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SUMMARY

Particle Image Velocimetry (PIV) is considered nowadays the state-of-the-art for

non-intrusive and quantitative 3D velocity measurements. Its ability to measure

the velocity field around complex geometries is a valuable tool that engineers

can exploit for aerodynamic design optimization in various domains, such as

aerospace, wind turbines and automotive, among others. Despite recent ad-

vancements, performing a PIV measurement in the industrial environment re-

mains challenging due to several reasons: achieving large-scale measurements,

complex geometries and high Reynolds numbers.

The introduction of helium-filled soap bubbles, new Lagrangian Particle Track-

ing (LPT) algorithms and Robotic Volumetric PIV has allowed for the measure-

ment of large-scale volumes around complex geometries. However, despite the

described advancements, large-scale PIV and LPT measurements for industrial

aerodynamics require further development to accelerate their applications.

The first bottleneck considered is the maximum measurable velocity. For

aerodynamic flows in the transport sector, the velocity is often larger than 50 m/s

when considering aircraft and race cars. To apply the mentioned techniques, ac-

quisition frequencies higher than the one commonly available are needed. The

double-frame timing strategy, characterized by image pairs with a small time

separation, is detrimental to the measurement accuracy, especially when low-

aperture systems, such as Robotic Volumetric PIV, are considered. This research

has led to the development of novel acquisition strategies (chapters 3 and 4) that

improve the accuracy of double-frame velocity measurements suited for high-

speed applications (U∞ > 50 m/s).

Another current topic of research concerns the detection of data outliers in

PIV measurements, which affect their reliability and trustfulness. In this the-

sis (chapter 5) a novel approach to outliers detection from time-averaged three-

dimensional PIV data is introduced. The principle invokes the physical mech-
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anism of turbulence transport and is based on the agreement of the measured

data to the turbulent kinetic energy (TKE) transport equation. The application

of this new criterium to several experimental databases shows that spurious data

can be detected more easily and unambiguously as an outlier along with a low

fraction of false positives.

This research also attempts to decrease the gap between Computational Fluid

Dynamics’ (CFD) and experiments’ aerodynamic data. In chapter 6, the applica-

tion of PIV data for data assimilation is discussed. Data assimilation is a disci-

pline in which observation and numerical or theoretical models are combined.

This can be performed with two possible aims: improving the observation with

physics-based models or increasing the capability of the model to represent real-

ity. In this thesis, the latter is considered. A novel state observer technique is in-

vestigated for the assimilation of three-dimensional velocity measurements into

computational fluid dynamics simulations based on Reynolds-averaged Navier–Stokes

(RANS) equations. The state observer approach locally forces the solution to

comply with the reference value, with increasing benefits when the density of

forced points, or forcing density, is increased.



SAMENVATTING

Particle Image Velocimetry (PIV) wordt tegenwoordig beschouwd als de state-of-

the-art voor niet-opdringerige en kwantitatieve 3D-snelheidsmetingen. Het ver-

mogen om het snelheidsveld rond complexe geometrieën te meten, is een waar-

devol hulpmiddel dat ingenieurs kunnen gebruiken voor aerodynamische ont-

werpoptimalisatie in verschillende domeinen, zoals onder andere ruimtevaart,

windturbines en auto’s. Ondanks de recente vooruitgang blijft het uitvoeren van

een PIV-meting in de industriële omgeving om verschillende redenen een uitda-

ging: het uitvoeren van grootschalige metingen, complexe geometrieën en hoge

Reynoldsgetallen.

De introductie van met helium gevulde zeepbellen, nieuwe Lagrangian Parti-

cle Tracking algoritmen en Robotic Volumetric PIV hebben het mogelijk gemaakt

om grootschalige volumes rond complexe geometrieën. Ondanks de beschreven

vorderingen moeten grootschalige PIV- en PTV-metingen voor industriële aero-

dynamica echter verder worden ontwikkeld om hun toepassingen te versnellen.

Het eerste knelpunt dat wordt overwogen, is de maximaal meetbare snel-

heid. Voor aerodynamische stromingen in de transportsector is de snelheid vaak

groter dan 50 m/s wanneer het gaat om vliegtuigen en raceauto’s. Om de ge-

noemde technieken toe te passen, zijn acquisitiefrequenties nodig die hoger zijn

dan de algemeen beschikbare. De timingstrategie met dubbel frame, gekenmerkt

door beeldparen met een kleine tijdsafstand, is nadelig voor de meetnauwkeu-

righeid, vooral bij systemen met een laag diafragma, zoals Robotic Volumetric

PIV. Dit onderzoek heeft geleid tot de ontwikkeling van nieuwe acquisitiestrate-

gieën (hoofdstukken 3 en 4) die de nauwkeurigheid verbeteren van dubbel-frame

snelheidsmetingen die geschikt zijn voor snelle toepassingen (U∞ > 50m/s).

Een ander actueel onderzoeksonderwerp betreft de detectie van gegevens-

uitschieters in PIV-metingen, die hun betrouwbaarheid en betrouwbaarheid be-

ïnvloeden. In dit proefschrift (hoofdstuk 5) wordt een nieuwe benadering geïn-
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troduceerd voor het detecteren van uitschieters uit tijdgemiddelde driedimensi-

onale PIV-gegevens. Het principe beroept zich op het fysische mechanisme van

turbulentietransport en is gebaseerd op de overeenstemming van de gemeten

gegevens met de turbulente kinetische energie (TKE) transportvergelijking. De

toepassing van dit nieuwe criterium op verschillende experimentele databases

toont aan dat valse gegevens gemakkelijker en ondubbelzinnig kunnen worden

opgespoord als een uitschieter, samen met een laag percentage fout-positieven.

Dit onderzoek probeert ook de kloof tussen de aerodynamische gegevens

van CFD’s en experimenten te verkleinen. In hoofdstuk 6 wordt de toepassing

van PIV-data voor data-assimilatie besproken. Data-assimilatie is een discipline

waarin observatie en numerieke of theoretische modellen worden gecombineerd.

Dit kan worden uitgevoerd met twee mogelijke doelen: het verbeteren van de

waarneming met op fysica gebaseerde modellen of het vergroten van het vermo-

gen van het model om de werkelijkheid weer te geven. In dit proefschrift wordt

aan dat laatste gedacht. Een nieuwe toestandswaarnemertechniek wordt onder-

zocht voor de assimilatie van driedimensionale snelheidsmetingen in computa-

tionele vloeistofdynamica-simulaties op basis van Reynolds-gemiddelde Navier-

Stokes (RANS)-vergelijkingen. De toestandswaarnemerbenadering dwingt de op-

lossing lokaal om te voldoen aan de referentiewaarde, met toenemende voor-

delen wanneer de dichtheid van geforceerde punten, of forceerdichtheid, wordt

verhoogd.
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1
INTRODUCTION

1.1. BACKGROUND

Paris, 1873. The French novelist Jules Verne is publishing one of the most iconic

books ever written, "Around the World in Eighty Days". In this fictional novel, the

main character, the wealthy English gentleman Phileas Fogg gets involved in an

argument at the gentlemen club, the Reform Club, where he spends his days. He

is convinced that it is possible to travel around the Earth in only eighty days. He

is ready to gamble half of his fortune over this bet. From that moment his journey

starts and it will end exactly 80 days later, seeing the gentlemen winning the bet

against the skeptical colleagues of the club. Even if this was based on the imag-

ination of the author, Verne paid attention to how he described a plausible sce-

nario, considering the available transport methods of that time. The adventures

described in the book inspired several people to attempt a trip similar to Fogg’s.

One of them was Nellie Bly, who only sixteen years later performed the same

trip described in the book and came back to the starting point on the seventy-

second day. This success proved that Verne’s prediction was not too wrong after

all. And nowadays? How long would it take for a traveller to perform a voyage

around the world? Of course between Verne’s and our current world, the means

of transport have changed drastically. Within the last century, the speed at which

1
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the common person travels has increased dramatically. Carriages, horses and

steamboats have been replaced by high-speed trains, reliable cars and intercon-

tinental flights. If today we would plan a trip around the Earth, the latter would

be the best option. Considering that the circumference of the Earth is around

≈ 40000 km at the equator and a cruise speed of 1000 km/h for a common com-

mercial airplane, our trip would last only 2 days, 26 times faster than Nellie Bly. A

step in this direction is surely the introduction of the direct flight between Lon-

don and Sydney announced by the airline Qantas and operative from 2025. Pas-

sengers will be able to travel between these two cities with a single direct flight of

approximately 20 hours.

This long travel achievement derives from the tremendous progress that has

been made in science and technology in the last century. One of the sectors that

Figure 1.1: Portrait of the development performed in the last century in different fields.
A large stake in this development comes from aerodynamic studies.
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have been developed the most is aerospace, which spawned entire industries

such as road transport, aviation and energy production through the exploitation

of wind power. A considerable portion of this progress stems from advancements

in fluid dynamics, more specifically in aerodynamics. Figure 1.1 presents a por-

trait of the evolution of the design in the mentioned fields. Race cars, airplanes

and wind turbines have changed their shape following the dictates of aerody-

namic researchers and engineers. Researcher objectives change depending on

the considered sector: race cars have to be faster and safer; airplanes have to be-

come more efficient and wind turbines need to be upscaled to deliver more and

more energy. The tools that researchers and engineers can use to perform aero-

dynamic research and development are very diverse and will be discussed in the

next section.

1.2. THE TOOLS FOR THE AERODYNAMIC DEVELOPMENT

Let’s consider for instance the case of F1 race cars. In order to progress and

reach the designs shown in figure 1.1 (top), engineers can exploit three differ-

ent sources of data: full-scale real-life tests, computer-based modelling, using

computational fluid dynamics (CFD), and scaled wind tunnel experiments. A

representation of the three methodologies is presented in figure 1.2. The results

obtained by these methodologies are then used to maximize the performance of

the car, by increasing the vertical force, referred to as downforce. This allows the

car to drive through the corners faster while decreasing the aerodynamic drag,

which slows the car down in a straight line. All three approaches have their ad-

vantages and drawbacks, briefly presented and discussed in the next sections.

Figure 1.2: The three different sources of data available to engineers and researchers:
(from left to right) track tests; numerical simulations; wind tunnel measurements.
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FULL-SCALE TESTING

The first approach, the full-scale test, gives the highest level of realism since there

is neither modelling nor scaling assumptions involved. Despite this advantage,

they are not suited for the design phase due to the high cost of production of

the full-scale parts and the difficult integration of the measurement devices in

an in-situ experiment. Field tests are usually performed when the geometry def-

inition comes to a final stage, where only a few options have to be evaluated.

Furthermore, data achieved with this method are compared to those obtained

by the other two sources of data, in order to evaluate their ability to reproduce

real scenarios.

COMPUTER BASED MODELLING

In CFD simulations, the Navier-Stokes (N-S) equations, which govern the flow

behaviour, are discretized and then solved in the volume of interest. Several

methodologies which perform these calculations have been developed to date.

The most common rely on the partition of the volume of interest in small ele-

ments where the flow quantities of interest (velocity, pressure, density, etc) are

calculated. The computational cost of these calculations depends heavily on the

required level of detail. For race-car aerodynamics, as for many other industrial

applications, the high Reynolds number and the complex geometries do not al-

low the spatio-temporal treatment of the flow, a methodology known as direct

numerical simulation (DNS). For this reason, simplifications are needed. The

most common approach, aiming at the time-averaged flow properties, relies on

the complete modelling of turbulence. This resolves only for the large scales of

the flow field. The latter approach is called Reynolds-averaged N-S (RANS) so-

lution. Due to their low computation cost, RANS simulations are considered to

be the workhorse for aerodynamic engineering for many years to come (Xiao,

Cinnella, 2019). The described numerical simulations allow for a versatile explo-

ration of the design space, with multiple geometries evaluated at the same time.

Furthermore, the availability of dense information in terms of variables gives the

opportunity for engineers to look at the complete picture of what is happening in

the volume of interest. The increased computational power of modern calcula-

tors led to the idea that CFD would have become the only tool needed to perform
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aerodynamic development. A notable case is that of the F1 team Manor. In 2010

they decided to rely only on CFD to aerodynamically develop the car. The car

never scored a point and the team ranked last in that year’s championship. How-

ever, the assumptions needed for resolving the equations reduce the fidelity level

of the obtained results. For this reason, experimental data, obtained either in a

field test or in a wind tunnel, are needed in order to calibrate the parameters of

the models employed.

WIND TUNNEL MEASUREMENTS

Another possibility to acquire experimental data is performing wind tunnel ex-

periments. Contrarily to track tests, wind tunnel measurements have the char-

acteristic that the environment and the operating conditions are precisely con-

trolled. In wind tunnels, a (usually scaled) model of the geometry of interest is

operated to investigate its aerodynamic behaviour putting in motion the flow

around it. Several techniques have been developed to investigate the aerody-

namic performances of the model. These spanned from direct force measure-

ments to more complex optical techniques for flow diagnostics. In the next sec-

tions, a survey on the available techniques is presented.

FROM FORCE MEASUREMENTS TO FLOW VISUALIZATION AND OPTICAL DI-

AGNOSTICS

A primary objective of aerodynamic research is to evaluate the forces acting on

the body. A direct measurement is the most traditional, yet very common ap-

proach. However, direct measurements of the forces alone do not provide infor-

mation about the physical behaviour of the flow and the phenomena that gen-

erate those forces. For this reason, researchers have pointed their attention to

studying the flow around the model, trying to identify the most relevant quanti-

ties. The simplest experimental approach is flow visualization (Merzkirch, 2012).

Among these techniques, the most common ones are the recording of smoke

streaklines and the imaging of oil patterns on the surface. Examples of this ap-

proach are shown in figure 1.3. Their analysis allows the identification of co-

herent structures or large scales phenomena, such as flow separation and flow

transition.
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Figure 1.3: Example of flow visualization: a) dynamic stall on an airfoil pitching (Schreck,
Robinson, 2007); b) Oil flow patterns on the diffuser ramp surface in maximum down-
force configuration (Ehirim et al., 2019); c) horse-shoe vortex effect in the flow around
a cylinder stemming from the ground (measurement by N. Hölscher, Ruhr-Universitat
Bochum).

The mere visualization, however, even if insightful, is often not sufficient

when a quantitative characterization of the underlying aerodynamic phenom-

ena is needed. To fill this gap, several techniques have been devised in the last

century that allow the quantitative measurement of different flow properties,

such as flow pressure, temperature and most importantly flow velocity. Among

these quantities, the availability of a full-field description of the velocity field can

be depicted as the desired outcome, since it is the most frequent variable in the

N-S equations.

A first distinction among quantitative measurement techniques can be done

between intrusive and non-intrusive ones. Among the former, pitot-tube probes

and hot-wire anemometry are the most common choices (Tropea et al., 2007).

They deliver a pointwise measurement of the velocity field with a relatively low
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setup complexity. Their main shortcomings are the limited directional informa-

tion and their inadequacy to detect flow reversal. Furthermore, the effect of their

placement in the flow field can generate unpredictable interferences of the mea-

sured flow field. Laser Doppler velocimetry (LDV, Yeh, Cummins, 1964) over-

comes this limitation and does not require the insertion of a physical probe in

the flow field. LDV is able to perform 1D, 2D and 3D point measurements of ve-

locity at high frequency. The main shortcoming of LDV is the high complexity

of both the setup and operation, factors that limited its spread in the industrial

environment.

QUANTITATIVE FLOW VISUALIZATION

As mentioned before, a key aspect of aerodynamics measurements is the ability

to measure a large portion, if not the entire, of the volume of interest. In regards

to this, all three mentioned experimental techniques are able to measure the ve-

locity field only at a single point. In the case of pitot tubes, multiple sensors can

be mounted in a complex array, but still suffer from limited spatial resolution due

to the appearance of reciprocal interference when placed too close to each other.

The advent of Particle Image Velocimetry (PIV) has allowed researchers and

engineers to perform full-field, non-intrusive, velocity measurements. Since its

appearance, several developments and advancements have been presented, al-

lowing PIV to be applied not only in a research laboratory but also in industrial

facilities. This transition usually brings an increase in requirements in terms of

both measured volume and flow speed, as described by Cardano et al. (2008)

when analysing its application in the automotive environment. The develop-

ments needed to fulfil some of these new requirements will be the object of this

dissertation.

1.3. PARTICLE IMAGE VELOCIMETRY

Particle Image Velocimetry is an optical, quantitative and non-intrusive field mea-

surement technique based on the imaging of particle tracers, embedded in the

flow. The terminology particle image velocimetry appears for the first time in

Adrian (1984) and it is considered a development of the older laser speckle ve-

locimetry introduced by Meynart (1983). At its introduction, PIV was used to
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evaluate two velocity components on a planar domain. Further developments

have allowed increasing the range of measurability, both in terms of dimension,

moving from a planar (2D) to a volumetric (3D) domain, from two to three veloc-

ity components and allowing the measurement of fast temporal variations of the

velocity field. Textbooks that cover the subject are due to Raffel et al. (2018) and

Adrian, Westerweel (2011). Even before discussing the required elements and the

working principle of PIV, a schematic representation of the available PIV systems

and their capability is presented in figure 1.4. The working principle of this tech-
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Figure 1.4: Illustrative description of PIV systems requirement in terms of imagers ver-
sus the number of measured components. In order of time appearance: Adrian (1984),
Vogel, Lauterborn (1988), Arroyo, Greated (1991), Elsinga et al. (2006) and Schröder et al.
(2008). The illustration is adapter from Hinsch (1995), Scarano (2013) and Jux (2022).

.

nique, the classical 2D approach, is here examined. Figure 1.5 briefly shows the

setup for a PIV recording. The main elements of such a system are:

• light source, commonly a pulsed laser, lately LEDs;
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• seeding particles, which allow to "see" the flow and whose nature varies

depending on the application and the fluid of interest;

• imaging setup by means of electronic imagers (CCD or CMOS) and a sys-

tem of lenses for the imaging hardware;

• data processing based on image cross-correlation or particle image pursuit

(tracking);

Δt

Laser source

Light sheet optics

Laser sheet

Camera sensor

Camera lens

Mirror

Flow stream 
with tracers 

FOV

Figure 1.5: Schematic representation of the classical setup of a planar PIV (2D-2C) ex-
periment.

The operating principle can be described as follows: tracers, usually micron-

sized particles, are inserted in the flow in a location and modality which min-

imize flow disturbance, usually in the settling chamber if the test is performed

in a wind tunnel. The region of interest is then illuminated by the light source

at two or more subsequent time instants. The illumination strategy is a key fac-

tor for a PIV experiment since its feasibility and accuracy vary according to the

chosen strategy. A more detailed analysis of the available time strategies is pre-
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sented in chapter 2, while further advancements are presented in chapters 3 and

4. The light scattered by the particles is then captured by the imaging system,

formed by one or more cameras. Through computer processing, the evaluation

of the motion of the particle between two subsequent frames is performed and

the flow velocity is obtained. The described setup allows the evaluation of two

components (2C) in a two-dimensional domain (2D). PIV is not free from errors,

which can be catalogued in bias and random. False velocity vectors are defined

as outliers and need to be detected and excluded. How to individuate them is

still, nowadays, a field of research. Further descriptions of the state-of-the-art

techniques for outlier detection are given in section 1.7.

A popular approach to quantify the level of precision achieved by a PIV exper-

iment is by evaluating the dynamic velocity range DVR, defined by Adrian (1997)

as:

DVR = Umax

Umi n
(1.1)

where Umax is the maximum measured velocity and Umi n is the minimum mea-

surable velocity fluctuation that can be distinguished by the noise level. Its de-

termination and how to increment it will be a core topic of this thesis. While the

working principle has remained unaltered since the introduction of PIV, several

developments have increased both the measurable velocity components and the

dimension of the region of interest.

Among them, the first worth mentioning is the application of the stereo-

scopic principle to PIV measurements, which allowed the evaluation of the out-

of-plane component (stereoscopic-PIV by Arroyo, Greated, 1991; Willert, 1997;

Soloff et al., 1997 and Prasad, 2000). Since its introduction, this technique has

been applied to several different kinds of scenarios, such as: boundary layers

studies (Barros, Christensen, 2014; Alvarez, Christensen, 2013), bluff body wakes

investigations (Grandemange et al., 2012; Spoelstra et al., 2019) and turboma-

chinery (Li et al., 2019; Wein et al., 2020). Figure 1.6 shows an example of applica-

tion of stereo PIV by Spoelstra et al. (2019). The authors employed the 2D-3C PIV

to evaluate the streamwise velocity component, which is then used to determine

the drag of an on-site running cyclist through the application of the control vol-

ume approach. Several developments have been presented for both planar and
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Figure 1.6: Example of the use of stereo PIV reproduced from Spoelstra et al. (2019). The
three figures show the normalized instantaneous streamwise velocity captured at the
back of a cyclist at different positions. In their work, this information was used by the
authors to perform on-site drag measurements applying the control volume approach.

stereo PIV but they are still nowadays limited to measuring the velocity field in

a thin 2D measurement plane. For the majority of engineering applications, the

flow is characterized by complex 3D patterns and phenomena that can be fully

investigated using a 3D-3C version of PIV.

1.4. VOLUMETRIC PARTICLE IMAGE VELOCIMETRY

In the last decades, several approaches to obtaining optical 3D-3C measurement

techniques have been presented. In the works of Arroyo, Hinsch (2007) and Brücker

(1997) the main strategies used at the beginning of the 2000s are reviewed. Three

methodologies are identified: three-dimensional particle tracking velocimetry

(3D PTV; Maas et al., 1993), scanning light-sheet PIV (SLS; Brücker, 1995), and

multi-plane stereo PIV (Kähler, Kompenhans, 2000). Shortly later, another tech-

nique has been presented: tomographic PIV by Elsinga et al. (2006). An in-depth

analysis of all these techniques is out of scope in this work, however, their main

concepts are described here.

THREE-DIMENSIONAL PTV

Three-dimensional PTV relies on the same concept as 2D PTV: instead of evalu-

ating the cross-correlation on a group of particles through the windowing, each

of the tracers is followed along with the frames. In order to be able to perform the
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(c) (d)

(a) (b)

Figure 1.7: Panel with the illustration of the setup of: (a) 3D PTV (Maas et al., 1993); (b)
scanning PIV (Brücker, 1995); (c) multi-plane stereo PIV (d) tomographic PIV (Elsinga
et al., 2006).

particle pairing, particle detection and triangulation has to be performed. In the

work of Maas et al. (1993) particle triangulation is performed from the views of

three cameras and approximately 1000 particles could be unambiguously iden-

tified and tracked. The limitation of this technique is the maximum particle den-

sity achievable, 0.001 particles per pixel (ppp), which translates into 1000 parti-

cles imaged into 106 pixels, which limits the maximum spatial resolution.

SCANNING LIGHT-SHEET PIV

Scanning light-sheet PIV, introduced by Brücker (1995) as a time-resolved tech-

nique, relies on the idea of performing 2D measurements on several different

planes very close to each other by shifting the laser light sheet by rotating or gal-

vanometric scanning mirrors, as shown in figure 1.7, top-right. The methodology

was proven by analyzing the flow around a finite cylinder at a Reynolds num-

ber of 300 in a water channel. Due to the time needed to shift the laser sheet,
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of the order of tens of milliseconds, its application is limited to relatively low-

speed flows (1-10 cm/s), where the times scales involved are higher than the time

needed to scan the volume.

MULTI-PLANE STEREO PIV

Multi-plane stereo PIV comes as the natural evolution of the stereo PIV presented

the decade before. Its working principle relies on the idea of illuminating sev-

eral adjacent planes with multiple stereo-PIV systems. To enforce optical separa-

tion between the light scattered by the different planes, polarization or different

wavelengths can be employed. Due to the small distance between two subse-

quent planes, the normal velocity gradient can be calculated, overcoming the

main limitation of the standard stereo-PIV.

