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Subject: Defining parameters for buckling checks of plated structures in finite 
element software packages. 

 
Plated structures are widely used in many engineering structures. Most designs are poor in resisting 
compressive forces. Usually, the buckling phenomena observed in compressed conditions take place 

rather suddenly and may lead to catastrophic structural failure. Therefore it is important to know the 
buckling capacities of the plates in order to avoid premature failure.  

 
The linear buckling analyses of specific parts of a structure cost a lot of engineering time, let alone the 
non-linear analyses. The results from finite element packages cannot directly be compared to the 
standards like the ABS or DNV-RP-C201 either. However with the more extensive possibilities of FEM 
packages nowadays, the recognition of individual plates and stiffened plated structures is within 
reach. A new method has to be designed. One that analyses the complete plated structures with the 
potential to:  
 
 Substantially reduce calculation time by the FEM program 
 Omit the need to analyze each plate individually with the associated stresses and imperfections 
 Automate the process to reduce the amount of work of the engineer 
 
This master thesis is a follow up on the work of Ottar Hillers. The assignment contains an in-depth 
research into what problems arise with different buckling modes and the parameters that define these 
problems. The relations and models should lead to the extraction of correct design factors out of the 
FEM analyses. In such a way that a realistic comparing between the model and the standards can be 
made. The factors include specific in-plane compression stresses in the plates, stiffeners and girders, 
and shear stresses on the structure. The study mainly aims on the conversion of the FEM results into 
design factors needed to check buckling of plated structures.  
 
The intended result should be a complete method to define the correct parameters of the buckling 
check, in such a way that it could be certified or be approved by a classification bureau and ready to 
be implemented into SDC Verifier. 
 
The professor, 
 
 
 
 
 
Prof. ir. J.C. Rijsenbrij

http://www.mtt.tudelft.nl/


 

 

 

 
  



 

 

 

 
 

 

 

 

 

Panels are valuable structural designs in many structures nowadays [1]. 

 

 

Although not always designed as carefully as should have been done [2]. 

 

  



 

 

 

  



 

 

 

Preface  

This report is my thesis for the conclusion of my Master program Transport Engineering at the 

Technical University of Delft. It is the result of 7 and half months of research at the engineering 

company Femto Engineering located in the center of Delft. All of the work presented henceforth was 

conducted in the office of Femto.  

 

In my own perception, some sort of curse results in an urge to carry out new analyses, in order to 

look at the problems at still another way, over and over again. Buckling seems to be an engineering 

problem which is under defined; there are many solutions, good, bad and indifferent. The amount of 

available studies and literature with different approaches on the subject emphasizes this. While going 

through a far too large report I came across the following quote:  

 

“Engineering is the art of modeling materials we do not wholly understand, into shapes we cannot 

precisely analyse so as to withstand forces we cannot properly assess, in such a way that the public 

has no reason to suspect the extent of our ignorance.”, A.R. Dykes. 

 

This is especially true for the buckling phenomena. Subsequently I would have liked to make a small 

report with an understandable impression of what buckling really is. I think I can safely say that the 

report gives an extensive overview of all problems, parameters and relationships which influence 

panel buckling. This may have become a result at the expense of the size of the report. I realized this 

especially when the report became so large it was too big to add as an attachment in ordinary email. 

Luckily there are many pictures within.  

 

I am grateful to all those people from Femto that were involved in this study, for the everyday joy at 

the office, the hope for good results and even the sadness with failing software. In particular, I would 

like to thank ir. Tom Santegoeds for giving me the opportunity to take part in this project. Moreover, 

two people are really appreciated for their assistance on my analyses: my supervisors ir. Alexander T. 

Naatje and ir. Wouter van den Bos. I thank them for always being willing to help me when confronted 

with problems during the analyses. Furthermore I would like to thank Bohdan Melnyk and his 

colleagues at SDC Verifier for all help with obtaining results in a well-arranged, easy-viewed and 

accessible manner. I am grateful to prof. ir. Joan C. Rijsenbrij for spending several extensive meetings 

including his perspective on reality. I thank prof.dr.ir. Mirek L. Kaminski for his perspective on the 

subject as well. And last but not least I would like to thank in particular my parents and grandpa for 

their moral support. 

 

Today I finished my report and I will continue to challenge myself in the future with what I learned. 

This is not the end but only the beginning. At the end, thanks to you, reader. If you are reading this 

line after the others, you at least read one page of my thesis. Thank You. 

  



 

 

 

Summary 

Big models for planes, cranes, ships or other kind of offshore structures can consist of a large amount 

of plated structures. Buckling is a more prominent phenomenon in such slender constructions. 

Buckling is a loss of stability in the structure due to a compressive load. Usually a sudden deformation 

takes place when reaching a critical combination of stresses. Nowadays the calculations are mostly 

done with finite element models. However not every model and/or analysis is suitable for an accurate 

buckling assessment by a FEM analysis. Most details such as imperfections, material properties or 

residual stresses are not included within the models. Different ways of modeling and mesh sizes 

increase the difficulties and parameters as well. A FEM buckling analysis most likely provides a result 

for a specific part of the structure. Instead you would like an individual check of each section. 

Therefore a new approach is needed to do a buckling check on finite element models.  

 

Part of the plated structure can be distinguished as a panel: A rectangular plate in between girders 

and with stiffeners on top. Buckling is a complicated phenomenon. Hence the behaviour of a panel is 

simplified by subdividing into several individual buckling modes of which the most important are: 

 

1. Unstiffened plate buckling  

2. Stiffeners local buckling 

3. Stiffeners flexural buckling 

4. Stiffeners torsional buckling 

 

Many properties and parameters influence these modes. The plate width and thickness have the most 

impact on the maximum allowable plate buckling stress. Conversely the length and stiffener 

dimensions have more impact on the critical beam-column buckling stress. Furthermore you have 

different load cases, imperfections, material properties, residual stresses and coupled effects between 

all of these parameters.  

 

The lack of a satisfying analysis is tried to resolve with a combination of FEM results and standards 

since the standards already take these details into account. They also work with the simplified 

subdivided sections; plate fields and beam-columns. Each with simplified input design stresses (fig 

0.1). The actual problem lies within how to accurately transforming the real stress results from your 

linear static FEM analysis into these design stresses. Only the ABS and DNV standards are considered 

for now. However the lack of an actual implementation method for these standards is what motivates 

this study and sets the research questions.  

 

 Is linearization/simplification of stress distributions on individual plate fields allowable and if yes 

then what should the implementation method be like? 

 Is it allowable to base the column buckling checks on stress results from beam elements only and 

if yes then what should the implementation method be like? 

 



 

 

 

 

Fig 0.1 Overview of the input design stresses for (a) plate buckling and (b) column buckling. 

 

The real stress distributions of a plate field are formed by the corner stress result from FEM plate 

elements along each edge. Linearizations of these stresses are used to form the distribution such as in 

the standards. Together with a simple average or maximum of the shear stress results, the 

transformed design stress is compared to the real stresses and hence can be concluded that the 

deviations are actually really small. To always get conservative results several adjustments on the 

linearization are attempted. Mostly they produce far more conservative results than desired. However 

several situations still lead to non-conservative transformations. The stress gradient effect is to blame: 

a difference between the real stress distributions on the opposite edges as where the standards 

require equal values for both edges. As a result of subdividing the real stresses into longitudinal, 

transverse and shear portions it can also be concluded that simply using the average of maximum 

shear stress is incorrect. The new proposal is to form the design stress after the subdivided portions 

have been formulated. Overall the implementation method is considered as allowable. 

 

The considered way of modeling is with plate elements for the plate fields and beam elements for the 

stiffeners. Hence the results from beam element stress recovery points may be sufficient to base the 

local stiffener web and flange stresses and the axial beam-column stress on. With a proper 

combination of stress recovery points of the beam elements an implementation method for the web 

and flange is formed. However the method is not sufficiently checked and hence no solid conclusions 

can be made.  

 

The approach for the beam-column also includes the associated plate fields. An extrapolation of stress 

recovery points is proposed and tested with varying results. Again the stress gradient effect produces 

problems with testing. A comparison of axial stresses reveals that the stiffeners have considerable 

different results than the associated plate fields at the point of attachment. This difference influences 

the results to such an extent that the present implementation method is insufficient. 

  



 

 

 

Summary (in Dutch) 

Grote modellen voor vliegtuigen, hijskranen, schepen of andere offshore bouwwerken  kunnen 

bestaan uit een grote hoeveelheid plaatconstructies. Knik komt veel voor bij dunne en slanke 

plaatconstructies. Het knikverschijnsel is een onstabiel gedrag in de constructie bij een drukbelasting. 

Normaal treedt er een plotselinge vervorming op wanneer er zich een kritische combinatie van 

drukspanningen voor doet.  Tegenwoordig worden de berekeningen voornamelijk gedaan met eindige 

elementen modellen. Maar niet elk model is ook geschikt om te gebruiken voor een knikanalyse in de 

zelfde software. Dit komt bijvoorbeeld doordat te weinig details zoals de onvolmaaktheden, 

materiaaleigenschappen of restspanningen in de praktijk onbekend zijn of te veel werk om te 

modeleren. De manier van modeleren en de fijnheid van de eindige elementen mesh maken de 

mogelijke problemen alleen maar groter. Daarom is een nieuwe aanpak van berekenen benodigd.  

 

Een onderdeel van een plaatconstructie is het paneel: een rechthoekige plaat tussen girders en met 

langs en dwars verstijvers ter versteviging. Knik is een ingewikkeld fenomeen en daarom wordt het 

paneel meestal bekeken in simpele individuele secties met elk zijn eigen knikvormen en de 

bijbehorende kritische belastingen. De belangrijkste knikvormen die daaronder vallen zijn: 

 

1. De onverstijfde plaatknik 

2. De lokale plaatknik van verstijvers 

3. De kolomknik van de verstijver-plaat combinatie 

4. De torsieknik van de verstijver 

 

Veel eigenschappen van de constructie hebben invloed op het knikgedrag. Zo zijn de dikte en breedte 

van de plaat vooral van belang voor de maximale belasting op individuele platen en zijn de lengte en 

de vorm van de verstijvers vooral van belang voor de kolomknik en torsieknik. Verder zijn de 

specifieke belastingcombinaties, onvolmaaktheden in de constructie, de materiaaleigenschappen, de 

restspanningen en de combinatie van al deze parameters allemaal van belang om te bepalen wat de 

maximale belasting op het ontwerp kan zijn.  

 

Een combinatie van lineair statische analyses en de normen is overwogen als een prima oplossing 

omdat dergelijke details daar al in zijn verwerkt. Ook de normen werken met de simpele individuele 

secties; plaatvelden en kolommen. Iedere sectie heeft zijn invoer van ontwerpspanningen (fig 0.1). 

Het probleem is echter het bepalen van deze werkelijke spanningsverdelingen en de transformatie 

hiervan naar de basis input ontwerpspanningen. De implementatie om de resultaten van een FEM 

analyse als input voor de normen te gebruiken ontbreekt. Op zoek naar de mogelijke implementatie 

kunnen twee onderzoeksvragen worden opgesteld. 

 

 

 



 

 

 

 Is linearisatie van spanningen op plaatvelden toelaatbaar en zo ja hoe zou de implementatie er 

dan uit zien? 

 Is het toelaatbaar de uniform axiale druk in een verstijver-plaat combinatie te baseren op balk 

element resultaten alleen en zo ja hoe zou de implementatie er dan uit zien? 

 

De werkelijke spanningsverdeling langs de randen van een plaatveld wordt gevormd door de 

hoekspanningen van de plaatelementen. Vervolgens wordt van deze spanningsresultaten een 

linearisatie gemaakt zodat je een lineaire verdeling krijgt zoals in de norm. Van alle schuifspannings- 

resultaten wordt het gemiddelde of maximum genomen. Deze implementatie kan worden vergeleken 

met de werkelijke spanningsverdeling door middel van lineaire eigenvalue analyses. Verschillen tussen 

de twee blijken erg klein maar niet conservatief. Daarom zijn enkele aanpassingen op de linearisaties 

onderzocht. Ze produceren voornamelijk veel te conservatieve resultaten maar er zitten nog steeds 

enkele uitzonderingen tussen. De spanningsgradiënt lijkt daarvan de boosdoener: ongelijke 

spanningsverdelingen op de tegenovergestelde randen van een plaat. Het onderverdelen van de 

werkelijke spanningen in aparte porties voor de spanningsgradiënt en de overblijvende schuifspanning 

maakt duidelijk dat de implementatie juist op deze onderverdeling gebaseerd zou moeten worden. 

Voornamelijk de gemiddelde of maximale schuifspanning van de originele spanningsresultaten is 

onjuist. In het algemeen lijkt de implementatie uitstekend bruikbaar. 

 

Modellen worden gemaakt met plaatelementen voor de plaatvelden en balkelementen voor de 

verstijvers. De werkelijke spanningen in de lijfplaat en flensen van de verstijver zijn daarom lastig te 

bepalen. Een implementatie methode is opgesteld met combinaties van de hoekresultaten in de balk 

elementen. De methode is te weinig getest om daadwerkelijk conclusies uit te trekken. 

 

Om de hoeveelheid data te beperken zou je kunnen proberen om alleen de resultaten van de balk 

elementen te gebruiken om de uniforme drukspanning in de kolom te bepalen. Omdat de 

bijbehorende plaatvelden wel degelijk belangrijk zijn is een nieuwe implementatie onderzocht die 

resultaten van de balk elementen extrapoleert. Opnieuw zorgt de spanningsgradiënt voor lastig the 

analyseren situaties. Gebaseerd op alleen de spanningswaarden kan worden geconcludeerd dat de 

implementatie onvoldoende is. Dit is vanwege een te groot verschil tussen de spanningen in de 

verstijver en de plaatvelden rond het gebied van bevestiging. 

  



 

 

 

List of symbols  

 

Geometric properties 

 

  Plate length / beam-column buckling length 

  Plate width 

  Plate thickness 

   Web height 

   Web thickness 

   Flange width 

   Flange thickness 

   Cross section area of only the associated plate in the beam-column 

   Cross section area of only the stiffener in the beam-column 

  Total cross section area of the beam-column 

   Effective width of the associated plate in the beam-column 

   Effective cross section area of the beam-column 

  Moment of inertia of beam-column about the y axis 

   Effective moment of inertia of the beam-column 

   Moment of inertia of stiffener about axis through centroid of stiffener and parallel to web 

   Polar moment of inertia of only the stiffener about center of rotation (Iy + Iz) 

   Torsional moment of inertia of only the stiffener (St. Venant torsion) 

   Radii of gyration 

Γ Warping constant 

  Eccentricity of the load 

   Distance between the attachment point of the stiffener and the shear center of the stiffener 

   Distance between the beam-column center and the outer plate fiber 

   Distance between the beam-column center and the outer stiffener fiber 

     Maximum from zp and zt 

  Section modulus 

     Minimum effective section modulus 

  Aspect ratio 

  Plate slenderness 

  Column slenderness 

  Adjusted column slenderness 

  Number of half waves in the longitudinal direction 

  Number of half waves in the transverse direction 

 

  



 

 

 

Material properties and strength parameters 

 

  modulus of elasticity 

  Poison ratio 

  Shear modulus 

   Yield strength of material 

   Euler buckling strength 

    Torsional buckling strength against an axial compression 

   Adjusted torsional buckling strength 

          Critical stress for buckling 

             Critical stress for buckling for the beam-column 

            Critical stress for buckling for the plate field 

               Critical stress for the tripping phenomenon 

     Ultimate stress at which failure occurs in post buckling stage 

                    

                       
Critical stresses defined by the standards 

  Buckling factor 

          The longitudinal stress in the beam-column 

         The longitudinal stress in the beam-column due to bending 

     The combined maximum stress in the structure 

                   

            
Input design stresses for the standards 

    Average stress result from the stress gradient effect 

  Value determining the stress gradient 

      Input design lateral pressure for the standards 

    Adjusted lateral pressure 

                Shear stress results in a plate field 

   torsional moment 

     vertical bending moment 

   Horizontal bending moment 

   Warping bending moment 

   Uniform longitudinal force 

   Horizontal shear force 

   Vertical shear force 

   Uniform stress in longitudinal direction 

   The maximum stress only resulting from the bending moment 

   Shear stress over the associated plating in the beam-column 

  Safety factor defined in the standards 
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1. Introduction 

The future aim for finite element modeling software packages would be to automatically design the 

structure, or at least as far as possible. You would make the plates and apply load groups and the 

program would place stiffeners and girders in an optimal way (fig 1.1). One press on a button would 

finish the model such that it is stiff enough, easy to produce and optimal in material usage. But before 

all of that it is first necessary to know when exactly the structure is indeed stiff enough.  

 

 

Fig 1.1 Example of different stiffener placements in search of the optimal design. 

 

Big models for planes, cranes, ships or other kind of offshore structures can consist of a large amount 

of panels. The linear buckling analyses in finite element packages of specific parts of a structure cost a 

lot of engineering time, let alone the non-linear analyses. Even worse, such an analysis over the whole 

model is almost always useless since it provides only insight in the lower bound buckling factor and of 

course in the area that you are not interested in. Therefore an individual check of each plate field is 

required which is not only a lot of engineering work but also brings more uncertainties in the 

calculation. What are the stress results that should be applied? How fine does the mesh size have to 

be? What are the boundary conditions? What kind of imperfection should be applied? An engineer will 

need considerable knowledge of the subject in order to evaluate the design.  
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Fig 1.2 This analysis is to calculate buckling stiffness of the heavily stiffened panel section top left but 

the example does not give interesting results. A serious amount of precautionary measures as extra 

constraints will be needed. 

 

You can do both linear and nonlinear buckling analysis in a finite element software package but the 

present study considers doing a buckling check in a FEM software program specifically according to a 

standard. Customers generally ask the engineer to use a standard to evaluate a design. Validating if 

the design meets the requirements of a standard is a simple check. However the method to extract 

results from the finite element analysis and using them for the check in the standard seems to be 

rather non-existent for general FEM programs such as Femap. Two specific standards [3] [4] are 

chosen for an in-depth evaluation.  

 

 American Bureau of Shipping (ABS) Guide for buckling and ultimate strength assessment for 

offshore structures provides formulation to assess buckling criteria of plates and stiffened panels.  

 Det Norske Veritas (DNV) Recommended practise DNV-RP-C201: Buckling strength of plated 

structures is a buckling code for stiffened and unstiffened panels of steel. 

 

see figure 

1.3 and 1.4 
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Fig 1.3 A possible buckling mode as a follow-up on figure 1.2. Whether the boundary conditions are 

correctly included is unreliable and unlikely. 

 

Fig 1.4 Same as figure 1.3 only with a different buckling mode. 

 

Hence, the goal of the present study is not so much to redefine the buckling problems and 

phenomena but to set up a good implementation method to apply these standards to a finite element 

model. That includes fine meshed models with the use of beam elements for the stiffeners. In order to 

come to an implementation, an understanding of the influencing parameters is needed, hence the 

modes and problem areas are studied first. A more extensive description of the research questions is 

given in chapter 4. 

 

Next to making the buckling check according to the standards accessible this study ultimately aims to 

provide a tool to make constructions less overdimensioned. When executing a check becomes rather 

simple, a quick and clarifying insight in your design will give the opportunity to see which parts in the 

model can actually do with less material.  

 

This project consists of mainly the problem analysis, the formulation of new or improved methods 

and, as far as possible within the time limit, the validation of those methods. All for stiffened panels 

(fig 1.5) including plate fields, stiffeners and girders as defined below in chapter 2. That includes an 

in-depth analysis of all buckling modes and parameters involved described in chapter 3 and 5. And the 

aim of the project, to provide an implementation method, is described in chapters 8, 9 and 10.  
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Fig 1.5 Definition of the Panel [5]. 

 

The design and validation of the method are the goal of the project such that implementation will 

result in a buckling check of the panel. The method itself describes the process in theory and includes 

an implementation up to the point necessary for validation checks. SDC Verifier will provide help. Only 

buckling analyses in the finite element software program Femap are performed for comparison.  

 

The project is assigned by Femto Engineering and in cooperation with SDC Verifier and the TU Delft. 

 

 

 

Student:   B. Aberkrom 

Supervisor (TUD): ir. W. van den Bos 

Supervisor (TUD): prof. ir. J.C. Rijsenbrij  

Supervisor (Company): ir. A.T. Naatje 

Supervisor (Company): ir. T.E. Santegoeds 
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2. The buckling phenomena 

Within mechanical engineering you have structures designed using limit states. Ultimate, damage, 

fatigue or service limit states to name a few. Accurate tools are required to predict the strength of the 

structure and to assess the forces at which its limits are reached. Buckling is one of these limits. The 

word buckling literally means loss of the stability of an equilibrium configuration, without fracture or 

separation of the material or at least prior to it. Usually, the buckling phenomena observed in 

compressed conditions take place rather suddenly and may lead to catastrophic structural failure. 

Therefore it is important to know the buckling capacities of the design in order to avoid premature 

failure. Failure could occur due to excessive loads, poor design or construction errors. In most cases 

at the point of instability some sort of plastic hinge arises somewhere in the construction which results 

in excessive deformation. Figures 2.1 and 2.2 give to examples of failures where you can clearly see 

or imagine the plastic hinges. 

 

 

Fig 2.1 The hull of the Prestige has buckled after first damage which caused severe flooding and thus 

made the construction overstressed by the flooded load condition. 

 

Fig 2.2 Two ship-to-shore gantry cranes at Felixstowe’s Landguard Terminal after a ship crashed into 

them. 
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The buckling problem becomes increasingly important since structures are more and more designed 

on their critical limits in order to reduce the use of material and/or reduce the weight. New and better 

materials make new designs possible and lead to a shifting towards the buckling limits. And problem 

areas from the static analysis do not necessarily indicate where the buckling problem areas are. 

 

In general the buckling strength analysis is based on the characteristic buckling strength for the most 

unfavorable buckling mode. Normally the critical buckling stress is calculated and the load combination 

is defined. The critical stress is then compared to the stress results from the load case applied. The 

difference defines the buckling factor.  

 

        

         

     {1} 

 

Stresses due to applied loads contain in-plane results, bending moments and shear stresses. The 

definition of correct load cases is already a study on itself but for now we are interested in the critical 

stress just so we can say something about buckling. The offshore field can provide numerous studies 

on for example the ultimate moment in sagging or hogging that a hull may sustain. Figure 2.3 

illustrates a random load case on a ship which results in stress results that could maybe lead to 

buckling problems. 

 

 

Fig 2.3 Load case with high torsional loads [6]. 
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2.1 Column buckling 

There are many types of compression members, the column being the best known. Columns are 

usually thought of as straight vertical members whose lengths are considerably greater than their 

cross-sectional dimensions. An initially straight column, compressed by gradually increasing equal and 

opposite axial forces at the ends is considered first. If the column is “short”, the applied forces will 

cause a compressive strain, which results in the shortening in the direction of the applied forces. 

Under incremental loading, this shortening continues until the column "squashes". However, if the 

column is “long”, similar axial shortening is observed only at the initial stages of incremental loading 

(fig 2.4). Thereafter, as the applied forces are increased in magnitude, the column becomes 

“unstable” and develops a deformation in a direction normal to the loading axis.  

 

Fig 2.4 “short” vs “long” columns [7]. 

 

Buckling behaviour is thus characterized by deformations developed in a direction (or plane) normal to 

that of the loading that produces it. When the applied loading is increased, the buckling deformation 

also increases. Buckling occurs mainly in members subjected to compressive forces. If the member 

has high bending stiffness, its buckling resistance is high. Also, when the member length is increased, 

the buckling resistance is decreased. This is schematically illustrated in figure 2.5. This analytical 

solved critical load     
   

 
  is hence easily seen to be influenced by the length and the bending 

stiffness. Thus the buckling resistance is high when the member is “stocky” (i.e. the member has a 

high bending stiffness and is short) conversely, the buckling resistance is low when the member is 

“slender”.  

 

Fig 2.5 schematic illustration of the buckling problem. [8] 
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Structural steel has high yield strength and ultimate strength compared with other construction 

materials. Hence compression members made of steel tend to be slender. Structures fabricated from 

steel plating and subjected to compressive stresses also experience local buckling of the plate 

elements as discussed further in the subsequent chapter. 

 

Stiff structures carry their design loads primarily by axial or membrane action, rather than by bending 

action. Their response usually involves very little deformation prior to buckling. The formula derived 

by Euler for ideal straight columns which gives a very stiff response to a compressive axial load. When 

a critical load is reached it will bend suddenly and exhibits a much lower stiffness. The Euler’s buckling 

stress σE is: 

   
    

   
 {2} 

The critical buckling load becomes 

         {3} 

This formula is subsequently used to define the maximum compressive stress at the extreme fiber 

which reaches the yield strength of material. The same critical stress is therefore considered to initiate 

buckling. Theoretically the maximum stress in the column can be determined by realizing that it is 

caused by both the axial load and the bending moment. A beam-column may thus fail by reaching 

either the buckling strength as governed by weak axis bending or by reaching the yield material 

strength if the column is stocky. The simplified axial stress and bending stress in a beam-column can 

be formulated as: 

                     
 

 
 

   

 
 {4} 

 

Failure is assumed to occur when a plastic hinge is formed. Since the most compressed portion of the 

structure are the flanges or the plate and the rest cannot take that much more bending load, the 

failure is assumed to happen when the cross section reaches the yield (fig 2.6b) or the entire section 

in the structure loses its flexural stiffness (Fig. 3.30).   

 

 

Fig 2.6 Stress distributions with pure bending. 

 

A fairly good amount of parameters influences this behaviour of columns. Eccentric or in-plane loads, 

initial deformation in the geometry or torsional effects are just some of the possibilities (fig 2.7 and 

2.8).  
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Fig 2.7 Difference between (a) eccentric axial loads and (b) imperfection due to initial deformation. 

 

 

Fig 2.8 Overview of lateral torsional buckling. 

 

You can make the buckling phenomenon as complicated as you want. Combined and coupled 

distortions form a substantial amount of relations; two examples are given in figures 2.9 and 2.10.  

 
Fig 2.9 Distortion in a bend beam due to shear forces. 

  

http://www.google.nl/url?sa=i&source=images&cd=&cad=rja&docid=qKveOqL-DcXYqM&tbnid=PwdcIyy46CqmtM:&ved=0CAgQjRwwAA&url=http://www.fgg.uni-lj.si/kmk/esdep/master/wg07/l0520.htm&ei=Tiu3Uf3vDsS1PdnpgdgD&psig=AFQjCNGdLFtwUK2hQ89AJVOZDlmqA7TrWw&ust=1371045070284746
http://www.google.nl/url?sa=i&source=images&cd=&cad=rja&docid=qKveOqL-DcXYqM&tbnid=tSecZfS0BnvajM:&ved=0CAgQjRwwADgj&url=http://www.fgg.uni-lj.si/kmk/esdep/master/wg07/l0520.htm&ei=cCu3UcKsAc29PciogKAK&psig=AFQjCNHbiuZ7CpbPC5h8nFraFpwi7VhHfg&ust=1371045104053243
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2.2 Plate buckling 

If you change the column from stocky towards thin and wide that would give plate buckling instead of 

column buckling. The mechanism of plate collapse is complex and does not usually occur at the 

theoretical Euler elastic buckling stress as mentioned above. Collapse of a relatively stocky plate 

occurs before the critical elastic buckling stress is reached. Conversely, a relatively slender plate does 

not collapse at the critical buckling stress and has additional strength in the post buckled region as 

can be seen in figure 2.13b.  

 

This is due to the boundary conditions at the unloaded edges which prevent the portions of the plate 

close to the boundaries from deflecting. Only the center region of the plate deflects and therefore 

partially escapes the compressive load. Local yielding in the middle of the plate causes a new non-

uniform stress redistribution meaning no more additional load can be supported in this region. The 

outer portions of the plate provide additional strength in the post buckling region. As the load 

increases, the maximum stress (average equivalent stress given by the von Mises failure criterion) in 

the plate sides eventually reach the material yield and failure occurs.  

 

The theoretical elastic buckling stress of more stocky plates is relatively close to the yield stress. The 

mechanism of collapse is therefore somewhat different, as the name stocky implies more like column 

buckling. It is significantly more influenced by initial imperfections in the plate. Initial deflections are 

magnified as the applied load increases, causing a loss of stiffness. Since the ultimate strength of the 

slender plate lies beyond the buckling, the local initial imperfection has still effect on its particular 

buckling mode but less effect in general. 

 

The elastic buckling stress, σcr, is defined according to the solution of the Euler differential equations 

governing the buckled shape of a plate. The buckling limit stress for long flat rectangular plates with 

simply supported edges can be approximated with some adjustments to equation seen above. 
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  {5} 

 

Due to the wide plate dimension compared to a regular column the behaviour is firstly changed for the 

distortions in the transverse direction. A column will bend along the transverse axis as a reaction at 

the bending along the axial axis and vice versa (fig 2.10). A combination of the moment-displacement 

relationships and Hooke’s law bring forth the influences of the poison ratio. And since the (unloaded) 

edges are generally constraint, the plate will be less dependent on the length but instead more 

dependent on the width. 
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Fig 2.10 The material does not only bend in one direction but there is a curvature in the other 

direction as well. The cross section is not rectangular anymore either. This behavior is the effect of 

the poison ratio. 

 

Applying the two transformations will result in: 
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  {6} 

 

The variables m and n are the number of half waves in the longitudinal and transverse directions. The 

flexural rigidity of the plate is defined as:  

 

   
   

        
 {7} 

 

The coefficient k is a function of the boundary support, aspect ratio and the buckling shape of the 

plate. 

 

Fig 2.11 Typical behaviour of plate buckling. 
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Fig 2.12 Difference between column and plate buckling. 

 

Fig 2.13 (a) Column and (b) plate strength curves. 

 

Fig 2.14 Load versus out-of-plane displacement curves for the (a) column and the (b) plate.  
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2.3 Panel: the part of interest 

Plated structures are widely used in many engineering structures. Most of these designs are poor in 

resisting compressive forces with their slender dimensions. A construction generally consists out of 

plates, stiffeners and girders. The latter two consist of the flange (on top) and the web (between the 

plates and the flanges). The plate field is the part in between the stiffeners. Within structures you can 

also define individual panels. A panel is the field in between major supports known as the very stiff 

longitudinal and transverse girders. The girders are assumed to be much stronger than stiffeners. 

Generally, a panel is part of the structure which contains a big plate with on top of that all the 

stiffeners. The panel may for example be part of beams, box girders, bulkheads, pontoons, hulls or 

integrated plated decks.  

 

Fig 2.15 Definition of a panel (part of a plated structure). 

 

Stiffeners fulfill local and global strength functions. At the local level they are effective in maintaining 

the stiffness and hence the integrity of the structure under lateral and in-plane loads. They prevent 

excessive deflection. Adding regularly spaced stiffeners is an effective way of improving the panel 

strength economically using a minimum of additional structural weight.  

 

This report will not go too much in-depth into diverse models other than plates, stiffeners and plate-

stiffener combinations although besides the defined panel there are of course a lot more different 

structures made out of plates like corrugated panels, brackets, web stiffeners or other perpendicular 

adjacent (stiffened) panels. Combinations of these with stiffened panels are frequent in real structures 

but the buckling phenomena is complicated to such an extent that for now these things are out of the 

scope of this report.  
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Fig 2.16 Orthotropic panel geometry and coordinate system. 

 

The same counts for plate fields with variations in thickness, holes, cut outs, non-rectangular plates, 

cracks or other irregularities and anisotropic behaviors including composite materials. Besides the fact 

that it is out of the scope of the project, the standards do not or hardly specify any methods about it 

and therefore it becomes difficult to compare results. 

 

 

Fig 2.17 Example of a structures that are more difficult to check in detail on buckling [9].  
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3. Different buckling checks 

The plates, stiffeners and girders can buckle in diverse ways. Firstly each plate field in between its 

support/stiffeners can buckle on its own. Secondly every of these plate sections has different buckling 

modes. And thirdly combinations of plates and supports have their separate buckling modes and 

parameters. Different buckling modes can be seen in fig 3.1 and include: 

 

1. Unstiffened plate buckling limit 

2. Unstiffened plate ultimate strength 

3. Stiffeners local buckling limit 

4. Stiffeners flexural buckling limit 

5. Stiffeners torsional buckling limit 

6. Lateral load limit 

7. Stiffened panel grillage buckling limit 

 

 

Fig 3.1 Buckling modes within a panel. [10] 

 

In short you could categorize the modes in three groups. The individual plate fields, the stiffener-plate 

combinations which you could call beam-columns and the girder-panel combination. In figure 3.2 the 

most significant cross sections are outlined in blue. Generally the minimum result of all these buckling 

factors will define the critical load for the complete panel.  

 

When you try to search for a specific mode it becomes increasingly complicated. The different modes 

influence each other and are coupled in more than one way. Hence, a random buckling mode can 

show more types of buckling. Two different combinations from random analyses are illustrated in 

figures 3.3 and 3.4. 
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Fig 3.2 Illustration of the plate and column concept in a real plated structure. 

 

 

Fig 3.3 A combination of plate buckling and torsional stiffener buckling. 
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Fig 3.4 A combination of plate buckling, flexural stiffener buckling and grillage buckling. 

 

 

Fig 3.5 A more detailed illustration of difference between stiffener buckling modes:  

(a) local flange buckling, (b) local web buckling and (c) stiffener torsional buckling. [11]  
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3.1 Unstiffened plate buckling limit 

The plate field in between stiffeners or other adjacent supporting structures is generally checked as an 

individual section. Web and flanges are plate fields as well but they are considered as local buckling of 

stiffeners discussed below. Theoretically in a perfect straight plate the in-plane normal stresses and 

shear stresses will rise with increasing loads until bifurcation takes place and a sudden deflection 

occurs. In practice imperfections and (eccentric) applied loads will lead to plate bending up to a 

critical point when plate behaves non-linear. This critical point is the plate buckling limit.  

 

 

Fig 3.6 Overview of plate fields within the stiffened structure, each with its own design stresses to 

define: (a) plate field in between stiffeners, (b) web of stiffeners and (c) the flange of stiffeners. 

 

There are two distinct parameters for plate fields, the aspect ratio α and the plate slenderness β. The 

aspect ratio is defined by the length L and width s of the plate, namely L/s. Plates in stiffened 

structures are usually bounded by relatively closely spaced longitudinal and widely spaced frames. The 

plate slenderness is calculated by dividing the width by the plate thickness t, s/t, and other 

parameters discussed in chapter 5.  

 

It is well known that the elastic buckling of a simply supported plate under uniform compression forms 

a pattern of approximately square sinusoidal half waves along the plate length. The first eigenmode 

therefore normally forms a shape whereby the length of a longitudinal half wave is approximately 

equal to the width of the plate. Theoretically the number of half waves n equal the aspect ratio α. 

That means α=n or α=n+1 with non-integer aspect ratios. If the in-plane stresses do not form a 

uniform compression but also in-plane bending moments and/or shear stress, the buckling modes 

change shape accordingly (fig 3.9 and 3.10). In general a combination of the individual eigenmodes 

will occur. 

 

Fig 3.7 The simply supported and free edge boundary conditions with distinct buckling modes. [12] 
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Fig 3.8 Third eigenmode for a longitudinal uniform compression. 

 
Fig 3.9 Fifth eigenmode for longitudinal in-plane bending moments. 

 

Fig 3.10 First eigenmode for uniform in-plane shear forces. 

 

Several other parameters such as the boundary conditions (fig 3.7) also influence the behaviour. 

Lateral pressure will most definitely influence the buckling mode and the in-plane axial stresses. Plate 

fields are actually allowed to exceed their buckling limit as long as the ultimate strength is met. 

However, whether the plate will fail the buckling limit or not does also influence the other buckling 

checks for neighboring structures like stiffeners or the next side of a box girder.  
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3.2 Unstiffened plate ultimate strength 

Permanent buckles are not accepted, but a thin elastic plate does not fail soon after it buckles, 

meaning that the plate exhibits stable post buckling behavior. By ensuring the maximum membrane 

stresses within a panel to stay below the yield stress condition (von Mises), permanent sets and 

buckles are prevented. This check has no meaning if the specific plate field already fails the buckling 

limit check discussed above and can be skipped in this case. But otherwise they can support loads 

significantly greater than its elastic buckling load without deflecting excessively. This is in contrast to 

the behavior of a compressed column section. Figure 3.11 below shows the transition from the 

buckling limit to the ultimate strength for a column. The plate fields act as sub sections of the model 

and fold in a pattern until at some point no additional strength can be retained and the yield strength 

is reach somewhere along the edge of one of the fields.  

 

 

Fig 3.11 (a) Buckled shape (b) Collapsed shape. [13] 

 

This post-buckling behaviour of a thin plate is due to the fact that the deflected shape cannot be 

developed from the pre-buckled configuration without a redistribution of the in-plane stresses within 

the plate. The plate will cease to behave linearly. Slender plate structures under compressive loading 

will tend to redistribute the present stresses to the edges, as indicated in Figure 3.12. This 

redistribution, usually favors the less stiff portions of the plate, and causes an increase in the 

efficiency of the plate.  
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The post-buckling effect is greater in plates supported along both longitudinal edges than it is in 

plates which are free along one longitudinal edge. This is because the deflected shapes of the latter 

have much less curvature than the former and the redistributions of the in-plane stresses are not as 

pronounced. In addition it is not possible to develop any lateral in-plane stresses along free edges. 

Therefore it is common to ignore any post-buckling reserves of slender flange outstands.  

 

The redistribution of the in-plane stresses after buckling continues with increasing load until the yield 

stress σ0 is reached at the supported edges. Yielding then spreads rapidly and the plate fails soon 

after.  

