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Object selection and manipulation are the foundation of VR interactions. With the rapid development of VR 

technology and the field of virtual object selection and manipulation, the literature demands a structured 

understanding of the core research challenges and a critical reflection of the current practices. To provide 

such understanding and reflections, we systematically reviewed 106 papers. We identified classic and emerg- 

ing topics, categorized existing solutions, and evaluated how success was measured in these publications. 

Based on our analysis, we discuss future research directions and propose a framework for developing and 

determining appropriate solutions for different application scenarios. 
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 Introduction 

bject selection and manipulation are canonical interactions in virtual reality (VR) systems
 13 , 21 ]. Users perform selections to identify the target of interest (e.g., menus, buttons, digital
ontents, 3D objects) and execute manipulations, including translation, rotation, and scaling, to
ransform the target into a desired configuration. Interacting with VR headsets fundamentally dif-
ers from desktops and touchscreens, because users are fully immersed in 3D digital spaces with
o-located virtual objects. Consequently, they can observe a target from different angles, touch,
rab, point, pull, push, and even squeeze objects. Because of this significant difference in experi-
ncing the 3D world, VR headsets require unprecedented, new ways of interaction. 
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Through more than 50 years of development of 3D interactions, originating from Sutherland’s
ork on determining the viewing angle through head orientations in 1968 [ 74 , 157 ], a multitude of

olutions has been proposed for virtual object selection and manipulation. These solutions range
rom artifact inventions to empirical studies [ 9 , 122 , 161 ], span across interaction techniques and
evices to predictive models [ 9 , 54 , 140 , 182 ], and extend over user input and feedback mecha-
isms [ 7 , 37 , 81 , 159 ]. With the rapid development of selection and manipulation solutions, it is
rucial to step back and reflect on a few open questions relevant to the field regarding “where” we
re going, “how” we are doing it, and “what” we can improve. 

These open questions include: (1) What core challenges in VR selection and manipulation have
esearchers been trying to address? Are there new challenges emerging with the development
f technology? (2) What are the state-of-the-art solutions for these challenges? Why are these
olutions considered successful in solving the challenge? (3) What are the future directions of the
esearch field? What are the criteria for determining a “better” interaction? With a proliferation
f innovations within a brief timeframe, the current literature demands an in-depth discussion
nd reflection on these questions, which are critical to determining the backbone topics and
merging trends from scattered endeavours and ensuring the robustness and validity of research
ractices [ 84 ]. 
To remedy this situation, we conducted a systematic literature review of 106 publications on ob-

ect selection and manipulation in VR headsets. We identified eight research challenges that the lit-
rature has been tackling, including classic ones such as the complexity in 3D interaction scenarios
e.g., small, far away, occluded, out-of-view targets) and emerging trends such as context integra-
ion and collaborative manipulation, as well as existing solutions to these challenges. Further, we
ummarised nine success measurements used by previous research when resolving the challenges.
hese success measurements allow us to assess current practices and identify potential issues. For
xample, we found few studies evaluating how new interaction techniques might reshape users’
election or manipulation strategies, raising questions regarding the long-term adaptation of the
echniques. Next, we reflect upon the “ultimate” VR selection and manipulation solutions the com-
unity is working towards and offer recommendations for further research, such as ensuring the

eneralisability of the study results. We propose a framework for developing and determining
ppropriate solutions for application scenarios. Finally, we summarise our recommendations re-
arding research practices and directions for future studies. 

 Scope, Related Surveys, and Contributions 

.1 Scope and Definitions 

his work focuses on “object selection and manipulation in VR headsets. ” This section describes our
cope and clarifies the inclusion and exclusion criteria. 

2.1.1 Object Selection and Manipulation. Object selection encompasses identifying, pointing,
nd acquiring one or multiple objects from available objects. Object manipulation concerns the
urther actions available for handling the selected object, which includes positioning (changing
bject position), rotating (changing object orientation), and scaling (adjusting object size) [ 74 ]. In
his work, we focus on manipulations that preserve the shape of objects (i.e., spatial rigid object
anipulation [ 74 ]). Further, we focus on the selection and manipulation of general virtual objects

ather than solutions developed for selecting a specific type of object (e.g., key selection in text
ntry [ 151 ], location selection for teleportation [ 43 ]). We did not include travel or wayfinding
echniques, as they often lead to changes of user’s positions, which may lead to entirely different
hallenges than selection and manipulation (e.g., presence and VR sickness) [ 2 , 74 , 95 ]. 
CM Comput. Surv., Vol. 57, No. 4, Article 98. Publication date: December 2024. 
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2.1.2 VR Headsets. This work focuses on VR technology that immerses users in a computer-
ynthesised virtual environment [ 103 ]. The challenges and solutions for selection and manipula-
ion can be different in other immersive technologies, such as AR and MR, because of the presence
f real-world objects [ 152 ]. Further, we focus on head-mounted/worn displays ( HMD/HWD ,
r more colloquially, VR headsets), which means that the visual display devices should be coupled
o the user’s head. Therefore, stationary VR displays (i.e., displays that do not move with the user),
uch as tabletop VR displays and CAVEs, which afford different interaction capabilities from VR
eadsets, are out of the scope of this research. 

.2 Related Surveys 

everal related surveys aim to develop taxonomies for 3D selection and manipulation techniques
n the literature. Dang’s 2007 review [ 27 ] provides a chronological view of 3D pointing techniques.
t classifies them based on 3D pointer- or selection ray-based control as well as how pointing is
nhanced (e.g., reducing cursor movement distance, increasing target size, or both). Argelaguet
nd Andujar’s 2013 survey [ 5 ] not only categorises the techniques based on their intrinsic char-
cteristics (e.g., selection tool types and how a user controls the tool) but also covers human
ointing models and factors that may influence user performance in selection tasks (e.g., target
eometry and object density). LaViola et al.’s 2017 book [ 74 ] (which updates Bowman et al.’s 2005
ook [ 21 ]) discusses techniques for 3D selection and manipulation based on a classification of
heir metaphors: grasping, pointing, surface, indirect, bimanual, and hybrid. Weise et al.’s 2019
aper [ 167 ] also classifies 3D selection and manipulation techniques according to their differ-
nt characteristics (e.g., metaphor, degree-of-freedom, reference frame). Moreover, Mendes et al.’s
019 survey [ 99 ] reviews 3D virtual object manipulation techniques, from desktops to immersive
nvironments. It proposes a taxonomy based on environment properties and types of transfor-
ations. Overall, these taxonomies provide structured ways of viewing the 3D interaction tech-
iques in the literature. In contrast, our work does not classify interaction techniques or task
cenarios. 

More relevant to our work are surveys that aim to identify design challenges with 3D interfaces
nd research trends for future work. Hinckley et al.’s 1994 survey [ 57 ] synthesises design issues
nd potential solutions for developing effective free-space 3D user interfaces. For example, they
dentify that users may have difficulty understanding 3D space and offer solutions such as multi-
ensory feedback to resolve this issue. They are also concerned about issues related to, for instance,
ynamic target acquisition and ergonomics. Hand’s 1997 survey [ 51 ] overviewed state-of-the-art
D interaction techniques at that time and highlighted the research opportunity of usability testing
or future work. Similar to these surveys, our work aims to determine research challenges and
olutions and identify future research directions. We achieved this through a systematic literature
eview to provide an updated and more comprehensive view of the VR research landscape, given
he recent advancement of VR headsets. 

Bergström et al.’s 2021 review [ 13 ] derives guidelines on how to conduct and report object
election and manipulation studies in VR. Task types, experimental settings, target parameters,
nd dependent variables of such studies were analysed in detail. Bergström et al.’s work aims
o inform the design of future research studies. In contrast, our work seeks to understand the
esearch field of VR selection and manipulation regarding “where” we are going, “how” we are
oing it, and “what” we can improve. Other surveys inform the analysis in this article but ad-
ress a different subject [ 1 ]. These include but are not limited to, a review of mid-air interac-
ion [ 70 ], a survey of interaction with large displays [ 4 ], and a review on distant object selection
ethods [ 79 ]. 
ACM Comput. Surv., Vol. 57, No. 4, Article 98. Publication date: December 2024. 
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Fig. 1. PRISMA flow diagram of our systematic review. 
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.3 Contributions 

his review focuses on determining (1) the primary challenges research papers aimed to solve in
R object selection and manipulation research and (2) the existing solutions to these challenges.
ith a surge in the number of novel developments over a short duration, it is essential to sum-
arise scattered research endeavours and analyse critical research challenges and the correspond-

ng state-of-the-art. This helps us reflect on the practices and identify the backbone topics and the
merging trends in the research field to better inform its future development. Our results should
uide newcomers to the research field and offer new, structured perspectives for senior researchers.

Further, our work identifies three future research directions by evaluating how researchers mea-
ure their success under each research challenge. This allows us to assess the validity and robust-
ess of the current practices and diagnose potential problems with the existing measurements

e.g., whether the selected measurements will lead us to solve the challenge). The results will aid
uture researchers in this field to better approach the research challenges with more appropriate
easurements. We open-source our coding manual for future research to expand upon. 

 Methodology 

e followed the PRISMA guidelines [ 107 ] to select relevant publications for analysis. Our initial
nformation sources of publications came from online databases and the most pertinent literature
eview papers. We then applied the four-step process (identification, screening, eligibility, inclu-
ion) to derive our final corpus. Figure 1 gives an overview of this filtering procedure. 