The main drawbacks of this method are the high requirements in terms of

hardware (for each plane an entire stereo setup is needed) and the high level of

precision required for the calibration procedure, due to the small distance be-

tween the measurement planes. The concept of slicing the volume of interest

with different measurements has also been employed in cases where the time

resolution was not a concern. Cardano et al. (2008), Nakagawa et al. (2016) and

Mead et al. (2015) are examples where this approach has been employed.

The development of tomographic PIV by Elsinga et al. (2006) can be seen as

the real breakthrough to fully 3D instantaneous velocity measurements. Adopt-

ing known concepts from medical tomography, the particle spatial distribution

is reconstructed starting from multiple 2D views acquired with 3 or more cam-

eras, with a setup similar to the one shown in figure 1.7, bottom-right. Once

the volumetric reconstructed light distribution is obtained for each time instant,

3D cross-correlation is then employed to obtain the 3D-3C velocity field. This

technique allowed for measurement with a larger volume of interest and higher

resolution compared to the other introduced 3D methods. An extensive review

of the tomographic approach can be found in Scarano (2013).

Figure 1.8 presents two results obtained respectively by scanning stereo-PIV

(Nakagawa et al., 2016) and tomographic PIV (Scarano, Poelma, 2009). In the for-

mer, authors investigated the effects of aerodynamic spoilers on the near-wake

of a 28% CFRP model, a benchmark geometry for passenger cars. A traversing
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a) b)

Figure 1.8: Example of application of techniques able to measure the velocity field
in a volume: (left) scanning-PIV (Nakagawa et al., 2016) and (right) tomographic PIV
(Scarano, Poelma, 2009).

system allowed measuring sequentially several planes with a planar PIV setup.

The scanning approach allows obtaining a picture of the entire wake of the car,

as visible in figure 1.8 (left), but suffers from two main drawbacks: the impossi-

bility of measuring the entire wake instantaneously and the limited resolution in

the direction perpendicular to the measurement plane that limits the capability

in terms of gradient calculation. The tomographic approach, applied in the latter

study, overcomes these two limitations, by being able to measure the entire 3D

flow field instantaneously, as shown in figure 1.8 (right).

While tomographic PIV has been considered after its presentation as the state-

of-the-art volumetric PIV technique, some limitations still limit its use, such as:

• The complexity of the setup and the lengthy calibration procedures

• The high requirements in terms of processing time and computer memory

• The maximum achievable measurement volume

Regarding these points, researchers have proposed different solutions, which are

presented in the following sections.

1.5. COMPACT VOLUMETRIC SYSTEMS

Given the complexity of the setup of the techniques presented in the previous

section, several techniques based on a more compact system or the use of sin-

gle cameras have been presented, such as holographic PIV (J. Zhang et al., 1997;
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Sheng et al., 2008), defocusing PTV (Cierpka et al., 2010), plenoptic PIV (Lynch

et al., 2012) and coaxial volumetric velocimetry (Schneiders et al., 2018).

b)a)

d)c)

Figure 1.9: Panel with the illustration of the setup of: (a) holographic PIV (Sheng et al.,
2008); (b) defocusing PTV (Cierpka et al., 2010); (c) plenoptic PIV (Lynch et al., 2012); (d)
coaxial volumetric velocimetry (Schneiders et al., 2018).

The holographic PIV (HPIV) principle is based on the interference of coher-

ent light scattered by a particle with a reference beam. The interference allows

the encoding of the amplitude and the phase of the scattered light onto a sensor

plane. The measured encoding, or hologram, is used to reconstruct the three-

dimensional particle field. Based on the hologram’s interaction with the refer-

ence beam, two different methodologies have been presented: in-line (Sheng et

al., 2008) and off-axis (J. Zhang et al., 1997). Due to the lower sensor resolution

requirement, the former is preferred, since digital cameras can be used instead

of holographic films. The imaging and illumination setup of the experiment pre-

sented by Sheng et al. (2008) is shown in figure 1.7 (bottom-left). However, the

resolution requirements preclude its use in all but small-scale laboratory sce-
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narios, even if the application of advanced digital filtering to the standard holo-

graphic reconstruction has shown promising results in extending the measure-

ment volume, as shown in Sun et al. (2020).

Another proposed approach to evaluate the flow in a 3D domain is referred to

as general defocusing particle tracking (GDPT), in which the particle depth po-

sition is determined by looking at the defocusing patterns of the corresponding

particle images in a single-camera setup. Several different methodologies have

been developed along this line. Willert, Gharib (1992) proposed a three-pinhole

mask to more efficiently read out the defocusing information to increase the ac-

curacy in the in-depth direction. The radial intensity profiles of axisymmetric

particle images have also been proposed (Z. Zhang, Menq, 2008; Loenhout et al.,

2012). Finally, the astigmatic aberration, obtained by a cylindrical lens, has been

exploited to obtain the particle depth position based on its characteristic ellipti-

cal shape (Cierpka, Kähler, 2012; Rossi, Kähler, 2014).

The application of plenoptic cameras to the PIV experiment has been inves-

tigated by Lynch et al. (2012) and is still nowadays an active area of research, as

described by Fahringer et al. (2015). This kind of camera is able to store multiple

views of the same scene, adding to the spatial distribution of light and also the

angular one, allowing the 3D reconstruction. This ability is permitted by the ad-

dition of a microlens array placed in front of the image sensor, as the one shown

in figure 1.9, top-right. The extension of this technique to a multi-camera system

has been introduced by Jones et al. (2018) and has shown promising results in

increasing the accuracy of the reconstructed light distribution.

Another approach to simplify the measurement setup has been presented by

Schneiders et al. (2018) by the name of Coaxial Volumetric Velocimetry (CVV).

The measurement system is derived from the concept of tomographic PIV, with

multiple cameras imaging the measurement volume. The characteristics that

differentiate this approach from the classical tomographic PIV are the compact-

ness of the system, due to the small tomographic aperture between the cameras,

and the coaxial arrangement of illumination and imaging, as shown in figure 1.9,

bottom-right. This arrangement has then been used by Jux et al. (2018) to create

the Robotic Volumetric PIV system.

As previously mentioned, the techniques described in this section present a
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lower setup complexity with respect to the 3D approaches presented previously.

The cost of this complexity reduction, however, is the increase of the uncertainty

in the velocity determination along the depth direction, a drawback shared by all

the compact 3D methodologies. More specifically, while the uncertainty on the

particle position determination along the in-plane components is proportional

only to the particle image diameter dτ (Adrian, 1984):

εx = εy = cτdτ
M

(1.2)

the uncertainty along the coaxial component is dominated by the tomographic

aperture β:

εz = 2εx

β
(1.3)

whereβ represents the largest angle between cameras, as shown in Fig.1.9. In the

previous equations, cτ is a coefficient dependent on the methodology followed

to detect the particle centroid with values varying between 0.1 and 0.2; M is the

magnification factor.

As consequence, having in mind equation 1.1, when considering the coaxial

component, a lower DVR is achieved. The exploitation of the expected time co-

herency for time-resolved measurement is a common strategy to limit the detri-

mental effect just described. The techniques described in the next section are an

example of this approach.

1.6. LARGE SCALE PIV
In section 1.4, several limitations characteristic of Tomographic PIV were pre-

sented. One of them regards the maximum achievable measurement volume,

typically limited to a size of a few hundred cubic centimetres (Scarano, 2013).

Nowadays this limit has been overcome, as is testified by the work of Schröder

et al. (2022), where the authors studied the airborne transport mechanisms of

aerosol particles inside a room of approximately 12 m3. This upscale of the mea-

surement volume has been permitted by several distinct advancements:

1. the adoption of Helium-filled soap bubbles (HFSB) as flow tracers;
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2. the development of efficient 3D Lagrangian Particle Tracking algorithms;

3. the introduction of Robotic Volumetric PIV, when considering flow statis-

tics.

In the following part of this section, each of these advancements is presented.

HELIUM FILLED SOAP BUBBLES

The correct choice of seeding particles is a fundamental step in the design of a

PIV experiment. Two aspects have to be addressed during this choice. Firstly,

their dynamic behaviour: their mechanical properties affect their ability to fol-

low the flow, which is crucial since the flow velocity is the quantity of interest.

Secondly, their optical properties, which affect their ability to scatter enough

light to the cameras to form bright images. A good compromise between the

two mentioned aspects has to be achieved in order to perform correctly a PIV

experiment.

In order to evaluate the dynamic behaviour of tracers, it is common practice

to evaluate the time they need to adjust their velocity when they encounter any

change in the flow velocity. This ability is quantified by the particle response time

τp (Raffel et al., 2018). When considering small and spherical particles, their time

response reads:

τp =
d 2

p

18µf

ρp

ρf
(1.4)

The condition in which equation 1.4 is valid is called Stokes flow and it occurs

when the force acting on the particle while moving inside the fluid is only of vis-

cous nature, neglecting all the other effects given by buoyancy and gravity.

The acceptable value of τp varies based on the application in which the trac-

ers are used. In order to evaluate if a tracer will follow the flow with enough fi-

delity it is a common approach to calculate the Stokes number, defined as:

Sk = τp

τf
(1.5)

where τ f is a characteristic time of the considered flow. Tracers are considered

appropriate when Sk < 0.1.
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Considering equation 1.4, since both µf and ρf are characteristic of the fluid,

it becomes clear that to reduce τp two strategies are available: opting for smaller

particles (lower dp) or selecting neutrally buoyant particles. This condition is

achieved when the particle density is approximately equal to the fluid density

(ρp ≈ ρf).

While the latter condition is commonly achievable when PIV is applied to liq-

uid fluids (e.g. water), when considering air flows, this requirement is far more

difficult to meet. In order to balance the difference in density, commonly, trac-

ers with a small diameter (dp ≈ 1µm) have been employed. Among the possible

solutions, it is worth mentioning oil or DEHS (Di-ethyl-hexyl-sebacate) droplets

and metal powders (e.g. Alumina or Titania) can also be used. The drawback

of this approach is the reduction of the light scattered by the particles which is

proportional to the particle diameter dp. This has been one of the major limiting

factors in the development of PIV for large-scale applications.

In the last decade, helium-filled soap bubbles (HFSB) have emerged as neu-

trally buoyant particles suitable for air flows. The neutrally buoyant condition is

achieved thanks to the balance between the internal gas, helium, which is lighter

than air, and the thin layer of soap that forms the external wall of the bubble,

which is heavier than air. Faleiros et al. (2018) reported, for bubbles with a di-

ameter dp = 550 µm, a density equal to ρp = 1.1± 0.05 Kg/m3, confirming the

neutrally buoyant assumption at atmospheric conditions. Their response time

have been reported by Faleiros et al. (2018) as τp = 30±20 µs and by Scarano et

al. (2015a) as τp = 20±10 µs.

As previously mentioned, the diameter of the tracer also affects the amount

of light scattered. The larger the tracer, the more light will be scattered and vice

versa. Being PIV based on the recording of the movement of these tracers, a good

signal-to-noise ratio between the scattered light and the background is a require-

ment for a good successful measurement. For an in-depth focus on this topic,

more interested readers are referred to Melling (1997), who performed an exten-

sive study on the optical characteristics of tracers.

The importance of the scattering intensity achieved by a tracer increases even

more when a 3D measurement is considered. This effect is caused by two main

factors: the increase of the f# (f-stop, the ratio between the focal length f and the
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lens aperture diameter D) and the decrease of light intensity proportional to the

dimensions of the measurement volume. While the latter is straightforward due

to the fixed amount of energy produced by the illuminator, the former is here

explained in more detail.

To record correctly the particles illuminated in the volume, the depth of focus

δz has to be greater or equal to the depth of the measurement volume ∆z, with

the former that can be estimated with the following approximation:

δz = 2 f#ddiff(M +1)/M 2 (1.6)

Furthermore, when the particle image is diffraction limited, also its diameter

ddiff is proportional to f#, following the relation:

ddiff = 2.44 f#(M +1)λ (1.7)

where the λ is the wavelength of the incident light. Combining equation 1.6 and

equation 1.7 it is obtained that the focal depth is proportional to f 2
# . Further-

more, the light that passes through the lens is actually limited and proportional

to f −2
# . Combining the two previous expressions, the following proportionality

between depth of focus and light intensity can be derived:

I ∝ δz−4 (1.8)

From the latter, the importance of high-efficiency scattering tracers for 3D exper-

iments comes clear. This further justifies the usage of helium-filled soap bubbles

for this purpose.

The production of the helium-filled soap bubbles is usually achieved by an

orifice-type, coaxial nozzle, whose initial design was presented by Bosbach et al.

(2009). Figure 1.10 shows the cross-section of a typical generator and a shadow-

graph image of a nozzle in a production regime.

As shown in figure 1.10, the three fluids have to be supplied to the nozzle in

order to produce continuously bubbles. A fluid supply unit (FSU) is designed for

this scope and Faleiros et al. (2019) studied the effects of different mass flows in

terms of bubble production rate and bubble dimension. The results showed that
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Figure 1.10: (Left) Schematic representation of the cross-section of a nozzle producing
helium-filled soap bubbles. (Right) Shadowgraph of a working nozzle. Images repro-
duced from Faleiros et al. (2018).

a production rate between 104 and 7×104 bubbles/s can be achieved by varying

the design and the operating conditions. Such a large number of bubbles how-

ever is usually not able to seed the measurement volume entirely. For this reason,

multiple nozzles are operated together. Several different prototypes have been

presented in the literature. The first system presented by Scarano et al. (2015b)

was a piston–cylinder device where the HFSB were produced and accumulated

into a chamber for 30 seconds and then ejected by the moving cylinder. The

stream with air and bubbles was transported into the settling chamber where

a group of orifices, mounted on an aerodynamic rake, was used to spread the

tracers within a stream-tube. The original system inspired the adoption of dif-

ferent evolved designs, such as the ones mentioned by Faleiros (2021), with the

producing nozzles directly integrated into the aerodynamic rake, or by Gibeau,

Ghaemi (2018), where the producing nozzles were placed vertically and in serial

to increase at will the seeding concentration.

PARTICLE TRACKING METHODS

Between the limitations of tomographic PIV presented in section 1.4, the require-

ments in terms of processing time and computer memory have been pointed to

as the bottleneck for the further diffusion of the technique (Schanz et al., 2016).

Two works that have allowed a noticeable improvement in this matter are the it-

erative particle reconstruction (IPR) presented by Wieneke (2013) and the Shake-

The-Box algorithm presented by Schanz et al. (2016).

The reconstruction of the volumetric light distribution is a relatively expen-
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IPR

STBSTB

Figure 1.11: Graphical representation of the working principle of: (left) the latest version
of IPR; (right) STB. Images reproduced from Jahn et al. (2021) and Schanz et al. (2016).

sive step for tomographic PIV (Scarano, 2013). The 3D-PTV approach previously

described does not suffer from this drawback since only the particle position has

to be determined.

The approach proposed by IPR allowed for overcoming this limitation. In his

work, Wieneke (2013) demonstrated the ability of IPR to manage 5% particle per

pixel (ppp), similar to that usually presented in tomographic PIV experiments.

The main concept behind IPR is the use of an iterative approach in which,

after a first determination of the particle positions in real space through classical

triangulation, the particles are reprojected onto the image planes and compared

with the original images. The particle position is then optimized in order to min-

imize the difference between the reprojected images and the raw images. This
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further optimization step increases the accuracy of the particle location determi-

nation and increases the maximum particle density allowed (Jahn et al., 2021).

Figure 1.12: Particle tracks obtained by STB in different scenarios: circular jet flow
(Schanz et al., 2016); flow around a propeller (from LaVision GmbH website); near wake
of a cubic object (Schröder et al., 2020).

The ability of IPR to work with high particle density has been further ex-

ploited by the tracking algorithm Shake-The-Box, which permits to perform a

robust particle tracking when time-resolved images are available. A panel of re-

sults of STB across a wide gamut of scenarios is proposed in figure 1.12. Due to

the prediction step, where the history of the particle motion is used to strengthen

the particle location determination, the application of the original version of STB
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is limited to time-resolved datasets. This characteristic limits the applicability of

this algorithm in terms of measurable velocities, usually around 30 m/s with the

commonly available hardware. A possible solution to overcome this limitation

is the adoption of new timing strategies, such as the four-pulses approach pro-

posed by Novara et al. (2016). These types of approaches are discussed more

in-depth in chapter 4.

ROBOTIC VOLUMETRIC PIV

Even when using HFSB, illuminating and imaging a volume of ∼O(m3) in combi-

nation with the presence of complex geometries is not straightforward. As seen

in the previous section, the light scattered by the particles reduces with the in-

crease of the measurement volume. This effect limits the maximum achievable

measurement volume with a single illuminator. Furthermore, even when the

light intensity is enough to illuminate such a big volume, the maximum ppp

resolvable by the modern tracking algorithms remains limited to 0.15 and this

poses a hard limit on the maximum achievable particle density. Finally, the pres-

ence of complex geometries, often non-transparent, forces the use of multiple

acquisition and illumination devices, with an increase in both the cost and com-

plexity of the setup.

The introduction of Robotic Volumetric PIV (Jux et al., 2018) has permitted to

perform measurements of flow statistics around complex shapes in a such large

measurement volume. This technique relies on the combination of the coaxial

volumetric velocimetry (Schneiders et al., 2018), described in section 1.5, and

robotic manipulation. Its main principle is depicted in figure 1.13.

The entire measurement domain is divided into subvolumes, each measured

subsequently by the coaxial velocimeter. The robotic actuation allows moving

from one volume to the next without the need for any calibration or imaging

adjustment, decreasing the procedure’s complexity. The technique has been ap-

plied successfully to study the flow around complex geometries, such as a full-

scale cyclist (Jux et al., 2018), a full-scale isolated bicycle wheel (Jux, 2022), a

gust-loaded wing (Mertens et al., 2022) and a swimmer’s hand (Berg et al., 2021).

As presented in the previous section, the drawback of such an arrangement

for imaging devices is the low tomographic aperture. It causes a detriment in the
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Figure 1.13: (Left) Illustration of the working principle of robotic volumetric PIV (Jux et
al., 2018). (Right) Practical example of the application of the principle: the flow around a
flexible structure is investigated by merging the data obtained by several volumes scan-
ning the entire measurement domain (Mitrotta et al., 2022).

Figure 1.14: Examples of the application of Robotic Volumetric PIV on a full-scale cyclist
(Jux et al., 2018).

in-depth accuracy of particle location, which leads to a decrease in the maximum

achievable DVR. The use of the time resolution by applying STB can limit this ef-

fect and has been applied in all the mentioned examples. However, this solution

is only applicable when the flow velocity is low enough to allow time-resolved

measurement. This limits the use of the technique to relatively low flow veloci-
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Figure 1.15: Velocity field affected by the presence of outliers (red vectors). Their algo-
rithmic identification is still a field of research in PIV. Figure reproduced from Sciacchi-
tano (2014).

ties, typically below 30 ∼ 40 m/s, depending on the available hardware compo-

nents.

1.7. THE PROBLEMS OF OUTLIERS IN PIV

Any measurement technique is prone to errors, which can be of random or bi-

ased nature. In the previous sections, several PIV methodologies have been pre-

sented, based either on cross-correlation or particle tracking. The results ob-

tained by both approaches can present outliers, defined as spurious velocity vec-

tors that exhibit large unphysical variations in magnitude and direction from

neighbouring valid vectors (Westerweel, 1994). Their identification is a crucial

part of the experimental process, which justifies the research of further advance-

ment in this topic.

Among the factors leading to the occurrence of an outlier, there are light re-

flections from solid surfaces or background, poor illumination, shadow regions,

inhomogeneous flow seeding, inadequate image recording and interrogation (Hart,

2000; Lazar et al., 2010; Sciacchitano, 2019; among others). Most methods pre-

sented in the literature focus on the detection of outliers in the instantaneous

flow field (Higham et al., 2016) and the state-of-the-art approach is based on
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the universal outlier detection (UOD, Westerweel, Scarano, 2005), which gener-

alises the median detector presented earlier by Westerweel (1994). Duncan et al.

(2010) further extended the UOD approach for unstructured data such as those

obtained by Particle Tracking Velocimetry (PTV) or spatially adaptive interroga-

tion algorithms. Masullo, Theunissen (2016) dealt with the relevant problem of

clusters of false vectors and proposed to combine a spatial coherence estimator

with a Gaussian-weighted distance-based averaging median.

Proper orthogonal decomposition (POD) has also been considered as a basis

to detect outliers (Wang et al., 2015; Higham et al., 2016), using the difference

between a low-order reconstruction and the measured flow field as an indicator

of the presence of outliers in the instantaneous snapshots. The latter approach

was also proven effective in detecting clustered outliers, compared to the UOD.

Despite all the presented advancements, UOD remains nowadays the most

applied outlier detection method due to its low level of complexity. After the

advent of 3D measurements, UOD has been easily upgraded to cope with the

third dimension, being even implemented in commercial softwares. However,

the growing availability of 3D measurements opens scenarios in which constitu-

tive equations are used to detect the presence of outliers. For this reason, part of

the research presented in this thesis will explore this direction of development.

1.8. PIV DATA ASSIMILATION FOR CFD
In this section, the use of PIV data as ground truth for improving computer sim-

ulation, a procedure referred to as data assimilation, is discussed.

The advances in computational fluid dynamics (CFD) coupled with the in-

creasingly affordable computational power have made CFD one of the main tools

for aerodynamic study and design optimization for industrial problems (Xiao,

Cinnella, 2019). The computational cost of high-fidelity simulations (i.e. LES,

DNS), instead, remains relatively high for their use in optimization studies, es-

pecially for high Reynolds number flows. As a result, CFD analysis makes most

often use of the simplified approach offered by the Reynolds-averaged Navier-

Stokes (RANS) formulation (Argyropoulos, Markatos, 2015; Ferziger et al., 2020).

Considered to be the workhorse in aerodynamic engineering for many years

to come (Xiao, Cinnella, 2019), RANS solvers model the entire turbulent spec-
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trum, achieving lower computational cost and higher robustness with respect to

mentioned higher fidelity models. The cost of the amount of required modelling

is the aforementioned lower accuracy (Davidson, Peng, 2003). Several sources of

uncertainty are presented in literature; those stemming from the choice of the

turbulence model and its parameter, nowadays based mainly on expert judg-

ment, are reported to often dominate the overall uncertainty of the simulation

(Xiao, Cinnella, 2019).

Conversely, the experimental approach offers accurate measurements, di-

rectly from scaled models. When flow quantities are obtained such as velocity

or pressure, the measurements usually suffer from limited spatial range and spa-

tiotemporal resolution. For this reason, it should be retained in mind that a single

experiment is often insufficient for the analysis of the flow problem, which ren-

ders the simulations necessary for a complete description of the aerodynamic

behaviour.

Experimental data is often used a-posteriori, to verify the validity of a given

simulation, or more specifically, the adequacy of turbulence models parameters,

also referred to as “calibration” (Duraisamy et al., 2019; Da Ronch et al., 2020).

The latter approach is often iterative and several simulations are conducted un-

til model calibration is achieved. In order to overcome the above limitations,

direct integration of experimental data within CFD simulations has been consid-

ered. The resulting process is called data assimilation (DA). This approach aims

to produce a more accurate flow simulation, which is compliant with the data

gathered during an experiment.

Originally introduced in the fields of meteorology and oceanography, as re-

viewed by Navon (2009), DA has seen a growing number of applications in fluid

mechanics (Hayase, 2015). Among the DA methodologies presented in the liter-

ature, three main categories have emerged: variational methods (Foures et al.,

2014; Symon et al., 2017; among others), Kalman filter (KF; Kalman, 1960; Kato

et al., 2015) and state observer methods (reviewed in Hayase, 2015).

Variational methods are based on the application of optimal control theory

to find the minimum of the error function between the simulation and a refer-

ence, herein represented by the experimental data. The calculation of the adjoint

and the need to solve an optimization problem entails a relatively large compu-
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tational cost. KF and state observer techniques are sequential algorithms, which

means that the result of the previous iteration is used at each following itera-

tion. The solution of the assimilated simulation is expected to asymptotically

converge to the reference along the simulation (Hayase, 2015). A comparison

between a variational method and a KF application can be found in Mons et al.