 

Fig 3.12 Stress distribution: in the pre-buckling range (a) and in the post-buckling range (b). 

 

Since the determination of the ultimate strength of a thin flat plate is difficult, another method has 

been found. This method is called the effective width concept and can lead to satisfactory 

approximations. According to this concept, the actual ultimate stress distribution in a simply supported 

plate is replaced by a simplified distribution for which the central portion of the plate is ignored and 

the remaining effective width se carries the yield stress σ0. It was proposed that this effective width 

should be approximated by 

  
 

 √
   

  

  
    

  

 {8} 

 

which is equivalent to supposing that the ultimate load carrying capacity of the plate σ0*se*t is equal 

to the elastic buckling load of a plate of width se. Alternatively, this proposal can be regarded as 

determining an effective average ultimate stress σult which acts on the full width s of the plate. 

Experiments on real plates with initial curvatures and residual stresses have confirmed the qualitative 

validity of this effective width approach, but suggest that the quantitative values of the effective width 

should be obtained with a correction. 

  
 

  √
   

  

 {9} 
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Fig 3.13 The redistributed post-buckling stress variation from an initial uniform stress distribution. 
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3.3 Stiffeners local buckling limit 

Webs and flanges of stiffeners or girders are plate fields just like discussed above for the unstiffened 

plate buckling limit. They can be checked with the same methods. In general the standards make the 

assumption that stiffeners are designed correctly and stiff enough to resist local buckling. Simplified 

stiffness checks and stiffener proportions checks are therefore incorporated. This mode specifically 

implies a deformation as in figure 3.15b and no yielding or crippling problems. Note that local buckling 

and stiffener tripping as discussed below are two fundamentally different checks. Figure 3.14b clearly 

shows flange buckling however 3.14a does not clearly show web buckling as stated by the reference. 

Instead it has more resemblance with flexural and torsional stiffener buckling modes.  

 

 

Fig 3.14 (left) Local web buckling and (right) local flange buckling. [14]  

 

 

Fig 3.15 Failure modes at patch loading. [3] 

 

Whether the plate will pass the buckling check or produce substantial redistributed stresses has an 

impact on the stiffeners and vice versa: the local buckling of webs may have an influence on the 

plates, see fig 3.16. Their influence can be either positive or negative depending on the buckling mode 

and direction of buckling. Depending on the type of stiffener, the web or flange has a free edge. 

Remember from the previous section that these plate fields will not need an ultimate strength check. 

 

Fig 3.16 Effect of web buckling.  

http://www.google.nl/url?sa=i&source=images&cd=&cad=rja&docid=DFGbCHhN9f4b6M&tbnid=91B6lvM4N7VISM:&ved=0CAgQjRwwAA&url=http://www.bgstructuralengineering.com/BGSCM13/BGSCM006/BGSCM00603.htm&ei=sW6UUpWhFuGxygO30oCoBw&psig=AFQjCNFrWD0nCth1mW2PS-pa0JS-CbvDUg&ust=1385545777405139
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3.4 Stiffeners flexural buckling limit 

The beam-column buckling is executed with the stiffener and part of the associated plate. Half the 

width of the adjoining plates is joined together with the stiffener itself to form a beam (fig 3.17). The 

standards and most theory consider such a part of the model so that it can be seen as an individual 

section. This section includes the stiffener and associated plating within an unsupported span. 

Accordingly, these methods check the beam-column on stresses due to axial compression and bending 

moments. 

 

Fig 3.17 Illustration of the stiffener together with part of the associated plates. 

 

The buckling modes depend on the bending resistances, the buckling length and the boundary 

conditions. The initial buckling is generally in the direction for which there is a weak bending stiffness, 

normal to the plate as shown in figure 3.18a. The stiffeners are placed on a plate with a reason. 

Stiffeners and girders work in much the same way but only with different buckling lengths.  

 

 

Fig 3.18 An arbitrary buckling mode in the (a) ‘weak’ bending direction  

and (b) ‘strong’ bending direction. [15] 

 

The two distinct parameters for beam-columns are the length L and the column slenderness λ. The 

longer and/or more slender columns are more prone to buckling. The length need to be carefully 

defined as the standards have corrections for when the end supports include brackets etc. Generally 

those details are not included in the model. This also means that you miss this extra stiffness in the 

stress results. Therefore, as long as the model is not that detailed, the buckling length should be 

manually decreased following the formulations in the standards. The column slenderness will follow 

from the dimensions.  
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O.F. Hughes and J.K. Paik give a clear explanation of effects due to lateral forces in chapter 3.8 of 

Ship Structural Analysis and Design [16]. Simple beam theory assumes that in any type of box girder, 

the stress should be constant across the flanges. However, in most cases the bending is not caused 

by the application of a pure couple to the ends of the beam. Rather, it is caused by lateral loads, and 

these loads are absorbed by the webs of the beam and not by the flanges. That is even for the case in 

which the lateral loads may initially act on the flanges such as pressure on the top or bottom. They 

are immediately transferred to the webs in the structure. The plating of the flanges can only take 

longitudinal in-plane loads if small local loads are not taken into account. Therefore the vertical loads 

act on the webs and cause them to deflect to some radius of curvature, thus inducing maximum strain 

in the flanges (fig 3.20). Since they carry maximum strain, and hence maximum stress, the flanges 

make the largest contribution to the bending stiffness. But, it is important to note that this maximum 

strain comes initially from the webs and only reaches the flanges by shear. This is illustrated in figure 

3.19.  

 

 

Fig 3.19 Shear lag in box girders.  

 

At the upper edge the elongated web pulls the flange plating with it and this sets up shear stresses in 

the flange. The bending and shear stresses cause stretching and in-plane distortion of the flange. This 

phenomenon is termed the shear lag. Shear forces may also originate from torsional effects (fig 3.21). 

Shear lag occurs in any wide-flanged section. Conversely, there is no shear lag effect in pure bending. 

The exact distribution of stress in a wide-flanged section can be found using the mathematical theory 

of elasticity but this analysis is too complex for design calculations. 
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Fig 3.20 Squeezing of the web due to bending of the girder. [17] 

 

 

Fig 3.21 Warping stresses due to non-uniform distortions. 

 

The shear lag effect in general varies from point to point along the length. Shear lag is of importance 

in beams having very wide flanges and shallow webs, such as aircraft wings. In steel box girders the 

effect is smaller. Even in box girder bridges which have large concentrated loads due to the point 

supports the effect is small. The magnitude of the shear lag effect dependent on the aspect ratio, the 

distribution of lateral loads, the relative proportions of web and flanges and the type of stiffener. The 

simple beam theory: 

     
       

 
 {10} 
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is difficult to apply due to the shear lag. Rather than using a mean value of the stress distribution as a 

way of allowing for shear lag, it is preferable to retain the value of the maximum stress σmax. 

Therefore, generally an effective width method is used which is illustrated in Fig 3.22 and is defined 

as:  

 

“The width of plating which, when used in calculating the moment of inertia of the beam-column 

section, will give the correct maximum stress σmax using simple beam theory. Also, the effective width 

must be such that the total longitudinal force in the flange is equal in the actual and simplified cases.”  

 

Fig 3.22 Overview of a plated structure with an illustration of the effective width method. 

 

The effective width of the adjoining plates can be seen as the part that collaborates in the strength of 

the stiffener. These widths should then be used in calculating the effective moment of inertia Ie of the 

section, and hence the maximum bending stress in the beam. The method redefines the formula to: 

 

     
       

  
 {11} 

 

The most important parameter that determines effective width of plating is the ratio of flange width s 

to the span length L. A low L/s ratio results in a small ratio of se/s. But other parameters are available 

as well for calculation of se within different standards. The ABS, for example, reduces the effective 

width of the plate when the associated plates themselves do not satisfy the unstiffened plate buckling 

limit.  

 

Note that the Euler’s buckling stress σE is also influence by the same phenomenon. The formula (eq 2) 

seen in the previous chapter therefore changes to: 

 

   
     
   

 
 {12} 

 

with use of both the effective moment of inertia and the effective area of the beam-column.  
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3.5 Stiffeners torsional buckling limit 

Stiffeners are generally open thin-walled cross-sections and therefore have relatively small torsional 

stiffness. A stiffener may buckle by twisting (or rotating) about its line of attachment to the plating. 

This is referred to as the torsional buckling or tripping (fig 3.23). Tripping is usually plastic and 

catastrophic. The phenomenon is not the same as the column or beam-column type of buckling we 

have discussed above. It originates from torsional bending moments or from warping.  

 

Torsional bending moments may be due to eccentric lateral forces on the stiffener in horizontal or 

vertical direction. Or due to the associated plates that do not satisfy the unstiffened plate buckling 

limit. When the adjoining plates buckle they may produce a torsional moment on the stiffener around 

the welding line as illustrated in fig 3.24. This is extra complicated since the second cause also 

depends on the particular buckling mode which the adjacent plates have. While if warping is the 

cause, then the adjacent plates may also rotate to some extent to accommodate the stiffener rotation. 

Notice in fig. 3.27a that the rotation of the plate fields in between stiffeners can be arbitrary. 

Basically, the torsional buckling says something about the rotation and translation of the cross section. 

 

 

Fig 3.23 Illustration of torsional buckling (tripping). 

 

Torsional buckling should not be confused with local web buckling. The disadvantages of the torsional 

buckling limit is that when a structure surpasses it, there is no additional ultimate strength left and 

immediate collapse of the stiffener is inevitable if the remaining structure also fails.  

 

 

Fig 3.24 Buckled plates and a corresponding rotation of the stiffener. [18] 

 

Shear stresses are generated when a thin-walled beam is subjected to an applied torque or as overall 

result from shear lag as discussed in the previous section. In turn, these shear stresses cause 

deformations of the cross-section. Flanges undergo in-plane longitudinal distortion and therefore cross 

sections do not remain plane. This distortion is commonly referred to as warping of the cross section 
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(fig 3.25). The stresses developed are illustrated in figure 3.26. When these deformations are not 

allowed to develop then the result can be a significant alteration of the torsional behavior. An example 

can be an axial movement restriction of end conditions. It occurs especially in the case of open 

sections such as stiffeners. 

 
Fig 3.25 Illustration of the warping phenomenon. 

 

 
Fig 3.26 Visualization of torque and warping stress results [19] 

 

 

Fig 3.27 (a) Torsional buckling, (b) plate buckling and (c) grillage buckling. 
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A slightly simplified solution for stiffener tripping is presented in Hughes and used in the DNV. The 

result is one for stiffener tripping due to a uni-axial compression: 

 

                             ( 
   
  

) (  
      

   
 

) {13} 

 

The key to minimizing the possibility of this torsional buckling mode is to maximize the torsional 

stiffness GIt/Ip of the stiffener. Note that the shear modulus or modulus of rigidity G is already high for 

steel. Therefore, the best way to minimize tripping is by maximizing the polar moment of inertia It/Ip 

of the stiffener.  

 

Taking a look at the second half of the formula, you should be able to see that the design goal to 

prevent tripping is to desire a stiffener to be short (small Ip) and wide (large Iz). Figure 3.28 illustrates 

the idea however notice that this is the opposite from the desire to maximize vertical bending stiffness 

which is the main purpose of the stiffener. Therefore, designing a stiffener to resist tripping is partially 

a compromise with the resistance to vertical bending. Additionally the webs and flanges should not 

get too wide for that may lead to local buckling. 

 

 

Fig 3.28 Stiffener design options for torsional stiffener buckling. [20] 

 

Another solution is to install tripping brackets at several spots along the length of the stiffener to 

reduce the buckling length and increase the warping resistance and thus increase the tripping 

resistance. 
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3.6 Lateral load limit 

In real practice the lateral pressure is a load that has its influence on a structure such that it should be 

a key parameter on all the previous buckling modes. Still, the unstiffened plate buckling limit and the 

unstiffened plate ultimate strength do not depend on the lateral pressure according to the ABS while 

the DNV only has some kind of reduction factor. For compensation there is a lateral load limit check in 

the ABS, but it is strange that standards are so different from each other. One should think that the 

lateral load at least should be an important influence. It is after all one of the key parameters that 

give rise to in-plane normal stress results as shown in figure 3.29.   

 

 

Fig 3.29 Influence of in-plane stresses and the relationship with the lateral pressure. 

 

An explanation of influences at the shear stresses has been made above already but there are also 

influences at the local buckling. Besides the in-plane stresses there are out of plane bending moments 

as well. The local buckling of the plate influences the behaviour of the supporting structure. Figure 

3.30 illustrates that the load may induce a change in the constraints from simply supported to a more 

clamped situation. This can have a positive result on the buckling resistance although it may also have 

an effect on the shear lag which would be more of a disadvantage.  

 

 

Fig 3.30 Schematic of the axial compressive buckling patterns of a plate (a) Without lateral pressure, 

(b) with a relatively small amount of lateral pressure and (c) with a relatively large amount of lateral 

pressure. 

 

For more details about the lateral load limit, see the standards or more specific literature. The present 

study will be restricted to the previous five buckling modes, a considered choice to limit the amount of 

parameters while keeping the most common real live situations.   
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3.7 Stiffened panel grillage buckling limit 

The global buckling factor of a panel seems to count as the minimum from all previous checks. 

However, besides individual buckling modes the structure could also buckle in a combined overall 

direction as seen in figure 3.32. Coupled structures would highly probable be very influencing as well 

(fig 3.31).  

 

Fig 3.31 Example of coupling between stiffened panels. 

 

Each separate section, plate fields and beam-columns, may reach a relatively small, non-catastrophic 

deflection while the combined deflections of all sections see to an excessive amount of deflection in 

the entire panel. Thus elastic or inelastic buckling of an entire panel made up of several frame bays. 

This is also known as “global buckling”, “gross panel buckling”, or “overall grillage buckling”. The 

general solution is formed by analyzing if the major supports of the panel are sufficient by checking 

whether girders pass their column buckling and tripping buckling analyses. And considering the panel 

as an equivalent stiff plate field with average in-plane compressions delivers a second available check.  

 

The first approach is doable since girders can be checked in the same manner as stiffeners. However, 

the definition of a girder, and what sets it apart from stiffeners, is not clear. Figure 3.22 illustrates an 

effective width for girders but not only the plate but also stiffeners are within this area, hence these 

should be an influencing parameter in the calculations. Neither do the dimensions clearly state when a 

supporting structure should be considered a stiffener of a girder. The buckling length is part of this 

choice as well. A small literature study did not provide suitable answers so further research should be 

carried out. 
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Fig 3.32 Several gross panel buckling modes. Notice the analysis done by S. Benson in which buckling 

of the whole deck may substantially reduce the total critical load. 
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4. Problem definition 

The studies on the ultimate strength of plated structures have continued over several decades and 

significant progress has been achieved. However, there are some aspects of this subject unresolved. 

Research efforts in the ultimate strength of plated structures are mainly devoted to: development of 

analytical formulas, development of simplified methods, assessment of effects of initial imperfections 

and assessment of effects of fatigue cracks. However little to none research is known in which the 

development of simplified methods is used for implementation of the standards. Which is weird since 

those are generally accepted assesment methods.  

4.1 How to check buckling  

Analyzing whether a plated structure is vulnerable to buckling is a complicated task. Instability of 

structures under a wide variety of loading conditions has been extensively studied using numerous 

approaches. Analytical approaches to predict the strength include design charts, empirical approaches, 

the beam column method, deflection theory, minimum potential energy formulations and standards. 

Not surprisingly, the last approach is a combination of many of the other approaches.  

 

Empirical approaches need test setups which are widely used to check different kind of structures, 

designs or materials. Nowadays the checks with real subjects are very limited, understandable 

because of the high costs but also the difficulties in applying the correct boundary condition and loads 

(see appendix P for some examples).  

 

The ability of a plated structure to sustain an applied load may be understood as the summation of 

individual contributions of each stiffened plate element in the entire cross section between two 

frames. The main difficulty of this beam column approach is to know the relation between the stress 

and the strain over a large range of strains including pre-collapse, collapse and post-collapse.  

 

Classical theory, founded on the large deflection plate theory of von Karman and Maguerre, can be 

implemented to calculate the local buckling of a stiffened panel assuming an orthotropic plate model. 

The use of large deflection equations means that the stress distribution over the panel is non-uniform. 

The governing nonlinear equations (fig 4.1) of large deflection orthotropic plate theory deliver 

complicated coupled partial differential equations. When assuming several deflection functions one 

can approximate the buckling limit. 

 

Energy methods include Galerkin and Rayleigh-Ritz. These techniques assume the structure is elastic 

and will buckle conservatively. Thus they are limited to calculate the elastic buckling load of beam-

columns. Numerical methods are more appropriate for inelastic beam-columns. This is because the 

beam is divided into segments, with displacements calculated at each point in between, rather than 

the assumption of the energy method that displacement is a continuous function.  

 



 

35 

 

 

Fig 4.1 Large displacement theory with the in-plane forces on a plate field. 

 

The numerical analyses can be linear and non-linear calculations in FEM software packages. Some 

extra explanations about these are given in appendix J. None of the methods is perfect but the 

standards are generally accepted as sufficient. However the idea is to combine the numerical linear 

FEM analysis and the standards and their strengths to get a consistent design procedure. 
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4.2 Problems with current way of checking 

Without taking other methods than standards and FEM analyses into account there are still some 

serious difficulties at hand. The standards provide several checks but they are some sort of blank form 

with large and complicated formulas which should be filled in to check if your design is ok. Whether 

average engineers also understand how the checks work is questionable. Nowadays everyone can 

model something in a finite element package but doing a correct analysis is something completely 

different. Even more, it is already surprisingly difficult to define what parameters/values you should fill 

in the formulas of the standards. 

 

Big models for planes, cranes, ships or other kind of offshore structures can consist of a large amount 

of panels. Methods in FEM packages become therefore necessary purely due to the amount of checks 

needed but the size of the complete models make correct use a lot more difficult. You most likely get 

an upper bound value which only says something over a specific part of the structure and gives no 

information about the rest of the model. Therefore an individual check of each plate field is required 

which is not only a lot of engineering work but also brings more uncertainties in the calculation. What 

parameters do you take into account? Or even, what kind of analysis do you carry out? 

 

Eigenvalue buckling analysis predicts the theoretical buckling strength of an ideal elastic structure. It 

computes the structural eigenvalues for the given system loading and constraints. This is known as 

classical Euler buckling analysis. However, in real-life, structural imperfections and nonlinearities 

prevent most real structures from reaching their eigenvalue predicted buckling strength; it over-

predicts the expected buckling loads. This method is therefore generally not recommended for 

accurate, real-world buckling prediction analysis. In-depth explanation of the method can be found in 

appendix J. 

 

Nonlinear buckling analysis is more accurate than eigenvalue analysis and gives good conclusions if 

correctly executed. Its method is very simple: it gradually increases the applied load until a level is 

found whereby the structure becomes unstable. The true non-linear nature of this analysis thus 

requires the modeling of geometric imperfections, material nonlinearities and loads such as residual 

stresses. These requirements initiate a good amount of uncertainty in the analysis since all parameters 

have to be known fairly detailed and applying them correct requires a good understanding from the 

engineer. Therefore, whilst nonlinear FEM is feasible for a stiffened panel model, simplified methods 

are also highly relevant to provide an efficient prediction of buckling strength behavior of a structure.  

 

Whether it is a linear or non-linear analysis, your model might not be suitable for these types of 

analyses. Figures 4.2 and 4.3 show eigenmodes for the same model with different mesh sizes. While 

the linear static stress results are rather consistent, the eigenmodes and eigenvalues are not. A coarse 

meshed model may actually say that it can take up more than twice the amount of load compared to 

a fine meshed model as illustrated in figure 4.2. Neither can the coarse meshed model show individual 

plate buckling or flexural stiffener buckling etc. The question whether the buckling analyses from finite 
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element modeling software programs are correct or not, hence indicates the need for a different 

check. The standards are already specifically the method which the engineer would like to compare 

his or her model with, even though the analysis is being done in a FEM package. However even the 

linear static stress results cannot be compared directly to standards like the ABS or DNV.  

 

Whatever FEM analysis you do, stress results will be the outcome you get. But the input for the ABS 

and DNV standards are no stress results but simplified applied loads, described in figure 4.4a for the 

plate field and figure 4.4b for the beam-column. Considerable research has been done on theoretical 

buckling modes, deflection functions and reduction factors. However the method on how to convert 

FEM results into parameters for standards remains unknown. The interaction formulae given in 

standards are conservative and simple, considering the complicated nature of buckling, which is not 

that obvious from a FEM perspective. 

 

 

Fig 4.2 Plate model - Load case 1: (left) Results of the linear static analysis for the coarse, middle and 

fine meshed models, (right) results of the first buckling mode for the coarse, middle and fine meshed 

models. The model itself is discussed in chapter 6. 
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Fig 4.3 Beam model - Load case 1: (left) Results of the linear static analysis for the coarse, middle and 

fine meshed models, (right) results of the first buckling mode for the coarse, middle and fine meshed 

models. The model itself is discussed in chapter 6. 

 

 

Fig 4.4 Overview of the input design stresses for (a) plate buckling and (b) column buckling. 
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4.3 Solving the panel 

Hence, the aim is to form a method on how to convert FEM results into parameters for standards. The 

study mainly aims on how to convert linear FEM results into design stresses needed for the buckling 

checks of unstiffened plates and beam-columns. A new implementation method will be set up to 

provide these factors. The combination of FEM static stress results, the new methods and standards 

will provide buckling factors. These can subsequently be compared with the linear or non-linear FEM 

buckling checks. The new method should have the potential to:  

 

 Reduce the uncertainties in current buckling checks due to the processing by the engineer. 

 Substantially reduce calculation time and automate the process to reduce the amount of work for 

the engineer. 

 

This thesis is a follow up on the work of Ottar Hillers [21]. He already made a good start on the 

extraction of design parameters for the unstiffened plate buckling limit and unstiffened plate ultimate 

strength. His conclusions provide some initial research start points. The buckling of the beam-columns 

will be the extension from that. 

 

Input design stresses: 

Plate buckling Column buckling 

σXmax = maximum stress in longitudinal direction σx = uniform stress in x direction 

σXmin = minimum stress in longitudinal direction σYmax = maximum stress in transverse direction 

σYmax = maximum stress in transverse direction σYmin = minimum stress in transverse direction 

σYmin = minimum stress in transverse direction τ = uniform shear stress 

τ = uniform shear stress q = lateral pressure 

q = uniform lateral pressure  

 

Apart from all parameters you have to consider to get to realistic input design stresses, there are two 

subjects specifically of interest for the buckling check, namely the mesh size in the model and the use 

of beam elements in the model.  

 

In practice models are made with different mesh sizes. A fine mesh (fig 4.5a) requires more 

engineering time but provides more detailed results which should be better in approximating the 

reality. Furthermore you can provide more details in the model such as holes, gabs, non-continuous 

stiffeners etc. which are impossible with only one element per plate field. However known buckling 

analyses are based on very coarse meshed models with only one element per plate field/web/stiffener 

(fig 4.5b). This is because a plate element in FEM software gives per definition the exact input loads 

as described in figure 4.4a. These can immediately be used in the standards. While in contrast a finer 

mesh gives some sort of stress distribution which does not need to be linear at all.  
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Fig 4.5 Difference between a fine (a) and a coarse (b) meshed panel. 

 

The use of beam elements in the model applies to stiffeners and girders. Instead of detailed modelling 

one can provide a line element with specific cross section area properties. These input parameters 

such as the shape of the stiffeners, web height, web thickness, flange width and flange thickness can 

easily be changed or updated. It provides a rather good improvement in options for engineers so no 

wonder it is therefore used a lot in practice. A secondary advantage is that for the buckling check 

recognition of the webs, flanges and the shape of stiffeners is necessary and the properties of a beam 

element provides them instantly. Otherwise one should first recognize which plate elements form a 

web or flange and how these plate fields then together form a stiffener or girder.   

 

 

Fig 4.6 Difference between stiffeners modeled with plate elements (left) or beam elements (right). 

 

The type of elements used in models logically influence results from the FEM calculations. Plate 

elements behave differently than beam elements. The latter cannot give any local web or flange 

buckling (fig 9.1). Neither will it provide torsional column buckling in the analysis due to the 6 degrees 

of freedom rather than 12 within plate elements. The mesh size also has influence on these elements 

since second order effects are rather difficult to get with one element per stiffener. Somehow the 

results from different kind of models should all be able to provide the correct parameters for the 

buckling check. That includes the use of different mesh sizes.  

 

A second choice for the implementation method is to find a suitable approach with only the beam 

element results (fig 4.9c). This would make the method immediately usable for the present 

implementation in SDC Verifier and also reduce calculation time even further. 
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A stiffener can also be modeled with a combination of plate and beam elements. For now, plate 

elements only or beam elements only are compared without taking other modeling techniques or 

other elements such as solids into account. The specific modeling techniques exclude effective width 

methods as well. The current check will only be based on a correct offset of the beam elements as 

illustrated in figure 4.7b and more extensive described in appendix M. 

 

  

Fig 4.7 Examples of beam offsets when modeling: (a) no offset and (b) offset to the top of the plate. 

 

The project contains an in-depth research into what exactly defines buckling for stiffened panels. All 

different buckling modes are already described above in chapter 3. The problems that arise with each 

mode and the influencing parameters within these problems are defined first. The relations and 

models should lead to the extraction of correct design factors out of the FEM analyses in such a way 

that a realistic comparing between the model and the standards can be made.  

 

Local buckling of plate fields, webs and flanges will be checked and flexural and torsional column 

buckling limits of stiffeners will be checked. The other subjects as grillage buckling and lateral loads 

will be out of the scope. And as mentioned before the present study does only see to rectangular 

plates and panels. These choices are made based on the fact that non-rectangular structures and 

lateral pressure on them are far less used in practice when considering compressed plated structures. 

The cross section view of a cruise ship as in figure 4.8 gives a good impression to illustrate this point. 
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Fig 4.8 Model of a cruise ship.  

(Picture courtesy of Kvaemer Masa Marine, Vancouver, BC, Canada, V6J 1T5) 

 

To conclude everything the following main research question and sub-questions can be established: 

What should be the implementation method for the ABS and DNV standards buckling check for the 

complete stiffened panel, based on linear static FEM results? 

 What defines buckling? Which problems does buckling of stiffened panels include? And what are 

the influencing parameters? 

 Is linearization/simplification of stress distributions on individual plate fields allowable and if yes 

then what should the implementation method be like? 

 Is it allowable to base the column buckling checks on stress results from beam elements only and 

if yes then what should the implementation method be like? 

 

Immediate and preferred aim from the project, besides the actual method and checks, would be a 

more accurate and a less conservative analysis. While a fine meshed model would provide detailed 

and accurate results, do the standards give fairly conservative results. So the search is towards a 

smart package of input parameters. And still an implementation method that will be reliable although 

such that the construction will be less over-dimensioned.  

 

The intended result should be a complete implementation method to define the correct parameters of 

the buckling check in the ABS and DNV standards, in such a way that it could be certified or be 

approved by a classification bureau and ready to be implemented into SDC Verifier. 
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Fig 4.9 Overview of considered cross sections to define the necessary design stresses: (a) plate 

elements including associated plate width, (b) beam elements including associated plate width and  

(c) only the beam elements.  
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5. Parameters 

Material and geometric parameters like edge boundary conditions, initial imperfections, material 

properties and production induced residual stresses influence the buckling limits. Some have relatively 

minimal effect on the panel behavior while others can influence strength significantly. Relations 

between them should produce conclusions for the new methods. A key objective is to reduce the 

uncertainties inherent in appropriately modeling these factors. 

5.1 Load cases  

We have seen above that the panel is subdivided into simplified plate fields and beam-columns. The 

real stresses in both types of sections are compared to the Euler’s buckling critical stress as discussed. 

The formulas are transformed with correction factors due to the interaction between the sections. But 

the real stresses do not change. All the applied loads such as pressures, concentrated forces, 

prescribed displacements, and/or thermal loadings will produce stresses. A more complete function of 

all stresses in normal direction of the stiffener-plate combination is given in an extensive form by 

Equation 7.79 in Analysis and design of elastic beams by W.D.Pilkey [22]. 

 

 

 

 

 

 

The temperature dependency is of course far too much detail and therefore out of the scope. When 

you know the real stresses, they should be transformed in a combination of the stresses in figure 5.2 

in order to use the simplified formulas. But the main parameters are the uniform pressure σx and 

bending moment My described below in figure 5.2a and 5.2b. Due to second order effects along the 

axis of the beam-column the stresses also vary over the length.  

 

The same principal is in order for the plate fields. Any kind of applied loads such as local loads, patch 

loads, in-plane compressions, shear forces and lateral pressures produce the in- and out of plane 

stresses which have to be simplified for the standards. In the FEM program, each plate element can 

provide a number of stress results. These include top and bottom in-plane normal element stresses 

and a uniform shear stress, for eight corners both σx and σy and a lateral pressure on the complete 

element (fig 5.1). Plate fields consisting out of a mesh with more plate elements thus produces a 

number of stress distributions.  

 

Uniform 

pressure 

Bending moments Warping 

moment 

Temperature 

dependency 
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Fig 5.1 Stress results in plate elements. 

 

The research will not go too much into detail of local peak loads, in-plane (fig 5.4) and out-of-plane. 

Again, mainly because the standards do not specify methods about local loads and therefore there is 

not really anything to compare to. Possibly since local peak loads will already cause problems for 

allowable stresses in the static analysis and the construction should be designed in such a way that it 

diverge the loads more evenly. With brackets or extra stiffeners for example. Furthermore dynamics, 

impact forces, yielding or crippling problems (fig 3.14), temperature and time parameters are 

completely out of the scope of the project. 

 

 

Fig 5.2 Stress results in plane direction due to (a) uniform pressure σx, (b) bending moment My,  

(c) bending moment Mz and (d) warping bending moment Mw [23]. 



 

46 

 

 

Fig 5.3 Examples of simplified in-plane loading along the edge. [24] 

 

 

Fig 5.4 A model of an I-girder with peak loading. [25] 
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5.2 Geometry  

The geometry of your model provides the main parameters for the checks. These include dimensions 

of the complete panel, of individual plate fields, of stiffener or girders shapes and thicknesses. The 

geometric characteristics of interest are the span (L) and the width (s) of the structural elements, as 

well as their thickness (t) and the radii of gyration (r) of the cross section of the stiffener with an 

appropriate associated plate. Other geometric characteristics may affect the behaviour of the stiffener 

in special cases. This may occur when the stiffener is very weak or it has low torsional rigidity, 

promoting a different mode of collapse such as tripping. Parameters such as the sections modulus, 

moment of inertia, torsional moment of inertia and polar moment of inertia generally are calculated 

from the geometry. 

 

To provide a good explanation of geometry influence an overview of important and commonly used 

parameters is in order. Considered are the aspect ratio, the plate slenderness and the column 

slenderness.  
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The higher the slenderness the more susceptible to buckling. Variations of L, s, t (fig 5.5) and the 

stiffener shapes may lead to an optimal design. Lowering the thickness has a magnified effect on 

increasing the plate slenderness which leads to a reduction of the plate buckling limit as seen in figure 

2.13b. And an increase of the plate slenderness has in turn an inverse influence on the effective plate 

width reducing it very much. For longitudinal uniform compression the following formulations are 

given.  
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For not only the effective width for the individual plate fields but also for the column one may have a 

further reduction due to the change on the effective radii of gyration √    ⁄   that results from the 

decrease of the effective area of the column and the shift in the neutral axis of the plate-stiffener 

combination. Thus this can have significant influence on both the plate buckling limit and the column 

buckling limit. 
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Increasing the plate width therefore has the same results as briefly noted above for the change in 

plate thickness. For slender plates (β>2.5) the elastic buckling stress lies significantly below the 

material yield stress. Thus the longitudinal stiffeners are spaced such that the slenderness ratio of the 

adjacent plating is not excessive, giving the plate field an adequate strength to resist compressive in-

plane forces. Furthermore a reduction in the aspect ratio reduces the shear buckling resistance.  

 

 

Fig 5.5 Dimension variations for plate fields. 

 

 

 

Fig 5.6 schematic illustration of (a) DNV and (b) ABS stiffener dimensions. 

 

The length has more impact on the transverse compression and on the beam-column buckling 

resistance. Transverse frames are typically spaced between 2 and 5 times the distance between the 

longitudinal parts. Load shortening curves are normally given in terms of the plate slenderness ratio 

only, thus assuming that the strength of long plates is independent of the aspect ratio. The reason is 
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already seen in chapter 3.1. Since the buckling mode will seek a pattern with square half waves the 

mode will get more half waves when lengthening the plate but the strength will not reduce.  

The buckling lengths seem rather undefined which asks for some further elaboration on the problems 

like connections and proportions of stiffness and dimensions between the stiffeners and girders. The 

buckling length is particularly important parameters as seen in equation 2. Do you take the stiffener 

length or the girder length for a transverse stiffener? And does the type of connection influence this? 

The standards distinguish stiffeners and girders but no values are specified, nor difference in welding 

connections. For now, due to the extensive amount of possibilities, the engineer should choose what a 

girder is and what a stiffener. 

 

 

Fig 5.7 Example of a stiffened panel and effective longitudinal material. [16] 

 

Standards speak of the unsupported span which can be the distance between transverse girders. But 

for the torsional buckling mode for example, an unsupported span is defined in a different way and is 

generally considered the length in between sideways supports of stiffeners or tripping brackets. 

However details like that are generally left out of the model. Certainly design considerations as in 

figure 5.7b which makes it hard to define the correct span.  

 

Klöppel and Scheer together formed theoretical relations of panel buckling. In their work [26] they 

give an extensive collection of graphs which show buckling factor value for many dimensions. Each 

distinct graph is formed by two parameters, the cross section area ratio     ⁄  and the stiffness ratio 

(moment of inertia)     ⁄ .  

 

The column slenderness is in practice also adjusted to compare designs with different shaped 

stiffeners. Column slenderness with influence of stiffener geometry (t or L stiffener) becomes: 
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Column slenderness with influence of stiffener geometry (flat bar stiffener) becomes:  

 

  
  

  
   {20} 
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While the plate resistance benefits from smaller and longer plates, the column buckling would like the 

opposite, stocky and short. Plate fields may be made smaller but then the stiffeners themselves 

should be designed bigger and thicker. An optimum between these factors should be pursued.  

 

The longitudinal and transverse girders dimensions are important as well to provide sufficient 

resistance to the loads. They contribute to the stiffness by providing intermediate support to the 

longitudinal and transverse stiffeners, effectively acting as nodal supports to shorten the column 

length and increase the buckling strength.  
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5.3 Boundaries 

Forces can be both in-plane and normal to the surface of the plate due to common load scenarios 

including in-plane compression, shear, torsion and lateral pressure. To represent a plate or column as 

a part of a bigger structure the boundary conditions of the model needs to adequately reflect the local 

support and load scenarios.  

 

Whether the critical buckling stress is calculated through theory, FEM calculation or standards, for all 

of the methods the engineer need to decide which boundaries conditions are appropriate for the 

model. Plate bending, web bending and flange bending behave differently due to the other boundaries 

and so you get different buckling modes as well. This is mainly due to a change in the buckling length 

of the specific part in the structure. The so called unsupported span. 

 

 

Fig 5.8 Illustration of different boundary conditions that provide different buckling lengths. 

 

Beam-column methods typically only consider a single span with pinned or clamped supports 

corresponding to figure 5.8a and 5.8d. And plate fields are generally chosen to be simply supported 

unless there is a free edge. These corresponds to conditions (d) and (e) in figure 5.8. There could be 

far more optimistic results for various situations with for example the clamped boundaries but one 

should logically doubt that fixing the edges will provide a good representation of reality. The reality 

will be something in between simply supported and fixed edges. The more conservative simply 

supported boundary condition is applied to be on the safe side. The difference in fixed or supported 

edges is difficult to recognize and dependent on many parameters. A free edge however does have a 

huge impact on the strength of the plate but is easily recognizable in the design and other formula 

can be taken accordingly.  

 

For modeling you can split the boundaries into out of plane, in-plane and rotational restraints: 

 

http://www.google.nl/url?sa=i&source=images&cd=&cad=rja&docid=Iyk-zSfvTXR2fM&tbnid=HlajC1ym1c41NM:&ved=0CAgQjRwwAA&url=http://lecture.civilengineeringx.com/bdac/columns-and-other-compression-members/&ei=UCu3UazgBITqPN75gOgD&psig=AFQjCNF6S8oIjuFuO2J3k23Eb6N8eNlgKg&ust=1371045072109776
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Fig 5.9 Plate elements with different edge conditions. [7] 

 

The out of plane restraints are as simple as set out above. The stiffeners and girders are assumed to 

be stiff and should not buckle. They prevent out of plane displacements and keep the plate boundary 

straight at the ends of a column and at all edges of a plate (except for a free edge).  

 

The in-plane restraints are less simple to define. In-plane longitudinal load will produce a 

displacement of the short edges. Correspondingly a combination of the poison ratio and the buckling 

mode influences the displacement on the long edges illustrated in fig 5.11a. Chapter 3.2 mentioned 

redistribution of stresses in the post buckling stage. One of the most common causes of this 

behaviour is associated with the in-plane boundary conditions at the edges of the plate. A common 

assumption for the unloaded edges is to constrain the edge to remain straight but free to move in-

plane, the so called multi point constraint. Adjacent plates and stiffeners or girders will probably want 

to produce the same sort of displacement in which case they will cancel the irregular deformed edge, 

fig 5.11b. However, if considered as part of a panel, the edge could also remain constrained from all 

in-plane movement as they would be under similar load conditions as well. This would lead to a zero 

displacement edge constraint and have a further redistribution of the in-plane stresses, fig 5.11c. 