.1 Systematic Query Searches within Online Databases 

e first performed systematic queries in online databases, including ACM Digital Library, IEEE
plore, Wiley Online Library, Scopus, Taylor & Francis Online, and Springer Link to identify rel-
vant, high-impact papers on object selection and manipulation in VR headsets. The publication
enues included in the search were CHI, UIST, VRST, SUI, CSCW, Ubicomp, DIS, IUI, TOG, IMWUT,
CM Comput. Surv., Vol. 57, No. 4, Article 98. Publication date: December 2024. 



Object Selection and Manipulation in VR Headsets 98:5 

P  

C  

e  

a
 

h  

p  

p
“  

t  

t  

s  

T  

I

 

o
w
a

 

r  

l  

c  

p  

e  

o

3

W  

f  

w  

(  

u  

r  

a  

2  

s  

l

3

W  

r  

t  

c  

p  

t  

c  

m  
ACM HCI, TOCHI, IEEE VR (including 3DUI), ISMAR, TVCG, Computer Graphics Forum, IJHCS,
omputer & Graphics, IJHCI, and Springer VR. These venues were selected based on their rel-
vance to the field of Human–Computer Interaction (HCI) and VR, as well as their impact,
ccording to Google Scholar Metrics (under the categories of HCI and Computer Graphics). 

To identify publications that are primarily relevant to object selection and manipulation in VR
eadsets, we used “selection ,” “manipulation ,” and “virtual reality ” as our initial search terms in
ublication titles and iteratively derived their synonyms based on the literature present in the
ublication venues mentioned above. The new terms identified were “pointing ,” “acquisition ,” “VR ,”
3D ,” and “immersive .” We did not include the term “interact ” (as in “object interaction”) or search
he publication abstracts for keywords, as they returned a large number of irrelevant records from
he online databases. We documented our detailed search process in our supplementary material. A
implified example query in the ACM Digital Library, without including the publication venues, is:

itle:((acqui* OR point* OR select* OR manipulat*) AND (virtual OR VR OR 3D OR
mmers*)) 

Here, * denotes any number of unknown characters (wild cards). We were thus able to include
ther word forms such as “manipulate ,” “manipulating ,” and “manipulation .” The word “virtual ”
as used to capture similar wordings of virtual reality environments such as “virtual environment ”

nd “virtual object manipulation .” In total, we obtained 392 records from searching the databases. 
Upon obtaining these initial records, we screened their titles and abstracts to exclude papers ir-

elevant to our exploration (e.g., constructing a 3D point cloud). This process left us with 242 pub-
ications. Next, we assessed the full text of these publications for eligibility according to three
riteria: (1) not about object selection and manipulation; (2) not in VR headsets; (3) not a full pa-
er. The first two criteria were based on the scope of this research. We also excluded posters and
xtended abstracts, as they usually have a different level of maturity than full papers. At the end
f this filtering procedure, we were left with 69 publications. 

.2 Records from Relevant Literature Reviews 

e also examined all references in the three most relevant literature review papers to extract
urther papers relevant to our topic. This was to ensure that we included impactful papers that
ere not published in the selected publication venues or did not use our keywords in the title

e.g., object interaction instead of selection or manipulation ). The most relevant review papers we
sed were Argelaguet and Andujar’s survey on 3D object selection techniques for virtual envi-
onments in 2013 [ 5 ], Bergström et al.’s papers on guidelines for evaluating VR object selection
nd manipulation in 2021 [ 13 ], and Mendes et al.’s survey on 3D virtual object manipulation in
019 [ 99 ]. We assessed the papers’ titles and full texts to exclude less relevant papers using the
ame criteria and remove duplication in the collected papers. At the end of this process, we were
eft with 37 publications. 

.3 Dataset and Coding Process 

e collected 106 publications (69 from online database query searches and 37 from the three most
elevant literature reviews) as the corpus for further analysis. With this corpus, we first coded
he challenges, research goals, proposals/methods, and measurements of success in text fields by
ollecting quotations from the papers. We then iteratively defined 26 challenge types across the
apers and distilled eight core challenges. We also coded relevant information such as contribution
ypes, solution types, study types, and success measurement types categorically by referencing the
lassifications in previous research [ 59 , 76 ] and iteratively defining them. Some papers had made
ultiple contributions and proposed various solutions, and we thus distinguished their primary
ACM Comput. Surv., Vol. 57, No. 4, Article 98. Publication date: December 2024. 
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Fig. 2. Number of publications under the contribution types proposed by Wobbrock and Kientz [ 175 ]. 
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nd secondary contributions and solutions in our coding. More details about the preliminary and
nal classifications can be found in our coding manual. 

 Overview of Contribution Types 

e investigated the contribution types of the 106 publications in our corpus according to Wob-
rock and Kientz taxonomy [ 175 ]. Figure 2 summarises the results. A significant portion of the
apers contributed new artefacts (42 papers, 39.6%), including, for example, new interaction tech-
iques for occluded target selection [ 143 , 163 , 186 ], systems for grasping rendering [ 30 , 114 ], and
ovel haptic devices [ 7 , 37 , 78 ]. Another mainstream of the papers focused on empirical con-
ributions (49 papers, 46.2%), where user studies were carried out to evaluate or compare tech-
ological solutions [ 71 , 122 ], fine-tune design parameters [ 137 , 170 ], investigate the effects of a
actor [ 10 , 69 ], or explore design possibilities [ 82 , 178 ]. There were four methodological papers
3.8%) on standardising the research practices in VR object selection and manipulation [ 13 , 19 ,
0 , 130 ]. Eight were survey papers (7.5%) that have provided a new taxonomy of the techniques
 27 , 99 ] or intended to answer specific research questions [ 32 ]. Three papers (2.8%) have a theoret-

cal emphasis on initiating new design spaces or frameworks that could motivate new interaction
echniques [ 105 , 124 , 153 ]. Note that we classified qualitative models, such as models that predict
election endpoints [ 54 , 182 ], as either empirical or artefact contributions. While these models may
ave predictive power, they do not aim to provide a systematic set of statements that explains the
echanism (e.g., why the endpoints distribute in a certain way), which is an essential component

f a theoretical contribution [ 134 ]. None of the papers had the primary contribution of datasets
r opinions. A geographical distribution analysis of the authors who have contributed to these
ublished papers is included in Appendix A for interested readers. 

 Research Challenges and Existing Solutions 

e identified eight research challenges and their corresponding solutions for VR object selection
nd manipulation research. We iteratively defined these eight core challenges by surveying the
ey problems and research goals. Throughout this process, we wanted to capture research chal-
enges that have attracted substantive attention from the community. We were also interested in
dentifying emerging topics with a limited number of publications that may still be promising for
uture research. Table 1 summarises these research challenges and solutions. 

We note that our categorisation of the research challenges is not mutually exclusive, and many
apers presented within each section may tackle one or more challenges. Our goal was to capture
nd classify the primary obstacle that a research paper aimed to resolve and the main solution
ffered by the paper. With this process, we can see the representative themes in the VR selection
nd manipulation literature. We also note that we excluded general surveys that do not tackle
CM Comput. Surv., Vol. 57, No. 4, Article 98. Publication date: December 2024. 
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Table 1. A Summary of Research Challenges and Solutions on VR Object Selection and Manipulation 

1 Complexity in 3D Interaction Scenarios 
Challenge - Selecting and manipulating 3D virtual objects in VR headsets can be challenging, 
because the interaction scenarios may contain small, far away, occluded, out-of-view, and 
multiple targets. The tasks may require precise control. 
Solution - Optimising selection and manipulation designs for simple and more complex (e.g., 
distant, occluded, out-of-view targets) VR scenarios. 

2 Underexplored Interaction Spaces and Factors 
Challenge - Understanding new opportunities (i.e., design spaces or ways of interaction) and 
considerations (i.e., factors that influence user behaviour or responses) of 3D user interfaces. 
Solution - Conducting usability studies on (1) possible ways to offer new interaction (e.g., 3D 

eyes-free selection) and (2) scrutinising how specific factors (e.g., the presence of multimodal 
feedback and visual avatar) influence user performance, experience, and behaviour. 

3 Unknown Comparative Usability 

Challenge - The lack of understanding or guidelines of the relative usability between different 
solutions to inform “which method(s) to choose under a given situation.”
Solution - Conducting usability studies on comparing and benchmarking alternative choices 
of devices (e.g., game controller vs. 3D pen-like device), modalities (e.g., gaze vs. hand vs. 
head), and techniques (e.g., Raycasting vs. Virtual Hand). 

4 Ergonomic Issues: Workload and Fatigue 
Challenge - Fatigue from extended 3D interactions and physical constraints in users’ 
interaction space. 
Solution - Developing techniques that fulfil users’ space and comfortable requirements. 

5 Imprecise Rendering of Visual and Haptic Realism 

Challenge - Enabling more realistic and believable visual and haptic rendering during object 
selection and manipulation under hardware limitations and form factor constraints. 
Solution - (1) Proposing algorithms for realistic hand rendering, (2) building devices for 
simulating different haptic features (e.g., textures, shapes, and stiffness), and (3) conducting 
usability studies to explore methods that can improve perceived visual and haptic realism. 

6 Underdeveloped Evaluation Methodology 

Challenge - Standardising the practices of evaluating selection and manipulation solutions to 
allow the generalisation of results across studies. 
Solution - Building relevant testing framework, testbeds, and guidelines. 