(2016).

If the equations of state observer and KF are compared, a certain similarity

can be noted (Utkin et al., 2017). KF can be considered a type of state observer

method too, but designed for stochastic systems, while state observer techniques

are typically applied to deterministic systems. While in a deterministic system,

the variables of interest are represented by a scalar or a vector at each point, in

a stochastic system they are represented by probability density functions, with a

correspondent mean and standard deviation. Between the three of them, state

observer methods require both a computational cost and an implementation ef-

fort that are significantly lower compared to variational methods, making them

attractive for aerodynamic design and optimization (Hayase, 2015).





2
THESIS OBJECTIVES AND OUTLINE

2.1. VELOCITY RANGE OF ROBOTIC VOLUMETRIC PIV
The introduction of Robotic Volumetric PIV, coupled with STB and the use of

HFSB has opened the possibility of doing time-average PIV measurements at

scales that reach or surpass meter scale; however, the introduction of these meth-

ods is relatively new and presents challenges for its applications.

The compact arrangement of the velocimeter features a very small tomo-

graphic aperture (β = 8◦), with larger uncertainty along the coaxial direction.

Time-resolved measurements can limit the effect of the lower DVR for the ax-

ial component, however, the use of a time series requires the rapid acquisition

of images, such to track particles from one frame to another with a low risk of

false pairing. This condition sets a limit on the resolvable flow velocity. With the

current state-of-the-art hardware, both illumination and imaging, time-resolved

measurement can be performed up to ∼ 30 m/s. Even with future developments

increasing such limits, the time-resolved strategy may always pose a limit on the

measurable velocity.

In order to deploy this technique for flows of industrial interest, a new acqui-

sition and processing approach is to be developed, in particular an acquisition

strategy that enhances the measurement DVR for double-frame LPT measure-

31



2

32 2. THESIS OBJECTIVES AND OUTLINE

ments.

This limitation has driven the first part of the research proposed in this the-

sis. After having evaluated the performance of the standard double-frame single-

exposure approach, the thesis builds upon that method by considering multi-

step and multi-exposure approaches, with the aim to compensate for the effects

due to the small tomographic aperture.

2.2. PHYSICS-INFORMED OUTLIER DETECTION FOR FLOW STATIS-

TICS

As with every measurement method, PIV is not immune to errors. The sources of

these errors are various and not always easily detectable. Reflections, uneven

seeding, calibration errors, and out-of-plane particle motion (for 2D PIV) are

among the most common sources of errors in PIV. Outliers are one of the pos-

sible forms of errors. Because they are large errors, which differ more than 100%

from the true velocity vectors, they have a dramatic impact on the statistics. The

presence of outliers has a twofold negative impact on the PIV results: it can lead

to misinterpretation of the results and it can reduce the level of trustworthiness

of the entire measurement campaign.

These effects are even more pronounced in an industrial environment where,

in opposition to what is done in academia, the person that is looking at the PIV

data is often not the same that was responsible to acquire and produce those

data. For this reason, in order to affirm PIV as a reliable tool for aerodynamic

development, a robust outlier detection scheme is needed. Until now, the state-

of-art outlier detection method is an extension to 3D of a 2D method based on

statistics of neighbours presented by (Westerweel, Scarano, 2005). A more in-

depth description of the method is presented in 5. The availability of the third

component, both in terms of spatial and velocity information, opens the possi-

bility of the use of constitutive equations for the detection of outliers.

This has been the starting point of the research presented in this thesis on the

detection of an outlier for 3D PIV results. Focus has been posed on understand-

ing which fundamental equation better detects the presence of outliers and how

to robustly employ them.
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2.3. PIV DATA ASSIMILATION FOR CFD
As discussed in the previous chapter, experimental results are one of the three

sources of information engineers can use during aerodynamic development. It

becomes clear that the integration of all the sources is fundamental to achieving

a streamlined and effective development cycle.

Several integration strategies have been presented in the literature, spanning

from a simple comparison to the integration of measurement into a numerical

simulation. Nowadays, PIV data are mainly used as a calibration tool for numer-

ical simulation parameters. The availability of dense and reliable 3D measure-

ments, achieved through the developments discussed in the previous sections,

opens the possibility to study a new way of coupling measurements and simu-

lations, with the first being included in the solving stage of the second, through

the data assimilation process. Among all the available methodologies to perform

data assimilation, state observer approaches have demonstrated their attractive-

ness due to their low computation cost and implementation complexity. The ob-

jective of the research performed on this topic is to develop a framework, based

on the state observer concept, that uses 3D time-averaged experimental data to

improve the accuracy of RANS simulations.

2.4. OUTLINE

Chapter 3 and Chapter 4 introduce novel acquisition strategies aimed at increas-

ing both the maximum measurable flow speed and the accuracy of the evalu-

ated velocity field. After a theoretical explanation of the efficacy of the proposed

methodology, both are tested on experimental and synthetic data.

Chapter 5 presents a novel methodology to perform outlier detection on time-

averaged velocity data. The method is then applied to three different experimen-

tal datasets and its results are compared to the state-of-the-art technique of out-

lier detection in PIV.

Chapter 6 introduces a new data assimilation approach to enhance the accuracy

of RANS simulations via the use of 3D-PIV data.

Chapter 7 summarizes the findings of the thesis and presents an outline of pos-

sible future developments.





3
MULTI-STEP DUAL TIMING FOR

PTV

Parts of this chapter have been published in:

• Saredi, E, Sciacchitano, A & Scarano, F (2020) Multi-∆t 3D-PTV based on Reynolds decom-
position. Meas. Sci. Tech. 31(8):084005
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3.1. INTRODUCTION

As discussed in chapter 1, the introduction of Coaxial Volumetric Velocimetry

(CVV, Schneiders et al., 2018), in combination with the use of helium-filled soap

bubbles as flow tracers for large-scale measurements (Bosbach et al., 2009), has

reduced some requirements of system calibration and optical access for three-

dimensional flow measurements. When combined with robotic manipulation,

CVV becomes suited to automated measurements over large volumes and around

complex objects. Since CVV is based on the time resolved analysis of high-speed

recordings of particle tracers’ motion using STB (Schanz et al., 2016)), it requires

high-speed PIV equipment. In the case of CVV measurements, presently, avail-

able compact CMOS cameras do not exceed 1,000 Hz, resulting in a maximum

flow speed for measurements up to approximately 10 m/s.

Experiments at higher flow velocity are hampered by the above limitations

unless based on dual-frame image recording (e.g. by frame-straddling), where

image separation ∆t is of the order of microseconds. This acquisition strategy

however suffers from a limited achievable DVR due to the low particle displace-

ment and the lack of time resolution. The DVR issue is exacerbated for CVV

where the in-depth velocity component is about 10 times less accurate than the

other two components due to the low tomographic aperture (Schneiders et al.,

2018).

A method is investigated here to perform 3D-PTV analysis in double-frame

mode and restore a DVR comparable to that achieved with time-resolved multi-

frame techniques. The approaches reported in literature aiming at increasing

the DVR of PIV either increase the maximum particle image displacement or de-

crease the minimum resolvable displacement. To enlarge the maximum resolv-

able displacement, Fincham, Delerce (2000) developed a multi-∆t approach on

three-frame recordings separated by∆t and 2∆t . Cross-correlation at separation

∆t produces a predictor for the analysis at time separation 2∆t . Multi-∆t acqui-

sitions have been also used to quantify uncertainties (Nogueira et al., 2009 and

Nogueira et al., 2011 for peak locking). Multi-∆t recordings analysis has been

exploited by Scharnowski et al. (2019) to quantify flow turbulence intensity from

PIV measurements. With the aim of increasing the DVR, Hain, Kähler (2007) and

Persoons, O’Donovan (2010) have developed several multi-frame approaches for
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time-resolved recordings, where the time separation is locally optimized based

on the flow conditions or the cross-correlation signal-to-noise ratio. Conversely,

as far as the reduction of the minimum resolvable velocity is concerned, tech-

niques of correlation averaging have proven to be effective. The pyramid cor-

relation (Sciacchitano et al., 2012) further expands the method through a linear

combination of correlation maps obtained at different time separations. Non-

linear motions were taken into account by Lynch, Scarano (2014) and later by

Jeon et al. (2014) with a least-squares approach. For Particle Tracking Velocime-

try (PTV), Cierpka et al. (2013) showed that the use of four or more time steps

in combination with a multi-∆t image analysis greatly enhances a reliable parti-

cle pairing even with high levels of the seeding concentration. From the above

discussion, it emerges that multi-frame approaches (recordings that encompass

more than two snapshots) have been most pursued to increase the dynamic ve-

locity range of PIV and PTV techniques. In the present chapter, we investigate

the use of multi-step analysis of double-frame recordings making use of a vari-

able time separation between exposures. The work focuses on the potential to

increase the DVR of measurements and a specific discussion is made for low-

aperture 3D-PTV systems like CVV and astigmatism PTV (Cierpka et al., 2011).

3.2. TWO-FRAME PARTICLE TRACKING PRINCIPLES

Particle tracking principles are amply discussed in the literature (Malik, Dra-

cos, 1993; Pereira et al., 2006; amongst others). Here, fundamental definitions

and properties are recalled for use in the discussion presented further. Let us

consider particle tracers distributed in the physical space of coordinates X, Y, Z.

When at uniform concentration C, the average distance λ between neighbouring

particles, following Pereira et al. (2006), reads as:

λ= 3

√
3

4πC
(3.1)

The nearest neighbour (NN) principle is arguably the simplest approach to pair

subsequent images of a particle tracer. Considering a particle displacement ∆X

occurring between two subsequent frames with time separation∆t , the ratio γ=
|∆X|/λ between the displacement and the mean particle distance determines the
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probability of obtaining a correct pairing between the two images of the same

particle.

Figure 3.1: Particle images from double-frame recordings. Left: length travelled by parti-
cles between first and second exposure is smaller than the distance λ separating neigh-
bouring particles (γ< 1). Right: particles displacement (green arrows) exceeds the inter-
particle distance (γ> 1) and the search radius RS includes more than one candidate for
pairing.

A schematic illustration is given in figure 3.1, where the condition of γ <
1(left) yields a high probability of successful pairing. Conversely, when γ > 1

(right), the increased search region leads to false pairing when the NN principle

is applied. The nearest neighbour algorithm is usually coupled with a condition

of maximum search distance (Pereira et al., 2006), here referred to as search ra-

dius RS . The above discussed condition for a high probability of correct detection

translates into a relationship between the search radius and the average particle

distance, more specifically:

|∆X| < RS <λ (3.2)

Several criteria to optimize the choice of RS are given in literature. Malik and

Dracos (1993) proposed the following:

RS = 1

3
λ (3.3)

From the above, it can be concluded that choosing a particle displacement sig-

nificantly smaller than the particle distance is a favourable condition to correct

particle pairing. However, the accuracy of the instantaneous velocity measure-

ment directly depends upon the length of the particle displacement. The dy-

namic velocity range, defined by equation 1.1, can be rewritten considering the
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characteristics of the optical setup used as (Adrian, 1997):

DVR = M ∆t Vmax

cτdτ
(3.4)

where the minimum measurable displacement is a function of the particle im-

age diameter dτ and the uncertainty cτ of the particle image centroid position

(Adrian, 1991). A theoretical limit for DVR can be formulated considering equa-

tions 3.2 and 3.4:

DVR0 = Mλ

cτdτ
(3.5)

Equation 3.5 expresses the trade-off between the DVR and the instantaneous

tracers’ concentration, through the parameter λ. As an illustration of the above,

reference data on the probability of correct pairing using double-frame record-

ings with the nearest neighbour principle is obtained with a Monte Carlo simu-

lation. In a volume 150×30×30 mm3, N = 50 particles are randomly distributed,

resulting in the average concentration C = 0.4 particles/cm3. From equation 3.1

the mean particle distance is λ = 8.6 mm. The relative displacement parame-

ter γ is varied in the interval [0.01 - 2.75] by changing the particle displacement

∆X. Particles are paired with the nearest neighbour algorithm and the fraction of

correct pairing ηp is evaluated. Statistical results are achieved by repeating the

random simulation 10,000 times. For γ < 0.2, the correct pairing is higher than

99% (see the grey curve in figure 3.9-left). When γ> 0.20, false pairings start ap-

pearing. If the criterion prescribed by Malik, Dracos (1993) is chosen, γ= 0.3, the

ratio of corrected pairings readsηp = 0.98, in agreement with the results obtained

by the latter authors. If we now assume σs = cτdτ = 0.1 mm as the uncertainty

of the particle displacement estimation, it follows that, for a displacement of 8

mm, DVR ≈ 80. However, for the given concentration of 0.4 particles/cm3, the

latter displacement corresponds to γ= 1, leading to a probability of false pairing

of approximately 50%. Conversely, imposing a correct pairing probability of 98%

leads to a value of γ = 0.3 and a corresponding DVR < 30. From this discussion,

considering a given particle concentration, it comes clear that there is a funda-

mental limit in the trade-off between robustness and DVR. When robustness is

guaranteed (figure 3.1-left) a lower DVR is returned, with particle displacement

comparable to the particle diameter. A higher DVR (figure 3.1-right) comes at
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the cost of pairing reliability, unless the process makes use of a predictor for the

particle displacement, as discussed in the next section.

3.2.1. PARTICLE PAIRING AIDED WITH A DISPLACEMENT PREDICTOR

The use of multi-step analysis of particle motion has been demonstrated to ef-

fectively improve the probability of correct pairing even at high concentrations

of particles (Bastiaans et al., 2002; among others). The super-resolution method

proposed by Keane et al. (1995) makes use of cross-correlation analysis to pro-

duce a predictor for the displacement of individual particles inside the inter-

rogation window. Particle pairing is then obtained based on a nearest neigh-

bour search in the second exposure at a position given by the predictor. For low

image-density recordings typical of 3D PTV measurements, however, the cross-

correlation approach becomes unsuited due to two main reasons:

1. the particle field is often represented in the physical space by their posi-

tions and not by voxel intensities;

2. with a large inter-particle distance, a low signal-to-noise ratio is expected.

Here, similarly to the super-resolution method, an estimator of the tracer veloc-

ity is considered based on a first level analysis that yields an estimation of the

particles time-average velocity and expected level of fluctuations. This is based

on the Reynolds decomposition of the local flow velocity:

V = V+V′ (3.6)

where the bold face indicates that the symbol represents a vector. The time aver-

age velocity V is determined from the previous analysis performed at short time

separation as detailed in the next section. Such time-average velocity is used to

offset the search region by an amount corresponding to the local mean predicted

displacement ∆X pr ed = V ·∆t . In the turbulent flow regime, the actual position

of an individual tracer will not coincide with the position predicted with the time

average. Let’s define such discrepancy by the average positional disparity vector,

which reads as:

∆X′ =σV∆t (3.7)
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where σV is the velocity standard deviation and ∆t the pulse separation time.

This way, the choice of the search radius RS needs to account only for the ex-

pected fluctuations since the displacement due to the mean velocity is consid-

ered with the predictor. The search radius follows the relation:

RS > |∆X′| (3.8)

It is proposed more specifically that RS = 2|∆X′|, corresponding to a confidence

level of 95% when the fluctuations follow a Gaussian distribution. Since the sec-

ond part of equation 3.2 is still valid also when a predictor is available, conse-

quently, the use of a mean velocity predictor turns the restriction posed in equa-

tion 3.2 into:

|∆X′| <λ (3.9)

As a result, for a given velocity field, the value of the time separation ∆t can be

increased by a factor Vmax /|σV | when a predictor for the mean displacement is

available. Due to the velocity prediction, the occurrence of correct pairings is no

anymore directly related to the particle displacement, but it is proportional to

the ratio between the radius of search RS and the mean particle distance λ. The

dynamic range of a velocity measurement making use of a predictor, therefore,

reads as:

DVR = Vmax Mλ

|σV |cτdτ
(3.10)

It can be concluded that making use of a predictor permits to increase the DVR

according to:

DVRpr ed = Vmax

|σV | DVR0 (3.11)

with respect to the case of a single-step. As an illustration, if the method is used

to measure a turbulent flow with fluctuations of the order of 10% of the maxi-

mum velocity, equation 3.11 indicates a potential order of magnitude increase of

the velocity dynamic range. One should retain in mind, however, that the above

analysis relies on a number of hypotheses: 1) the increase of time separation

shall remain limited to the range where truncation errors are negligible with re-

spect to random errors (Boillot, Prasad, 1996); 2) the operations that determine

the mean velocity predictor (binning process discussed in section 3.3) are per-
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formed at a sufficient spatial resolution and with statistical convergence of the

velocity and its fluctuations to reliably apply Reynolds decomposition. As shown

by Hain, Kähler (2007), the truncation error appears in presence of acceleration

in the flow. The truncation error scales with the square of the pulse separation

time∆t when the velocity is evaluated with a central-difference scheme. This ap-

pears to be problematic along curved streamlines (radial acceleration) and when

the flow rapidly decelerates or accelerates (tangential acceleration). Let us con-

sider the former case within the core of a steady vortex, where the flow rotates

like a rigid body. A relative error on the velocity magnitude due to truncation

lower than 10% corresponds to a pulse separation time of 1/4T , where T is the

core turnover time. The flow vorticity ω is often monitored with PIV measure-

ments (T = 4π/ω); imposing a time separation one order of magnitude smaller

than the reciprocal of the local flow vorticity can be seen as a conservative crite-

rion to prevent that truncation errors affect the measurement accuracy.

3.3. MULTI-STEP ALGORITHM

The approach here presented relies on the acquisition of two or more sets of

double-frame images with varying (increasing) pulse separation time. In this

section, the case in which two sets are acquired is considered, with respectively

pulse separation time ∆t0 and ∆t1, with ∆t0 < ∆t1. The analysis of the data at

∆t0 features high robustness but low precision and is used for a first estimate

of time-averaged and fluctuating velocity with criteria defined in equations (3.1-

3.5). These estimates are then used to aid the analysis at separation ∆t1.

The analysis of the dataset ∆t0 is described first: the 3D particle detection is

based on the iterative particle detection algorithm (IPR, Wieneke, 2013). Parti-

cle pairs are determined by selecting the closest (in 3D space) particle between

the two frames (nearest neighbour approach, Pereira et al., 2006). The search ra-

dius RS here needs to account for the maximum expected particle displacement

(equation 3.2). The result of this evaluation yields the instantaneous flow veloc-

ity. For each particle, the velocity vector is placed at the midpoint between the

two positions. The time-averaged velocity field is reconstructed with the binning

procedure as described by Agüera et al. (2016) : 1) all the velocity vectors per-

taining to the series of recordings are combined into a single ensemble, which
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Figure 3.2: (left) Velocity samples collected in one bin, yielding the average velocity vec-
tor V and the standard deviation of its component σV of the velocity are evaluated.
(right) Prediction of particle displacement based on the time-averaged velocity, search
area based on RS and particle pairing based on NN detection.

increases the spatial density of the velocity information; 2) the measurement

volume is divided into sub-volumes (bins) with dimension Lbi n ∼ O(10−2m) ar-

ranged on a Cartesian grid. Similar to what is done in PIV image processing,

overlap between adjacent bins (e.g. by 75%) decreases the distance between

neighbouring vectors. The data captured inside a single bin features a cloud of

velocity samples as a result of local turbulence and the measurement uncertain-

ties (figure 3.2 - left). Performing the Reynolds decomposition (equation 3.6),

one obtains the average displacement ∆X0 and its fluctuations ∆X′
0. The latter

is evaluated using equation 3.7 and the subscript is related to the fact that the

quantities are obtained analysing images with time separation ∆t0.

In order to decrease the error due to unresolved velocity gradient, the veloc-

ity samples are weighted according to their distance with respect to the centroid

of the bin. A Gaussian weighting function is applied, following the approach pro-

posed by Agüera et al. (2016). The Gaussian is then centred in the bin center and

has a standard deviation equal to half of the bin size. In the second stage, record-

ings acquired at a time separation ∆t1 > ∆t0 are interrogated making use of the

above results. Also in this case, particle detection is performed using IPR, result-

ing in a cloud of particles for both exposures of all the recordings. Considering

the particles triangulated in the first exposure, the time-averaged velocity field

measured in the previous stage is interpolated at particle positions and the pre-
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dicted displacement is calculated through a linear scaling (homothety) and reads

as:

∆Xpr ed =∆X0
∆t1

∆t0
(3.12)

Similarly, the choice of the search radius is locally determined based on the esti-

mated level of velocity fluctuations:

RS = 2|∆X
′
0|
∆t1

∆t0
(3.13)

In synthesis, both average displacement and the radius of search are obtained

through homothety with the coefficient given by the ratio of time separation, as

shown in figure 3.3.

ΔX0 ΔXpred=ΔX0  Δt2 /Δt0  

t + Δt1
t + Δt0t 

ΔX   0

Rs = 2 ΔX0 Δt1 /Δt0 

ΔX  Δt1 /Δt0 0

Rs

Figure 3.3: Homothety process whereby the displacement∆X0 and the fluctuations∆X
′
0

obtained analysing the short∆t acquisition are used to extrapolate the predicted particle
displacement ∆Xpr ed and the radius of search RS for a longer time separation between
recordings.

Then, the NN criterion is applied between the predicted arrival position and the

particles detected within the spherical search volume of radius RS at the second

exposure (see figure 3.2-right). After pairing, the binning procedure yields again

data on a Cartesian grid. The logic of the entire algorithm is illustrated in figure

3.4 and comprises the following operations:
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1. acquisition of multiple double-frame datasets with increasing time sepa-

ration;

2. 3D particle detection by IPR at ∆t0;

3. particle pairing with NN principle;

4. ensemble-average of sparse velocity vectors within bins;

5. displacement predictor and search radius are built upon the Reynolds de-

composition of the velocity inside the bin;

6. step 2 is repeated at ∆t1;

7. the predictor for displacement and fluctuations is applied at the position

of the tracers;

8. step 3 is repeated based on the predicted position and the search radius;

9. step 4 yields data on a Cartesian grid, with time separation ∆t1.

Image pairs acquired
at Δt0

Particle detection 
with IPR

Ensemble data 
binning

Particle pairing
NN with RS > |ΔX0|

Image pairs acquired 
at Δt2

Particle detection 
with IPR

Ensemble data 
binning

V (x,y,z) σV (x,y,z)

  ΔXpred ,   RS 

Particle pairing
with predictor and 

with RS > |ΔX’|

V (x,y,z) σV (x,y,z)

ΔX ΔX’, ))

Figure 3.4: Schematic description of the operations composing the multi-step analysis
(two steps currently considered).



3

46 3. MULTI-STEP DUAL TIMING FOR PTV

3.3.1. CHAIN-VARIANT OF THE MULTI-STEP ALGORITHM

Inferring a displacement predictor and search radius from measurements at the

shortest pulse separation time requires a robust and accurate estimate. The value

of RS may, however, be affected by high relative uncertainty. When amplified by

the homothety the uncertainty may lead to overestimating the value of RS , in

turn increasing the false detection probability at time separation ∆t1. This ef-

fect is mitigated if one or multiple additional steps are included between∆t0 and

∆t1, as shown in figure 3.5. As presented in the previous section, RS is built from

∆X′, more specifically from the standard deviation σV, that can be decomposed

as (Sciacchitano, Wieneke, 2016):

σV =
√
σ2

V,tur b +σ2
V,er r (3.14)

While the first term under the square root, representing the physical flow fluctu-

ations (∆X′
tur b), scales linearly with ∆t , the fluctuations associated to measure-

ment noise (∆X′
er r ) can be considered independent of the particle displacement.

t t+Δt₀ t+Δt₁ t+Δt₂

RS

RS

Figure 3.5: (top) Linear extrapolation of RS from the fluctuations measured at time sep-
aration ∆t0. (bottom) Fluctuations overestimation is reduced using a chain-like multi-
step algorithm. Red lines represent the value predicted by homothety in a single-step
algorithm.
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Given the above, any measurement with time separation larger than ∆t0 yields

an estimation of the velocity fluctuations that is less affected by σV,er r . By this

method, the choice of the search radius RS for the final and largest time sepa-

ration becomes significantly less affected by noise, reducing the search area and

the probability of erroneous pairing.

