.

3. Time integration for Reynolds Averaged Navier-Stokes (RANS) and hybrid RANS/Large Eddy Simulations
(LES) approaches: problems at high Reynolds number suffer from stiff matrices caused by the strong
anisotropy of meshes near boundaries. Scalable solvers along with efficient preconditioners need to be
designed for massively parallel computers.

4. Shock capturing: the two main techniques in shock capturing are artificial viscosity and limiting (in-
cluding essentially non-oscillatory type of methods). The first requires to set user-specified constants
and the second reduces the order of the method. A robust approach free of user-specified parameters,
with good convergence properties and that preserves the accuracy away from discontinuities remains
to be developed.

In the category of high-order methods, discontinuous Galerkin (DG) methods are a special variation of
finite element methods (FEM) combining advantages of FEM and finite volume methods (FVM) [21]. Reed &
Hill [73] were the first to introduce the method, to solve the neutron transport equation. It then progressed in
two paths: the first focused on hyperbolic problems and resulted among others in the appearance of the pop-
ular Runge-Kutta Discontinuous Galerkin (RKDG) method, the second tackled elliptic and parabolic prob-
lems and saw the appearance of the interior penalty (IP) method and its many variations [21]. The compress-
ible Navier-Stokes equations started to be solved with DG methods in the late 90s [21]. Since the early 2000s,
the method has received considerable interest [21].

Important advantages of DG methods is that they allow to obtain arbitrarily high orders of accuracy and
are well suited for unstructured meshes and complex geometries [8, 35]. They have several other advantages.
For example, they use compact stencils which lead to sparse block matrices well adapted for parallel com-
puting. Low dispersion and dissipation are another of their benefits [56]. DG methods also have their set of
drawbacks. Mainly, they suffer from large memory requirements and high computational cost. Since no con-
tinuity is imposed on the cell interfaces, the number of nodes are doubled at the interfaces and the degrees
of freedom increase as a consequence [31, 75]. Furthermore, the appearance of Gibbs oscillations around
discontinuities in the solution makes the simulation of supersonic and hypersonic flows more challenging.
These spurious oscillations are clearly unwanted since they ruin the accuracy of the results around a shock
and can become so strong that they crash the simulation. Various treatments have been developed to tackle
this issue. However, this remains a key area needing improvement, as mentioned above.
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1.3. Shock treatment in high-order methods
To remove spurious oscillations from the solution, shock fitting and shock capturing are the two main strate-
gies that exist. This section will present an overview of both strategies, starting with shock fitting.

1.3.1. Shock fitting
Shock fitting consists of adapting the mesh to be perfectly aligned with the shock and treating the shock as
an internal boundary condition. The flow conditions on both sides of this boundary are computed using the
Rankine-Hugoniot jump relations [67]. Moretti and his collaborators contributed significantly to the devel-
opment of shock fitting techniques between the 60s and 80s on structured grids [61, 67]. This development
occurred following two main strategies. The first is called boundary shock fitting and is simpler to code but
struggles with interacting shocks. The second, floating shock fitting, is similar to the first but can handle
shock interactions better [67]. Shock-fitting for unstructured grids was developed later, with the rising use of
unstructured grids in CFD about 30 years ago [67].

Theoretically, the shock fitting technique allows to resolve shocks accurately. However, there are a few
issues, mainly related to the mesh, that make it difficult to use in practise. Firstly, it is generally not trivial to
obtain a perfect alignment of the mesh with the discontinuity. Even if the physical location of the shock is
known, this might not correspond to its numerical location. These misalignments can cause the algorithm to
fail to converge to the right solution. Secondly, moving shocks create an additional difficulty since the mesh
needs to "follow" the discontinuity. A robust meshing algorithm is needed to handle features such as local
mesh refinements as the shock moves. Finally, it is difficult to handle complex shock interactions with it. This
leads some shock fitting codes to use the alternative technique, shock capturing, to handle the most complex
shocks [67]. For these reasons, shock fitting is rarely used nowadays and receives little attention from the
scientific community.

1.3.2. Shock capturing
A much more popular approach to shock fitting, although less accurate in theory, is shock capturing. In
the context of DG, shock capturing is still an active area of research, and it encompasses a whole range of
methods. To avoid spurious oscillations, one option could be to simply lower the polynomial order to zero
(and refine the mesh to reclaim some lost accuracy), however this will not be discussed here because one
key reason to use high-order methods is precisely to avoid such refinements and low-order accuracy. The
remainder of this section will present an overview of the other techniques available.

Limiting
Limiters eliminate spurious oscillations by lowering the order of accuracy near discontinuities. They do so by
modifying either the fluxes or slopes of the solution, and are thus given the names of flux and slope limiters,
respectively. The latter category is more popular in DG [4]. An often used approach to limiters is the con-
struction of schemes which satisfy the Total Variation Diminishing (TVD) property [6]. This property ensures
that the total variation T V (u) =∑

i |ui+1 −ui | does not increase as the simulation progresses. In 1989, Cock-
burn & Shu [16] proposed a popular TVD scheme in which the limiter switch is based on a minmod function.
However, it is well established that TVD schemes decrease the accuracy to first order at smooth extrema [16].
Therefore, they proposed an alternative scheme which is Total Variation Bounded (TVB). In TVB schemes,
the total variation only needs to remain under a given constant rather than being forced to decrease at each
time step. However, the scheme has a constant which needs to be defined by the user and can be particu-
larly difficult to tune [12, 94]. Two alternatives by Biswas et al. [9] and Burbeau et al. [12] avoided this issue
but were found to be too dissipative [71, 94]. Overall, limiters are popular methods but are typically difficult
to generalise to any type of mesh elements and order of accuracy [3, 14, 44]. They are effective in removing
spurious oscillations but tend to damage detailed structures in the solution [92].

Reconstruction methods
To avoid decreasing the order of accuracy near shocks, essentially non-oscillatory (ENO) methods appeared
in 1987 thanks to the work of Harten and his collaborators [33]. Compared to TVD/TVB methods which
use a fixed stencil, the main idea behind ENO is to have an adaptive stencil that uses information in smooth
regions to reconstruct high-order polynomials up to discontinuities [78]. Weighted essentially non-oscillatory
(WENO) methods appeared later as an improvement to ENO. The key difference is that the newer approach
uses a number of potential stencils rather than just one [4]. However, WENO methods have the disadvantage
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of using large stencils. HWENO methods, where H stands for Hermite, were developed to address this issue.
Examples can be found in the papers of Qiu & Shu [70] and Luo et al. [54].

The work by Qiu & Shu [70] was then extended to unstructured grids by Zhu & Qiu [95]. Luo et al. [54]
propose a similar strategy for an unstructured 2D mesh. Zhu et al. [96] and Du & Li [22] presented each
another HWENO variation recently, indicating that the development of compact and high-order HWENO
methods for 1D and 2D cases is still an active area of research. Applications in three dimensions and curved
elements still remain largely unexplored. Xia, Luo, and their collaborators have addressed these two last
aspects in a series of papers [52, 55], however their test cases are limited to subsonic and transonic cases.

WENO and HWENO methods were frequently combined with the explicit Runge-Kutta Discontinuous
Galerkin method, which suffers from a limitation for marching in time. This issue has been addressed more
recently with implicit HWENO schemes [36, 52, 90, 91]. Generally, they have been able to reduce computa-
tional time while maintaining the accuracy of their equivalent explicit methods.

Clearly, reconstruction methods also suffer from a generalisation issue. Specific methods need to be de-
signed to address different aspects, and their latest developments remain largely untested at supersonic and
hypersonic speeds. Nevertheless, WENO type of methods are being actively improved. The reader is referred
to [77] for a more extensive overview of the current developments.

Artificial viscosity
VonNeumann & Richtmeyer [85] proposed in 1950 to add viscous terms to the hydrodynamic equations in or-
der to resolve shocks in numerical simulations. The extra terms spread the shock over a number of cells such
that it can be resolved by the numerical method. Their approach, now commonly called artificial viscosity
(AV), has been adapted to high-order DG methods successfully. Compared to limiters and reconstruction
methods, artificial viscosity is a flexible shock capturing strategy. The user needs to tune manually a few
parameters, but variations of the AV methods do not need to be derived for different aspects such as mesh
topology, order of accuracy, or problem dimension. One possible approach is the dilation-based (i.e. based
on the velocity divergence) artificial viscosity, proposed recently by, for example, Moro et al. [62] and Yu et
al. [93]. Another option is to use a Laplacian or physical AV term, as studied by Persson & Peraire in [69]. By
introducing a scaling based on the mesh element size h and polynomial order p, they were able to capture
shocks at sub-cell resolution. Their method was later improved by Barter & Darmofal [5], who established
that by applying artificial viscosity on each mesh element in a discrete fashion, oscillations can appear. They
thus proposed to smooth the AV field with an additional partial differential equation. Both smoothing and
h/p scaling are now standard features in AV methods.

Hypersonic simulations, especially those for which the heat flux is a quantity of interest, have been little
investigated in the context of DG. As mentioned in Ching et al. [15], good results have been obtained in
[5, 11, 13, 68]. These are all based on AV except for [68] where a TVB limiter is used and less convincing results
are obtained. Arguably, the best results are currently obtained by Ching et al. [15]. Using an artificial viscosity
method, they manage to obtain accurate heat flux predictions for two challenging hypersonic problems and,
due to the coarseness of the meshes they used, at fewer degrees of freedom than equivalent results obtained
with state-of-the-art finite volume methods.

The good progress of AV methods for DG does not mean that little is left to improve. One of their main
weakness is the presence of parameters to be tuned manually. Poor tuning leads to poor accuracy around
the shock at best and to unstable simulations at worst. This remains a challenge to overcome and can turn a
seemingly simple method rather complex to use in practise. In addition, the performance of AV methods on
unsteady problems is less clear since the majority of test cases shown are steady-state solutions. It is expected
that AV parameters can be especially difficult to tune for unsteady problems where the shock strength varies
in time. Furthermore, it remains to be proved that results such as those obtained in Ching et al. [15] can
be obtained on fully unstructured meshes. Their plots of the AV field show that it deteriorates where the
alignment of the mesh and the shock is the worst. Therefore, it is expected that fully unstructured meshes
would result in additional difficulties in obtaining an accurate shock and heat flux. Barter & Darmofal [5]
do obtain good results on very fine hybrid meshes (structured in the boundary layer region, unstructured
elsewhere). To benefit from the advantages of high-order methods, such results remain to be reproduced
on coarser meshes. Finally, the results by Ching et al. [15] on a double cone problem show that there are
still cases where AV methods lack robustness. More issues could arise if chemistry is taken into account.
The performance of AV methods with both chemical reactions and high Mach number flows remains largely
unexplored in DG.
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Filtering
A different approach to what has been presented before is to handle discontinuities by stabilising the solu-
tion in the frequency domain. Spectral viscosity (VS) was introduced by Tadmor [82]. Gelb & Tadmor [26]
presented later an enhanced SV method in which a post-processing step is added to recover accuracy in
the solution. Oberai & Wanderer [65] proposed a variation of these SV methods where different viscosities are
applied to the coarse and fine scales of the solution, rather than only on the fine scales. For the Burgers’ equa-
tion, they found that their multiscale viscosity method was more accurate. More recently, Lopez-Morales &
Jameson [53] used Local Fourier Spectral filters to stabilise the solution. Their argument is that it is the energy
cascade where large scales transfer their energy to small scales which causes high-order methods to become
unstable. Indeed, high-order methods have low dissipation which means the smallest scales could not be
dissipated before they become aliased. The goal of their method is therefore to filter the small scales that
could result in aliasing.

Overall, filtering is mainly applied in spectral methods and seems to be less effective than limiting or
artificial viscosity to remove spurious oscillations. Filtering has been applied to DG methods as well but only
in a limited number of cases, such as [10, 59, 60]. Therefore, the method has yet to prove that it can be seen
as a mature alternative to limiting and artificial viscosity techniques for DG methods.

Posterior solution updating
The main idea in posterior solution updating is to use a finite volume method locally to resolve discontinu-
ities. This recent technique was introduced in Dumbser & Loubère [24] and later extended to unstructured
grids in [23]. The key difference between this method and all other strategies discussed is that this method
goes back to the previous time step t n−1 to recompute a stabilised solution for t n , whereas other shock cap-
turing methods actually stabilise the solution at time t n+1. The additional computational cost would make
this method mainly worth using when going back one time step allows to compute a solution which would
crash otherwise. However, with challenging test cases currently being resolved with the AV methods pre-
sented above, the case for the posterior solution updating approach might become more and more difficult.

1.4. Thesis objectives and outline
Due to its simplicity, maturity, and adaptability, the focus of the research work will be on artificial viscos-
ity. The project will use the multi-physics CFD platform Argo, based on a high-order discontinuous Galerkin
method. The aim is to study how the method performs in Argo, propose an improvement based on the weak-
nesses identified, and use that to predict the heat flux profile at the wall of a cylinder in a supersonic flow. The
first part is based on a number of test cases of increasing difficulty. Although an analytical or reference solu-
tion is available for comparison, the results are compared with literature where relevant. This not only allows
to assess how the method performs with respect to others, but also allows to ensure that issues appearing in
the results are not specific to Argo. This last step is of particular interest with Argo because the computational
tool has had only limited testing at these high Mach number regimes. A number of contributions are made in
this work. Firstly, the performance of DG with artificial viscosity is investigated on unsteady problems, which
have received much less attention in literature. Secondly, the wall heat flux is computed for a cylinder in a
high Mach number flow. This has been achieved only in a limited number of cases with DG, with varying suc-
cess. This work does so in different conditions than used in literature, but is limited to supersonic rather than
hypersonic flow. In addition, this work highlights the difficulties in achieving such results, information much
lacking in literature. Finally, this work proposes a new method to tune automatically one of the user-defined
AV parameters and presents its benefits. The scope of this work is limited to perfect gases, with chemistry,
radiation, and material ablation not being considered.

The next chapter will provide the reader with the necessary theoretical background. With the foundations
covered, artificial viscosity is applied on a supersonic wedge test case. This simple test case already highlights
key trends in the use of the method and certain limits and challenges. This is covered in Chapter 3. Chapter
4 then focuses on unsteady problems, which provide new insights on AV methods. The information gathered
in chapters 3 and 4 is applied to a challenging half-cylinder test case. A number of modifications are imple-
mented before a satisfying heat flux profile is obtained. The results are provided and discussed in Chapter
5. Chapter 6 presents the new method to remove one of the user-defined AV parameters and highlights its
benefits. Finally, Chapter 7 summarises the important findings in this thesis and provides a number of ideas
to explore in future work.





2
Numerical methods and physical

modelling

This chapter aims to describe the foundations on which this work is built on. Firstly, the numerical tools used
in this work are briefly introduced. Secondly, the equations used to model the flow are presented. Thirdly, the
discontinuous Galerkin method is detailed. It was already briefly introduced in terms of its advantages and
disadvantages in the previous chapter. Now, the core of the method will be presented. Finally, the artificial
viscosity technique used in this work is described.

2.1. Numerical tools
In this section, the two programs used in this work, Argo and Gmsh, are briefly presented. A number of
important features will be highlighted due to their relevance for the next chapters.

2.1.1. Argo
Argo is a multi-physics CFD platform initially developed by Hilleweart [35]. The code is now developed at
Cenaero, an applied research centre in Belgium. It is based on a discontinuous Galerkin method, to be pre-
sented in Section 2.3, and can handle both structured and unstructured meshes. Furthermore, it is designed
to run on parallel architectures, using a hybrid of Open Multi-Processing (Open MP) and Message Passing
Interface (MPI) libraries. Two modules in the code of particular interest for this work are:

1. DGFluid: This module was created to simulate incompressible and compressible flows. It is based on
conservative variables, and of relevance to this work, contains a clipping method ensuring the physical
variables remain within physical bounds.

2. DGAblation: Developed by Schrooyen [75], this module was based on DGFluid and created in order
to simulate material ablation problems. A state-of-the-art approach was used to simulate the material
ablation and the flow in the same computational domain. It is capable of simulating multi-species
compressible flows and chemical reactions, among others. Primitive variables are used for simplicity
in the derivation of the Jacobian for implicit time integration [75].

The work initially started on the DGAblation module and later used parts of DGFluid in order to benefit
from the clipping. This implied a change from primitive to conservative variables, with the chosen set clearly
stated throughout this work to avoid confusion. For further details about Argo, the reader is referred to [35,
75].

2.1.2. Gmsh
The meshes in this work were generated with Gmsh, described in detail in [27]. Unstructured meshes were
built using the Delauney algorithm. As mentioned in Section 1.2, generating high-order meshes around
curved geometries can be challenging. Gmsh contains high-order tools, which were used in order to obtain
valid elements near curved boundaries. The program is also used for post-processing results, being capable
of high-order visualisation.
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2.2. Compressible flow equations
As mentioned before, simulating re-entry conditions numerically is difficult due to the complex multi-physical
phenomena involved. Several typical challenges of hypersonic re-entry flows consist of thin shock layers
which can lead to merging boundary and shock layers, an entropy layer interacting with the boundary layer,
large boundary layers which can effectively change how the flow outside the boundary layer perceives the
size of the body, high temperatures causing the flow to become chemically reacting and to emit thermal ra-
diation, and low density effects which can require to use velocity and temperature slip conditions at the wall
or even break down the continuum assumption used in most aerodynamic problems [38]. This work focuses
on altitudes where the continuum assumption holds, and a frozen mixture of gas with constant thermody-
namic and transport properties is considered. Mainly, the focus is on the Euler equations which are adequate
for investigating high Mach number effects, and on the compressible Navier-Stokes which allow to consider
viscous and thermal conduction effects as well [38]. Both sets of equations can be written in the general form

∂U

∂t
+∇·F(U) =∇·Fv (U,∇U)+S(U,∇U), (2.1)

where U is the state vector of conservative variables, F is the inviscid flux, the viscous flux is given by Fv ,
and S is the source term. The latter includes chemical production which is neglected in this work.