7 Limited Support for Collaborative Object Manipulation 

Challenge - Simultaneous manipulation of a virtual object with multiple users. 
Solution - Building framework and techniques to enable simultaneous object manipulation. 

8 Context Integration and Workflow Optimisation 

Challenge - Integrating selection and manipulation into the “broader” context and workflow. 
Solution - Developing techniques that consider the context and simplify the workflow. 
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pecific challenges (but summarise them or their solutions) [ 5 , 27 , 51 , 57 , 70 , 99 , 156 ] and an early
rogramming implementation of basic interaction techniques [ 135 ] in this analysis. 

.1 Complexity in 3D Interaction Scenarios 

hough VR technology may create unprecedented opportunities for new types of interaction, de-
eloping appropriate 3D user interfaces for selection and manipulation is not trivial. Historically,
here have been two seminal selection and manipulation techniques: Virtual Hand and Raycast-
ng [ 5 , 74 ]. Virtual Hand creates a virtual replica of users’ physical hands in the VR space, and
he user can use the virtual hands to grab and manipulate virtual objects. Raycasting emanates
 virtual ray into the environment from (typically) the physical hand position, and the user can
ontrol the ray to point and interact with objects. These techniques are simple, straightforward,
nd intuitive for 3D interaction and have been employed in many off-the-shelf applications. 
ACM Comput. Surv., Vol. 57, No. 4, Article 98. Publication date: December 2024. 
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However, the literature has also pointed out known usability issues with these techniques. Per-
orming actions in 3D space is inherently difficult [ 55 , 57 ]. Simple techniques such as Virtual Hand
nd Raycasting can be imprecise and inefficient [ 5 , 74 ], especially when users cannot feel the
hysical properties (e.g., shapes, textures, weights) of virtual objects. For example, inputs such as
 button click could disturb the position of the input device and result in a different selection point
i.e., the Heisenberg effect) [ 176 ]. 

Meanwhile, VR interaction can be complex because of the added depth dimension. For example,
nteraction scenarios such as immersive data analytics [ 92 ], medical training [ 138 ], and interior
esign [ 66 ] may involve complicated visualisations. Therefore, targeted objects of interest can
e small, far away, occluded, off-screen, and even moving. It is challenging to acquire and ma-
ipulate such targets with Virtual Hand and Raycasting. In other application scenarios like 3D
odelling [ 68 ], the task may require precise interaction techniques. While Virtual Hand and Ray-

asting may work fine for simple interactions with unoccluded, properly sized buttons, menus, and
irtual objects, because of the aforementioned usability issues, they may not be sufficient for more
omplex scenarios. Therefore, papers under this theme aim to optimise selection and manipulation
nterfaces for simple and more complex 3D VR interaction scenarios. 

In the following, we point to 34 papers that address complexity in 3D interaction scenarios.
mong the selected papers, most of them (27 papers, 79.4%) primarily contributed new artefacts,

ncluding (1) interaction techniques , the fusion of input and output for users to complete tasks
n human-computer dialogues [ 39 , 160 ]; (2) devices , the hardware pieces employed by users to
ommunicate with a computer [ 23 , 58 , 90 ]; and (3) models , the computational assistance that im-
roves the usability of an interface through user behaviour prediction [ 54 ]. The remaining papers
7 papers, 20.6%) primarily presented empirical contributions. Empirical user studies were carried
ut to derive (1) design knowledge , the body of knowledge that can be used in similar application
cenarios, e.g., the advantages and disadvantages of a technique [ 161 ]; (2) design recommendations

nd guidelines , the explicit set of “rules” that inform future designs [ 101 , 159 , 183 ]; (3) desired de-

ign parameters , the setting of design parameters where the proposed solution can be the most
seful [ 81 ]; and (4) models [ 182 ], verbal or mathematical representations that describe and pre-
ict the characteristics of human-computer interactive dialogues [ 90 ]. We elaborate on existing
olutions for VR selection and manipulation as follows. 

5.1.1 Selection Approaches. Many proposed techniques improved the selection speed and accu-
acy by adjusting the criteria of how the selection of a target is determined. Rather than requiring
 tiny virtual pointer to be exactly “on” the targeted object, an enhanced technique may select the
losest object to the pointer [ 9 , 154 ], scale up the cursor size [ 40 , 87 ], predict the intended tar-
et [ 54 , 182 ], or introduce crossing-based [ 159 ] or multi-step selection techniques [ 100 ]. To select
bjects with different depths, techniques also added an extra dimension of movement (moving
long the depth dimension) to the Raycasting pointer [ 9 ] or distributed multiple 3D cursors across
he space [ 140 ]. Moreover, they incorporated multi-modality support with pen-based input that
everaged dexterous finger movements [ 81 ] and synergetic gaze and head-based input [ 144 ]. 

Other selection techniques have been developed to handle more complex 3D VR environments
hat contain distant, occluded, out-of-view, or multiple targets. While a user can only select ob-
ects within the arm-reach distance with Virtual Hand, assistant techniques may extend the move-

ent of the virtual hand [ 18 , 127 ] or create a reachable replica of the virtual environment or
ts elements [ 123 , 156 ]. For partially or fully occluded targets, existing techniques leveraged dis-
cclusion visualisations (e.g., making distractors transparent or translating candidate objects into
ew locations) to identify the target [ 163 , 186 ]. Techniques also modified selection mechanisms

e.g., gaze-based outline pursuits [ 143 ], Bézier curve-modified selection ray [ 38 ]) to acquire such
ccluded targets. For an out-of-view target, proposed techniques can guide the user towards its
CM Comput. Surv., Vol. 57, No. 4, Article 98. Publication date: December 2024. 
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ocation through, for example, vibrotactile cues [ 73 ]. If there were multiple targets in the scene,
hen techniques could create a selection volume via, for example, a volumetric cube, a lasso, or a
irtual tablet and further progressively refine the selection [ 64 , 108 , 155 ]. 

5.1.2 Manipulation Approaches. The literature presented two main methods to improve the
sability of VR object manipulation: degree-of-freedom (DoF) separation and control-display

atio (CD ratio) adjustment. DoF separation-based techniques reduced the number of DoFs be-
ng controlled simultaneously compared to Virtual Hand (which has three axes for translation,
otation, and scaling). For example, researchers adapted 3D virtual widgets similar to those used
n desktop CAD software (e.g., Unity, Blender) for VR headsets [ 22 , 77 , 101 , 102 ]. They further
nabled user-defined 3D anchor points or transformation axes [ 45 , 102 ]. CD ratio adjustment-
ased techniques dynamically increased or decreased the movements of the virtual hand com-
ared to the corresponding physical hand [ 102 , 127 ]. For example, scaling up the movement may
llow coarse, rapid manipulation, while scaling it down may enable more fine-grained transfor-
ation [ 41 , 42 ]. Additionally, previous research has also combined Virtual Hand and Raycasting

 148 , 161 ], designed finger gestures for rotation control [ 148 ], allowed users to impersonate an
nder-manipulated object [ 162 ], and incorporated gaze input into the manipulation process [ 183 ].

.2 Underexplored Interaction Spaces and Factors 

ne primary goal of HCI research is to understand users’ needs towards computing interfaces
nd map out new spaces of designs. Shifting from 2D interfaces such as PC screens and tablets,
any research questions exist on how to best leverage the 3D virtual space for interactions [ 74 ].

pecifically, there is a need to understand the new opportunities (i.e., design spaces or ways of in-
eraction [ 50 , 53 ]) and considerations (i.e., factors that may influence user behaviour or responses)
hat 3D interfaces may bring. Therefore, determining underexplored interaction spaces and factors
s another major challenge many papers aimed to resolve in the literature. 

Twenty-eight papers in our corpus aimed to explore new interaction spaces and factors that may
nhance VR selection and manipulation. The majority (24 papers, 85.7%) focused on empirical
ontributions through discovering design knowledge, recommendations and guidelines, desired
arameters, and models. There was one survey paper on conducting a meta-analysis to derive
uidelines [ 32 ], two theoretical papers about a framework [ 105 ] and a conceptual model [ 153 ],
nd one artefact paper on a novel device to offer new ways of interaction [ 49 ]. 

A collection of papers examined new design spaces to offer interaction. They considered, for
xample, the feasibility of eyes-free target acquisition [ 105 , 177 , 178 , 190 ], the practicability of
reehand pointing without a selection ray [ 26 , 97 ], and the usefulness of modifying control-to-
isplay mappings (input scale [ 44 , 72 , 170 ], direct vs. indirect input [ 72 ], and cursor offset [ 80 ]).
hey also tried to understand how users prefer to select and manipulate objects in VR [ 116 , 172 ]
nd investigated the locations of providing 3D virtual interfaces (e.g., arm-anchored [ 82 ], smart-
hones [ 72 ], fovea and periphery regions [ 67 ], user’s own body [ 105 ], and a display attached to
he face [ 49 ]) and the spatial and temporal aspects of selection [ 153 ]. 