3.4. APPLICATION TO TURBULENT WAKE FLOWS

Two experiments dealing with the wake of bluff objects have been conducted

at the Aerodynamics Laboratory of the Aerospace Engineering Department of

TU Delft. In the first experiment, a large aperture tomographic setup is used,

whereas the second experiment makes use of a robotic volumetric PTV.

3.4.1. NEAR-WAKE OF TRUNCATED CYLINDER

The turbulent flow developing behind a truncated cylinder interacting with a flat

plate turbulent boundary layer was described in the study of Schneiders et al.

(2016). The experiments were performed in a low-speed wind tunnel with a cross

section of 0.4×0.4m2 at free-stream velocity of 5 m/s. A flat plate produces a tur-

bulent boundary layer of approximately 25 mm thickness 1 meter downstream of

its leading edge. A truncated cylinder of 100 mm diameter and height is placed

in the symmetry plane of the plate. The Reynolds number based on the cylin-

der diameter is ReD = 3.5×104. The measurement volume was 30×15×20cm3

and is schematically represented in figure 3.6. The use of helium-filled soap

bubbles as flow tracers was necessary to produce sufficient light scattering over

such volume. The data consist of three sequences of 2,000 frames acquired at

2 kHz (∆t0 = 0.5 ms) with four high-speed CMOS cameras (Photron FastCAM

SA1, 1024×1024 pixels) subtending a solid angle of approximately 40×40 square

degrees. The particle image recordings were evaluated with the algorithm Shake-

The-Box (STB, Schanz et al., 2016). The velocity field obtained with STB is consid-

ered as reference to evaluate the performances of the multi-step analysis based

on double-frame recordings.

The STB algorithm makes use of long tracks produced by a particle imaged at

multiple time instants. In this case, a particle has been considered valid if it was

tracked for at least six timesteps. Given the track length and the least-squares
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30 cm
15 cm

20 cm
Flow 
direction

Figure 3.6: (left) Schematic setup in the test section, with measurement volume, shaded
in green and channel cut-out for clarity. (right) Sample raw-image (adapted from Schnei-
ders et al. 2016).

fit used to model the trajectory, a high measurement precision is achieved (es-

timated in the order of 10−3 m/s), as discussed in Schanz et al. (2016). To ap-

ply the proposed method, a double-frame dataset has been constructed from

the original multi-frame recordings. Particles detected at the time step t by STB

have been considered for the first frame, assigning to the second frame the par-

ticles found at the time step t +α∆t0, with α=[1,2,3]. The algorithm STB assigns

a unique track ID number to each particle tracked across the domain. This num-

ber permits to evaluate if the particle pairing performed by the proposed method

is correct. The results obtained by STB and with the dual-frame analysis are sub-

ject to the same binning process to yield the velocity distribution on a Cartesian

grid, as described in section 3.3. Volumes 2× 2× 2 cm3 have been considered,

with an overlap factor of 75%. The final vector pitch is then 0.5 mm.

The flow field around the cylinder exhibits large vortices and separated regions

(figure 3.7, left), making it well suited to analyse the accuracy and robustness

of the tracking algorithm under varying flow properties. The near-wake is char-

acterized by regions of high fluctuations due to the interaction between the shear

layers created at the sides, shown in figure 3.7 (right), and the two counter-rotating

vortices that originate from the top of the object. Figure 3.8 reports the proba-

bility density function of the streamwise velocity in a small domain of the flow

outer stream (indicated with region A in figure 3.7), where STB measurements

yield a mean velocity of 5.72 m/s. The double-frame image analysis yields a sim-
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Figure 3.7: (left) Contour of the averaged streamwise component u of the velocity in the
mean plane (Y = 0 mm). (right) The contour of the standard deviation of the stream-wise
component of the velocity σu at the plane X = 100 mm.

ilar value when the multi-step algorithm is used. The single-step analysis at time

separation ∆t0 exhibits a significant velocity bias (mean velocity of 5.5 m/s) and

a dispersion one order of magnitude larger than the STB measurement (1.49 m/s

and 0.16 m/s, respectively). The single-step analysis at larger time separation

is directly compromised by a large number of spurious pairs (71.5%), leading to

very large bias and random errors.

Two kinds of analysis are conducted based on the Reynolds averaged predictor.

In both analyses, the velocity predictor is built from the time-average velocity

and the velocity fluctuations are evaluated with the ∆t0 single-step analysis. In

the first case, indicated with∆t0 multi-step in Tab. 3.1, the time separation∆t1 =
∆t0, whereas in the second analysis, indicated with 3·∆t0 multi-step,∆t1 = 3·∆t0.

Table 3.1: Comparison of double-frame analysis with STB in terms of mean velocity,
standard deviation and percentage of correct pairs. Data relative to the outer stream
(region A from figure 3.7 - left).

STB ∆t0 single-step ∆t0 multi-step 3 ·∆t0 single-step 3 ·∆t0 multi-step

u [m/s] 5.72 5.50 5.72 2.06 5.72
σu [m/s] 0.16 1.49 0.18 3.78 0.15

% correct pair [-] - 92 99 28 99

Both multi-step methods yield a major reduction of the number of spuri-
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Figure 3.8: Relative probability of the streamwise component of the velocity in region A
of figure 3.7. STB (grey) single-step with ∆t =∆t0 (red), multi-step with ∆t1 =∆t0 (blue).
Single-step with ∆t = 3 ·∆t0 (green) multi-step with ∆t1 = 3 ·∆t0 (black). The dotted grey
line shows the average velocity component obtained by STB.

ous pairs, leading to a probability of correct pairing of 99%. Furthermore, the

mean velocity and the velocity fluctuations evaluated with these analyses agree

well with the reference data. Nevertheless, the ∆t0 multi-step analysis exhibits

slightly larger fluctuations than the reference and 3 ·∆t0 multi-step analysis due

to the larger relative uncertainty of the measured displacement, thus confirming

the enhanced precision achievable with a larger time separation. Figure 3.9 (left)

illustrates the correct pairing probability ηp versus the relative displacement γ

evaluated in the regions A, B and C shown in figure 3.7. The Monte-Carlo (MC)

simulation of the free-stream flow is taken as the reference behaviour. Although

reproducing a similar trend, the correct pairing probability ηp obtained with MC

simulation slightly overpredicts the results obtained by the single-step approach

in the free-stream domain. The most evident behaviour observed by this analysis

is that the regions with an increased level of turbulent fluctuations exhibit a more

rapid drop in correct pairing probability when the single-step time separation is

increased.

The introduction of the displacement predictor based on the Reynolds average

increases the percentage of correct pairing in all the considered regions of the

flow: in the free-stream (region A) ∆t can be extended up to 8 times with the
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Figure 3.9: (left) Correct pairing probability ηp versus the ratio γ between the parti-
cle displacement and the mean particle distance. Results were obtained with single-
step analysis and comparison to the Monte Carlo simulation of free-stream conditions.
(right) ηp variation with the ratio between search radius and mean particle distance (leg-
end same as for left figure). Data obtained by multi-step analysis with ∆t1 = 3 ·∆t0.

probability of correct pairing remaining above 98%. In the turbulent regions,

such as the recirculation region in the wake (region B), and the lateral shear layer

(region C), the use of the predictor yields benefits up to ∆t1 = 3 ·∆t0. The lat-

ter behaviour is consistent with equation 3.11, given the higher level of velocity

fluctuations in the object wake. figure 3.9 (right) shows the probability of cor-

rect pairing ratio ηp with respect to the ratio RS/λ for the multi-step analyses.

The curves collapse approximately onto the same behaviour, indicating a univer-

sal relation between RS/λ and the probability of successful pairing. Considering

ηp = 0.95 as the acceptance criterion, the corresponding search radius becomes

approximately RS = 0.5λ. The latter may be proposed as a design criterion to

choose the upper limit of ∆t1 for a given experiment comprising recordings at

different values of the time separation. Given the spatial variability of the flow

properties, a single optimum value for ∆t1 cannot be identified.

figure 3.10 shows the spatial distribution of ηp at the plane Y = 0 mm, while in-

creasing ∆t . The single-step analysis rapidly degrades in regions of large dis-

placement. For instance, when ∆t = 3 ·∆t0, only the low-velocity region in the
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Figure 3.10: (top-left) Contour of the magnitude of the fluctuations |σV| given by STB at
Y = 0 mm with overlaid surface streamlines. Contour of correct pairing ratio ηp at Y =
0 mm given by the proposed methodology for: (top-right) single-step with ∆t = 3 ·∆t0

(bottom-left) multi-step with ∆t1 = 3 ·∆t0 (bottom-right) multi-step with ∆t1 = 6 ·∆t0.

near wake exhibits a high percentage of correct pairing (top-right). The use of

the predictor for the case ∆t1 = 3 ·∆t0 (bottom-left) leads to ηp > 0.9 in most

of the flow field, except for the wake with high fluctuations (see figure 3.10 top-

right), where ηp > 0.7. Further extension of the pulse separation time (figure 3.10

bottom-right) results in frequent false pairing, mostly in the wake, which is due

to the condition given by equation 3.2 not being respected. The results shown

until now are obtained by applying the pairing strategy on particles previously

detected by the Shake-the-Box algorithm, which is also considered unaffected

by the phenomenon of ghost particles (Schanz et al., 2016). Therefore, by knowl-

edge of the particle tracks, it has been possible to distinguish correct and incor-

rect particle pairings for the double-frame analysis. A more realistic situation has

been simulated using the Iterative Particle Reconstruction algorithm proposed
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by Wieneke (2013), thus following the steps illustrated in the flow chart of figure

3.4.
Z 

[m
m

]
Z 

[m
m

]

Y [mm] Y [mm]

σu [m/s]

Figure 3.11: Contours of the standard deviation of the streamwise velocity fluctuations at
X = 100 mm. (top-left) STB (top-right) single-step with∆t =∆t0 (bottom-left) single-step
with ∆t = 3 ·∆t0 (bottom-right) multi-step with ∆t1 = 3 ·∆t0.

The standard deviation of the streamwise velocity component at X = 100 mm,

illustrated in figure 3.11 (bottom-left), shows that the single-step algorithms yield

spurious fluctuations due to a significant percentage of incorrect pairings. The

level of fluctuations is clearly unacceptable for ∆t = 3 ·∆t0, where the veloc-

ity standard deviation in the outer region exceeds 50% of the free-stream value.

Conversely, the adoption of the multi-step∆t methodology suppresses the spuri-

ous velocity fluctuations due to incorrect pairing, yielding measured fluctuations

of the same order as the reference ones obtained by STB. It must be noticed that
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in the regions of highest flow fluctuations, namely the two free-shear layers at the

sides of the models Y =±60 mm, the difference between the multi-step analysis

and the reference data is the largest. As indicated by equation 3.11, the increase

of the local turbulence intensity reduces the maximum achievable extension of

∆t . The effects of the chain-variant method have been assessed considering the

same final pulse separation time ∆t = 3 ·∆t0. The chain algorithm permits to de-

crease RS in most of the flow field, with the maximum decrease that occurs in the

free-stream, where RS = 1.7 mm for the dual-step algorithm and RS = 0.8 mm for

its the chain-variant. For what concerns the standard deviation of the velocity,

due to the limited time increase, no substantial differences are noticed.

3.4.2. COAXIAL VELOCIMETRY IN THE NEAR-WAKE OF AHMED BODY

Experiments are performed in the Open Jet Facility (OJF) of TU Delft Aerospace

Engineering Laboratories. The near-wake of the Ahmed body (Ahmed et al.,

1984) at a free-stream velocity of 12 m/s and a turbulence intensity of 0.5% (Lig-

narolo et al., 2015) is investigated by robotic volumetric PTV (Jux et al., 2018).

The Reynolds number based on the height H of the model is ReH = 115,000 and

the selected slant angle is 25◦.

Table 3.2: Measurement parameters for Ahmed body experiment.

Seeding HFSB, ∼ 300 µm diameter
Illumination Quantronix Darwin-Duo Nd:YLF laser (2 x 25 mJ @ 1 kHz)
Recording Device LaVision MiniShaker S system: 4 x CMOS cameras

800×600 @ 511 Hz 4.6 µm pitch
Imaging f = 4 mm, f# = 8
Acquisition frequency Time-resolved fT R = 700 Hz; Double-frame fDF = 300 Hz
Pulse separation time Time-resolved: ∆t = 1/ fT R = 1.43 ms

Double-frame: ∆t = [61,122,244,488,610]µs
Magnification factor ∼ 0.01 at 40 cm distance
Number of images 8000

The considered volume is 200×200×450 mm3, obtained from a single view

of the CVV system (figure 3.12). Both time-resolved and double-frame acquisi-

tions have been performed. For the former, the acquisition frequency is f = 700

Hz. In double-frame mode, sets of image pairs are acquired at a rate of 340
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Figure 3.12: Side and top view of the Ahmed body with the measurement domain (green
shade). Object and camera coordinate systems are shown.

Hz. The time-resolved dataset is analysed with the STB algorithm from LaVi-

sion DaVis 8.1 software. Multiple datasets with ∆t0 = 61µs and larger separation

∆t = [2,4,6,8,10] ·∆t0 were acquired. The minimum pulse separation time is

selected for a conservative value of γ = 0.07, guaranteeing a high probability of

correct pairing at ∆t0. For the binning process, 2×2×2 cm3 volumes have been

considered, with an overlap factor of 75%. The final vector pitch is then 0.5 mm.

Two different coordinate systems are here considered: the camera and the object

one. While the camera coordinate system follows the movement of the robot, the

object coordinate system is stationary and has the X axis aligned with the incom-

ing free stream velocity vector, as shown in figure 3.12. The wake of the Ahmed

body features the so-called C-pillar vortices: a set of counter-rotating large-scale

streamwise vortices emanating from the upstream edge of the slant. As they de-

velop downstream, the C-pillar vortices interact with the recirculation region at

the back of the object, creating a complex 3D flow field. The organization of

the velocity field is illustrated at Xob j = 0.5H in figure 3.13. The presence of the

two vortical structures is confirmed by the vectors in the velocity slice and by the
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Figure 3.13: In-plane velocity vectors and colour contours of cross-plane velocity at Xob j

= 0.5 H . Results obtained from STB and time averaged over bins of 20 mm side length.

iso-surface of mean streamwise vorticityωx =±250 Hz shown in figure 3.16 (top-

left). The robotic system is characterized by the ability to measure multiple por-

tions of the flow that can be stitched together to obtain the final global average

velocity field. For this reason, two relevant coordinate systems are mentioned:

the global (object) and the intrinsic (CVV) one, shown schematically in figure

3.12. The following analysis is performed using the CVV coordinate system in or-

der to analyse the properties of the in-plane and the coaxial velocity components

separately. A theoretical estimate of the DVR is given, based on the characteris-

tics of the coaxial velocimeter. Considering a cτ = 0.2, the resulting error on parti-

cle position is ε= 0.13 mm along x- and y- directions, which becomes ε= 2.2 mm

in the depth (viz. coaxial) direction (Schneiders et al. 2018). The above translates

in terms of velocity uncertainty relative to free-stream value with εu = εv = 0.26

for a single-step double-frame measurement with ∆t = ∆t0 = 61µs. For a time-

resolved measurement with particle tracks comprising 5 samples of the particle

position, the uncertainty reduces to εu = 0.0025 (0.25%). From the above, a DVR
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of 4 and 400 can be inferred for the double-frame single-step and STB analysis

(with 5 recordings separated by 1.43 ms each) respectively. This large difference

is the result of two factors: the STB analysis encompasses a significantly longer

time separation (approximately 23 times larger than ∆t0 for double-frame); sec-

ond, the velocity measurement is the result of a least-squares polynomial fit that

reduces random errors. The multi-step analysis based on Reynolds average pre-

dictor allows an increase in the time separation, therefore increase of DVR, but

only from the former of the two factors. In the present case the recordings with

the longest pulse separation time, ∆t = 10 ·∆t0, potentially lead to a DVR = 40.

However, along the coaxial direction, the DVR remains fairly limited (DVR ∼ 3-5),

considering the small angular aperture of the coaxial velocimeter.

Table 3.3: Comparison of STB with double-frame analysis, in terms of mean velocity,
standard deviation along Xcam and Zcam directions. Data relative to a 2×2×2 cm3 region
in the outer stream.

u |∆u| [m/s] |∆u| [%] σu [m/s] |∆σu | [%]
STB -11.34 - - 0.29 -

∆t0 single-step -11.15 0.20 1.8 1.16 300
∆t0 multi-step -11.22 0.12 1.1 0.63 110

2∆t0 multi-step -11.17 0.17 1.5 0.62 110
6∆t0 multi-step -11.32 0.02 0.01 0.54 80

10∆t0 multi-step -11.18 0.16 1.5 0.34 14

w [m/s] |∆w | [m/s] |∆w | [%] σw [m/s] |σw | [%]
STB 2.71 - - 0.51 -

∆t0 single-step 1.11 1.60 60 7.77 1400
∆t0 multi-step 1.18 1.53 56 2.04 300

2∆t0 multi-step 1.04 1.67 62 2.24 340
6∆t0 multi-step 1.73 0.99 36 1.57 200

10∆t0 multi-step 1.96 0.75 28 1.45 185

The probability density of x- and coaxial-component in the outer flow region

are shown in figure 3.14. Synthesis of the results in terms of mean and standard

deviation are presented in Table 3.3 for the different methods. The reference is

assumed to be the time-resolved analysis from STB, which also exhibits the low-

est dispersion of the velocity data.

The single-step analysis of double-frame recordings at time separation∆t0 =
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Figure 3.14: Relative probability of (left) the u component in the intrinsic reference frame
and (right) the w component in the intrinsic reference frame in a small free-stream re-
gion in the near field from the cameras. Comparison between the results obtained by
STB and different methodologies herein presented. The mean value obtained by the ref-
erence is underlined by the grey dotted line.

61µs, exhibits the widest dispersion of the data, with σu being approximately

four times larger than that given by STB. The multi-step analysis progressively

reduces the data dispersion by increasing ∆t1. A standard deviation 14% higher

than the reference is obtained when ∆t1 = 10 ·∆t0. Along the coaxial direction,

a much wider data dispersion is observed and the single-step analysis with ∆t =
∆t0 returns almost a flat distribution. Increasing the time separation by the multi-

step analysis, although the overall uncertainty remains large: at ∆t1 = 10 ·∆t0,

the coaxial velocity component is underestimated by approximately 30%. The

analysis until now has been carried out in the outer region, where the maximum

displacement is expected. The high particle displacement corresponds to high

values of γ, leading to an increase in false pairing appearance.

The amplitude of velocity fluctuations plays a crucial role in determining the
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Figure 3.15: Relative probability of (left) the u and (right) w components (in the CVV ref-
erence frame) in the C-pillar region. Comparison between STB and multi-step analysis.
The mean value obtained with STB is the vertical dashed grey line.

success rate of correct pairing, even when a predictor velocity is available. For

this reason, a region of strong spatial and temporal and fluctuations has been

considered in the shear region of the C-pillar vortices. The probability distribu-

tion of u and w is analysed and shown in figure 3.15. The smaller displacement

and the relatively low particle concentration yield γ = 0.04 for ∆t = ∆t0. In this

region, given the wider dispersion of the value due to the physical fluctuations

exhibited by the flow, the in-plane and coaxial components show similar be-

haviour and the results are more closely comparable to those obtained with STB.

A tenfold increase of the pulse separation time returns a velocity distribution not

affected by false pairing (RS/λ = 0.4 for ∆t1 = 10 ·∆t0). A final analysis is made

to inquire into the measurements of the three-dimensional vorticity field, often

inspected to understand the topology of vortices emanating from complex bluff

bodies. Figure 3.16 shows the three-dimensional distribution of the time-average

streamwise vorticity ωx by two iso-surfaces selected at ±250 Hz. The compari-
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son is made between STB, single-step (∆t = ∆t0) and two multi-step analyses:

∆t1 = ∆t0 and ∆t1 = 10 ·∆t0 respectively. The C-pillars vortices visualisation us-

ing the single-step analysis suffers from random fluctuations appearing in the

entire measurement domain. These fluctuations are mostly associated with the

large uncertainty on the coaxial component (and its spatial derivative) that takes

part in the formulation of the streamwise vorticity. The multi-step analysis at

shortest time separation exhibits some noise reduction, ascribed to the reduc-

tion of incorrect pairings when a displacement predictor and a smaller search

radius are used. When the pulse separation is extended, with∆t1 = 10 ·∆t0, noisy

fluctuations are considerably attenuated and a more regular vorticity iso-surface

is obtained, in better agreement with the STB analysis.

Figure 3.16: Iso-surface of ω = ±250 Hz (blue: positive, red: negative) in the object ref-
erence frame. Top-left: STB; top-right: single-step at ∆t0; bottom-left: multi-step with
∆t1 =∆t0; bottom-right: multi-step with ∆t1 = 10∆t0.

3.5. CONCLUSIONS

A novel method for the analysis of 3D PTV experiments based on double-frame

recordings has been proposed, which is based on Reynolds decomposition. The

method yields the time-average velocity field from the analysis of the instanta-
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neous particle velocity, (compared to other multi-frame methods proposed in

literature, like from Hassan, Canaan, 1991; and Schanz et al., 2016). In the multi-

δt method two or more sets of recordings are necessary to produce, firstly, a ro-

bust displacement predictor, based on a short-time separation, and, secondly, to

extend the displacement with a data set obtained at a larger time separation. A

theoretical analysis shows that the DVR of the multi-step method can be signifi-

cantly higher than single step analysis in flows with low to moderate turbulence.

A chain-like variant of the multi-step method has the additional benefit of re-

ducing the bias that overestimates the amplitude of turbulent fluctuations. Two

experimental databases are used to assess the multi-∆t method and compare it

to the time-resolved analysis made with the STB algorithm. The multi-step anal-

ysis clearly extends the DVR of the single-step analysis. The fundamental limit

to extending the time separation for the multi-step method lies in the condition

where the displacement dispersion caused by the turbulent velocity fluctuations

becomes comparable to the inter-particle distance. A-posteriori analysis sug-

gests RS < 0.5λ as the experiment design criterion for the optimal extension of

the time separation, which corresponds to the condition ∆t1max = 0.25λ/|σV |.
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4.1. BACKGROUND

In the previous chapter, a new methodology to increase the DVR of double-frame

PTV measurements has been presented. Due to the nature of its multiple datasets

with increasing pulse separation time, it shares the limitations characteristic of

double-frame measurements. Firstly, the particle velocity is determined using

only two positions, it is not possible to perform a polynomial fit, reducing the

achievable precision of the velocity determination. Furthermore, due to the lin-

ear nature of the velocity determination, the truncation error starts increasing

with longer pulse separation times (Boillot, Prasad, 1996). Finally, the flow accel-

eration cannot be determined, making impossible the calculation of the pressure

field (Oudheusden, 2013). Another possible approach to cope with high-speed

flows relies on the use of multi-exposure recordings, which allow increased mea-

surement accuracy due to tracking particles at multiple time instants, as well as

the determination of the particle’s accelerations and in turn the pressure field.

The proposal of a new multi-exposure, multi-step strategy is the topic of this

chapter.