Whether the support consists of very stiff elements or a more slender construction will define a 

suitable constraint. S. Benson mentions that the difference between fig 5.11b and 5.11c is not a 

significant one since they seem to result in more or less the same stress strain relationship for the 

plate. 

 

Fig 5.10 Part of a plated structure (to analyze column buckling) on which the engineer now has to 

decide what boundaries need to be applied and where. 

 

The rotational restraints depend on the supporting structure but can also depend on the specific 

stress results like big lateral pressure stresses in relation to the other stresses or imperfection 
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patterns, see fig 5.12. A clamped support provides additional strength to the plate as would be 

expected. The conservative approach is to assume that the rotational restraint at the boundary is 

minimal and thus the plate is simply supported along its edges. An explanation of why the 

conservative simply supported approach is generally accepted can be found in the theoretical 

approach described in appendix K. 

 

 

Fig 5.11 Possible edge displacements and corresponding stress distributions for different constraints. 

 

Fig 5.12 buckling patterns due to initial imperfection or lateral pressure with (a) the alternating 

pattern/simply supported and (b) the hungry horse pattern/fixed boundaries. 

 

Boundary conditions of the beam-columns are even worse. As you can see in fig 5.10 one cannot 

simply use similar constraints as with plate fields. In reality all edges would be allowed to move or 

rotate. However, besides the fact that an analysis will need constraints to accommodate specifically 

the correct buckling mode, the beam-column is considered as a separate section which may be 

checked individual. Concluding you get: out of plane constraints at the ends and out of plane bending 

constraints on the unloaded edges, described in chapter 10.  
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5.4 Imperfections 

With imperfections in a structure is meant that it is not completely straight. It therefore implies an 

initial deformation in the geometry. Imperfections arise when producing the material or when making 

the product. There are imperfections in each individual plate field, web and flange, twisting of the 

stiffeners and girders and also imperfections over entire panels or combinations of panels.  

 

 

Fig 5.13 Initial imperfections of a stiffened panel. (a) and (b) Panel section at y=s/2, 

(c) and (d) Panel section at x=L/2. 

 

Initial buckling and the buckling strength may be greatly influenced by the imperfections. Standards 

state several values to what is permitted. However the resistance of stiffened plate structures is 

dependent on imperfections in several elements. Both the imperfection size and pattern for both the 

plate and stiffener are important and generally the resistance is also dependent on more than one 

panel. It is less probable that all individual sections have their most detrimental imperfection pattern 

and size at the same time. Furthermore the importance of the imperfection is largest for stocky 

sections while the likelihood of deviations are largest for slender sections.  
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Therefore a nonlinear FEM analysis of the panel including the worst combination of allowable 

imperfections may yield less resistance than obtained from the formulas in standards. What is more, 

there are several supportive effects in a real plated structure that are disregarded in the resistance 

formulations. In many cases that will mean a capacity reserve which is larger than the effect from 

imperfections. Thus the formulas in standards are stated as being relevant for normal good practice 

even if results do not match with nonlinear FEM analyses. It again emphasizes the complexity of the 

buckling phenomena.  

 

The exact imperfections in plate fields or beam-columns can only be as in reality when you measure 

the real product. Thus the buckling strength analysis in general is based on the characteristic buckling 

strength for the most unfavorable buckling mode. This mode can be any shape depending on the 

specific part in which you are interested.  

 

The imperfection may in practice be approximated by the first eigenmode. However it has been shown 

that the preferred mode can change as the plate undergoes post buckling, switching from a linear 

type shape before buckling to a shorter wave pattern in the post buckling range. The plate field may 

thus snap into a different mode due to the redistribution of stresses. Other parameters as the material 

properties and residual stresses may influence the preferred buckling mode shape as well. S. Benson 

[27] checked a plate with a nonlinear analysis over and over with different imperfections applied by 

imposing different eigenmodes. Results showed that the first eigenmode does not give a lower bound 

solution. This suggests that a more conservative mode shape is induced with an imperfection with a 

shorter half wave length than the plate width. The choice should therefore not be based on solely a 

linear analysis. Furthermore the use of a single eigenmode to approximate the imperfection is an 

overly conservative routine since it is very unlikely for a plate to be distorted in an exact sinusoidal 

pattern.  

 

Benson therefore proposes an introduction of initial imperfections by applying an out of plane Fourier 

series translation to each node in the mesh. An external script is used to directly edit the node 

coordinate input file. He uses slight, average and severe characteristic levels of imperfection typical for 

steel plates. More details can be found in the work of Benson. He proposes a combination of three 

eigenmodes for individual plate fields, one global half wave mode, a second theoretical most 

unfavorable eigenmode and a third mode to make the imperfection unsymmetrical so the structure 

will always fail at one place and not at 2 places at the same time.  
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Note that beside the imperfection one may have from heat induced effects or other internal material 

stresses, you can have simple misalignments when constructing as well. This is the reason that most 

of the time stiffeners are continuous and go through specially made spaces in the girders.  
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Fig 5.14 The panel imperfection, difference between symmetrical and unsymmetrical patterns. 

 

 

Fig 5.15 Imperfection parameters as proposed by Benson. [28] 
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5.5 Material properties 

In general all thoughts and explanations remain applicable for only steel metal or similar material 

behaviour. Provided that the model is based on an isotropic material and the same material is used for 

plates, stiffeners and girders. Or equivalent average material properties should be known. Designs 

made with composite materials are out of the scope for now. The material properties of interest are 

the yield stress σ0 the modulus of elasticity E, the poison ratio ν and the shear modulus of elasticity G. 

 

 

Fig 5.16 A typical stress-strain curve. 

 

A typical stress-strain curve illustrates steel material behaviour. The yield stress is the main critical 

stress to compare your design stress with. This is already defined before in the Euler’s critical stress. 

But after the yield point and until the ultimate strength in practice there exists reserve strength in the 

panel due to strain-hardening. This implies that calculated critical stress also have some safety factor 

within already. In standards there might be use a strain-hardening modulus where a correction factor 

√     ⁄  is employed.  

 

The use of high tensile steel instead of other normal steels for the fabrication of the construction has 

several different main effects on the ultimate strength. Firstly you can count on an increase of the 

global strength corresponding to the other types of steel, proportional to the ratio between the yield 

strength. That is for the same geometry of course. However a construction of for example HTS 690 

has a reduction on the effectiveness of the structural elements compared to one of normal mild steel, 

as there are differences in the yield strength but the modulus of elasticity is the same (remember the 

square root in equations 15 and 16). But secondly while having an increase of the global strength 

does give the opportunity to reduce the geometry. You normally use a better quality material in order 

to reduce the amount of material and/or weight. However, lowering the thickness has a magnified 

effect on the plate slenderness, effective width and column slenderness and thus influences both the 

plate buckling and the column buckling in negative ways. Thus the structure made of high tensile steel 

is therefore more prone to collapse by buckling than one mild steel structure. One can have a 

reduction of weight but may need several design corrections to satisfy the buckling criteria. 



 

58 

 

The modulus of elasticity E does not remain linear when approaching the post buckling stage. 

Approximations to account for material plasticity could be applied, by replacing the elastic modulus 

with the so called tangent modulus. This is however not simply implemented. Different materials 

behave differently as well. For Aluminum both the ultimate elongation and the ultimate strength to 

yield strength ratio is lower than that of steel for example. In general calculations are done with a 

linear E modulus.  

 

Another feature is the significant effect that welding can have on the strength of the material in the 

heat affected zone. Caused by the heat that softens the material adjacent to the weld. The welding 

process causes therefore a strength reduction in this zone. Since these zones at the edges of plate 

fields are already disadvantage in the post-buckling range, this phenomenon may actually have a fair 

amount of influence for some materials such as aluminum. The softening of steel reduces the ultimate 

strength to a value near the yield stress which is used for the simplified calculations and therefore 

relatively will not have much impact.  

 

The influence of the poison ratio ν has been discussed above. The shear modulus of elasticity has 

some influence as well, mainly on the tripping stress of the stiffener. Luckily steel has already a high 

shear modulus. 
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5.6 Residual stresses 

Residual stresses due to welding are very likely to cause imperfections as well. Or at least many 

available theory and publications make the assumption that initial deformation and residual stresses 

can be taken as the same problem. The reality is of course a bit different. Residual stresses in the 

material cannot be seen from the outside. When cooled down after welding, the weld bead at the joint 

is resisted from contracting by the bulk of the parent material. This causes tensile residual stresses to 

form within and near the weld and compressive stress fields in the unheated plate regions to form 

equilibrium. These compressions may reach levels such that they initiate local buckling and hence 

imperfections before applying the load cases. In a straight compression member, the residual 

compressive stresses cause premature yielding under reduced axial loads and the member buckles 

inelastically at a load which is less than the elastic buckling load. 

 

Recent studies suggest that the quantity of heat introduced during welding is the primary contributor 

to residual stress rather than the specific levels of plastic deformation caused by the weld method. 

Therefore there is an advantage in using new developed, less heat intense weld methods. Remember 

that not only welding but producing steel plates and beams on itself influence the present residual 

stresses as well. Computer numerical control (CNC) methods like fluid jet cutting have advantage of 

leaving no heat affected zone close to the cut edge. And moreover these types of methods are usually 

the most accurate and efficient methods to employ for their weld ready edges and possible shapes 

and cutouts.  

 

Fig 5.17 A pattern of residual stresses in the area of the plate stiffener combination. [29] [30] 

 

For a steel plate the tensile residual stress zone should usually be considered to be equal to or just 

less than the material yield stress. Take note that for other materials the softening produced in the 

heat affected zone will also affect the yield and thus the amount of residual stress.  

 

The residual stress are complicated to describe accurately thus for implementation a simplified pattern 

is taken. However Yusuke states that the actual residual stresses represent the simplified pattern (fig 

5.18 and 5.19) fairly well when the boundary constraint is done with a multipoint constraint along the 

edges as described above (fig 5.11b). 
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Fig 5.18 Idealized distribution of the welding residual stresses in a plate 

 

  

Fig 5.19 Comparison of stress distributions with different boundary constraints. [31] 
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6. Research approach 

So now the main problems and parameters have been reviewed it is time to do new tests to form and 

check new implementation methods. Validation, to see if model is fit to provide answers regarding the 

real world, will be done with an already existing real size model.  

6.1 The experiment 

Within a European project a concept of a new ship hull was studied in which very high strength steel 

was used to allow a lighter structure to be developed. Such departure from normal practice motivated 

studies on fatigue strength and on ultimate strength. The authors of the paper aimed to validate a 

buckling check method against data from several small scale experiments where the loading 

conditions could be well established. They used models representing simplified typical sections of 

ships, box girders subjected to pure bending moments. Details of the test setup at LISNAVE shipyard 

are presented in figure 6.3. The experimental study which was conducted is also described and 

worked out in the work of S. Benson [28]. 

 

The material used in the experiments is HTS 690 with a yield stress of  690 MPa and a Young modulus 

of 200 GPa as the principal material properties for structural analysis respectively. There are three 

different models tested. One four span model with 200mm length space framing, one three bays span 

model of 300mm length space framing and one with three bays span of 400mm length. The 

longitudinal stiffeners are bar stiffeners of 20x4mm made of HTS 690 as well. The transverse frames 

are ‘L’ stiffeners L50x28x6mm made of mild steel. The longitudinal stiffeners are made continuous 

through the model in order to avoid misalignments. All three models are made of 4 mm thick plate. 

The rest of the dimensions are shown in figure 6.1.  

 

 

Fig 6.1 the cross section of the box girders. 

 

The experimental results cover an appropriate range of the governing parameters of the plated 

structure such that the limits of plate, column and grillage buckling are in the same range. At the 

same time the parameters for the evaluation of the stiffener tripping stress were controlled in order to 
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avoid large reduction on the global efficiency. The range of the column slenderness is very high due to 

the high ratio between the plate and the total area of the representative stiffened plate. This means 

that for actual design practice one may obtain a global efficiency of the HTS 690 on the order of 2.5 

taking as basis the normal mild steel (MS) structure. 

 

 

Table 6.1 Geometry of the test specimens. 

 

 

Table 6.2 Geometrical parameters and predicted collapse strength of the specimens. Plate slenderness 

β, column slenderness λnom, effective column slenderness λef, effectiveness фp according to Faulkner’s 

formula, and variation of the average ultimate strength фs. 

 

The tests consist of a four point bending of a beam like box girder. The box girder is subjected to pure 

bending moment, inducing tension on the bottom and compression on the top of the box. Benson 

mentions a deviation between the four point bending and a pure moment due to shear forces in the 

load though still justifying the use of a rigid body tie (fig 6.4) for applying the load (fig 6.2).  

 

 

Fig 6.2 The Box girder experiment comparison with FEM models. Applying the load with use of the 

rigid body tie matches the complete set up fairly well. 
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Fig 6.3 Test setup of the box girder H200 including part  

of the supporting structure and the loading device. [32] 

 

 

 

Fig 6.4 Principal of the rigid body tie in order to apply a load on the structure. [27] 
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6.2 The finite element model 

The benefits of the real model from above make it as an excellent basis for the FEM model. The 

boundary constraint is easily applied. The same for the load due to the rigid body tie which also make 

it easily varied too in order to perform different checks. It is a very common structure in practice and 

therefore represents realistic results. Generally the stiffeners are placed on the inside of the structure 

but now the model can, apart from providing a clear sight on the sections, show beam-column 

buckling as where otherwise the stiffeners would be loaded with tension due to the bending moment. 

And lastly the fact that the different buckling modes are within the same range may have some 

advantages in checking the results when advancing towards grillage buckling as well. 

 

The model is made with only plate elements and a second equal model is made with the stiffeners 

modeled with beam elements. From now on they will be mentioned as the “plate model” and the 

“beam model”. Since there will be made several comparisons between the plate model and the beam 

model, first a small check is in order to see if both models are equal. Figure 6.5 shows eigenmodes 

and eigenvalue results for the applied bending moment on the structure as described above in the 

previous section. The results match fairly well. They have similar buckling limits and both show plate 

and grillage eigenmodes in close range of each other. The beam model seems to be slightly stiffer. 

Still the comparisons should be justified.  

 

  



 

65 

 

Eigenmodes Plate model Eigenmode 
nr-Eigenvalue 

Eigenmodes Beam model Eigenmode 
nr-Eigenvalue 

 

Linear static 
solution 
Deformation 
=0.00563 

 

Linear static 
solution 
Deformation 
=0.00553 

 

Plate 
02-1.108063 
03-1.112179 
05-1.16301 
09-1.214865 
 

 

Plate 
01-1.062062 
02-1.070521 
04-1.116732 
07-1.155375 
10-1.229593 
12-1.284767 

 

Grillage  
01-1.093272 
04-1.11501 
12-1.298755 

 

Grillage 
03-1.104 
06-1.153851 
09-1.173976 
18-1.368425 

 

Deformation 

of girders 
06-1.180954 
08-1.202592 
10-1.270054 
18-1.392817 

  

 

Column 
11-1.293444 
13-1.323736 

 

Column 
05-1.129346 
08-1.162891 
11-1.262995 
17-1.358603 
 

 

Tripping 
07-1.195745 
 

  

 

Side panels 
14-1.331664 
15-1.332331 
16-1.377801 
17-1.378379 

 

Side panels 
13-1.29008 
14-1.290584 
15-1.3407 
16-1.342865 
21-1.408078 
22-1.418745 
27-1.474202 
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Second mode 
Plate fields 
19-1.425301 

 

Second mode 
Plate fields 
19-1.372495 
20-1.401301 

 

Second mode 
+ Column 
20-1.441569 
21-1.449362 
22-1.449532 
23-1.461671 
25-1.494094 
26-1.494663 
27-1.504493 

 

Second mode 
+ Column 
23-1.424876 
24-1.428618 
25-1.452072 
26-1.455079 
28-1.487452 
29-1.488516 
30-1.50475 

 

Second mode 
+ 
Deformation 
of girders 
24-1.469557 
29-1.515876 
30-1.519878 

  

 

Second mode 
+ Grillage 
28-1.513573 

  

Fig 6.5 Linear eigenmodes and eigenvalues compared for the plate model and the beam model. 

Note that this is only for Load case 1 and only for the fine meshed models.  
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6.3 Comparing between reality and standards and FEM 

With a random load case you can simply get stress results from the linear elastic analysis in the FEM 

program. FEM analysis will not need extra formulations developed to estimate specific stress result 

requested by the standards such as unknown bending moments at intermediate supports or mid-span 

of beam-columns. The standards allow to make use of the linear elastic stress results. Therefore there 

will be made an attempt to form a robust combination of the linear FEM approach and the approach of 

the standards. Safety factors are supposed to be already in the standards and thus the 

implementation method will only simplify stress results but will not try to find new correction factors. 

 

Potential for plate buckling, local web buckling, stiffener flexural buckling and stiffener tripping must 

be checked using separate procedures. Recognition of the individual sections is done with SDC 

Verifier. Figures 6.6 and 6.7 illustrate random sections within the upper panel of the FEM model. The 

plate model provides webs and flanges as individual plate fields which simplifies the possibilities while 

the beam model will need transformations of stress results.  

 

 

Fig 6.6 Analysis of individual sections in the plate model. 

 

Fig 6.7 Analysis of individual sections in the beam model. 
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To reduce the amount of checks for validation of the implementation methods, only one specific plate 

field, beam-column and web are analyzed as shown in figure 6.8. The middle sections are chosen for 

easy identification of load conditions. However for a thorough validation it is recommended to check 

some other sections as well.  

 

 

Fig 6.8 Individual sections which are checked on buckling: (a) the plate field, (b) the beam-column 

and (c) the web/flange. 
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6.4 Variation of parameters 

Variations of parameters will consist of load combinations and dimensions. Seven different load 

combinations are compared see figure 6.9. The first five loads mainly consider longitudinal stresses 

while the sixth case exerts a transverse stress on the structure. The last load case is a combination of 

the first and the sixth. Several variations in the model are produced by scaling the model in 

longitudinal and transverse direction, by varying the plate thickness and changing the shape of the 

stiffeners. 

 

Load case Load case name     

1 (0.15.0) Mx = 0Nm My = 1.5e6Nm Mz = 0Nm Fy = 0N 

2 (2.13.2) Mx = 2.0e5Nm My = 1.3e6Nm Mz = 2.0e5Nm Fy = 0N 

3 (6.10.1) Mx = 6.0e5Nm My = 1.0e6Nm Mz = 1.0e5Nm Fy = 0N 

4 (6.1.10) Mx = 6.0e5Nm My = 1.0e5Nm Mz = 1.0e6Nm Fy = 0N 

5 (0.0.10) Mx = 0Nm My = 0Nm Mz = 1.0e6Nm Fy = 0N 

6 (Fy) Mx = 0Nm My = 0Nm Mz = 0Nm Fy = 2.4e6N 

7 (0.15.0 + Fy) Mx = 0Nm My = 1.2e6Nm Mz = 0Nm Fy = 2.4e6N 

 

Table 6.3 Load cases 

 

Model variations Dimensions plate fields (mm) Dimensions stiffeners hw, tw, bf, tf (mm) 

1 200x150x3 Bar 20x4 

2 200x150x4 Bar 20x4 

3 200x150x5 Bar 20x4 

4 200x150x4 Bar 40x4 

5 200x150x4 T profile 20x4x20x4 

6 200x150x4 T profile 40x4x20x4 

7 600x150x4 Bar 20x4 

8 200x400x4 Bar 20x4 

 

Table 6.4 Model dimensions 

 

As explained above only plate elements and beam elements are used within the finite element models. 

As small parametric study will also provide a check on results between different mesh sizes. It is 

based on three different models with plate fields modeled with 20x15, 8x6 and 1x1 elements. 

Therefore, frequent comparison will be made between several different load cases and between 

several different mesh sizes.  
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To give an idea of the initial plate field, the theoretical critical stress is: 

 

     
      

          
(
     

    
)
 

                      

 

While the yield material stress is 690MPa. This illustrates again that the critical stress is less than the 

yield stress as suspected.  

 

 
(1)                                                              (2) 

 
(3)                                                             (4) 

 
(5)                                                             (6) 

 
Fig 6.9 Loadcases 1 to 6 for the analysis of the plates and columns within the model under different 

circumstances. 
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(1 & 2 & 3)                                                     (4) 

 
(5)                                                             (6) 

 
(7)                                                             (8) 

Fig 6.10 Variation in dimensions. 
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7. Implementation with help of SDC Verifier 

With the model described above there is now a search for all result stresses of the individual plate 

fields, stiffeners, girders, webs, flanges and columns. More extensive possibilities are available for FEM 

packages nowadays though. FEMAP is recognized as the world's leading CAD-independent Windows-

native pre- and post- processor for advanced engineering finite element analysis. FEMAP delivers high 

performance FEA modeling for the engineering desktop. SDC Verifier enhances FEMAP with a new 

functionality and can be seen as an extension. Together they provide an accepted and sound solution 

for the verification of constructions according to Structural Design Standards.  

 

SDC Verifier uses FEMAP as the pre-processor for the generation of model and its graphical interface 

to visualize the results. While modeling complex products, systems and processes SDC Verifier 

enhances the possibilities even further. It provides fast calculation for load combinations and Load 

Groups. It allows to find minimum and maximum values for displacement, stresses and their locations. 

It provides extra calculations to check structures according to any standards. And the extension can 

generate all those results into user defined calculation reports presenting results in a variety of tables 

with the possibility to add them to a word report or export to an excel document. 

 

SDC is able to provide recognition of individual plates, stiffeners and girders. It renders easy access to 

stress results for each of these sections. The aim is to supplement this functionality with the 

implementation method described in this report. A full scale buckling check of a panel in your FEM 

model should become a simple task. The recognition looks like figures 7.1 and 7.2. Stress results are 

sorted and filled into tables as shown in figure 7.3.  

 

 

Fig 7.1 The FEM plate model and the FEM beam model with individual plate fields indicated in 

different colors with each their dimensions given. 
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Fig 7.2 The FEM beam model with individual girders indicated and the top panel from the beam model 

wherein each girder is subdivided into stiffeners in between other girders, all in different colors with 

each their dimensions given. 

 

 

Fig 7.3 In-plane stress results for a single plate field extracted by SDC Verifier from FEMAP. 

  



 

74 

 

8. Analysis of unstiffened plate buckling limit 

In present methods the checks are based on individual FEM plate elements. The benefit for analyzing 

individual elements would be the possibility to analyze varying cross-sectional areas in the plates. You 

could imagine that optimization possibilities arise, still having the automatic placement of stiffeners in 

mind. However if you look at a fine meshed plate field, then it is wrong to take the result of a single 

element as representative for the complete plate field. Thus the whole plate field, independent of the 

mesh size, is checked instead.  

 

O. Hillers had some research questions left on the definitions of design stresses. The in-plane stresses 

are discussed in chapter 8.2 and the stress gradient effect is discussed in chapter 8.3. Note that the 

lateral loads on plate fields are disregarded for now.  

8.1 Approach of the standards 

The aim is to work to the unstiffened plate buckling limits in the ABS and DNV. Various formulas are 

presented in literature to predict the interaction of biaxial compression loads. The formulas generally 

take a similar form to the von Mises yield criterion. An illustration of the concept is shown in figure 

8.3. Since the constants coefficients in the power terms are not entirely true for all situations, 

standards weave some additional parameters into the formula. 

 

Unstiffened plate buckling limit: 
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The DNV has several individual checks for σx, σy and τ but no combined formula for the plate buckling 

limit. However, the more important ultimate strength is available for both standards in the same form. 

The extra parts, which use the coefficients   and ci to reflect interaction between longitudinal and 

transverse stresses, are not the only changes to separate the formula from the plate buckling limit. 

Most of the other coefficients change as well for the ultimate strength is something fundamental 

different from the plate buckling limit as described. For details can be looked into the standards 

themselves.  

 

Unstiffened Plate Ultimate strength:  
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Multiple load combinations complicate the implementation. Remember the simple input design 

stresses from figure 8.1. The figure is deliberately repeated from chapter 4 to accentuate the 

importance of this principal. The linear distributions for in-plane normal stresses are prominent. Within 

the standards the calculated resistances make use of the Euler definition described before as 
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 {25} 

 

in which ks is dependent on the in-plane bending moment and thus the ratio of edge stresses κ,  

 

  
     

     

 {26} 

 

 

Fig 8.1 Plate field input design stresses. 

 

On a side note, these simplified combinations tend to raise new questions regarding the input design 

stresses. Equations 22 to 24 simply combine relations of the individual σx, σy and τ. The IACS 

Common Structural Rules for bulk carriers gives a description to adjust the stresses from the finite 

element model results   
  and   

  to account for the poison ratio. But a finite element program is 

understand to produce stress results in which the poison ratio is already calculated hence this 

adjustment should probably only be applicable with theoretical approaches.  
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Fig 8.2 Due to contraction in the y direction and thus expansion in the x direction will the axial 

resulting force increase in the column and vice versa. 

 

 

Fig 8.3 Ultimate strength interaction relationship between biaxial compression and tension for a thick 

plate, when L/s = 1 and t = 25 mm. 
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8.2 In-plane stresses 

Remember the six input stresses for plate buckling as defined in figure 8.1: 

 

σXmax = maximum stress in longitudinal direction  

σXmin = minimum stress in longitudinal direction  

σYmax = maximum stress in transverse direction  

σYmin = minimum stress in transverse direction  

τ = uniform shear stress  

q = uniform lateral pressure 

 

The principal works with corner stress results from individual plate elements. This choice is made due 

to the simple implementation, you will not need to separate forces which work on several elements 

and secondly you will not need to convert forces to stresses for use in the standards. A, further non-

studied question rises whether linearized forces would produce other results than linearized stresses. 

The first thought is that these two approaches theoretically should be equal.  

 

The difference between the maximum and minimum normal in-plane stresses on a single edge at the 

same time defines an in-plane bending moment. But except for the uniform lateral pressure all other 

out of plane local stress results are disregarded. In the first place this assumption is adequate since 

the out of plane bending moments are generally very small. But secondly this is due to the chosen 

conservative simply supported boundary condition which theoretically cannot absorb any bending 

moments. Since the standards cannot work with the results the only solution is to go with in-plane 

normal stresses anyway (fig 8.4b). Therefore the average stress from the top and bottom stress 

results is taken. 

 

 

Fig 8.4 Stresses on the edges of a plate field with (left) also the out of plane bending stresses and 

(right) only the in-plane normal stresses. 

 

Furthermore, for each node on the edge, the average from the two adjoining plate elements is taken. 

This leaves a straightforward distribution of stress results along each edge.  

 

That means that in figure 8.5 you get 9 values averaged for the two long edges and 5 values 

averaged for the two short edges. For all test done in this study all elements have the same 

dimensions in the plate field, so numbering along the edge would be enough. While keeping track of 

stress results there is made certain that number 1 is on the opposite of the other number 1 and 

number 2 is on the opposite of the other number 2 and so on (fig 8.6a). However in the random 

situation the elements do not have the same dimension. So numbering of the nodes need to include 
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interval distance or better jet distance with reference to a point. The reference is taken from the 

middle of the plate edge. This can only be done with distances because of the situations where there 

are an even amount of nodes along the edge. The short edges are done in the same manner. 

 

       

Fig 8.5 Corner stress results in a plate field. 

 

 

Fig 8.6 Approach for keeping track of stress results along the long edges of a plate field. 

 

Accordingly Hillers proposed to use linear regression to go from a complicated distribution to a simple 

linear variation. A short description from literature on linear regression gives the following formulas: 
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{28} 

 

More details are described in the work Hillers work. Any least squares curve- or line-fitting algorithm 

optimizes the constants of a fitting equation by minimizing the sum of the squares of the deviations of 

the actual (data) values from the values predicted by the equation. Since the standards ask for a 

linear distribution, linear least squares fitting is an excellent choice to provide each edge with a σmax 

and a σmin. However, just a linear regression does not always give a conservative approximation of the 

real situation. Therefore the linear line may have to be moved with an appropriate value. Four 

methods are proposed. 
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1. Linear Regression Stress Average: The linear regression from all corner stress points on the 

edges along a plate field. The principle is given and explained in earlier work from Ottar Hillers.  

2. Linear Regression Stress Average + Including all stress results: The proposed adaption 

from the normal linear regression by Ottar Hillers. It shifts the line to the point in which all stress 

points fall under the area such that an overestimate and very conservative load is taken for each 

edge. 

3. Linear Regression Stress Average + Updated to σmax: A new proposal to adapt the linear 

regression such that σmax of the linear regression matches the σmax of all stress points along the 

edge. The standards specifically use the maximum compressive stress in the longitudinal or 

transvers direction which raises the question whether taking a higher value than the highest stress 

points is not an overestimate already.  

4. Linear Regression by the Eurocode clause: Clause 4.6(3) in Eurocode 3, part 1.5 delivers an 

adaption to compensate the stress gradient phenomenon described in the next section.  

 

The first three methods produce linear lines on all 4 edges and afterwards take the average of 

opposite edges because the in-plane stresses on opposite edges need to be symmetrical. Thus the 

idea is to first make two conservative linear distributions and then take a non-conservative average. 

The last method is the same as the first except for the last step, it does not take the average but the 

value is then determined at a distance 0,4L or 0,5s from the greater stress distribution. This may 

actually alter the slope of the linear line though. Note that the first method is equal to combining all 

stress results from both opposite edges into one graph and then calculating a linear regression. 

 

 

Fig 8.7 Proposed method by O. Hillers.  

The yellow lines indicate method 1 and the blue lines indicate method 2. 

 

Method 3 originates from interpretation of equations 22 to 24. The specific input design stresses are 

σXmax and σYmax. The linearizations may regularly produce input design stresses where σmax is greater 

than the maximum real stress result. But why should one take a greater stress than actual exists in 

the model? The DNV literally states: “The linearized buckling stress should be carefully selected to be 

maximum compressive stress in the analysis”. The differences between the three types of 

linearizations are illustrated in figures 8.7 and 8.8. 
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Figure 8.9 give the stress results of a plate field with load case 1 as an example of the actual 

implementation method. The right graph shows results for the short edge and the lower graph shows 

results for the long edge. Blue and red results represent the opposite edge while the green are the 

average from those two and the black are the combination defined by the Eurocode clause. The 

linearizations are drawn in the graphs as well. 

 

 

 

Fig 8.8 Illustration of the three methods with random stress points. The method stays the same when 

some or all stress results along an edge are positive (tension instead of pressure). Notice that method 

3 (purple line) may be less conservative than the average linear regression. 

 

Notice that all four of the linear regression methods produce equal results for the single element mesh 

size models. These models provide a linearized stress distribution by definition as mentioned before.  

 

On a side note, the linear stress results may provide a distribution which is the opposite from what 

you expect to get at the bifurcation point when the edges will take a greater part of the load than the 

middle of the plate. The parabolic shape of the distribution can thus be positive or negative (fig. 

8.10). According to the standards the use of linear stress results is allowed. The DNV literally states: 

“The linear elastic buckling stress found by FEM eigenvalue analyses may be used as basis for 

determination of buckling resistance”. In order to account for material non-linearity, residual stresses 

and imperfection, a suitable buckling curve may be used as long as the effective width parameters are 

employed.  
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Fig 8.9 Focus on difference between real stress distribution results for a plate field with load case 1. 

For clarification the linearizations are drawn as well. 

 

 

Fig 8.10 Difference between linear and nonlinear stress distribution over the plate field. 

Note that the linear results are calculated from a linear analysis over the complete model and the 

nonlinear results are a consequence of a nonlinear analysis over the complete model. 

 

However, the parabolic shape of the stress distribution does influence the degree of resemblance 

between the linearization and the real results. With the simply supported boundary condition, the 

stresses in the middle of the plate have a larger influence on the linear eigenvalue analysis. A negative 

parabolic shape, with the largest stresses in the middle, has therefore a disadvantage. An average 

Note, scaled axis 

Note, scaled axis 
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linear regression may actually have a more conservative result than the opposite positive parabolic 

shape while the negative parabolic shape requires an adjustment such as method 2 or 3.  

 

The shear stress distribution along the edges of the plate field need to be matched with an equal 

uniform shear stress altogether. Three different approaches have been proposed.  

 

1. The average of all real shear stress results 

2. The average of all absolute real shear stress results 

3. The maximum of all absolute real shear stress results 

 

 

Fig 8.11 Shear stress results for a plate field with load case 1. 

 

When plate fields have a free edge, the in-plane normal stresses should be zero. In reality at the 

corners of the plate can exist fairly high values. Therefore these edges cannot be processed with the 

same implementation method for you will get linearization as seen in figure 8.12. The stress σX or σY 

should instead be taken as zero.  

 

 

Fig 8.12 In-plane stress results on the long edge for a web with a free edge. 
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8.3 The stress gradient effect 

Besides the out of plane bending moments and linearization problems there also exist another 

difference between the reality and the standards. Following figure 10, the in-plane stresses on 

opposite edges need to be symmetrical. Ottar Hillers mentions two options to follows. Take the 

maximum as specified in the DIN code or follow clause 4.6(3) in Eurocode 3, part 1.5. The DNV nor 

the ABS specifies details though. Theory does not really provide satisfying thoughts about it either. 

Considering the plate as a 2D element, the problem could be simplified to figure 8.13. 

 

 

Fig 8.13 In-plane shear stress distributions (a) on the plate and (b) simplified as 2D problem. 

 

For the version with average force and no shear force you get the following well known differential 

equation: 
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Which has the general solution: 
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Using the boundary condition gives the result: 
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This is the Euler column buckling critical load as described above. For the problem with non-uniform 

shear the following similar formula can be set up: 

 

   

   
 ((

    

   
)

   

     
 (

  

   
)

 

   
)    {32} 

 

 



 

84 

 

with            This second order differential equation has non constant coefficients and gives, 

together with the same boundary conditions as before, a much more tedious solution: 
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{33} 

 

This formula contains the difficult Airy function and is therefore not analytically solvable. 
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C. Yu and B.W. Schafer approached this problem of the stress gradient effect with the Rayleigh-Ritz 

method to determine the buckling stress of plates. In this method, an assumed deflection function 

satisfying the boundary conditions is used in the expression for the total potential energy ∏. The total 

potential energy is the summation of internal strain energy U of the plate during bending, and the 

work done by the external forces T. Classical solutions from thin plate theory from Timoshenko and 

Gere result in: 
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With the deflection function: 
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The following expression for σx, corresponding to a linear variation of compressive stress between σmin 

and σmax, is written [33]: 

       [(
   

   
)
  

 
 

  

   
] 

     

     
   

 
(
   

   
)(

  

 
  ) 

{37} 

 



 

85 

 

Where σav is the average compressive stress in the x direction at the plate center, r is the ratio 

σmin/σmax and α is the plate aspect ratio L/s. With this theory they solved the stress gradient for plate 

field with several different boundary conditions. For equation 6 they provided a closed-form 

expression for the traditional plate buckling coefficient k: 

 

     
      

          
 {38} 

β1 through β5 are empirical coefficients dependent on the plate boundary conditions along the 

unloaded longitudinal edges as summarized in table 8.1. The results are also seen in figure 8.14. 

 

                   

ss-ss 4.000 -1.70 1.70 0.20 -0.20 0.75 

fix-fix 6.970 -2.20 2.20 0.20 -0.20 0.65 

ss-free 0.425 -0.80 1.00 0.00 -0.60 0.95 

fix-free 1.277 -0.60 0.60 0.00 -0.65 0.60 

Table 8.1 Coefficients for plate buckling under longitudinal stress gradients [34] 

Note: applicable for        and        , ss = simply supported 

 

Regrettably they only research stress gradients in the longitudinal direction of the plate. However for 

the formula of the internal strain energy is made the assumption that normal stresses produce no 

shear stresses and vice versa (appendix L). It is possible to obtain strain energy of a plate element 

due to shear independent from the normal forces. And this assumption disagrees with the problem 

statement which seems to make the results incorrect. So for now, due to the unsolved issue only the 

Eurocode clause is used in combination with the linear regression methods as possible solution.   

 

 

Fig 8.14 Relation between coefficient kmax and the aspect ratio by C. Yu and B.W. Schafer. [35]  
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8.4 Approach for verification of implementation method 

The implementation method to define the five input design stresses for the standards is outlined now. 

Whether the actual method is applicable has to be checked first. O. Hillers did some initial checks. He 

compared the linearization with theoretical calculations with uniform applied loads and with the 

present check in SDC Verifier. However some real stress results will be checked now.  

 

You could analyze a situation, use the implementation method and fill in the standard to get a result 

for the buckling probability. This result should be compared to the reality. But what is the reality? 

Doing real size tests is unfeasible so you would end up with the power method (nonlinear FEM 

analyses) However this would require detailed specifications about real size structures to implement 

the load cases, boundary conditions, imperfections, material properties and residual stresses. Or it 

would require an immense amount of tests to vary all those parameters described in this report. 

Hence you would get two analyses, one for the method and a second for comparing: 

 

1. Linear static analysis -> Corner stress results -> Implementation method -> Standard -> Result   =?   Real Buckling factor 

=? 

2. Linear static analysis -> Freebody load + Constraints + Imperfections + Properties + Residual stress -> Nonlinear analysis 

 

You can make the problem at hand as complicated as you want with non-linear analyses and detailed 

parameters when modeling. Instead of opting for the power method the testing is done faster, simpler 

and with less uncertainties. Due to simplification in the standards, even with the correct input you will 

not get the exact same answer as reality. Instead of comparing end results, only the difference 

between real stress results and linearized stress results is checked. Only in-plane real stresses are 

compared with in-plane linearized stresses. The proposal is illustrated in figure 8.16. When linear 

regression is sufficiently matching with real stresses that would imply the method is validated. The 

same input design stress is interpreted as usable for both the ABS and DNV. Since all checks and 

calculations will be linear analyses, the actual values for the loads cases become irrelevant. When 

multiplied, the buckling factor will change with the same multiplication. The same holds for the 

boundary conditions since both checks are done with the exact same analysis.  