2.2.1. Euler equations
For the Euler equations, U = [ρ,ρui ,ρE ]T where ρ is the density, ui is the velocity in component i and E is
the total internal energy. Since the equations model inviscid flow, the viscous flux Fv is null. The inviscid flux
is given by

F(U) =
 ρui

ρui u j +δi j P
ρui H

 , (2.2)

where δi j is the Kronecker delta, P is the static pressure, and H = E+P/ρ is the total enthalpy. To compute
the pressure from the state vector quantities, Equation (2.3) is used,

P = (γ−1)ρ

(
E − 1

2
ui ui

)
, (2.3)

where γ is the ratio of specific heats and is equal to 1.4 for air [5]. Since constant thermodynamic proper-
ties are assumed, γ always takes the value of 1.4 in this work.

As mentioned in Section 2.1.1, this work also uses an alternative state vector which uses so-called primi-
tive variables and is given by W = [P,u,T ], where T is the temperature. Note that by using the relation between
conservative and primitive variables U = U(W), the system of equations can be solved without loss of conser-
vation. For details of how this is done, the reader is referred to Schrooyen [75].

It is worthwhile mentioning that a different set Ũ = [ρ,ρui ,ρH ]T has been suggested and used in the
literature to better conserve total enthalpy for steady inviscid cases when artificial viscosity is added to the
equations [4, 15]. This alternative set of variables was not implemented in this work.

2.2.2. Compressible Navier-Stokes equations
For the Navier-Stokes, only the state vector of conservative variables U = [ρ,ρui ,ρE ]T is used. The inviscid
and viscous fluxes are given by

F(U) =
 ρui

ρui u j +δi j P
ρui H

 , Fv (U,∇U) =
 0

τi j

u jτi j +κT
∂T
∂xi

 , with τi j =µ
(
∂ui

∂x j
+ ∂u j

∂xi

)
−δi jλ

∂uk

∂xk
. (2.4)

The new parameters in Equation (2.4) are the dynamic viscosity µ, the bulk viscosity coefficient λ given
by λ=−2/3µ, the thermal conductivity κT and the temperature T which is related to known quantities by the
equation of state p = ρRT , where R is the specific gas constant [5]. The heat flux q is given by Fourier’s law

q = κT
∂T

∂xi
, (2.5)
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and is a critical aspect for the design of thermal protection systems. Since constant transport properties
are assumed, κT takes a constant value.

2.3. The discontinuous Galerkin method
In order for Equation (2.1) to be solved numerically, the physical domain Ω on which the equations are de-
fined is partitioned into a mesh with non-overlapping elements. In the discontinuous Galerkin method, the
functional space V consisting of polynomial functions of order p is constructed on these elements. The poly-
nomial functions are regular within each element but can be discontinuous across elements.

Using a simple 1D scalar version of Equation (2.1) as example, the solution ũ is thus approximated by a
linear combination of shape functions φ

ũ ≈ u =∑
i

Uiφi , (2.6)

where Ui are the degrees of freedom, or solution moments. In Argo, the shape functions are Lagrange
interpolants based on equidistant points in a parametric space. A mapping is thus used to translate physical
coordinates into corresponding parametric ones.

As in FEM, each term is multiplied by test functions v and integrated over the size of each element,Ωe , to
obtain the weak form of the equation

∑
Ωe

∫
Ωe

v
∂u

∂t
dΩe +

∑
Ωe

∫
Ωe

v
∂F (u)

∂x
dΩe =

∑
Ωe

∫
Ωe

v
∂

∂x

(
D
∂u

∂x

)
dΩe (2.7)

with

D
∂u

∂x
≈ Fv . (2.8)

2.3.1. Spatial discretisation of the inviscid term
The second, inviscid, term is discretised by integrating by parts and approximating F with a numerical flux F̂
on the boundary ∂Ωe , which results in [21]:

∑
Ωe

∫
Ωe

v
∂F (u)

∂x
dΩe =−∑

Ωe

∫
Ωe

F (u)
∂v

∂x
dΩe +

∑
∂Ωe

∫
∂Ωe

[v]F̂ (u+,u−,n)dS (2.9)

with [•] being the jump operator such that

[v] = v−n−+ v+n+, (2.10)

with the convention that + is for quantities approaching the interface in the direction of its normal and −
is associated with direction opposite to the normal.

It is clear that if the shape functions are piecewise constants, the first term on the right-hand side disap-
pears and the method becomes effectively a first-order FVM. The spatial discretisation of the inviscid flux in
DG methods can thus be seen as a high-order adaptation of FVM. Inviscid fluxes F̂ are determined by solving
a Riemann problem at each element interface [21]. The first exact Riemann solver is attributed to Godunov
[29]. Nowadays, the scheme is considered expensive and there are many more efficient solvers that solve the
Riemann problem approximately [83]. Two main categories of approximate Riemann solvers exist [49]:

1. Flux Difference Splitting (FDS). The flux difference is split in two parts, one associated to the down-
stream travelling wave and the other with the upstream travelling one, as follows: F(UR ) − F(UL) =
(∆F)+(UL ,UR )+ (∆F)−(UL ,UR ). Popular schemes in this category include the solvers of Roe [74], of
Osher & Solomon [66], and the Harten-Lax-Van Leer (HLL) splitting [34].

2. Flux Vector Splitting (FVS). The flux vector is split in a sum of two vectors, again each associated with
the downstream or upstream travelling wave: F(U) = F++F−. The Steger-Warming splitting [81] and
the Van Leer splitting [84] are two well-know schemes.
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Hybrid flux splittings have appeared with the intention to combine the benefits of both categories. Specif-
ically, the goal was to take the robustness of the FVS, the ability of selecting only entropy-satisfying approxi-
mate solutions of FVS, and the ability of capturing exactly stationary contact discontinuities of FDS [49]. The
most popular family of hybrid schemes is the advection upstream splitting method (AUSM), for which more
information can be found in [47–50]. Comparisons of different flux schemes can be found in [18, 46, 72].
One important trend to note is that for DG several studies have indicated that the influence of the chosen
flux scheme on the solution decreases as the order of the method is increased [14, 31, 69]. Various schemes
are implemented in Argo and the effect of the chosen scheme will be tested. Those used in this work are the
Lax-Friedrichs, AUSM+up, SLAU, and Roe schemes.

Lax-Friedrichs
A very simple FVS scheme regularly used in this work is the Lax-Friedrichs flux [45], given by

F̂ = FL +FR

2
− 1

2
|λ|(UR −UL) (2.11)

where R and L correspond to the right and left states andλ is the maximum eigenvalue given byλ= ū·n±c,
in which ū is the average velocity at the interface, n is the normal vector and c is the speed of sound. The Lax-
Friedrichs scheme is very simple to implement but is excessively dissipative [83]. This drawback is actually
of interest here because it makes the scheme very stable. This is the main reason why much of this work was
based on the Lax-Friedrichs Riemann solver. Another drawback of this scheme is that it does not have any
mechanism to account for large disparities in convective and acoustic scales [75]. The scheme AUSM+up
tackles this issue, making it more accurate at low Mach number.

AUSM+up
The AUSM+up scheme was developed by Liou [48] and is based on a splitting of the pressure and convective
terms, given by

F̂ = ṁΦ+P, with ṁ = ρu, Φ= (1,u, H)T and P = (0,P,0)T . (2.12)

The algorithm starts by defining

ML,R = uL,R

c1/2
(2.13)

where uL,R = uL,R ·n and

c1/2 = min(c̃L , c̃R ), with c̃ = (c∗)2

max(c∗, |u|) . (2.14)

The critical speed of sound c∗ is given by

c∗ =
√

2(γ−1)

γ+1
H . (2.15)

With these, the interface Mach number M1/2 is computed by

M1/2 =M+(ML)+M−(MR )− κp

fa
max(0,1−σM̄ 2)

PR −PL

ρ̄c2
1/2

(2.16)

which uses split Mach numbers M being polynomial functions given by

M±(M) =
{

0.5(M ±|M |) if |M | ≥ 1,

±0.25(M ±1)2 ±β(M 2 −1)2 otherwise.
(2.17)

The mean Mach M̄ and density ρ̄ at the interface are

M̄ = u2
L +u2

R

2c2
1/2

and ρ̄ = ρL +ρR

2
. (2.18)

The interface pressure is defined by Equation (2.19), for which P + and P − are computed with Equa-
tion (2.20).
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P1/2 =P +(ML)PL +P −(MR )PR −2κu(ρ̄ fac1/2)(uR −uL)P +(ML)P −(MR ) (2.19)

P ±(M) =
{

0.5(1± sign(M)) if |M | ≥ 1,

±0.25(M ±1)2(2∓M)±αM(M 2 −1)2 otherwise.
(2.20)

Defining

ṁ1/2 = c1/2M1/2

{
ρL if M1/2 > 0,

ρR otherwise,
(2.21)

the complete flux can be written by

F̂ = ṁ1/2

{
ΦL +P1/2 if ṁ1/2 > 0,

ΦR +P1/2 otherwise.
(2.22)

A number of parameters were introduced in this scheme and take the values κp = 0.25, κu = 0.75, σ = 1,
β = 1/8 and α = −3/4+15/16 f 2

a where fa = M0(2−M0) and M 2
0 = min(1,max(M̄ 2, M 2

co)) which includes the
cut-off Mach number Mco in case the actual Mach number in the domain tends to zero.

SLAU
The Simple Low Dissipation AUSM (SLAU) scheme from Shima & Kitamura [76] performs similarly to AUSM+up
but has the benefit of not containing user-defined parameters. Since its implementation is based on similar
ideas as the AUSM+up scheme, the reader is referred to [39] for the algorithm.

Roe
The Riemann solver of Roe [74] is one of the most popular, and has been the scheme of choice in state-of-the-
art heat flux predictions using AV and DG methods [5, 15, 83]. To explain Roe’s method, the notations from
[74, 83] are used and the following simplified system is considered:

∂U

∂t
+ ∂F(U)

∂x
= 0. (2.23)

The method seeks an exact solution to an approximate problem. The system given in Equation (2.23) is
linearised and the Jacobian is replaced by a constant matrix Ã, which results in

∂U

∂t
+ Ã

∂U

∂x
= 0. (2.24)

To construct Ã, a new parameter vector Q is designed such that

U = U(Q) and F = F(Q) (2.25)

and for the problem at hand is given by

Q = ρ1/2(1,u, v, w, H)T . (2.26)

Solving

UL −UR = B̃(QL −QR ) (2.27)

FL −FR = C̃ (QL −QR ) (2.28)

for B̃ and C̃ , matrix Ã is obtained through Ã = C̃ B̃−1. The eigenvalues of Ã are given by

λ̃1 = ũ − ã, λ̃2 = λ̃3 = λ̃4 = ũ, λ̃5 = ũ + ã (2.29)

and the right eigenvectors are
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e1 =


1

ũ − ã
ṽ
w̃

H̃ − ũã

 , e2 =


0
0
ṽ
0
ṽ2

 , e3 =


0
0
0
w̃

w̃2

 , e4 =


1
ũ
ṽ
w̃

1
2 (ũ2 + ṽ2 + w̃2)

 , e5 =


1

ũ + ã
ṽ
w̃

H̃ + ũã

 (2.30)

where

ũ =
p
ρLuL +p

ρR uRp
ρL +p

ρR
(2.31)

ṽ =
p
ρL vL +p

ρR vRp
ρL +p

ρR
(2.32)

w̃ =
p
ρL wL +p

ρR wRp
ρL +p

ρR
(2.33)

H̃ =
p
ρL HL +p

ρR HRp
ρL +p

ρR
(2.34)

ã =
(
(γ−1)

(
H̃ − 1

2
(ũ2 + ṽ2 + w̃2)

)) 1
2

. (2.35)

Projecting the jump UL −UR on the right eigenvector leads to

UL −UR =
5∑

i=1
α̃i ei (2.36)

which can be solved for the wave strengths α̃i . With the wave strengths, eigenvalues and eigenvectors, the
numerical flux at the interface can now be obtained. It is given by any of Equation (2.37) or Equation (2.38):

F̂ = FL +
∑
λ̃i≤0

α̃i λ̃i ei (2.37)

F̂ = FR − ∑
λ̃i≥0

α̃i λ̃i ei . (2.38)

Having now covered the spatial discretisation of the convective term with the Riemann solvers used in
this work, the spatial discretisation of the diffusive term is treated next.

2.3.2. Spatial discretisation of the diffusive term
Many techniques exist to discretise the diffusive term in DG methods. Only the Interior Penalty (IP) method
will be described because it is the only discretisation available in the code, which was chosen for its com-
pactness and simplicity in implementing the interface term [35]. For a more detailed overview of viscous flux
schemes, the reader is referred to [2].

The IP method is based on the boundary penalty approach from Nitsche [63]. Values at the boundary
are imposed in a weak manner with the use of a penalty term that minimises the average interpolation error
between the value of the solution and the value of the boundary condition. This leads to a lower global error
due to smoother variation of the solution [35]. This is illustrated in Figure 2.1, where the green and red lines
correspond to weak and strong imposition, respectively.

Following this approach, the last term in Equation (2.7), the diffusive term, is computed as

∑
Ωe

∫
Ωe

v
∂

∂x

(
D
∂u

∂x

)
dΩe =

∑
Ωe

∫
Ωe

∂v

∂x

(
D
∂u

∂x

)
dΩe

− ∑
∂Ωe

∫
∂Ωe

〈
D(u)

∂u

∂x

〉
[v]dS −θ ∑

∂Ωe

∫
∂Ωe

〈
D(u)

∂v

∂x

〉
[u]dS +α ∑

∂Ωe

∫
∂Ωe

[v][u]dS (2.39)
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Figure 2.1: Illustration of strong (red) and weak (green) imposition of values on the boundary, from [35, p22].

where 〈•〉 is the average operator defined as

〈•〉 = 1

2
(•−+•+). (2.40)

On the right hand side, the first two parameters are the result of the discretisation by parts. The third and
forth term on the right hand side are the symmetric and penalty terms, respectively, and ensure the method
is stable [75]. The penalty parameter α needs to be chosen within a bounded interval, for which the limits
can be found in the work of Hilleweart [35]. The parameter θ takes any of the following three options:

1. θ = 1: symmetric interior penalty (SIPDG) method. To choose for optimum convergence properties.
This is the method used in this work unless mentioned otherwise,

2. θ =−1: non-symmetric interior penalty (NIPDG) method. To choose for better stability andα only needs
to be strictly positive,

3. θ = 0: incomplete interior penalty (IIPDG) method. To choose for simplicity, rarely used in practise.

A key drawback of the Interior Penalty method is that it is inconsistent at p = 0. Indeed, all the derivatives
on the right-hand side become zero, cancelling all terms except the penalty one. This limitation will prove
to make the simulation of certain test cases more challenging. High-order simulations of supersonic and
hypersonic flows are typically obtained with order sequencing. This means that a simulation at p = 1 takes a
converged p = 0 solution as initial condition, a simulation at p = 2 takes a converged p = 1 solution as initial
condition, and so on. At p = 1, spurious oscillations around shocks can already make simulations difficult.
Starting at p = 0 is thus highly beneficial as no spurious oscillations appear at that order, allowing to easily
obtain a first solution from which higher-order simulations can be done. In this work, it was chosen to accept
this limitation rather than implement a different discretisation for the diffusive term. A popular method
which is consistent at p = 0 is the second scheme of Bassi and Rebay (BR2) [7] and could be implemented
and used in future work.

2.3.3. Boundary conditions
The boundary conditions are weakly imposed, meaning that boundaries are treated as an interface between
elements at the limit of the domain and ghost elements, on which the desired conditions are specified. For
the convective part, the Riemann problem is solved at the interface with the state in ghost elements corre-
sponding to the desired boundary conditions. To impose a Dirichlet boundary condition for the diffusive
part, ∂u

∂x is set to zero thus the only interface terms remaining are the symmetry and penalty terms. The value
of u−, where the minus refers to the ghost value, is specified in both. For a Neumann boundary condition,
both states either side of the interface (i.e. the boundary) are set to be equal thus the jump is zero and only the
first interface term remains. The value of D(u) ∂u

∂x is then specified [75]. Table 2.1 summarises the boundary
conditions implementation used in this work.
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Table 2.1: Boundary conditions implementation in Argo, from [75]

Type Convective Diffusive
Adiabatic wall u− specified and for the rest

U+ = U−
Fv,mass ·n = Fv,energy ·n = 0

Isothermal wall u−, T − specified and for the
rest U+ = U−

Fv,mass ·n = 0

Freestream u−, T −, P− specified Fv ·n = 0

2.3.4. Time discretisation
The explicit Runge-Kutta scheme was integrated in DG by Cockburn, Shu, and collaborators, leading to the
popular Rung-Kutta Discontinuous Galerkin (RKDG) method for which the development is treated in a series
of papers [16–20]. The method has been extensively used and analysed with limiters and reconstruction
methods. The main drawback of explicit methods is the constrain on the time-step which can be significant
in certain problems. This issue can be overcome by the use of implicit schemes.

The implicit time marching scheme used in this work is the second order multistep Backward Differenti-
ation Formula (BDF2). Since the scheme is not self-starting, the solution after the very first time step, U1, is
computed with a simple BDF1 given by Equation (2.41) with n = 0.

Un+1 = Un +∆tR(Un+1), (2.41)

where

R(U) =−∇·F(U)+∇·Fv (U,∇U)+S(U,∇U). (2.42)

For n > 0, the solutions at the current and previous time steps, Un and Un−1, respectively, can be used to
compute Un+1, the solution at the next time step, using

Un+1 = 4

3
Un − 1

3
Un−1 − 2

3
∆tR(Un+1). (2.43)

The next section explains how this scheme is solved.