Another set of works scrutinised how specific factors presented in user interfaces may influ-
nce performance, kinematic features, and user perception during VR selection and manipulation
asks. These factors include multimodal feedback [ 6 ], interaction fidelity (e.g., widgets vs. phys-
cally grabbing items) [ 136 ], the presence of virtual avatar [ 29 , 32 ], the aptitude and experience
f individuals [ 171 , 173 ], perception of redirection [ 28 ], the absence of haptic feedback during
R manipulation [ 88 ], and object features such as size and distance (e.g., References [ 171 , 182 ]).
ther works explored the impact of device-related factors on VR selection, including vergence-
ccommodation conflict [ 10 ], stereo deficiency [ 11 ], and jitter of input device [ 12 ]. 
ACM Comput. Surv., Vol. 57, No. 4, Article 98. Publication date: December 2024. 
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.3 Unknown Comparative Usability 

hile new solutions have been developed, their comparative usability is not always clear, such
s effectiveness, efficiency, and satisfaction [ 59 ]. The lack of understanding or guidelines of the
elative usability makes it hard to choose a more suitable approach for different applications. To
olve this challenge, some research is dedicated to comparing and benchmarking the usability
mong diverse VR selection and manipulation solutions. These studies aim to inform the design
ecision of “which method(s) to choose under a given situation .”
While comparing usability among different solutions is common in the relevant literature, the

nique point of the research studies summarised in this category is that they typically do not
ropose new interactions or explore new interaction spaces. In contrast, they leverage existing
olutions and compare them under new conditions. 

We identified 15 papers in our corpus where the primary goal was not to develop new methods
ut to perform rigorous empirical evaluation studies that compare choices of devices [ 3 , 17 , 71 ,
06 , 122 ], modalities [ 25 , 34 , 61 , 106 , 119 , 131 ], and techniques [ 69 , 94 , 128 , 129 , 166 ]. They were
ll empirical contributions, focusing on developing design knowledge, guidelines, and recommen-
ations. For example, existing studies compared displays (e.g., VR, AR, and PC screen) and input
evices (e.g., handheld controller, bare hand, 3D pen-like device, and mouse) for object selection
nd transformation tasks [ 3 , 71 , 122 ]. A few studies measured the performance of different input
odalities (e.g., eye, hand, head, and muscle contraction) for VR object selection [ 25 , 61 , 119 , 131 ].
hey also analysed feedback modalities such as auditory and force and derived design guidelines
ased on the study results [ 34 ]. Moreover, researchers also conducted empirical studies to com-
are switchable vs. fixed DoF control during object manipulation [ 69 ], visualisation techniques for
recise object alignment [ 94 ], and fixed vs. handheld menus for selection [ 166 ]. 

.4 Ergonomic Issues: Workload and Fatigue 

any mid-air interactions can be cumbersome for prolonged interaction because of the gorilla
rm effect—the fatigue caused by the weight of the arms while interacting in mid-air [ 16 , 56 ].
rgonomic assessments on workload and fatigue have been applied extensively to evaluate and
ompare different selection and manipulation approaches [ 13 ]. Measurements through self-reports
such as NASA-TLX [ 52 ] and Borg CR10 [ 15 ]) are often included in studies as accompanying met-
ics for usability. To improve VR interactions that involve large, cumbersome body movements
nd overlook the limits of a user’s physical interaction space, comfort requirements, and mobility
ssues, recent research has been proposing designs explicitly to address this challenge [ 109 , 168 ]. 

Our corpus presented two papers addressing ergonomic issues related to workload and fatigue
uring VR interaction. Both papers primarily contributed new interaction techniques, while one
lso proposed design recommendations [ 168 ]. Montano et al. [ 109 ] proposed an optimisation-based
etargeting strategy to relocate visual targets to more convenient reaching positions. Wentzel
t al. [ 168 ] investigated non-linear virtual hand amplification functions to improve arm ergonomics
hile maintaining body ownership. Both methods aimed to make the VR interaction experience
ore comfortable and accessible. 

.5 Imprecise Rendering of Visual and Haptic Realism 

ith advances in optics and audio technologies, current VR headsets can offer an improved sense
f presence in simulated realities, creating a fully immersive experience [ 8 ]. However, realism of-
en breaks when users attempt to grab and manipulate virtual objects: Their virtual hands/fingers
an pass through the object [ 114 ], and they cannot “feel” the physicality of the object in the
eal world [ 137 , 141 ]. For Virtual Hand-based selection and manipulation methods that mimic
CM Comput. Surv., Vol. 57, No. 4, Article 98. Publication date: December 2024. 
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eal-world experience, the challenge is to develop realistic and believable visual and haptic ren-
ering techniques under hardware limitations and form factor constraints. 
We identified four papers on visually realistic grasping of objects during VR manipulation.

hree were primarily artefact contributions on new rendering systems, and one was an empirical
ontribution that evaluated alternative visual representations. Oprea et al. [ 114 ] proposed a system
hat automatically fits a hand to the shape of virtual objects during grasping. Delrieu et al. [ 30 ],
nd Sorli et al. [ 149 ], realising there might be inherent mismatches in the tracked hand and the
irtual hand during hand-object manipulation without an actual physical object, introduced strate-
ies that balance between the tracked and the simulated hand to enable fine manipulation. Dewez
t al. [ 31 ] considered visual realism of avatars when adjusting the CD ratio during selection and
anipulation (e.g., Go-Go [ 127 ]) and examined dual representations of a user’s virtual body. 
Our corpus also included five papers on providing active or passive haptics to enable haptic ren-

erings such as textures, shapes, stiffness, and weight of objects during VR manipulation. Four
ere artefact contributions on new haptic devices, and one was empirical contributions on de-

ermining design parameters for more believable haptics. A few papers focused on active haptic
echniques that exert forces onto virtual contact areas through haptic devices to simulate a com-
elling interaction experience [ 7 ]. Schorr and Okamura [ 141 ] and Lee et al. [ 78 ] built wearable
evices to trigger haptic feedback on users’ fingertips. In contrast, others examined passive hap-
ic approaches that leverage a pre-defined set of physical props as proxies of virtual objects. For
nstance, Arora et al. [ 7 ] used custom-designed LEGO bricks to simulate various object shapes.
eick et al. [ 37 ] further used composable shape primitives and connectors to simulate the haptic
ensations of a complex virtual model. While providing a matching physical prop for every virtual
bject is not scalable, Samad et al. [ 137 ] created illusions of the changed weight of virtual objects
ith limited physical props by adjusting the CD ratio within an appropriate range. 

.6 Underdeveloped Evaluation Methodology 

 valid and reliable evaluation methodology is the cornerstone for assessing the usefulness and
ffectiveness of a new method for selection and manipulation [ 175 ]. Results yielded under rigor-
us evaluation methodologies can accumulate replicable findings, provide design guidelines, and
otentially enable the comparison of techniques across studies [ 13 ]. 
The initial obstacle of this space was to build a representative set of VR interaction tasks, task

arameters, and evaluation metrics so the research findings can be generalised beyond a particular
xperimental setting [ 19 , 20 , 74 , 130 ]. However, with the evolution of VR technology, the challenge
hifted towards designing studies that may consider a variety of new, essential factors that are not
overed in a canonical task setting while preserving generalisability [ 13 , 187 ]. Ultimately, these
ethodological works aim to standardise the practices in technique evaluation [ 13 ]. 
Our corpus contained five papers on standardising evaluation methodologies of object selec-

ion and manipulation in VR. Four methodological contributions involved testbeds, frameworks,
nd design guidelines that inform how to conduct empirical studies. One empirical contribution
nvestigated whether specific factors could influence the validity of user evaluations. 

Poupyrev et al. [ 130 ] and Bowman et al. [ 19 , 20 ] formalised early testbeds for technique eval-
ation. Poupyrev et al. [ 130 ] presented VRMAT , a testbed containing three basic interaction tasks
select, position, and orient) with their corresponding independent variables and evaluation met-
ics. Bowman et al. [ 19 , 20 ] further suggested that an interaction task (e.g., colouring an object)
an be broken down into several sub-tasks (e.g., selecting an object, selecting a colour, and ap-
lying a colour). Each sub-task can be achieved by various interaction techniques, which can
e evaluated by manipulating important outside factors (such as task characters and environ-
ents). More recently, Yu et al. [ 187 ] investigated the potential issue of disengagement with long,
ACM Comput. Surv., Vol. 57, No. 4, Article 98. Publication date: December 2024. 
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epetitive selection experiments and evaluated motivational strategies to incentivise participants
uring such experiments. Bergström et al. [ 13 ] analysed research works in evaluating object selec-
ion and manipulation from 2000 to 2019 and proposed recommendations and checklists on task
esign and result reporting for guiding future studies. 

.7 Limited Support for Collaborative Object Manipulation 

hen multiple users collaborate in VR, a common need is to move and modify objects within the
irtual space cooperatively [ 35 , 133 ]. For example, users may need to assemble a complex object
ogether [ 164 ], modify a 3D data visualisation concurrently for exploration [ 14 , 33 ], and place
igital furniture at different locations for configuration testing [ 133 ]. Existing research identifies
he challenge of simultaneous manipulation of a virtual object with multiple users [ 75 , 124 , 125 ,
47 , 164 ]. When two or more users want to manipulate the same virtual object, it is essential to
etermine who should control the object for better efficiency and user experience. 
Our corpus captured two papers on providing simultaneous object manipulation in VR headsets.

here was one theoretical contribution and one artefact contribution. Pinho et al. [ 124 ] introduced
 conceptual framework ( Collaborative Metaphor ) that considers which input technique to use,
ow to combine them, and how to display a user’s action to others in a collaborative task. They
lso presented interaction techniques that, for example, allowed collaborators to control differ-
nt transformations (such as managing either translation or rotation). Wang et al. [ 164 ] proposed
n interaction technique that determines the dominant manipulator based on a viewport quality
unction that examines quantities such as object visibility and distance of the target. 