Two versions of the STB algorithm adopting this strategy have been devel-

oped by Novara et al. (2016) and Sellappan et al. (2020), respectively. The differ-

ence between the two presented methodologies lies in the adopted timing strat-

egy to obtain the four particle positions across the two frames, as discussed in

the next section. The application of these methodologies has been presented

copying with velocities ranging from 35.5 m/s to 290 m/s by Novara et al. (2019)

and Godbersen, Schröder (2020), respectively. However, both the mentioned

methodologies make use of fixed time separations among the pulses, thus lead-

ing to increased measurement accuracy only locally and not in the entire flow

field. Additionally, they suffer from the presence of overlapping particle images

in regions of low flow velocities, leading to erroneous particle reconstructions

and velocity measurements. Furthermore, no theoretical analysis of the achiev-

able DVR has been presented in the literature, leaving the question of the optimal

selection of the time separation among pulses unanswered. The current chapter

aims at solving the limitations of current multi-pulse PTV approaches by propos-

ing a multi-step multi-exposure algorithm with adaptive time separation. The

approach, based on a learning paradigm similar to the one applied in chapter 3,
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guarantees that the measurement accuracy is maximised in the entire flow do-

main and that no overlapping particle images are present even in regions of low

flow velocities. Additionally, a theoretical framework is developed for the evalu-

ation of the maximum DVR achievable with the different PTV strategies. In order

to prove the effectiveness of the proposed methodology, an experimental dataset

concerning the flow around a truncated cylinder at Re= 3.3×105 is considered.

The state-of-the-art methodology Shake-The-Box is used to produce the ground

truth that is taken as a reference.

4.2. DVR OF TIME-RESOLVED PTV APPROACHES

The use of multiple positions of the same particle has been proven effective in in-

creasing the precision of the velocity determination (Cierpka et al., 2013; Lynch,

Scarano, 2013; Schanz et al., 2016; amongst others). This can be achieved by

acquiring time-resolved data or multi-exposed images. In order to define the

achievable DVR in this situation, let us consider a case where the same particle is

imaged k times, each with a time separation of ∆t , by using one of the two men-

tioned approaches. The obtained discrete particle positions can be used to build

a track, which can be regularized through a polynomial regression, as shown in

figure 4.1. The advantages of using multiple discrete particle positions to evalu-

ΔX
DF

Г

ΔX
TR

Figure 4.1: Schematic representation of particle track evaluated at a discrete number
of positions. While the grey line represents the displacement evaluated with a double-
frame single exposure analysis, the green line shows the streamline obtained through a
second-order polynomial regression.
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ate the particle velocity arise from two main factors: the total evaluated displace-

ment increases and the effect of random errors on the particle position determi-

nation is reduced. For k successive particle image recordings, the displacement

increases by a factor k with respect to the dual-pulse analysis, whereas the po-

sitional uncertainty decreases by cα/
p

k (Lynch, Scarano, 2013), with cα being a

coefficient dependent upon the track regularization technique used. Combining

these two effects, the achievable DVR for k recordings of the particles’ positions

is:

DVRME = k
p

k|∆Xmax|
cαεx

(4.1)

where the ME subscript stands for multi-exposure. Comparing equation 3.5 and

equation 4.1, it is possible to evaluate the DVR gain GDVR when multiple expo-

sures of the same particle are considered:

GDVR = DVRME

DVRDF
= k

p
kp

2cα
(4.2)

From equation 4.2, it can be concluded that the achievable increase of DVR scales

as k(3/2), in line with what already theorized for analysis based on cross-correlation

(Lynch, Scarano, 2013). The DVR expressions defined in equation 1.1 and equa-

tion 4.1 take into consideration the maximum particle displacement and are truly

representative of the entire measurement only for a homogeneous flow field (e.g.

grid turbulence). In many cases of interest, the velocity and the acceleration vary

largely across the field, with the effect that regions at lower velocities are affected

by larger relative errors. In this context we define a local principle for the dy-

namic velocity range:

DVR(x) = |∆Xmax(x)|
σ∆X

(4.3)

which represents the inverse of the local relative uncertainty of the velocity (viz.

displacement). In order to evaluate the measurement accuracy in the entire do-

main, the local DVR values defined by equation 4.3 shall be averaged over the

entire measurement volume:

DVR = 1

V

∫
V

DVR(x)dV (4.4)



4.3. APPROACHES FOR MULTI-EXPOSURE PTV

4

67

where V represents the total measurement volume and dV is the sub-volumes

in which the DVR is calculated. A common approach to obtaining particle tracks

composed of multiple particle positions is the adoption of a time-resolved (TR)

image acquisition strategy. The development in terms of illumination and acqui-

sition hardware has permitted the introduction of tracking algorithms capable of

following each particle for several time instants. The maximum resolvable veloc-

ities are dependent on multiple factors, such as particle density and maximum

frequencies of the illuminators and the cameras. To enable flow measurements

at relatively high velocity (U∞ > 50 m/s), aside from the double-pulse single-

exposure measurements that are always possible, strategies that imply the use of

multi-exposed pair of images have been presented and are discussed in the next

section.

4.3. APPROACHES FOR MULTI-EXPOSURE PTV
Two different multi-exposure PTV strategies have been presented in the litera-

ture by Novara et al. (2016) and Sellappan et al. (2020), respectively. Both are

based on a two-frame acquisition strategy, with two dual-cavity lasers used to

produce four pulses (I-IV), and two exposures in each of the frames. The main

difference between the two presented methods lies in the chosen timing strat-

egy, as graphically described in figure 4.2. While Novara et al. (2016) applied a

short-long-short timing strategy, with the inter-frame pulse separation time ∆t0

larger than the intra-frame pulse separation time∆t1, Sellappan et al. (2020) pro-

posed a long-short-long pulse separation time strategy, with ∆t0 < ∆t1. In both

cases, the particle position is determined by using the Iterative Particle Recon-

struction method (Wieneke, 2013), as implemented in the Davis software from

LaVision. For both approaches, the particle pairing is divided into two differ-

ent steps: the definition of a two-pulse track and then the combination of two

two-pulse tracks in a four-pulse track. In the method presented by Novara et al.

(2016), two-pulse tracks are created for each of the frames (pairs I-II and III-IV)

and linear extrapolation is used to determine the potential middle point of the

sequence. Due to the direction ambiguity created by the analysis of two expo-

sure on the same frame, for each two-pulse track, two possible middle points

have to be evaluated. When two pairs are matched across the frames, as shown
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Novara et al. (2016) 

∆t0∆t1 ∆t1

Frame 1 Frame 2

Sellappan et al. (2020) 

∆t0∆t1 ∆t1

Frame 1 Frame 2

Frame 1 (n)

Current work

∆t0∆t1

Frame 2 (n)

∆tN
∆tN

∆t1

I II III IV

I II III IV

I
II III

IV

Pairing strategy

a)

b)

Matching criterion

Frame 2
Frame 1

RS

Figure 4.2: (Top) Timing strategies of multi-exposure acquisitions presented by Novara
et al. (2016), Sellappan et al. (2020) and the current chapter. ∆t0 represents the inter-
frame time separation, while [∆t1 . . .∆tN ] represent the intra-frame pulse separation
times. (Bottom) Schematic representation of the different pairing strategies presented
by: (a) Novara et al. (2016) and (b) Sellappan et al. (2020).

in figure 4.2, the position of the particles is fitted using a second-order polyno-

mial regression and the velocity is evaluated at the middle point of the particle

track. Sellappan et al. (2020) modified the algorithm by adopting the mentioned

long-short-long pulse separation time strategy. In this case, as the first step, a

two-pulse track is created across frames, pairing particles at locations II and III.
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The fact that the two-particle positions are on subsequent frames eliminates the

directional ambiguity present in the method from Novara et al. (2016). Further-

more, the increase in the time separation between the two pulses recorded on

the same frame leads to an increase in the accuracy of the determination of the

velocity and the acceleration along the track (Novara et al., 2019). The two-pulse

pair is then extrapolated forward and backwards in time, where the particle po-

sitions at instants I and IV are then researched in spherical volume. Once all four

particle positions are determined, a second-order polynomial regression is used

to determine the middle point particle position and the corresponding velocity

and acceleration.

The choice of ∆t0 and ∆t1 is crucial for both methodologies since a com-

promise between accuracy and robustness has to be made. Due to the choice

of a single pair of pulse separation times [∆t0,∆t1] for the entire measurement

volume, the common strategy is to select the maximum allowed displacement

from which, given the expected maximum velocity, a suitable T can be calcu-

lated, where T =∆t0+2∆t1. As previously discussed, this choice creates an inho-

mogeneity of the measurement accuracy, because low-velocity regions will fea-

ture smaller particle image displacements and therefore higher relative uncer-

tainties. Additionally, in these regions, the possibility of particle image overlap

arises. Overlapping particle images are a well-known problem since the advent

of PIV and several solutions have been presented in the literature (Adrian, 1986;

among others). Considering the acquisition strategy proposed by Sellappan et

al. (2020), figure 4.3 shows three possible scenarios with decreasing flow veloc-

ity. The appearance of one of these scenarios depends on the ratio between the

particle displacement ∆t |u| and the particle image diameter dτ. Scenario (a) de-

scribes the desired situation to obtain both an accurate particle position and

velocity determination and is achieved when ∆t0|u| ≫ dτ, with ∆t1 > ∆t0. The

pulse separation times ∆t0 and ∆t1, however, cannot be extended indefinitely,

due to the appearance of false pairing (Saredi et al., 2020) and truncation errors

(Boillot, Prasad, 1996). Considering scenario (b), even if the particle images cor-

responding to pulses II and III overlap, this does not prevent the particle pairing

since they are located on different frames. However, the small displacement be-

tween the particle positions II and III causes a low accuracy of the velocity vector
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Figure 4.3: Example of three possible scenarios obtained by a double-frame double-
exposure acquisition strategy at different flow velocities.

used to predict the particle positions at I and IV, increasing the probability of

false pairings. Scenario (c) describes instead the situation when all four particle

images overlap. In this case, particle position determination within each frame

is not possible anymore. For this reason, it becomes clear that it is desirable to

obtain scenario (a) in the entire measured volume. This is not achievable with a

single combination of ∆t0 and ∆t1.

4.4. ADAPTIVE MULTI-STEP MULTI-EXPOSURE PTV
Recalling the definition of equation 4.3 we propose a method that homogenizes

the relative error by producing a rather constant local particle displacement |∆X|.
This principle directly mimics the concept anticipated by Hain, Kähler (2007) but

in the context of Lagrangian particle tracking with multi-exposed images. The

main ingredients of this technique are the availability of a predictor, in terms

of time-average velocity Vpred and fluctuations root-mean-square V′
pred, and a

strategy to vary the pulse separation time pairs [∆t0,∆t1] across the measure-

ment campaign. To obtain the former, a multi-step approach is considered, sim-

ilar to the one presented in the previous chapter. First, a double-frame single-

exposure acquisition is performed and processed to produce a first estimation of

the velocity field. The Lagrangian information obtained from the analysis of the

double-frame single-exposure images is mapped onto a uniform Eulerian grid

following the ensemble averaging procedure presented by Agüera et al. (2016),

thus yielding the velocity predictor Vpred. The analysis of the velocity predictor in
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the measurement volume allows the determination of the time interval bound-

aries (Tmi n , Tmax ) for the successive multi-exposure image acquisition, based

on the ratio between the desired displacement |∆X|0 and the local flow velocity.

The procedure implemented to determine the suitable pulse separations is as

follows. The distribution of the absolute velocity obtained by the analysis of the

predictor velocity field is divided into N intervals, ranging between 0 and Vmax

with a decreasing reference velocity Vn is assigned to the nth interval. The defi-

nition of the desired displacement allows evaluating the required total time T for

each interval through the equation:

Tn = |∆X|0
Vn

=∆t0 +2∆t1 (4.5)

Once the total time for each interval is set, N acquisitions are performed with the

pair [∆t0,∆t1]n varying accordingly to respect the indications given by equation

4.5. To select which tracks have to be considered for each measurement, a spa-

tial map is created starting from the Eulerian grid on which Vpred was mapped.

A value of Tn is assigned to each sub-volume of the Eulerian grid and only the

tracks that come from the corresponding acquisition are then considered. Fi-

nally, the same binning procedure (Agüera et al., 2016) is applied to obtain the fi-

nal time-average velocity field. In summary, the proposed methodology is schemat-

ically represented in the flowchart presented in figure 4.4.

4.5. EXPERIMENTAL ASSESSMENT

An experiment is conducted in the Aerodynamics Laboratory of TU Delft to as-

sess the effectiveness of the proposed methodology. The near-wake of a 10 cm

diameter truncated cylinder, characterized by a height/diameter ratio of 1, is in-

vestigated in a low-speed wind tunnel (W-Tunnel) equipped with an open test

section of 60× 60 cm2. The free-stream velocity is set to 5 m/s, which implies

a Reynolds number based on the cylinder diameter D equal to 3.3× 104. The

cylinder is positioned in the mid-span of a flat plate, equipped with a tripping

device past the leading edge to force laminar to turbulent boundary layer transi-

tion. The shape of the plate leading edge is cubic super-elliptical of axis ratio 6

to minimize flow separation occurrence (Narasimha, Prasad, 1994). A measure-
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Figure 4.4: Schematic representation of the flowchart of the methodology proposed in
this chapter.

ment volume of 25×20×20 cm3 captures the near-wake of the truncated cylinder.

The measurement setup is shown in figure 4.5. The flow is seeded with helium-

filled-soap-bubbles (HFSB), generated by a 50×100 cm2 seeding rake positioned

in the settling chamber of the wind tunnel. The generator contains 200 bubble-

producing nozzles, which nominally produce 30,000 bubbles per second each

(Faleiros et al., 2019). In order to control the mass flow of soap, air and helium,
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Figure 4.5: Picture of the experimental setup used to study the near wake of a square
cylinder.

a homemade fluid supply unit (FSU) is used. Two LaVision LED-Flashlight 300

illumination units positioned above the cylinder illuminate the measurement re-

gion, imaged by four Photron Fast CAM SA1 cameras (CMOS, 1024×1024 pixels,

12 bits). Three of the cameras are equipped with 50 mm objectives, while one

(the closest to the cylinder) is equipped with a 35 mm objective. To evaluate

the performances of a new algorithm it is common to use synthetic datasets for

which a reference is available and the comparison between the results of each

technique is easily comparable. Several examples of this strategy are presented

in the literature (Sciacchitano et al., 2012; Novara, Scarano, 2013; amongst oth-

ers). One conclusion from these works is that replicating the measurement error

in a synthetic dataset is far from being straightforward. For this reason, for this

study, a full experimental assessment has been performed. The needed refer-

ence has been created by sampling the flow with a relatively high frequency at 5

kHz (∆t = 0.2ms) to create relatively long tracks (more than 20 expositions). The

acquired images (2 datasets of 7000 images each) have been then processed with

the PTV algorithm STB. For each of the reconstructed particle tracks, particle po-

sitions have been fitted with a least-square regression, as discussed by Schanz

et al. (2016). The tracks obtained from the two acquisitions have been then com-

bined, obtaining 5×105 tracks in total, which are considered as references for the

application of the other approaches. To apply both the standard double-frame



4

74 4. ADAPTIVE MULTI-EXPOSURE TIMING FOR PTV

PTV, the 4-pulses approach by Sellappan et al. (2020), hereafter referred to as

static 4P-2F, and the method proposed in this study, referred as adaptive 4P-2F,

double-frame datasets are needed. In order to be able to quantitatively evaluate

the performances of the different approaches, the particle reconstruction in a

3D space, usually performed by IPR, has been substituted with direct input from

the tracks computed by STB. For each of the tracks, the raw particle positions at

the select time instants are considered, as schematically shown in figure 4.6, and

used to evaluate the velocity according to each of the analyzed methods. The

Freestream Wake
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t
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Figure 4.6: Schematic representation of the mechanism behind the particle selection
to generate the multi-frame datasets from the STB tracks. The difference between the
static and the adaptive 4P-DF emerges in the region of low velocity, where the intra-
frame pulse separation time ∆t1 is increased to obtain a constant particle displacement
|∆X|0.

main difference between the static and the adaptive 4P-2F methods is visualized

in figure 4.6. While in the region characterized by a high particle displacement,

such as the freestream, the two methods adopt the same pair of pulse separa-

tion times [∆t0, ∆t1], the inter-frame pulse separation time ∆t1 is increased for

the adaptive 4P-2F where the displacement decreases, such as in the recircula-

tion or separation regions. The results obtained by applying the different timing

schemes are presented in the next section.
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4.6. RESULTS

Applying STB to all the acquired time-resolved images, a total of 5.5×105 tracks

were obtained. A subsample of them is presented in figure 4.7 (left), where the

lines are coloured based on the particle velocity. Figure 4.7 (right) shows the

velocity field along the centre plane obtained by ensemble averaging the La-

grangian particle velocities in subvolumes of 3×3×3 cm3 with an overlap of 75%,

producing a final grid with a vector pitch of 7.5 mm. The flow in the back of the

Figure 4.7: (left) Snapshot of a subset of the instantaneous Lagrangian particle tracks
coloured by their normalized streamwise velocity. (Right) Representation of the time-
average velocity field u normalized by the freestream velocity U∞ along the plane Y = 0
mm.

cylinder shows the characteristics of the near wake of a bluff body. A region of

reverse flow is visible on the top surface of the cylinder, with the flow separat-

ing at the leading edge. Above the separation region, accelerated flow is mea-

sured. This is due to the streamline curvature due to the flow separation on the

top surface. The near-wake of the cylinder is characterized by the presence of a

recirculation region that extends until X /D = 1.5.

Figure 4.8 (left) presents the fluctuating component of the streamwise veloc-

ity obtained by STB. It is noticeable the effect of the shear layer that is caused

by the separation at the leading edge of the top surface of the cylinder, where

the fluctuating component overcomes 50% of the freestream velocity. Moving

downstream, the shear region diffuses and increases its size while decreasing the

level of fluctuations to 35% at the centre of the recirculation region. figure 4.8

(right) illustrates the spatial distribution of the local DVR evaluated by equation
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Figure 4.8: (Left) Contour of the root-mean-square of the normalized streamwise veloc-
ity fluctuations u′/U∞ given by STB at Y = 0 mm. (Right) Contour of the local DVR for
STB at Y = 0 mm.

4.3. In order to determine the relative uncertainty of the velocity, the relative

uncertainty of the particle position εx is needed. To evaluate the latter, the aver-

age of the discrepancy between the raw and the fitted particle position is used,

following the equation:

εx = 1

k

k∑
i=1

|Xi,raw −Xi,fit| (4.6)

The value of DVR depends on the local particle displacement and varies be-

tween O(103) in the freestream region, where the displacement is maximum, to

O(102) in the separation region above the top surface of the cylinder. The low un-

certainty of the velocity determination allows to use of the STB particle tracks as

a reference for the evaluation of the three mentioned techniques: double-frame

single exposure (DF), 4-pulse double-frame with fixed time separation (static 4P-

2F) and the proposed adaptive algorithm based on 4-pulse double-frame with

variable time separation recordings (adaptive 4P-2F).

The first method analyzed is the double-frame single exposure (DF), with a

pulse separation time ∆t0 = 2∆tST B . To evaluate the precision of the measure-

ment, two different parameters are here calculated: the local DVR evaluated fol-

lowing equation 4.3 and the local difference between the reference and the cal-

culated field, evaluated as:

∆= |uDF −uST B | (4.7)

which is calculated for each track. To evaluate the spatial variation of ∆, its value

is spatially averaged through the same ensemble process described for the veloc-
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Figure 4.9: (Left) Contour of the local DVR obtained by DF at Y = 0 mm. (Right) Contour
of the mean deviation ∆ between DF result and the reference, as a percentage of the
freestream velocity.

ity.

Figure 4.9 (left) shows the spatial distribution at Y = 0 mm of the local DVR

evaluated as prescribed by equation 4.3. Its value varies drastically within the

measurement volume, reaching its maximum in the freestream region (DVR ∼
20). In the near wake, more specifically in the recirculation region, its value drops

below 4 due to the small particle displacement. The same region is characterized

by the highest deviation between the instantaneous velocity measured by STB

and DF, which reaches peaks of ∼ 20%, as shown in figure 4.9 (right).

To evaluate the performance of the static 4P-2F method, the following tim-

ing strategy is selected: ∆t0 = ∆tSTB and ∆t1 = 2∆tSTB. Once the four parti-

cles are selected from each of the STB tracks, a second-order polynomial fit is

evaluated through the raw positions of the selected particles. The adoption of

a multi-exposure strategy leads to an increase in the obtainable local DVR, as

shown in figure 4.10 (left). As for the DF method, the peak of DVR is reached

in the freestream region above the cylinder. In this region, the increase of parti-

cle displacement doubles the obtainable DVR, reflecting the 100% increase of T .

The effect of the time extension can be detected also in the recirculation region,

where the obtainable DVR doubles as well, from ∼ 5 to ∼ 10. Figure 4.10 (right)

presents the average deviation between the velocity calculated by STB and by

the static 4P-2F method. A general reduction of 2−3% is obtained in the entire

field when compared to the DF method. To determine the pairs [∆t0,∆t1]n to

be used for the adaptive 4P-2F method, the pdf of the distribution of absolute

velocities of the predictor field (DF field in this case) has to be evaluated and is
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Figure 4.10: (Left) Contour of the local DVR obtained by static 4P-2F at Y = 0 mm. (Right)
Contour of the mean deviation ∆ between static 4P-2F result and the reference, as a per-
centage of the freestream velocity.

Table 4.1: Distribution of pulse separation time pair given the local velocity.

Region # Local flow velocity ∆t0 ∆t1 Tn

1 |U|/U∞ > 0.9 ∆tSTB 2∆tSTB 5∆tSTB

2 0.45 < |U|/U∞ < 0.9 ∆tSTB 4∆tSTB 9∆tSTB

3 |U|/U∞ < 0.45 ∆tSTB 8∆tSTB 17∆tSTB

shown in figure 4.11 (left). The entire range of velocities is equally divided into N

subgroups and for each of them, a reference velocity Vn at the middle of the sub-

range is selected. The correspondent Tn is then evaluated using equation 4.5. It

is decided to set N=3 to consider three pairs of [∆t0,∆t1]n . Table 4.1 shows the

pulse separation times selected in the three regions of different velocities.

Following the indication given in table 4.1, figure 4.11 (right) shows the re-

gions where the different pulse separation time pairs are used. While in the

freestream the time strategy is equal to the one used for the static 4P-2F method,

the total time is stretched up to three times in the recirculation region to increase

the particle displacement and in turn the DVR.

The increase in total displacement improves the precision of the velocity de-

termination, as illustrated by the distribution of the local DVR shown in figure

4.12 (left). When compared to the DF strategy, the local DVR in the recirculation

region increases by ≈ 150% while, compared to the static 4P-2F method, an in-

crease of ∼ 50% is obtained. The increase in precision is detectable also when the

deviation from the reference ∆ is evaluated, as shown in figure 4.12 (right). The

increment of the total displacement allows for an increase in the precision of the
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Figure 4.11: (Left) Distribution of the normalized absolute velocity |U| obtained by
analysing the reference velocity field. (Right) Illustration of the spatial distribution of
the time extension applied by the proposed methodology.

particle fit and reduces the discrepancy from the reference velocity, quantifiable

in 28% in the wake region where the time stretching reaches the maximum.

Figure 4.12: (Left) Contour of the local DVR obtained by the adaptive 4P-2F at Y = 0 mm.
(Right) Contour of the mean deviation ∆ between the adaptive 4P-2F and the reference,
as a percentage of the freestream velocity.

4.7. CONCLUSIONS

In this chapter, a new adaptive acquisition strategy has been presented. The

method is based on a multi-step approach. Firstly, a double-frame single-exposure

acquisition is analyzed and Reynolds decomposition is applied to the calculated

flow field to obtain the time-averaged velocity . The use of a double-frame single-

exposure strategy allows determining the velocity field in a robust but low pre-

cision manner. The predicted velocity field is used then to obtain a series of

pulse separation times for the successive acquisition of a series of double-frame

double-exposure datasets. The time separation pairs are selected to obtain a
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rather constant particle displacement across the measurement volume. Finally,

the tracks computed analysing the different acquisitions are merged to produce

the final description of the flow field. The proposed methodology has been tested

considering the near-wake of a truncated cylinder. To quantitatively evaluate

the performance of the mentioned algorithms, a reference has been constructed

with the Lagrangian Particle tracking algorithm shake-the-box applied to a highly

sampled dataset. The results show the benefit obtained by the increment of par-

ticle displacement in the region characterized by low velocities in terms of mea-

surement precision. Further studies on the effect of particle concentration and

truncation errors will be carried out in the future.
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TURBULENCE TRANSPORT

Parts of this chapter have been published in:

• Saredi E, Sciacchitano A & Scarano F (2022) Outlier detection for PIV statistics based on
turbulence transport. Exp. Fluids 63(1): 1-10
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5.1. BACKGROUND

In Particle Image Velocimetry (PIV), outliers are spurious vectors that exhibit

large unphysical variations in magnitude and direction from neighbouring valid

vectors (Westerweel, 1994). Despite the above definition, most proposed and

used approaches for outliers detection are not based on flow physics, but rather

on statistical data analysis, as described in section 1.7.