2.3.5. Solvers for non-linear and linear systems
The resulting non-linear system from Equations (2.41) and (2.43) is solved with a Newton-Raphson (NR)
scheme, which works as follows. Writing the non-linear system as

H(U) = 0, (2.44)

its linearisation can be obtained by Taylor expansion around Un+1 and neglecting higher order terms,
giving

H(Un+1) ≈ H(Un)+ J (Un+1 −Un), (2.45)

where J = ∂H/∂U is the Jacobian evaluated at time n. Using ∆U = Un+1 −Un , this linearised system can
now be written in the form

J ∆U =−H(Un), (2.46)

and solved for ∆U. Gaussian elimination is available in Argo to solve the system. However, it is not used
in this work because the system is generally large and iterative methods are more efficient. Those used in this
work are now briefly explained. The reader is referred to the book from Golub & Van Loan [30] for a more
extensive treatment of iterative methods.
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Just as Gaussian elimination, iterative methods aim to solve the system

Ax = f, (2.47)

where in this case A = J , x =∆U, and f =−H(Un). In an iterative method, the system is solved by improv-
ing an approximate xk at iteration k towards the exact solution x∗. As such, the residual rk is then defined
as

rk = f− Axk (2.48)

and indicates the quality of the estimate at iteration k. Basic iterative methods split matrix A into A =
M −N . The system can then be written as Mx = N x+ f. This splitting allows the construction of an iterative
scheme given by

xk+1 = M−1N xk +M−1f (2.49)

= M−1(M − A)xk +M−1f (2.50)

= xk +M−1(f− Axk ) (2.51)

= xk +M−1rk . (2.52)

It is clear that M should be chosen such that it can easily be inverted. In the Jacobi method used in this
work, M is simply the diagonal of A. This leads to very fast iterations and the parallelisation is straightforward.
However, the lack of off-diagonal elements can make the method slow to converge.

The other iterative method used in this work is called Generalised Minimum Residual (GMRES), and be-
longs to a different category under the name of Krylov Subspace methods. GMRES is based on the Krylov
subspace K (A, f0,k) = span{f0, Af0, ..., Ak−1f0}. At the kth iteration, ||f−Axk ||2 is minimised with xk belonging
to the space x0+K (A, f0,k) [30]. A drawback of GMRES is that the algorithm becomes more computationally
and memory intensive at each iteration k. Argo has a restart option to deal with this issue, however the need
to use it did not appear in this work. The convergence threshold for the GMRES algorithm was set at 10−4 and
was generally reached in less than 100 iterations, at which the algorithm would be forced to stop. GMRES can
also be made more efficient with the use of preconditioners. The basic idea of preconditioning is that matrix
A is multiplied by another matrix P such that their product is as close as possible from the identity matrix. If
matrix A is multiplied by P from the right, the system becomes:

APy = f (2.53)

x = Py. (2.54)

Two options for P are used in this work. Bloc Jacobi preconditioners use the diagonal blocs of A. The
advantages and drawbacks are as for the basic iterative method. The second option is Bloc Incomplete LU,
which is based on an incomplete LU factorisation of the blocs. The LU factorisation consists of decomposing
A into a lower (L) and upper (U) triangular matrices. This results in dense L and U even if A is sparse. In
Argo, the incomplete factorisation allows to control the levels of fill-in, with level 0 meaning that no addi-
tional entries occur. In theory, a higher level will result in increased memory and computational cost but in
better convergence. In practise, this work found that levels 0 and 1 were the most efficient for the problems
considered.

2.4. Artificial viscosity
Before getting into the artificial viscosity method itself, shock detectors (also called sensors or indicators),
need to be treated. Shock detectors are part of most shock capturing techniques and have for purpose to
identify the location of discontinuities in the computational domain. They work by computing a quantity
which measures the smoothness of the solution in each element of the mesh. If this quantity is larger than a
threshold on a given element, that element is flagged as "troubled" and artificial viscosity (or another shock
capturing technique) will be applied on it. Many sensors have been proposed in the literature, and many have
been found to work reliably. The indicators of Krivodonova et al. [43], Harten [32], and Persson & Peraire [69]
are among popular options. The main weakness of sensors is that the threshold is user-defined. In practice,
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its value needs to be defined by trial and error and will be case-dependent. A few solutions to this issue have
been proposed, the most generic being the one from Vuik & Ryan [86] at the moment.

The artificial viscosity technique used in this work is largely based on the method proposed by Persson
& Peraire [69] and the improvement proposed by Barter & Darmofal [5]. Other options are available but
those chosen for this work are known to work well and have been considered as the most robust by Burgess
and Mavripilis [13], among the methods they considered. The detector by Persson and Peraire works on the
principle that expansions of different order will be similar when the solution is smooth but different when it
contains discontinuities. In each element, a component of the solution of order p can be written as:

u =
N (p)∑
i=1

Uiφi (2.55)

where N (p) corresponds to the expansion’s number of terms. The solution can also be expanded in the
same way but with terms up to order p −1 only:

û =
N (p−1)∑

i=1
Uiφi (2.56)

The shock sensor is based on these two expansions. In regions where the solution is smooth, the decay
of the expansion coefficients will be quick. However, discontinuities will lower the decay rate. Therefore,
discontinuities can be detected by comparing the two expansions of different order. The sensor Se is given
by:

Se = (u − û,u − û)e

(u,u)e
(2.57)

where (·, ·)e is the inner product in L2(Ωe ) [69]. A threshold needs to be specified in order to define above
which value of Se is artificial viscosity (or another stabilisation technique) applied. Overall, the sensor has
been found to be reliable by Persson and Peraire as well as Lv et al. [57], and has been used by others in their
work [5, 40]. Worth noting is that the detector does not work for simulations at p = 0 but does not need to
since spurious oscillations do not occur at that order.

Artificial viscosity is then added to the equations in the form of a Laplacian term:

∇· (ε∇U). (2.58)

The amount of artificial viscosity added ε is scaled by a user-defined magnitude k, the element size h, the
polynomial order p and by the maximum wave speed λmax , such that

ε0 = k
h

p
λmax . (2.59)

This value is then inserted into Equation (2.60) to obtain a smoother variation depending on the sensor
values.

εe =


0 if se < s0 −κ
ε0
2

(
1+ sin π(se−s0)

2κ

)
if s0 −κ< se < s0 +κ

ε0 if se > s0 +κ
(2.60)

where se = log10Se , s0 is the sensor threshold and theoretically scales with 1/p4, and κ is the interval on
which the artificial viscosity increases smoothly from zero to its maximum value. The method as such results
in a discrete artificial viscosity field, in which each mesh element e has a specific amount of AV εe attributed
to it. Barter & Darmofal [5] found that this could lead to oscillations and proposed to smooth the AV field with
an additional PDE. Smoothing the AV field has now become a standard procedure in AV methods. In Argo, a
simpler implementation than that of Barter and Darmofal is used. At each interface, the maximum εe value
is chosen to construct a linear polynomial interpolation for ε, which leads to a smooth AV field.

Also common in current artificial viscosity methods in DG is the h/p scaling introduced by Persson &
Peraire [69]. By scaling the artificial viscosity with the length resolution of a polynomial, subcell shock cap-
turing can be achieved for sufficiently high p. Just as for the detector, AV methods have parameters that need
to be defined by the user. In this case, the user needs to specify three parameters before each simulation,
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namely the threshold s0, the interval κ, and the magnitude k. In practise, a few time steps or iterations are
run, at which point the user can already obtain an idea of what values would be appropriate for the parame-
ters. It is worth mentioning explicitly that the cutting point above which elements are flagged as troubled is
not at the threshold but at s0 −κ. Therefore, there are two parameters which define together the point above
which artificial viscosity is applied. In addition, the user usually has the choice between adding more artificial
viscosity on a smaller region around the discontinuity, or adding less on a larger area. The three parameters
are thus very much interlinked.





3
Application to an inviscid and steady

supersonic wedge test case

The artificial viscosity method described in the previous chapter is applied to a steady wedge test case solved
with the Euler equations. This problem is chosen because it contains a simple oblique shock and has an
analytical solution. The latter allows to verify that the method performs as expected, i.e. that it removes
oscillations locally without affecting accuracy elsewhere. A parametric study is done to observe the effect of
each AV parameter at a low supersonic Mach number. The Mach number is then increased to 4 at which point
challenges start to arise.

3.1. Problem set-up
As its name implies, the wedge test case simulates a supersonic flow over a wedge. An oblique shock appears
in order to turn the flow parallel to the ramp. The wedge forms an angle of about 11.5◦, and the full problem
geometry is given in Figure 3.1. Freestream conditions are imposed on the left and top boundaries, the flow
is forced to be tangent to the bottom wall and nothing needs to be imposed on the right boundary since the
flow is supersonic.

Figure 3.1: Wedge test case set-up. Coordinates are in brackets (figure not
to scale). Figure 3.2: Baseline mesh with 1467 elements for the wedge

test case

Using the oblique shock relations (see [37, p608] for their derivation), the post-shock conditions can be
computed analytically. The results are given in Table 3.1, and the shock angle with respect to the horizontal
is 40.8◦.

Table 3.1: Pre- and post-shock conditions for the wedge test case at Mach 2

Parameter Pre-shock Post-shock
Mach number [-] 2 1.5915

Static pressure [Pa] 101325 184798
Static temperature [K] 288 344.1

19
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The problem is solved with an implicit BDF2 scheme, and a GMRES algorithm with Jacobi precondition-
ing is used to solve the linear system. Shock detection uses the density as variable. The main mesh is relatively
coarse at 1467 triangular elements, as shown in Figure 3.2. Two other meshes with different refinements are
also used for comparison. One is the fine mesh with about 9000 elements shown in Figure 3.3(a) and the
other has a local refinement around the shock, allowing smaller elements in the critical region while keeping
the overall number of elements at about 7000. The latter mesh is shown in Figure 3.3(b). All p = 1 solutions
in this chapter were obtained from a converged p = 0 solution as initial condition.

(a) Isotropic mesh with 9283 elements (b) Locally refined mesh with 7252 elements

Figure 3.3: Fine meshes for the wedge test case

3.2. Parametric study at Mach 2
The magnitude k, threshold s0, and interval κ are modified one by one to test the sensitivity on the solution.
The baseline set-up uses the Lax-Friedrichs scheme for the flux, a polynomial order of 1, no smoothing of
the AV field, and the coarse mesh. The Lax-Friedrichs scheme is chosen for its stability, and smoothing is
not applied to visualise more clearly the effect of changing AV parameters. Primitive variables are used for all
simulations in this chapter. It was decided to clip all results slightly above and below the theoretical values
given in Table 3.1 in order to highlight oscillations, which appear as white areas in the images. The first results
to be shown were computed with no artificial viscosity to highlight the issue of spurious oscillations and the
need to remove them.

No artificial viscosity
Results for the Mach number and pressure are shown in Figures 3.4(a) and 3.4(b) respectively, when no artifi-
cial viscosity is added to the equations. As expected, solving the equations without artificial viscosity results
in spurious oscillations before and after the shock. They are stronger for the pressure than for the Mach num-
ber. They also affect a wider region in the case of the pressure. Furthermore, these oscillations vary along the
shock length, as does the shock thickness.

Baseline parameters: k = 0.05, s0 =−2.0, κ= 1.0
Figures 3.5(a) and 3.5(b) show the artificial viscosity field (i.e. the magnitude ε across the domain) and the
sensor values se on each element, respectively. It is clear that AV is added only on a thin region of approxi-
mately one element, which is generally a desired feature as long as oscillations are effectively removed. How-
ever, the amount of AV added varies along the length of the shock. This is not surprising considering it was
just seen that oscillations vary along the length of the shock when no artificial viscosity was added. Also, it can
be clearly seen how each mesh element has a specific artificial viscosity value since no smoothing is applied,
resulting in a discrete AV field.

For a perfectly smooth solution, the sensor returns a value of -16. In this case, the sensor value is close to
-1.5 at the shock location, but it is clear from Figure 3.5(b) that there is a large transition region between the
two extremes. Also, the flow after the shock does not recover the pre-shock smoothness.

A clear improvement can be seen for the Mach number field in Figure 3.5(c) with respect to the results
with no artificial viscosity, but the pressure field in Figure 3.5(d) suggests that a better set of parameters can
be found. Furthermore, it can be seen that, as expected, the shock is not homogeneous along its length,
with varying thickness. The regions just before and after the shock further show the non-homogeneity of the
solution in the direction parallel to the shock.
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(a) Mach number (b) Pressure

Figure 3.4: Solution to the wedge test case at p = 1 with Lax-Friedrichs and without artificial viscosity

(a) Artificial viscosity (b) Shock detector se

(c) Mach number (d) Pressure

Figure 3.5: Solution to the wedge test case at p = 1 with Lax-Friedrichs and baseline artificial viscosity parameters k = 0.05, s0 =−2.0,
and κ= 1.0
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If white areas in the results show the error caused by spurious oscillations, they do not show the magni-
tude of the oscillations. For that reason, Figure 3.6 shows a 3D plot of the Mach number distribution where
the vertical axis corresponds to the Mach number values. One can clearly see how the spurious oscillations
vary in strength along the length of the shock. For the pressure, drawing the 3D plot to scale resulted in poor
visualisation. It was thus preferred to show a cut of the pressure field at y = 0.3, in Figure 3.7. The overshoot
and undershoot are clearly visible.

Figure 3.6: 3D view of the Mach number distribution, vertical
axis corresponds to Mach number values

Figure 3.7: Cut of the pressure field from at y = 0.3

Overall, spurious oscillations remain despite the use of artificial viscosity. Partly, this is due to suboptimal
choices for the parameters k, s0, and κ. The next sections vary each of the three parameters to understand
their impact on the solution.

Changing the interval κ
By changing the interval κ, the size of the region on which AV is applied increases or decreases. The artificial
viscosity profile as given by Equation (2.60) is shown in Figure 3.8 for the different interval values. The larger
value of κ= 2 will result in AV being applied to mesh elements having a relatively low sensor value (down to
-4) but also implies that the maximum amount of AV k = 0.05 will only be applied on elements receiving a
sensor value above 0. Figure 3.9(a) shows that the maximum value is -1.5, thus the largest AV magnitude will
clearly never be applied. In the case of the smallest interval κ = 0.5, se >−2.5 is needed for AV to be applied
on that element, but the maximum AV magnitude is applied already for sensor values slightly above -2. For
se =−1.5 as example, it is clear in Figure 3.8 that more artificial viscosity is applied in the κ= 0.5 case. A quick
look at Figures 3.10(a) and 3.10(b) confirms that the largest magnitude is indeed applied for the low κ = 0.5
value. In short, the largest interval adds less artificial viscosity but on more elements, whereas the shortest
interval adds more artificial viscosity on less elements.

Figure 3.8: Artificial viscosity profile assuming h = p =λmax = 1 for different interval κ values
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Figures 3.9(a) and 3.9(b) show the sensor distribution for both intervals. One can see how, due to the
differences in how the artificial viscosity is added, the smoothness of the solution is different and thus the
sensor fields are not identical.

(a) Shock detector se for κ= 2 (b) Shock detector se for κ= 0.5

Figure 3.9: Shock detector for changing interval κ at p = 1 with Lax-Friedrichs, k = 0.05, s0 =−2.0

Plots of the artificial viscosity fields for both intervals in Figures 3.10(a) and 3.10(b) show clearly what had
already been discussed above. The largest interval sees lower magnitudes on more elements, whereas for the
smallest interval the opposite is true.

(a) Artificial viscosity for κ= 2 (b) Artificial viscosity for κ= 0.5

Figure 3.10: Artificial viscosity for changing interval κ at p = 1 with Lax-Friedrichs, k = 0.05, and s0 =−2.0

The results for the Mach number (Figures 3.11(a) and 3.11(b)) and the pressure (Figures 3.11(c) and 3.11(d))
show that an improvement with respect to the baseline is achieved for κ = 2, but that κ = 0.5 deteriorates
the results. In this case, dissipating on a larger area thus leads to better results, even though the maximum
amount of artificial viscosity is slightly lower. It is worth noting that if the artificial viscosity region becomes
too thin, the shock will not be stabilised independently of how much artificial viscosity is added. Indeed, the
shock needs to be spread by the artificial viscosity over a sufficiently large region in order to be resolved by
the DG method.
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(a) Mach number for κ= 2 (b) Mach number for κ= 0.5

(c) Pressure for κ= 2 (d) Pressure for κ= 0.5

Figure 3.11: Solution to the wedge test case for changing interval κ at p = 1 with Lax-Friedrichs, k = 0.05, and s0 =−2.0

Changing the threshold s0

Only the effect of a lower threshold will be investigated here because increasing its value would clearly be the
wrong choice. The combination of the baseline threshold and interval is already somewhat inappropriate
since it leads to the maximum AV amount only being applied to elements having a sensor value of at least -1.
However, the largest sensor value is -1.5. Therefore, the maximum AV amount is never added. Increasing the
threshold would only make matters worse. On the other hand, lowering the threshold will result in a larger re-
gion where AV is applied. The new AV profile for a different threshold is shown in Figure 3.12. Figures 3.13(a)
and 3.13(b) show what the AV magnitude and sensor fields look for a threshold s0 = −3. As opposed to the
baseline case where the largest AV magnitude is never applied, in this case it is for sensor values approxi-
mately larger than -2. Therefore, a number of elements will get the maximum AV magnitude, as can be seen
in Figure 3.13(a). Note that white elements correspond to values higher than 5, which have been clipped. The
larger region where AV is applied results in the oscillations being the most dissipated of all cases seen so far,
which then translates into lower sensor values. This is clear in Figure 3.13(b).

Since the region where AV is applied is large, it is not a surprise to see in Figures 3.13(c) and 3.13(d) that the
shock thickness is larger as well. Some oscillations remain visible in the pressure field and to a lesser extent
in the Mach number field as well. The AV acting on a larger area, oscillations have been better suppressed.
However, this has come at the cost of obtaining a wider shock. In many cases, a wider shock will not be an
issue if it means the pre- and post-shock regions are more accurate. Nevertheless, it will become necessary
to trade-off shock sharpness with solution smoothness if a sharper shock is desired.
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Figure 3.12: Artificial viscosity profile assuming h = p =λmax = 1 for different threshold s0 value

(a) Artificial viscosity for s0 =−3 (b) Shock detector se for s0 =−3

(c) Mach number for s0 =−3 (d) Pressure for s0 =−3

Figure 3.13: Artificial viscosity and shock detector for changing threshold s0 at p = 1 with Lax-Friedrichs, k = 0.05, and κ= 1.0

Changing the magnitude k
Increasing the AV magnitude to k = 0.1 (Figure 3.15(c)) or decreasing it to k = 0.01 (Figure 3.15(d)), as shown
in Figure 3.14, affects the solution as expected.