 

There are seven checks that can be made, shown in figure 8.15 and simply stated as: 

 

1. Linear static analysis -> Translation including rotations -> Eigenvalue Buckling analysis  

2. Linear static analysis -> Translation excluding rotations -> Eigenvalue Buckling analysis  

3. Linear static analysis -> Freebody load (including in-plane moments) -> Eigenvalue Buckling analysis  

4. Linear static analysis -> Freebody load (excluding in-plane moments) -> Eigenvalue Buckling analysis  

5. Linear static analysis -> Corner stress results -> In-plane forces -> Eigenvalue Buckling analysis 

6. Linear static analysis -> Corner stress results -> Linear Regression -> In-plane forces -> Eigenvalue Buckling analysis 

7. Linear static analysis -> Freebody load -> Linear Regression -> Eigenvalue Buckling analysis 
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Fig 8.15 The first six linear eigenvalue analyses of an individual unstiffened plate field. For all 6 

approaches it analyses the same plate field from the model as described above. On the right: 

(A) check of “Simply Supported” (B) check of “In-plane stresses only” (C) check of “conversion 

stresses to forces” and (D) check of “Linearization”. For the last case: 4 different buckling factors due 

to the first 4 implementation methods with average shear: (I) Average Linear Regression (II) Updated 

to max stress point (III) Including all stress points (IV) Eurocode clause.  

 

Load: 

Translations + 

Rotations 

Constraints: 

- 

With both translations and 

rotations this analysis takes 

the real boundary conditions 

into consideration. No extra 

constraints are required for 

equilibrium. 

1.840216 

 

 

Load: 

Translations 

Constraints: 

- 

With only translations this 

analysis comes closer to the 

conservative simply 

supported boundary 

condition in the standards. 

0.803533 

 

Load: 

Freebody (all) 

Constraints: 

Simply supported 

 
0.803523 

 

Load: 

Freebody  

(in-plane only) 

Constraints: 

Simply supported 

 0.803523 

 

Load: 

Real stresses  

(in-plane only) 

Constraints: 

Simply supported 

 0.803423 

 

Load: 

Linearization from 

stress results 

Constraints: 

Simply supported 

Implementation method I 

Implementation method II 

Implementation method III 

Implementation method IV 

0.803046 

0.796203 

0.797644 

0.802455 

B 

A 

C 

D 
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Fig 8.16 Approach overview. 

 

With checks (1), (2) and (3) the boundary conditions can be observed. Simply supported lead to 

conservative values as expected but a quick check does also show a sufficient good match to validate 

the use of freebody forces. Therefore is opted for simply supported edges without holding them 

straight, see figures 5.12a and 8.15. Checks (3) and (4) together match so well for the FEM models 

used here that the assumption of in-plane loads only can be made without hesitation. This statement 

is conservative as well thus will most likely hold for other models too.  

 

Now with check (5) there is some extra explanation in order. The freebody load produces for every 

individual section a set of forces that has equilibrium in all six directions. However the linear 

regression method is based on corner stress results from plate elements. A conversion from these 

stresses is made back to forces to be able to make an analysis in FEMAP. This conversion does not 

100% match the freebody forces. This conversion can also be made with both the real stress results 

and with the linearized stress results. Buckling results match well between checks (4) and (5). Hence, 

while not being 100% equal the conversion is considered approved. Two valuable benefits result from 

this method. One, the implementation is easy enough to carry out a number of checks. And two, in 

this way a pure check between real stresses and linearized stresses, (5) and (6), remains. In the ideal 

situation we would like buckling factors which all match fairly well and have 

k(1)≥k(2)≥k(3)≥k(4)≥k(5)≥k(6).  

 

Note that with the conversion from real corner stress results back to in-plane forces it would also be 

possible to check whether linearization of forces will give equal results compared to linearization of 

stresses (7). This is not further studied.  
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Fig 8.17 Boundary conditions used for individual unstiffened plate fields. 

 

The aim is to individually research in-plane normal stresses and shear stresses for two are defined by 

different methods. Comparing σX, σY and τ separately is complicated since you need both σX and τ or 

both σY and τ to get equilibrium in x or y direction. Shear only is not possible at all. At least not in the 

present situation. Figures 8.19 and 8.20 clearly show unbalanced shear forces. If ∑     or ∑     

or ∑    then the constraint may have a serious influence on the results. The FEM program may 

provide eigenmodes and eigenvalues but they should be considered useless. Only the complete 

freebody load as in figure 8.18 has equilibrium.  

 

However there is still the check that needs to be done on the individual σX, σY and τ stresses. The 

shear stress results show three distinct patterns. One with fairly even and uniform shear over the 

plate field. One with an increasing amount of shear to one of the 4 corners of the plate field. And the 

last resembling figure 8.13. The proposed solution is seen in figure 8.21. All corner stress results are 

transformed back to in-plane forces and then subdivided into three separate combinations. σX is 

formed by the normal in-plane results and calculated shear forces τB. τB consists of uniform distributed 

forces along the long edges such that the difference due to the stress gradient is compensated. The 

in-plane normal results also produce a small moment which is compensated with a difference between 

τB1 and τB2. What is done for σX is also done for σY. These two separate combinations are hence in 

equilibrium and can be compared to the implementation methods which are already in equilibrium 

(checks 2 and 3 in figure 8.21).  

 

The shear result τA is subsequently subtracted by τB and τC to get the remaining shear result τD. This 

is the actual remaining distribution that can be compared to a uniform applied shear stress (check 4 in 

figure 8.21). This τD does not necessarily have to look anything like the original result τA. Note that 

taking τB and τC as uniform distributed shear forces is a simplification and may not have to resemble 

the real distribution along the edge. However the total force should be is theoretically correct.  

 

The conversion from stresses back to forces also produces some inaccuracies which cancel 

equilibrium. Therefore, the remaining shear forces are not completely in equilibrium either. However, 

these are minor errors and hence disregarded. 
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Fig 8.18 Load case 2 with (a) real freebody forces, (b) real in-plane forces and  

(c) linearized in-plane forces. 

 

 

Fig 8.19 Load case 5 with (a) unbalanced real normal in-plane forces only, (b) unbalanced real in-

plane forces in y direction on all edges and (c) balanced linearized in-plane forces. 

 

Fig 8.20 Load case 1 real shear forces and Load case 7 real shear forces. 
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 Real results  Result with implementation method 

 

Fig 8.21 Comparison checks between (a) the real stress results and (b) stresses determined by the 

implementation methods. 

 

Due to the fact that the standards combine the subdivided buckling strengths as well for stress 

distributions in x-direction, y-direction and shear (eq 22-24), it makes perfect sense to divide the real 

stress results in these three arrangements to see whether the implementation methods are correct. 

 

  



 

92 

 

8.5 Experiments 

Hence, above in figure 8.21, there are 4 comparisons between analyses made. To begin with 

comparison 1, the buckling factors are all summarized in figure 8.22. A better explanation of what is 

each result in the graph represents is given in figure 8.25 and 8.27 to 8.29. A borderline is drawn to 

easily distinguish conservative and non-conservative results due to the specific model / load cases / 

implementation methods. All these results are from all seven load cases on all eight fine meshed 

models described in chapter 6. Comparisons 2 and 3 are together summarized in figures 8.30 and 

8.31. And Comparison 4 is summarized in figures 8.33 and 8.34. 

 

Part of the main differences is found in positive and negative parabolic stress distribution results as 

illustrated in figure 8.23 and 8.24. The first gives conservative results and the second gives non-

conservative results as expected and discussed before. A second part of the main differences is a 

consequence of the stress gradient effect. This effect has been discussed extensive as well but figure 

8.26 illustrates that this distribution of stress may actually be present in real structures and hence also 

produces non-conservative results with the implementation methods. 

 

The actual stress results and linearization results are shown in appendix B for only model 2. Appendix 

E summarizes all buckling factor results in tables. The overall results match fairly well with the 

implementation methods, however that cannot be said from individual checks Fx, Fy and shear. 

Conclusions may be made for the individual implementation methods: 

 

 Implementation method 1 (Average linear regression) surprisingly seem to produce the, although 

slightly non-conservative, best overall matching results with the smallest deviations apart from a 

few exceptions. Deviations are only one to two percentages. Individual Fx or Fy results may 

however have substantial non-conservative calculated buckling strengths.  

 Implementation method 2 (Average linear regression + Including all stress results) delivers almost 

only very conservative results. Even with this method the stress gradient effect is not resolved for 

the severe cases.  

 Implementation method 3 (Average linear regression + Updated to σmax) produce fluctuating 

unstable results although more often conservative than non-conservative.  

 Implementation method 4 (Average linear regression + Eurocode clause) has similar overall 

matching results with small deviations like method 1 however conversely slightly conservative and 

thus having a preference in comparison. Individual Fx and Fy results are still not sufficient though. 

 

The shear stress implementation method results show relative meaningless values. With τD there 

exists a fundamental different real shear stress distribution compared to simply taking the average, 

absolute average or absolute max shear stress. Therefore a better proposal would be to take the 

average or maximum shear from τD instead from the non-subdivided real initial stress results. This 

proposal is not further studied for the moment.  
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Fig 8.22 All buckling factors from the eight different models for all twelve different implementation 

methods. 

 

Fig 8.23 Stress results of model 7 with load case 1 on the long edge. 

 

Fig 8.24 Stress results of model 2 with load case 6 on the long edge. 

See fig 8.23 

See fig 8.26 
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Fig 8.25 Results from figure 8.22 subdivided into the different implementation methods for the 7 load 

cases. The difference between real situation and implementation method is shown in percentages.  
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Fig 8.26 Normal stress and shear stress results of model 8 load case 5. 
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Fig 8.27 All buckling factors from only model 1 plotted along a minimum border line. 

 

Fig 8.28 Zoomed in version of figure 8.22. All buckling factors from load case 4. 

 

Fig 8.29 Zoomed in version of figure 8.22. All buckling factors from load case 3. 
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Fig 8.30 Comparison of Fx and Fy results. 

 

 

Fig 8.31 Comparison of Fx and Fy results. Zoomed in version of figure 8.24. 
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Fig 8.32 Results from figure 8.30 subdivided into the different implementation methods for the 7 load 

cases. The difference between real situation and implementation method is shown in percentages. 

 

 

Fig 8.33 Comparison of shear results 
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Fig 8.34 Comparison of shear results. Zoomed in version of figure 8.26. 

 

 

Fig 8.35 Results from figure 8.33 subdivided into the different implementation methods for the 7 load 

cases. The difference between real situation and implementation method is shown in percentages. 
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Furthermore there are made comparisons for all specific models and load cases with only 

implementation method 1 between three different mesh sizes. Appendix C shows the results for σXmax, 

σXmin, σYmax, σYmin and τ in graphs for only model 2 and appendix D contains these results from model 

2 only as well summarized in a table. Here some expected and unexpected results as well. 

 

The fine mesh sized models have higher stress results for load cases 1 to 5 (fig 8.33). Load cases 6 

and 7, both with fairly large transverse stresses, have lower stress results for the fine meshed models 

(fig 8.34). The results vary mostly less than 1% for the severe loaded edges where the middle and 

fine mesh models have fairly similar results. The weakly loaded edges may have difference up to more 

than a factor 2 between the single element mesh and the other meshes.  

 

 

Fig 8.36 Load case 1 stress results on the short edge for the three different mesh sizes. 

 

Fig 8.37 Load case 7 stress results on the long edge for the three different mesh sizes. 

 

Shear stress results compared to the coarse meshed models vary heavily with the fine meshed 

models. No clear conclusions can be made from these results. This is not surprisingly since the 

implementation method has been rejected above. The comparison should be made again if the new 

proposal is implemented.   
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8.6 Recommendations 

The implementation methods with linear regression have in overall results an approval. However, 

several situations show that it is still not completely accurate. The longer the edges of the plate, the 

more the influence will get from parabolic stress distributions along those edges. The standards do not 

accept any other input design stress than the linear distributions but a combination of these 

distributions with the principal of patch loads may provide better matching results. The standards 

would need an update for that. More research will be required for this.  

 

 

Fig 8.38 Buckling of plates under (a) point loads; (b) partially distributed loads; 

(c) patch loads near corners; (d) patch loads at edge center. 

 

Another proposal to try is to adjust implementation method 3. Now it is a simple shifted linear 

regression. A better endeavour may be to define the σmax first and then fit the curve such that it goes 

through that point and with a minimum of the sum of the squares of the deviations of the rest of the 

actual data. 

 

The stress gradient effect calls for a more accurate implementation method as well. Maybe a 

combination of method 2 and 4 should be tried although that would result in mostly conservative 

results. Another idea would be to multiply the calculated stress results with the k factor from C. Yu 

and B.W. Schafer. A third and preferred approach as concluded from the results up to now would be 

to take method 1 and afterwards not going for an average of the two opposite edges but taking 

something in between the average and the maximum. Maybe 70% as the Eurocode shows that 60% 

provides small deviations but not always conservative. The problem is that when one edge stress 

distribution is more or less the opposite of the other edge stress distribution such that it becomes 

undefinable which of the two the maximum is. This is left for further study. 

 

The implementation methods for the shear are rejected. Due to this conclusion the new proposal is to 

base the uniform input design shear stress on τD instead of τA to deliver more accurate and reliable 

values. This is left for further study as well.  
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9. Analysis of stiffeners local buckling limit 

Stiffener local buckling is by far the unimportant factor in comparison with the plate and beam-column 

buckling limits. In practice a plated structure is designed with sufficient stiff stiffeners. A stiffness 

check is then disregarded if the dimensions pass some allowable limit for a surely sufficient stiffness. 

If not then the check is required by the ABS and DNV hence the plate buckling strength of the web 

and flanges should be calculated. Since the beam models do not have webs and flanges as plate fields 

modeled with plate elements, a new implementation method is required.  

9.1 Stress results 

Webs and flanges of stiffeners or girders are checked as individual plate fields equal to the previous 

chapter. In case the stiffeners are modeled with plate elements it becomes the exact same problem. 

The implementation method described in the previous chapter can be used here as well. Only the 

recognition of the webs and flanges will be required extra but since SDC can already do that there is 

no issue. However, beam elements cannot give any results for local buckling in finite element 

packages, see figure 9.1. Therefore there is need for a conversion method to get the five input design 

stresses σXmax, σXmin, σYmax, σYmin and τ.  

 

Fig 9.1 (a) Part of the plate model which shows local buckling in a girder. Induced by stresses in the 

axial directions and bending moments by the adjoining plates and stiffeners. (b) Part of the beam 

model without loads but unable to show the local buckling deformations anyway. 

 

Note that if you are doing the checks with the plate model that the webs and flanges have one free 

edge in rather frequent situations and the boundary conditions have to be adjusted for these plate 

field checks. 
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When modeling stiffeners and girders with the use of beam elements the static analysis in FEMAP 

provides several different results for each element. Such as the three forces, the three bending 

moments and four corner stress results. The four stress recovery (corner) points are defined as in 

figure 9.2. The other six outputs are defined in figure 9.3.  

          

Fig 9.2 Corner stress definition points for the (a) flat bar stiffener, (b) L shaped stiffener  

and (c) T shaped stiffener. 

Fig 9.3 Section which is considered as the idealized beam-column in standards for flexural beam 

buckling for the specific stiffener. 

 

Fx = uniform force  

Fy = horizontal shear force  

Fz = vertical shear force  

Mx = torsional moment 

My = vertical bending moment  

Mz = horizontal bending moment 
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9.2 Proposal for implementation method 

Flanges cannot absorb any transverse in-plane stresses since one side has no supporting structure. 

That indicates that σYmax = σYmin = 0 and reduces the amount of design stresses. The remaining 

stresses are illustrated in figure 9.4. The in-plane stresses can be calculated from the corner results. 

The maximum pressure from points 1 and 2 will give the σXmax, for the flange. The T stiffener profile 

has two flanges but if the one with unfavourable load conditions is ok, then the other will not be a 

problem. The other point will provide σXmin in case of a L profile. The average of points 1 and 2 will 

provide σXmin in case of a T profile. The web has the same procedure. The average of points 3 and 4 

at the bottom. The average of point 1 and 2 in case of a bar or T stiffener or just point 1 in case of an 

L stiffener at the top. Things are simplified with this method. Note that you will not have the in-plane 

stresses but some close by corner stress results. In theory they are conservative though, so this 

should be a safe approximation.  

 
Fig 9.4 Stresses in web and flanges 

 

There is no way of defining shear results in the axial direction in beam elements so the shear stress 

has to be determined on the ends. The proposal is to calculate the shear stress in the web by taking 

the vertical shear force and dividing this by the web area. And calculating the shear stress in the 

flanges by taking the horizontal shear force and dividing this by the flange areas. This is a large 

simplification though. The real shear stresses are complicated as seen before due to the shear lag, 

shear loads, bending moments, torsion and even warping (fig 9.5). However these separate shear 

stresses cannot be received from the results from beam elements.  

 

Fig 9.5 shear stress: due to (a) shear forces in the vertical direction, (b) pure torsion and (c) warping.  
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9.3 Approach for verification of implementation method 

The basic idea is to simply take the plate model and the unstiffened plate buckling implementation 

method and compare that with the beam model and the stiffener local buckling implementation 

method. Results from the plate model sufficiently equal the results from the beam model as seen in 

chapter 6 therefore this comparison is understand to be allowable. Hence a comparison between the 

webs and flanges from the plate model and the beam elements from the beam model is assumed to 

provide realistic results. 

9.4 Experiments 

In principal there should be five design stress values for the stiffener webs and flanges: σXmax, σXmin, 

σYmax, σYmin, τ. However the stiffeners web investigated here has a free edge and hence σYmax and σYmin 

are zero and will not need an analysis. Summarized results of the other three can be seen in appendix 

F to H.  

 

For now the shear stress results are not considered since there is just concluded that the 

implementation method for plate elements is incorrect. The results for σXmax are surprisingly similar 

compared between the beam element implementation and the plate element implementation. 

However they are 3% less conservative while the plate element implementation with average linear 

regression is already the non-conservative method 1. Now the maximum stress results of all cross 

section areas along the stiffener is taken as well hence this is a little disappointing. Unfortunately only 

model 2 is analyzed for all load cases, in other words, for now there are no comparable variations in 

dimensions nor test results including actual flanges. Hence only one specific web is checked.  

 

The question is whether deviations between results are due the implementation method for beam 

elements or due the implementation method for plate elements. The lack of checked results from the 

individual stiffener web with the plate element implementation method and the lack of the other cases 

has the consequence that no safe conclusion can be made for now. The results however look 

promising although a bit non-conservative compared to the plate model.  
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10. Analysis of Stiffener flexural buckling limit 

The loads conditions at hand should subsequently be used to define the maximum compressive stress 

at the extreme fiber and compare that with the critical buckling strength of the structure. This critical 

stress is then considered to initiate buckling. Theoretically this critical stress can be determined in a bit 

simplified way by realizing that it is caused mainly by the axial load and the bending moment around 

the y axis. Namely the results Fx and My in figure 9.3. The standards make use of this simplification 

although just as with the plate buckling you have to specify loads that are simpler to describe but not 

that easy to match with stress results from your FEM analysis. 

 

 

Fig 10.1 Beam-column input design stresses. 

 

The DNV code is a bit more extensive concerning input parameters of the loads. Remember figure 

10.1, as seen before in chapter 4. This figure is deliberately repeated to emphasize the importance of 

the input design loads on the beam-column. And remember figure 5.2 for axial stresses in the column. 

For both standards the shear stress and the stress distribution in y direction are needed almost only to 

define the effective plate width, one of the correction factors. At the same time the DNV also 

incorporates the shear stress in the main formula. The uniform stress in x direction and the lateral 

pressure remain the most important input design stresses though. The main formulas resemble 

equation 4 and can be described by: 
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Uniform axial load Bending moment Shear stress 

Uniform axial load Bending moment 
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σa = uniform stress in x direction 

σb = the maximum stress only resulting from the bending moment 

σ0 = yield strength of material 

σE = Euler buckling strength 

σT = Torsional buckling strength 

τc = Shear stress over the associated plating in the column 

η = Safety factor defined in the standards 

 

The input design stresses are divided by allowable, critical stresses defined by the Euler buckling 

strength and correction factors. In the DNV formula the design stress is divided by the Perry-

Robertson correction and in the ABS formula the design stress is divided by the Johnson-Ostenfeld 

correction. The real stress divided by the corrected allowable stress forms an dimensionless values 

that must be lower than 1 to be sure that the results will remain below the critical stresses. 

 

Now you can see the clear distinction between the uniform axial load, the bending moment and the 

shear stress. Both the ABS and DNV codes use the nominal calculated compressive stress and a 

bending stress around the y axis using full width of associated plating. As discussed are the standards 

not good in showing what is really going on so therefore first an overview of the input design stresses. 

The input design stresses and corrections factors are discussed in the following sections to make the 

formulas more comprehensible. For all details see the ABS and the DNV standards.  
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10.1 Axial load 

O. Hillers did a suggestion on defining the axial load simply by choosing the largest stress from the 

linearized plate results. Instead it would be better to work with the actual stress results from the 

model including results which exist in the stiffener. 

 

 

Fig 10.2 Axial load concept from Ottar Hillers. 

 

The axial load for the ABS and DNV codes is nothing more than figure 5.2a. That means you can take 

the average stress over the entire column as shown in figure 10.3 below. The model gives a 

reasonably easy interpretation of calculating the stress results by just taking the average result over 

the area.  

 

Fig 10.3 An exaggerated impression of the in-plane stresses in the described column for load cases 1. 

 

On a side note, notice that the stresses become smaller at the connection between plate fields and 

stiffener. These are results from the linear static analysis but it should be clear that it is almost the 

opposite from the stress results you should have with the unstiffened plate ultimate strength shown in 

figure 3.11. It is the same behaviour as mentioned before in the check of the plate fields. Of course 

with the perfect straight model and linear static analysis it is only logical that the stresses do not 

match those post buckling stresses. But we are looking for the ultimate strength limit so that does 
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again indicate the difficult comparison which is aimed to make with reality. The smaller stress at the 

connection between plate fields and stiffener here in the figure probably is due to the bending 

moment in the stiffener which is subtracted from the uniform pressure. 

 

Furthermore a note on the axial stress results from FEMAP. Considering the normal stress in y 

direction as defined in figure 10.1, you should expect this stress in the transverse direction to 

influence the results for the axial direction due to the poison ratio. The stress distribution in the plate 

due to stresses in y direction is therefore already included within σx. And knowing that it does have an 

influence, the transverse stress is therefore not necessary in the formula. Unlike the IACS Common 

Structural Rules for bulk carriers describes, as mentioned in chapter 8 and equation 27. 

 

The DNV is set apart from the ABS due to the fact that it also distinguishes tension and compression 

limits. Both may not exceed the yield stress. The column is checked in four different points (fig 10.4). 

The sign change is due to the convention of positive compression stress. Calculation of the final 

flexural buckling acquires eight different formulas for each point and positive and negative axial loads. 

 

 

Fig 10.4 Four stress points which the DNV code distinguishes and sees as the spots with the maximum 

compressive stress at the extreme fiber.  
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10.2 Bending moments 

Next to σa there is the maximum stress only resulting from the bending moment σb as discussed with 

equations 39 and 40. Unlike the uniform axial stress, this stress can consist of different sources as 

seen in figure 5.2: due to eccentric axial forces, lateral pressure, boundary restraints at the ends, or 

even lateral pressure in the transverse direction, warping and stress distributions in the adjacent plate 

fields. You will see the latter three returning primarily as part of the torsional buckling modes of the 

column. However the use of all these parameters is somewhat limited in the standards due to 

simplification. The standards define three possible maximum bending moments.  
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The ABS literally speaks of the “the bending stress due to the maximum bending moment induced by 

the lateral loads” and gives one formula. The DNV speaks of the “absolute value of the actual largest 

support moment” and the “absolute value of the actual largest field moment” and gives three 

possibilities for the calculation of the bending moment. They are actually defined by the forget-me-

not’s, illustrated in figures 10.5 and 10.6 below. They differ in the boundary constraints at the ends, 

continuous (fixed at the ends) and Sniped (simply supported at the ends). Firstly this is not very 

realistic since the boundary condition of the stiffener-plate combination is neither simply supported 

nor fixed but something in between. And secondly it is in reality difficult to accurately specify the load 

qSd (w in the figures below). Again these are thus pure bending moments around the y axis, My. 

Unlike the DNV, the ABS does not make a distinction between different boundary conditions and uses 

only the maximum moment of the fixed beam. Both standards use the following relation to get the 

stress: 
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in which Wmin is the effective section modulus which depends on the distance z between the neutral 

line and the outer fiber of the beam-column. 

 

The standards thus rely on the lateral pressure qSd for the input load. Again, in the DNV code it gets a 

bit more complicated than in the ABS, for they make qSd a function of not only the lateral pressure PSd 

but also the in-plane stress distribution in transverse direction σy.  

 

    (    (                ))  {43} 

 

The details can be looked up in the DNV. The addition of this stress distribution in the transverse 

direction is understandable since the in-plane stresses certainly have influence on the lateral pressure 

and vice versa as illustrated in fig 3.27.   
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Fig 10.5 Fixed beam – Uniformly distributed load. [36] 

 

 

Fig 10.6 Simply supported beam - Uniformly distributed load. 

 

 

Fig 10.7 Failure modes for the beam-column hence positive or negative lateral pressures are 

important to distinguish. [37] 
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10.3 Shear stress 

Notice the additional part in only the DNV formula (eq 39) with shear stresses τC. The Euler column 

buckling does not speak of shear stresses but just as with the Von Misses does shear have an 

influence on the structural behavior so this addition seem natural. The definition of the uniform input 

τSd does not result in serious stresses in the stiffeners but do have their effect on the associated plate. 

It is however odd that this is completely disregarded in the ABS code.  

 

When the overall shear stress in the associated plates is uniform, they have the same sign. The stress 

gradient effect however produces opposite signs for the 2 associated plates and an actual stress result 

in the longitudinal direction within the area of the weld. A similar kind of longitudinal stress is 

produced due to the shear lag.  

 

 

Fig 10.8 Illustration of the shear lag which also influence the axial in-plane stresses. 

 
The DNV code is a bit more complicated for defining the axial stress as discussed in chapter 10.1. The 

stiffeners act as support and are meant to prevent out of plane deformations. Hence, the strength 

against axial stresses and bending is understandable influenced. However the shear stress plays part 

as well. Again remember the shear stress defined in figure 10.1. The effect of that on the associated 

plates is clear. The question is whether the shear has effect on the stiffener as well. The DNV 

incorporates this in the input design force Fx in the calculation. The compressive force Fx therein is a 

function of σx but also of the shear stress τc in a special combination.  

 

     (     )         {44} 

 

If the stresses in the web are allowed to be beyond the elastic plate buckling limit then  
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This is one of those parts in the standard in which clearly is tried to make things as a blank form and 

omitting the explanation. For example, some of these parameters are exchanged with numbers as 

seen in formula 7.4 in the DNV. It is understandable that the actual shear stress can be much higher 

than the column-like critical buckling shear stress τcrg because the stiffener provides extra strength in 

comparison with only the plate. But notice the use of (
 

 
)
 

instead of (
 

 
)
 

. This makes that the second 

part (τcrg) is the Euler column-like critical buckling stress instead of the plate-like critical buckling 

stress. To make this more accessible remember that the boundary condition for column buckling is 

defined with only the ends constraint.  

 

Little research is necessary to see that the shear appears to have no or at least negligible effect on 

the axial stress in the stiffeners. This does raise a disbelieve in whether the addition of a pure uniform 

shear stress is correct or not. This is of course an empirically determined introduction of this input but 

not very logical unless the real shear stress distribution is as illustrated in figure 8.14 instead of 

uniform. This creates the effect that the shear stress does indeed influence the axial load on the 

stiffener. But no explanation is given about what τc should be taken as input for the standard. 

Whether they should be the average or maximum etc. is unknown.  

 

Since the definition concerns the maximum compressive stress at the extreme fiber anyway and it is a 

conservative approach, the maximum of σa of all cross-sections along the column as calculated above 

is taken without considering the shear stress results in the FEM analysis.  
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10.4 Correction factors 

The effective width: 

A more detailed definition of the empirical and partly theoretical correction factors is in order. The 

associated plating contains half the plate width on both sides of the stiffener. The loads on this part of 

the model are compared to some specified critical stress in the stiffener defined using simple beam 

theory. To correct the simplified formula the effective plate width se combination is used, mainly 

defined by plate slenderness as described in chapter 3.4. This se is further corrected with influence of 

the transverse stress and the shear stress. Together this translates to a factor    ⁄  in the formula. A 

smaller effective plate width results in a decrease of the allowable stresses. This effective width may 

have a fairly large impact on allowable stress. Therefore the also σy and τC may need an accurate 

approximation.  

 

                 

                   
{46} 

 

 

Fig 10.9 Illustration of the considered part of the construction for the flexural buckling and tripping 

checks 

 

 

Fig 10.10 The effective width illustrated for varying stiffener spacing in the DNV standard. 
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The correction on the Euler’s critical stress: 

The strength curves seen above in figure 10.11 form the base of the methods used for other 

correction factors in the formula. Different correction methods on the Euler buckling have been 

developed. Notice formulas in equations 39 and 40 by which the input loads are divided:         , 

     ,             and         . These combinations of the yield, Euler and torsional strength are 

described by the Perry-Robertson correction employed by the DNV and the Johnson-Ostenfeld 

correction employed by the ABS. Both originate from empirical research and theoretical formulations.  

 

 

Fig 10.11 Comparison of empirical methods to predict aluminum column strength. 

 

The Perry-Robertson formulation is a formula for the ultimate load and assumes that the plate-beam 

combination will collapse when the maximum compressive stress at the extreme fiber reaches the 

yield strength of material. Without further explanation it gives the following formula: 
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η is herein a factor including the effect of imperfection in the column. The DNV standard implements 

this exact same method to define the critical stresses for both flexural and torsional buckling 

strengths. Exact definitions can be found in the standard but it results in the following formula for the 

characteristic strength and the torsional strength in which you can see the resemblance: 
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The Johnson-Ostenfeld takes into account the effect of plasticity into the elastic buckling strength. 

The resulting “elastic-plastic” buckling strength is often termed the “critical” buckling strength. 
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The correction in the ABS is surprisingly good in accordance with this relation. 
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Pr is stated as the proportional linear elastic limit of structure, which may be taken as 0,6 for steel and 

simplifies the formula to: 
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The magnification factor: 

Yet another correction is brought into both the ABS and DNV codes. For a column the deflection will 

tend to infinity, as P is increased to Pcr as shown by curve-A in fig 10.12 below. Provided the material 

remains elastic, it is possible to show that the applied force P, enhances the initial deflection at every 

point along the length of the column by a magnification factor, given 
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The derivation is made in appendix N. This factor is only multiplied with stress due to the bending 

moment since this only concerns the initial imperfection and hence the eccentric loading conditions.  

 

 

Fig 10.12 Theoretical and actual load deflection response with initial imperfection. 
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10.5 Proposal for implementation method 

The input design stresses as discussed above may be simple but the aim was to search a new 

implementation method for the beam model. Figure 4.9c already stressed out the preference of using 

only beam element results. Instead of assembling and sorting out the necessary stress results from 

the plate elements within the associated plate fields. Taking all plate elements into account would 

require an enormous extra implementation and calculation time since every cross section along every 

stiffener will need to be sorted out. The new approach has an effect on both the axial stress and the 

bending stress.  

 

The idea is to extrapolate the corner stress results from the beam elements, points 1 and 2 in figure 

10.13 below (points 3 and 4 in figure 9.2), to the rest of the adjacent plate fields. Then the average 

over the extrapolated stress and the Fx in the beam elements is taken. Hereby is thus opted for the 

cross section in figure 4.9c instead of 4.9b while still taking the associated plates into account.  

 

 

Fig 10.13 Illustration of the method to define the uniform axial load. 

 

To generalize this principle not simply the average stress is taken but the total force is divided by the 

total area for if the adjacent plate fields do not have the same width (fig 10.10). 
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It is difficult, if not impossible, to relate the stress results in the beam elements to the lateral pressure 

on the entire column. However, the DNV states it is equal to the “absolute value of the actual largest 

support moment for the stiffeners with unequal spans and/or unequal lateral pressure in adjacent 

spans”. It therefore proposes a workaround beyond the forget-me-not’s although without specifying 

how to calculate it.  
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Instead of calculating with qSd, it is faster to define My immediately which would also discard the 

troubles with boundary conditions. The result from above give 3 axial forces divided by the area 

whereupon these same forces can be used together with the bending moment in the beam element to 

define the total My around the centroid. The stress results due to out of plane bending moments in the 

plates are neglected though. The concept is illustrated in fig 10.14. The check can be done on all 

cross-sections over the length and taking Fxmax and Mymax as specified by the standards. The maximum 

values might come across as conservative but the check does actually search for the maximum 

compressive stress at the extreme fiber. The benefit for analyzing all  individual cross-sectional areas 

is that second order effects are taken into account. Especially when the model has a finer mesh size. 

 

                                                        {56} 

 

 

Fig 10.14 The parameters to define the combined bending moment My. 

 

There is another option as well to select the maximum bending stress. Femap gives results of the 

maximum combined stress in the beam elements. This has to be subtracted with the uniform axial 

stress to define the amount of stress due to bending moments. The result however also includes the 

part of bending moment Mz and neglects the fact that the maximum stress could be in the plate 

instead of the stiffener. And although you can make equation 42 and the rest redundant altogether it 

would probably result in a conservative value and unverifiable.  

 

For now the shear stress is simply taken as the average of the two adjacent plate fields due to the 

absence of other possible methods. That means the shear stress calculated with the use of the 

unstiffened plate fields worked out in chapter 8. Note that this should be the correct shear stress as 

the implementation method was rejected in the conclusions. 

 

From the original 4 input parameters σx, τ, σz and σy the first three are defined now, so far neglecting 

σy. This last input design stress is however necessary for the definition of the effective plate width. 

The approach is equal to that of the shear stress for now, due to an absence of other possible 

methods. Hence, σy is taken as the average transverse stress from both associated plate fields.   
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10.6 Approach for verification of implementation method 

With the help of the methods described above the design loads can be defined from the linear static 

analysis but they still have to be verified. Comparable to the approach used for the unstiffened plate 

fields, the input design stresses FX, MY, τC and σY should be verified individually and a separate checks 

are required to evaluate each of the implementation methods. The extrapolation of the stress results 

will need to be verified before other checks are meaningful. And furthermore, the bending moment My 

is not really of importance since no lateral pressure is applied in the load cases. The bending moments 

are therefore small and deviations between real My’s and those calculated with the implementation 

method are out of proportions.  

 

 

Fig 10.15 The approach to verify the proposed method for beam-columns. 

 

However checking the column with the real applied loads and comparing it to the proposed method 

with the help of a linear eigenvalue buckling analysis is even more difficult you would think at first 

sight, remember figure 5.11. Implementation methods for the shear τC and transverse stresses σY are 

not verified for the moment.  

 

First the implementation method. Applying Fx an My are complicated because of the combination of 

plate elements and beam elements. Therefore a rigid body tie may be used again as defined in 
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chapter 6. The center of the tie is located at the neutral line of the stiffener plate combination with 

the total plate width. The constraints have to be adjusted accordingly as shown in figure 10.18. 

 

The freebody load on the other hand is the real problem. Neither the freebody load or the prescribed 

translations and rotations have a satisfying result (fig 10.16). The transverse and shear stresses have 

obviously effect on the buckling but for now only the axial stress is taken into account. However, 

taking only one of the directions cancels the equilibrium of forces like the phenomenon seen before 

with plate fields. And again the stress gradient effect has its impact on the analysis. Hence some axial 

force should be divided along the length such that it produces equilibrium. However the position of 

this axial force / shear stress is not clear. It should be within the entire column section area. Only the 

prescribed translation on the column ends is an adequate, although conservative, substitution (fig 

10.17). 

 

Eigenmode Load case Eigenvalue Eigenmode Load case Eigenvalue 

 

Translations 
+ Rotations 
on all edges 

4.146092 

 

Freebody 
forces and 
moments 

on all 
edges 

1.151032 

 

Translations 
on all edges 

3.436801 

 

  

 

Translations 
+ Rotations 
only on the 
ends of the 

column 

1.5566 

 

Freebody 
in-plane 

forces and 
My 

moments 
on ends 

only 

1.177264 

 

  

 

Freebody 
Forces in 

longitudinal 
direction 
and My 

moments 
on all 
edges 

1.174752 

 

Translations 
only on the 
ends of the 

column 

1.041284 

 

Freebody 
in-plane 
forces on 
ends only 

1.142903 

Fig 10.16 Eigenvalue analyses of the beam-column with different applied load cases. The left shows 

results with prescribed translations and the right shows results of freebody loads. All for only load 

case 1. 
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Eigenmode Load case Eigenvalue Eigenmode Load case Eigenvalue 

 

Translations 
only on the 
ends of the 

column 

1.041284 

 

Implemen-
tation 

method 
with Fx 

1.224624 

Fig. 10.17 The remaining available check. 

 

The analysis is further complicated with other buckling modes (fig 10.19 and 10.20). Most eigenmodes 

only cover the behaviour of the associated plates hence a number of modes should be analyzed in 

order to take the relevant column buckling mode.  

 

 

Fig 10.18 Definition of the column with boundary conditions for the freebody load and the design load 

calculated with the implementation method. 