.8 Context Integration and Workflow Optimisation 

lthough selecting or manipulating an object is typically treated as an individual task in research
tudies, they are associated with scene and interaction contexts in realistic applications. For exam-
le, a selected object may belong to a group of closely related objects, which are often manipulated
ogether [ 165 ]. A manipulation gesture may result in multiple consequences, because the same ges-
ure is used for several tasks [ 24 , 91 ]. Integrating selection and manipulation techniques into the
broader” context and workflow is another challenge based on the literature. 

We identified three recent papers that proposed new artefacts (specifically, interaction tech-
iques) on this topic. Mardanbegi et al. proposed EyeSeeThrough , which simplifies the process of
ool selection and application: Users can visually align a target object with the tool at the line-of-
ight to apply the tool to the object, rather than performing a tedious two-step operation of first
electing the tool and then selecting the target [ 91 ]. Chen et al. proposed a technique that resolves
mbiguous hand manipulation gestures (e.g., hand movements can either displace or stretch an
bject) with a pop-up menu that can be interacted with head gaze [ 24 ]. Wang et al. developed
 method that considers scene context information, such as object semantics and interrelations
hen selecting or moving an object. For example, the technique can automatically adjust the yaw
f a chair during translation to make it face a nearby table [ 165 ]. 

.9 Summary Statistics 

e analysed how the number of publications under each challenge changed over the years. The
esults are summarised in Figure 3 . The total number of publications has significantly increased in
ecent years (since 2017), perhaps because of the advancements made in the off-the-shelf headsets
nd development kits such as Oculus CV1 and HTC VIVE headsets. Note that our literature review
as initiated in early 2022, so limited publications were captured for this year. 
The topics of complexity in 3D interaction scenarios, underexplored interaction spaces and fac-

ors, and unknown comparative usability have remained attractive and mainstream since the 1990s.
CM Comput. Surv., Vol. 57, No. 4, Article 98. Publication date: December 2024. 
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Fig. 3. Chronological depiction of the number of publications addressing proposed challenges, presented 

through a stacked bar chart. The dashed line signifies the annual total publication count. 
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here are also emerging themes where all relevant publications appear in more recent years. Re-
earchers gained interest in resolving ergonomic issues related to workload and fatigue, rendering
ore precise and believable visuals and haptics, and integrating selection and manipulation tech-
iques into a broader interaction context. One interesting observation is that the publications on
valuation methodology were present early in 1997 and 1999, remained silent between 2000 and
019, and were picked up again more recently (2020 and 2021). Also, the topic of collaborative
bject manipulation appeared in 2002 and was continued in 2021. 

 Measuring Success 

ased on the presented research challenges and solutions, we further investigated and reflected on
ow authors of the selected papers measure the success of their solutions. Based on the literature,
e first categorised nine success measurements (effectiveness, efficiency, ergonomics, experience,

obustness, versatility, realism, behaviour, and consistency). We then analysed how these mea-
urements were applied in each research challenge. 

Through this analysis, we aimed to answer three motivating questions: (1) Has the literature
ver-emphasised performance measurements such as task completion time and error rate to make
 case for a successful solution? (2) Are the existing success measurements appropriate for the
esearch challenges? (3) What should we expect about future selection and manipulation methods?
he answers to these questions, as discussed in Section 7.2 , allowed us to assess the validity of the
urrent practices and identify potential problems in the field. 

.1 Measurements 

e first summarised and categorised the success measurements used in the papers. During the it-
rative development process, we borrowed concepts from Hornbæk’s work [ 59 ] on usability mea-
urements while extending the original classifications (effectiveness, efficiency, and satisfaction) to
 more detailed, domain-specific version with nine measurements. For example, we distinguished
fficiency regarding completion time and workload into two usability measurements (efficiency
nd ergonomics) to improve the granularity. We also introduced new dimensions more relevant to
R selection and manipulation research, such as robustness and realism. 
ACM Comput. Surv., Vol. 57, No. 4, Article 98. Publication date: December 2024. 
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—Effectiveness. Effectiveness represents “the accuracy and completeness with which users
achieve specific goals,” as according to ISO 9241 [ 63 ]. Specific measures used in our cor-
pus include error rates (e.g., percentage of incorrect selections [ 11 , 87 ]), error distances
or rotations (e.g., offsets between the target and the actual input [ 78 , 97 , 101 , 164 ]), false
positives/negatives (e.g., in a group selection scenario [ 108 , 155 ]), and task completion (e.g.,
completion rates [ 42 , 45 ]). They also involve prediction accuracy of a model [ 26 , 54 , 182 ]
and may get incorporated in throughput measures [ 6 , 61 ]. 

—Efficiency. The ISO 9241 (2018 version) defines efficiency as “resources used in relation
to the results achieved” such as time, human effort, and materials [ 63 ]. To make it more
specific to our tasks, we considered efficiency as the time cost associated with the results
achieved. The typical measure in our corpus is task completion time (e.g., cursor move-
ment time [ 122 ], selection time [ 187 ], manipulation time [ 30 ]). They also get involved in
throughput measures [ 82 ]. 

—Ergonomics. While ergonomics is a broad term in certain contexts, we here restrict it to
the physical or mental workload associated with the results achieved. Objective quantifi-
cation (approximation) of ergonomics employed in our corpus include hand/arm move-
ment distance [ 87 , 183 ] and RULA (rapid upper limb assessment) score [ 109 ]. Subjec-
tive measures related to ergonomics contain questionnaire results from NASA-TLX [ 49 ],
Borg CR10 [ 168 ], customised scales of fatigue and comfort [ 87 , 122 ], and qualitative feed-
back [ 81 ]. 

—Experience. This encapsulates users’ feelings and satisfaction when performing tasks with
the evaluated solutions [ 58 ]. These data are normally collected from questionnaires. The
measures include, but are not limited to, overall impression [ 37 ], general user experi-
ence [ 165 , 186 ], satisfaction [ 61 ], preference [ 44 , 105 , 122 ], sense of control [ 45 , 61 ], body
ownership [ 29 , 31 , 78 , 137 , 168 ], ease-of-use [ 144 , 161 ], fun [ 45 , 101 ], perceived perfor-
mance [ 72 , 87 , 162 ], perceived ease of learning [ 24 , 41 ], perceived usability [ 94 ], intuitive-
ness [ 24 , 87 ], sense of presence [ 77 , 164 ], immersion [ 136 ], engagement [ 136 ], obtrusive-
ness [ 106 , 186 ], and sickness [ 170 , 178 ]. 

—Robustness. A robust solution remains useful under different testing conditions, especially
if the solution has been evaluated to achieve good performance under more challenging
scenarios. It can also mean that a derived conclusion performs consistently across multi-
ple studies. For example, researchers have tried to evaluate their solutions under difficult
scenarios (e.g., wider or untested conditions for a predictive model [ 182 ] and high occlu-
sion scene [ 87 , 143 ]) to test their robustness. They have also performed meta-analyses to
determine robust conclusions [ 13 , 32 ]. 

—Versatility. Versatility reflects whether a solution can be applied for a wide range of interac-
tion scenarios or even enable new use cases. To demonstrate versatility, researchers often
present a section of application scenarios in the paper (e.g., References [ 37 , 165 ]). For in-
stance, when introducing the haptic device VirtualBricks [ 7 ], the authors detailed example
applications such as its use in first-person-shooter games, fishing, disco, and so on. Addi-
tionally, a framework or testbed may illustrate its versatility through sample techniques
and use cases [ 20 , 124 , 130 ]. 

—Realism. Realism (sometimes dubbed as naturalness [ 30 , 149 ]) is defined as how well the
way of interacting with virtual objects corresponds to the way of interaction in the physical
world. We consider it separately from experience measures, as it emphasises the cognitive
judgment of physical-virtual mismatches more than the interaction experience itself. Real-
ism is also different from body ownership, the psychological mapping of one’s real body to
a virtual body [ 146 ], and sense of embodiment, the illusion that the co-located virtual body
CM Comput. Surv., Vol. 57, No. 4, Article 98. Publication date: December 2024. 
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Fig. 4. Two percentage stacked bar charts showcasing the prevalence of success measurements being utilised 

to substantiate the usefulness of proposed solutions across artefact papers (top) and the likelihood of these 

measurements being applied in empirical, methodological, theoretical, or survey papers (bottom). Broader 

bars indicate a more widespread adoption of the respective measurement. 
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has effectively replaced their physical body [ 46 ]. Realism is typically assessed through cus-
tomised scales [ 30 , 106 , 149 ], discrimination tasks (e.g., weight discrimination [ 137 , 141 ]),
or qualitative interview [ 137 ]. 

—Behaviour. User behaviours are likely to change if a new solution is adopted. Several papers
have demonstrated that different approaches could influence interaction strategies [ 161 ,
183 ], movement profiles [ 6 , 170 , 182 ], and Fitts’s law parameters [ 61 , 159 ]. A few showed
that their solutions could encourage positive behaviours in an interaction context. For ex-
ample, the solutions can increase user participation [ 164 ], cursor speed [ 122 ], and maxi-
mum reach distance [ 31 ]. They can also decrease the number of iterations to complete a
task [ 128 ], the number of target re-entries [ 10 , 11 ], and the number of times that users press
the trigger button [ 44 ]. 

—Consistency. Consistency refers to how measurements such as effectiveness, efficiency, er-
gonomics, and experience change over time. A few papers in our corpus have checked the
performance of their solutions in prolonged interaction scenarios. They found the perfor-
mance (e.g., completion time and error rates) could be influenced by learning/practicing
[ 31 , 159 , 171 ], fatiguing, and disengagement [ 187 ]. 