For the larger magnitude, Figure 3.15(a) suggests that less spurious oscillations will appear since the shock
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Figure 3.14: Artificial viscosity profile assuming h = p =λmax = 1 for different magnitudes k

sensor returns lower values than in the baseline case. The opposite is true for the lower magnitude, with
Figure 3.15(b) showing larger sensor values.

(a) Shock detector se for k = 0.1 (b) Shock detector se for k = 0.01

(c) Artificial viscosity for k = 0.1 (d) Artificial viscosity for k = 0.01

Figure 3.15: Artificial viscosity and shock detector for changing magnitude k at p = 1 with Lax-Friedrichs, κ= 1.0, and s0 =−2.0
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Figures 3.16(a) and 3.16(b) show the Mach number field and confirm what the sensor values suggested.
Indeed, the larger k value leads to less spurious oscillations whereas the lower k value clearly results in insuf-
ficient artificial viscosity. Although not as clear, the same observations can be made for the pressure distribu-
tion, shown in Figures 3.16(c) and 3.16(d). As already seen before, the pressure field contains clipped values
even when the Mach number does not.

(a) Mach number for k = 0.1 (b) Mach number for k = 0.01

(c) Pressure for k = 0.1 (d) Pressure for k = 0.01

Figure 3.16: Solution to the wedge test case for changing magnitude k at p = 1 with Lax-Friedrichs, κ= 1.0, and s0 =−2.0

A feature clearly visible in both the Mach and pressure distributions is that the shock thickness appears
to be larger for the highest k. This makes sense because although artificial viscosity is added on a region with
thickness of one element in both cases, the larger magnitude will dissipate the shock more.

Increasing the magnitude further does not necessarily keep improving the results. In fact, using k = 0.4
gives very similar results. Increasing further the value would eventually lead to numerical stability issues.
At this point, it starts becoming apparent that the difficulty with artificial viscosity methods is to find the
combination of parameters that results in a sharp shock and removes spurious oscillations. This task is made
more challenging by the fact that there can be a trade-off to make between the two. Barter & Darmofal use
s0 = −(4+4.25log10(p)) and κ = 0.5 in [5]. In this section, p = 1 thus the parameters would take the values
s0 = −4 and κ = 0.5. For the problem at hand, this would result in a very wide shock, with the magnitude of
the artificial viscosity changing rapidly from zero to its maximum.
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Using a continuous artificial viscosity field
The artificial viscosity was thus far applied in a discrete way to visualise the impact of each AV parameter
individually. A specific value was attributed to each mesh element, defined by the detector output. Since
smoothing the AV field has become a common procedure in artificial viscosity methods, the effect is inves-
tigated here. Again, p = 1 is used and k = 0.05, s0 = −2.0, and κ = 1.0. Figures 3.17(a) and 3.17(b) show the
discrete and continuous AV fields, respectively. Clearly, smoothing the AV field increases its footprint.

Looking at Figures 3.17(c) and 3.17(d), showing the Mach number distribution for discrete and smooth AV
fields, one can see that smoothing the AV field has reduced spurious oscillations. The pressure distributions
in Figures 3.17(e) and 3.17(f) confirm this observation. However, it is difficult to tell whether the improved
results are due to the smoothing or due to a wider AV footprint. Nevertheless, the need for smoothing the AV
field becomes clear when using larger k values, and was done for all results shown in the following sections.
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(a) Mach number for discrete AV field (b) Mach number for smooth AV field

(c) Mach number for discrete AV field (d) Mach number for smooth AV field

(e) Pressure for discrete AV field (f) Pressure for smooth AV field

Figure 3.17: Solution to the wedge test case for discrete and smooth AV field at p = 1 with Lax-Friedrichs, k = 0.05, s0 =−2.0, and κ= 1.0
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Changing the polynomial order
Tuning the parameters is a non-trivial task, even with a smooth artificial viscosity field. Therefore, increasing
the polynomial order can be the simplest step to improve the results. This is investigated in this section.

Using a p = 1 solution as initial condition, the polynomial order was increased to p = 3. As a consequence,
the artificial viscosity parameters were modified to k = 0.05, s0 =−4, and κ= 3. With such set of parameters,
the resulting artificial viscosity and sensor fields are shown in Figures 3.18(a) and 3.18(b), respectively. One
striking difference is that the magnitude of artificial viscosity is much lower than at p = 1. This is normal
however, since εe is computed by Equations (2.59) and (2.60), the former scaling with 1/p. The shock sensor
looks similar to previous results. Nevertheless, there is one difference worth mentioning. Although the values
returned by the sensor are within the same range, the highest values are now concentrated in a thinner region,
while more elements are assigned a -16 value before the shock. The reason is related to Equation (2.57), which
explains how the sensor works. For a p = 1 solution, the two expansions can only be of order 1 and 0. At p = 3,
the two expansions are then calculated at p = 3 and p = 2. In non-smooth regions, the comparisons will
naturally give different results.

The results are significantly better than any of the p = 1 solutions for the Mach number and the pressure,
as can be seen in Figures 3.18(c) and 3.18(d). The shock is sharply resolved and while some oscillations still
remain in the pressure distribution, they are minor in comparison to those for p = 1. Darker lines parallel to
the wall can be seen in the post-shock region of the Mach number distribution. These are caused by slight
differences in shock strength along its length, thus leading to a slightly different post-shock Mach number
value, which is then convected downstream. This feature is present in all results but is hidden in many cases
by the size of colour intervals.

(a) Artficial viscosity (b) Shock detector

(c) Mach number (d) Pressure

Figure 3.18: Solution to the wedge test case at p = 3 with Lax-Friedrichs, k = 0.05, s0 =−4.0, and κ= 3.0
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As mentioned before, a compromise may be needed between removing all oscillations and obtaining a
sharp shock. To illustrate this, a different set of parameters was used. The previous set obtained a sharp
shock while leaving some oscillations. The new set, given by k = 0.9, s0 = −3.0, κ = 1.0, is more aggressive
in removing oscillations but results in a larger and varying shock thickness. This can be clearly seen in Fig-
ures 3.19(a) and 3.19(b).

(a) Mach number (b) Pressure

Figure 3.19: Solution to the wedge test case at p = 3 with Lax-Friedrichs, k = 0.9, s0 =−3.0, and κ= 1.0

Changing the mesh refinement
Apart from increasing the polynomial order, refining the mesh should also lead to improved results. As men-
tioned before, three mesh refinements are considered and are shown in Figures 3.2, 3.3(a) and 3.3(b). The
Mach number and pressure are plotted for each of the three mesh refinements. Figures 3.20(a) and 3.20(b)
are for the coarse mesh, the fine mesh results are shown in Figures 3.20(c) and 3.20(d) and Figures 3.20(e)
and 3.20(f) correspond to the mesh refined locally around the shock. In this case, the results are shown for
p = 2 and the AV parameters used were k = 0.05, s0 =−3.0 and κ= 2.0, with smoothing of the AV field applied.
The p = 2 solutions were reached with order sequencing.

As expected, the results have improved with increasing refinement around the shock. Naturally, the
smaller mesh elements have allowed to capture a thinner shock and reduced spurious oscillations around
it. Refining the mesh locally has shown the clear advantage of an efficient element size distribution, allow-
ing to better resolve the shock with fewer overall number of elements than the fine mesh. Nevertheless, it is
worthwhile keeping in mind that the point of using a high-order method is to reduce the need to refine the
mesh by refining in p instead.
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(a) Mach number for baseline mesh (b) Pressure for baseline mesh

(c) Mach number for isotropic fine mesh (d) Pressure for isotropic fine mesh

(e) Mach number for locally refined mesh (f) Pressure for locally refined mesh

Figure 3.20: Solution to the wedge test case for different mesh refinements at p = 2 with Lax-Friedrichs, k = 0.05, s0 =−3.0 and κ= 2.0
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3.3. Mach 4 challenges
At a Mach number of 4, it became much more difficult to tune AV parameters. Many sets can fail to stabilise
the simulation. The main difficulty was that in order to keep the simulation numerically stable, the AV needed
to be applied on a region so large that it covers almost all the post-shock area. This results in the post-shock
conditions being obtained in a very small portion of the post-shock area. The analytical solution to this
problem is given in Table 3.2, and the shock angle with respect to the horizontal is now 23.4◦.

Table 3.2: Pre- and post-shock conditions for the wedge test case at Mach 4

Parameter Pre-shock Post-shock
Mach number [-] 4 3.1931

Static pressure [Pa] 101325 282449
Static temperature [K] 288 398

The problem is solved as a steady computation, but as before a GMRES algorithm with Jacobi precondi-
tioning is used to solve the linear system. The results are shown at p = 1 only because higher orders were
not achieved. The baseline and isotropic fine meshes used at M = 2 and shown in Figures 3.2 and 3.3(a) are
reused here. The first results are shown for the baseline mesh.

Baseline mesh
The artificial viscosity field, shown in Figure 3.21(a) illustrates precisely the issue mentioned while introduc-
ing the M = 4 case. Spurious oscillations growing in the vicinity of the shock tend to become large enough
that they crash the simulation. To avoid this, it was necessary to apply AV on a very large region and in large
amounts, as highlighted by the large clipped region. One can see how large AV footprints could become an
issue if quantities at the wall were of interest. For this case, the AV parameters used were k = 0.25, s0 =−3.0,
and κ= 2.0. The shock sensor values are shown in Figure 3.21(b), which in magnitude are similar to the Mach
2 case. However, more mesh elements are assigned the highest values, meaning that even for a high threshold
the AV field would be relatively large.

The Mach number distribution is shown in Figure 3.21(c). The shock is thick as expected, but it can be
seen how its thickness varies, especially reducing around the beginning of the ramp. Due to the AV applied,
spurious oscillations are minimal. Figure 3.21(d) shows the pressure distribution. The shock is in this case of
constant thickness, and even though a white region appears suggesting strong spurious oscillations, in fact
they are minor as well. The white areas appear mainly due to a stricter clipping applied on the lower pressure
bound.
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(a) Artificial viscosity (b) Shock detector se

(c) Mach number (d) Pressure

Figure 3.21: Solution to the wedge test case at Mach 4 on the baseline mesh at p = 1 with Lax-Friedrichs, k = 0.25, s0 =−3.0, and κ= 2.0

Isotropic fine mesh
It was seen at M = 2 that the shock thickness can be reduced without creating spurious oscillations by refining
the mesh. This section thus presents the results on the fine mesh. The artificial viscosity field shown in
Figure 3.22(a) is consistent with previous results. The magnitude is lower overall, which is expected because
the finer mesh should lead to a smoother solution and because the computation of ε scales with h. The
sensor values are shown in Figure 3.22(b), which show the similar trend observed when the mesh was refined
at M = 2. A much larger pre-shock region is attributed the -16 value, indicating that spurious oscillations are
more concentrated near the shock.

The Mach number distribution, which is shown in Figure 3.22(c), contains two spots where the error
peaks. These spots are seen in the pressure field as well, shown in Figure 3.22(d). In both cases, the shock is
thinner though still much larger than in the M = 2 solutions. Burgess and Mavripilis [13] face the same issue,
although at Mach 7 and wedge inclination of 15◦. They need to use an extreme refinement around the shock
to tackle this issue, as can be seen in Figures 3.23 and 3.24. The white spots in Figures 3.22(c) and 3.22(d)
are what prevent to use this solution as initial condition for a higher-order simulation. The error is amplified
further and causes the simulation to become unstable. These spots where the error peaks, in particular near
the point where the ramp starts, occur if the coarse mesh is used for higher p as well.
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(a) Artificial viscosity (b) Shock detector se

(c) Mach number (d) Pressure

Figure 3.22: Solution to the wedge test case at Mach 4 on the isotropic fine mesh at p = 1 with Lax-Friedrichs, k = 0.25, s0 =−3.0, and
κ= 2.0

Figure 3.23: Fine mesh used by Burgess & Mavripilis [13]
Figure 3.24: Mach number obtained by Burgess & Mavripilis [13]

on the fine mesh
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3.4. Summary
To end this chapter, the key findings are summarised in this short paragraph. At M = 2, finding an appropriate
set of AV parameters was found to be challenging for p = 1 and the coarse mesh. The threshold s0 and interval
κ need to be tuned in a coordinated fashion such that ideally the maximum AV magnitude is applied where
the sensor values peak and such that the shock is sufficiently dissipated to be captured. The AV magnitude is
then tuned to provide sufficient dissipation. Nevertheless, the cases on the coarse mesh at p = 1 showed that
a trade-off needs to be made between removing spurious oscillations and keeping a shock sharp. Increasing
the order p or decreasing the element size h improved the results significantly, both in sharpening the shock
and removing oscillations. Furthermore, smoothing the AV field was found to be beneficial although in this
case the better results may have been due to the resulting wider AV field. The results at Mach 4 highlighted
a difficulty in keeping the simulation stable. On both the fine and coarse meshes, the shock width was large,
leaving only a very small portion of the domain with the actual post-shock conditions. This could become an
issue should quantities at the wall be of interest, since they would be polluted by the artificial viscosity. Spots
where the error peaks prevented simulating the problem at orders higher than p = 1.
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Application to inviscid, unsteady problems

Unsteady problems present new challenges for shock capturing, in particular if the shock strength varies in
time. In such case, the sensor values at the shock are expected to also vary in time. Therefore, it can be
challenging to find an appropriate threshold. Furthermore, unsteady problems do not allow the use of order
sequencing, where the high-order solution for an order p is started from the solution at order p −1. In other
words, it is not possible to start a high-order simulation from an already good low-order solution. In addition
to these challenges, the unsteady problems analysed in this chapter are relevant for steady hypersonic sim-
ulations which can also exhibit strong variations while the transient converges to its steady-state. Finally, it
is interesting to explore unsteady problems because they have received less attention with the latest artificial
viscosity methods.

The first test case considered in this chapter has a moving shock of constant strength and the perfor-
mance of the AV method is assessed for different mesh and order refinements, as well as various inviscid flux
schemes. The second test case contains a moving shock of varying strength, making the problem much more
challenging to simulate. Both are used extensively in the literature about shock detectors.

4.1. The Sod problem
The Sod shock tube problem [80] is a specific implementation of the Riemann problem and tests the perfor-
mance of a method in treating three types of waves in motion in one dimension, for the Euler equations. The
domain x ∈ [0,1] is split in two equal parts and each has a different set of initial conditions, given by:

ρL = 1, ρR = 0.125

PL = 1, PR = 0.1

uL = 0, uR = 0

(4.1)

where the subscript L stands for left side and R for right side. At time t = 0, four regions form, separated
by three waves: a shock moving to the right, an expansion fan moving to the left and a contact discontinuity
between the other two waves. The simulation advances with a time step ∆t = 0.0001 and is stopped after 400
time steps. As for the wedge test case, the BDF2 scheme is used to march in time and a GMRES algorithm
solves the linear system of equations. In this case, iterations were quick and memory use was mild thus ILU
with one level of fill-in was used as preconditioning for better convergence. The Lax-Friedrichs Riemann
solver is chosen for the inviscid flux again for stability reasons, and the artificial viscosity takes the param-
eters k = 0.05, s0 = −3,κ = 1.0 for all simulations. Since the problem contains a contact discontinuity, the
density is used again as variable for the shock detector. The results in this chapter are shown at the last time
step on a mesh containing 200 elements (200 in x and 1 in y), unless mentioned otherwise. This number of
elements was chosen for being considered a middle point between a coarse and a fine mesh, and for compar-
ison purposes since the same number was chosen in [57, 71]. Since the mesh is technically 2D with one cell
in the y direction, there is a wall at the top and bottom of the domain. It takes a slip adiabatic condition. In
the x direction, the left and right boundaries are simply implemented as slip adiabatic walls as well because
the simulation is stopped well before waves reach the endpoints of the domain. Due to the simplicity of the
problem, a short programme described in Appendix A was written to compute the analytical solution at each

37
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point in the domain at each point in time. This exact solution is used for comparison with the results shown
next.

4.1.1. Baseline results at low order
The effect of adding artificial viscosity is investigated first at low order, specifically at p = 1. Since the simula-
tion is 1D and the amount of AV used is small, there is not much need to smooth the AV field and the option
was thus not used. Figures 4.1(a) and 4.1(b) show the AV magnitude and shock detector results at the last time
step. With the parameters chosen, artificial viscosity will only be applied on elements for which the sensor
gives a value larger than s0 −κ=−4. Comparing the magnitude and shock detector results, this is indeed the
case. The shock detector returns a value of -16 about everywhere except where the expansion, contact and
shock waves are present. This is expected because the solution has not changed from its smooth initial con-
ditions there. The intensity of artificial viscosity is the highest at the shock, and a plateau can be seen around
the contact discontinuity.

(a) Magnitude (b) Shock detector

Figure 4.1: Solution to the Sod test case for artificial viscosity variables, at p = 1 with 800 DOF, Lax-Friedrichs, k = 0.05, s0 =−3, and
κ= 1.0

Figures 4.2(a) and 4.2(b) show the pressure results without and with artificial viscosity, respectively. For
roughly x < 0.45 and x > 0.57, the solution takes the left and right state values given by Equation (4.1). Be-
tween approximately x = 0.45 and x = 0.5, the solution shows the presence of the expansion wave. At x ≈ 0.57,
the sudden jump in pressure corresponds to the shock. At the shock, the artificial viscosity has clearly re-
moved the oscillations but it has also completely smoothed the shock away. Only a very subtle change in
curvature hints at the presence of the shock, thus clearly indicating that excessive AV has been applied. At
the front of the expansion wave, the overshoot has been diminished but not removed completely. This sug-
gests that insufficient artificial viscosity has been added at that point. As for the wedge test case, the choice
between removing completely the oscillations and obtaining a sharp solution at discontinuities is not trivial.
The results for the density, shown in Figures 4.2(c) and 4.2(d), have an additional jump between the expan-
sion wave and the shock. This is the contact discontinuity. Not even a subtle change in curvature appears
near the two discontinuities, however the overshoot at the expansion wave front remains visible.