The outlier detection methods presented are typically effective for the instan-

taneous velocity fields where a single vector or a cluster thereof largely departs

in magnitude and direction from the neighbouring points. Such outliers need

to be detected and replaced, or omitted, when estimating statistical flow prop-

erties like the mean value and its fluctuations. If not, they yield erroneous flow

statistics, whereby the outliers depart less markedly from the neighbouring vec-

tors and therefore are not easily detectable with state-of-the-art outlier detection

approaches.

An early attempt to use constitutive equations for outlier detection is due to

Song et al. (1999) who invoked compliance to the continuity equation, numeri-

cally evaluated from a Delaunay tessellation of the domain. For experiments in

the incompressible flow regime, outliers would produce unphysical nonzero val-

ues of the velocity divergence. However, a unique value of the threshold that sep-

arates outliers from other acceptable sources of error (e.g. small amplitude mea-

surement noise) could not be identified, as deductible from the data presented

by Azijli, Dwight (2015). The advent of three-dimensional PIV techniques (Raf-

Figure 5.1: Example of the presence of outlier in PIV velocity fields. Results reproduced
from Higham et al. (2016).
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fel et al., 2007) and in particular particle-based analysis (Shake-The-Box, STB,

Schanz et al., 2016) has established new approaches to evaluating the flow statis-

tics from experiments. The instantaneous flow velocity is obtained directly at the

sparse positions occupied by the particle tracers. Therefore, ensemble statistics

are obtained by partitioning the domain into cubic voxels (or bins) arranged on

a Cartesian grid and evaluating locally the ensemble average and fluctuations

from all particle velocities belonging to the considered voxel. Techniques that

perform accurately this operation have been devised by Agüera et al. (2016) and

more recently by Godbersen, Schröder (2020).

The occurrence of outliers in PTV data is notably more frequent than in data

produced with cross-correlation analysis (2nd PIV challenge, Stanislas et al., 2005),

thus bringing forward the problem of outliers detection from ensemble statistics

of 3D-PTV data. In the present work, the principle of using constitutive equa-

tions for the detection of outliers from statistical datasets is revised, invoking the

turbulence transport equation as a consistent choice.

5.2. TURBULENT TRANSPORT DETECTION CRITERION

5.2.1. WORKING PRINCIPLE

Let us consider a statistical dataset whereby the measured velocity is represented

by means of the Reynolds decomposition into the mean and fluctuating part.

Taking for instance the streamwise velocity component u, such decomposition

reads as:

u = u +u′ (5.1)

The turbulent kinetic energy (TKE, here denoted by the symbol k) considers the

statistical fluctuations from all velocity components:

k = 1

2
(u′2 + v ′2 +w ′2) (5.2)

and its behaviour is governed by the turbulence transport equation (Hinze, 1967):

Dk

Dt
= T +P −ε (5.3)
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The above expression states that the variation of TKE of a fluid parcel is governed

by transport T , production P and dissipation ε. The main question raised here

is to what extent can the occurrence of a statistical outlier be detected by invok-

ing the above physical principle. For further use, the terms of equation 5.3 are

explained below:

Dk

Dt
= ∂k

∂t
+ A material derivative of k, (5.4)

A = ui
∂k

∂xi
advection, (5.5)

P =−u′
i u′

j

∂ui

∂x j
production, (5.6)

T =−1

2

∂u′
i u′

i u′
j

∂x j
+ν ∂k2

∂xi∂x j
− 1

ρ

∂u′
j p ′

∂xi
transport, (5.7)

ε= ν∂u′
i

∂x j

∂u′
i

∂x j
dissipation. (5.8)

From a recent review of studies describing the TKE budget (Ikhennicheu et al.,

2020), in turbulent shear flows, a first approximation of the behaviour for the

turbulent quantities is that of quasi-equilibrium turbulence, whereby the turbu-

lent properties vary very gradually along a streamline. Under this condition, the

production and the dissipation are the dominant terms at the right-hand side of

equation 5.3, with the former acting as the upper bound of the convection of TKE

along a streamline, since a non-null dissipation reduces the TKE. It is hypothe-

sized here (and illustrated in the considered experiments of section 3) that the

presence of data outliers generally leads to an overestimation of TKE and locally

biases the RMS fluctuations. This condition can be detected as unphysical, in-

voking a criterion based on equation 5.3 or a derived form of it as shown in the

remainder.

5.2.2. DETECTION CRITERION

The interaction of outliers and turbulence transport is first illustrated schemat-

ically. Let us consider the statistical dataset from the measurements around an
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airfoil at incidence (figure 5.2), which corresponds to one of the experiments pre-

sented in the remainder. The measurement yields the statistical description of

the velocity field V, V′ and an estimate of the velocity fluctuations k. Flow sep-

aration from the leading edge results in a large flow recirculation bounded by

turbulent shear layers. The laser light refraction at the edges of the transpar-

ent airfoil produces regions with no illumination (indicated as A and B in figure

5.2). Additionally, two small regions of outliers are hypothesised (region A ahead

of the airfoil and region D in the shear layer) as resulting from background light

reflections. In the above regions, a significantly more frequent occurrence of out-

liers is hypothesized, in turn causing a localised overestimation of the TKE. How-

ever, let us recall that along any time-average streamline, the evolution of k must

comply with equation 5.3. Therefore, following a streamline that crosses a region

of outliers, it is expected that the absolute variation of TKE along the stream-

line |∂k
∂ξ | will largely exceed the value allowed by equation 5.3. When outliers ap-

pear featuring a cluster, the principle is violated at its upstream and downstream

edges. In the irrotational regions (A, B and C of figure 5.3) k is expected to re-

main constant and close to null (laminar shear free flow), alongside its spatial

derivative along the streamline, i.e. |∂k
∂ξ | = 0 (light blue line in figure 5.3). The oc-

currence of outliers in the measurement will produce a visible increase of |∂k
∂ξ | at

the upstream and downstream edges. Taking into consideration some measure-

ment noise for a threshold level (black dashed line in figure 5.3), a single value

of |∂k
∂ξ | may allow detecting the data at the upstream boundary as erroneous. In

the regime of turbulent shear (region D in figure 5.3-right) instead, the variation

of k along the streamline is not expected to be null, with the term P dominating

the righthand side of equation 5.3. A threshold must be based on an estimate

of the local production of turbulence, which requires the measurement of the

shear rate and the Reynolds stress tensor. Based on the above discussion, one

can define a criterion that states the admissible value for TKE advection along a

streamline, compared to an estimation of TKE production:

ρT T = |A|
|P | (5.9)

Such admissible values of ρT T are to be of O(1) or smaller. Moreover, con-
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Figure 5.2: Flow around an airfoil at incidence. The separated region at the suction side
is bounded by free shear layers. Outlier regions are highlighted in light red: A, B and C in
the external flow around the airfoil; D inside the shear layer. Red continuous and dashed
lines mark the upstream and downstream edges of each region.

sidering that the estimation of P , performed considering the unscrutinised ve-

locity field, is affected by measurement noise, the production term in equation

5.9 is replaced with the median Pm of the adjacent vectors in a kernel 5× 5, in

analogy to (Westerweel, Scarano, 2005). Similarly, to avoid the ratio losing signif-

icance when the production is null (for instance in regions of laminar flow, free of

shear), an additive term ρT T is included on the denominator that scales with the

uncertainty on the numerator A of equation 5.9. With the latter modifications,

equation 5.9 becomes:

ρT T = |A|
|Pm |+γT T

< 5 (5.10)

Due to the statistical nature of the terms of equation 5.10, it must be underlined

that the presented approach is only meant for flow statistics and cannot be di-

rectly applied to instantaneous velocity fields. A suitable value for the term γT T

can be estimated assuming that the velocity is measured with uncertainty not

exceeding 5% of a reference velocity, e.g. V∞:

γT T = (0.05V∞)3

∆
(5.11)

with ∆ representing the pitch of the grid where the velocity vector field is evalu-

ated. Equation 5.10 is written already in the form of a detection criterion, whereby
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Figure 5.3: Schematic representation of the expected variation of turbulent kinetic en-
ergy along a streamline. At the boundaries of the erroneous region, an unphysical in-
crease of TKE flags erroneous vectors.

a threshold value of 5 is proposed here that separates admissible (unit order of

magnitude) from non-admissible (higher order of magnitude) values of ρT T . The

above choice is scrutinised with the application of the criterion to data gathered

in wind tunnel experiments.

5.3. EXPERIMENTAL ASSESSMENT

5.3.1. SELECTED DATASETS

Three experimental datasets have been considered: the 2D velocity field around

a NACA 0012 airfoil, the near-wake of a truncated cylinder and that of the Ahmed

body (Ahmed et al., 1984). Planar, two-component PIV measurements are taken

for the airfoil case. The flow is seeded with water–glycol droplets of 1 µm me-

dian diameter. Illumination is provided by a Quantel Evergreen 200 Nd:YAG laser

(2×200 mJ at 15 Hz), and the illuminated particles are imaged by a LaVision Im-

ager sCMOS camera (2560×2160 pixels, 16 bits). A description of the setup can

be found in Adatrao et al. (2021). Figure 5.4a shows an instantaneous record-

ing featuring, aside from uniform seeding concentration, shadow region ema-

nating from the leading edge. Multi-pass, 2D cross-correlation analysis is used

to evaluate the particles’ motion. For the near-wake of the cylinder, a tomo-
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a b c

Figure 5.4: Raw images from the three experiments. a NACA 0012 airfoil; b near-wake of
a truncated cylinder; c near-wake of the Ahmed body.

graphic PIV system was used. In order to achieve a measurement volume of 6

L, sub-millimetre helium-filled-soap-bubbles (HFSB) have been used as tracer

particles (Faleiros et al., 2019; Scarano et al., 2015a). The illumination was pro-

vided by a Quantronix Darwin Duo Nd:YLF laser (2×25 mJ at 1 kHz). The imaging

system comprised four high-speed Photron FASTCAM SA1 cameras (1024×1024

pixels, 10 bits) featuring a tomographic system with a large aperture (Schnei-

ders et al., 2016). The region of interest is illuminated from downstream, and the

round shape of the cylinder surface produces strong reflection towards two of

the cameras, placed at the same height as the model. A raw image with such re-

flection is shown in figure 5.4b. The recordings were analysed with the STB algo-

rithm (Schanz et al., 2016), yielding the particles’ velocity along their trajectory.

Ensemble-average over cubic bins was performed returning the time-average ve-

locity and its fluctuations on a Cartesian grid. The near-wake of Ahmed body was

investigated by Saredi et al. (2020) using robotic volumetric PIV (Jux et al., 2018).

HFSB were used to seed the flow stream. The technique makes use of a coaxial

volumetric velocimeter (Schneiders et al., 2018), whereby the laser light propa-

gates approximately along the same direction as that of the four CMOS imagers

composing the LaVision Minishaker (1920×1200 pixels, 10 bits). As a result, the

recorded images tend to collect light reflected from objects and the illuminated

background. The situation is illustrated in figure 5.4c. The particle motion is ob-

tained with STB in a way similar to the previous case. The main experimental

parameters of the three considered datasets are listed in Table 5.1.
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Table 5.1: Measurement parameters for the three considered experiments

Experiment NACA 0012
Near-wake

truncated cylinder
Near-wake

Ahmed body
2D/3D 2D 3D 3D
N. snapshots 1000 2000 10000
Seeding Fog droplets (dp = 1µm) HFSB (dp = 300µm) HFSB (dp = 300µm)

Illumination
Nd:YAG laser

(2×200 mJ @ 15 Hz)
Nd:YLF laser

(2×25 mJ @ 1 kHz)
Nd:YLF laser

(2×25 mJ @ 1 kHz)

Rec. device
sCMOS (2560×2160 px2,

16 bits, 6.5 µm pixel pitch)
CMOS (1021×1024 px2,

12 bits, 20 µm pixel pitch)
CMOS (1021×1024 px2,

12 bits, 20 µm pixel pitch)

Rec. method
Double frame

single exposure
Time-resolved

single exposure
Time-resolved

single exposure
Proc. tech. Cross-correlation STB STB

5.3.2. VELOCITY FIELD STATISTICS

The error sources described above introduce outliers at random time instants.

This process is illustrated in the example of figure 5.5 in the left column, where

the instantaneous measurement features isolated outliers and, more importantly,

regions of finite extent with a large fraction of unphysical data. The cross-correlation

analysis fails in the shadow region above the airfoil, which leads to random ve-

locity vectors. For the cylinder case, the strong reflection on the surface of the

body causes the appearance of erroneous particle tracks along one of the to-

mographic lines of sight. These tracks feature high-amplitude errors. The un-

physical values extend also inside the solid object. The background reflection in

the case of the Ahmed body wake introduces erroneous tracks in the free-stream

region. Also, in this case, this region extends along the viewing direction. The

outliers that appear in the instantaneous fields are markedly departing from the

correct measurements. When the statistical dataset is built to evaluate the time-

average velocity field (figure 5.5, centre-column), such departure becomes less

evident as a result of the statistical averaging between spurious and correct data.

For the 2D-wing case, the region corresponding to both the shadow and the per-

spective section of the wing is characterized by erroneous low velocity. For the

cylinder case, laser reflections generate invalid vectors inside the cylinder ge-

ometry. Furthermore, a region of flow characterized by quasi-null streamwise

velocity can be spotted in the area corresponding to the erroneous tracks. Such

areas are highlighted with dashed ellipses in figure 5.5. Similarly, the presence
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of spurious tracks in the near-wake of the Ahmed body produces an unphysical

region of deceleration and acceleration at X = 0.2 m in the free-stream region of

the ensemble-averaged flow field. The effect of instantaneous velocity outliers

affects even more markedly the RMS velocity fluctuations (figure 5.5, right col-

umn). This effect is illustrated here by displaying the quantity
p

k/V∞. All outlier

regions feature a sharp increase of TKE with respect to the surrounding. It can

be noted that the extent and the shape of the outlier regions are more visible for

the velocity fluctuations rather than for the time-averaged velocity. However, the

TKE alone can hardly be used as a criterion for outliers detection, because its val-

ues are not bounded by criterion and the threshold for admissible values varies

greatly among experiments. For instance, while for the airfoil case,
p

k/V∞ < 0.4

would be an appropriate criterion to identify the entire erroneous data caused by

the shadow, the same threshold would introduce false positives (i.e. flag correct

measurements as erroneous) in the shear region of the cylinder wake.
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Figure 5.5: Left: Instantaneous velocity vectors or tracks. Centre: time-averaged velocity
vectors; region A is used for determining η f p (figure 5.7). Right: normalized fluctuations,p

k/V∞. Outliers regions are highlighted by a dashed ellipse; region B is used to deter-
mine ηd (figure 5.7). For the 3D datasets, the data are presented in a slice crossing the
outlier region (Z = 0.13 m for the Ahmed body, Z = 0.05 m for the cylinder).
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5.3.3. COMPARISON WITH STATE-OF-THE-ART OUTLIER DETECTION

The effectiveness of the turbulence transport-based criterion is compared to the

universal outlier detection (UOD, Westerweel, Scarano, 2005). Firstly, the prin-

ciple of the latter are here discussed. In their work, the authors proposed a new

methodology where outliers are identified by a median-based residual r∗
0 defined

as:

r∗
0 = |V0 −Vm |

rm +γUOD
(5.12)

where V0 is the considered velocity vector, Vm the median value across its neigh-

bourhood, rm the median of the neighbours’ residuals defined as ri = |Vi −Vm |,
and γUOD is the minimum normalization level, often set to 0.1 pixels. The UOD

criterion has been postulated, based on experiments as r∗
0 > 2 and the same

threshold value is used in the present analysis. In the original paper, the crite-

rion has been tested considering a variety of velocity fields obtained by 2D PIV.

The application of the two outliers indicators to the present data, namely ρT T

of equation 5.10 and the residual r∗
0 of equation 5.12, is presented in figure 5.6.

The condition r∗
0 > 2 does not detect false vectors for the airfoil and the cylinder

case. In the former, only a small region at the leading edge of the shadow would

be considered erroneous.

In the latter, the area affected by reflection is not detected as erroneous, with

only some vectors at the edges of the flow domain indicated as outliers. The

same criterion does detect erroneous vectors in Ahmed body wake. However,

also correct measurements in the shear layers are labelled as outliers (false posi-

tives). In the right column of figure 5.6 the ρT T criterion is displayed. The highest

value is attained at the edges of the erroneous regions, (ρT T > 10), well separated,

by approximately one order of magnitude, with respect to the adjacent correct

measurements. The edges of the airfoil shadow region and the edges of the area

blocked by the perspective view are clearly detected as false vectors. The edges

of the erroneous region in the cylinder wake are also clearly detected, again with

a large separation to the correct portion of the flow where ρT T ∼ 1. In the Ahmed

body wake, ρT T correctly detects the boundary of the erroneous region high-

lighted by the dashed ellipse in figure 5.6 (right). Two regions at the back edge

of the Ahmed body are also highlighted as erroneous, suggesting the presence of
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false positives for ρT T too, in those regions.

Figure 5.6: Left: normalized residual r∗
0 of the UOD criterion (Westerweel, Scarano,

2005). Right: turbulence transport ratio ρT T defined by equation 5.10. For the 3D
datasets, the data are presented in a slice crossing the outlier region (Z = 0.13 m for the
Ahmed body, Z = 0.05 m for the cylinder).

5.3.4. DETECTION RATIO AND FALSE POSITIVE

The performance of the above detection methods is assessed by introducing the

detection and false positive rates ηd and η f p , respectively. The former is defined

as the number of spurious vectors correctly flagged as erroneous divided by the

total number of outliers. The false positive rate η f p is defined as the ratio of cor-

rect vectors flagged detected as outliers and the total number of correct vectors.

The criterion robustness is defined by how constant the above two parameters

remain by varying the threshold. It is chosen to vary the UOD criterion between
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Figure 5.7: Comparison of the detection ratio ηd and the false positive ratio η f p obtained
by UOD and ρT T . Data extracted from Ahmed body near wake.

0 and 4 and ρT T between 0 and 10. A portion of the dataset in the near-wake of

the Ahmed body has been considered where the presence of erroneous vectors

can be clearly excluded, yet the flow exhibits significant shear and turbulence.

The planar section of the considered volume is indicated as region A in figure 5.5

(centre). Instead, for the estimation of ηd erroneous vectors need to be known

with a high level of confidence. In this case, the area circled and indicate as re-

gion B in figure 5.5 (right) has been considered. The proposed principle aims

to detect erroneous vectors at the edge of correct measurement regions; only

the vectors located at the edge of the faulty area have been considered. Once

isolated, this group of vectors, the amount of them flagged as erroneous by the

UOD and by the turbulence transport-based outlier detection has been calcu-

lated. The results obtained in terms of ηd and η f p by the two methods, varying

the corresponding thresholds, are presented in figure 5.7. It has to be noted that

the optimal values of η f p and ηd are 0 and 1, respectively. It is expected that,

when increasing the value of the threshold for both criteria, the correct detec-

tion probability decreases, alongside the false positive rate. Both criteria yield

the same expected behaviour. The UOD criterion features a rapidly declining

detection rate, with a value of approximately 50% for r∗
0 = 2. At this point, the

fraction of less than 5% for the false positives is acceptably small. The turbu-
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lence transport-based criterion detects approximately 90% of the erroneous vec-

tors with a threshold of 5, with a fraction of false positives similar to that of UOD.

Moreover, the difference subtended between ηd and η f p remains rather in a wide

range of values for the threshold: ∆η > 0.8 when ρT T ∈ [1,10]. In contrast, such

difference is limited to 0.4 for UOD in the range r∗
0 ∈ [1,3].

An additional indication of the outlier detection stability can be obtained

by examining the fraction of detected outliers with respect to a variation of the

threshold. The histograms of r∗
0 and ρT T are shown in figure 5.8. Similarly to the

results in figure 5.7, both methods yield a decreasing number of detected vectors

with an increasing value of the threshold. A significant difference is observed in

the slope of the curves corresponding to the two criteria. While for the UOD cri-

terion, a unit change of r∗
0 causes a variation by a decade in the histogram (slope

10−1), the same change of ρT T introduces a negligible variation of detected out-

liers (slope 10−1/6). It is thus concluded that the detection of outliers based on

the turbulence transport principle is a significantly more stable estimator of sta-

Figure 5.8: Histogram of detected outliers by UOD (left) and ρT T (right) and their com-
monly selected threshold value (vertical dashed black line). Thick grey lines indicate the
average slope of curves.
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tistical outliers alongside yielding minimal occurrence of false positives.

5.4. CONCLUSIONS

A novel outlier detection criterion is presented that invokes the physical princi-

ple of turbulence transport and applies to the flow statistics evaluated by PIV or

PTV, preferably in 3D datasets. The approach relies on the fact that the measured

velocity fluctuations are bound to comply with the governing equation of tur-

bulent kinetic energy transport. The ratio of advected turbulent kinetic energy

with the production term along a given trajectory is at the basis of the proposed

criterion. A robust implementation of the method applies the median opera-

tor for the production term and an additive term that avoids a null denomina-

tor. The method is verified with data from three different experiments, including

planar, tomographic 3D-PTV and 3D-PTV measurements by coaxial volumetric

velocimetry. The outlier detection principle based on turbulence transport de-

tects the edges of regions of outliers, mostly caused by extensive regions of light

reflection or shadows in the measurements. The method compares favourably

with the state-of-the-art UOD from the analysis of the experimental datasets.

Considering the two optimal thresholds, r∗
0 = 2 and ρT T = 5, the latter yields a

significantly higher detection ratio ηd with a comparable and small amount of

false positives (η f p ). For extended regions of outliers, the method requires mul-

tiple erosion iterations.
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for RANS with time-averaged 3D-PIV data. Comp. Fluids 218: 104827
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6.1. BACKGROUND

The state observer algorithm, originally proposed by Luenberger (1964) is nowa-

days a key concept of the control theory, based on a feedback term in the mod-

elling equation. The intensity of the feedback is a function of the difference be-

tween the model results and the reference (viz. experimental) data multiplied

by a gain factor. The latter is usually tuned to maximise the convergence rate.

The design of the feedback and its law of application is the key point of a state

observer algorithm (Hayase, 2015). Hayase, Hayashi (1997) applied a state ob-

server algorithm to improve the simulation of a fully developed turbulent square

duct. The authors modified the pressure boundary conditions at the inlet and

the outlet with a proportional law in order to reduce the error between the sim-

ulation and the ground truth, which in that case was a pre-calculated numerical

solution performed on the same mesh with a different initial condition. The ap-

plication of the feedback gave an accelerated convergence of the simulation and

a reduction of one order of magnitude in the final error across the whole domain.

This approach alleviates the errors given by the erroneous boundary conditions

but is not able to tackle the error given by the approximation performed in the

turbulence modelling.