.2 How Solutions Address Each Research Challenge 

e assessed how success measurements were used in each paper. In artefact papers, a success
easurement refers to the evidence the authors provide to claim their proposed interaction tech-
iques, models, devices, and systems to be “better than” or “comparable to” previous or other
pproaches. In empirical, methodological, theoretical, or survey papers, all the evaluation metrics
ere considered as the success measurements—we assumed that the authors considered the eval-
ation metrics essential for a successful solution to use them in the study. Because of this inherent
ifference between contribution types, we analysed them separately. 
We first investigated the likelihood of success measurements being used to evaluate the solutions

o each research challenge (Figure 4 ). We removed a challenge category for such an analysis if it
ACM Comput. Surv., Vol. 57, No. 4, Article 98. Publication date: December 2024. 
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onsisted of fewer than five papers (i.e., a small sample size). We then performed additional analysis
o offer insights tailored to the contribution types. 

6.2.1 Artefacts. To address the issue of complexity in 3D interaction scenarios (27 papers), the
rtefact papers emphasised effectiveness (48% of the papers), efficiency (37%), experience (44%), and
ersatility (33%) to demonstrate the success of their solutions. That is, the proposed solution was
ften argued to achieve better performance, such as faster completion and fewer errors, provide
ore satisfactory user experiences, and be suitable for various application scenarios. Ergonomics

22%) and robustness (15%) measurements were less often used in the arguments, and there was
ittle attention to realism, behaviour, and consistency measurements. 

To address the challenge of the imprecise rendering of visual and haptic realism (seven papers),
he dominant measurement was experience (71%), followed by effectiveness (43%), efficiency (43%),
ersatility (43%), and realism (43%). This indicated that while the solutions might have been pro-
osed to improve realism, they could also enhance user experience (e.g., body ownership, sense
f embodiment) and performance. The solutions were often demonstrated to remain functional in
ultiple applications. 
Further analysis of all artefact papers suggested that when a solution achieved better perfor-
ance (effectiveness or efficiency), the probability that it outperformed other solutions in the ex-

erience measurement was 76.9% and in the ergonomics measurement was 34.6%. If performance
as improved, then the likelihood that the artefact performed superior in effectiveness and effi-

iency measurements was 34.6%. There were 24.4% of the solutions performed better in more or
qual to four measurements. 

6.2.2 Empirical, Methodological, Theoretical, and Survey. For the challenge of complexity in 3D
nteraction scenarios (seven papers), the selected papers employed similar measurements as in the
rtefact papers. More papers evaluated effectiveness (71%), efficiency (86%), ergonomics (43%), and
xperience (57%). Only one (14%) measured consistency in learning the techniques over time [ 159 ]
nd one conducted new studies on evaluating the robustness (14%) [ 182 ]. 

When exploring new interaction spaces and factors (27 papers), many papers focused on stan-
ard measurements such as effectiveness (67%), efficiency (63%), and experience (52%). Ergonomic
easurements, including fatigue and workload, were also used in some cases (30%). Only a few

apers assessed robustness (4%), versatility (7%), realism (4%), and consistency (4%) measurements.
s for behaviour measurements (15%), there were explorations on whether the potential solutions

ould encourage positive user behaviours, such as decreasing the re-entry rate. 
Similarly, more frequent measurements when comparing alternative solutions (15 papers) were

ffectiveness (60%), efficiency (93%), ergonomics (60%), and experience (73%). There were also lim-
ted analyses on versatility (7%), realism (13%), and behaviour (20%). 

For developing evaluation methodologies (five papers), the papers mostly demonstrated that
heir framework or testbeds could achieve the desired purposes (effectiveness: 80%) and be
dapted to new application scenarios (versatility: 60%). One empirical paper (20%) also consid-
red efficiency, ergonomics, experience, and consistency effects when adjusting the evaluation
ethodology [ 187 ]. 

6.2.3 The Usage of Different Measurements over Time. Figure 5 summarised how success mea-
urements were applied in different types of papers over the years. For artefact papers, more recent
echniques were optimised to outperform baselines in a more diverse set of successful measure-
ents (i.e., more colours in the stacked bars after 2016). Specifically, while versatility, effective-
ess, efficiency, and experience seemed to be the initial focus, more recent techniques (after 2016)
CM Comput. Surv., Vol. 57, No. 4, Article 98. Publication date: December 2024. 
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Fig. 5. Two stacked bar charts illustrating the utilisation of success measurements in artefact papers to 

substantiate the usefulness of proposed solutions (left), alongside the application of success measurements 

in empirical, methodological, theoretical, and survey papers (right). 
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oncerned the improvement of ergonomics. They also started to improve upon measurements such
s robustness and realism. 

For empirical, methodological, theoretical, and survey papers, multiple measurements were em-
loyed to evaluate different perspectives of the solutions across years (i.e., the colours were more
pread around). However, we noticed that measurements such as robustness, behaviour, and con-
istency were not as commonly used as performance measurements (effectiveness and efficiency),
hich could have given a more comprehensive picture of the usability of the technique. 

 Discussion 

ased on our literature review, we first discuss findings on classic challenges and emerging trends
n VR selection and manipulation, together with an overview of the solutions. We then evaluate
hether current success measurements are suitable for these research challenges. We also present
 framework based on Pareto Frontier [ 113 ] to optimise the techniques toward desired outcomes.
e finally illustrate other potential issues from the literature that deserve attention in future work.

.1 Classic Challenges and Emerging Trends 

pon categorising the research challenges publications aimed to solve, we see both classic chal-
enges that have been actively investigated for decades and emerging trends that currently present
 small number of papers but highlight important issues. 

Classic research challenges were raised in the early days when there was little understand-
ng of designing appropriate 3D user interfaces for selection and manipulation (Challenges 1–3).
esearchers prototyped solutions to interact with objects in the surrounding 3D virtual space,
xplored new design spaces and features unique to 3D interaction, and compared alternative solu-
ions for the best performance and interaction experience. With a more advanced understanding of
he space, broad research challenges have been broken down into a multitude of specific sub-topics
uch as target occlusion [ 143 , 163 , 186 ], eyes-free acquisition [ 105 , 177 , 178 , 190 ], multi-modality
ntegration [ 81 , 93 , 144 , 185 ], and virtual avatar-based interaction [ 29 , 32 ]. We have detailed de-
criptions of these challenges and their solutions in Section 5 . 

There are also small but emerging topics in the field that are worth attention: coping with pro-
onged interaction and space limitations, rendering precise visual and haptic realism to reduce
oticeable sensory mismatches, and integrating the selection and manipulation tasks into broad
ontexts and workflows (Challenges 4, 5, and 8). We expect further solutions of these research
hallenges. For example, with the rise of ergonomic issues, it seems that researchers have been
utting more emphasis on designing for users themselves rather than on performance improve-
ents. The topic could be further extended to consider accessibility issues, where users might
ACM Comput. Surv., Vol. 57, No. 4, Article 98. Publication date: December 2024. 
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ave physical constraints with their bodies or environment-imposed situational disabilities (e.g.,
 person holding groceries might not be able to use their arms for other tasks) when interacting
ith VR systems [ 85 , 110 , 189 ]. We also envision the application of AI technologies and novel

oncepts to help systems better understand the environmental context and the user’s needs and
rovide timely assistance [ 65 , 121 , 181 ] and more believable experiences [ 36 , 158 ] during VR object
election and manipulation. 

Two challenges investigated in the early days were revisited more recently. One is the challenge
f underdeveloped evaluation methodology (Challenge 6). Though the existing evaluation frame-
ork is still helpful in ensuring internal validity (i.e., study rigour), experimental factors that could

nfluence the study results (e.g., target size, distance, arrangement, density, occlusion, the presence
f virtual avatar, background setting) are becoming too overwhelming to be fully crossed in a user
tudy. It is thus difficult to determine to what extent the study results could be generalised to the
ntended applications and whether it is suitable to compare the results across studies [ 13 ]. We
rgue that it is still unclear how to address this challenge and will provide potential directions
n Section 7.4.2 . The other challenge is the limited support for collaborative object manipulation
Challenge 7). With the growing commercialisation of VR systems, it would be advantageous if
sers could complete tasks that require simultaneous manipulation of virtual contents with co-

ocated or remote peers [ 47 , 48 , 125 , 133 , 169 ]. We expect to see more explorations considering
he unique affordances of immersive VR headsets and the cooperation of multiple devices (e.g., VR
eadsets with AR glasses, tablets, and desktops) in object selection and manipulation. 

.2 Success Measurements 

e raised three motivating questions when analysing the success measurements according to the
esearch challenges. We here provide answers based on our analysis. 

7.2.1 Has the Literature Over-emphasised Performance Measurements?. While improving per-
ormance regarding effectiveness and efficiency can be essential, it might not be desirable if
chieved at the expense of increased cognitive load [ 5 ]. Moreover, users may prefer an interface
hat does not necessarily improve performance [ 120 , 132 ]. These previous findings motivated us to
xplore whether VR selection and manipulation literature has been emphasised too much on per-
ormance measures. Our results (Figure 5 ) suggested that in more recent years, additional success
easurements, such as user experience, ergonomics, and versatility, have been widely applied.
herefore, we point out that the existing publications do not over-emphasise performance. 