To reduce the global error, one would need to increase the threshold such that artificial viscosity is only
applied on elements being assigned a sensor value slightly above -4. In that way, AV would be added at the
shock and contact discontinuity but not on the expansion wave. Possibly, the magnitude k would have to be
reduced as well. These changes would result in a better solution around the shock and contact discontinuities
but would increase the overshoot at the expansion wave front. For the current mesh refinement, there is thus
a limit to how good the results can be at p = 1.
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(a) Pressure, no artificial viscosity (b) Pressure, with artificial viscosity

(c) Density, no artificial viscosity (d) Density, with artificial viscosity

Figure 4.2: Solution to the Sod test case at p = 1 with 800 DOF, Lax-Friedrichs, k = 0.05, s0 =−3, and κ= 1.0

4.1.2. Results at high order
Based on the observations made for the wedge test case, it is expected that the shock can be better captured
if the order p is refined. For a high-order solution at p = 4, Figures 4.3(a) and 4.3(c) show that spurious oscil-
lations appear if no AV is used, as expected. Adding artificial viscosity (with no smoothing) largely removes
the oscillations, including the overshoot at the front of the expansion wave. The discontinuities are sharply
captured, but the solution is smoother for the pressure (Figure 4.3(b)) than for the density (Figure 4.3(d)).
The reason becomes clear when looking at Figure 4.4(a). Artificial viscosity is added at the shock location
but not at the contact discontinuity. Therefore, the density has an additional discontinuity which is not dis-
sipated, despite the sensor being able to detect it. The values returned by the shock detector are shown in
Figure 4.4(b). It can be seen that the contact discontinuity is much more difficult to identify and that only
one element remains above the cut at -4. The AV parameters could have been tuned such that AV is also
added at the contact discontinuity location, but this would have resulted in a shock less sharply resolved.

Lv et al. [57] observed a similar shock detector pattern, and noted that the contact would be dissipated
at the beginning of the simulation when both the contact and the shock are contained in the same cell. With
the detector of Persson and Peraire and a different DG scheme, they obtain similar results for the density.
That is the minor overshoot at the expansion wave front is largely removed and the constant regions between
the shock and expansion contain spurious oscillations of small amplitude. They also show that this issue
can be mitigated with a different threshold. The results for the two other sensors in their study are smoother
but match less closely the exact solution. Pressure results are not shown in their paper. In the comparative
study of shock detectors by Qiu & Shu [71], the Shu-Osher problem is computed with RKDG and stabilised
with a WENO reconstruction method instead of artificial viscosity. For different sensors, the results are less
oscillatory and match closely the exact solution, even at lower orders. This highlights that WENO methods
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may be more accurate than artificial viscosity, at least for certain problems. It is worth noting that the shock
detector from Persson and Peraire was not included in their study.

(a) Pressure, no artificial viscosity (b) Pressure, with artificial viscosity

(c) Density, no artificial viscosity (d) Density, with artificial viscosity

Figure 4.3: Solution to the Sod test case at p = 4 with 5000 DOF, Lax-Friedrichs, k = 0.05, s0 =−3, and κ= 1.0

(a) Magnitude (b) Shock detector

Figure 4.4: Solution to the Sod test case for artificial viscosity variables at p = 4, with 5000 DOF, Lax-Friedrichs, k = 0.05, s0 =−3, and
κ= 1.0
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4.1.3. Results for different Riemann solvers
An important feature in FVM which was not investigated in the previous chapter is the inviscid flux scheme.
For the Sod problem, the influence of the inviscid flux scheme was first tested at p = 0. Pressure and den-
sity are shown for the Lax-Friedrichs, AUSM+up, and SLAU Riemann solvers in Figures 4.5(a) to 4.5(f). As
expected, Lax-Friedrichs is the most dissipative of the three, although the result agrees better with the exact
solution than that of AUSM+up at the expansion wave front. SLAU is clearly the best of the three.

(a) Pressure, Lax-Friedrichs (b) Density, Lax-Friedrichs

(c) Pressure, AUSM+up (d) Density, AUSM+up

(e) Pressure, SLAU (f) Density, SLAU

Figure 4.5: Solution to the Sod test case at p = 0 for different Riemann solvers, 200 DOF

At higher orders, the Riemann solver is found to have little influence on the results. Note that in this case
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it was chosen to smooth the AV field to help with stability, thinking that less dissipative inviscid flux schemes
could have been an issue. In fact, smoothing has little effect for the Sod test case and doing it here was not
necessary. The threshold was lowered to s0 =−4, also to ensure stability. Since the conclusions were the same
at different polynomial orders, the results presented next are only for p = 2. Figures 4.6(a), 4.6(c) and 4.6(e)
show the pressure for the Lax-Friedrichs, AUSM+up, and SLAU fluxes respectively and no differences can be
seen. The same is true for the density, shown in Figures 4.6(b), 4.6(d) and 4.6(f).

(a) Pressure, Lax-Friedrichs (b) Density, Lax-Friedrichs

(c) Pressure, SLAU (d) Density, SLAU

(e) Pressure, AUSM+up (f) Density, AUSM+up

Figure 4.6: Solution to the Sod test case at p = 2 for different Riemann solvers, with 1800 DOF k = 0.05, s0 =−4, and κ= 1.0

It is important to stress again how tuning the AV parameters is a non-trivial task. If one could have argued
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for the wedge test case that the parameters proposed by Barter & Darmofal [5] would have given a smooth
(yet wide) shock, in this case the values are clearly inappropriate. The threshold s0 =−4.0 already appears to
be somewhat too low, the value proposed by Barter and Darmofal s0 =−(4+4.25log10(p)) =−5.28 would only
make matters worse. This work thus finds that AV values need to be adapted from one problem to another,
even if the polynomial order is the same.

4.1.4. Results on a coarse mesh
After seeing that the results match the exact solution well at p = 2 and that the Riemann solver has no visible
effect except at p = 0, it is worthwhile assessing whether similar results can still be achieved with a much
coarser mesh. The previous results were obtained with a mesh containing 200 elements. As mentioned be-
fore, the key advantage of high-order methods is to be able to lower the number of elements by increasing the
order of the method. To investigate this aspect, the problem is simulated again on a coarse mesh containing
only 20 elements.

The first results at p = 1 are given in Figures 4.7(a) and 4.7(b) using the Lax-Friedrichs flux and in Fig-
ures 4.7(c) and 4.7(d) for the SLAU flux. Both use k = 0.05, s0 = −1.0, and κ = 1.0 as AV parameters. As
expected, the quality of the solution is considerably lower due to the coarser mesh and the low order. This
deterioration is consistent with what Vuik & Ryan [87] obtain on a mesh containing 64 elements. Even with
low refinements in mesh and order, the effect of the Riemann solver is barely noticeable. The Lax-Friedrichs
solution has slightly damped spurious oscillations compared to the SLAU solution, which again is expected
since the Lax-Friedrichs flux is known for being excessively dissipative. One feature worth mentioning is the
jump in the expansion wave. This could be an entropy glitch, which can only happen in sonic expansion
waves [83]. Since the schemes are entropy-satisfying, this jump tends to zero as h tends to zero and that
would explain why it did not appear on the finer mesh.

The artificial viscosity and in particular the shock detector plots, shown in Figures 4.8(a) and 4.8(b) look
very different to those for the 200 elements mesh. The shock detector does not return a -16 value for a sin-
gle element, and the value returned at the shock is much larger. It would make sense to flag the elements
corresponding to the three highest sensor values, since that is the region between the shock and expansion
wave fronts. This is achieved by setting the threshold to -1 and the interval to 1, so that the cut happens at
s0 −κ=−2. For the artificial viscosity magnitude, the same trend as in Figure 4.1(a) can be seen.
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(a) Pressure, Lax-Friedrichs (b) Density, Lax-Friedrichs

(c) Pressure, SLAU (d) Density, SLAU

Figure 4.7: Solution to the Sod test case at p = 1 for different Riemann solvers, with 80 DOF, k = 0.05, s0 =−1.0, and κ= 1.0

(a) Magnitude (b) Shock detector

Figure 4.8: Solution to the Sod test case for artificial viscosity variables, obtained at p = 1 with 80 DOF Lax-Friedrichs, k = 0.05,
s0 =−1.0, and κ= 1.0

For a high-order p, the quality of the solution should improve significantly. Figures 4.9(a) and 4.9(b) show
the pressure and density obtained with the Lax-Friedrichs flux at p = 4. Although the solution is indeed a
major improvement with respect to that at p = 1, spurious oscillations remain and the discontinuities in
density in particular are poorly represented. The Riemann solver only has a minor impact again, as can be
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seen in Figures 4.9(c) and 4.9(d), which are solutions computed with SLAU. Since spurious oscillations remain
relatively strong, Lax-Friedrichs gives better results in this case.

(a) Pressure, Lax-Friedrichs (b) Density, Lax-Friedrichs

(c) Pressure, SLAU (d) Density, SLAU

Figure 4.9: Solution to the Sod test case at p = 4 for different Riemann solvers, with 500 DOF, k = 0.05, s0 =−3.0 and κ= 1.0

Refining in both h and p is attempted to improve the results. First, the mesh refinement is doubled so
that the mesh contains 40 elements. The solution is shown in Figures 4.10(a) and 4.10(b) for the pressure and
density, respectively. A significant improvement can be seen.

Increasing the order to p = 7 results in less spurious oscillations and discontinuities being better cap-
tured with respect to the p = 4 solution on 20 elements. This is particularly true for the pressure, shown in
Figure 4.11(a), where the shock is well captured. For the density, shown in Figure 4.11(b), capturing the con-
tact discontinuity remains more challenging. Compared to the solution on 40 elements, a similar accuracy is
obtained, with stronger spurious oscillations but affecting a smaller region.
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(a) Pressure (b) Density

Figure 4.10: Solution to the Sod test case at p = 4 with 1000 DOF, SLAU, k = 0.05, s0 =−3.0, and κ= 1.0

(a) Pressure (b) Density

Figure 4.11: Solution to the Sod test case at p = 7 with 1280 DOF, Lax-Friedrichs, k = 0.05, s0 =−3.0, and κ= 1.0

4.1.5. Results on an unstructured mesh
Even though the Sod problem is one-dimensional, in this work it is essentially implemented in 2D but with
only 1 element in the y coordinate. This means that the shock is always aligned with the mesh. However,
misalignments between shock and mesh elements make shock capturing more difficult. Therefore, the per-
formance of the shock capturing is tested very briefly here on an unstructured mesh to visualise the impact
of element orientation.

Figure 4.12 shows the result at different time steps. It is clear that depending on the location of the shock
with respect to the triangular elements, the method’s accuracy deteriorates. As the shock is on one side of
triangular elements, peaks appear at the opposite side. Local peaks at one corner of a triangular element can
also happen in different element orientations. This feature was already noticed by Atkins & Pampell in [3] and
the simulation can become unstable in more extreme cases.
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Figure 4.12: Solution to the Sod test case for the Mach number at p = 3 for different time steps, on an unstructured mesh, with
Lax-Friedrichs, k = 0.05, s0 =−4.0, and κ= 1.0

4.1.6. Summary
It was generally possible to obtain good results for the Sod test case. The contact discontinuity appeared to
be more difficult to capture than the shock, but both could be resolved provided sufficient refinement in p
and h was used. It was seen that tuning artificial viscosity is not necessarily trivial and that AV parameters
may need to be adjusted across different problems, even if set-up parameters such as the order remain the
same.

4.2. The Shu-Osher problem
This test is another one-dimensional problem on x ∈ [0,1] for the Euler equations, from Shu & Osher [79].
The aim is to assess how the shock capturing scheme performs when the smooth region contains some flow
variations. In this problem, a density wave pattern goes through a Mach 3 shock. This test case highlights the
benefits of high-order methods because much better accuracy can be obtained in the high-frequency oscilla-
tions behind the shock without having to refine the mesh [71]. This work uses the problem implementation
from [57], with initial conditions{

ρ = 3.857143, u = 2.629369, P = 10.33333, for x < 0.125

ρ = 1+0.2sin(50x), u = 0, P = 1, for x Ê 0.125.
(4.2)

The test is run until t = 0.18. The problem reuses the 200 elements mesh from the Sod test case, however
the boundary conditions need to be modified. The top, bottom and right boundaries are specified an adia-
batic slip wall condition just as in the Sod problem. On the left, a freestream boundary condition is imposed
to avoid reflection issues. Also, the Shu-Osher test case is more challenging and required to lower the time
step to∆t = 10−6 for stability. This affected the computational time, thus a Jacobi algorithm was used to solve
the linear system instead of GRMES. The Riemann solver was Lax-Friedrichs for stability, the BDF2 scheme
was used to march in time, and the AV parameters had to be changed across different simulations. The results
are compared to an "exact" solution, computed with a MATLAB code running a 4th order WENO method, and
a very fine mesh with ∆x = 0.001.

Simulations of the Shu-Osher problem at p = 1 or higher were unstable unless artificial viscosity is added.
This is in stark contrast to the Sod problem for which simulations at p = 7 could be carried out without
artificial viscosity. The first results investigated were at p = 0, an order at which no artificial viscosity is added
but the simulations are stable. Results at higher orders are analysed after.

4.2.1. Results at order p=0 for different Riemann solvers
For the Shu-Osher at order p = 0, the effect of the chosen inviscid flux is significant. Figures 4.13(a) and 4.13(b)
clearly illustrate how Lax-Friedrichs is too dissipative. The pressure and density oscillations from the exact
solution are strongly flattened to the point that the solution is almost constant behind the shock and the
density sine wave in front of the shock is significantly smoothed as well. Both AUSM+up and SLAU appear to
be much better choices than Lax-Friedrichs, with AUSM+up the best of the three. The density and pressure
results obtained with AUSM+up are given in Figures 4.13(c) and 4.13(d), whereas Figures 4.13(e) and 4.13(f)
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were obtained with SLAU. It is clear that at p = 0, the mesh refinement is simply insufficient to reproduce the
physical oscillations after the shock, in particular the high frequency ones just after the shock for the density.

(a) Density, Lax-Friedrichs (b) Pressure, Lax-Friedrichs

(c) Density, AUSM+up (d) Pressure, AUSM+up

(e) Density, SLAU (f) Pressure, SLAU

Figure 4.13: Solution to the Shu-Osher test case at p = 0 for different Riemann solvers, 200 DOF

Next, high-orders are used to simulate the Shu-Osher problem. It was particularly difficult to find an ap-
propriate set of AV parameters. The margin between insufficient and excessive artificial viscosity was narrow,
and the varying shock strength made setting the AV parameters challenging. In the same simulation, the sen-
sor value at the shock can oscillate between -1.3 and -3. Since the AV parameters are set before the simulation
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is started, the real difficulty was in finding values that can account for this variation. Smoothing the AV field
was found to make this task even more challenging and was therefore not applied for this test case.

4.2.2. Results at higher orders
As mentioned before, the Shu-Osher test case should highlight the advantage of increasing the order of the
method. Only the Lax-Friedrichs flux could be used beyond p = 0, the other two leading to numerical insta-
bilities. Nevertheless, increasing the order quickly improved the results. The AV parameters were k = 0.01,
s0 = −2.0, and κ = 1.0. At p = 1, Figures 4.14(a) and 4.14(b) show that the artificial viscosity is only added at
the shock location, and how much the sensor values vary up and down in the domain.

Figures 4.14(c) and 4.14(d) show that the low-frequency oscillations were properly reproduced in both the
density and pressure. For the density, the high frequency oscillations are accurately resolved in terms of fre-
quency but not in magnitude. Another important feature to discuss is the spurious oscillation around x = 0.2
in both the pressure and density solution. It first appears at the very start of the simulation, when the shock
is at x = 0.125. Then, the artificial viscosity follows the shock as it moves to the right. The oscillation is there-
fore not dissipated and is convected to the right, which explains the small spurious oscillations appearing at
the two local minima either side of x = 0.4. This issue is not unique to this work. Vuik & Ryan [87] observed
similar oscillations for different shock detectors on a finer mesh (512 elements), specifically for those which
did not flag elements in this region. They appeared in Lv et al. [87] as well while using Persson and Peraire’s
sensor on the same mesh refinement.

(a) AV magnitude (b) Shock detector

(c) Density (d) Pressure

Figure 4.14: Solution to the Shu-Osher test case at p = 1, with 800 DOF, Lax-Friedrichs, k = 0.01, s0 =−2.0, and κ= 1.0

Increasing the order one step to p = 2 is sufficient to resolve both the low and high frequency oscillations
of the solution. Spurious oscillations aside, the results match closely the exact solution for both the density
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(Figure 4.15(a)) and the pressure (Figure 4.15(b)). The spurious oscillations on the left side of the solution are
unfortunately still present. In addition, an overshoot now appears at the shock location. Compared to results
in the literature, the agreement between the Argo and exact solution is better but suffers more from spurious
oscillations as well. In Lv et al. [57], the p = 2 solution on the same mesh resembles more the p = 1 solution
obtained here. The same conclusion can be drawn from the results of Qiu & Shu [71], stabilised with a WENO
method. It is difficult to interpret the results from Vuik & Ryan [87] since they are plotted without the exact
solution.

At p = 2, the sensor returns lower values overall, as can be seen in Figure 4.15(d). The trend is the same
than in Figure 4.14(b) though. Figure 4.15(c) shows that artificial viscosity is applied on an even narrower
band. The larger difference between sensor values at the shock and in the rest of the domain means that
there is potentially more margin to decrease the threshold and increase the band in which AV is added.