 

Fig 10.19 Load case 1: The first eigenvalue mode for the Freebody load. 

 

Fig 10.20 Load case 1: The second eigenvalue mode for the Freebody load.  
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10.7 Experiments 

The load cases (or the specific stiffener in the model) are chosen a bit unfortunate. Especially load 

case 5 has a horizontal bending moment which is so significant that buckling results will not provide 

useful data for beam-column buckling. As this situation will likely indicate that the critical section is not 

in this stiffener it will not be a problem. Furthermore, load case 6 produces tension in the longitudinal 

stiffeners and is thus not usable either. Hence only load cases 1, 2, 3, 4 and 7 remain for proper 

analyses. Note that all models have equal plate widths for both associated plate fields for every 

stiffener that is checked. Unequal plate widths will require an extra check. 

 

Overall it is difficult to conclude whether the deviations in eigenvalue results are because of the 

unequal ways of applying the load or because of the implementation method. Therefore, for now, only 

the stress values are compared. The results are summarized in appendix I. 

 

The differences seem to be very similar at first sight when you look at the first few load cases on the 

basic models. However, as other checks are examined, the results are not that similar anymore, non-

conservative and deviate up to almost 42% from what real stresses give. Even though the maximum 

stress is taken from all cross section areas along the beam-column.  The implementation method is 

therefore considered not entirely correct. The basic model with different plate thicknesses and the 

longitudinal stretched model 7 have similar results for the first 4 load cases but these are mainly 

longitudinal loads. Load case 7 with the transverse load has surprisingly a considerable effect on the 

stress results in the beam elements. Furthermore the shape and dimensions of the stiffeners seem to 

have considerable influence on the results as well. Both in a negative way (fig 10.21). Obviously, the 

lower two stress recovery points in the beam elements do not equal the stress in the plate. With more 

detailed examination of the model this also applies to the plate model (fig 10.23 and 10.24). The 

reason is difficult to explain. The strain results do have a good transition in the place of attachment 

between the stiffener and the associated plates however stress results as given by the linear static 

analysis do not. Hence the implementation method with extrapolations is not sufficient and should not 

be allowed to define the present axial stress in the beam-column.  
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Fig 10.21 Comparison of real axial beam-column stresses and the implementation method. 

 

Fig 10.22 Focus on differences in figure 10.21 subdivided between the load cases. 

Load case including transverse stress 

Other stiffener shapes 
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Fig 10.23 Axial strain and stress results in the stiffener and associated plates for load case 1. Stress 

results slightly diverge at the place of attachment. 
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Fig 10.24 Axial strain and stress results in the stiffener and associated plates for load case 7. Stress 

results seriously diverge at the place of attachment.  
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11. Analysis of stiffener torsional buckling limit 

The deflection shape is of stiffener torsional buckling or the so called tripping is a complex 

combination of different parameters. The torsional moment around the line of attachment and the 

shear forces due to the warping phenomenon are the main loads. The mode seem to be generally 

coupled with plate buckling. 

 

 

Fig 11.1 A combination of plate buckling and stiffener tripping. 

 

 

Fig 11.2 Non uniform torsion: twisting and warping. 

11.1 Standards 

Notice the torsional strength σT in the DNV formula (eq 40) only. Hence the DNV code does also 

include the stiffener tripping check within this same formula. The approach for calculating the strength 

is already described in chapter 3.5, a more extensive derivation is found in appendix O. The ABS 

utilizes a separate formula in which only the uniform pressure is compared to the allowable stress and 

bending moments are disregarded.  
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This critical buckling stress for associated plating corresponds to the number of n half-waves that yield 

the smallest critical stress.  
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Note that     from the DNV does not go into equation 57 but is used within equation 39. 

It = torsional moment of inertia (St. Venant torsion) of stiffener only 

Iz = moment of inertia of stiffener about axis through centroid of stiffener and parallel to web (Z1) 

Ip = polar moment of inertia of stiffener about center of rotation (Iy + Iz) 

Γ = warping constant 

 

 

Fig 11.3 Cross section of a stiffener and its plate. 

11.2 The implementation method 

The implementation of the torsional stiffener buckling check is not further worked out for the moment. 

The standards however only need already available parameters or values which can be calculated with 

the known dimensions. The input design loads remain the used axial and bending stress and hence 

the checks could be evaluated. 

 

 

Fig 11.4  Several buckling modes of the beam-column in the plate model.  
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12. Conclusions 

An extensive overview of the buckling phenomena is given. All buckling modes such as local plate 

buckling, local stiffener buckling and beam-column buckling have been discussed. Each have their 

influencing parameters as load cases, geometry, boundary conditions, imperfections, material 

properties and residual stresses. The following preferred assessment of the buckling resistance is a 

combination of linear static FEM analyses and standards. It simplifies the analysis so many of these 

parameters and details do not have to be defined since they are taken already into consideration 

within the standards. Plus the approach will make it possible to assess models with any kind of mesh 

size.  

 

It simplifies the complicated buckling phenomenon such that the coupled relationships between 

buckling modes and influences such as shear lag and warping are taken into account with relative 

basic load cases. However the actual load case on each individual section still has to be defined 

sufficiently accurate in order to make use of the standards. The implementation method hence only 

requires to define input design stresses which are attempted to specify for plate fields, stiffener 

webs/flanges and beam-columns. 

 

The approach for plate fields have been observed with a top down view. Real stress distributions are 

formed with corner stress results along the edges. Longitudinal and transverse in-plane stress results 

are transformed into a design stress by a linear regression of these distributions. Shear stress results 

are grouped together with an average or maximum. However as results showed more and more 

deviations from the real situations it was clear that implementation needed a more satisfying 

distinction between real stress results. A new subdivision into a longitudinal stress gradient, a 

transverse stress gradient and the remaining shear stress is proposed. This is logical from the 

viewpoint of the standards since they also assess plate fields on their buckling strength by a simplified 

combination of these σX, σY and τ. Hence this new subdivision also recreates equilibrium for the 

individual portions again, something which is absent in the original stress distributions and needed for 

realistic checks. Verification concludes that linear regression is allowable as long as the stress gradient 

effect is taken into account. The shear stress however cannot be simply an average or maximum from 

the original shear stresses as seen in the results hence a new proposal is made to do that from the 

new subdivided shear stress. Extra research is recommended for this proposal.  

 

To go more in-depth into the actual linearization it shows that adaptations on linear regression almost 

always have an undesired effect on the input design stress. Most of the investigated situations end up 

in far too conservative end results. Simple linear regression of in-plane stresses however generally 

only deviate several hundredth or tenth of percentages compared to the real load case. The stress 

gradient however has more influence than expected and is understand to be the actual problem area 

when defining the input design stresses. The Clause 4.6(3) in Eurocode 3, part 1.5 does indeed 

provide some prevention of this phenomenon however is not completely satisfying either. This is 

primarily because it states an adjustment for only the long edges instead of both the short and long 
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edges. And secondary because some situations do not come in the conservative region with 60%. The 

new proposal would be to take the normal linear regression and go for about 70 percent of the two 

opposite edges instead of the average or 60 percent from the Eurocode.  

 

The assumption has been made that the model has stiffeners modeled with beam elements. 

Identifying load cases on the stiffener web and flanges separately is therefore problematic. An 

interpolation of the stress recovery points from the beam elements is made to define the correct input 

design stresses for the individual web and flange. The implementation method for stiffener webs and 

flanges is insufficiently tested and hence there is a lack of solid conclusion that can be made. However 

the single check shows slightly non-conservative but fairly similar and thus promising results. 

 

While decomposing the approaches of the standards for the beam-columns it can be shown that there 

is a simplified separation of the loads and correction factors. Identified correction factors include the 

effective width concept which is used to justify implementation of Euler’s column buckling. 

Furthermore, the ABS formula implements the Johnson-Ostenfeld correction in the allowable design 

stress while the DNV formula implements the Perry-Robertson correction. Lastly there is the 

magnification factor due to initial imperfections. Hence, the procedure of the standards provides a 

surprisingly good match with theoretical approaches. The loads consist of the axial uniform pressure, 

the bending moment and maybe a uniform shear stress distribution on the associated plate fields. The 

definition of the axial stress is based on an eccentric force and shear stresses. The definition of the 

bending moment is based on a lateral pressure, the for-get-me-not’s and a choice of boundary 

conditions. All these parameters are problematic to define from your FEM model.  

 

Instead it is much more straightforward within the new proposal, which takes the axial stress results 

and bending moments directly from the linear static analysis. Hence, a by-pass can be made such that 

the above mentioned parameters do not have to be defined. The following simplification / 

implementation method bases the axial uniform stress and the bending moment only on results of the 

stiffener beam elements. An extrapolation of the stress recovery points is used to estimate the results 

in the associated plate fields. This implementation method does however not meet the expectations. 

Considering only results from the beam elements shows to be insufficient to base the associated plate 

fields on. This is partly due to the poison ratio which results in non-conservative deviations up to 40%. 

Extrapolation of stress results might still be allowable but they should be based on plate elements 

within the associated plate fields. This is left for further study. 
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Introduction 
Big models for planes, cranes, ships or other 

kind of offshore structures can consist of a 

large amount of plated structures. Therefore 
FEM analyses become necessary but the size 

of complete models complicates correct use of 

available buckling analyses. You most likely 
get an upper bound value which only says 

something over a specific part of the structure 

and gives no information about the rest of the 

model. Instead you would like an individual 
check of each section, which is not only a lot 

of engineering work but also brings more 

uncertainties in the calculation. What parame-
ters do you take into account? Or even, what 

kind of analysis do you carry out? 

 

The buckling phenomena 
An extensive overview of the buckling 
phenomena reveal buckling modes such as 

local plate buckling, local stiffener buckling, 

stiffener tripping and beam-column buckling. 

Each have their influencing parameters as load 
cases, geometry, boundary conditions, imper-

fections, material properties and residual 

stresses. The following preferred assessment of 
the buckling resistance is a combination of 

linear static FEM analyses and standards. It 

simplifies things so many of these parameters 

do not have to be defined separately by the 
engineer. The implementation method hence 

only requires to define input design stresses.  

 
A test setup at LISNAVE shipyard is presented 

in figure 1. The experimental study [1] which 

was conducted is also described and worked 
out in the work of S. Benson [2]. This same 

model is used in the present study and is 

analyzed due to its relatively simple geometry 
and easily applied boundary constraints and 

load cases.  

 

 
Fig. 1 Test setup of the box girder including part of 

the supporting structure and the loading device. 

 

Problems with present checks  
Whether it is a linear or non-linear analysis, 
your model might not be suitable for a 

buckling analysis. Figure 2 shows the first 

eigenmode for the same model with different 
mesh sizes. While the linear static stress results 

are rather consistent, the eigenmodes and 

eigenvalues are not. The question whether the 

buckling analyses from finite element 
modeling software programs are correct or not, 

hence indicates the need for a different check. 

The standards are already specifically the 
method which the engineer would like to 

compare his or her model with, even though 

the analysis is being done in a FEM package. 
However even the linear static stress results 
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cannot be compared directly to standards. 

Their inputs are no stress results but simplified 

applied loads (fig 3).  
 

 

 
Fig. 2 Comparison of eigenvalue analyses on 

different mesh size models. 

 

Considerable research has been done on 

theoretical buckling modes, deflection 
functions and reduction factors. However the 

method to extract results from the finite 

element analysis and using them for the check 

in the standard seems to be rather non-existent 
for general FEM programs such as Femap. 

Two specific standards [3][4] are considered 

for an in-depth evaluation.  
 

 American Bureau of Shipping (ABS) 

Guide for buckling and ultimate strength 

assessment for offshore structures provides 
formulation to assess buckling criteria of 

plates and stiffened panels.  

 Det Norske Veritas (DNV) Recommended 

practise DNV-RP-C201: Buckling strength 

of plated structures is a buckling code for 
stiffened and unstiffened panels of steel. 

 

The interaction formulae given in these 
standards are conservative and simple, consi-

dering the complicated nature of buckling, 

which is not that obvious from a FEM 
perspective. Still the checks provided by the 

standards are some sort of blank form with 

large and complicated formulas which should 

be filled in to check if your design is ok. 
Whether average engineers also understand 

how the checks work is questionable. 

Nowadays everyone can model something in a 
finite element package but doing a correct 

analysis is something completely different. 

Even more, it is already surprisingly difficult 

to define these input design stresses. Several 
proposals for implementation methods are 

worked out for plate fields, stiffener 

webs/flanges and beam-columns. 
 

Plate field buckling 
Real stress distributions of a plate field are 

formed by the corner stress result from FEM 
plate elements along each edge. Linearizations 

of these stresses are used to form the 

distribution such as in the standards. A simple 
linear regression is not always conservative 

however. Therefore several adjustments on the 

linearization are attempted.  
 

1. Linear Regression Stress Average: A 

simple linear regression from all corner 

stress points. The principle is explained in 
earlier work from Ottar Hillers [5]. 

2. Linear Regression Stress Average + 

Including all stress results: The proposed 
adaption by Hillers. It shifts the line to the 

point in which all stress points fall under 

the area such that an overestimate and very 
conservative load is taken for each edge. 

3. Linear Regression Stress Average + 

Updated to σmax: A new proposal to 

adapt the linear regression such that σmax 
of the linear regression matches the σmax 

of all stress points along the edge. The 

standards specifically use the maximum 
compressive stress in the longitudinal or 

transvers direction which raises the 

question whether taking a higher value 

than the highest stress points is not an 
overestimate already.  

4. Linear Regression by the Eurocode 

clause: Clause 4.6(3) in Eurocode 3, part 
1.5 delivers an adaption to compensate the 

stress gradient phenomenon described in 

the next section. 
 

The first three methods produce linear lines on 

all four edges and afterwards take the average 

of opposite edges because the in-plane stresses 
on opposite edges need to be symmetrical. 

Thus the idea is to first make two conservative 

linear distributions and then take a non-
conservative average. 

 

The shear stress distribution along the edges of 
the plate field need to be matched with an 

equal uniform shear stress altogether. Three 

different approaches have been proposed.  

 
1. The average of all real shear stress results 

2. The average of all absolute real shear 

stress results 
3. The maximum of all absolute real shear 

stress results 
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Notice that all four of the linear regression 

methods produce equal results for the single 

element mesh size models. These models 
provide a linearized stress distribution by 

definition. Not surprisingly this fact is used in 

available buckling analyses. However in 

practice it is generally not possible or desired 
to only have one element per field.  

 

 

 
Fig. 3 Overview of the input design stresses for (a) 

plate buckling and (b) column buckling as defined 

by the standards. 

 

The implementation methods for in-plane 

normal stresses and for shear stresses are 
individually researched. However comparing 

σX, σY and τ separately is complicated since the 

stress gradient effect also requires a shear 
distribution along unloaded edges to get 

equilibrium in x or y direction. A uniform 

distribution of shear stresses is applied such 

that ∑    , ∑     and ∑   . The 

remaining shear stress may be fundamentally 

different in many situations. Instead of that 
only the complete freebodyload is in 

equilibrium, now each individual check 

becomes possible (fig 5).  
 

Note that taking τB and τC as uniform 

distributed shear forces is a simplification and 

may not have to resemble the real distribution 
along the edge. However the total force should 

be theoretically correct. 

 
Fig. 4 Real in-plane and shear stress distributions 
and linearized implementation methods on a plate 

field for a random load cases. 

 

 Real results  
Result with 

implementation method 

 
Fig. 5 Comparison checks between (a) the real 

stress results and (b) stresses determined by the 

implementation methods. 

 

Due to the fact that the standards combine the 

subdivided buckling strengths for stress 
distributions in x-direction, y-direction and 
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shear as well, it makes perfect sense to divide 

the real stress results in these three 

arrangements to see whether the 
implementation methods are correct. 
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The complete freebodyload, the two stress 

gradient loads and the shear load are compared 
to the implementation methods as showed in 

figures 6, 7 and 8. You can see that the overall 

implementation is surprisingly similar with the 
real stress distributions. If reviewed separately, 

you can see that method 1 has the least 

deviations, although slightly non-conservative. 

The other methods mostly produce far more 
conservative results than desired. The 

preferred approach as concluded from the 

results up to now would be to take method 4. 
However several situations still lead to non-

conservative transformations due to the stress 

gradient effect. Therefore a combination of 

two opposite edges but slightly bigger than 
60% is recommended for both the long and 

short edges. Overall the implementation 

method is considered as an allowable and good 
solution to transform actual stress distributions 

to input design stresses. 

 
As a result of subdividing the real stresses into 

longitudinal stress gradient, transverse stress 

gradient and shear portions there can also be 

concluded that simply using the average of 
maximum shear stress is incorrect. Due to this 

conclusion the new proposal is to base the 

uniform input design shear stress on τD instead 
of τA to deliver more accurate and reliable 

values. This is left for further study. 

 

 
Fig. 6 Buckling factors from the eight different 

models for seven different load cases and twelve 

different implementation methods. 

 

 

 

 
Fig. 7 Comparison of σX and σY results. 

 

 
Fig. 8 Comparison of shear results. 

 

Stiffener local buckling limit 
Webs and flanges of stiffeners are checked as 

individual plate fields equal to the previous 
chapter in case the stiffeners are modeled with 

plate elements. However, beam elements 

cannot give any results for local buckling in 
finite element packages (fig 9). Therefore a 

conversion method to get the five input design 

stresses σXmax, σXmin, σYmax, σYmin and τ is 
formed. 

 

 
Fig. 9 Specified way of modelling plate fields and 

stiffeners. 

 

Flanges cannot absorb any transverse in-plane 

stresses since one side has no supporting 
structure. That indicates that σYmax = σYmin = 0 

and reduces the amount of design stresses. The 

remaining stresses are illustrated in figure 11. 
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The in-plane stresses can be calculated from 

combinations of the corner results (fig 10). 

Things are simplified with this method though. 
Note that some results will not be in-plane 

stresses but some close by corner stress results. 

In theory they are conservative though, so this 

should be a safe approximation.  

 
Fig. 10 Corner stress definition points for the (a) 

flat bar stiffener, (b) L shaped stiffener and (c) T 

shaped stiffener. 
 

 
Fig. 11 Stresses in stiffener web and flanges 

 
There is no way of defining shear results in the 

axial direction in beam elements. The proposal 

is to calculate the shear stress by taking the 
vertical or horizontal shear force and dividing 

this by the web area or the flange area. This is 

a large simplification as well. The real shear 
stresses are complicated due to the shear lag, 

shear loads, bending moments, torsion and 

even warping. However these separate shear 

stresses cannot be received from the results 
from beam elements. 

 

The implementation method for stiffener webs 
and flanges is insufficiently tested and hence 

there is a lack of solid conclusion that can be 

made. However the single check shows 

slightly non-conservative but fairly similar and 
thus promising results. 

 

Beam-column buckling 
For the stiffener-plate combination the input 

design stresses are divided by allowable, 

critical stresses. These are defined by the Euler 

buckling strength and correction factors such 

as the Perry-Robertson correction, Johnson-

Ostenfeld correction, the effective width 
method and the magnification factor.  
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σa = Uniform stress in x direction 

σb = The maximum stress only resulting from the 

bending moment 

σ0 = Yield material strength 

σE = Euler buckling strength 

σT = Torsional buckling strength 

τc = Shear stress over the associated plating in the 

column 

η = Safety factor defined in the standards 

 

You can see the clear distinction between the 

uniform axial load, the bending moment and 

the shear stress. Both the ABS and DNV codes 

use the nominal calculated compressive stress 
and a bending stress around the y axis using 

full width of associated plating. For all details 

see the ABS and the DNV standards.  
 

The ABS literally speaks of the “the bending 

stress due to the maximum bending moment 

induced by the lateral loads” while the DNV 
also implements an eccentricity of the axial 

pressure. They both make use of the forget-

me-not’s to define the axial stress: 
 

   
    

    

 
      

  
 

 

     
      

  
         

      

  
         

      

 
 

 
It results in a distinction between boundary 

constraints, continuous (fixed at the ends) and 

Sniped (simply supported at the ends). Firstly 

this is not very realistic since the boundary 
condition of the stiffener-plate combination is 

neither simply supported nor fixed and 

secondly it is in reality difficult to accurately 
specify the lateral load.  

 

Uniform 
axial load 

Bending 
moment 

Uniform 
axial load 

Bending 
moment 

Shear 
stress 
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Fig. 12 The use of the forget-me-not’s result in a 
check of present stresses in four theoretical points 

in the beam-column as where you could actually 

check your model along the entire length. 

 

Instead the proposal is to use actual axial stress 

results from the model (fig 13) which has the 
consequence that also the difficulties above 

become redundant. Hereby a by-pass of 

defining several parameters in the standards 
can be made including the eccentricity of the 

axial load, the lateral load, the use of for-get-

me-not’s and the choice of boundary 

conditions. In the present study only the axial 
pressure is analyzed from the input design 

stresses FX, MY, τC and σY. The proposed 

implementation method contains an extra-
polation of the lower two corner stress results 

in the beam elements (fig 14). 

 
The simplification does however not meet the 

expectations. Considering only results from the 

beam elements is insufficient to base the asso-

ciated plate fields on as the stress results in the 
stiffener do not match results in the associated 

plates at the place of attachment (fig 15). 

 

 

 

 
 

 
Fig. 13 An exaggerated impression of the in-plane 

stresses in a beam-column for a random load case. 

 
Fig. 14 The proposed implementation method to 

define the axial in-plane stresses in the associated 
plate fields. 

 

 
Fig. 15 The stress results in the stiffener are 

significantly different from results in the associated 

plates at the place of attachment. 
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Appendix B (Plate field Real In-plane Stress Results) 

Each figure represents a single Load case. (top)  Normal in-plane stress on short edge of plate field, 

(middle) normal in-plane stress on long edge of plate field and (bottom) in-plane shear stress on all 

edges of the plate field. (left) General scale and (right) zoomed in. 

 

Fig B.1 Plate model, plate01, Load case 1, Nonlinear stress results 

Fig B.2 Plate model, plate01, Load case 1, Linear stress results 

Fig B.3 Beam model, plate01, Load case 1, Linear stress results 

Fig B.4 Beam model, plate01, Load case 2, Linear stress results 

Fig B.5 Beam model, plate01, Load case 3, Linear stress results 

Fig B.6 Beam model, plate01, Load case 4, Linear stress results 

Fig B.7 Beam model, plate01, Load case 5, Linear stress results 

Fig B.8 Beam model, plate01, Load case 6, Linear stress results 

Fig B.9 Beam model, plate01, Load case 7, Linear stress results 
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Fig B.1 Plate model, Load case 1, Nonlinear stress results 
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Fig B.2 Plate model, Load case 1, Linear stress results 
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Fig B.3 Beam model, Load case 1, Linear stress results 
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Fig B.4 Beam model, Load case 2, Linear stress results 
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Fig B.5 Beam model, Load case 3, Linear stress results 
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Fig B.6 Beam model, Load case 4, Linear stress results 
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Fig B.7 Beam model, Load case 5, Linear stress results 
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Fig B.8 Beam model, Load case 6, Linear stress results 
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Fig B.9 Beam model, Load case 7, Linear stress results  
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Appendix C (Plate field comparison Mesh Sizes) 

Fig C.1 Beam model, plate01, Load case 1, Linear results, mesh size comparison 

Fig C.2 Beam model, plate01, Load case 2, Linear results, mesh size comparison 

Fig C.3 Beam model, plate01, Load case 3, Linear results, mesh size comparison 

Fig C.4 Beam model, plate01, Load case 4, Linear results, mesh size comparison 

Fig C.5 Beam model, plate01, Load case 5, Linear results, mesh size comparison 

Fig C.6 Beam model, plate01, Load case 6, Linear results, mesh size comparison 

Fig C.7 Beam model, plate01, Load case 7, Linear results, mesh size comparison 

 

 
Fig C.1 Beam model, Load case 1, Linear results, mesh size comparison 
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Fig C.2 Beam model, Load case 2, Linear results, mesh size comparison 

 

 
Fig C.3 Beam model, Load case 3, Linear results, mesh size comparison 
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Fig C.4 Beam model, Load case 4, Linear results, mesh size comparison 

 

 
Fig C.5 Beam model, Load case 5, Linear results, mesh size comparison 
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Fig C.6 Beam model, Load case 6, Linear results, mesh size comparison 

 

 
Fig C.7 Beam model, Load case 7, Linear results, mesh size comparison  
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Appendix D (Plate field Design Stresses) 

Illustration of results produced while analyzing the implementation methods for different mesh sizes. 

 

 

Table D.1 In-plane Stress results of the plate field after applying the implementation method for the 

beam model in the three different mesh sizes of model 2. 

σxmax σxmin σymax σymin

Load case 1 Fine mesh size LR average 5.8330E+08 5.8002E+08 6.3517E+07 5.1461E+07 -0.15% -0.52% -13.55% -13.18%

0.15.0 Fine mesh size LR average + update 5.8284E+08 5.7955E+08 6.6382E+07 5.4326E+07 -0.23% -0.60% -9.65% -8.35%

Fine mesh size LR average + include 5.8408E+08 5.8080E+08 6.6382E+07 5.4326E+07 -0.01% -0.38% -9.65% -8.35%

Fine mesh size LR Eurocode 5.8330E+08 5.8002E+08 6.3974E+07 5.1569E+07 -0.15% -0.52% -12.93% -13.00%

Coarse mesh size LR average 5.8321E+08 5.7996E+08 6.4724E+07 5.2712E+07 -0.16% -0.53% -11.91% -11.07%

Coarse mesh size LR average + update 5.8283E+08 5.7958E+08 6.7242E+07 5.5231E+07 -0.23% -0.59% -8.48% -6.82%

Coarse mesh size LR average + include 5.8406E+08 5.8081E+08 6.7242E+07 5.5231E+07 -0.02% -0.38% -8.48% -6.82%

Coarse mesh size LR Eurocode 5.8321E+08 5.7996E+08 6.5135E+07 5.2804E+07 -0.16% -0.53% -11.35% -10.91%

Single element mesh size LR average 5.8415E+08 5.8304E+08 7.3475E+07 5.9273E+07

Load case 2 Fine mesh size LR average 5.2925E+08 5.0556E+08 5.6067E+07 4.5487E+07 -0.50% -0.22% -13.73% -13.63%

2.13.2 Fine mesh size LR average + update 5.2806E+08 5.0438E+08 6.0154E+07 4.9574E+07 -0.72% -0.45% -7.44% -5.87%

Fine mesh size LR average + include 5.2995E+08 5.0626E+08 6.1788E+07 5.1208E+07 -0.37% -0.08% -4.92% -2.77%

Fine mesh size LR Eurocode 5.2925E+08 5.0556E+08 5.6493E+07 4.5846E+07 -0.50% -0.22% -13.07% -12.95%

Coarse mesh size LR average 5.2917E+08 5.0550E+08 5.7148E+07 4.6594E+07 -0.51% -0.23% -12.06% -11.52%

Coarse mesh size LR average + update 5.2822E+08 5.0455E+08 5.9370E+07 4.8817E+07 -0.69% -0.42% -8.64% -7.31%

Coarse mesh size LR average + include 5.2992E+08 5.0625E+08 5.9404E+07 4.8851E+07 -0.37% -0.08% -8.59% -7.24%

Coarse mesh size LR Eurocode 5.2917E+08 5.0550E+08 5.7337E+07 4.6743E+07 -0.51% -0.23% -11.77% -11.24%

Single element mesh size LR average 5.3191E+08 5.0666E+08 6.4986E+07 5.2664E+07

Load case 3 Fine mesh size LR average 4.0257E+08 3.8886E+08 4.3133E+07 3.4756E+07 -0.56% -0.22% -13.50% -14.27%

6.10.1 Fine mesh size LR average + update 4.0235E+08 3.8864E+08 5.5505E+07 4.7128E+07 -0.62% -0.28% 11.32% 16.24%

Fine mesh size LR average + include 4.0321E+08 3.8951E+08 5.6622E+07 4.8245E+07 -0.40% -0.05% 13.56% 19.00%

Fine mesh size LR Eurocode 4.0257E+08 3.8886E+08 4.4063E+07 3.5533E+07 -0.56% -0.22% -11.63% -12.36%

Coarse mesh size LR average 4.0253E+08 3.8882E+08 4.3971E+07 3.5602E+07 -0.57% -0.23% -11.82% -12.19%

Coarse mesh size LR average + update 4.0184E+08 3.8813E+08 4.5654E+07 3.7285E+07 -0.74% -0.41% -8.44% -8.03%

Coarse mesh size LR average + include 4.0307E+08 3.8936E+08 4.6018E+07 3.7649E+07 -0.44% -0.09% -7.71% -7.14%

Coarse mesh size LR Eurocode 4.0253E+08 3.8882E+08 4.4233E+07 3.5752E+07 -0.57% -0.23% -11.29% -11.82%

Single element mesh size LR average 4.0484E+08 3.8972E+08 4.9863E+07 4.0543E+07

Load case 4 Fine mesh size LR average 1.6940E+08 3.9064E+07 9.1048E+06 7.8627E+06 -0.13% -4.31% -19.11% -22.30%

6.1.10 Fine mesh size LR average + update 1.6892E+08 3.8590E+07 2.1151E+07 1.9909E+07 -0.41% -5.47% 87.91% 96.75%

Fine mesh size LR average + include 1.7057E+08 4.0235E+07 2.1442E+07 2.0200E+07 0.56% -1.44% 90.49% 99.62%

Fine mesh size LR Eurocode 1.6940E+08 3.9064E+07 9.6216E+06 9.4112E+06 -0.13% -4.31% -14.52% -7.00%

Coarse mesh size LR average 1.6927E+08 3.9153E+07 9.3481E+06 8.0630E+06 -0.20% -4.09% -16.95% -20.32%

Coarse mesh size LR average + update 1.6896E+08 3.8844E+07 1.0270E+07 8.9850E+06 -0.38% -4.85% -8.76% -11.21%

Coarse mesh size LR average + include 1.6946E+08 3.9342E+07 1.0623E+07 9.3380E+06 -0.09% -3.63% -5.62% -7.72%

Coarse mesh size LR Eurocode 1.6927E+08 3.9153E+07 1.0215E+07 9.1224E+06 -0.20% -4.09% -9.25% -9.85%

Single element mesh size LR average 1.6961E+08 4.0822E+07 1.1256E+07 1.0119E+07

Load case 5 Fine mesh size LR average 1.2760E+08 2.0287E+05 4.5353E+06 4.4260E+06 0.21% -88.54% -25.49% -22.50%

0.0.10 Fine mesh size LR average + update 1.2731E+08 8.0745E+04 5.4477E+06 5.3384E+06 -0.01% -95.44% -10.51% -6.53%

Fine mesh size LR average + include 1.2772E+08 3.2214E+05 5.4499E+06 5.3407E+06 0.31% -81.80% -10.47% -6.49%

Fine mesh size LR Eurocode 1.2760E+08 2.0287E+05 5.6040E+06 5.4449E+06 0.21% -88.54% -7.94% -4.66%

Coarse mesh size LR average 1.2746E+08 2.8604E+05 4.6791E+06 4.5421E+06 0.11% -83.84% -23.13% -20.47%

Coarse mesh size LR average + update 1.2719E+08 1.7745E+04 4.9757E+06 4.8386E+06 -0.11% -99.00% -18.26% -15.28%

Coarse mesh size LR average + include 1.2763E+08 4.5501E+05 4.9833E+06 4.8462E+06 0.24% -74.29% -18.14% -15.14%

Coarse mesh size LR Eurocode 1.2746E+08 2.8604E+05 5.6581E+06 5.4912E+06 0.11% -83.84% -7.05% -3.85%

Single element mesh size LR average 1.2733E+08 1.7697E+06 6.0872E+06 5.7111E+06

Load case 6 Fine mesh size LR average 1.9265E+07 8.0314E+06 4.5746E+08 4.0749E+08 145.36% 228.22% 3.44% 5.95%

Fy Fine mesh size LR average + update 2.3968E+07 1.2735E+07 4.4817E+08 3.9820E+08 205.26% 420.43% 1.34% 3.53%

Fine mesh size LR average + include 2.4158E+07 1.2924E+07 4.6349E+08 4.1352E+08 207.68% 428.19% 4.80% 7.52%

Fine mesh size LR Eurocode 1.9265E+07 8.0314E+06 4.5795E+08 4.0935E+08 145.36% 228.22% 3.55% 6.43%

Coarse mesh size LR average 1.9212E+07 7.9862E+06 4.5467E+08 4.0471E+08 144.68% 226.38% 2.81% 5.23%

Coarse mesh size LR average + update 2.3086E+07 1.1860E+07 4.4616E+08 3.9620E+08 194.02% 384.68% 0.88% 3.01%

Coarse mesh size LR average + include 2.3183E+07 1.1957E+07 4.6124E+08 4.1128E+08 195.25% 388.65% 4.29% 6.93%

Coarse mesh size LR Eurocode 1.9212E+07 7.9862E+06 4.5509E+08 4.0640E+08 144.68% 226.38% 2.90% 5.66%

Single element mesh size LR average 7.8518E+06 2.4469E+06 4.4225E+08 3.8461E+08

Load case 7 Fine mesh size LR average 4.8328E+08 4.7468E+08 4.9863E+08 4.5831E+08 1.90% 1.04% 1.83% 3.36%

0.15.0 + Fy Fine mesh size LR average + update 4.8697E+08 4.7837E+08 4.9126E+08 4.5093E+08 2.67% 1.83% 0.32% 1.70%

Fine mesh size LR average + include 4.8713E+08 4.7853E+08 5.0336E+08 4.6303E+08 2.71% 1.86% 2.80% 4.43%

Fine mesh size LR Eurocode 4.8328E+08 4.7468E+08 4.9903E+08 4.5980E+08 1.90% 1.04% 1.91% 3.70%

Coarse mesh size LR average 4.8318E+08 4.7455E+08 4.9684E+08 4.5649E+08 1.88% 1.02% 1.47% 2.95%

Coarse mesh size LR average + update 4.8622E+08 4.7759E+08 4.9008E+08 4.4972E+08 2.52% 1.66% 0.08% 1.43%

Coarse mesh size LR average + include 4.8631E+08 4.7768E+08 5.0202E+08 4.6167E+08 2.53% 1.68% 2.52% 4.12%

Coarse mesh size LR Eurocode 4.8318E+08 4.7455E+08 4.9718E+08 4.5785E+08 1.88% 1.02% 1.54% 3.26%

Single element mesh size LR average 4.7429E+08 4.6977E+08 4.8967E+08 4.4339E+08

Plate field 200x150x4 Bar stiffener 20x4 difference with single element mesh
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Table D.2 Shear Stress results of the plate field after applying the implementation method for the 

beam model in the three different mesh sizes of model 2.   

τ

difference with 

single element 

mesh

Load case 1 Fine mesh size τ average 1.221E+06 -25.05%

0.15.0 Fine mesh size τ absolute average 1.316E+06 -19.20%

Fine mesh size τ absolute max 4.474E+06 174.67%

Coarse mesh size τ average 1.199E+06 -26.37%

Coarse mesh size τ absolute average 1.270E+06 -22.02%

Coarse mesh size τ absolute max 4.058E+06 149.12%

Single element mesh size τ average 1.629E+06

Load case 2 Fine mesh size τ average 4.460E+07 1.03%

2.13.2 Fine mesh size τ absolute average 4.460E+07 1.03%

Fine mesh size τ absolute max 4.656E+07 5.46%

Coarse mesh size τ average 4.492E+07 1.76%

Coarse mesh size τ absolute average 4.492E+07 1.76%

Coarse mesh size τ absolute max 4.582E+07 3.79%

Single element mesh size τ average 4.415E+07

Load case 3 Fine mesh size τ average 1.366E+08 0.30%

6.10.1 Fine mesh size τ absolute average 1.366E+08 0.30%

Fine mesh size τ absolute max 1.410E+08 3.54%

Coarse mesh size τ average 1.375E+08 0.98%

Coarse mesh size τ absolute average 1.375E+08 0.98%

Coarse mesh size τ absolute max 1.394E+08 2.34%

Single element mesh size τ average 1.362E+08

Load case 4 Fine mesh size τ average 1.366E+08 0.35%

6.1.10 Fine mesh size τ absolute average 1.366E+08 0.35%

Fine mesh size τ absolute max 1.454E+08 6.84%

Coarse mesh size τ average 1.374E+08 1.00%

Coarse mesh size τ absolute average 1.374E+08 1.00%

Coarse mesh size τ absolute max 1.436E+08 5.49%

Single element mesh size τ average 1.361E+08

Load case 5 Fine mesh size τ average 8.796E+05 -28.72%

0.0.10 Fine mesh size τ absolute average 4.145E+06 235.89%

Fine mesh size τ absolute max 6.578E+06 432.98%

Coarse mesh size τ average 9.135E+05 -25.97%

Coarse mesh size τ absolute average 4.169E+06 237.84%

Coarse mesh size τ absolute max 6.289E+06 409.59%

Single element mesh size τ average 1.234E+06

Load case 6 Fine mesh size τ average 5.470E+06 -17.24%

Fy Fine mesh size τ absolute average 5.495E+06 -16.86%

Fine mesh size τ absolute max 1.963E+07 196.98%

Coarse mesh size τ average 5.433E+06 -17.80%

Coarse mesh size τ absolute average 5.433E+06 -17.80%

Coarse mesh size τ absolute max 1.791E+07 170.96%

Single element mesh size τ average 6.609E+06

Load case 7 Fine mesh size τ average 4.494E+06 -15.32%

0.15.0 + Fy Fine mesh size τ absolute average 4.494E+06 -15.32%

Fine mesh size τ absolute max 1.605E+07 202.46%

Coarse mesh size τ average 4.474E+06 -15.69%

Coarse mesh size τ absolute average 4.474E+06 -15.69%

Coarse mesh size τ absolute max 1.466E+07 176.32%

Single element mesh size τ average 5.306E+06

Plate field 200x150x4 Bar stiffener 20x4
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Appendix E (Plate field Tables Buckling Factors) 

The buckling factors for all analyses on each model. These are the comparisons between the real 

stresses and the complete implementation methods (fig 8.21). 