7.2.2 Are the Existing Successful Measurements Good Enough?. According to our results, current
easurements of artefacts and empirical studies centre mostly around effectiveness, efficiency,

rgonomics, experience, and versatility. Effectiveness and efficiency capture objective performance
easurements, while ergonomics and experience typically reflect subjective feelings. These are

lassic and reasonable measurements for user interface techniques in general [ 59 ]. 
Versatility demonstrates whether a solution can be applied to various applications or even en-

ble new ones. This measurement could be especially useful for VR applications, given the diverse
ocations and forms of a target—a recent survey of VR consumer applications showed that tar-
ets can appear at varying distances relative to the user (e.g., on-body, within reach, and out-of-
each) and in different forms within the environment (e.g., 3D objects, UI elements, and moving
vatars) [ 96 ]. Realism is another identified measurement, but one should consider whether it is
ppropriate before using it. Some use cases may benefit from beyond-real interaction techniques
o enhance performance [ 1 ]. In contrast, other applications may aim to simulate how tasks are
erformed in real life, which may necessitate the use of realism measurements [ 96 ]. 
CM Comput. Surv., Vol. 57, No. 4, Article 98. Publication date: December 2024. 
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We further draw attention to three proposals. First, we argue that the success measurements
elated to robustness, consistency, and behaviour should be used more often. These measurements
an provide a more comprehensive evaluation of the proposed solution. Specifically, they reflect
 solution’s adaptability across tasks with different difficulties (i.e., robustness) and interaction
urations (i.e., consistency) and whether and how user behaviour will change because of the
daptation of the solution (i.e., behaviour). We encourage researchers to reflect on the following
uestions: (1) Robustness: Does the solution remain helpful in more extreme scenarios? (2)
onsistency: Does the solution’s usability increase or decay over time, either in the short term
r in the long run? (3) Behaviour: How does the solution reshape user behaviour, and does it
ncourage positive behaviour? 

Second, while current assessments of workload and fatigue are mainly based on questionnaires,
e argue that objective metrics should be used more often. In our corpus, among the 32 papers
here workload and fatigue were evaluated, only 5 used objective metrics. We encourage adopt-

ng objective metrics such as RULA scores [ 98 , 109 , 168 ] and Consumed Endurance [ 56 ], or even
ough approximations such as hand movement distances or angles [ 44 , 87 , 183 ], along with ques-
ionnaires to estimate user workload and fatigue. Such objective measures could alleviate the po-
ential experimenter effect when filling out a questionnaire. Additionally, recording limb and head
ovements should not be too cumbersome, given that hand and head tracking is often enabled in
 headset-based VR system. 

Third, we should re-think how to measure the success of an evaluation methodology. Re-
earchers who proposed new testbeds or frameworks illustrated the usefulness of their approach
hrough its effectiveness (e.g., through the demonstration of its usage) and versatility (e.g., reusable
or new scenarios) [ 19 , 20 , 130 ] or showed that they were standard approaches for many previous
apers [ 13 ]. However, there is a mismatch between these measurements and the goal (i.e., both
nternal and external validity) of a suitable method—researchers still have problems determining
hich methods (e.g., experimental tasks) they should choose to make their studies more “generalis-

ble” to application scenarios. We illustrate our thoughts on resolving this problem in Section 7.4.2 .

7.2.3 What Should We Expect about Future VR Selection and Manipulation Methods?. We believe
hat success measurements are the main determinants of shaping future selection and manipula-
ion methods—they are treated as optimisation objectives of our endeavours. Therefore, the current
rediction is that the future solution should perform reasonably well in the aforementioned suc-
ess measurements (effectiveness, efficiency, ergonomics, experience, robustness, versatility, real-
sm, behaviour, and consistency). However, we should also note that the successful measurements

ay correlate or conflict with each other. Our analysis has shown that performance measurements
effectiveness and efficiency) coupled with the experience measurement quite well; 76.9% of the
roposed artefacts outperformed the baselines in experience measurement if they achieved better
erformance. In other cases, researchers and designers might need to decide the tradeoff between
he measurements such as speed vs. accuracy tradeoff [ 126 ] and flexibility (versatility) vs. effi-
iency tradeoff [ 83 ]. Eventually, the future selection and manipulation method will have to pick a
ubset of success measurements to optimise while trading off other objectives. 

Another related prediction is that there will be a clear separation between generalised solutions,
hich aim to handle numerous interaction scenarios, and specialised tools, which are dedicated

o specific use cases [ 86 , 178 ] (i.e., the breadth/depth dichotomy [ 58 ]). For example, the primary
nteraction metaphors based on Raycasting (or pointing in general) and virtual hand are unlikely
o change significantly because of the significant commercialisation and their flexibility to be
sed in various interaction scenarios of selecting and manipulating properly sized, unoccluded
enus, buttons, and objects. An implicit assistant from target prediction models can be applied
ACM Comput. Surv., Vol. 57, No. 4, Article 98. Publication date: December 2024. 
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Fig. 6. To maximise performance measurements (i.e., efficiency and effectiveness), we placed all the candi- 

date techniques onto a 2D plot with efficiency as the x-axis and effectiveness as the y-axis. We can compute 

the Pareto Frontier to determine the most optimal solution (i.e., BubbleRay-A in this case). The secondary, 

tertiary, and quaternary choices can also be concluded. 
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o enhance their usability when appropriate [ 54 , 182 ]. More explicit enhancements such as visu-
lisations and modalities [ 93 , 145 , 179 ], because of the added functionalities (and complexities),
ay continue proliferation to provide solutions for more specific scenarios such as for dense [ 9 ,

81 ], occluded [ 163 , 186 , 188 ], group-based [ 108 , 155 ], and hands-free [ 85 , 144 ] target selection
nd manipulation. 

.3 Advancing the Field with Multi-objective Optimisation 

s discussed in the previous section, VR object selection and manipulation solutions may only op-
imise a subset of the success measurements most beneficial for the intended application, because
radeoffs can exist between different objectives. In this case, it is essential to determine which
echniques are ideal and how to develop the most appropriate solutions for a given application. To
chieve that, we build a framework based on Pareto Frontier [ 113 ] for deciding the most suitable
echnique(s) given multiple success measurements. Pareto Frontier contains a set of solutions that
annot be better off in any targeted objective without making it worse off in another objective.
he main idea of our proposed framework is first to determine the desired success measurements

or a given application and then choose the Pareto optimal solutions (i.e., Pareto Frontier) for the
pplication. We illustrate the detailed process through an example. 

Suppose we are looking for the best techniques for mid-range (around 1–5 meters) target se-
ection. We want to maximise its performance measurements (i.e., efficiency and effectiveness).

e pick two papers [ 9 , 87 ] as our knowledge base for choosing the desired technique(s). In Lu
t al.’s work [ 87 ], six techniques can be used for our purpose: Go-Go , Raycasting (i.e., Naive Ray

n the paper), Heuristic Ray , Quad Cone , BubbleRay-E , and BubbleRay-A . From their comparison
tudy, we can infer that for efficiency: BubbleRay-A > BubbleRay-E , Heuristic Ray , Quad Cone > Go-

o , Raycasting . For effectiveness: BubbleRay-A , BubbleRay-E , Quad Cone > Go-Go , Heuristic Ray ,
aycasting . Similarly, we derive the following relationships based on the study in Baloup et al. [ 9 ]:
or efficiency: Raycasting , Semi-Auto RayCursor > Manual RayCursor > Ro et al. 2017 . For effective-
ess: Semi-Auto RayCursor > Manual RayCursor , Raycasting > Ro et al. 2017 . 
Based on the above relationships, we can place the techniques from the two papers onto an

fficiency and effectiveness scale by using the standard technique Raycasting as the anchor (see
igure 6 , left). In both scales, the higher the tiers, the better the techniques perform on that scale.
ote that we should be cautious about combining results from different papers, as the experimental

nvironments differed. To demonstrate the optimisation framework, we assume these conclusions
re generalisable (and we will discuss the generalisability issue in Section 7.4.2 ). 

Since we want to optimise two objectives, we can place all the candidate techniques onto a 2D
lot with efficiency as the x-axis and effectiveness as the y-axis (see Figure 6 , middle). Following the
CM Comput. Surv., Vol. 57, No. 4, Article 98. Publication date: December 2024. 
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efinition of Pareto Frontier, where we identify the solution(s) that either of the dimensions could
ot be improved without worsening the other dimension, we conclude that BubbleRay-A should
e our primary choice. A similar procedure can be followed to determine the secondary options
i.e., Quad Cone ) by excluding the primary choices, as well as tertiary and quaternary options. 

The demonstrated framework can be easily extended for future use cases. For example, we can
onsider higher dimensions with more optimisation objectives (e.g., four objectives including ef-
ciency, effectiveness, experience, and robustness) if we have enough data support from previous
mpirical studies. Eyeballing the solutions might be difficult in higher dimensions, but the solu-
ions can be computed programmatically. Furthermore, the optimisation objectives do not need to
e restricted to the nine success measurements categorised in this research but with more precise
eparations (e.g., fun vs. perceived ease-of-use). 

The framework can help practitioners decide which techniques to choose given a set of optimi-
ation objectives and guide the future development of VR selection and manipulation solutions.
he framework indicates that we should aim to develop solutions located at the Pareto Frontier of
ifferent combinations of objectives. It also suggests that we should conduct studies to verify the
tiers” of solutions, maybe with multiple studies to evaluate the generalisability of the conclusions
n a given interaction scenario. In addition, we should try to compare a newly proposed solution
o standard baselines (e.g., Virtual Hand or Raycasting) or the state-of-the-art to position it in the
andscape of the techniques in the literature. 