Imagawa, Hayase (2010) performed a Measurement-Integrated (MI) simula-

tion for the turbulent flow along a square duct and applied feedback by means

of a body force term in the momentum equation. The forcing term was linearly

proportional (DASOP, which stands for data assimilation state observer propor-

tional) to the difference between the velocity returned by the unsteady simu-

lation and that from a reference simulation performed with the same numeri-

cal schemes on the same grid but with different initial conditions. The appli-

cation of the feedback led to a reduction of the steady state error by four or-

ders of magnitude when all the velocity components were forced at all the grid

points. However, interrupting the assimilation during the simulation caused the

system to converge again towards the non-assimilated solution. The authors

also considered the case of a limited density of forcing points, forcing from one

plane every four down to only one plane. They concluded that, with their forc-

ing term, tuning the gain factor, it was possible to obtain the same error re-

duction considering one plane every four. Furthermore, by disabling the forc-
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ing term at a quarter of the total running time, the simulation was naturally

converging towards the not assimilated simulation, with the effect of the forc-

ing term effect that was vanishing. This shows a typical behaviour of a propor-

tional controller, with the efficacy of the forcing term that reduces when the er-

ror reduces. Neeteson, Rival (2020) applied the state observer algorithm to the

Karman vortex shedding problem at Re = 102, using a computational reference.

They introduced a Proportional-Integral-Derivative (PID) control in the pressure

equation, which was formulated as feedback law. The latter was more elabo-

rate than the sole proportional law used in most previous works and aimed at

solving the reduction of effectiveness of the forcing term at the low error stages.

The application of the PID control law (DASOPID) improved the results com-

pared to those given by the sole proportional feedback law, returning a vortex

shedding behaviour closer to that of the reference data in terms of shedding

frequency. The state observer algorithm has been used also with experimental

data as a reference. Yamagata et al. (2008) studied the unsteady behaviour of

the Karman vortex street behind a truncated cylinder at Re = 1.2×103 perform-

ing a MI simulation with planar PIV data input. The assimilation allowed the

reproduction of the large-scale unsteadiness which is not obtained by ordinary

simulations. The discussion above shows that the state observer data assimi-

lation has been considered to enhance the accuracy of RANS-based CFD sim-

ulations, mainly in the unsteady flow regime and at low Re number. However,

many applications of industrial aerodynamics are primarily concerned with the

accuracy of the steady-state flow solution. Moreover, many relevant problems in-

volve high Reynolds number flows and a fully turbulent regime for which many

questions about the applicability and the potential of DA remain unanswered.

This study considers steady-state simulations of the flow around a wall-mounted

bluff obstacle, representing the geometry of a simplified car mirror presented by

De Villiers (2006). The problem is studied at Re = 8× 104. The reference time-

averaged velocity field is obtained from experiments that make use of Robotic

Volumetric PIV Jux et al., 2018. Two formulations of the State Observer forc-

ing term are considered, namely Data-Assimilation-State-Observer-Proportional

(DASOP) and Data-Assimilation-State-Observer-Proportional-Integral (DASOPI).

Moreover, the work investigates the extent of the regions affected by the forcing
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point, to identify a criterion for optimum data assimilation forced points density.

Finally, a metric is introduced to quantify the effect of DA methods and param-

eters on the accuracy of the assimilated solutions with respect to the reference

velocity.

6.2. STATE OBSERVER DATA ASSIMILATION FOR RANS
Reynolds-averaged Navier-Stokes (RANS) equations are considered here as the

framework for the numerical simulation of incompressible turbulent fluid flows.

The baseline simulation is intended as the process leading to a solution (baseline

solution) with no use of a-priori information from the experiments. The working

principle of data assimilation is to introduce a certain amount of reference data,

indicated here as uref, and force the simulation to comply with it. In this work,

the resulting process is called the assimilated simulation, which returns the as-

similated solution. The objective is to drive the assimilated solution towards a

more correct evaluation of the relevant features present in the flow field (e.g. flow

topology, separation, reattachment, pressure gradient distribution, aerodynamic

loads and forces), thus minimising simulation errors, such as the ones associated

with the turbulence modelling. The underlying concepts and equations of data

assimilation through a state observer (DASO) algorithm are recalled here. Ap-

plying Reynolds decomposition and time averaging, the dynamic behaviour of a

steady, incompressible, viscous and turbulent flow can be described by the RANS

equations, formed by the combination of the conservation of mass and momen-

tum, respectively:

∇·u = 0 (6.1)

(u ·∇)u =−∇p +ν∆u−∇·R (6.2)

imposing consistent initial conditions (IC) and boundary conditions (BC) and

where Ri j = u′
i u′

j represents the Reynolds stress tensor. Due to the incompress-

ible flow condition, p represents the static pressure divided by the constant den-

sity. As shown by Imagawa, Hayase (2010), the assimilation of the data through a

state observer algorithm is achieved by introducing a body force term f into the
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momentum equation:

(u ·∇)u =−∇p +ν∆u−∇·R+ f (6.3)

Under the hypothesis of steady flow conditions, in the following discussion the

overbar indicating the time-average operation has been omitted, although all the

quantities are meant to be time-averaged. The relative strength of the body force

term represents the feedback and it is proportional to the local difference e be-

tween the simulation and the experimental time-averaged velocities:

e = (u∗
ref −u) (6.4)

where u∗
ref = P (uref), with P being the operator that projects velocity informa-

tion from the experimental grid to the computational grid. Further information

on P is given in section 6.4.1. In this work, two different forms of the feedback

term have been considered: data assimilation based on state observer with pro-

portional feedback (DASOP) and on proportional-integral feedback (DASOPI).

The feedback control law used in the DASOP method reads as:

fD ASOP = Kp

D
e◦ |e| (6.5)

where Kp is the proportional feedback gain, the symbol ◦ represents the Hadamard

product (Styan, 1973) and |e| is the component-wise absolute value of the error

|e| = [|ex |, |ey |, |ez |]T . The forcing term for the DASOPI method reads as:

fD ASOPI =
Kp

D
e◦ |e|+ Ki

D

N−1∑
n=1

en ◦ |en | (6.6)

where N is the current iteration and Ki is the integral feedback gain and en is the

local error vector at the iteration n. While state observers are typically applied

to unsteady systems and act in the time domain, in the methodology here pro-

posed the state observer acts in the iteration domain, for the determination of a

steady-state solution. The gains Kp and Ki are scalars as they are assumed equal

for each component of the error and constant along the simulation and spatially

in the entire simulation domain. The values corresponding to cells where u∗
ref
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is not available are set to 0, thus disabling the forcing term. The quadratic term

implemented in both the proposed feedback terms resembles an error-squared

controller, as proposed in Shinskey (1996). Its advantage is that the forcing term

is strengthened with respect to a linear controller when the error is large, penal-

izing the regions where the difference between the reference and the simulated

velocity is lower. The result obtained at the end of the simulation represents the

assimilated solution. The presented methodology implies the usage of a single

simulation to reach the final assimilated solution, contrary to ensemble Kalman

filters and variational methods, which require multiple simulations to reach the

final assimilated solution.

6.3. SETUP OF THE REFERENCE DATASET EXPERIMENT

6.3.1. WIND TUNNEL AND MODEL

Experiments are performed at the TU Delft Aerodynamics Laboratories in an

open-jet open-circuit low-speed wind tunnel (W-tunnel). The tunnel features

a 4:1 area contraction, after which the air flow reaches the free-stream velocity

U∞ = 12 m/s in a cross-section of 60×60 cm2. A flat plate 1.5 m long is installed

at 10 cm height above the bottom edge of the exit (Fig. 6.1). The plate has a sharp

leading edge and is equipped with a zig-zag tripping device at 5 cm past the lead-

ing edge that forces the boundary layer to the turbulent regime. The model is a

half cylinder of diameter D = 10 cm topped by a quarter sphere (figure 6.1) with a

total height of 15 cm, as that used in the investigations of De Villiers (2006). The

Reynolds number based on the model diameter is ReD = 8×104. This geometry

represents a benchmark for automotive aerodynamics for the study of the flow

around appendices and in particular the side mirror. It reproduces the essential

features of juncture flow and bluff body aerodynamics, including horseshoe vor-

tex, sharp separation at the back, and large-scale fluctuations of the wake and of

the reattachment location (De Villiers, 2006).

6.3.2. ROBOTIC VOLUMETRIC PIV

The three-dimensional velocity field is measured by Robotic Volumetric PIV (Jux

et al., 2018), the system described in chapter 1. An illustration of the system con-
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Figure 6.1: Side view (top) and top view (bottom) of the experimental setup. The dashed
green line schematically represents the total measurement volume. The shadowed green
region indicates the instantaneous measurement volume for a given robot position.

figuration during the experiments is shown in figure 6.1. The system is com-

posed of a coaxial volumetric velocimeter (CVV), containing 4 high-speed cam-

eras, and laser illumination through optic fiber. The CVV is installed on a robotic

arm, UR5 from Universal Robots. The robot motion sequence is programmed

through the proprietary software RoboDK and operated through the LaVision

software DaVis 10. Synchronization of illumination and image acquisition is

made through a programmable timing unit (LaVision PTU 9). Helium-Filled-

Soap-Bubbles (HFSB) are used as flow tracers (Bosbach et al., 2009; Scarano et

al., 2015a; among others). The bubbles are nearly neutrally buoyant with a me-

dian diameter of approximately 0.3 mm (Faleiros et al., 2019). A rake composed

of 10 vertical elements hosting 200 bubble generators (Caridi, 2018) is installed

in the settling chamber of the wind tunnel. Soap, air and helium supply is con-
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Table 6.1: Characteristics of the Robotic Volumetric system and the experimental param-
eters.

Seeding Neutrally buoyant HFSB, ∼ 300µm diameter
Illumination Quantronix Darwin-Duo

Nd:YLF laser (2×25 mJ @ 1 kHz)
Recording device LaVision MiniShaker Aero system

4× CCD cameras
(640×452 @ 857 Hz) 4.8µm pitch

Imaging f = 4 mm, fp = 8
Acquisition frequency fT R = 857 Hz
Pulse separation time Time-resolved: ∆t = 1/ fT R = 1.17 ms
Magnification factor M ∼ 0.01 at 30 cm distance
Number of recordings per region N = 20000

trolled through a LaVision fluid supply unit (FSU). The flow is seeded at a con-

centration of approximately 0.3 bubbles/cm3. Table 6.1 summarises the exper-

imental parameters. The reader is referred to the works of Jux et al. (2018), Jux

et al. (2020) and Schneiders et al. (2018) for a deeper discussion of the working

principles of this measurement technique. Here the experimental procedure is

discussed. Prior to the measurements, a calibration of the robot position w.r.t.

the measurement domain (wind tunnel, plate and object) is performed. Each

measurement volume spans approximately 30×20×40 cm3. At each robot po-

sition, 20000 recordings are acquired in time-resolved mode at a frequency of

857 Hz (Trec ∼ 23s). The time elapsed from one position to the subsequent is ap-

proximately 270 s. The overall measurement encompasses 15 views, where the

measurement system is directed by robotic arm manipulation. At the end of the

measurements, the raw data features coverage of the measurement domain with

the datasets obtained from each viewing position. The procedure for data pro-

cessing and reduction is discussed in the next section.

6.3.3. DATA PROCESSING AND REDUCTION

The raw images are pre-processed to reduce background reflections using the

Butterworth high-pass filter (Sciacchitano, Scarano, 2014). The tracer motion

analysis is performed with the Lagrangian particle tracking algorithm Shake-The-

Box (Schanz et al., 2016). Tracks containing more than six appearances of the
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particle tracer are deemed as valid. At each recording, a sparse measurement

of the tracers’ velocity is obtained in the sub-volume. The measurements from

different robot positions are merged into a single dataset using the robot calibra-

tion data. The resulting domain is interrogated within cubic voxels (or bins) of

15 mm side length. Within each bin, the tracers’ velocity is ensemble-averaged,

yielding the time averaged velocity vector distribution in a Cartesian grid. The

averaging process inside the bin follows a spatially weighted algorithm with re-

spect to the centroid of the bin. A Gaussian weighting function (with a width of

half the bin size) is applied, following Agüera et al. (2016). Partial overlap by 3:4 of

neighbouring voxels yields velocity vectors spaced by 3.75 mm. The result is ren-

dered in a domain of 55×30×25 cm3 (figure 6.1) with a grid of 151×84×69 data

points describing the time-average velocity uref for use in the data assimilation

procedure.

6.4. NUMERICAL SIMULATIONS

Both baseline and assimilated simulations are based on a RANS solver using the

open-source C++ toolbox OpenFoam 1706 (Jasak, 2009). Equations 6.1 and 6.2

are discretised using the finite volume method on a collocated grid and solved

using the SIMPLE algorithm (Patankar, Spalding, 1972). For the baseline simula-

tion, the steady solver simpleFoam implemented in OpenFoam is used. For the

assimilated simulations, the feedback term is included within an in-house de-

veloped version of the same solver. Turbulence modelling is based on the k −ω
SST model (Menter, 1993). The computational domain is a square cuboid with

dimensions 30×20×10 diameters. The object is placed along the centreline of

the domain, with the origin of the coordinate system posed at the intersection

between the rear surface of the car mirror and the ground. The orientation of

the coordinate system is shown in figure 6.1. An inlet condition is imposed at

X /D =−10 and an outlet condition is imposed at X /D = 20. No-slip condition is

imposed at the ground floor and the object surfaces, whereas slip conditions are

applied to the top and side faces of the domain. A summary of the boundary and

initial condition is reported in Table 2. The same hexahedral mesh is used for

both the baseline and the assimilated simulations, formed by ∼ 18.5 M cells and

created with the commercial software CFMesh +. The region close to the surface
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of the object (−7 < X /D < 15 and −7 < Y /D < 7) is refined at several stages, as

shown in figure 6.2, where the cell dimension reduces from 10 mm to 0.78 mm,

corresponding to y+ < 5. All the simulations advance for 5000 iterations and

convergence is verified by reaching a relative variation of the averaged drag coef-

ficient of the object |C d ,n−C d ,n−1| below 10−3, where the average is performed in

the interval [n −500. . .n]. The same interval is used to average the velocity field

to take out numerical oscillations.

Table 6.2: Boundary and initial conditions of the simulations for velocity and pressure.

Velocity Pressure
Inlet Dirichlet, u = (12,0,0) Neumann, ∂p∂x = 0
Outlet Neumann, no backflow ∂u/∂x = 0 Dirichlet, p = 0 Pa
Object surface no-slip condition
Bottom wall no-slip condition
Lateral walls slip condition
Top of the domain slip condition
Initial condition u = (12,0,0) m/s p = 0 Pa

Z

X

Figure 6.2: Computational mesh around the object along the symmetry plane of the sim-
ulation domain.

6.4.1. ASSIMILATION PROCEDURE

After conducting the baseline simulation, several assimilated simulations are run

to investigate the effects of assimilation. The analysis presented here aims at de-
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Figure 6.3: Section at Y = 0 of the forced region. Crosses represent the points forced to
evaluate the response function presented in section 6.5.3.

termining the effect of sparse forcing varying the concentration of forced cells.

The latter is represented in terms of the normalised mean distance between neigh-

bouring forcing cells γ=λ/D , where λ is the mean distance between neighbour-

ing forcing points. In order to evaluate λ, the following equation is used:

λ= 3

√
4

3πC
(6.7)

where C = N f /V , with N f equal to the number of forced cells, selected randomly,

and V the total forced volume. The small positional mismatch between cells

where forcing is applied and the locations where experimental data is available

is accommodated by linear interpolation to the closest experimental data points,

obtaining the velocity field u∗
ref. This operation is then fully justified in cases in

which the expected interpolation error are negligible, as in the case considered

in this work. Furthermore, in order to damage the assimilated solution, outliers

have to be removed from u∗
ref before the interpolation step. In the other cells,

both the values of u∗
ref and e are set to zero. At each iteration of the assimi-

lated simulation, the velocity field u∗
ref is compared with the velocity field un−1

of the previous iteration and the error field e is explicitly constructed according

to equations 6.5 and 6.6, respectively for the DASOP and DASOPI feedback law.

The limited spatial resolution of the ensemble-averaged PIV velocity data close

to the wall leads to prescribed reference velocity u∗
ref too high and not compatible
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with the no-slip condition assigned to the walls of the simulation. For this rea-

son, PIV data closer than 3 cm (two averaging sub-volumes in the PIV analysis)

have not been considered to build the forcing term f. In relation to this, figure 6.3

shows a section along the symmetry plane of the regions where the forcing term

was activated, with different forcing cell density, depending on the choice of γ.

6.5. RESULTS AND DISCUSSION

6.5.1. REFERENCE FLOW FIELD

The measured velocity field uref is visualized in figure 6.4, where the streamwise

velocity component uref is shown at the symmetry plane and in a wall-parallel

plane at a height Z /D = 0.5. The potential flow region in front of the object is vis-

ible, where the flow decelerates and eventually stagnates at the obstacle due to

the adverse pressure gradient (figure 6.4, bottom). The boundary layer that has

developed along the plate is also visible in section Y = 0 (figure 6.4, top). Acceler-

ation atop the obstacle is consistent with the streamlines curvature that follows

the object head (figure 6.4, top). The local velocity in this region exceeds the

free-stream value by approximately 20%. The boundary layer developing along

the object surface separates abruptly due to the sharp truncation of the object

at the trailing edge. Within the separated zone, a reverse flow region is formed.

This feature has been observed past a number of wall-mounted obstacles and

reported frequently in the literature (Martinuzzi, Tropea, 1993; De Villiers, 2006;

Yakhot et al., 2006; among others).

The separated region terminates downstream with a ground-reattachment

line with its most downstream position at XR in the symmetry plane. In the

present experiment, the length of separation is observed to be XR /D = 2.4. At

the edge of the shear layer and the backflow region, from figure 6.4 (bottom) is

also possible to visualize two counter-rotating vortices from the streamlines pat-

tern. The correspondent foci are labelled F2 and F3 in figure 6.4 and in the rest of

this work. As reported by De Villiers (2006), these are part of a U-shaped struc-

ture that appears in the time-averaged velocity field, positioned upside-down

w.r.t. the object and tilted towards the back surface of the mirror. The point in

which this structure crosses the symmetry plane is detectable in figure 6.4 (top)
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Figure 6.4: Visualization of the normalized time-averaged streamwise velocity ur e f /U∞
with superimposed streamlines, measured by Robotic Volumetric PIV: (top) at the sym-
metry plane and (bottom) at Z /D = 0.5.

by the foci named F1. The analysis of the vorticity field, illustrated in figure 6.5,

provides further insights into the reference flow topology. The adverse pressure

gradient at the front of the object causes the boundary layer to detach from the

ground and form the horseshoe vortex (Simpson, 2001), which develops around

the object, eventually aligning streamwise and further developing downstream

of the object wake. The development from the front of the object of the horse-

shoe vortex is shown in figure 6.5 by the two portions of the iso-surface where the
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Figure 6.5: Iso-surface of vorticity magnitude |ω| = 200 Hz, coloured by streamwise vor-
ticity ωx .

magnitude of the streamwise vorticity |ωx | > 200 Hz. As described by De Villiers

(2006), the time-averaged separation region is bounded by an arc-like free shear

layer, which develops downstream and bounds a region of flow recirculation that

also features an arc-like shape.

6.5.2. BASELINE SOLUTION

The flow field topology returned by the baseline simulation, as shown in fig-

ure 6.6 (left), largely follows the flow pattern observed in the experiments. The

boundary layer development under the adverse pressure gradient caused by the

obstacle is visible, with the formation of a small recirculation ahead of the object
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Figure 6.6: (Left) Streamwise velocity contour obtained by the baseline simulation with
overlapping streamlines: (top) at the symmetry plane and (bottom) at Z /D = 0.5. (Right)
Colour contours of streamwise velocity from the baseline solution and over-lapping iso-
lines of the reference velocity field (dashed contour lines for negative values). (top) Sym-
metry plane and (bottom) at Z /D = 0.5.

(head of the horse-shoe vortex) at approximately X /D = −0.8. The overall flow

deceleration ahead of the object and subsequent acceleration towards the trail-

ing edge are also visible by regions at a velocity exceeding the free-stream value.

In the region upstream of the object, the result obtained by the baseline simula-

tion complies rather well with the reference, as visible in figure 6.6 (right). This is

expected since RANS are able to predict accurately flow features in potential flow

regions. A notable exception is instead the region close to the ground, where

the simulation is not forced. The topological differences are discussed in the re-

mainder. The flow separation at the sharp trailing edge is also well reproduced.

Whereas the most significant discrepancy with respect to the reference velocity

field is produced in the separated flow region and the reattachment region in

particular. The RANS data predict a longer wake, as clearly visible in figure 6.6

(right), with a reattachment occurring at XR /D = 3.1, along the symmetry plane.

This behaviour has already been reported in previous works (Lübcke et al., 2001;

among others), where RANS simulations tend to overestimate the length of the
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wake of a bluff body. Together with the elongation of the wake behind the object,

other topological features in the wake are distorted. As visible in figure 6.7, com-

bining the information obtained by the two sections, it is possible to infer the

presence of the arc-shaped vortex. The latter has, however, a pronounced offset

(judged from the location of the two foci at Z /D = 0.5) from X /D = 1.25 of the

reference data to X /D = 1.85. In the symmetry plane instead, the focus F1 is lo-

cated closer to the ground (Z /D = 0.8 in the simulation, compared to Z /D = 1.05

of the reference data). The resulting arc-vortex in the baseline simulation is more

elongated in the streamwise direction and with a lower position of its top portion.

The latter is also visible considering the region of reverse flow (in figure 6.6-right

by the dashed line of the reference data is superimposed to the baseline sim-

ulation) appearing flattened towards the ground. Further small differences are

the upstream separation forming the head of the horseshoe vortex, a small re-

circulation region at the free end of the object and a small region of accelerated

flow close to the object trailing edge (figure 6.6-left). These features are, how-

ever, not captured within the experiments due to the limited spatial resolution

of the measurements. An L-2 metric is introduced to quantify the discrepancy

between the baseline simulation and the reference data. The following relative

error normalised with the free stream velocity U∞ has been used:

ε=
√

(u −uref)2 + (v − vref)2 + (w −wref)2

U∞
(6.8)

The reference data is available on a grid that does not coincide with that of the

numerical simulations. The value of ε is therefore obtained by linear interpola-

tion of the numerical simulations onto the grid of the reference data. The spatial

distribution of ε at the symmetry plane is shown in figure 6.7. The relative error

distribution can be clustered in four different regions. The widest region of error

can be found for X /D > 2 around the centerline, where ε > 0.3 is reached. The

source of this error lies in the length of the wake, having the reference flow al-

ready recovered momentum at that stage compared to the simulation. Another

region of high relative error is centred at X /D = 1.25 and Z /D = 0.55. This is re-

lated to the height of the backflow region. Since the simulation predicts a back-

flow region shorter in height with respect to the reference, this causes a deficit
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of momentum and an increase of ε in that flow region. Furthermore, ε peaks

in close proximity to the object. This is due to the lack of resolution for the ex-

perimental data previously mentioned. Because the discrepancies in the latter

region cannot be ascribed to the numerical simulations, an integral evaluation

of the relative error will exclude the regions close to the object surface and the

ground wall.

X/D

Y/
D

Z/
D

Figure 6.7: Relative error ε of the baseline simulation: (top) at the symmetry plane and
(bottom) at Z /D = 0.5.

6.5.3. ASSIMILATED SIMULATIONS

Before presenting the results of the assimilated simulations, the local response

to the forcing function at individual points is discussed. The effect of the forcing

is expressed through the response function H = |(ubas −u)/(|ubas −u∗
ref|)|, where

ubas represents the baseline solution and u the assimilated solution. The analysis
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Figure 6.8: Region of influence of DASOPI for points in the external flow (left); inside the
shear layer (middle) and in the separated region (right). Coarse distribution of forcing
points γ= 0.5 (distance of 5 cm).

is performed on cells widely separated spatially ( γ= λ/D = 0.5 or 5 cm distance

between forced cells), as illustrated in figure 6.3. This is done to consider the

result that only depends on the local forcing, with no interference among neigh-

bouring forced points. For each forced cell with center Xc = (Xc ,Yc , Zc ) , a 5×5×5

cm3 cube is considered, with its center on Xc , and discretized with 101×101×101

elements. For each cube, the effect of the forcing is averaged over a local coor-

dinate system X∗ = (X − Xc ,Y −Yc , Z − Zc ) permitting the alignment of results

among different points.