 

Table E.01 Model 1, Buckling factors for all stresses (fig 8.21 check 1). 

Table E.02 Model 2, Buckling factors for all stresses (fig 8.21 check 1). 

Table E.03 Model 3, Buckling factors for all stresses (fig 8.21 check 1). 

Table E.04 Model 4, Buckling factors for all stresses (fig 8.21 check 1). 

Table E.05 Model 5, Buckling factors for all stresses (fig 8.21 check 1). 

Table E.06 Model 6, Buckling factors for all stresses (fig 8.21 check 1). 

Table E.07 Model 7, Buckling factors for all stresses (fig 8.21 check 1). 

Table E.08 Model 8, Buckling factors for all stresses (fig 8.21 check 1). 

Table E.09 Model 1, Buckling factors for in-plane stresses (fig 8.21 check 2 and 3). 

Table E.10 Model 2, Buckling factors for in-plane stresses (fig 8.21 check 2 and 3). 

Table E.11 Model 3, Buckling factors for in-plane stresses (fig 8.21 check 2 and 3). 

Table E.12 Model 4, Buckling factors for in-plane stresses (fig 8.21 check 2 and 3). 

Table E.13 Model 5, Buckling factors for in-plane stresses (fig 8.21 check 2 and 3). 

Table E.14 Model 6, Buckling factors for in-plane stresses (fig 8.21 check 2 and 3). 

Table E.15 Model 7, Buckling factors for in-plane stresses (fig 8.21 check 2 and 3). 

Table E.16 Model 8, Buckling factors for in-plane stresses (fig 8.21 check 2 and 3). 

Table E.17 Model 1, Buckling factors for shear stresses (fig 8.21 check 4). 

Table E.18 Model 2, Buckling factors for shear stresses (fig 8.21 check 4). 

Table E.19 Model 3, Buckling factors for shear stresses (fig 8.21 check 4). 

Table E.20 Model 4, Buckling factors for shear stresses (fig 8.21 check 4). 

Table E.21 Model 5, Buckling factors for shear stresses (fig 8.21 check 4). 

Table E.22 Model 6, Buckling factors for shear stresses (fig 8.21 check 4). 

Table E.23 Model 7, Buckling factors for shear stresses (fig 8.21 check 4). 

Table E.24 Model 8, Buckling factors for shear stresses (fig 8.21 check 4). 
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Table E.01 Model 1, Buckling factors for all stresses (fig 8.21 check 1). 

Plate field 200x150x3                       

Bar stiffener 20x4

Real load case

Femap 

buckling 

factor k≥1 Linearized load case

Femap 

buckling 

factor k≥1

Difference 

with real 

loads ≥0

Load case 1 0.3439 0.3437 0.047%

Load case 2 0.3862 0.3860 0.045%

Load case 3 0.4918 0.4920 -0.022%

Load case 4 1.4604 1.4697 -0.641%

Load case 5 3.1668 3.1920 -0.798%

Load case 6 0.3113 0.3118 -0.154%

Load case 7 0.1805 0.1807 -0.070%

Load case 1 0.3439 0.3409 0.874%

Load case 2 0.3862 0.3782 2.078%

Load case 3 0.4918 0.4633 5.814%

Load case 4 1.4604 1.2817 12.238%

Load case 5 3.1668 3.0993 2.132%

Load case 6 0.3113 0.3054 1.879%

Load case 7 0.1805 0.1790 0.868%

Load case 1 0.3439 0.3414 0.710%

Load case 2 0.3862 0.3815 1.217%

Load case 3 0.4918 0.4647 5.513%

Load case 4 1.4604 1.2977 11.142%

Load case 5 3.1668 3.1165 1.587%

Load case 6 0.3113 0.3165 -1.691%

Load case 7 0.1805 0.1820 -0.786%

Load case 1 0.3439 0.3435 0.116%

Load case 2 0.3862 0.3857 0.114%

Load case 3 0.4918 0.4910 0.180%

Load case 4 1.4604 1.4544 0.409%

Load case 5 3.1668 3.1008 2.085%

Load case 6 0.3113 0.3109 0.112%

Load case 7 0.1805 0.1804 0.056%

Load case 1 0.3439 0.3437 0.047%

Load case 2 0.3862 0.3860 0.045%

Load case 3 0.4918 0.4920 -0.022%

Load case 4 1.4604 1.4697 -0.641%

Load case 5 3.1668 3.1875 -0.654%

Load case 6 0.3113 0.3118 -0.154%

Load case 7 0.1805 0.1807 -0.070%

Load case 1 0.3439 0.3409 0.874%

Load case 2 0.3862 0.3782 2.078%

Load case 3 0.4918 0.4633 5.814%

Load case 4 1.4604 1.2817 12.238%

Load case 5 3.1668 3.0951 2.262%

Load case 6 0.3113 0.3054 1.879%

Load case 7 0.1805 0.1790 0.868%

Load case 1 0.3439 0.3414 0.710%

Load case 2 0.3862 0.3815 1.217%

Load case 3 0.4918 0.4647 5.513%

Load case 4 1.4604 1.2977 11.142%

Load case 5 3.1668 3.1123 1.719%

Load case 6 0.3113 0.3165 -1.691%

Load case 7 0.1805 0.1820 -0.786%

Load case 1 0.3439 0.3435 0.116%

Load case 2 0.3862 0.3857 0.114%

Load case 3 0.4918 0.4910 0.180%

Load case 4 1.4604 1.4544 0.409%

Load case 5 3.1668 3.0966 2.216%

Load case 6 0.3113 0.3109 0.112%

Load case 7 0.1805 0.1804 0.056%

Load case 1 0.3439 0.3437 0.048%

Load case 2 0.3862 0.3859 0.063%

Load case 3 0.4918 0.4910 0.173%

Load case 4 1.4604 1.4267 2.309%

Load case 5 3.1668 3.1808 -0.442%

Load case 6 0.3113 0.3117 -0.135%

Load case 7 0.1805 0.1807 -0.065%

Load case 1 0.3439 0.3409 0.875%

Load case 2 0.3862 0.3781 2.096%

Load case 3 0.4918 0.4624 5.978%

Load case 4 1.4604 1.2516 14.297%

Load case 5 3.1668 3.0891 2.454%

Load case 6 0.3113 0.3054 1.897%

Load case 7 0.1805 0.1790 0.872%

Load case 1 0.3439 0.3414 0.711%

Load case 2 0.3862 0.3814 1.235%

Load case 3 0.4918 0.4639 5.678%

Load case 4 1.4604 1.2666 13.270%

Load case 5 3.1668 3.1062 1.914%

Load case 6 0.3113 0.3165 -1.671%

Load case 7 0.1805 0.1820 -0.781%

Load case 1 0.3439 0.3435 0.117%

Load case 2 0.3862 0.3857 0.132%

Load case 3 0.4918 0.4900 0.374%

Load case 4 1.4604 1.4125 3.281%

Load case 5 3.1668 3.0905 2.408%

Load case 6 0.3113 0.3109 0.132%

Load case 7 0.1805 0.1804 0.061%

Linear Regression Average + 

Average Shear

Linear Regression Include all 

stress points + Average Shear

Linear Regression Update to max 

stress points + Average Shear

Linear Regression Eurocode + 

Average Shear

Linear Regression Average + 

Absolute Average Shear

Linear Regression Include all 

stress points + Absolute Average 

Shear

Linear Regression Update to max 

stress points + Absolute Average 

Shear

Linear Regression Eurocode + 

Absolute Average Shear

Linear Regression Average + 

Absolute Max Shear

Linear Regression Include all 

stress points + Absolute Max 

Shear

Linear Regression Update to max 

stress points + Absolute Max 

Shear

Linear Regression Eurocode + 

Absolute Max Shear
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Table E.02 Model 2, Buckling factors for all stresses (fig 8.21 check 1). 

Plate field 200x150x4                       

Bar stiffener 20x4

Real load case

Femap 

buckling 

factor k≥1 Linearized load case

Femap 

buckling 

factor k≥1

Difference 

with real 

loads ≥0

Load case 1 0.8034 0.8030 0.047%

Load case 2 0.9026 0.9022 0.045%

Load case 3 1.1497 1.1498 -0.012%

Load case 4 3.4328 3.4506 -0.521%

Load case 5 7.4902 7.5373 -0.629%

Load case 6 0.6998 0.7008 -0.140%

Load case 7 0.4125 0.4127 -0.063%

Load case 1 0.8034 0.7962 0.899%

Load case 2 0.9026 0.8863 1.797%

Load case 3 1.1497 1.0947 4.780%

Load case 4 3.4328 3.0902 9.980%

Load case 5 7.4902 7.3623 1.707%

Load case 6 0.6998 0.6871 1.816%

Load case 7 0.4125 0.4090 0.850%

Load case 1 0.8034 0.7976 0.719%

Load case 2 0.9026 0.8932 1.033%

Load case 3 1.1497 1.1008 4.248%

Load case 4 3.4328 3.1216 9.065%

Load case 5 7.4902 7.4021 1.176%

Load case 6 0.6998 0.7116 -1.677%

Load case 7 0.4125 0.4157 -0.778%

Load case 1 0.8034 0.8025 0.120%

Load case 2 0.9026 0.9016 0.105%

Load case 3 1.1497 1.1479 0.151%

Load case 4 3.4328 3.4204 0.360%

Load case 5 7.4902 7.3514 1.853%

Load case 6 0.6998 0.6990 0.124%

Load case 7 0.4125 0.4122 0.062%

Load case 1 0.8034 0.8030 0.047%

Load case 2 0.9026 0.9022 0.045%

Load case 3 1.1497 1.1498 -0.012%

Load case 4 3.4328 3.4506 -0.521%

Load case 5 7.4902 7.5292 -0.521%

Load case 6 0.6998 0.7008 -0.140%

Load case 7 0.4125 0.4127 -0.063%

Load case 1 0.8034 0.7962 0.899%

Load case 2 0.9026 0.8863 1.797%

Load case 3 1.1497 1.0947 4.780%

Load case 4 3.4328 3.0902 9.980%

Load case 5 7.4902 7.3549 1.807%

Load case 6 0.6998 0.6871 1.816%

Load case 7 0.4125 0.4090 0.850%

Load case 1 0.8034 0.7976 0.719%

Load case 2 0.9026 0.8932 1.033%

Load case 3 1.1497 1.1008 4.248%

Load case 4 3.4328 3.1216 9.065%

Load case 5 7.4902 7.3945 1.277%

Load case 6 0.6998 0.7116 -1.677%

Load case 7 0.4125 0.4157 -0.778%

Load case 1 0.8034 0.8025 0.120%

Load case 2 0.9026 0.9016 0.105%

Load case 3 1.1497 1.1479 0.151%

Load case 4 3.4328 3.4204 0.360%

Load case 5 7.4902 7.3440 1.952%

Load case 6 0.6998 0.6990 0.124%

Load case 7 0.4125 0.4122 0.062%

Load case 1 0.8034 0.8030 0.048%

Load case 2 0.9026 0.9020 0.061%

Load case 3 1.1497 1.1479 0.158%

Load case 4 3.4328 3.3634 2.021%

Load case 5 7.4902 7.5165 -0.350%

Load case 6 0.6998 0.7007 -0.122%

Load case 7 0.4125 0.4127 -0.059%

Load case 1 0.8034 0.7962 0.900%

Load case 2 0.9026 0.8862 1.812%

Load case 3 1.1497 1.0930 4.927%

Load case 4 3.4328 3.0249 11.883%

Load case 5 7.4902 7.3431 1.964%

Load case 6 0.6998 0.6870 1.834%

Load case 7 0.4125 0.4089 0.855%

Load case 1 0.8034 0.7976 0.721%

Load case 2 0.9026 0.8931 1.048%

Load case 3 1.1497 1.0991 4.398%

Load case 4 3.4328 3.0545 11.019%

Load case 5 7.4902 7.3826 1.437%

Load case 6 0.6998 0.7114 -1.657%

Load case 7 0.4125 0.4156 -0.773%

Load case 1 0.8034 0.8024 0.122%

Load case 2 0.9026 0.9015 0.121%

Load case 3 1.1497 1.1460 0.320%

Load case 4 3.4328 3.3351 2.845%

Load case 5 7.4902 7.3323 2.109%

Load case 6 0.6998 0.6988 0.143%

Load case 7 0.4125 0.4122 0.067%

Linear Regression 

Average + Absolute 

Max Shear

Linear Regression 

Include all stress 

points + Absolute 

Max Shear

Linear Regression 

Update to max 

stress points + 

Absolute Max Shear

Linear Regression 

Eurocode + Absolute 

Max Shear

Linear Regression 

Eurocode + Average 

Shear

Linear Regression 

Average + Absolute 

Average Shear

Linear Regression 

Include all stress 

points + Absolute 

Average Shear

Linear Regression 

Update to max 

stress points + 

Absolute Average 

Shear

Linear Regression 

Eurocode + Absolute 

Average Shear

Linear Regression 

Average + Average 

Shear

Linear Regression 

Include all stress 

points + Average 

Shear

Linear Regression 

Update to max 

stress points + 

Average Shear
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Table E.03 Model 3, Buckling factors for all stresses (fig 8.21 check 1). 

Plate field 200x150x5                       

Bar stiffener 20x4

Real load case

Femap 

buckling 

factor k≥1 Linearized load case

Femap 

buckling 

factor k≥1

Difference 

with real 

loads ≥0

Load case 1 1.5542 1.5535 0.047%

Load case 2 1.7463 1.7455 0.045%

Load case 3 2.2243 2.2244 -0.005%

Load case 4 6.6567 6.6862 -0.443%

Load case 5 14.6067 14.6809 -0.508%

Load case 6 1.3169 1.3187 -0.130%

Load case 7 0.7849 0.7854 -0.059%

Load case 1 1.5542 1.5400 0.916%

Load case 2 1.7463 1.7181 1.615%

Load case 3 2.2243 2.1327 4.115%

Load case 4 6.6567 6.0961 8.423%

Load case 5 14.6067 14.3944 1.453%

Load case 6 1.3169 1.2936 1.775%

Load case 7 0.7849 0.7784 0.839%

Load case 1 1.5542 1.5429 0.726%

Load case 2 1.7463 1.7302 0.923%

Load case 3 2.2243 2.1507 3.305%

Load case 4 6.6567 6.1483 7.638%

Load case 5 14.6067 14.4707 0.931%

Load case 6 1.3169 1.3390 -1.676%

Load case 7 0.7849 0.7911 -0.778%

Load case 1 1.5542 1.5523 0.124%

Load case 2 1.7463 1.7445 0.101%

Load case 3 2.2243 2.2213 0.134%

Load case 4 6.6567 6.6357 0.317%

Load case 5 14.6067 14.3620 1.675%

Load case 6 1.3169 1.3152 0.135%

Load case 7 0.7849 0.7844 0.068%

Load case 1 1.5542 1.5535 0.047%

Load case 2 1.7463 1.7455 0.045%

Load case 3 2.2243 2.2244 -0.005%

Load case 4 6.6567 6.6862 -0.443%

Load case 5 14.6067 14.6684 -0.423%

Load case 6 1.3169 1.3187 -0.130%

Load case 7 0.7849 0.7854 -0.059%

Load case 1 1.5542 1.5400 0.916%

Load case 2 1.7463 1.7181 1.615%

Load case 3 2.2243 2.1327 4.115%

Load case 4 6.6567 6.0961 8.423%

Load case 5 14.6067 14.3828 1.533%

Load case 6 1.3169 1.2936 1.775%

Load case 7 0.7849 0.7784 0.839%

Load case 1 1.5542 1.5429 0.726%

Load case 2 1.7463 1.7302 0.923%

Load case 3 2.2243 2.1507 3.305%

Load case 4 6.6567 6.1483 7.638%

Load case 5 14.6067 14.4590 1.011%

Load case 6 1.3169 1.3390 -1.676%

Load case 7 0.7849 0.7911 -0.778%

Load case 1 1.5542 1.5523 0.124%

Load case 2 1.7463 1.7445 0.101%

Load case 3 2.2243 2.2213 0.134%

Load case 4 6.6567 6.6357 0.317%

Load case 5 14.6067 14.3505 1.754%

Load case 6 1.3169 1.3152 0.135%

Load case 7 0.7849 0.7844 0.068%

Load case 1 1.5542 1.5535 0.048%

Load case 2 1.7463 1.7453 0.059%

Load case 3 2.2243 2.2209 0.150%

Load case 4 6.6567 6.5358 1.816%

Load case 5 14.6067 14.6476 -0.280%

Load case 6 1.3169 1.3184 -0.111%

Load case 7 0.7849 0.7854 -0.054%

Load case 1 1.5542 1.5400 0.917%

Load case 2 1.7463 1.7179 1.628%

Load case 3 2.2243 2.1297 4.252%

Load case 4 6.6567 5.9780 10.196%

Load case 5 14.6067 14.3634 1.666%

Load case 6 1.3169 1.2933 1.792%

Load case 7 0.7849 0.7783 0.843%

Load case 1 1.5542 1.5429 0.728%

Load case 2 1.7463 1.7300 0.937%

Load case 3 2.2243 2.1476 3.446%

Load case 4 6.6567 6.0276 9.452%

Load case 5 14.6067 14.4392 1.147%

Load case 6 1.3169 1.3388 -1.656%

Load case 7 0.7849 0.7910 -0.774%

Load case 1 1.5542 1.5523 0.126%

Load case 2 1.7463 1.7443 0.115%

Load case 3 2.2243 2.2178 0.289%

Load case 4 6.6567 6.4881 2.533%

Load case 5 14.6067 14.3312 1.886%

Load case 6 1.3169 1.3149 0.153%

Load case 7 0.7849 0.7844 0.072%

Linear Regression 

Average + Average 

Shear

Linear Regression 

Include all stress 

points + Average 

Shear

Linear Regression 

Update to max 

stress points + 

Average Shear

Linear Regression 

Eurocode + Average 

Shear

Linear Regression 

Average + Absolute 

Average Shear

Linear Regression 

Include all stress 

points + Absolute 

Average Shear

Linear Regression 

Update to max 

stress points + 

Absolute Average 

Shear

Linear Regression 

Eurocode + Absolute 

Average Shear

Linear Regression 

Average + Absolute 

Max Shear

Linear Regression 

Include all stress 

points + Absolute 

Max Shear

Linear Regression 

Update to max 

stress points + 

Absolute Max Shear

Linear Regression 

Eurocode + Absolute 

Max Shear



 

161 

 

 

Table E.04 Model 4, Buckling factors for all stresses (fig 8.21 check 1). 

Plate field 200x150x4                       

Bar stiffener 40x4

Real load case

Femap 

buckling 

factor k≥1 Linearized load case

Femap 

buckling 

factor k≥1

Difference 

with real 

loads ≥0

Load case 1 0.8775 0.8770 0.060%

Load case 2 0.9851 0.9846 0.052%

Load case 3 1.2505 1.2512 -0.056%

Load case 4 3.6057 3.6359 -0.839%

Load case 5 7.9914 8.0412 -0.623%

Load case 6 0.7103 0.7119 -0.225%

Load case 7 0.4312 0.4316 -0.109%

Load case 1 0.8775 0.8676 1.134%

Load case 2 0.9851 0.9577 2.779%

Load case 3 1.2505 1.1532 7.780%

Load case 4 3.6057 3.0472 15.489%

Load case 5 7.9914 7.7771 2.682%

Load case 6 0.7103 0.6908 2.748%

Load case 7 0.4312 0.4251 1.410%

Load case 1 0.8775 0.8690 0.969%

Load case 2 0.9851 0.9684 1.697%

Load case 3 1.2505 1.1591 7.307%

Load case 4 3.6057 3.0943 14.181%

Load case 5 7.9914 7.8174 2.177%

Load case 6 0.7103 0.7191 -1.244%

Load case 7 0.4312 0.4337 -0.597%

Load case 1 0.8775 0.8761 0.160%

Load case 2 0.9851 0.9836 0.151%

Load case 3 1.2505 1.2473 0.254%

Load case 4 3.6057 3.6034 0.063%

Load case 5 7.9914 7.8464 1.814%

Load case 6 0.7103 0.7090 0.181%

Load case 7 0.4312 0.4307 0.099%

Load case 1 0.8775 0.8770 0.060%

Load case 2 0.9851 0.9846 0.052%

Load case 3 1.2505 1.2512 -0.056%

Load case 4 3.6057 3.6359 -0.839%

Load case 5 7.9914 8.0329 -0.520%

Load case 6 0.7103 0.7119 -0.223%

Load case 7 0.4312 0.4316 -0.108%

Load case 1 0.8775 0.8676 1.134%

Load case 2 0.9851 0.9577 2.779%

Load case 3 1.2505 1.1532 7.780%

Load case 4 3.6057 3.0472 15.489%

Load case 5 7.9914 7.7698 2.774%

Load case 6 0.7103 0.6908 2.749%

Load case 7 0.4312 0.4251 1.411%

Load case 1 0.8775 0.8690 0.969%

Load case 2 0.9851 0.9684 1.697%

Load case 3 1.2505 1.1591 7.307%

Load case 4 3.6057 3.0943 14.181%

Load case 5 7.9914 7.8100 2.270%

Load case 6 0.7103 0.7191 -1.242%

Load case 7 0.4312 0.4337 -0.596%

Load case 1 0.8775 0.8761 0.160%

Load case 2 0.9851 0.9836 0.151%

Load case 3 1.2505 1.2473 0.254%

Load case 4 3.6057 3.6034 0.063%

Load case 5 7.9914 7.8388 1.909%

Load case 6 0.7103 0.7090 0.183%

Load case 7 0.4312 0.4307 0.099%

Load case 1 0.8775 0.8770 0.061%

Load case 2 0.9851 0.9843 0.084%

Load case 3 1.2505 1.2471 0.272%

Load case 4 3.6057 3.5234 2.280%

Load case 5 7.9914 8.0194 -0.350%

Load case 6 0.7103 0.7118 -0.207%

Load case 7 0.4312 0.4316 -0.104%

Load case 1 0.8775 0.8676 1.135%

Load case 2 0.9851 0.9574 2.808%

Load case 3 1.2505 1.1499 8.038%

Load case 4 3.6057 2.9763 17.455%

Load case 5 7.9914 7.7577 2.925%

Load case 6 0.7103 0.6907 2.764%

Load case 7 0.4312 0.4251 1.415%

Load case 1 0.8775 0.8690 0.970%

Load case 2 0.9851 0.9681 1.727%

Load case 3 1.2505 1.1558 7.569%

Load case 4 3.6057 3.0205 16.228%

Load case 5 7.9914 7.7978 2.423%

Load case 6 0.7103 0.7190 -1.225%

Load case 7 0.4312 0.4337 -0.592%

Load case 1 0.8775 0.8761 0.161%

Load case 2 0.9851 0.9833 0.183%

Load case 3 1.2505 1.2432 0.579%

Load case 4 3.6057 3.4935 3.111%

Load case 5 7.9914 7.8264 2.065%

Load case 6 0.7103 0.7089 0.199%

Load case 7 0.4312 0.4307 0.103%

Linear Regression 

Update to max 

stress points + 

Absolute Max Shear

Linear Regression 

Eurocode + Absolute 

Max Shear

Linear Regression 

Include all stress 

points + Absolute 

Average Shear

Linear Regression 

Update to max 

stress points + 

Absolute Average 

Shear

Linear Regression 

Eurocode + Absolute 

Average Shear

Linear Regression 

Average + Absolute 

Max Shear

Linear Regression 

Include all stress 

points + Absolute 

Max Shear

Linear Regression 

Average + Average 

Shear

Linear Regression 

Include all stress 

points + Average 

Shear

Linear Regression 

Update to max 

stress points + 

Average Shear

Linear Regression 

Eurocode + Average 

Shear

Linear Regression 

Average + Absolute 

Average Shear
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Table E.05 Model 5, Buckling factors for all stresses (fig 8.21 check 1). 

Plate field 200x150x4                         

T stiffener 20x4x20x4

Real load case

Femap 

buckling 

factor k≥1 Linearized load case

Femap 

buckling 

factor k≥1

Difference 

with real 

loads ≥0

Load case 1 0.8605 0.8600 0.057%

Load case 2 0.9661 0.9656 0.052%

Load case 3 1.2277 1.2288 -0.092%

Load case 4 3.5715 3.6185 -1.318%

Load case 5 7.8666 7.9182 -0.656%

Load case 6 0.6988 0.7001 -0.193%

Load case 7 0.4236 0.4240 -0.092%

Load case 1 0.8605 0.8518 1.008%

Load case 2 0.9661 0.9442 2.268%

Load case 3 1.2277 1.1515 6.204%

Load case 4 3.5715 3.1436 11.981%

Load case 5 7.8666 7.5787 3.660%

Load case 6 0.6988 0.6821 2.391%

Load case 7 0.4236 0.4185 1.198%

Load case 1 0.8605 0.8533 0.843%

Load case 2 0.9661 0.9526 1.397%

Load case 3 1.2277 1.1603 5.490%

Load case 4 3.5715 3.2265 9.659%

Load case 5 7.8666 7.6093 3.270%

Load case 6 0.6988 0.7091 -1.482%

Load case 7 0.4236 0.4267 -0.722%

Load case 1 0.8605 0.8593 0.141%

Load case 2 0.9661 0.9642 0.202%

Load case 3 1.2277 1.2226 0.417%

Load case 4 3.5715 3.5735 -0.057%

Load case 5 7.8666 7.7250 1.800%

Load case 6 0.6988 0.6979 0.126%

Load case 7 0.4236 0.4233 0.067%

Load case 1 0.8605 0.8600 0.057%

Load case 2 0.9661 0.9656 0.052%

Load case 3 1.2277 1.2288 -0.092%

Load case 4 3.5715 3.6185 -1.318%

Load case 5 7.8666 7.9104 -0.558%

Load case 6 0.6988 0.7001 -0.192%

Load case 7 0.4236 0.4240 -0.092%

Load case 1 0.8605 0.8518 1.008%

Load case 2 0.9661 0.9442 2.268%

Load case 3 1.2277 1.1515 6.204%

Load case 4 3.5715 3.1436 11.981%

Load case 5 7.8666 7.5720 3.744%

Load case 6 0.6988 0.6821 2.392%

Load case 7 0.4236 0.4185 1.198%

Load case 1 0.8605 0.8533 0.843%

Load case 2 0.9661 0.9526 1.397%

Load case 3 1.2277 1.1603 5.490%

Load case 4 3.5715 3.2265 9.659%

Load case 5 7.8666 7.6026 3.356%

Load case 6 0.6988 0.7091 -1.481%

Load case 7 0.4236 0.4267 -0.722%

Load case 1 0.8605 0.8593 0.142%

Load case 2 0.9661 0.9642 0.202%

Load case 3 1.2277 1.2226 0.417%

Load case 4 3.5715 3.5735 -0.057%

Load case 5 7.8666 7.7178 1.891%

Load case 6 0.6988 0.6979 0.127%

Load case 7 0.4236 0.4233 0.068%

Load case 1 0.8605 0.8600 0.058%

Load case 2 0.9661 0.9654 0.077%

Load case 3 1.2277 1.2254 0.185%

Load case 4 3.5715 3.5195 1.454%

Load case 5 7.8666 7.8969 -0.386%

Load case 6 0.6988 0.7000 -0.178%

Load case 7 0.4236 0.4240 -0.089%

Load case 1 0.8605 0.8518 1.009%

Load case 2 0.9661 0.9440 2.292%

Load case 3 1.2277 1.1487 6.433%

Load case 4 3.5715 3.0751 13.899%

Load case 5 7.8666 7.5604 3.892%

Load case 6 0.6988 0.6820 2.405%

Load case 7 0.4236 0.4185 1.202%

Load case 1 0.8605 0.8533 0.844%

Load case 2 0.9661 0.9524 1.421%

Load case 3 1.2277 1.1574 5.724%

Load case 4 3.5715 3.1532 11.712%

Load case 5 7.8666 7.5908 3.506%

Load case 6 0.6988 0.7090 -1.466%

Load case 7 0.4236 0.4267 -0.718%

Load case 1 0.8605 0.8593 0.142%

Load case 2 0.9661 0.9639 0.227%

Load case 3 1.2277 1.2192 0.690%

Load case 4 3.5715 3.4777 2.626%

Load case 5 7.8666 7.7053 2.050%

Load case 6 0.6988 0.6978 0.141%

Load case 7 0.4236 0.4233 0.071%

Linear Regression 

Eurocode + Absolute 

Max Shear

Linear Regression 

Update to max 

stress points + 

Absolute Average 

Shear

Linear Regression 

Eurocode + Absolute 

Average Shear

Linear Regression 

Average + Absolute 

Max Shear

Linear Regression 

Include all stress 

points + Absolute 

Max Shear

Linear Regression 

Update to max 

stress points + 

Absolute Max Shear

Linear Regression 

Include all stress 

points + Average 

Shear

Linear Regression 

Update to max 

stress points + 

Average Shear

Linear Regression 

Eurocode + Average 

Shear

Linear Regression 

Average + Absolute 

Average Shear

Linear Regression 

Include all stress 

points + Absolute 

Average Shear

Linear Regression 

Average + Average 

Shear
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Table E.06 Model 6, Buckling factors for all stresses (fig 8.21 check 1). 

Plate field 200x150x4                         

T stiffener 40x4x40x4

Real load case

Femap 

buckling 

factor k≥1 Linearized load case

Femap 

buckling 

factor k≥1

Difference 

with real 

loads ≥0

Load case 1 1.0155 1.0146 0.085%

Load case 2 1.1389 1.1381 0.078%

Load case 3 1.4389 1.4410 -0.141%

Load case 4 3.9454 4.0199 -1.886%

Load case 5 8.9086 8.9649 -0.632%

Load case 6 0.7236 0.7262 -0.361%

Load case 7 0.4609 0.4618 -0.192%

Load case 1 1.0155 1.0025 1.278%

Load case 2 1.1389 1.1063 2.868%

Load case 3 1.4389 1.3169 8.477%

Load case 4 3.9454 3.3829 14.259%

Load case 5 8.9086 8.4361 5.305%

Load case 6 0.7236 0.6994 3.344%

Load case 7 0.4609 0.4523 1.870%

Load case 1 1.0155 1.0039 1.141%

Load case 2 1.1389 1.1180 1.836%

Load case 3 1.4389 1.3748 4.460%

Load case 4 3.9454 3.7624 4.640%

Load case 5 8.9086 8.4540 5.104%

Load case 6 0.7236 0.7266 -0.413%

Load case 7 0.4609 0.4617 -0.165%

Load case 1 1.0155 1.0134 0.206%

Load case 2 1.1389 1.1356 0.293%

Load case 3 1.4389 1.4305 0.588%

Load case 4 3.9454 3.9602 -0.375%

Load case 5 8.9086 8.7535 1.741%

Load case 6 0.7236 0.7225 0.152%

Load case 7 0.4609 0.4605 0.091%

Load case 1 1.0155 1.0146 0.086%

Load case 2 1.1389 1.1381 0.078%

Load case 3 1.4389 1.4410 -0.141%

Load case 4 3.9454 4.0199 -1.886%

Load case 5 8.9086 8.9577 -0.550%

Load case 6 0.7236 0.7262 -0.357%

Load case 7 0.4609 0.4618 -0.190%

Load case 1 1.0155 1.0025 1.278%

Load case 2 1.1389 1.1063 2.868%

Load case 3 1.4389 1.3169 8.477%

Load case 4 3.9454 3.3829 14.259%

Load case 5 8.9086 8.4302 5.370%

Load case 6 0.7236 0.6994 3.348%

Load case 7 0.4609 0.4523 1.871%

Load case 1 1.0155 1.0039 1.142%

Load case 2 1.1389 1.1180 1.836%

Load case 3 1.4389 1.3748 4.460%

Load case 4 3.9454 3.7624 4.640%

Load case 5 8.9086 8.4481 5.170%

Load case 6 0.7236 0.7266 -0.409%

Load case 7 0.4609 0.4617 -0.164%

Load case 1 1.0155 1.0134 0.206%

Load case 2 1.1389 1.1356 0.293%

Load case 3 1.4389 1.4305 0.588%

Load case 4 3.9454 3.9602 -0.375%

Load case 5 8.9086 8.7467 1.817%

Load case 6 0.7236 0.7225 0.157%

Load case 7 0.4609 0.4605 0.092%

Load case 1 1.0155 1.0146 0.086%

Load case 2 1.1389 1.1375 0.126%

Load case 3 1.4389 1.4338 0.355%

Load case 4 3.9454 3.9016 1.110%

Load case 5 8.9086 8.9422 -0.377%

Load case 6 0.7236 0.7261 -0.344%

Load case 7 0.4609 0.4618 -0.186%

Load case 1 1.0155 1.0025 1.279%

Load case 2 1.1389 1.1058 2.912%

Load case 3 1.4389 1.3115 8.858%

Load case 4 3.9454 3.3071 16.179%

Load case 5 8.9086 8.4177 5.511%

Load case 6 0.7236 0.6993 3.360%

Load case 7 0.4609 0.4523 1.875%

Load case 1 1.0155 1.0039 1.142%

Load case 2 1.1389 1.1175 1.881%

Load case 3 1.4389 1.3685 4.892%

Load case 4 3.9454 3.6624 7.173%

Load case 5 8.9086 8.4355 5.311%

Load case 6 0.7236 0.7265 -0.395%

Load case 7 0.4609 0.4617 -0.160%

Load case 1 1.0155 1.0134 0.207%

Load case 2 1.1389 1.1351 0.340%

Load case 3 1.4389 1.4235 1.074%

Load case 4 3.9454 3.8464 2.509%

Load case 5 8.9086 8.7325 1.977%

Load case 6 0.7236 0.7224 0.170%

Load case 7 0.4609 0.4605 0.096%

Linear Regression 

Average + Average 

Shear

Linear Regression 

Include all stress 

points + Average 

Shear

Linear Regression 

Update to max 

stress points + 

Average Shear

Linear Regression 

Eurocode + Average 

Shear

Linear Regression 

Average + Absolute 

Average Shear

Linear Regression 

Include all stress 

points + Absolute 

Average Shear

Linear Regression 

Update to max 

stress points + 

Absolute Average 

Shear

Linear Regression 

Eurocode + Absolute 

Average Shear

Linear Regression 

Average + Absolute 

Max Shear

Linear Regression 

Include all stress 

points + Absolute 

Max Shear

Linear Regression 

Update to max 

stress points + 

Absolute Max Shear

Linear Regression 

Eurocode + Absolute 

Max Shear
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Table E.07 Model 7, Buckling factors for all stresses (fig 8.21 check 1). 

Plate field 600x150x4                       

Bar stiffener 20x4

Real load case

Femap 

buckling 

factor k≥1 Linearized load case

Femap 

buckling 

factor k≥1

Difference 

with real 

loads ≥0

Load case 1 0.8381 0.8430 -0.585%

Load case 2 0.9382 0.9238 1.539%

Load case 3 1.1642 0.8861 23.892%

Load case 4 2.9512 1.2951 56.117%

Load case 5 7.3912 7.5133 -1.653%

Load case 6 0.6626 0.6759 -2.013%

Load case 7 0.5594 0.5617 -0.416%

Load case 1 0.8381 0.8292 1.053%

Load case 2 0.9382 0.9089 3.129%

Load case 3 1.1642 0.8787 24.529%

Load case 4 2.9512 1.2885 56.341%

Load case 5 7.3912 7.2243 2.257%

Load case 6 0.6626 0.6508 1.776%

Load case 7 0.5594 0.5573 0.361%

Load case 1 0.8381 0.8308 0.866%

Load case 2 0.9382 0.9109 2.911%

Load case 3 1.1642 0.8794 24.464%

Load case 4 2.9512 1.2891 56.321%

Load case 5 7.3912 7.2466 1.955%

Load case 6 0.6626 0.6512 1.719%

Load case 7 0.5594 0.5576 0.306%

Load case 1 0.8381 0.8428 -0.565%

Load case 2 0.9382 0.9233 1.597%

Load case 3 1.1642 0.8860 23.895%

Load case 4 2.9512 1.2932 56.180%

Load case 5 7.3912 7.3667 0.331%

Load case 6 0.6626 0.6754 -1.934%

Load case 7 0.5594 0.5615 -0.389%

Load case 1 0.8381 0.8430 -0.584%

Load case 2 0.9382 0.9238 1.539%

Load case 3 1.1642 0.8861 23.892%

Load case 4 2.9512 1.2951 56.117%

Load case 5 7.3912 7.2827 1.468%

Load case 6 0.6626 0.6759 -2.013%

Load case 7 0.5594 0.5617 -0.416%

Load case 1 0.8381 0.8292 1.054%

Load case 2 0.9382 0.9089 3.129%

Load case 3 1.1642 0.8787 24.529%

Load case 4 2.9512 1.2885 56.341%

Load case 5 7.3912 7.0163 5.072%

Load case 6 0.6626 0.6508 1.776%

Load case 7 0.5594 0.5573 0.361%

Load case 1 0.8381 0.8308 0.867%

Load case 2 0.9382 0.9109 2.911%

Load case 3 1.1642 0.8794 24.464%

Load case 4 2.9512 1.2891 56.321%

Load case 5 7.3912 7.0368 4.795%

Load case 6 0.6626 0.6512 1.719%

Load case 7 0.5594 0.5576 0.306%

Load case 1 0.8381 0.8428 -0.564%

Load case 2 0.9382 0.9233 1.597%

Load case 3 1.1642 0.8860 23.895%

Load case 4 2.9512 1.2932 56.180%

Load case 5 7.3912 7.1490 3.276%

Load case 6 0.6626 0.6754 -1.934%

Load case 7 0.5594 0.5615 -0.389%

Load case 1 0.8381 0.8427 -0.558%

Load case 2 0.9382 0.9187 2.079%

Load case 3 1.1642 0.8737 24.953%

Load case 4 2.9512 1.2529 57.548%

Load case 5 7.3912 7.0331 4.844%

Load case 6 0.6626 0.6759 -2.012%

Load case 7 0.5594 0.5617 -0.416%

Load case 1 0.8381 0.8290 1.079%

Load case 2 0.9382 0.9040 3.645%

Load case 3 1.1642 0.8666 25.566%

Load case 4 2.9512 1.2467 57.757%

Load case 5 7.3912 6.7949 8.067%

Load case 6 0.6626 0.6508 1.777%

Load case 7 0.5594 0.5573 0.361%

Load case 1 0.8381 0.8306 0.893%

Load case 2 0.9382 0.9061 3.430%

Load case 3 1.1642 0.8673 25.503%

Load case 4 2.9512 1.2472 57.738%

Load case 5 7.3912 6.8135 7.816%

Load case 6 0.6626 0.6512 1.720%

Load case 7 0.5594 0.5576 0.306%

Load case 1 0.8381 0.8426 -0.538%

Load case 2 0.9382 0.9182 2.136%

Load case 3 1.1642 0.8737 24.956%

Load case 4 2.9512 1.2511 57.607%

Load case 5 7.3912 6.9152 6.440%

Load case 6 0.6626 0.6754 -1.933%

Load case 7 0.5594 0.5615 -0.389%

Linear Regression 

Update to max 

stress points + 

Absolute Average 

Shear

Linear Regression 

Eurocode + Absolute 

Average Shear

Linear Regression 

Average + Absolute 

Max Shear

Linear Regression 

Include all stress 

points + Absolute 

Max Shear

Linear Regression 

Update to max 

stress points + 

Absolute Max Shear

Linear Regression 

Eurocode + Absolute 

Max Shear

Linear Regression 

Average + Average 

Shear

Linear Regression 

Include all stress 

points + Average 

Shear

Linear Regression 

Update to max 

stress points + 

Average Shear

Linear Regression 

Eurocode + Average 

Shear

Linear Regression 

Average + Absolute 

Average Shear

Linear Regression 

Include all stress 

points + Absolute 

Average Shear
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Table E.08 Model 8, Buckling factors for all stresses (fig 8.21 check 1). 