(a) Density (b) Pressure

(c) AV magnitude (d) Shock detector

Figure 4.15: Solution to the Shu-Osher test case at p = 2, with 1800 DOF, Lax-Friedrichs, k = 0.01, s0 =−2.0, and κ= 1.0
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4.2.3. Results on refined meshes
Trying to increase the order further or use different AV parameters and Riemann solvers to remove the spu-
rious oscillations was unsuccessful. Therefore, the logical step to improve results was to increase the mesh
refinement. The first refinement investigated consists of 400 elements, thus doubling the number from the
baseline mesh. The AV parameters were changed to k = 0.04, s0 =−1.0 and κ= 1.0, thus increasing both the
magnitude and threshold, and smoothing was again not applied. The results are shown in Figures 4.16(a)
and 4.16(b). An improvement can be observed in the high frequency oscillations of the density, with the so-
lution obtained with Argo now matching very closely the exact solution. In addition, the spurious oscillation
close to x = 0.2 has reduced. However, the overshoot at the shock has increased, as well as the oscillation at
around x = 0.35. Lv et al. [57] also show results on a 400 elements mesh, and again their results are smoother
but match the exact solution less closely in particular in the high-frequency oscillations.

Refining the mesh in h affects the shock detector in the same direction as refining in p. As can be seen
in Figure 4.16(d), overall the values are lowered compared to Figure 4.14(b). With the AV parameters cho-
sen, only one element is flagged as troubled. This is clear in Figure 4.16(c), which shows only one non-zero
element. Apart from artificial viscosity being applied to less elements, the amount itself also lowers with
decreasing element size, as expected.

(a) Density (b) Pressure

(c) AV magnitude (d) Shock detector

Figure 4.16: Solution to the Shu-Osher test case at p = 2, with 3600 DOF, Lax-Friedrichs, k = 0.04, s0 =−1.0, and κ= 1.0

The second refinement aims to test the problem on a very fine mesh, which includes 1000 elements.
The AV magnitude was slightly changed to k = 0.05, with the threshold and interval remaining at s0 = −1.0
and κ = 1.0, respectively. The results are shown in Figures 4.17(a) and 4.17(b) and are consistent with the
features observed in the previous mesh refinement. Spurious oscillations aside, the match between the Argo
and exact solution is very good. It can be seen how the density and pressure are better resolved at the first
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oscillation near x = 0.2. In terms of overshoots however, the issues observed for 400 elements have now been
accentuated.

(a) Density (b) Pressure

Figure 4.17: Solution to the Shu-Osher test case at p = 2, with 9000 DOF, Lax-Friedrichs, k = 0.05, s0 =−1.0, and κ= 1.0

4.2.4. Results obtained with DGFluid
A general difficulty in simulating the Shu-Osher test case is that the initial condition for variables such as the
density and pressure are relatively close to zero on the right side of the shock. When spurious oscillations
appear around the shock, it is common for such variables to become negative and crash the simulation. To
avoid this issue, it is beneficial to clip non-physical values so that variables remain within physical bounds.
Rather than implementing this clipping in DGAblation, it was chosen to use modules from DGFluid instead to
benefit from the clipping implemented there. For simplicity, using these modules from DGFluid will simply
be called using DGFluid. It is worthwhile to remind the reader that using DGFluid means that conservative
variables are used instead of the primitive set used up to now.

It became quickly clear that using DGFluid was beneficial for stability. To ensure that this increase in
stability was due to the clipping and not to the change of variables, a simulation was run with the clipping
deactivated. It crashed at the same point as its equivalent simulation with DGAblation. Switching the clipping
back on removed the stability issue and the simulation could run until the end.

With the clipping activated, it then became possible to simulate the Shu-Osher problem at higher or-
ders, however still being stuck on the Lax-Friedrichs flux. The solution at p = 4 is shown in Figures 4.18(a)
and 4.18(b) on two different meshes for the density only, since the pressure was not found to provide further
information. The results for the baseline mesh at 200 elements used k = 0.07, s0 = −3.0 and κ = 1 as AV pa-
rameters. On the finer mesh with 400 elements, the parameters were k = 0.02, s0 = −2.5 and κ = 2. Overall,
the greater stability resulted in more freedom to choose values. Nevertheless, it was chosen not to smooth the
AV field to limit the number of changes with respect to previous simulations. The accuracy of the solution is
generally very similar to what was seen at p = 2, however now with less spurious oscillations. The overshoots
in particular are less severe on these p = 4 results, but worsening with mesh refinement as was observed in
the p = 2 case.
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(a) Density, 5000 DOF, k = 0.07, s0 =−3.0, and κ= 1.0 (b) Density, 10000 DOF, k = 0.02, s0 =−2.5, and κ= 2.0

Figure 4.18: Solution to the Shu-Osher test case at p = 4, with Lax-Friedrichs

4.2.5. Summary
The main findings of the analysis performed on the Shu-Osher test case are reviewed here. The wedge and Sod
test cases had already shown that finding an optimum set of artificial viscosity parameters is not necessarily
trivial. The Shu-Osher test case highlighted that when the sensor values corresponding to the shock vary in
time, tuning the parameters becomes even more difficult. The parameters were generally set such that the
minimum amount of AV necessary is applied, by setting the threshold relatively high. The Riemann solver
choice was shown to impact the results significantly at p = 0, however could not be assessed at larger orders
of magnitude where it is expected to become less important. Furthermore, it was shown that increasing the
order is very effective in better resolving physical high frequency oscillations. Finally, the need to clip non-
physical values became clear. Indeed, it can be very difficult or even impossible to avoid variables such as the
density or pressure to become negative only with artificial viscosity. DGFluid will thus be used in the rest of
this work, which will be focused on the final test case and end goal of this thesis.





5
Application to a viscous, steady

half-cylinder test case

The 2D half-cylinder test case is a classic problem for the assessment of hypersonic flows around a blunt
body. This chapter applies the knowledge gathered in the previous test cases in order to predict the wall
heat flux. Indeed, this problem sees strong variations in the transient, a normal shock on the stagnation line
and oblique shocks of varying inclination elsewhere, and difficulties caused by the unstructured mesh. In
addition, the problem now contains inherent viscosity and thus a boundary layer around the cylinder wall,
which proved to be a significant aspect to consider for the shock capturing method. The Mach number had
to be limited at 3.25 however, moving directly to hypersonic flows proving too big of a step and resulting in
numerically unstable simulations. Nevertheless, obtaining the heat flux at this relatively low Mach number
proved challenging and this chapter explains the steps that were taken to achieve it.

5.1. Problem set-up
A semi-circular domain is considered for the half-cylinder test case, as shown in Figure 5.1. The problem data
is taken from Knight et al. [42], with the exception of a reduced Mach number and a higher wall temperature
to reduce the difficulties in obtaining a solution. The boundary conditions are given in Table 5.1. Note that
the flow is supersonic at the Outlet, except for a very small region near the Wall where the flow is subsonic and
the static pressure is imposed. The value was chosen to be equal to the freestream, which is not a particularly
good choice but this will be discussed in Section 5.2.1. Preliminary results with a few different meshes showed
that the one in Figure 5.2 would be best to start on this test case. It contains a local refinement around the
shock and the boundary layer. In the latter region, structured cells are used, with a height at the wall of 10−4.
Overall, the mesh contains about 7000 elements, with a mix of mainly quadrilaterals and some tetrahedra.

Table 5.1: Boundary conditions for the half-cylinder test case. NA: Not Applicable.

Parameter Freestream Wall Outlet
Velocity [m/s] 1956 No-slip NA

Static pressure [Pa] 476 NA NA
Static temperature [K] 901 1000 NA

It was chosen to perform steady simulations due to the nature of the solution, unless mentioned oth-
erwise. Generally, GMRES was chosen to solve the linear system with Jacobi or ILU preconditioning. The
Lax-Friedrichs scheme was used for all simulations in this chapter, as well as the smoothing step for the arti-
ficial viscosity field. All simulations are at p = 1 and had to be started from an homogeneous initial condition
since the diffusive term of the Interior Penalty method is inconsistent at p = 0.
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Figure 5.1: Problem set-up for the half-cylinder test case
Figure 5.2: Coarse mesh with local refinements around the shock

and boundary layer

5.2. Results at Mach number 3.25
A number of changes were implemented to achieve a satisfying heat flux at M = 3.25. This section explains
the reasoning followed and the steps that were taken.

A first solution was obtained to be used as baseline, with artificial viscosity parameters k = 0.1, s0 =−2.5
and κ= 2.0. The results are shown in Figures 5.3(a) to 5.3(f). In Figure 5.3(a), the Mach number distribution
is shown. The expected pattern is seen, where the flow sees a much stronger shock in the middle and, as a
result, part of the flow behind the shock is subsonic. A region of low Mach number is also present along the
cylinder wall. Although the solution appears to be smooth and the shock sharply captured, oscillations are
present which can peak locally up to M = 4.43. A careful look at the solution also reveals a few asymmetries,
which are in fact easier to see in Figure 5.3(b). The temperature field highlights a rather large boundary layer.
Considering that boundary layer thickness is supposed to increase with increasing Mach number, and that
results in [14, 15, 42] show a thinner boundary layer for higher Mach numbers, it is clear that an excessive
thickness has been obtained. The pressure distribution is shown in Figure 5.3(c), and is affected by dips in
pressure to 167Pa while the theoretical minimum in the domain should be 476Pa. Figure 5.3(d) shows the total
temperature. As expected, the total temperature drops in the boundary layer. What is less clear is why does
the total temperature drop and recover in the shock. One could imagine that this is caused by the application
of artificial viscosity in the shock. However, Figure 5.3(e) shows that substantial amounts of artificial viscosity
are added in the post-shock region, on both sides of the cylinder. This suggests that there should be clear
variations in total temperature in much of the post-shock region if that hypothesis was true. Instead, the
drop and recovery can be better explained by looking at the formula used to compute it, which is given by

T0 = T + u2

2cp
. (5.1)

What happens in the shock is that T increases and u2

2cp
decreases. However, they do so at different rates

such that inside the shock the second term dominates first and the temperature after. Note that these rates
are not expected to be fully accurate due to the artificial viscosity and possibly due to the set of conservative
variables used as well (see Section 2.2.1 for the note on variables). In addition, the total temperature in the
post-shock region is close but not identical to that upstream of the shock. Due to spurious oscillations, the
field is not entirely homogeneous downstream of the shock.

The results related to artificial viscosity specifically are shown in Figures 5.3(e) and 5.3(f). The former
shows that artificial viscosity is added in a thin layer around the shock. There is also a large region in the
post-shock area where artificial viscosity is applied. Looking at the sensor values, a peak around the shock is
seen as expected. However, large values remain in the post-shock region. This is rather unwanted since there
are no shocks to be dissipated there.

The heat flux at the wall is shown in Figure 5.4(a). Note that the angle is zero at the stagnation point
and ±π/2 at the bottom right/left corners. Since the Mach number had to be reduced, the result cannot be
compared to those shown in Knight et al. [42]. Nevertheless, a qualitative analysis can be made. It is well
known that the result should resemble a Gauss-type bell curve, thus the overall trend of the result is roughly
correct. However, the oscillations around the angle -1 and 1 should clearly not be there. The reason why
they appear will be explained later. Furthermore, the local minima at the stagnation point is unexpected.
In theory, that is where the heat flux should peak. To support this qualitative analysis, it is also possible to
estimate the heat flux q at the stagnation point by means of an empirical expression given by
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(a) Mach number (b) Temperature

(c) Pressure (d) Total temperature

(e) Artificial viscosity (f) Shock detector

Figure 5.3: Solution to the half-cylinder test case with density as variable for the shock detector, with p = 1, Lax-Friedrichs, k = 0.1,
s0 =−2.5 and κ= 2.0

q = 0.57Pr−0.6(ρedµed )1/2

√
dued

d x
(haw −hw ) (5.2)

where Pr is the Prandtl number and is 0.71 for air, the subscript ed denotes the value of the variable at the
edge of the boundary layer and is here assumed to be equal to its post-shock value, haw is the enthalpy for
an adiabatic wall and hw is the enthalpy at the wall [38]. The post-shock values are estimated using normal
shock relations:

ρed

ρ1
≈ (γ+1)M 2

1

2+ (γ−1)M 2
1

(5.3)

Ped

P1
≈ 1+ 2γ

γ+1
(M 2

1 −1) (5.4)
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Note that this step is not entirely correct since the formulas are derived for inviscid flow, hence the ap-
proximation rather than equality sign. In theory, the recovery factor r is used to compute the adiabatic wall

enthalpy through haw = hed + r
u2

ed
2 . In this case, the assumption haw ≈ h0 can be made without any im-

portant loss of accuracy, with h0 = cp T0 being the total enthalpy outside the boundary layer [38]. The total
temperature is found using the isentropic relation

T0 = T

(
1+ γ−1

2
M 2

)
. (5.5)

The velocity gradient at the edge of the boundary layer is approximated with

dued

d x
= 1

R

√
2(Ped −P∞)

ρed
(5.6)

where R is the radius of the body and the infinity subscript refers to freestream conditions [38]. It is worth
noting that the latter equation is derived from Newtonian theory, which works better at large Mach number
and for 3D bodies [37]. It is argued that the conditions of the test case at hand are at the limit of validity of
the empirical expression. The results should thus be treated with caution. According to Equation (5.2), the
heat flux at the stagnation point should be in the order of 104W /m2. To gain confidence on this estimate,
it was verified that this formula gives an order of magnitude consistent with the results from Knight et al.
[42], which was the case. Therefore, the heat flux result shown in Figure 5.4(a) is most likely about an order
of magnitude too low. There are many reasons which could explain this difference, including insufficient
refinement in h or p, the use of the Lax-Friedrichs flux, or even the small amount of artificial viscosity added
in the boundary layer. A minor dip at the stagnation point such as that in Figure 5.4(a) was also observed by
Burgess & Mavriplis [13].

(a) Heat flux (b) Total pressure

Figure 5.4: Solution to the half-cylinder test case on the wall, with with p = 1, Lax-Friedrichs, k = 0.1, s0 =−2.5 and κ= 2.0

The total pressure at the wall is shown in Figure 5.4(b) and compared to the theoretical value at the stag-
nation point, computed with the normal shock relations. This analytical point should therefore not match
exactly with the results. The total pressure at the wall is much smoother than the heat flux, which is expected
since there is no gradient involved. Nevertheless, it is not as smooth as what is obtained in Knight et al. [42],
Barter & Darmofal [5] or Ching et al. [15]. At the stagnation point, the result comes close to the analytical
value, thus indicating that the pressure is at least much better estimated than the heat flux. Spurious oscil-
lations aside, asymmetries appear in both the total pressure and heat flux results. Due to the randomness
of the elements in the mesh, it was expected that symmetry issues would appear. It typically occurs in the
literature as well, particularly at low orders. For example, Gnoffo & White [28] and Nompelis et al. [64] see
this behaviour in FVM. In DG, Barter & Darmofal [5] obtained subtle asymmetries at p = 3 and in Ching et al.
[15], asymmetries were strong at low order and coarse mesh, but reduced significantly with order and mesh
refinement.

In the next sections, the changes implemented to improve the results are discussed. The first change is
related to the Outlet boundary condition.
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5.2.1. Changing the implementation of the Outlet boundary condition in Argo
In Argo, the implementation of the Outlet boundary condition was inadequate for this test case. Indeed, the
code checked whether the flow was subsonic or supersonic and in the former case, imposed a specified outlet
static pressure. The imposed value would be equal to the freestream pressure. The problem is that very close
to the wall, the flow becomes subsonic and an outlet static pressure is thus imposed. This behaviour is shown
in Figure 5.5(a), which zooms near the bottom left corner of the cylinder. It can be seen that very near x = 2,
the freestream pressure is imposed at the outlet. However, it does not make sense to impose a pressure in
that region. The code was thus modified such that the pressure is always interpolated in the full outlet region.
The result of the adapted outlet boundary condition is shown in Figure 5.5(b), and the pressure can be seen
to behave as expected.

(a) Original implementation (b) Modified implementation

Figure 5.5: Pressure implementation of the outlet boundary condition

Away from this corner, the pressure fields in both figures look identical and the difference between them
at the bottom corner would not be visible without zooming in. The impact of this modification is only local
and therefore does not provide any significant improvement to the heat flux results.

5.2.2. Changing the variable for shock detection
While analysing Figure 5.3(e), it was observed that AV is added around the cylinder. This results in a thick
boundary layer, as can be seen in the temperature field (Figure 5.3(b)). More importantly, gradients in the
boundary layer are steep and need to be resolved accurately in order to obtain useful heat flux predictions.
Using density as variable for the shock detector appears to be a rather poor choice, since the significant vari-
ation in the boundary layer causes the shock detector values to increase. As a consequence, the elements in
the boundary layer are flagged and AV is applied in that region. This thinking is supported by Ching et al. [15,
p59], who reported that "the amount of AV present in boundary layers should be minimized". To avoid this
issue, one could consider using a different variable with less variation near the cylinder wall for the detection
of discontinuities.