The parameter H is evaluated around Xc . Because the forcing term is intro-

duced in the momentum equation, the extent and shape of the region affected

by the forcing are expected to follow local diffusion and convection. To assess

the region of influence of the forcing, three flow regimes are considered, namely:

a) the outer (potential) flow at approximately free-stream velocity; b) the shear

layer emanating from the object trailing edge; c) the recirculating flow inside the

separated region. Figure 6.8 shows the spatial distribution of H for the three

considered regions obtained by applying DASOPI. The local effect of the forc-

ing algorithm extends to a region with a length not exceeding 2 cm (0.2D). Such

localised effect of the forcing has been also observed in previous works, namely,

in the study by Imagawa, Hayase (2010). This result suggests in advance that

data assimilation at values of γ > 0.2 may result in localised rather than global

modifications of the simulation result. The extent and shape of the region neigh-

bouring the forced location appear to be affected by the local flow properties. In

the outer flow region, the effect of the forcing is comparatively weak and highly
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elongated along the convection direction. In the regions of lower local velocity

and high turbulent diffusion, such as the shear and the recirculation regions, the

spatial response function is close to isotropic. In figure 6.9, also the local value

of the turbulent kinetic energy k normalised by the local kinetic energy is pre-

sented. The extent and shape of H follow that of k. A similar analysis performed

with the DASOP method yields no visible change in velocity, with values of H

typically below 0.1%. In the remainder of this work, the location of the forcing

points is chosen randomly with a distribution controlled through the density pa-

rameter γ = [0.01. . .0.45]; the corresponding mean distance λ between forcing

points varies between 4.5 cm (0.45D) and 1 mm (0.01D). Before comparing the

results obtained by the two proposed algorithms, the effect of the two parame-

ters Kp and Ki is investigated. The study has been performed using the DASOPI

algorithm for the case of γ = 0.03. In order to evaluate the effectiveness of the

chosen values of Kp and Ki , the error ε has been averaged in the volume where

experimental data were available; the symbol ε indicates the result of this oper-

ation. Since the results have been found to be mostly insensitive to the value of

Kp , figure 6.9 shows the obtained ε varying Ki and averaging the results obtained

for 0.001 < Kp < 10. The bars at each data point represent the variation obtained

varying Kp for a given Ki . The results show a decay of ε when Ki is increased.

This is expectable, since when Ki is increased, the integral part of the forc-

ing term becomes stronger, with a subsequence stronger correction towards the

bias errors of the simulation. When Ki = 1, while the simulation results exhibit a

lower error with respect to the reference, artificial edge effects start to appear at

the boundary of the forced region. For values of Ki > 1, the simulations show nu-

merical instability and diverge. For this reason, it has been decided to set the pa-

rameters as Kp = 1 and Ki = 0.1 for all the simulations presented in the remaining

part of the manuscript. Figure 6.10 shows the results obtained by both the forc-

ing methods DASOP and DASOPI when γ= 0.03. As for the baseline simulation,

in the potential flow region, both DASOP and DASOPI assimilated results agree

well with the reference measurement. Larger differences between the two forc-

ing methods are found in the wake region. The application of the proportional

forcing term (DASOP) does lead to a reduction in the length of the recirculation

region, and the furthest point of the reattachment line is moved to X /D = 2.9,
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Figure 6.9: Spatial-averaged relative error (ε) with respect to the integral and propor-
tional gain (Kp and Ki ). Variability of the results as a function of the variation of Kp (
Kp = [0.001,0.01,0.1,1,10]) is expressed by the vertical bars (upper bound: maximum er-
ror; lower bound: minimum error). Simulations performed with γ = 0.03. (*) Artifacts
appear at the edge of the forced domain.

closer to the reference than that of the baseline simulation. The height of the

backflow region, however, remains lower compared to the reference as it can be

seen in the section at Z /D = 0.5 in figure 6.10; furthermore, the backflow is un-

derestimated by more than 50%. The use of the DASOPI algorithm visibly im-

proves the fidelity of the velocity field obtained by assimilation. The reattach-

ment point upstream to X /D = 2.4, practically matching the reference data. The

DASOPI result also recovers the topology of the recirculation region given in the

reference data for what concerns the position of the foci figure 6.10).

The effect of further refining the density of forcing points (the distance be-

tween forcing points is reduced to 0.01D) is illustrated in figure 6.12. In this

case, all grid cells in the selected volume are forced. The DASOP algorithm with a

greater number of forced points yields some improvement in terms of similarity

to the reference data. While in the potential flow region, no dramatic changes are

visible, the length of the wake is shortened, with the reattachment point found
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X/D X/D

Figure 6.10: Streamwise velocity contours of DASOP (left) and DASOPI (right) assimi-
lated simulation. Contours of reference data are superimposed (dashed lines for nega-
tive values). Y /D = 0 in the top row; Z /D = 0.5 in the bottom row. Forcing density by
γ= 0.03.

Figure 6.11: Streamwise velocity contour obtained by the assimilated simulation by DA-
SOPI algorithm and γ= 0.03 with super-imposed streamlines at Z /D = 0.5.
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Figure 6.12: Streamwise velocity contours of DASOP (left) and DASOPI (right) in the as-
similated simulation. Contours of reference data are superimposed (dashed lines for
negative values).Y /D = 0 in the top row; Z /D = 0.5 in the bottom row. Forcing density
γ= 0.01.

at X /D = 2.28 at the symmetry plane. The shortening of the wake is also cou-

pled with an increase of the backflow with respect to the simulation obtained by

DASOP with γ= 0.03. However, at the plane Z /D = 0.5, the backflow magnitude

peak is still underestimated with respect to the reference. For what concerns

the comparison between DASOP and DASOPI, figure 6.12 confirms the trend ob-

served with γ= 0.03, with DASOPI overperforming. In the region where the forc-

ing is applied, the contour lines of the assimilated solution with DASOPI overlap

with the ones representing the reference. It is noticed, however, that the simula-

tion attempts to converge everywhere to the reference data, even where the latter

is affected by outliers. This behaviour can be noticed in the top-left corner of the

symmetry plane of figure 6.12.

Furthermore, when this density of the forcing point is used, the extension of

the volume where the forcing is activated becomes directly visible in the veloc-

ity field, with artefacts at its edges. The global behaviour of the error relative to
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the reference data is quantified for both algorithms with its spatial average ε de-

fined in equation 6.8. The variation of ε as a function of the forcing density γ is

represented in figure 6.13. In order to capture the most relevant source of error

shown in figure 6.7, the average has been obtained taking into consideration only

the volume downstream of the body shown in figure 6.3. The result given by the

baseline has been plotted with a dotted line as a reference. The assimilated sim-

ulations appear to be too coarsely forced as long as γ≥ 0.1. Under this condition,

both DASOP and DASOPI methods produce an error comparable to the baseline

solution. The distance between the forcing points is too high to have a global

reduction of the error compared to the baseline and the effect of the forcing re-

mains local. When γ < 0.1, the behaviour of the two methods differs. DASOP

method is not able to reduce the error until γ< 0.05. If γ is further reduced, the

error reduces, reaching ε = 0.06 when γ = 0.01. Compared to the baseline error,

an error reduction of 28% is obtained. The DASOPI algorithm becomes effec-

tive for γ< 0.1. As also shown in figures 6.10 and 6.12, DASOPI is more effective

Figure 6.13: Spatial-averaged relative error ε as a function of the relative mean forced
point distance γ. The horizontal dashed line represents the relative error of the base-
line simulation. The vertical dashed-dotted line represents the vector spacing of the PIV
measurements (γPIV = 0.023).
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than DASOP, yielding lower error values in a wider range of values for γ. When

γ= 0.05, the relative mean error becomes ε= 0.055.

Further reducing γ to 0.01, yields ε = 0.023 , corresponding to a reduction

of 72% compared to the baseline. The reduction of ε at decreasing γ can be ex-

plained by the response function shown by figure 6.8. When γ decreases, the

amount of the flow field that is affected by the assimilation increases. The di-

mension of the volume affected by the forcing proportional-integral forcing term

shown in figure 6.8 explains the behaviour of ϵ for what concerns DASOPI. The

majority of the source of ϵ is concentrated in wake of the object. Since the av-

Figure 6.14: Local relative error ε (equation 6.8) at the symmetry plane Y = 0 for: (first
row) DASOP and DASOPI with γ = 0.1, left and right respectively (second row) DASOP
and DASOPI with γ = 0.03, left and right respectively (third row) DASOP and DASOPI
with γ= 0.01, left and right respectively.
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erage volume of effectiveness can be represented as a sphere with diameter O(1

cm), the method starts being effective when such volumes start overlapping, cor-

responding to the condition γ < 0.1. Figure 6.14 compares the spatial distribu-

tion of the relative error ϵ for the baseline simulation, DASOP and DASOPI, with

γ = [0.1,0.03,0.01]. The spatial distribution of ϵ illustrates that the error is con-

fined in specific regions of the flow: in close proximity to the object; around the

reattachment region; within the recirculating flow. For γ = 0.1, the spatial dis-

tribution of ϵ presented by the assimilated simulations is close to that given by

the baseline, with a small reduction shown by DASOPI in the recirculation region

and the far wake. When γ is reduced to 0.03, both DASOP and DASOPI yield a

reduction of ϵ compared to the baseline. While DASOP still shows areas charac-

terized by ϵ > 0.2 in the recirculation region and the far wake, DASOPI achieves

ϵ< 0.05 everywhere except in proximity of the object and in the shear layer close

to separation. Finally, for γ= 0.01, a further reduction of ϵ is noticed in the entire

field. It can be noted that, for what concerns DASOPI, some regions of high er-

ror outside the forcing area arise, as introduced in the previous paragraph. The

optimisation of the location of the forcing points to minimise the error of the

assimilated simulation will be investigated in future works.

Overall considerations on the effect of data assimilation to the flow topology

can be done considering the horseshoe and the arc-vortex axis lines, alongside

the specific velocity contour u = 0 at Z /D = 0.5 (figure 6.15). Considering the

horseshoe vortex, none of the simulations reproduces the path shown by the ref-

erence. With a larger separation distance (Gazi, Afzal, 2020), the horseshoe vor-

tex showed by the simulations presents an offset toward negative X values with

respect to the reference. The assimilation, both through DASOP and DASOPI,

does not influence the path of the horseshoe vortex before X /D < 1. It must be

noted that, being the horseshoe vortex close to the ground, it lays outside the

region where the forcing is active, as represented by figure 6.3. For X /D > 1, the

assimilation through DASOPI of the flow above the vortex influences its path, re-

ducing its distance with respect to the reference. The continuous line in figure

6.15 represents the contour line u = 0 at Z /D = 0.5. At this location, inside the

forced region, the assimilations performed both with DASOP and with DASOPI

reduce the distance between simulation and reference. As shown by figure 6.13,
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Figure 6.15: Comparison of the topology obtained by PIV (reference), baseline simula-
tion, DASOP with γ = 0.01 and DASOPI with γ = 0.01. Dash-dotted lines represent the
(X ,Y ) projection of the trajectory of the horseshoe vortex. Continuous lines represent
the contour line u = 0 at Z /D = 0.5. Crosses represented the position of the foci F2 and
F3 at Z /D = 0.5.

Figure 6.16: Number of iterations required to reach convergence as a function of the
forcing spacing γ.
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DASOPI overcomes DASOP in reproducing the wake shape of the reference. The

shortening of the wake brought by the assimilation causes also a reduction in the

distance between the foci F2 and F3 between reference and assimilated simula-

tions, foci that are represented by the crosses in figure 6.15. The assimilation has

also an effect on the convergence rate of the simulation. A simulation has been

considered converged when the moving standard deviation (kernel equal to 500

iterations) of the model drag coefficient Cd falls below a threshold value cho-

sen equal to 10−3. Figure 6.16 shows the number of iterations required to reach

convergence with respect to the relative mean forced point distance γ. For both

DASOP and DASOPI, the amount of iterations for convergence is lower than in

the baseline simulation (dashed line in figure 6.16). Also in this case, decreasing

γ has a positive effect, yielding a reduction in the number of iterations required.

It must be noted however that for γ < 0.03, the number of iterations needed by

DASOPI does not decrease anymore, which is ascribed to the appearance of the

aforementioned edge effects.

6.6. CONCLUSIONS

In this chapter, a data assimilation framework based on a state observer algo-

rithm has been presented. Two forcing terms, proportional (DASOP) and integral-

proportional (DASOPI), have been considered. The performances of the pro-

posed algorithms are based on an experimental dataset consisting of the time-

average 3D velocity field around a simplified car mirror geometry. The measure-

ments have been conducted with Robotic Volumetric PIV. Both the forcing terms

proposed are functions of the difference between the simulated velocity and the

reference experimental data. The local response function of the forcing term has

been evaluated, confirming the results of Imagawa, Hayase (2010), where the ef-

fect is limited to the region close to the forced location and the shape and ex-

tent of the affected region depend on the local convection and diffusion. The

data assimilation of the entire domain of interest is parametrised with respect to

the spatial concentration of forced points or forcing density γ. Both DASOP and

DASOPI produce a reduction of the error compared to the baseline simulation.

DASOP requires γ < 0.05 to produce significant effects, while DASOPI yields a

comparable error reduction at already γ= 0.1, as a result of the higher strength,
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given the integral formulation of the forcing term. For γ < 0.1, DASOPI reduces

progressively the error of the assimilated simulation. The maximum error reduc-

tion is obtained at the maximum forcing density (γ= 0.01), where the error of the

assimilated simulation is approximately 25% of the one of the baseline simula-

tion. The topological analysis based on the reattachment point, the arc-vortex

and horseshoe vortex axes confirms that the data assimilation by DASOPI pro-

duces a realignment of the simulation towards the experimental reference, also

in those regions where the forcing is not applied locally. The latter suggests that

the convective-diffusive nature of the forcing mechanism may extrapolate the

effects of the assimilated region beyond the domain where experimental data is

available.



7
CONCLUSIONS AND PERSPECTIVES

In this dissertation three main topics have been addressed: the increase of DVR

through multi-step measurements, the outlier detection based on constitutive

equations and the data assimilation of PIV data to numerical simulations. In this

chapter, the main conclusions for each of these topics are summarized. In addi-

tion, possible directions for future research are discussed, based on the current

limitation of the proposed approaches.

7.1. MAIN CONCLUSIONS

7.1.1. INCREMENT OF DVR THROUGH MULTI-STEP APPROACHES

The increment of the achievable dynamic velocity range is a classical topic in the

PIV community. Modern hardware and the exploitation of the time component

have made it possible to reach a high level of DVR. However, when consider-

ing high-speed and complex aerodynamic flows, the limitations in DVR become

more strict due to the necessity of adopting low-aperture, low-speed acquisition

systems, such as coaxial volumetric velocimetry. To overcome these limitations,

a new multi-step approach has been proposed. The core of the new method is

the idea that to obtain the final time-averaged velocity field, multiple acquisi-

tions can be combined.

125



7

126 7. CONCLUSIONS AND PERSPECTIVES

Firstly, a combination of two double-frame single-exposure acquisitions has

been considered. With a first acquisition characterized by a low pulse separation

∆t0, a robust but not precise predictor field is obtained. Employing the Reynolds

decomposition on these velocity data is possible to extract the time-averaged

and the fluctuating components. Using this information, the images acquired in

a second acquisition with a larger ∆t1 are analyzed. The availability of the pre-

dictor field in terms of both average particle displacement and turbulence level

allows for an increase in the pulse separation time, with a consequent increase

in the DVR.

The methodology has been proven to be effective considering two experi-

mental cases: the flow behind a truncated cylinder, acquired by means of a large

tomographic aperture system, and the near-wake of an Ahmed body, in which

the robotic volumetric PIV has been used. In both cases, the methodology has

allowed an increase of achievable DVR, with major results obtained along the

coaxial component in the low aperture case, where the errors are decreased by

one order of magnitude.

Finally, through an a-posteriori analysis of the results, it has been possible

to design a criterion for the selection of the two pulse separation times. For the

first acquisition, the∆t0 has to be chosen low enough to guarantee the condition

RS < 0.5λ to be satisfied. The extension of the time separation of the second

acquisition has not to exceed the following value: ∆t1 = 0.25λ/|σV |.
A further step forward has been proposed, with the design of a new adaptive

multi-step methodology. Also, in this case, the core idea is that in order to opti-

mize the velocity field calculation, only one measurement is not enough. As for

the first proposed methodology, a first double-frame single-exposure acquisition

is performed to construct a predictor field. However, in the second step, a two-

frame two-exposure strategy is selected, which allows an increase of DVR due to

the regularization of the particle track along the four exposures and the possi-

bility to evaluate acceleration. The main bottleneck of this kind of acquisition

is the appearance of overlapping particles in regions characterized by low dis-

placement. From here, the necessity of a multi-step algorithm arises. The anal-

ysis performed on the predictor field, through the creation of N regions with de-

creasing particle displacement, determines N local pairs [∆t0,∆t1], respectively
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the inter-frame and intra-frame pulse separation time. After having performed

N double-frame double-exposure acquisitions adopting the correspondent pair

of [∆t0,∆t1], the correspondent particle tracks are merged and the final time-

averaged velocity field is obtained.

The methodology has been preliminary benchmarked on a truncated cylin-

der test case. Results of the method have been compared to the standard method-

ologies presented in the literature, having as the time-resolved STB results as a

reference. The adoption of the adaptive methodology has proven to be able to

recover DVR in the region of low displacement, removing the concerns for over-

lapping particles. Further studies are planned to determine the most suitable

way of practically implementing the concept behind the proposed methodology.

7.1.2. OUTLIER DETECTION BASED ON CONSTITUTIVE EQUATIONS

The availability of dense measurement in a 3D volume permits the exploitation

of constitutive equations to determine the presence of outliers in a statistical

representation of the flow field. From this perspective, a novel outlier detec-

tion criterion based on the physical principle of turbulence transport has been

presented. The measured velocity fluctuations are bound to comply with the

governing equation of turbulent kinetic energy transport. Based on this, the ra-

tio between the advected turbulent kinetic energy and the production term has

been demonstrated as a robust indicator for the presence of outliers. To increase

the level of robustness, a median operator has been applied to the production

term and an additive term has been inserted in the denominator to avoid the

exponential growth of the indicator in laminar regions.

Three datasets have been considered for the benchmark of the methodology:

planar PIV around a NACA 0012, tomographic 3D-PTV of a truncated cylinder

and 3D-PTV measurements of the near-wake of an Ahmed body by coaxial vol-

umetric velocimetry. The proposed outlier detection principle has been able to

detect the edges of the outlier regions. A comparison between the proposed ap-

proach and the state-of-the-art universal outlier detector has been carried out.

Considering the two optimal thresholds, r∗
0 = 2 and ρT T = 5, the former yields a

significantly higher detection ratio ηd (90% vs 50%) with a comparable and small

amount of false positives (η f p < 5%).
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As mentioned, the approach proposed in this dissertation is able to detect

only the contour of an erroneous region, losing physical meaning inside the lat-

ter.

7.1.3. DATA ASSIMILATION BASED ON STATE-OBSERVERS

The assimilation of experimental data into the numerical simulation in aerody-

namics is quite a new but really active field of research. In this dissertation, a data

assimilation framework based on a state observer algorithm has been presented.

An integral-proportional approach (DASOPI) has demonstrated the ability to as-

similate experimental data into RANS simulations, improving the fidelity of the

latter. This analysis is based on an experimental dataset consisting of the time-

average 3D velocity field around a simplified car mirror geometry obtained by

the use of robotic volumetric PIV. The choice of an experimental test case has

been driven by the will to not neglect measurement uncertainties in the assimi-

lation process. However, the boundary conditions have been carefully measured

in order to allow maximum compatibility between the simulation and the mea-

surement.

The local response function of the forcing term has been evaluated, confirm-

ing the results of Imagawa, Hayase (2010), where the effect is limited to the region

close to the forced location and the shape and extent of the affected region de-

pend on the local convection and diffusion. This result confirms the necessity

of dense measurement in order to produce a significant effect when assimilated

into the numerical simulation. Indeed, the maximum error reduction is obtained

at the maximum forcing density (γ = 0.01), where the error of the assimilated

simulation is approximately 25% of the one of the baseline simulation. The ben-

eficial effect of the assimilation is not only detectable in the velocity field but

also in the topological features, such as the reattachment point, the arc-vortex

and horseshoe vortex axes.

However, the proposed methodology presents several limitations and it is far

from being used in a practical scenario. One of the requirements of its applica-

tion is a dense measurement of the desired velocity field, which arises questions

on the necessity of doing the assimilation itself.
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7.2. PERSPECTIVES AND RECOMMENDATIONS

In this thesis, several different topics, different aspects of the large-scale PIV mea-

surement technique, have been investigated. three different macro areas can be

individuated: acquisition strategy, outlier detection and data assimilation. The

level of maturity of the new methodologies proposed varies between the said ar-

eas. For this reason, the following developments are envisaged:

• Multi-step learning measurement strategy

In chapter 3 and 4 of this thesis, two novel measuring strategies have been

proposed. One of their main novel aspects is the adoption of a multi-step

approach. The idea of performing a measurement, analysing it, and re-

peating the measurement with improved parameters it is not new, how-

ever, its algorithmic application is. This concept could be explored even

further. During the research phase, it appears clear that the optimal tim-

ing strategy is dependent on multiple aspects, such as measured velocity or

seeding density. The presented multi-step approach uses a fixed measure-

ment strategy (2 or 4 pulse acquisitions) with variable parameters (mainly

the pulse separation time ∆t ). The use of two or more steps allows for de-

signing an algorithm that selects the proper acquisition strategy based on

results or a quick analysis of the previous step. For example, selecting the

illumination strategy of the second step between 2 or 4 pulses based on the

particle density of the former step.

• Dynamic analysis for Robotic Volumetric PIV

All the results presented in this thesis are limited to the analysis of the time-

average velocity field. The nature of the Robotic Volumetric PIV, which

employs the volume scanning approach, makes it impossible to extract in-

stantaneous information in the entire measured 3D field, which would be

useful to infer the dynamics of the flow. The dynamic component, how-

ever, can be recovered by applying mathematical tools such as Proper Or-

thogonal Decomposition (POD). Cortina-Fernández et al. (2021) presented

a methodology to apply the POD to sparse velocity vector obtained by PTV

measurements. The ability to use such a technique on Robotic Volumet-

ric PIV measurements depends on the capability of pairing the modes ob-
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tained in each cone and reconstructing the entire modal field and should

be a topic of further research.

• Detection of internal regions for the physics-based UD

Results from chapter 5 show the ability of the proposed physic-based out-

lier detection principle to detect the edges of the erroneous region in a

time-average velocity field. Due to its Lagrangian approach, the princi-

ple becomes unsuited for regions where the velocity vectors are incorrect

already upstream of the point of interest. However, methods that treat ex-

tended regions of outliers (likely by iterative erosion) can be further devel-

oped based on the proposed principle. Furthermore, the same trajectory

cannot be considered valid. For this reason, the application of clustering

techniques able to detect vector clusters inside the detected boundary by

the presented principle is envisaged.

• Holistic approach for outlier detection from reflection in 3D PIV

The methodology presented in this thesis needs as input the time-averaged

velocity field to individuate the spurious vectors. The detection mecha-

nism does not consider any information that stems from other steps of the

PIV processing, such as the raw images. Reflections, shadows regions or

lack of seeding are among the main reasons for the appearance of wrong

vectors. It is common that an experienced PIV user, who is fully trained in

the measurement technique, is normally able to couple the appearance of

an erroneous region of vector to one of the reasons mentioned before just

looking at the raw images. It would be insightful to study the possibility

of creating a holistic algorithm for outlier detection coupling statistical ap-

proaches, such as the Universal Outlier Detection by Westerweel, Scarano

(2005) or the one presented in this dissertation, and information coming

from the direct observation of the raw images.

This list of possible future developments is the final section of this thesis. The

author hopes that it will inspire young researchers to pick up the challenge and

continue the development of large-scale PIV.
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