Plate field 200x400x4                       

Bar stiffener 20x4

Real load case

Femap 

buckling 

factor k≥1 Linearized load case

Femap 

buckling 

factor k≥1

Difference 

with real 

loads ≥0

Load case 1 0.4040 0.4019 0.515%

Load case 2 0.4586 0.4569 0.371%

Load case 3 0.5977 0.5954 0.396%

Load case 4 2.8277 3.0032 -6.207%

Load case 5 5.5256 6.0317 -9.158%

Load case 6 1.5192 1.3833 8.943%

Load case 7 0.4578 0.4750 -3.757%

Load case 1 0.4040 0.4013 0.661%

Load case 2 0.4586 0.4560 0.586%

Load case 3 0.5977 0.5926 0.863%

Load case 4 2.8277 2.9469 -4.215%

Load case 5 5.5256 5.9987 -8.561%

Load case 6 1.5192 1.4037 7.602%

Load case 7 0.4578 0.4625 -1.018%

Load case 1 0.4040 0.4015 0.604%

Load case 2 0.4586 0.4565 0.460%

Load case 3 0.5977 0.5936 0.690%

Load case 4 2.8277 2.9705 -5.051%

Load case 5 5.5256 6.0709 -9.869%

Load case 6 1.5192 1.4526 4.379%

Load case 7 0.4578 0.4677 -2.164%

Load case 1 0.4040 0.4014 0.633%

Load case 2 0.4586 0.4565 0.459%

Load case 3 0.5977 0.5949 0.469%

Load case 4 2.8277 2.9800 -5.388%

Load case 5 5.5256 5.9423 -7.541%

Load case 6 1.5192 1.3117 13.653%

Load case 7 0.4578 0.4699 -2.649%

Load case 1 0.4040 0.4019 0.515%

Load case 2 0.4586 0.4569 0.371%

Load case 3 0.5977 0.5954 0.396%

Load case 4 2.8277 3.0032 -6.207%

Load case 5 5.5256 6.0422 -9.349%

Load case 6 1.5192 1.3833 8.943%

Load case 7 0.4578 0.4750 -3.757%

Load case 1 0.4040 0.4013 0.661%

Load case 2 0.4586 0.4560 0.586%

Load case 3 0.5977 0.5926 0.863%

Load case 4 2.8277 2.9469 -4.215%

Load case 5 5.5256 6.0091 -8.749%

Load case 6 1.5192 1.4037 7.602%

Load case 7 0.4578 0.4625 -1.018%

Load case 1 0.4040 0.4015 0.604%

Load case 2 0.4586 0.4565 0.460%

Load case 3 0.5977 0.5936 0.690%

Load case 4 2.8277 2.9705 -5.051%

Load case 5 5.5256 6.0816 -10.062%

Load case 6 1.5192 1.4526 4.379%

Load case 7 0.4578 0.4677 -2.164%

Load case 1 0.4040 0.4014 0.633%

Load case 2 0.4586 0.4565 0.459%

Load case 3 0.5977 0.5949 0.469%

Load case 4 2.8277 2.9800 -5.388%

Load case 5 5.5256 5.9527 -7.728%

Load case 6 1.5192 1.3117 13.653%

Load case 7 0.4578 0.4699 -2.649%

Load case 1 0.4040 0.4019 0.516%

Load case 2 0.4586 0.4569 0.375%

Load case 3 0.5977 0.5953 0.414%

Load case 4 2.8277 2.9933 -5.856%

Load case 5 5.5256 6.0624 -9.714%

Load case 6 1.5192 1.2940 14.823%

Load case 7 0.4578 0.4739 -3.504%

Load case 1 0.4040 0.4013 0.662%

Load case 2 0.4586 0.4559 0.589%

Load case 3 0.5977 0.5925 0.880%

Load case 4 2.8277 2.9375 -3.884%

Load case 5 5.5256 6.0290 -9.110%

Load case 6 1.5192 1.3153 13.417%

Load case 7 0.4578 0.4614 -0.784%

Load case 1 0.4040 0.4015 0.605%

Load case 2 0.4586 0.4565 0.464%

Load case 3 0.5977 0.5935 0.707%

Load case 4 2.8277 2.9609 -4.711%

Load case 5 5.5256 6.1021 -10.432%

Load case 6 1.5192 1.3550 10.809%

Load case 7 0.4578 0.4666 -1.924%

Load case 1 0.4040 0.4014 0.634%

Load case 2 0.4586 0.4565 0.462%

Load case 3 0.5977 0.5948 0.486%

Load case 4 2.8277 2.9703 -5.045%

Load case 5 5.5256 5.9725 -8.087%

Load case 6 1.5192 1.2352 18.692%

Load case 7 0.4578 0.4688 -2.400%

Linear Regression 

Average + Average 

Shear

Linear Regression 

Include all stress 

points + Average 

Shear

Linear Regression 

Update to max 

stress points + 

Average Shear

Linear Regression 

Eurocode + Average 

Shear

Linear Regression 

Average + Absolute 

Average Shear

Linear Regression 

Include all stress 

points + Absolute 

Average Shear

Linear Regression 

Update to max 

stress points + 

Absolute Average 

Shear

Linear Regression 

Eurocode + Absolute 

Average Shear

Linear Regression 

Average + Absolute 

Max Shear

Linear Regression 

Include all stress 

points + Absolute 

Max Shear

Linear Regression 

Update to max 

stress points + 

Absolute Max Shear

Linear Regression 

Eurocode + Absolute 

Max Shear
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Table E.09 Model 1, Buckling factors for in-plane stresses (fig 8.21 check 2 and 3). 

Plate field 200x150x3                       

Bar stiffener 20x4 Real load case

Femap 

buckling 

factor k≥1 Linearized load case

Femap 

buckling 

factor k≥1

Difference 

with real 

loads ≥0

Load case 1 Fx 0.41232 0.41243 -0.03%

Load case 1 Fy 2.08766 2.06227 1.22%

Load case 2 Fx 0.46341 0.46353 -0.03%

Load case 2 Fy 2.36188 2.33260 1.24%

Load case 3 Fx 0.60594 0.60611 -0.03%

Load case 3 Fy 3.08009 3.04310 1.20%

Load case 4 Fx 2.26817 2.27189 -0.16%

Load case 4 Fy 12.14262 13.56506 -11.71%

Load case 5 Fx 3.65368 3.65547 -0.05%

Load case 5 Fy 20.20318 24.96077 -23.55%

Load case 6 Fx 11.84316 12.59581 -6.36%

Load case 6 Fy 0.31734 0.31966 -0.73%

Load case 7 Fx 0.49564 0.49530 0.07%

Load case 7 Fy 0.28296 0.28442 -0.51%

Load case 1 Fx 0.41232 0.41187 0.11%

Load case 1 Fy 2.08766 1.97690 5.31%

Load case 2 Fx 0.46341 0.46289 0.11%

Load case 2 Fy 2.36188 2.08509 11.72%

Load case 3 Fx 0.60594 0.60465 0.21%

Load case 3 Fy 3.08009 2.20377 28.45%

Load case 4 Fx 2.26817 2.23926 1.27%

Load case 4 Fy 12.14262 5.24527 56.80%

Load case 5 Fx 3.65368 3.64875 0.13%

Load case 5 Fy 20.20318 20.40476 -1.00%

Load case 6 Fx 11.84316 10.02511 15.35%

Load case 6 Fy 0.31734 0.31502 0.73%

Load case 7 Fx 0.49564 0.49139 0.86%

Load case 7 Fy 0.28296 0.28151 0.51%

Load case 1 Fx 0.41232 0.41269 -0.09%

Load case 1 Fy 2.08766 1.97690 5.31%

Load case 2 Fx 0.46341 0.46459 -0.25%

Load case 2 Fy 2.36188 2.15326 8.83%

Load case 3 Fx 0.60594 0.60604 -0.02%

Load case 3 Fy 3.08009 2.21954 27.94%

Load case 4 Fx 2.26817 2.28310 -0.66%

Load case 4 Fy 12.14262 5.32552 56.14%

Load case 5 Fx 3.65368 3.67238 -0.51%

Load case 5 Fy 20.20318 20.41273 -1.04%

Load case 6 Fx 11.84316 10.10618 14.67%

Load case 6 Fy 0.31734 0.32677 -2.97%

Load case 7 Fx 0.49564 0.49153 0.83%

Load case 7 Fy 0.28296 0.28892 -2.10%

Load case 1 Fx 0.41232 0.41243 -0.03%

Load case 1 Fy 2.08766 2.05379 1.62%

Load case 2 Fx 0.46341 0.46353 -0.03%

Load case 2 Fy 2.36188 2.32288 1.65%

Load case 3 Fx 0.60594 0.60611 -0.03%

Load case 3 Fy 3.08009 3.00455 2.45%

Load case 4 Fx 2.26817 2.27189 -0.16%

Load case 4 Fy 12.14262 12.05924 0.69%

Load case 5 Fx 3.65368 3.65547 -0.05%

Load case 5 Fy 20.20318 20.25855 -0.27%

Load case 6 Fx 11.84316 12.59581 -6.36%

Load case 6 Fy 0.31734 0.31879 -0.46%

Load case 7 Fx 0.49564 0.49530 0.07%

Load case 7 Fy 0.28296 0.28385 -0.31%

Implementation 

method 3 Linear 

Regression + Update 

to maximum stress 

result

Implementation 

method 4 Linear 

Regression Eurocode

Implementation 

method 1 Linear 

Regression Average

Implementation 

method 2 Linear 

Regression + Include 

all stress results
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Table E.10 Model 2, Buckling factors for in-plane stresses (fig 8.21 check 2 and 3). 

Plate field 200x150x4                       

Bar stiffener 20x4 Real load case

Femap 

buckling 

factor k≥1 Linearized load case

Femap 

buckling 

factor k≥1

Difference 

with real 

loads ≥0

Load case 1 Fx 0.94415 0.94441 -0.03%

Load case 1 Fy 5.43887 5.36411 1.37%

Load case 2 Fx 1.06141 1.06169 -0.03%

Load case 2 Fy 6.15921 6.07324 1.40%

Load case 3 Fx 1.38778 1.38818 -0.03%

Load case 3 Fy 8.02820 7.91822 1.37%

Load case 4 Fx 5.22610 5.23543 -0.18%

Load case 4 Fy 32.80517 36.35704 -10.83%

Load case 5 Fx 8.45029 8.45488 -0.05%

Load case 5 Fy 55.59818 68.85168 -23.84%

Load case 6 Fx 36.36674 40.13250 -10.35%

Load case 6 Fy 0.70833 0.71326 -0.69%

Load case 7 Fx 1.14764 1.14687 0.07%

Load case 7 Fy 0.64157 0.64474 -0.49%

Load case 1 Fx 0.94415 0.94314 0.11%

Load case 1 Fy 5.43887 5.10970 6.05%

Load case 2 Fx 1.06141 1.06025 0.11%

Load case 2 Fy 6.15921 5.45870 11.37%

Load case 3 Fx 1.38778 1.38592 0.13%

Load case 3 Fy 8.02820 5.88237 26.73%

Load case 4 Fx 5.22610 5.17802 0.92%

Load case 4 Fy 32.80517 14.81686 54.83%

Load case 5 Fx 8.45029 8.43964 0.13%

Load case 5 Fy 55.59818 57.18136 -2.85%

Load case 6 Fx 36.36674 29.58074 18.66%

Load case 6 Fy 0.70833 0.70346 0.69%

Load case 7 Fx 1.14764 1.13772 0.86%

Load case 7 Fy 0.64157 0.63843 0.49%

Load case 1 Fx 0.94415 0.94517 -0.11%

Load case 1 Fy 5.43887 5.10970 6.05%

Load case 2 Fx 1.06141 1.06413 -0.26%

Load case 2 Fy 6.15921 5.62113 8.74%

Load case 3 Fx 1.38778 1.38896 -0.09%

Load case 3 Fy 8.02820 6.01029 25.14%

Load case 4 Fx 5.22610 5.25901 -0.63%

Load case 4 Fy 32.80517 15.02650 54.19%

Load case 5 Fx 8.45029 8.49133 -0.49%

Load case 5 Fy 55.59818 57.20522 -2.89%

Load case 6 Fx 36.36674 29.88603 17.82%

Load case 6 Fy 0.70833 0.72892 -2.91%

Load case 7 Fx 1.14764 1.13810 0.83%

Load case 7 Fy 0.64157 0.65483 -2.07%

Load case 1 Fx 0.94415 0.94441 -0.03%

Load case 1 Fy 5.43887 5.33779 1.86%

Load case 2 Fx 1.06141 1.06169 -0.03%

Load case 2 Fy 6.15921 6.04871 1.79%

Load case 3 Fx 1.38778 1.38818 -0.03%

Load case 3 Fy 8.02820 7.82822 2.49%

Load case 4 Fx 5.22610 5.23543 -0.18%

Load case 4 Fy 32.80517 32.41817 1.18%

Load case 5 Fx 8.45029 8.45488 -0.05%

Load case 5 Fy 55.59818 55.84333 -0.44%

Load case 6 Fx 36.36674 40.13250 -10.35%

Load case 6 Fy 0.70833 0.71134 -0.42%

Load case 7 Fx 1.14764 1.14687 0.07%

Load case 7 Fy 0.64157 0.64347 -0.30%

Implementation 

method 1 Linear 

Regression Average

Implementation 

method 2 Linear 

Regression + Include 

all stress results

Implementation 

method 3 Linear 

Regression + Update 

to maximum stress 

result

Implementation 

method 4 Linear 

Regression Eurocode
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Table E.11 Model 3, Buckling factors for in-plane stresses (fig 8.21 check 2 and 3). 

Plate field 200x150x5                       

Bar stiffener 20x4 Real load case

Femap 

buckling 

factor k≥1 Linearized load case

Femap 

buckling 

factor k≥1

Difference 

with real 

loads ≥0

Load case 1 Fx 1.80005 1.80054 -0.03%

Load case 1 Fy 11.49564 11.32029 1.53%

Load case 2 Fx 2.02394 2.02447 -0.03%

Load case 2 Fy 13.02895 12.82747 1.55%

Load case 3 Fx 2.64619 2.64691 -0.03%

Load case 3 Fy 16.97559 16.71612 1.53%

Load case 4 Fx 10.00316 10.02217 -0.19%

Load case 4 Fy 71.51640 78.74088 -10.10%

Load case 5 Fx 16.21441 16.22394 -0.06%

Load case 5 Fy 123.39450 153.02080 -24.01%

Load case 6 Fx 90.41194 104.89980 -16.02%

Load case 6 Fy 1.32640 1.33537 -0.68%

Load case 7 Fx 2.20506 2.20367 0.06%

Load case 7 Fy 1.21446 1.22034 -0.48%

Load case 1 Fx 1.80005 1.79822 0.10%

Load case 1 Fy 11.49564 10.72214 6.73%

Load case 2 Fx 2.02394 2.02184 0.10%

Load case 2 Fy 13.02895 11.56464 11.24%

Load case 3 Fx 2.64619 2.64314 0.12%

Load case 3 Fy 16.97559 12.64313 25.52%

Load case 4 Fx 10.00316 9.93428 0.69%

Load case 4 Fy 71.51640 33.36162 53.35%

Load case 5 Fx 16.21441 16.19511 0.12%

Load case 5 Fy 123.39450 128.34130 -4.01%

Load case 6 Fx 90.41194 70.90047 21.58%

Load case 6 Fy 1.32640 1.31757 0.67%

Load case 7 Fx 2.20506 2.18625 0.85%

Load case 7 Fy 1.21446 1.20867 0.48%

Load case 1 Fx 1.80005 1.80223 -0.12%

Load case 1 Fy 11.49564 10.72214 6.73%

Load case 2 Fx 2.02394 2.02900 -0.25%

Load case 2 Fy 13.02895 11.88375 8.79%

Load case 3 Fx 2.64619 2.64948 -0.12%

Load case 3 Fy 16.97559 13.16207 22.46%

Load case 4 Fx 10.00316 10.06382 -0.61%

Load case 4 Fy 71.51640 33.80580 52.73%

Load case 5 Fx 16.21441 16.29071 -0.47%

Load case 5 Fy 123.39450 128.39630 -4.05%

Load case 6 Fx 90.41194 71.87093 20.51%

Load case 6 Fy 1.32640 1.36439 -2.86%

Load case 7 Fx 2.20506 2.18704 0.82%

Load case 7 Fy 1.21446 1.23930 -2.05%

Load case 1 Fx 1.80005 1.80054 -0.03%

Load case 1 Fy 11.49564 11.25625 2.08%

Load case 2 Fx 2.02394 2.02447 -0.03%

Load case 2 Fy 13.02895 12.77454 1.95%

Load case 3 Fx 2.64619 2.64691 -0.03%

Load case 3 Fy 16.97559 16.53871 2.57%

Load case 4 Fx 10.00316 10.02217 -0.19%

Load case 4 Fy 71.51640 70.40881 1.55%

Load case 5 Fx 16.21441 16.22394 -0.06%

Load case 5 Fy 123.39450 124.06220 -0.54%

Load case 6 Fx 90.41194 104.89980 -16.02%

Load case 6 Fy 1.32640 1.33179 -0.41%

Load case 7 Fx 2.20506 2.20367 0.06%

Load case 7 Fy 1.21446 1.21794 -0.29%
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Table E.12 Model 4, Buckling factors for in-plane stresses (fig 8.21 check 2 and 3). 

Plate field 200x150x4                       

Bar stiffener 40x4 Real load case

Femap 

buckling 

factor k≥1 Linearized load case

Femap 

buckling 

factor k≥1

Difference 

with real 

loads ≥0

Load case 1 Fx 1.03863 1.03902 -0.04%

Load case 1 Fy 5.71443 5.62297 1.60%

Load case 2 Fx 1.16640 1.16682 -0.04%

Load case 2 Fy 6.48991 6.38559 1.61%

Load case 3 Fx 1.52449 1.52510 -0.04%

Load case 3 Fy 8.50899 8.38308 1.48%

Load case 4 Fx 5.61433 5.62528 -0.20%

Load case 4 Fy 35.55308 40.59811 -14.19%

Load case 5 Fx 8.99715 9.00170 -0.05%

Load case 5 Fy 60.53509 74.71123 -23.42%

Load case 6 Fx 16.67995 16.32083 2.15%

Load case 6 Fy 0.73707 0.74437 -0.99%

Load case 7 Fx 1.20528 1.20305 0.18%

Load case 7 Fy 0.66822 0.67314 -0.74%

Load case 1 Fx 1.03863 1.03705 0.15%

Load case 1 Fy 5.71443 5.30784 7.12%

Load case 2 Fx 1.16640 1.16469 0.15%

Load case 2 Fy 6.48991 5.44743 16.06%

Load case 3 Fx 1.52449 1.51892 0.37%

Load case 3 Fy 8.50899 5.36316 36.97%

Load case 4 Fx 5.61433 5.51610 1.75%

Load case 4 Fy 35.55308 11.47160 67.73%

Load case 5 Fx 8.99715 8.98554 0.13%

Load case 5 Fy 60.53509 57.33218 5.29%

Load case 6 Fx 16.67995 12.76367 23.48%

Load case 6 Fy 0.73707 0.73032 0.92%

Load case 7 Fx 1.20528 1.18250 1.89%

Load case 7 Fy 0.66822 0.66365 0.68%

Load case 1 Fx 1.03863 1.03911 -0.05%

Load case 1 Fy 5.71443 5.30784 7.12%

Load case 2 Fx 1.16640 1.17027 -0.33%

Load case 2 Fy 6.48991 5.67698 12.53%

Load case 3 Fx 1.52449 1.52501 -0.03%

Load case 3 Fy 8.50899 5.41866 36.32%

Load case 4 Fx 5.61433 5.64638 -0.57%

Load case 4 Fy 35.55308 11.70889 67.07%

Load case 5 Fx 8.99715 9.03834 -0.46%

Load case 5 Fy 60.53509 57.37216 5.22%

Load case 6 Fx 16.67995 13.11387 21.38%

Load case 6 Fy 0.73707 0.76087 -3.23%

Load case 7 Fx 1.20528 1.18495 1.69%

Load case 7 Fy 0.66822 0.68416 -2.39%

Load case 1 Fx 1.03863 1.03902 -0.04%

Load case 1 Fy 5.71443 5.58723 2.23%

Load case 2 Fx 1.16640 1.16682 -0.04%

Load case 2 Fy 6.48991 6.34475 2.24%

Load case 3 Fx 1.52449 1.52510 -0.04%

Load case 3 Fy 8.50899 8.20704 3.55%

Load case 4 Fx 5.61433 5.62528 -0.20%

Load case 4 Fy 35.55308 36.03203 -1.35%

Load case 5 Fx 8.99715 9.00170 -0.05%

Load case 5 Fy 60.53509 60.61473 -0.13%

Load case 6 Fx 16.67995 16.32083 2.15%

Load case 6 Fy 0.73707 0.74122 -0.56%

Load case 7 Fx 1.20528 1.20305 0.18%

Load case 7 Fy 0.66822 0.67097 -0.41%
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Table E.13 Model 5, Buckling factors for in-plane stresses (fig 8.21 check 2 and 3). 

Plate field 200x150x4                         

T stiffener 20x4x20x4 Real load case

Femap 

buckling 

factor k≥1 Linearized load case

Femap 

buckling 

factor k≥1

Difference 

with real 

loads ≥0

Load case 1 Fx 1.01513 1.01551 -0.04%

Load case 1 Fy 5.70116 5.61647 1.49%

Load case 2 Fx 1.14040 1.14081 -0.04%

Load case 2 Fy 6.46092 6.36457 1.49%

Load case 3 Fx 1.49090 1.49148 -0.04%

Load case 3 Fy 8.41986 8.31482 1.25%

Load case 4 Fx 5.53354 5.53747 -0.07%

Load case 4 Fy 32.16535 38.76153 -20.51%

Load case 5 Fx 8.87022 8.87501 -0.05%

Load case 5 Fy 59.19886 72.80770 -22.99%

Load case 6 Fx 19.93868 19.36987 2.85%

Load case 6 Fy 0.72047 0.72637 -0.82%

Load case 7 Fx 1.19333 1.19135 0.17%

Load case 7 Fy 0.65440 0.65832 -0.60%

Load case 1 Fx 1.01513 1.01366 0.15%

Load case 1 Fy 5.70116 5.33566 6.41%

Load case 2 Fx 1.14040 1.13862 0.16%

Load case 2 Fy 6.46092 5.58796 13.51%

Load case 3 Fx 1.49090 1.48419 0.45%

Load case 3 Fy 8.41986 5.77804 31.38%

Load case 4 Fx 5.53354 5.40205 2.38%

Load case 4 Fy 32.16535 13.66849 57.51%

Load case 5 Fx 8.87022 8.84941 0.23%

Load case 5 Fy 59.19886 52.32695 11.61%

Load case 6 Fx 19.93868 14.92141 25.16%

Load case 6 Fy 0.72047 0.71473 0.80%

Load case 7 Fx 1.19333 1.17357 1.66%

Load case 7 Fy 0.65440 0.65057 0.59%

Load case 1 Fx 1.01513 1.01567 -0.05%

Load case 1 Fy 5.70116 5.33566 6.41%

Load case 2 Fx 1.14040 1.14356 -0.28%

Load case 2 Fy 6.46092 5.76799 10.72%

Load case 3 Fx 1.49090 1.48875 0.14%

Load case 3 Fy 8.41986 5.93815 29.47%

Load case 4 Fx 5.53354 5.60660 -1.32%

Load case 4 Fy 32.16535 14.26411 55.65%

Load case 5 Fx 8.87022 8.88773 -0.20%

Load case 5 Fy 59.19886 52.44481 11.41%

Load case 6 Fx 19.93868 15.16292 23.95%

Load case 6 Fy 0.72047 0.74391 -3.25%

Load case 7 Fx 1.19333 1.17477 1.56%

Load case 7 Fy 0.65440 0.67005 -2.39%

Load case 1 Fx 1.01513 1.01551 -0.04%

Load case 1 Fy 5.70116 5.58547 2.03%

Load case 2 Fx 1.14040 1.14081 -0.04%

Load case 2 Fy 6.46092 6.30209 2.46%

Load case 3 Fx 1.49090 1.49148 -0.04%

Load case 3 Fy 8.41986 8.02955 4.64%

Load case 4 Fx 5.53354 5.53747 -0.07%

Load case 4 Fy 32.16535 33.12802 -2.99%

Load case 5 Fx 8.87022 8.87501 -0.05%

Load case 5 Fy 59.19886 59.09967 0.17%

Load case 6 Fx 19.93868 19.36987 2.85%

Load case 6 Fy 0.72047 0.72397 -0.49%

Load case 7 Fx 1.19333 1.19135 0.17%

Load case 7 Fy 0.65440 0.65669 -0.35%
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Table E.14 Model 6, Buckling factors for in-plane stresses (fig 8.21 check 2 and 3). 

Plate field 200x150x4                         

T stiffener 40x4x40x4 Real load case

Femap 

buckling 

factor k≥1 Linearized load case

Femap 

buckling 

factor k≥1

Difference 

with real 

loads ≥0

Load case 1 Fx 1.21044 1.21100 -0.05%

Load case 1 Fy 6.36738 6.25673 1.74%

Load case 2 Fx 1.35776 1.35837 -0.04%

Load case 2 Fy 7.24521 7.12007 1.73%

Load case 3 Fx 1.77558 1.77645 -0.05%

Load case 3 Fy 9.52448 9.39334 1.38%

Load case 4 Fx 6.38085 6.37149 0.15%

Load case 4 Fy 37.42377 47.24508 -26.24%

Load case 5 Fx 10.00636 10.01260 -0.06%

Load case 5 Fy 70.54436 84.93787 -20.40%

Load case 6 Fx 11.30376 11.42946 -1.11%

Load case 6 Fy 0.76613 0.77551 -1.22%

Load case 7 Fx 1.33940 1.33672 0.20%

Load case 7 Fy 0.69896 0.70559 -0.95%

Load case 1 Fx 1.21044 1.20833 0.17%

Load case 1 Fy 6.36738 5.88547 7.57%

Load case 2 Fx 1.35776 1.35233 0.40%

Load case 2 Fy 7.24521 6.15558 15.04%

Load case 3 Fx 1.77558 1.72518 2.84%

Load case 3 Fy 9.52448 6.36038 33.22%

Load case 4 Fx 6.38085 5.71329 10.46%

Load case 4 Fy 37.42377 16.12585 56.91%

Load case 5 Fx 10.00636 9.95808 0.48%

Load case 5 Fy 70.54436 54.72821 22.42%

Load case 6 Fx 11.30376 9.15946 18.97%

Load case 6 Fy 0.76613 0.75724 1.16%

Load case 7 Fx 1.33940 1.30370 2.66%

Load case 7 Fy 0.69896 0.69262 0.91%

Load case 1 Fx 1.21044 1.21035 0.01%

Load case 1 Fy 6.36738 5.88547 7.57%

Load case 2 Fx 1.35776 1.35586 0.14%

Load case 2 Fy 7.24521 6.45771 10.87%

Load case 3 Fx 1.77558 1.75085 1.39%

Load case 3 Fy 9.52448 7.53053 20.93%

Load case 4 Fx 6.38085 6.14476 3.70%

Load case 4 Fy 37.42377 26.74924 28.52%

Load case 5 Fx 10.00636 9.97770 0.29%

Load case 5 Fy 70.54436 54.88886 22.19%

Load case 6 Fx 11.30376 9.20577 18.56%

Load case 6 Fy 0.76613 0.78887 -2.97%

Load case 7 Fx 1.33940 1.30458 2.60%

Load case 7 Fy 0.69896 0.71459 -2.24%

Load case 1 Fx 1.21044 1.21100 -0.05%

Load case 1 Fy 6.36738 6.21029 2.47%

Load case 2 Fx 1.35776 1.35837 -0.04%

Load case 2 Fy 7.24521 7.02515 3.04%

Load case 3 Fx 1.77558 1.77645 -0.05%

Load case 3 Fy 9.52448 8.95022 6.03%

Load case 4 Fx 6.38085 6.37149 0.15%

Load case 4 Fy 37.42377 38.50702 -2.89%

Load case 5 Fx 10.00636 10.01260 -0.06%

Load case 5 Fy 70.54436 69.01228 2.17%

Load case 6 Fx 11.30376 11.42946 -1.11%

Load case 6 Fy 0.76613 0.77127 -0.67%

Load case 7 Fx 1.33940 1.33672 0.20%

Load case 7 Fy 0.69896 0.70255 -0.51%
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Table E.15 Model 7, Buckling factors for in-plane stresses (fig 8.21 check 2 and 3). 

Plate field 600x150x4                       

Bar stiffener 20x4 Real load case

Femap 

buckling 

factor k≥1 Linearized load case

Femap 

buckling 

factor k≥1

Difference 

with real 

loads ≥0

Load case 1 Fx 0.87017 0.87025 -0.01%

Load case 1 Fy 9.42426 7.63596 18.98%

Load case 2 Fx 0.97813 0.97824 -0.01%

Load case 2 Fy 10.69000 8.61147 19.44%

Load case 3 Fx 1.27844 1.27875 -0.02%

Load case 3 Fy 13.99194 11.30370 19.21%

Load case 4 Fx 4.79636 4.80435 -0.17%

Load case 4 Fy 47.72073 45.46400 4.73%

Load case 5 Fx 7.73426 7.73467 -0.01%

Load case 5 Fy 67.98957 74.39715 -9.42%

Load case 6 Fx 19.07210 19.21582 -0.75%

Load case 6 Fy 0.66585 0.68105 -2.28%

Load case 7 Fx 1.02957 1.02954 0.00%

Load case 7 Fy 0.63246 0.63569 -0.51%

Load case 1 Fx 0.87017 0.86982 0.04%

Load case 1 Fy 9.42426 5.04836 46.43%

Load case 2 Fx 0.97813 0.97776 0.04%

Load case 2 Fy 10.69000 5.62317 47.40%

Load case 3 Fx 1.27844 1.27798 0.04%

Load case 3 Fy 13.99194 7.40249 47.09%

Load case 4 Fx 4.79636 4.79887 -0.05%

Load case 4 Fy 47.72073 20.41928 57.21%

Load case 5 Fx 7.73426 7.73103 0.04%

Load case 5 Fy 67.98957 31.10751 54.25%

Load case 6 Fx 19.07210 18.75996 1.64%

Load case 6 Fy 0.66585 0.65569 1.53%

Load case 7 Fx 1.02957 1.02901 0.05%

Load case 7 Fy 0.63246 0.63017 0.36%

Load case 1 Fx 0.87017 0.87073 -0.07%

Load case 1 Fy 9.42426 5.14567 45.40%

Load case 2 Fx 0.97813 0.97921 -0.11%

Load case 2 Fy 10.69000 5.74003 46.30%

Load case 3 Fx 1.27844 1.28010 -0.13%

Load case 3 Fy 13.99194 7.41658 46.99%

Load case 4 Fx 4.79636 4.81293 -0.35%

Load case 4 Fy 47.72073 20.52762 56.98%

Load case 5 Fx 7.73426 7.74777 -0.17%

Load case 5 Fy 67.98957 31.62178 53.49%

Load case 6 Fx 19.07210 18.77119 1.58%

Load case 6 Fy 0.66585 0.65606 1.47%

Load case 7 Fx 1.02957 1.02915 0.04%

Load case 7 Fy 0.63246 0.63055 0.30%

Load case 1 Fx 0.87017 0.87025 -0.01%

Load case 1 Fy 9.42426 7.58768 19.49%

Load case 2 Fx 0.97813 0.97824 -0.01%

Load case 2 Fy 10.69000 8.42965 21.14%

Load case 3 Fx 1.27844 1.27875 -0.02%

Load case 3 Fy 13.99194 11.12986 20.46%

Load case 4 Fx 4.79636 4.80435 -0.17%

Load case 4 Fy 47.72073 32.03455 32.87%

Load case 5 Fx 7.73426 7.73467 -0.01%

Load case 5 Fy 67.98957 43.75253 35.65%

Load case 6 Fx 19.07210 19.21582 -0.75%

Load case 6 Fy 0.66585 0.68052 -2.20%

Load case 7 Fx 1.02957 1.02954 0.00%

Load case 7 Fy 0.63246 0.63550 -0.48%
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Table E.16 Model 8, Buckling factors for in-plane stresses (fig 8.21 check 2 and 3). 

Plate field 200x400x4                       

Bar stiffener 20x4 Real load case

Femap 

buckling 

factor k≥1 Linearized load case

Femap 

buckling 

factor k≥1

Difference 

with real 

loads ≥0

Load case 1 Fx 0.42339 0.42307 0.08%

Load case 1 Fy 5.05956 5.07321 -0.27%

Load case 2 Fx 0.48144 0.48103 0.08%

Load case 2 Fy 5.77354 5.77906 -0.10%

Load case 3 Fx 0.62885 0.62810 0.12%

Load case 3 Fy 7.45887 7.46198 -0.04%

Load case 4 Fx 3.18738 3.18127 0.19%

Load case 4 Fy 37.85135 43.52303 -14.98%

Load case 5 Fx 6.21954 6.22377 -0.07%

Load case 5 Fy 82.59242 124.49400 -50.73%

Load case 6 Fx 192.57940 3.65721 98.10%

Load case 6 Fy 1.58457 1.63309 -3.06%

Load case 7 Fx 0.62402 0.61811 0.95%

Load case 7 Fy 1.27666 1.29873 -1.73%

Load case 1 Fx 0.42339 0.42266 0.17%

Load case 1 Fy 5.05956 5.01808 0.82%

Load case 2 Fx 0.48144 0.48037 0.22%

Load case 2 Fy 5.77354 5.68234 1.58%

Load case 3 Fx 0.62885 0.62651 0.37%

Load case 3 Fy 7.45887 7.13518 4.34%

Load case 4 Fx 3.18738 3.15153 1.13%

Load case 4 Fy 37.85135 35.03580 7.44%

Load case 5 Fx 6.21954 6.20073 0.30%

Load case 5 Fy 82.59242 117.57950 -42.36%

Load case 6 Fx 192.57940 4.52947 97.65%

Load case 6 Fy 1.58457 1.60636 -1.37%

Load case 7 Fx 0.62402 0.59914 3.99%

Load case 7 Fy 1.27666 1.28324 -0.52%

Load case 1 Fx 0.42339 0.42288 0.12%

Load case 1 Fy 5.05956 5.02602 0.66%

Load case 2 Fx 0.48144 0.48090 0.11%

Load case 2 Fy 5.77354 5.70810 1.13%

Load case 3 Fx 0.62885 0.62705 0.29%

Load case 3 Fy 7.45887 7.26413 2.61%

Load case 4 Fx 3.18738 3.16551 0.69%

Load case 4 Fy 37.85135 37.85544 -0.01%

Load case 5 Fx 6.21954 6.27790 -0.94%

Load case 5 Fy 82.59242 117.64080 -42.44%

Load case 6 Fx 192.57940 4.35897 97.74%

Load case 6 Fy 1.58457 1.68072 -6.07%

Load case 7 Fx 0.62402 0.60216 3.50%

Load case 7 Fy 1.27666 1.32592 -3.86%

Load case 1 Fx 0.42339 0.42307 0.08%

Load case 1 Fy 5.05956 4.95572 2.05%

Load case 2 Fx 0.48144 0.48103 0.08%

Load case 2 Fy 5.77354 5.67930 1.63%

Load case 3 Fx 0.62885 0.62810 0.12%

Load case 3 Fy 7.45887 7.35538 1.39%

Load case 4 Fx 3.18738 3.18127 0.19%

Load case 4 Fy 37.85135 36.78675 2.81%

Load case 5 Fx 6.21954 6.22377 -0.07%

Load case 5 Fy 82.59242 85.11327 -3.05%

Load case 6 Fx 192.57940 3.65721 98.10%

Load case 6 Fy 1.58457 1.53366 3.21%

Load case 7 Fx 0.62402 0.61811 0.95%

Load case 7 Fy 1.27666 1.24079 2.81%
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Table E.17 Model 1, Buckling factors for shear stresses (fig 8.21 check 4). 