In Figure 5.3(c), it appears the pressure does not change when getting near the cylinder wall, as opposed
to the Mach number or the temperature. This is further confirmed in Figure 5.5(b), which zooms in near
the cylinder wall. Therefore, the pressure appears as a suitable candidate for the shock detector. Unfortu-
nately, the results obtained with k = 0.05, s0 = −2.5 and κ = 2.0 show that this step only partially solves the
issue, arguably leading to worse results overall. Figure 5.6(a) shows the Mach number distribution while the
temperature field is shown in Figure 5.6(b). The results for the Mach number are very similar to what was ob-
tained in Figure 5.3(a). However, the temperature shows a major difference in the boundary layer. Around the
front of the cylinder, the thickness of the boundary layer has significantly reduced compared to Figure 5.3(b).
This can clearly be attributed to the change attempted, since the shock detector now returns lower values in
that region. This can be clearly seen by comparing Figure 5.6(d) with Figure 5.3(f), in particular at the front
of the cylinder. Comparing Figure 5.6(c) with Figure 5.3(e) also reveals that much less artificial viscosity is
added in the boundary layer.
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(a) Mach number (b) Temperature

(c) Artificial viscosity (d) Shock detector

Figure 5.6: Solution to the half-cylinder test case with pressure as variable for the shock detector, with p = 1, Lax-Friedrichs, k = 0.05,
s0 =−2.5 and κ= 2.0

The main issue with these results is that the boundary layer thickness suddenly grows behind the frontal
region. There is no physical reason for the boundary layer to grow in such fashion, it is in fact provoked
by small amounts of artificial viscosity. The asymmetry in the solution is clear in Figure 5.6(b) because the
point at which the boundary layer starts growing is higher on the left than on the right. As expected, Fig-
ure 5.7(a) shows how this sudden growth is detrimental to the wall heat flux prediction. The heat flux values
increase suddenly and significantly in the the small transition region where the boundary layer changes from
its thinnest to thickest sizes. Even the total pressure along the cylinder wall is affected in the same way (al-
though to a lesser extent), as can be seen in Figure 5.7(b). However, it is worthwhile noting that the heat flux’s
order of magnitude is now consistent with Equation (5.2). This suggests, unsurprisingly, that the artificial
viscosity was severely affecting the wall heat flux accuracy.
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(a) Heat flux (b) Total pressure

Figure 5.7: Solution to the half-cylinder test case on the wall with pressure as variable for the shock detector, with p = 1, Lax-Friedrichs,
k = 0.05, s0 =−2.5 and κ= 2.0

5.2.3. Refining the mesh
Apart from the issue of sudden thickness change just discussed, the heat flux results in Figures 5.4(a) and 5.7(a)
show a dip on the stagnation point which is particularly significant in the latter figure. Furthermore, heat flux
and total pressure plots shown up to now generally contain more oscillations than they should have. It would
be useful to refine the mesh and assess whether these oscillations decrease, whether the thickness increase
of the boundary layer would also be caused by insufficient refinement, and whether the left-right symmetry
improves.

The problem was thus run on a finer mesh, shown in Figure 5.8, to assess whether the strong oscillations
and asymmetry reduce. In this new mesh, a particular attention was placed in refining the mesh elements
in the shock and boundary layer regions. The total number of elements increases to about 15000, with the
height of elements at the cylinder wall one order of magnitude lower (10−5). With this finer mesh, the artificial
viscosity parameters were changed to k = 0.15, s0 =−2.5 and κ= 1.0.

Figure 5.8: Fine unstructured mesh with local refinement around the shock location

Figure 5.9(a) show the artificial viscosity field obtained with the refined mesh. There is still some AV
applied in the boundary layer, however it has been largely removed from the rest of the post-shock region.
Unfortunately, one can see that in the boundary layer the AV is not symmetric, thus it is expected to see
asymmetries in the rest of the results as well. The temperature field, shown in Figure 5.9(b), shows indeed a
strong asymmetry. Such results suggest improvements will not be obtained in the prediction of heat flux and
total pressure at the cylinder surface.
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(a) Artificial viscosity (b) Temperature

Figure 5.9: Solution to the half-cylinder test case on refined mesh, with p = 1, Lax-Friedrichs, k = 0.15, s0 =−2.5 and κ= 1.0

Figures 5.10(a) and 5.10(b) confirm that indeed the solution at the wall has not improved. The heat flux
maintains a similar magnitude at the front of the cylinder, but this is essentially the only positive comment
that can be made about it. A similar conclusion can be drawn for the total pressure.

(a) Heat flux (b) Total pressure

Figure 5.10: Solution to the half-cylinder test case on the wall, with p = 1, Lax-Friedrichs, k = 0.15, s0 =−2.5 and κ= 1.0

5.2.4. Removing AV entirely from the boundary layer
A recurring issue in all the results shown so far is that AV is added in the boundary layer. It seems that even
small amounts of artificial viscosity are sufficient to pollute the quantities of interest in the boundary layer.
Changing the variable used for shock detection was shown to not be sufficient to avoid dissipating in the
boundary layer. To achieve zero AV in the boundary layer, the shock detector values were analysed in more
detail. The maximum values in the shock and in the boundary layer were extracted and defined the upper
and lower bounds in which AV would be applied. That is, the threshold s0 was defined to be at the middle
of the two bounds and κ was half the interval between the two bounds. Defining the AV parameters as such,
the mesh elements in the boundary layer are not flagged and those in the shock receive the maximum AV
magnitude specified by k. This procedure led to k = 0.17, s0 =−2.0, κ= 0.5.

Overall, the AV footprint is smaller and the magnitude has been slightly increased to compensate. The
wall heat flux and total pressure in Figures 5.11(a) and 5.11(b) show that when artificial viscosity is removed
entirely from the boundary layer, smooth results are obtained. The magnitude for both the heat flux and total
pressure appear to be right, thus the only area where an improvement is clearly needed is symmetry. For that,
the best option is to test what happens when a symmetrical mesh is used, which is done next.
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(a) Heat flux (b) Total pressure

Figure 5.11: Solution to the half-cylinder test case on the wall with no artificial viscosity in the boundary layer, with p = 1,
Lax-Friedrichs, k = 0.17, s0 =−2.0, and κ= 0.5

The symmetrical mesh is shown in Figure 5.12, and although it contains a strong refinement around the
cylinder wall, no particular arrangement of elements was made for the shock. It also happens to be the coars-
est mesh of all used thus far, with around 3000 elements. It is worthwhile noting that Ching et al. [15] have
been able to predict accurately the heat flux for a M = 17 case with coarser meshes.

Figure 5.12: Structured, coarse mesh for the half-cylinder test case

The challenge with using such mesh was that if the AV parameters were chosen such that no AV is added in
the boundary layer, the stabilisation was insufficient around the shock and the simulation crashed. Therefore,
it was decided to first let the simulation run until the shock was well resolved and the convergence stalled.
For that, the AV parameters used were k = 0.05, s0 =−1.5, and κ= 1.0. Overall, less AV is needed than for the
unstructured mesh. Also, it is important to note that all previous results in this chapter obtained a similarly
unsatisfying convergence. The resulting heat flux is shown in Figure 5.13. Despite the symmetrical mesh,
asymmetries occur in the solution. These are in fact due to the lack of convergence of the residuals. After the
simulation was stopped, the AV parameters were changed to k = 0.05, s0 = −1.2, and κ = 0.5 in order to not
dissipate at all in the boundary layer, and the simulation was restarted. It then converged very quickly. The
progression of residuals is shown in Figure 5.14, where the typical slow convergence until stalling followed by
a very rapid convergence can be observed.

Both the total pressure and the heat flux results were smooth, as can be seen in Figures 5.15(a) and 5.15(b).
Qualitatively, heat flux results in literature have a trend more similar to what is obtained for the total pressure,
meaning that the slope is lower on the sides and the peak is narrower in the middle section. This difference
could be explained by the low order or inviscid flux employed. Unfortunately, higher orders and other Rie-
mann solvers turned simulations unstable and this could thus not be assessed.
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Figure 5.13: Heat flux for the half-cylinder test case on the wall,
before full convergence, with p = 1, Lax-Friedrichs, k = 0.05,

s0 =−1.5, and κ= 1.0
Figure 5.14: Convergence for the half-cylinder test case

(a) Heat flux, after full convergence (b) Total pressure, after full convergence

Figure 5.15: Solution to the half-cylinder test case on the wall on a structured mesh, with p = 1, Lax-Friedrichs, k = 0.05, s0 =−1.2, and
κ= 0.5

The Mach number and temperature distributions are shown in Figures 5.16(c) and 5.16(d) to highlight
that despite obtaining satisfying convergence and heat flux and pressure results, the solution around the
shock is not as good as it could be. Figures 5.16(a) and 5.16(b) are provided for comparison and correspond
to the solution at the moment the convergence stagnates and the simulation is stopped. One can see that
since the AV parameters were tuned with the aim of avoiding dissipating in the boundary layer, spurious
oscillations remain present around the shock. This is particularly visible in Figure 5.16(c), the Mach number
distribution, with Figure 5.16(a) provided for comparison. Potentially, this could be partly fixed by increasing
the AV magnitude. It can also be seen, mostly in the temperature field, how the boundary layer thickness is
now significantly thinner with respect to that in Figure 5.16(b).
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(a) Mach number, with AV in the boundary layer (k = 0.05, s0 =
−1.5, and κ= 1.0)

(b) Temperature, with AV in the boundary layer (k = 0.05, s0 =
−1.5, and κ= 1.0)

(c) Mach number, without AV in the boundary layer (k = 0.05, s0 =
−1.2, and κ= 0.5)

(d) Temperature, without AV in the boundary layer (k = 0.05, s0 =
−1.2, and κ= 0.5)

Figure 5.16: Solution to the half-cylinder test case with and without AV in the boundary layer, with p = 1 and Lax-Friedrichs

5.3. Summary
Overall, this chapter has highlighted the challenges in obtaining a reasonable heat flux result. Symmetry was
found to be a significant issue with non-symmetric meshes, but the most important insight is that no artificial
viscosity at all should be applied in the boundary layer. For that, changing the variable for shock detection is
not sufficient and the AV parameters need to be chosen carefully so as to not dissipate near the wall.





6
Automating the AV threshold

Previous chapters have been focused entirely on applying existing methods to different test cases in order to
understand Argo’s shock capturing capabilities. Although some adjustments were made, the artificial viscos-
ity method itself was left untouched. Nevertheless, the information gathered highlighted an opportunity to
improve the method. This improvement, which consists of making the AV threshold free of user input, has
been implemented and tested. The first section places this change in context, presents the strategy used to
automate the threshold and briefly mentions the impact of this change. The impact is shown more specifi-
cally in the following sections, which show the results achieved with it.

6.1. Concept implementation
It is now clear that a key drawback of AV methods is that the user-defined parameters can be challenging
to tune. It would thus be beneficial to find an algorithm which could tune these parameters automatically.
An optimisation procedure was proposed by Ching et al. [14] to tune the amount and width, for which the
results were shown on a single test case. A later paper by Ching et al., reference [15], did not even mention
this procedure, suggesting that it still lacks robustness. Lv et al. [57] derived a formula based on the Euler
equations to tune the sensor threshold, for their entropy-residual shock detector. A more general approach,
based on outlier detection, was proposed by Vuik & Ryan [86]. However, wedge test case results indicate that
setting the threshold automatically based on an outlier approach would probably not perform well. Indeed,
such method would work best if most of the domain is attributed the lowest sensor value of -16 and only
around the shock would the values be much higher. In this case, however, the transition region prevents
the elements at the shock from standing out. This could potentially be the case for the half-cylinder as well,
where the sensor values remain rather large behind the shock.

Furthermore, the experience gained in tuning the AV parameters through the different test cases indicated
that, when possible, a good strategy is to set the threshold s0 and interval κ such that the maximum amount
of AV is applied where the sensor value se is maximum. In other words, the shock detector assigns a value se

to each element of the mesh. This value is a measure of smoothness in the solution and it was observed se is
maximum at the shock location. The parameters s0 and κ are thus chosen such that the largest AV magnitude
defined by k is applied at the shock location, that is s0 +κ= se,max . The Shu-Osher problem showed that this
strategy fails when se,max varies as the simulation runs due to changing shock strength, since the parameters
need to be set before the simulation starts. This issue inspired the creation of a new strategy to tune the
threshold automatically. The idea is in fact very simple and carries out the manual strategy just described
automatically and at each time step. At each time step, it finds the maximum sensor value in the domain and
subtracts the interval value (defined by the user) to obtain the threshold. That is

s0 = se,max −κ. (6.1)

The method as such would add artificial viscosity everywhere if the flow is uniform in the whole domain.
To avoid this unwanted behaviour, the code prevents the threshold to take any value below -5. Although only
one out of three parameters is now free of user input, the difference it makes in choosing the parameters is
noticeable. Three values to specify result in a very large number of combinations, with sometimes many giv-
ing satisfying results. Moreover, it may be that a combination needs to be chosen in order for the simulation
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to be stable or to avoid dissipating in the boundary layer, leading to suboptimal smoothing at the shock. Us-
ing Equation (6.1), the user does not need to think about sensor values and a small interval κ can usually be
used since the method will follow variations in the shock sensor. If the AV field around the shock is clearly too
thin, one simply needs to increase κ. If the AV field looks right but oscillations still occur, one simply needs
to increase the magnitude k. In addition to easing the manual tuning of AV parameters, this method proved
to be clearly beneficial in terms of stability. Simulations that would previously crash were now achieved with
little effort. The next sections discuss the results.

6.2. Results for the half-cylinder test case
This section aims at testing the new method on the half-cylinder test case, for which many limitations were
encountered. The first step was to repeat a previous successful simulation to check whether the same results
are obtained. Then, the automatic tuning of the threshold is applied to new simulations.

6.2.1. Verification
Before this method was used on a new simulation, it was decided to test whether the heat flux result obtained
in Figure 5.15(a) could be reproduced. Since the AV parameters had been very carefully selected to avoid
dissipating in the boundary layer, it is worth ensuring that this method will not negatively impact this effort.
Therefore, starting from the solution shown in Figure 5.13, the simulation was run in the identical setup as
that of Figure 5.15(a). It converged quickly to the solution shown in Figures 6.1(a) and 6.1(b). The heat flux
and pressure look identical as the previous results.

(a) Heat flux (b) Total pressure

Figure 6.1: Solution to the half-cylinder test case on the wall, with p = 1, Lax-Friedrichs, k = 0.05, and κ= 0.4

The logical next step was to try running simulations which crashed without the automatic threshold strat-
egy, to test its potential. A simulation at p = 2 and another with the inviscid scheme SLAU were achieved and
their outcome is presented below.

6.2.2. Half-cylinder simulation with SLAU flux
Previous chapters have confirmed the trend observed in literature that the choice of inviscid flux scheme
has little effect, especially at high-orders. The heat flux and total pressure at the cylinder wall, shown in Fig-
ures 6.2(a) and 6.2(b) respectively, are in line with this. The only difference between Lax-Friedrichs and SLAU
is in the heat flux, where SLAU results in a subtle cusp at the stagnation point and a minor increment overall.
Note that the AV parameters had to be changed to k = 0.05 and κ = 0.7, thus the footprint was slightly in-
creased to compensate the low dissipation associated to SLAU. The simulation used an homogeneous initial
condition with freestream values.

The artificial viscosity and shock detector on the domain are plotted in Figures 6.3(a) and 6.3(b). The
artificial viscosity footprint is larger than before around the shock, but is only applied there. A small dip can
also be seen on the stagnation line, possibly causing the cusp observed in the heat flux. The shock detector
further suggests the heat flux cusp is caused by the shock capturing, with a minimum at the stagnation point.
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(a) Heat flux (b) Total pressure

Figure 6.2: Solution to the half-cylinder test case on the wall, with p = 1, SLAU, k = 0.05 and κ= 0.7

The Mach number distribution, shown in Figure 6.3(c), still presents spurious oscillations around the shock.
Their magnitude has decreased a little compared to Lax-Friedrichs results, but this is more likely due to the
different AV parameters. The temperature field, Figure 6.3(d), is very similar but the contours are smoother.

(a) Artificial viscosity (b) Shock detector

(c) Mach number (d) Temperature

Figure 6.3: Solution to the half-cylinder test case, with p = 1, SLAU, k = 0.05 and κ= 0.7

6.2.3. Half-cylinder simulation at p=2
With the new method, a p = 2 solution could be obtained with little effort, with Lax-Friedrichs and the pa-
rameters k = 0.05 and κ = 0.5. As usual with steady cases, the initial condition for the p = 2 simulation was
a converged p = 1 solution. The rest of the simulation set-up was kept identical. The heat flux and total
pressure on the cylinder surface are shown in Figures 6.4(a) and 6.4(b), respectively. While the total pressure
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result did not change from the p = 1 solution, the magnitude and trend of the heat flux did. The trend now
looks more similar to that of the total pressure and to results from literature. Although the order of magnitude
is the same, the heat flux is now greater at the stagnation point and lower on the sides. This is expected since
at p = 2 the DG method should better capture the strong gradients in that region. Nevertheless, if the trend
and magnitude are now more accurate, the small cusp at the curve’s peak is an issue that already appeared in
Figure 6.2(a). This feature is worth consideration and is discussed in the next paragraph.

In a finite volume method, the cause of this cusp could quickly be associated to the carbuncle phe-
nomenon, a "local unpleasant displacement of the bow shock wave shape" [58, p1]. This error at the shock
propagates downstream and deteriorates the quality of the solution at the wall. According to MacCormack
[58], significant errors at the wall can occur even if a clear carbuncle does not appear. This could be what
happens in previous results. Despite the limited results in DG, the appearance of a cusp at the stagnation
point can be found in the literature as well. Barter [4] obtained a very similar cusp for a test case at M = 17.6
and, although does not offer an explanation for it, mentions mesh resolution as a potential cause for an in-
accuracy in his pressure at the wall. If mesh resolution is negatively affecting the pressure, it is likely to do
so for the heat flux as well. In another work by Ching et al. [15], also on a M = 17.6 case, the cusp appears
when using a discrete artificial viscosity field. This suggests that, whether due to the mesh or the smoothing,
inaccuracies in the shock capturing can result in this error at the stagnation point.

(a) Heat flux (b) Total pressure

Figure 6.4: Solution to the half-cylinder test case on the wall, with p = 2, Lax-Friedrichs, k = 0.05 and κ= 0.5

It is interesting to look again at the artificial viscosity and shock detector plots, Figures 6.5(a) and 6.5(b),
for the p = 2 case. The artificial viscosity field does not look very different, however the magnitude has de-
creased due to the h/p scaling. The shock detector shows that a much greater difference exists between
elements in the shock and those in smooth regions. This makes it easier to apply AV without dissipating in
regions where it is unwanted. The Mach number distribution, in Figure 6.5(c), shows that spurious oscilla-
tions have decreased. Figure 6.5(d), the temperature field, is slightly smoother than results with SLAU, and
features reduced spurious oscillations as well. Results at p = 2 are thus an improvement overall. It is worth-
while noting that this heat flux result is, to the best of the author’s knowledge, the first to be obtained with
the Lax-Friedrichs flux and Argo’s specific smoothing technique of the AV field. It shows that it is possible to
successfully simulate this challenging test case with DG and a combination of simple methods. This work
also documented the steps followed to achieve such result, information generally lacking in the literature.
Hopefully, this will help future research in DG methods oriented towards heat flux predictions.