.4 Additional Issues for Future Research 

7.4.1 Proposal of Theories that Can Explain. Recent discussions in HCI, in general, have been
utting a lot of attention on theory building (e.g., References [ 60 , 84 , 117 , 118 ]). A recent survey
n VR selection and manipulation by Bergström et al. also highlighted the importance of evidence
ccumulation for theory building [ 13 ]. However, the papers deemed to have theoretical contri-
utions (as categorised in our work) concentrated on design spaces or frameworks [ 175 ]. While
e have seen a few papers on empirical models that can predict user selection behaviour [ 182 ]
r intended target of interest [ 54 ], these models are mainly descriptive. They do not provide a
ense of understanding about the causes of the predicted event. Since being able to explain the
ausal mechanism is indispensable for a scientific theory [ 134 ], we should aim to build theories
hat can provide understanding regarding the underlying cognitive and motor mechanisms of VR
bject selection and manipulation. This may require, for example, studying the underlying control
rocesses of an interaction technique [ 112 ]. 

7.4.2 Study Methodology and Generalisability. Good generalisability allows research findings
o remain valid across relevant application scenarios. One issue we have identified was the mis-
atch between the success measurements and the goal of evaluation methodologies. Measuring

eneralisability is difficult without numerous studies on the relevant topics. So, how can we deter-
ine whether a methodology is valid when first proposed? Specifically, should we choose to use

he classic layout based on 2D Fitts’s Ring [ 150 ] or the randomised distribution of the objects in
D? Should we use a colourful background to get users engaged in the experiment [ 187 ] or use a
onochrome VR environment to minimise distractions? We believe these choices all matter with

he balance between concreteness and abstraction when constructing an evaluation methodology.
The tools are typically designed for completing a (set of) concrete interaction task(s). If the

tudy methodology closely mimics how users complete the designated interaction tasks, then we
hould have more confidence in saying that the study results are generalisable in these tasks. To
losely approximate the concrete tasks, the methodology may leverage similar object distributions
e.g., following specific layouts) and create the feeling users typically have when completing such
ACM Comput. Surv., Vol. 57, No. 4, Article 98. Publication date: December 2024. 
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asks (e.g., engaged). In contrast, the study methodology may extract only high-level features in
he concrete interaction tasks, because it aims to address numerous of them, making the design
ore abstract (e.g., Fitts’s Ring). It is more difficult to tell whether the results produced in the

bstract task settings are generalisable to concrete scenarios because of the simplifications. The
ey to capturing generalisability with a suitable study methodology is to balance concreteness
nd abstraction if there are multiple intended interaction scenarios. Note that both concrete and
bstract methods could achieve internal validity but may have different implications for external
alidity. 

Existing literature demonstrates a few examples of how study findings can be more confidently
eneralised to intended applications: (1) by emphasising a specific application scenario and only
valuating that scenario [ 155 , 161 , 165 ]; (2) by experimenting with both abstract and concrete ex-
mple applications [ 164 , 184 ]; (3) by testing the study results in wide parameter ranges, especially
n more challenging conditions [ 87 , 182 ]. In addition, to ensure the generalisability of the results,
e concur with Bergström et al. [ 13 ] that we should also regularly perform longitudinal, outside-
f-lab studies. It can also be useful to perform a meta-analysis that compares different techniques
n terms of their performance (e.g., effectiveness and efficiency). However, each research paper
ypically employs different methodologies and task settings, making direct comparisons and anal-
ses challenging. One interesting future direction to enable this without running numerous user
xperiments is to simulate users with an AI agent [ 62 ]. 

7.4.3 Measuring Accessibility. In addition to the nine success measurements discussed in the
xisting literature, it would be helpful to add the measurement of accessibility. Many people suffer
rom disability worldwide [ 110 , 115 ]. Furthermore, every user could experience situational impair-
ents, depending on their situations, contexts, and environments (e.g., a user may not be able to

se their arms for interaction while lifting heavy goods) [ 139 , 142 , 174 ]. It is thus useful to consider
ow proposed methods can be adapted to support people with (situational) disabilities such as vi-
ual [ 189 ] or motor [ 111 ] impairments to accomplish selection and manipulation tasks. It may also
e interesting to develop standard tools for evaluating the accessibility of an interaction technique.

7.4.4 Usability Measurements during Practice. One aspect often overlooked in the existing lit-
rature is the usability measurements of solutions while users are still practising how to use them
i.e., at the start of the learning process). Previous research typically removed data in the practice
rials from the formal experimental data or gave participants enough time to get familiar with the
roposed methods [ 61 , 140 , 182 , 186 ]. However, it can be helpful to quantify the usability of the
olutions during the early learning process, which can provide valuable information on whether
sers can quickly adapt to these solutions. For example, a recent study demonstrates how to eval-
ate motor learning when adapting to new interaction techniques [ 180 ]. 

.5 Summary of Recommendations 

e summarise the main takeaways from our discussions in the following: 

—Classic challenges remain attractive for future research, including complexity in 3D inter-
action scenarios, underexplored interaction spaces and factors, and unknown comparative
usability of the candidate solutions. Meanwhile, we should also pay attention to the emerg-
ing trends, where researchers have been proposing solutions to cope with the limitations in
a user’s physical space, render believable visuals and haptics when appropriate, integrate
the techniques to a broader context and workflow, develop better evaluation methodology,
and enable collaborative object manipulation. 
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—While the existing literature has employed a multitude of success measurements to evaluate
the candidate solutions, researchers should further consider (1) assessing the robustness,
consistency, and behaviour aspects more often, (2) using objective metrics to accompany
the current questionnaire-based measurement of workload and fatigue, (3) re-thinking how
to evaluate the success of a new evaluation methodology. 

—The optimisation framework introduced in Section 7.3 can help choose an appropriate so-
lution for a given scenario with specific design objectives. Furthermore, the framework
can be used as a guide to developing future VR selection and manipulation solutions. No-
tably, we should aim to propose techniques to be in the Pareto Frontier of different design
objectives, verify the comparative performance of the alternative techniques on various
objectives, and compare a newly proposed solution to standard baselines and the state-of-
the-art. 

—There should be more focus on (1) proposing theories to explain, for example, why specific
interaction techniques improve usability, (2) ensuring the generalisability of the study con-
clusions by, for example, striking a balance between the concreteness and abstraction of an
experimental task, (3) considering measuring the accessibility of a candidate solution, and
(4) performing usability measurements when users are practising a new solution. 

.6 Limitations 

7.6.1 Completeness. We employed systematic query searches and key literature identifications
o build our corpus, making us confident in including most relevant papers. However, we acknowl-
dge that we could inadvertently miss some. In other words, this corpus cannot be treated as an
xhaustive and complete list of VR object selection and manipulation research. We highlight that
ur goal was to identify key challenges, solutions, and success measurements in the domain, and
he current corpus serves as a representative subset of the most relevant papers. We aim to ad-
ress this inherent limitation of a systematic review by making our dataset and search queries
ransparent and open-source for future research to iterate and expand upon. 

7.6.2 Reality–virtuality Continuum. This research only included relevant research built with
R headsets but not other VR or AR displays. Our rationale was based on Bowman et al.’s re-

earch [ 17 , 89 ] comparing multiple interaction techniques under different displays (i.e., CAVEs
nd HMDs). They found that migration of techniques to other displays could sometimes work but
ould also cause serious usability problems due to the different display properties. It was thus diffi-
ult for us to justify whether solutions that worked on other displays could also be transferable to
R headsets. Therefore, we restricted our scope to VR headsets for simplicity. However, we want

o highlight that solutions proposed in other VR or AR displays (e.g., CAVE, AR glasses, volumetric
isplays) may also be applicable and adaptable for VR headsets [ 74 , 104 ]. 

 Conclusions 

n this work, we have presented a survey on object selection and manipulation in VR headsets. We
llustrated eight research challenges in the field with the corresponding state-of-the-art. In addition
o the classic challenges, such as complexity in 3D interaction scenarios, we also identified emerg-
ng trends in ergonomics issues, visual and haptic renderings, evaluation methodology, collabora-
ive manipulation, and context integration. Furthermore, we evaluated how existing publications
easure the success of their contributions and derived nine measurements of success (i.e., effec-

iveness, efficiency, ergonomics, experience, robustness, versatility, realism, behaviour, and con-
istency). We reflected on current practices regarding whether the publications over-emphasising
erformance measurements and whether the existing measurements are appropriate to solve the
ACM Comput. Surv., Vol. 57, No. 4, Article 98. Publication date: December 2024. 
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esearch challenges. We also envisioned the future VR selection and manipulation methods and
ffered an optimisation framework for developing or comparing new solutions for intended appli-
ations. In addition, we considered future research directions such as explainable theories, research
ndings generalisability, and technique accessibility. Our work can benefit researchers in the field
o gain new perspectives on the future advancement of VR object selection and manipulation. 

ppendix 

 Geographical Distribution Analysis 

igure 7 shows the geographic distribution of authors involved in the reviewed papers. The final
ounts consider the corresponding country of the authors’ institution, and we ensured that a paper
ith several authors from the same country is counted only once. The results indicate that the
ajority of publications in this domain have originated from countries in North America, Asia,
urope, as well as Australia. 

Fig. 7. The geographical distribution of the authors who have contributed to the published papers. 
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