 

Table E.18 Model 2, Buckling factors for shear stresses (fig 8.21 check 4). 

Plate field 200x150x3                       

Bar stiffener 20x4 Real load case

Femap 

buckling 

factor k≥1 Linearized load case

Femap 

buckling 

factor k≥1

Difference 

with real 

loads ≥0

Load case 1 161.5079 358.3403 -121.87%

Load case 2 8.9908 9.1009 -1.22%

Load case 3 2.9711 2.9755 -0.15%

Load case 4 2.9794 2.9773 0.07%

Load case 5 118.9145 479.8745 -303.55%

Load case 6 105.1972 76.1197 27.64%

Load case 7 124.5463 91.6996 26.37%

Load case 1 161.5079 323.6876 -100.42%

Load case 2 8.9908 9.1009 -1.22%

Load case 3 2.9711 2.9755 -0.15%

Load case 4 2.9794 2.9773 0.07%

Load case 5 118.9145 84.4175 29.01%

Load case 6 105.1972 75.5025 28.23%

Load case 7 124.5463 91.6477 26.41%

Load case 1 161.5079 96.5987 40.19%

Load case 2 8.9908 8.6523 3.77%

Load case 3 2.9711 2.8696 3.42%

Load case 4 2.9794 2.7687 7.07%

Load case 5 118.9145 54.0289 54.56%

Load case 6 105.1972 21.2072 79.84%

Load case 7 124.5463 25.7258 79.34%

Average Shear

Absolute Average 

Shear

Absolute Max Shear

Plate field 200x150x4                       

Bar stiffener 20x4 Real load case

Femap 

buckling 

factor k≥1 Linearized load case

Femap 

buckling 

factor k≥1

Difference 

with real 

loads ≥0

Load case 1 362.1116 780.6334 -115.58%

Load case 2 21.0957 21.3645 -1.27%

Load case 3 6.9619 6.9756 -0.20%

Load case 4 6.9847 6.9786 0.09%

Load case 5 325.3145 1083.2150 -232.97%

Load case 6 240.2345 174.2074 27.48%

Load case 7 288.1987 212.0748 26.41%

Load case 1 362.1116 724.1324 -99.97%

Load case 2 21.0957 21.3645 -1.27%

Load case 3 6.9619 6.9756 -0.20%

Load case 4 6.9847 6.9786 0.09%

Load case 5 325.3145 229.8916 29.33%

Load case 6 240.2345 173.4228 27.81%

Load case 7 288.1987 212.0748 26.41%

Load case 1 362.1116 213.0111 41.18%

Load case 2 21.0957 20.4671 2.98%

Load case 3 6.9619 6.7572 2.94%

Load case 4 6.9847 6.5549 6.15%

Load case 5 325.3145 144.8815 55.46%

Load case 6 240.2345 48.5485 79.79%

Load case 7 288.1987 59.3744 79.40%

Average Shear

Absolute Average 

Shear

Absolute Max Shear
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Table E.19 Model 3, Buckling factors for shear stresses (fig 8.21 check 4). 

 

Table E.20 Model 4, Buckling factors for shear stresses (fig 8.21 check 4). 

Plate field 200x150x5                       

Bar stiffener 20x4 Real load case

Femap 

buckling 

factor k≥1 Linearized load case

Femap 

buckling 

factor k≥1

Difference 

with real 

loads ≥0

Load case 1 672.6210 1436.2030 -113.52%

Load case 2 40.7710 41.3132 -1.33%

Load case 3 13.4450 13.4759 -0.23%

Load case 4 13.4929 13.4798 0.10%

Load case 5 714.1860 2050.1800 -187.07%

Load case 6 457.3314 330.9559 27.63%

Load case 7 553.7399 405.7531 26.72%

Load case 1 672.6210 1346.5880 -100.20%

Load case 2 40.7710 41.3132 -1.33%

Load case 3 13.4450 13.4759 -0.23%

Load case 4 13.4929 13.4798 0.10%

Load case 5 714.1860 504.9014 29.30%

Load case 6 457.3314 329.2287 28.01%

Load case 7 553.7399 405.7085 26.73%

Load case 1 672.6210 388.5370 42.24%

Load case 2 40.7710 39.7840 2.42%

Load case 3 13.4450 13.0901 2.64%

Load case 4 13.4929 12.7515 5.49%

Load case 5 714.1860 313.4432 56.11%

Load case 6 457.3314 91.6395 79.96%

Load case 7 553.7399 112.9524 79.60%

Average Shear

Absolute Average 

Shear

Absolute Max Shear

Plate field 200x150x4                       

Bar stiffener 40x4 Real load case

Femap 

buckling 

factor k≥1 Linearized load case

Femap 

buckling 

factor k≥1

Difference 

with real 

loads ≥0

Load case 1 359.1044 860.4590 -139.61%

Load case 2 21.3953 21.6936 -1.39%

Load case 3 7.0852 7.0933 -0.12%

Load case 4 7.1134 7.0982 0.21%

Load case 5 355.0072 1133.1250 -219.18%

Load case 6 251.8614 170.0117 32.50%

Load case 7 295.9977 201.9300 31.78%

Load case 1 359.1044 578.8661 -61.20%

Load case 2 21.3953 21.6936 -1.39%

Load case 3 7.0852 7.0933 -0.12%

Load case 4 7.1134 7.0982 0.21%

Load case 5 355.0072 252.2054 28.96%

Load case 6 251.8614 115.4052 54.18%

Load case 7 295.9977 137.3040 53.61%

Load case 1 359.1044 236.4367 34.16%

Load case 2 21.3953 20.1409 5.86%

Load case 3 7.0852 6.7291 5.03%

Load case 4 7.1134 6.6024 7.18%

Load case 5 355.0072 156.7688 55.84%

Load case 6 251.8614 49.5075 80.34%

Load case 7 295.9977 59.4698 79.91%

Average Shear

Absolute Average 

Shear

Absolute Max Shear
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Table E.21 Model 5, Buckling factors for shear stresses (fig 8.21 check 4). 

 

Table E.22 Model 6, Buckling factors for shear stresses (fig 8.21 check 4). 

Plate field 200x150x4                         

T stiffener 20x4x20x4 Real load case

Femap 

buckling 

factor k≥1 Linearized load case

Femap 

buckling 

factor k≥1

Difference 

with real 

loads ≥0

Load case 1 380.1507 813.6250 -114.03%

Load case 2 21.7865 22.0854 -1.37%

Load case 3 7.1953 7.2136 -0.25%

Load case 4 7.2175 7.2140 0.05%

Load case 5 348.6638 1208.1880 -246.52%

Load case 6 233.5367 164.8859 29.40%

Load case 7 275.0265 196.8007 28.44%

Load case 1 380.1507 652.9348 -71.76%

Load case 2 21.7865 22.0854 -1.37%

Load case 3 7.1953 7.2136 -0.25%

Load case 4 7.2175 7.2140 0.05%

Load case 5 348.6638 254.1730 27.10%

Load case 6 233.5367 143.0707 38.74%

Load case 7 275.0265 173.1786 37.03%

Load case 1 380.1507 252.5396 33.57%

Load case 2 21.7865 20.6925 5.02%

Load case 3 7.1953 6.8756 4.44%

Load case 4 7.2175 6.7517 6.45%

Load case 5 348.6638 154.8393 55.59%

Load case 6 233.5367 53.4604 77.11%

Load case 7 275.0265 64.3174 76.61%

Average Shear

Absolute Average 

Shear

Absolute Max Shear

Plate field 200x150x4                         

T stiffener 40x4x40x4 Real load case

Femap 

buckling 

factor k≥1 Linearized load case

Femap 

buckling 

factor k≥1

Difference 

with real 

loads ≥0

Load case 1 404.9591 1052.9930 -160.02%

Load case 2 22.4857 23.0823 -2.65%

Load case 3 7.4607 7.5654 -1.40%

Load case 4 7.4987 7.5715 -0.97%

Load case 5 405.5971 1330.4830 -228.03%

Load case 6 261.3397 195.1384 25.33%

Load case 7 301.7133 229.1178 24.06%

Load case 1 404.9591 571.5749 -41.14%

Load case 2 22.4857 23.0823 -2.65%

Load case 3 7.4607 7.5654 -1.40%

Load case 4 7.4987 7.5715 -0.97%

Load case 5 405.5971 316.8343 21.88%

Load case 6 261.3397 96.0522 63.25%

Load case 7 301.7133 110.9575 63.22%

Load case 1 404.9591 306.4421 24.33%

Load case 2 22.4857 21.0644 6.32%

Load case 3 7.4607 7.0691 5.25%

Load case 4 7.4987 7.0926 5.42%

Load case 5 405.5971 181.6196 55.22%

Load case 6 261.3397 51.7708 80.19%

Load case 7 301.7133 59.5944 80.25%

Absolute Max Shear

Average Shear

Absolute Average 

Shear
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Table E.23 Model 7, Buckling factors for shear stresses (fig 8.21 check 4). 

 

Table E.24 Model 8, Buckling factors for shear stresses (fig 8.21 check 4).  

Plate field 600x150x4                       

Bar stiffener 20x4 Real load case

Femap 

buckling 

factor k≥1 Linearized load case

Femap 

buckling 

factor k≥1

Difference 

with real 

loads ≥0

Load case 1 80.3265 530.0159 -559.83%

Load case 2 13.4816 4.6022 65.86%

Load case 3 4.7160 1.5425 67.29%

Load case 4 4.7636 1.5456 67.55%

Load case 5 93.3343 6123.0790 -6460.38%

Load case 6 283.9318 337.8250 -18.98%

Load case 7 892.9224 689.4133 22.79%

Load case 1 80.3265 186.1416 -131.73%

Load case 2 13.4816 4.6022 65.86%

Load case 3 4.7160 1.5425 67.29%

Load case 4 4.7636 1.5456 67.55%

Load case 5 93.3343 60.1505 35.55%

Load case 6 283.9318 174.9780 38.37%

Load case 7 892.9224 582.0562 34.81%

Load case 1 80.3265 38.2976 52.32%

Load case 2 13.4816 4.1891 68.93%

Load case 3 4.7160 1.4989 68.22%

Load case 4 4.7636 1.4852 68.82%

Load case 5 93.3343 35.4326 62.04%

Load case 6 283.9318 36.2920 87.22%

Load case 7 892.9224 149.0325 83.31%

Average Shear

Absolute Average 

Shear

Absolute Max Shear

Plate field 200x400x4                       

Bar stiffener 20x4 Real load case

Femap 

buckling 

factor k≥1 Linearized load case

Femap 

buckling 

factor k≥1

Difference 

with real 

loads ≥0

Load case 1 95.3750 178.0128 -86.65%

Load case 2 89.6385 35.1664 60.77%

Load case 3 19.0414 10.4704 45.01%

Load case 4 13.1157 9.9931 23.81%

Load case 5 41.5628 755.2192 -1717.06%

Load case 6 3.7900 22.2114 -486.05%

Load case 7 4.1902 24.6743 -488.85%

Load case 1 95.3750 178.0128 -86.65%

Load case 2 89.6385 35.1664 60.77%

Load case 3 19.0414 10.4704 45.01%

Load case 4 13.1157 9.9931 23.81%

Load case 5 41.5628 353.8747 -751.42%

Load case 6 3.7900 22.2028 -485.82%

Load case 7 4.1902 24.6584 -488.47%

Load case 1 95.3750 49.8111 47.77%

Load case 2 89.6385 29.4343 67.16%

Load case 3 19.0414 9.9456 47.77%

Load case 4 13.1157 9.4616 27.86%

Load case 5 41.5628 169.3804 -307.53%

Load case 6 3.7900 6.4578 -70.39%

Load case 7 4.1902 7.2036 -71.91%

Average Shear

Absolute Average 

Shear

Absolute Max Shear
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Appendix F (Stiffener web Real In-plane Stress Results) 

Fig F.1 Model 2, stiffener web, Load case 1, Linear stress results. 

Fig F.2 Model 2, stiffener web, Load case 6, Linear stress results. 

Fig F.3 Model 2, stiffener web, Load case 7, Linear stress results. 
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Fig F.1 Model 2, stiffener web, Load case 1, Linear stress results. 
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Fig F.2 Model 2, stiffener web, Load case 6, Linear stress results. 
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Fig F.3 Model 2, stiffener web, Load case 7, Linear stress results.  
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Appendix G (Stiffener web comparison Mesh Sizes) 

Fig G.1 Plate model, stiffener web, Load case 1, Linear stress results, mesh size comparison. 

Fig G.2 Plate model, stiffener web, Load case 6, Linear stress results, mesh size comparison. 

Fig G.3 Plate model, stiffener web, Load case 7, Linear stress results, mesh size comparison. 

 

 

Fig G.1 Plate model, stiffener web, Load case 1, Linear stress results, mesh size comparison. 
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Fig G.2 Plate model, stiffener web, Load case 6, Linear stress results, mesh size comparison. 

 

Fig G.3 Plate model, stiffener web, Load case 7, Linear stress results, mesh size comparison. 
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Appendix H (Stiffener web implementation comparison) 

 

Table H.1 Stiffener web stress results derived by the implementation method from beam elements and 

by the implementation method from plate elements.  

σxmax web σxmin web τ web

Load case 1 SDC beam model fine 6.336E+08 5.739E+08 5.119E+05

SDC beam model coarse 6.326E+08 5.744E+08 5.313E+05 -0.42% -4.55% -54.23%

SDC beam model single element 6.363E+08 6.013E+08 1.118E+06 -2.99% 1.29% -7.16%

SDC plate model fine (average LR and average shear) 6.531E+08 5.666E+08 5.513E+05

SDC plate model single element (average LR and average shear) 6.553E+08 5.930E+08 1.935E+06

Load case 2 SDC beam model fine 5.491E+08 4.974E+08 4.436E+05

SDC beam model coarse 5.483E+08 4.978E+08 4.605E+05 -0.42% -4.55% -54.23%

SDC beam model single element 5.515E+08 5.211E+08 9.693E+05 -2.98% 1.29% -6.59%

SDC plate model fine (average LR and average shear) 5.660E+08 4.911E+08 4.749E+05

SDC plate model single element (average LR and average shear) 5.679E+08 5.139E+08 1.677E+06

Load case 3 SDC beam model fine 4.224E+08 3.826E+08 3.413E+05

SDC beam model coarse 4.217E+08 3.829E+08 3.542E+05 -0.42% -4.55% -54.23%

SDC beam model single element 4.242E+08 4.009E+08 7.456E+05 -2.99% 1.29% -7.26%

SDC plate model fine (average LR and average shear) 4.354E+08 3.778E+08 3.680E+05

SDC plate model single element (average LR and average shear) 4.369E+08 3.953E+08 1.290E+06

Load case 4 SDC beam model fine 4.224E+07 3.826E+07 3.413E+04

SDC beam model coarse 4.217E+07 3.829E+07 3.543E+04 -0.42% -4.55% -54.23%

SDC beam model single element 4.242E+07 4.009E+07 7.456E+04 -1.92% 1.26% 64.26%

SDC plate model fine (average LR and average shear) 4.307E+07 3.779E+07 2.077E+04

SDC plate model single element (average LR and average shear) 4.369E+07 3.953E+07 1.290E+05

Load case 5 SDC beam model fine 0.000E+00 0.000E+00 6.050E-07

SDC beam model coarse 0.000E+00 0.000E+00 2.438E-07 - - -

SDC beam model single element 0.000E+00 0.000E+00 1.084E-08 - - -

SDC plate model fine (average LR and average shear) 9.771E+03 5.339E+05 1.821E+04

SDC plate model single element (average LR and average shear) 0.000E+00 0.000E+00 0.000E+00

Load case 6 SDC beam model fine 1.100E+08 2.437E+08 7.488E+05

SDC beam model coarse 1.098E+08 2.362E+08 7.937E+05 159.88% 179.51% -73.17%

SDC beam model single element 4.233E+07 8.718E+07 2.791E+06 -5.55% -20.77% -41.08%

SDC plate model fine (average LR and average shear) 1.165E+08 3.076E+08 1.271E+06

SDC plate model single element (average LR and average shear) 1.467E+08 3.100E+08 2.534E+06

Load case 7 SDC beam model fine 3.427E+08 2.560E+08 3.427E+05

SDC beam model coarse 3.418E+08 2.601E+08 3.750E+05 -11.00% -30.48% -81.93%

SDC beam model single element 3.850E+08 3.682E+08 1.897E+06 1.73% 19.08% -58.69%

SDC plate model fine (average LR and average shear) 3.368E+08 2.149E+08 8.297E+05

SDC plate model single element (average LR and average shear) 3.277E+08 2.143E+08 9.865E+05

Difference Fine beam model 

and Single element beam 

model

Difference Fine beam model 

and Fine plate model

Plate field 200x150x4 Bar stiffener 20x4

Note, Tension stresses.

Note, Tension stresses.Note, Tension stresses.

Note, Tension stresses.
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Appendix I (Beam-column Tables) 

 

 

 

 

 

 

SDC fine model 

with the 

implementation 

method

SDC Coarse 

model 

implementation 

method

SDC Single 

element model 

implementation 

method

Fine model with 

plate results 

taken into 

account

Difference 

SDC Fine 

and SDC 

Single 

element

Difference 

SDC Coarse 

and SDC 

Single 

element

Difference 

SDC Fine 

and results 

from plate 

elements

Load case 1 σxmax -7.428E+08 -7.428E+08 -7.592E+08 -7.576E+08 -2.16% -2.15% -1.96%

Load case 2 σxmax -6.438E+08 -6.438E+08 -6.579E+08 -6.566E+08 -2.16% -2.15% -1.96%

Load case 3 σxmax -4.952E+08 -4.952E+08 -5.061E+08 -5.051E+08 -2.16% -2.15% -1.96%

Load case 4 σxmax -4.952E+07 -4.952E+07 -5.061E+07 -5.051E+07 -2.16% -2.15% -1.96%

Load case 7 σxmax -4.459E+08 -4.446E+08 -4.807E+08 -6.010E+08 -7.24% -7.52% -25.79%

200x150x3 Bar20x4

SDC fine model 

with the 

implementation 

method

SDC Coarse 

model 

implementation 

method

SDC Single 

element model 

implementation 

method

Fine model with 

plate results 

taken into 

account

Difference 

SDC Fine 

and SDC 

Single 

element

Difference 

SDC Coarse 

and SDC 

Single 

element

Difference 

SDC Fine 

and results 

from plate 

elements

Load case 1 σxmax -5.772E+08 -5.775E+08 -5.994E+08 -5.859E+08 -3.70% -3.66% -1.49%

Load case 2 σxmax -5.003E+08 -5.005E+08 -5.195E+08 -5.078E+08 -3.70% -3.66% -1.49%

Load case 3 σxmax -3.848E+08 -3.850E+08 -3.996E+08 -3.906E+08 -3.70% -3.66% -1.49%

Load case 4 σxmax -3.848E+07 -3.850E+07 -3.996E+07 -3.906E+07 -3.70% -3.66% -1.49%

Load case 7 σxmax -3.371E+08 -3.365E+08 -3.773E+08 -4.584E+08 -10.66% -10.82% -26.46%

200x150x4 Bar20x4

SDC fine model 

with the 

implementation 

method

SDC Coarse 

model 

implementation 

method

SDC Single 

element model 

implementation 

method

Fine model with 

plate results 

taken into 

account

Difference 

SDC Fine 

and SDC 

Single 

element

Difference 

SDC Coarse 

and SDC 

Single 

element

Difference 

SDC Fine 

and results 

from plate 

elements

Load case 1 σxmax -4.726E+08 -4.730E+08 -4.959E+08 -4.779E+08 -4.69% -4.60% -1.11%

Load case 2 σxmax -4.096E+08 -4.100E+08 -4.297E+08 -4.142E+08 -4.69% -4.60% -1.11%

Load case 3 σxmax -3.151E+08 -3.154E+08 -3.306E+08 -3.186E+08 -4.69% -4.60% -1.11%

Load case 4 σxmax -3.151E+07 -3.154E+07 -3.306E+07 -3.186E+07 -4.69% -4.60% -1.11%

Load case 7 σxmax -2.708E+08 -2.703E+08 -3.099E+08 -3.703E+08 -12.63% -12.78% -26.89%

200x150x5 Bar20x4

SDC fine model 

with the 

implementation 

method

SDC Coarse 

model 

implementation 

method

SDC Single 

element model 

implementation 

method

Fine model with 

plate results 

taken into 

account

Difference 

SDC Fine 

and SDC 

Single 

element

Difference 

SDC Coarse 

and SDC 

Single 

element

Difference 

SDC Fine 

and results 

from plate 

elements

Load case 1 σxmax -5.294E+08 -5.301E+08 -5.396E+08 -6.051E+08 -1.89% -1.76% -12.52%

Load case 2 σxmax -4.588E+08 -4.594E+08 -4.676E+08 -5.244E+08 -1.89% -1.76% -12.52%

Load case 3 σxmax -3.529E+08 -3.534E+08 -3.597E+08 -4.034E+08 -1.89% -1.76% -12.52%

Load case 4 σxmax -3.529E+07 -3.534E+07 -3.597E+07 -4.034E+07 -1.89% -1.76% -12.52%

Load case 7 σxmax -3.231E+08 -3.281E+08 -3.736E+08 -4.699E+08 -13.51% -12.17% -31.23%

200x150x4 Bar40x4

SDC fine model 

with the 

implementation 

method

SDC Coarse 

model 

implementation 

method

SDC Single 

element model 

implementation 

method

Fine model with 

plate results 

taken into 

account

Difference 

SDC Fine 

and SDC 

Single 

element

Difference 

SDC Coarse 

and SDC 

Single 

element

Difference 

SDC Fine 

and results 

from plate 

elements

Load case 1 σxmax -5.339E+08 -5.351E+08 -5.545E+08 -6.021E+08 -3.70% -3.48% -11.32%

Load case 2 σxmax -4.627E+08 -4.638E+08 -4.805E+08 -5.218E+08 -3.70% -3.48% -11.32%

Load case 3 σxmax -3.559E+08 -3.568E+08 -3.696E+08 -4.014E+08 -3.70% -3.48% -11.32%

Load case 4 σxmax -3.559E+07 -3.568E+07 -3.696E+07 -4.014E+07 -3.70% -3.48% -11.32%

Load case 7 σxmax -3.220E+08 -3.266E+08 -3.776E+08 -4.681E+08 -14.71% -13.50% -31.21%

200x150x4 T20x4x20x4

SDC fine model 

with the 

implementation 

method

SDC Coarse 

model 

implementation 

method

SDC Single 

element model 

implementation 

method

Fine model with 

plate results 

taken into 

account

Difference 

SDC Fine 

and SDC 

Single 

element

Difference 

SDC Coarse 

and SDC 

Single 

element

Difference 

SDC Fine 

and results 

from plate 

elements

Load case 1 σxmax -4.571E+08 -4.579E+08 -4.641E+08 -6.323E+08 -1.50% -1.34% -27.71%

Load case 2 σxmax -3.962E+08 -3.968E+08 -4.022E+08 -5.480E+08 -1.50% -1.34% -27.71%

Load case 3 σxmax -3.048E+08 -3.052E+08 -3.094E+08 -4.216E+08 -1.50% -1.34% -27.71%

Load case 4 σxmax -3.048E+07 -3.052E+07 -3.094E+07 -4.216E+07 -1.50% -1.34% -27.71%

Load case 7 σxmax -2.858E+08 -2.918E+08 -3.423E+08 -4.868E+08 -16.50% -14.77% -41.28%

200x150x4 T40x4x40x4
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Table I.1 Input design stress results σX of the beam-column after applying the implementation method 

for the beam model in the three different mesh sizes and after calculation of the real design stresses. 

 

  

SDC fine model 

with the 

implementation 

method

SDC Coarse 

model 

implementation 

method

SDC Single 

element model 

implementation 

method

Fine model with 

plate results 

taken into 

account

Difference 

SDC Fine 

and SDC 

Single 

element

Difference 

SDC Coarse 

and SDC 

Single 

element

Difference 

SDC Fine 

and results 

from plate 

elements

Load case 1 σxmax -5.782E+08 -5.792E+08 -6.075E+08 -5.767E+08 -4.82% -4.65% 0.26%

Load case 2 σxmax -5.011E+08 -5.020E+08 -5.265E+08 -4.998E+08 -4.82% -4.65% 0.26%

Load case 3 σxmax -3.855E+08 -3.861E+08 -4.050E+08 -3.845E+08 -4.82% -4.65% 0.26%

Load case 4 σxmax -3.855E+07 -3.861E+07 -4.050E+07 -3.845E+07 -4.82% -4.65% 0.26%

Load case 7 σxmax -4.181E+08 -4.192E+08 -4.188E+08 -4.739E+08 -0.15% 0.11% -11.77%

600x150x4 Bar20x4

SDC fine model 

with the 

implementation 

method

SDC Coarse 

model 

implementation 

method

SDC Single 

element model 

implementation 

method

Fine model with 

plate results 

taken into 

account

Difference 

SDC Fine 

and SDC 

Single 

element

Difference 

SDC Coarse 

and SDC 

Single 

element

Difference 

SDC Fine 

and results 

from plate 

elements

Load case 1 σxmax -2.480E+08 -2.478E+08 -2.459E+08 -2.628E+08 0.83% 0.75% -5.64%

Load case 2 σxmax -2.149E+08 -2.148E+08 -2.131E+08 -2.278E+08 0.83% 0.75% -5.64%

Load case 3 σxmax -1.653E+08 -1.652E+08 -1.640E+08 -1.752E+08 0.83% 0.75% -5.64%

Load case 4 σxmax -1.653E+07 -1.652E+07 -1.640E+07 -1.752E+07 0.83% 0.75% -5.64%

Load case 7 σxmax -1.316E+08 -1.379E+08 -1.771E+08 -1.757E+08 -25.72% -22.12% -25.13%

200x400x4 Bar20x4
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Appendix J (Differences between FEM analyses) 

So when subjected to buckling, nonlinear behavior takes place. This nonlinearity means coupling 

between membrane deformation and bending deformation. There are several types of nonlinearity: 

material, contact and geometric nonlinearity. The contact nonlinearity is completely out of the scope 

of this project. The Geometric nonlinear analysis is sort of out of the scope as well since large 

deformations are generally undesirable and when they take place then also collapse will more likely 

take place. The material nonlinearity however, has a highly noticeable influence on the results as can 

be seen in figure J.1.  

 

 

Fig J.1 A disk simply supported on the edge with a uniform lateral pressure. No geometric nonlinearity 

for both figures, so the magnitude of the loads stays the same. (a) A linear analysis and (b) a 

nonlinear analysis. The difference is a result of membrane stresses. 

 

A static analysis, like a stress analysis in FEA, is done using Hooke’s law, the simple linear equation 

[K]{x}={F}. In such analysis time does not play any role. On the other hand a dynamic, transient or 

modal analysis is dependent on time and follows a more complex governing equation: 

[M]{x''}+[C]{x'}+[K]{x}={F}. 

 

Linear Eigenvalue buckling predicts the theoretical buckling strength while simultaneously you can 

ignore input details. The non-linear analyses however need as much detail as feasible before it gives a 

fairly accurate result of the buckling limit. 

 

Eigenvalue buckling is generally used to estimate the critical buckling loads of stiff structures and is 

based on the linear relationships. However, even when the response of a structure is nonlinear before 

collapse, a general eigenvalue buckling analysis can provide useful estimates of collapse mode shapes. 

These buckling mode shapes are often the most useful outcome of the eigenvalue analysis, since they 

predict the likely failure mode of the structure. The base begins with Hooke’s law.  

 

In an eigenvalue buckling problem you look for the loads for which the model stiffness matrix 

becomes singular, so that the problem [K]{x}=0 has nontrivial solutions. [K] is the tangent stiffness 
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matrix when the loads are applied, and the {x} are nontrivial displacement solutions. The eigenvalue 

problem becomes: ([K0]+λi[KΔ]){xi}=0 where [K0] is the stiffness matrix corresponding to the base 

state, which includes the effects of the preloads if any are present such as thermal loading. [KΔ] is the 

differential initial stress and load stiffness matrix due to an incremental loading pattern. The 

magnitude of this loading is not important since it will be scaled by the load multipliers λi which are 

the eigenvalues. {xi} are the buckling mode shapes (eigenvectors) and i refers to the ith buckling 

mode. The buckling mode shapes are normalized vectors and thus do not represent actual magnitudes 

of deformation at critical load. The critical buckling loads results in preloads+λi[KΔ]. Normally, the 

lowest value of λi is of interest.  

 

The non-linear analysis is an incremental procedure. A nonlinear analysis requires incremental load (or 

displacement) steps. At the end of each increment the structure geometry changes and possibly the 

material is nonlinear or the material has yielded. Each of these things, geometry change or material 

change, may then need to be considered for the next increment in the analysis. For details is referred 

to specific literature on the matter but a quick distinction regarding explicit and implicit analyses is in 

order. 

 

An explicit FEM analysis updates the stiffness matrix based on geometry changes (if applicable) and 

material changes (if applicable) at the end of each increment. Then a new stiffness matrix is 

constructed and the next increment of load is applied to the system. In this type of analysis the hope 

is that if the increments are small enough the results will be accurate. One problem with this method 

is that you do need many small increments for good accuracy, hence it is not unconditionally stable. 

Furthermore it is time consuming and some problems cannot be solved by this type of analysis. Unless 

it is quite sophisticated it will not successfully do cyclic loading and will not handle problems of snap 

through or snap back.   

 

An implicit FEM analysis is the same as explicit with the addition that after each increment the analysis 

does Newton-Raphson iterations to enforce equilibrium of the internal structure forces with the 

externally applied loads. This type of analysis remains stable, tends to be more accurate and can take 

somewhat bigger increment steps. Also, this type of analysis can handle problems better such as 

cyclic loading, snap through, and snap back so long as sophisticated control methods such as arc 

length control or generalized displacement control are used. One drawback of the method is that 

during the Newton-Raphson iterations one must update and reconstruct the stiffness matrix for each 

iteration. This can be computationally costly. As a result there are other techniques that try to avoid 

this cost by using Modified Newton-Raphson methods [38]. 
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Appendix K (In-depth analysis of rotational constraints) 

In a hard corner or any other combination of plates, the smaller plate will lose some strength due to 

the bigger plate that will buckle earlier. The bigger plate will however gain some strength from the 

smaller plate due to the rotational stiffness it provides until that plate will buckle as well. Thus, there 

is an interaction between the plates and a compromise must be established because the plates must 

buckle at the same time. If you would like to take the rotational restraint into account more 

realistically than just going for simply supported for both plate fields, than this would be a realistic 

assumption with some kind of axial force. Consider two adjacent plates of a section of the box girder 

as illustrated in figures K.1 and K.2. In general, there will be a restraining moment acting at the 

corner line between Plate 1 and Plate 2.  

 

 

Fig K.1 Rotational deformation and restraint relationship between parts of the structure. 

 

 

Fig K.2 A buckling mode of a box girder. 

 

The theoretical buckling stresses for those two plates are: 
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Before buckling, stresses in the entire cross-section are the same. So, at the point of buckling, one 

gets:           from which the buckling coefficient k2 is relating to k1: 

 

     (
  
  

  
  

)
 

 

 

The total buckling load on the angle element is: 
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where A the sectional area of two plate A = b1h1+b2h2. From this result can be concluded that only 

one buckling coefficient is needed to calculate the buckling load of the section consisting of two 

plates. The result assumes the critical stress in plate 1 is representative for the combination of the two 

plates. Therefore the assumption in the standards for checking individual plate fields instead of 

structures combined out of plate fields is considered as correct. 

 

Determination of the buckling coefficient is still complicated because of the existence of the edge 

bending moment but since the conservative simply supported approach is maintained you will be on 

the safe side. The relation can be illustrated in an example of a box column with a rectangular cross 

section with the same thickness h. The buckling coefficient as a function of the ratio b2/b1 is plotted 

in figure K.3. In the limiting case of a square box (b1=b2=b), k1 =4 and the edge interactive moment 

between adjacent plates is zero. 

 

 

Fig K.3 Buckling coefficients for box girders following a theoretical assumption of buckling. [39] 
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Appendix L (Strain Energy of Bending in Plates) 

 

Fig L.1 O In-plane stress and shear strain [40] 

 

For thin-walled plates where the thickness, t, is not greater than, say, one tenth of the plate side 

dimensions, the constitutive relationship becomes a plane stress problem; i.e.,            . 

Consider the plate element shown in Figure O subjected first to    only. Then, the force        

       moves a distance equal to                 . Hence, 

    
 

 

 

 
  

        

then, the element is subjected to   . The strain energy due to    is 

    
 

 

 

 
  

        

However, this time, the force in the x direction rides a distance    
  

 
  . Hence, 

      
 

 
           

Assuming that normal stresses produce no shear stresses and vice versa, it is possible to obtain strain 

energy of a plate element due to shear independent from the normal forces.  Due to a shear stress, 

there exists a force,         and a deformation      . Hence, 
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The total strain energy is then 
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For the entire plate of length a, width b, and thickness t, the strain energy becomes 

  ∫ ∫ ∫
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As a consequence of neglecting           , the last equation is limited to thin plates only, but it is not 

limited to problems of neither small displacements nor membrane forces only. The equation can and 

will be used for other cases depending upon the proper expression of these stresses. If one considers 

only for bending and substituting the corresponding expressions for these stresses, one obtains; 
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After carrying out the integral with respect to z, this equation becomes 
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Appendix M (Use of beam elements in FEMAP) 

Application of offsets and stress recovery points when using beam elements.  

 

Fig M.1 Corner stress definition points for the (a) flat bar stiffener, (b) L shaped stiffener,  

(c) T shaped stiffener and (d) the stiffener dimensions as defined by the ABS. 

 

Fig M.2 (a) First place the stiffener without warping constant and offset, then (b) adjust the offset 

(positive Y neutral axis offset) and lastly (c) also adjust the Y placement of the stress recovery points 

such that they match the shape again. 

 

In this example is used a T stiffener 20x4x20x4mm. That means that the neutral line distance z0 is 

13,5556mm. The plate thickness is also 4mm. Including half the plate thickness will produce a total 

offset of 15,5556mm. If you define the cross section area of the stiffener as described in figure N.1 

and disable warping constant, z0 will be filled in correctly for the y coordinate of two of the four stress 

recovery points (fig M.3). Afterwards adjust the y coordinate of the stress recovery points. 
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Points 1 and 2 -> Stiffener height + half the plate thickness (20mm + 2mm = 22mm) 

Points 3 and 4 -> Half the plate thickness (2mm) 

 

 

Fig M.3 Initial properties after defining the cross section area. 

 

Fig M.4 Adjusted properties after correcting the offset and stress recovery points.  

+ half the plate thickness 
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Appendix N (Derivation of the magnification factor) 

In practice, columns are seldom perfectly straight, nor is the loading perfectly axial. Imagine a pinned 

column with an initial deflection δ(x) and an additional deflection w(x) due to the axial load. For small 

deflections the governing equation is 

 

   

   
 

 

  
        

 

in which the combination of the total deflection and the axial force gives rise to a bending moment  

F(δ + w). This causes the deflection to increase further, and the deflection continues to grow. Thus 

there is no static equilibrium configuration and no sudden buckling. The solution depends on the initial 

imperfection. Let δ and w be represented by a Fourier series. 
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This must be true for any value of n as well as for the complete summation and therefore, since 

sin(nπx/L) cannot be zero, we must have 

 

   
  

    
   

   

 

The dominant term is n=1. Hence for any configuration of the initial imperfection, the factor 

magnification factor which is induced by P is given by 
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Appendix O (Torsional strength formula derivation) 

The DNV uses a formula for the torsional strength which is derived by the minimum potential energy 

method. [41] 

 

U = potential energy of internal forces of the structure also called the elastic deformation energy. 

W = potential energy of the external forces. 

 

When torsion is restrained the torsional stiffness comes from both St Venant and Vlasov torsions. The 

load will force the beam to rotate and warp due to rotation φ. The deflection shape is assumed as 
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Contributions from elastic bending and St Venant torsion: 
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Contribution from the applied load P: 
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Potential energy: 
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Minimum potential energy: 

  

   

 
  

   
      

  

  
       

    

  
   

   
  

  
      

  

 
   

   
 

  
(   

  

  
    ) 

The polar moment of inertia comes in since the sectional properties should be determined with 

respect to the center of rotation, the connection between stiffener and plate. 
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Appendix P (Examples of test setups) 

Two examples of real size test setups: 

 

Fig P.1 Schematic of Test Specimen and Set-Up [42]. 

 

Fig P.2 End Support. 

 

Fig P.3 Illustration of a six point bending facility and test specimen [43]. 
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