Further investigation of the half-cylinder test case is left for future work. The logical step would be to
further increase the order and the Mach number. However, it is chosen to dedicate the remainder of this
chapter on the unsteady problem that first motivated the automatic tuning of the threshold, the Shu-Osher
test case.
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(a) Artificial viscosity (b) Shock detector

(c) Mach number (d) Temperature

Figure 6.5: Solution to the half-cylinder test case, with p = 2, Lax-Friedrichs, k = 0.05 and κ= 0.5

6.3. The Shu-Osher problem, revisited

The Shu-Osher problem is expected to greatly benefit from the automatic threshold tuning. The AV parame-
ters can now be chosen focusing entirely on removing oscillations since the threshold will adapt to the simu-
lation needs at each time step. Decent results were obtained with the Lax-Firedrichs flux at p = 2 previously,
except in terms of spurious oscillations. The first simulation thus decided to assess whether those oscillations
would now be removed.

6.3.1. Shu-Osher simulation at p=2

The simulation was run with Lax-Friedrichs and AV parameters k = 0.05 and κ = 0.5. Worth noting is that
the interval κ is smaller than that used in Chapter 4. Since the threshold adapts to the shock sensor results,
the interval does not need to account for that variation and can thus be reduced. The results shown in Fig-
ures 6.6(a) and 6.6(b) confirm that the solution is much smoother. Unfortunately, the smoothing has been
excessively strong, to the point that the solution looks similar to that at p = 1 obtained previously. It was men-
tioned before that Lv et al. [57] and Vuik & Ryan [86] have already suggested a method to tune the threshold
automatically. The results from Lv et al. are similar to those shown below, although the latter are slightly more
dissipated. Vuik & Ryan’s results come very close to the exact solution but their mesh contains 512 elements.
The results obtained in this work could most likely be improved by fine-tuning the AV parameters.

In addition to density and pressure results, the artificial viscosity magnitude and shock detector are plot-
ted in Figures 6.6(c) and 6.6(d), respectively. Figure 6.6(c) shows a familiar behaviour in that artificial viscosity
is only applied at the shock. One key difference appears in the shock detector compared to results obtained
in Chapter 4. Upstream of the shock, the shock detector returns -16 rather than oscillating values. This is
because the variable for the shock detector is now the pressure, which is constant in that region. Assuming
only the shock is of interest, more data would be needed to assess whether the pressure or the density is the
best variable for shock detection in the Shu-Osher problem.
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(a) Density (b) Pressure

(c) Artificial viscosity (d) Shock detector

Figure 6.6: Solution to the Shu-Osher test case at p = 2, with 1800 DOF, Lax-Friedrichs, k = 0.05 and κ= 0.5

6.3.2. Shu-Osher simulation at p=4
Results at p = 4 were also achieved before, even though the AV parameters were particularly difficult to tune.
In this case, the simulation worked with little effort, clearly highlighting the improvements in stability that this
automated threshold strategy brings. The p = 4 solution with k = 0.02 and κ = 0.5 is shown in Figures 6.7(a)
and 6.7(b) for the pressure and density, respectively. The match between the exact and Argo solution is much
better than that at p = 2, as expected. The solution can also be seen to be free of overshoots and spurious
oscillations, which previously polluted the solution. Nevertheless, the high frequency oscillations are not
captured with the same accuracy as before. Despite the low values for k and κ, the solution still appears more
dissipated than in Figure 4.18(a). The agreement with the exact solution is very similar to what Lv et al. [57]
obtained. The pressure results match the exact solution closely, as expected.



6.4. Summary 73

(a) Density (b) Pressure

Figure 6.7: Solution to the Shu-Osher test case at p = 4, with 5000 DOF, Lax-Friedrichs, k = 0.02 and κ= 0.5

6.3.3. Shu-Osher simulation with Roe flux
In Chapter 4, the only inviscid flux that allowed stable simulations was the Lax-Friedrichs scheme. Due to
the improved stability of the automatic threshold tuning, it is now possible to run simulations with different
Riemann solvers. Figures 6.8(a) and 6.8(b) show the density and pressure results respectively, achieved with
the Roe scheme. The results appear identical to those with Lax-Friedrichs. Further confirmation that the
inviscid flux has little impact on the solution at high orders is thus obtained.

(a) Density (b) Pressure

Figure 6.8: Solution to the Shu-Osher test case at p = 4, with 5000 DOF, Roe, k = 0.05 and κ= 0.5

6.4. Summary
To conclude this chapter on the implementation and application of a new strategy to set the threshold auto-
matically and adaptively, the main findings are summarised. Overall, removing one user-defined parameter
from the set was found to provide a clear benefit, the task of finding an appropriate set of AV parameters be-
ing greatly simplified. Moreover, the continuous adaptation of the threshold to the problem needs improved
stability significantly. Overall, these benefits allowed to simulate cases that were not achieved without the
method. Clearly, testing the method on two test cases is not sufficient to draw strong conclusions about its
robustness. One area where it might fail is with interacting shocks of different strengths. The double Mach
reflection problem by Woodward & Colella [89] is recommended to test this, but will not be investigated in
this work.
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Conclusions and recommendations

This work studied the performance of artificial viscosity as a shock capturing method for a discontinuous
Galerkin discretisation. The multi-physics CFD platform Argo developed at Cenaero was used for all compu-
tations. The key aspect of the artificial viscosity technique is the presence of three user-defined parameters,
and the tuning of those. The three parameters k, s0 and κ define the magnitude, location, and width of the
artificial viscosity. A number of test cases with increasing difficulty were investigated to understand the ca-
pabilities and limitations of the computational tool. The first application was a steady supersonic wedge test
case governed by the Euler equations. A parametric study at Mach 2 showed that specifying the user-defined
parameters for the artificial viscosity is not a trivial task. Generally, two of the three parameters, the interval
and the threshold, are chosen such that artificial viscosity is applied where desired. The third parameter, the
magnitude, specifies how much artificial viscosity is applied. One could apply a large quantity on a small re-
gion, a small quantity over a large region, or choose a middle point. Although a number of options appeared
better than others, spurious oscillations remained in each of the parameter combinations tried. Furthermore,
it appeared that the user may need to trade-off shock thickness with removing spurious oscillations. To ob-
tain a significant improvement to the results, it was necessary to increase the polynomial order or refine the
mesh. Even then, the shock strength varied across the length of the shock, leading to a non-homogeneous
post-shock solution. Increasing the Mach number highlighted the difficulties in keeping the simulation sta-
ble, requiring to use artificial viscosity on a large region and increasing the shock thickness significantly yet
still obtaining strong spurious oscillations.

The 1D unsteady, inviscid test cases of Sod [80] and Shu-Osher [79] were then simulated for different mesh
refinements, polynomial orders from 0 to 7, and Riemann solvers Lax-Friedrichs, SLAU, and AUSM+up. The
general conclusion for the first which has constant shock strength was that Argo can obtain good results
as long as a sufficient refinement in mesh size or order is used. The shock was better captured than the
contact discontinuity, and the Riemann solver had little effect at polynomial orders larger than zero. The
Shu-Osher test case was more challenging due to the varying shock strength. As opposed to the first unsteady
problem, this test case could not be run without artificial viscosity for polynomial orders larger than 0. It
highlighted the difficulty of tuning the artificial viscosity parameters when the shock strength varies in time
since the chosen set needs to account for variations in the shock detector. Furthermore, it became clear that a
method keeping flow variables within physical bounds is necessary for strong shocks. As for the first unsteady
problem, good results were obtained with sufficient order and mesh resolution and the inviscid flux choice
did not have much effect except at polynomial order zero were it was significant. Nevertheless, spurious
oscillations remained.

Prediction of the heat flux at the cylinder wall in supersonic flow proved challenging as well. The heat
flux often suffered from strong oscillations even when plots of solution variables in the domain and the total
pressure at the wall appeared smooth. The key change which allowed to obtain a smooth heat flux profile was
to tune artificial viscosity parameters such that no non-physical dissipation at all is added in the boundary
layer. The unstructured, asymmetrical mesh led to a strongly asymmetrical result but this was fixed with
a symmetrical mesh. Despite promising results, attempts at different Riemann solvers or high orders were
unsuccessful.

A method was developed to tune automatically the threshold, allowing the artificial viscosity to adapt to
changing problem needs as the simulation progresses. This change made the tuning of artificial viscosity pa-
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rameters much easier and provided clear stability benefits. At polynomial order 2, the heat flux appeared ac-
curate and was the first achieved with the combination of the Lax-Friedrichs flux, the Interior Penalty method,
and a simpler smoothing technique of the artificial viscosity field in discontinuous Galerkin methods. A com-
parison with a state-of-the-art finite volume method would help evaluate the accuracy of the obtained results.

Considering the results achieved with artificial viscosity and its recent progress with respect to other sta-
bilisation techniques in DG, it is worth building on recent efforts to make artificial viscosity more robust
rather than switching attention to other methods. A number of recommendations are proposed for future
work. First, the wedge test case could be revisited with a focus on Mach 4 and higher. With a method keep-
ing variables within physical bounds and the automatic threshold, the challenges encountered in the early
stages of this work could be significantly eased. It would also be valuable to further analyse the Shu-Osher
problem. With the automatic threshold, the results were found to be excessively dissipated. Further tuning
the AV parameters should allow to resolve this issue, but it would be useful to confirm this with actual re-
sults. For the half-cylinder test case, wall heat flux results at the stagnation point were verified through an
approximate formula at the limit of its range of validity. It is important to confirm the accuracy of the wall
heat flux with a proven method. In addition, the orders considered in this work remained rather low. It would
be useful to assess whether higher polynomial orders could reduce issues such as asymmetries seen when
using unstructured meshes. Furthermore, hypersonic Mach numbers were not achieved in this work. Typi-
cally, hypersonic simulations are obtained with order sequencing meaning that a simulation at order 1 uses a
solution at order 0 as initial condition. The discretisation of the diffusive term in Argo is inconsistent at order
0, thus preventing the use of order sequencing. It is likely that using a diffusive scheme consistent at order 0
would make such challenging problems easier to simulate. The main recommendation to achieve hypersonic
speeds would thus be to start by implementing a different discretisation of the diffusive term such as the sec-
ond scheme of Bassi and Rebay (BR2) [7]. A challenging task would be to achieve an accurate heat flux on
a fully unstructured mesh with similar levels of refinement, in order to bring the computational capabilities
closer to being applied on complex geometries. Reducing the significant refinements in the boundary layer
currently needed would also be beneficial.

The automatic threshold tuning needs to be further analysed in various test cases. Although its perfor-
mance appeared as promising in this work, robustness issues could occur in problems where different shocks
with different strengths occur. The strategy could also be expanded such that all parameters are tuned auto-
matically and in a robust manner. This would be a significant achievement and artificial viscosity methods
would become much easier to use in practise. However, this is a challenging task for which much effort
is likely still needed. Furthermore, it would be worthwhile to compare the performance of the automatic
threshold tuning proposed in this work to the more complicated outlier approach found in the literature.
With the artificial viscosity method used in this work, it was argued that the outlier approach would likely not
work well on certain problems due to insufficient contrast in the shock detector results between the shock
and the rest of the domain. However, this hypothesis remains to be tested. Assessing how the automatic
threshold tuning works with different shock detectors would be useful too. Potentially, other detectors could
provide better contrast between discontinuous and smooth regions. Suggestions would be the detector by Lv
et al. [57] which was found to work better on certain test cases and the detector by Ching et al. [15] which
has been used successfully on several hypersonic problems. It is argued that a detector achieving sufficient
contrast between shock and boundary layer regions is key to avoid dissipating in the latter region. This issue
has been tackled successfully in [15] by removing all the smallest magnitudes of artificial viscosity typically
corresponding with those in the boundary layer but this is not an ideal solution as it adds arbitrary parame-
ters.

Once the artificial viscosity method becomes reliable on simple test cases, the physical complexity of the
problem simulated needs to be increased. Investigating how the artificial viscosity method used in this work
affects and interacts with turbulence remains to be done. Furthermore, high-temperature effects, chemistry,
and/or material ablation could be added to the problems being simulated. A difficulty could appear if the
shock detector provokes artificial viscosity being applied in the chemically reacting region. Finally, it is worth
adding a note on cost. For the Sod test case using Lax-Friedrichs and with artificial viscosity activated, the
simulation takes 1.1s to run on 20 elements at p = 1 (80 DOF). This increases to 2.66s at p = 2 (180 DOF)
and 6.35s at p = 3 (320 DOF). If the order is kept at p = 1 but the number of elements is increased to 40 (160
DOF), the run time is 1.54s. For 200 elements (800 DOF), it is 4.85s. In this very brief analysis, it is clear that
refining in p increases cost more rapidly than reducing h. Discontinuous Galerkin methods may thus need to
be combined with hp adaptation techniques in order to become an attractive alternative to low-order finite
volume methods.
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A
Exact solver for the Riemann problem

This appendix presents the solver used to obtain an exact solution to the Sod problem by sampling the do-
main at each time step. The method follows the strategy from Toro [83].

A.1. The Riemann problem
The Riemann problem models a tube in one dimension with a diaphragm in the middle. The gas on the left
and the right sides of the diaphragm can have different properties. At time t = 0, the diaphragm is removed.
Assuming a simple configuration in which initially the gas is at rest on both sides, the density is identical on
both sides but the pressure is higher on the left side than on the right, the solution will develop as shown in
Figure A.1. After t = 0, four regions appear separated by three waves. A shock moving to right, an expansion
wave moving to the left, and a contact discontinuity separating the flow between the expansion and the shock
in two regions.

The state vector W takes different sets of values depending on the region it is in. Before the shock or
the expansion wave, that is in regions designated by WL and WR , the state vector simply takes the initial
conditions. After these two waves, in the regions designated by W ∗

L and W ∗
R , the velocity and pressure take

the same value on both sides of the contact discontinuity. However, this is not the case for the density. In the
expansion fan, the properties smoothly vary from their values in WL to their new state W ∗

L . The next sections
discuss the solver implementation of the Riemann problem just described.

t

x

ShockExpansion

WL WR

W*L
Wfan

Contact

W*R

Figure A.1: An x-t diagram of the Riemann problem with a right shock and left expansion wave

A.2. Inputs and initial computations
The solver takes as input the velocity u, the density ρ and pressure P on the left and right states denoted with
subscripts L and R, respectively. These form the state vectors WL and WR . The speed of sound is computed
using

83
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cL/R =
√
γ

PL/R

ρL/R
, (A.1)

where γ is the ratio of specific heats and is equal to 1.4 for air. The pressure and velocity in the regions on
both sides of the contact discontinuity are then computed. These are denoted with a ∗ superscript and do
not change in time. The pressure P for which Equation (A.2) is satisfied defines P∗:

fL + fR + (uR −uL) = 0, (A.2)

where

fL =


(P −PR )

√
AL

P+BL
for P > PL

2 aL
γ−1

(
P

PL

)(
γ−1
2γ −1

)
otherwise

(A.3)

fR =


(P −PR )

√
AR

P+BR
for P > PR

2 aR
γ−1

(
P

PR

)(
γ−1
2γ −1

)
otherwise

(A.4)

and

AL/R = 2

(γ+1)ρLR

(A.5)

BL/R = γ−1

(γ+1)PPL/R

. (A.6)

The value of P∗ is found using the f zer o function in MATLAB, with initial guess the average of PL and PR .
One can then find u∗ with

u∗ = 0.5(uR +uL)+0.5( fR − fL). (A.7)

The solver then enters a double loop, where it finds the exact solution for the variables ρ, u and P at each
point with coordinates (x, t ).

A.3. Solution sampling
At each of the space-time points, the solver uses a tree to find where on Figure A.1 it is and applies the corre-
sponding equations. The tree is shown in Figure A.2, for the problem on the left side of the contact disconti-
nuity. The first step to navigate the tree is to define S = x/t , where x is the position in the domain and t is the
time.
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S < u*

P* > PL 

Left shock Left
expansion

YES NO

S < SL S < SHL

WL W*L

YES NO

S > STLWL

YES NO

WfanW*L

YES NO

Figure A.2: Solution sampling procedure at point (x,t)

S < u∗
If S < u∗, the point is in the left side of the contact discontinuity. There can be a shock or an expansion.

If P∗ > PL : left shock
To determine on which side of the shock the point is, the first step is to compute the shock speed through:

SL = uL − cL

√
γ+1

2γ

P∗

PL
+ γ−1

γ+1
. (A.8)

If S < SL , the point is on the left of the shock thus the solution simply takes the initial conditions on the
left state. That is ρ = ρL , u = uL and P = PL . Instead, if S > SL , the point will take the post shock solution,
which corresponds to star values. The velocity u∗ and pressure p∗ are already known, the density is given by

ρ∗ = ρL

P∗
PL

+γ−1

γ+1

γ−1
γ+1

P∗
PL

+1
(A.9)

If P∗ < PL : left expansion wave
The expansion wave has three possible cases. The point can be before, after, and inside the expansion. There-
fore, the head and tail of the expansion need to be found. The head and tail speeds are given by

SHL = uL − cL (A.10)

ST L = u∗− c∗L , (A.11)

where

c∗L = cL

(
P∗

PL

) γ−1
2γ

. (A.12)

If S < SHL , the solution takes the initial conditions ρL , uL , PL . If S > ST L , the solution takes the post
expansion wave values. Again, u∗ and P∗ are known but ρ∗ is unknown. It can be computed with

ρ∗
L = ρL

(
P∗

PL

) 1
γ

. (A.13)
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In the last case, the point is in the expansion fan itself and all quantities need to be computed. They are
given by:

ρ = ρL

(
2

γ+1
+ (γ−1)cL

γ+1
(uL −S)

) 2
γ−1

, (A.14)

u = 2

γ+1

(
cL + γ−1

2
uL +S

)
, (A.15)

P = PL

(
2

γ+1
+ γ−1

(γ+1)cL
(cL −S)

) 2γ
γ−1

. (A.16)

The same procedure is applied for S > u∗, one only needs to replace the subscripts L by R to obtain the
corresponding equations.
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