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SUMMARY
The spreading adoption of computationally intensive techniques such as Reverse Time Migration and Full
Waveform Inversion increases the need of efficiently solving the three-dimensional wave equation.
Common finite-difference discretization schemes lose their accuracy and efficiency in complex geological
settings with discontinuities in the
material properties and topography. Finite-elements on tetrahedral meshes follow the interfaces while
maintaining their accuracy and can have smaller meshes if the elements are scaled with the velocity. Here,
we consider two higher-order finite-element methods that allow for explicit time stepping: the continuous
mass-lumped finite-element method (CMLFE) and
the symmetric interior penalty discontinuous Galerkin method (SIPDG). The price paid for the ability to
perform explicit time stepping is an increase in computational cost: CMLFE requires a larger number of
discretization nodes to preserve accuracy, whereas SIPDG needs additional
fluxes to impose the continuity of the solution. Therefore, it is not obvious which one is more efficient.
We compare the two methods in terms of accuracy, stability and computational cost. Experiments on a
three-dimensional problem with a dipping interface show that CMLFE and SIPDG have similar stability
conditions, accuracy and efficiency, the last being measured as the computational time required to reach
a given accuracy of the result.



Introduction

With the increasing complexity of seismic imaging problems, involving complex geological structures,
weathered zones, sharp interfaces and topography, the need for more accurate and efficient solution
methods of the wave equation increases. This is especially important for computational intensive algo-
rithms such as Reverse Time Migration and Full Waveform Inversion. Here, we focus on the forward
modeling that is a significant part of these algorithms. Because finite-difference methods lose their ac-
curacy in complex settings and in case of topography, finite elements on tetrahedral meshes are more
attractive. They offer more flexibility and are more accurate if the mesh follows the geometry of the
interfaces and of the topography. The standard finite-element discretization of a scalar wave equation
requires matrix inversion, even if the explicit time stepping is used. We focus on two methods that can
avoid the inversion of the mass matrix: continuous mass-lumped finite elements (CMLFE) (Mulder,
1996; Chin-Joe-Kong et al., 1999) and the symmetric interior-penalty discontinuous Galerkin (SIPDG)
method (Grote and Schötzau, 2009). Combining either spatial discretization with the leapfrog time-
integration scheme, which is second-order accurate and conditionally stable, leads to a fully explicit
scheme. Zhebel et al. (2011) already discussed the accuracy and performance of the continuous mass-
lumped elements of various polynomial degrees in a three-dimensional complexmodel with topography.
Here, we compare continuous and discontinuous finite-element methods in terms of accuracy, storage
requirements and performance on a 3-D example with a single, dipping interface.

Method

The scalar wave equation for constant-density acoustics reads

1
c2(x)

utt(x, t)−∆u(x, t) = s(x, t), (1)

with pressureu(x, t) at positionx ∈ Ω ⊂ R
3 and timet ∈ [0,T], velocity c(x) varying in space and

source terms(x, t). The operator∆ denotes the Laplace operator in three dimensions. The boundary
conditions can be homogeneous Dirichlet boundary conditions in case of afree surface, homogeneous
Neumann boundary conditions for pure reflection, or absorbing boundary conditions when the domain
Ω is truncated for computational purposes.

For a continuous Galerkin formulation with homogeneous boundary conditions, we introduce the weak
formulation of (1),

∫

Ω

1
c2(x)

utt vdΩ+
∫

Ω
∇u ∇vdΩ−

∫

δΩ
(n ·∇u) vdΩ =

∫

Ω
s vdΩ, (2)

for all test functionsv in a suitable space, whereδΩ consists of the set containing internal boundaries
between elementsδΩint and external boundariesδΩext. We consider a partitionτh of the domainΩ
such thatΩ = ∑K∈τh

K, whereK are the elements of the partition – tetrahedra in our case. LetNi ,
i = 1, ....,Nh, denote the nodes of the partitionτh. We choose the test functions to be the Lagrange
polynomialsφ j , j = 1, ..,Nh, with φ j(Ni) = δi j ,i, j = 1, ...,Nh, whereδi j = 1 if i = j and δi j = 0 if
i 6= j. We express the functionsv andu in (2) as a linear combination of the Lagrange polynomials:
v(x) = ∑Nh

i=1vi φi(x), u(x, t) = ∑Nh
j=1u j(t) φ j(x). Substituting this representation in (2), we obtain the

system of second-order ordinary differential equations

Mutt +Ku = s, (3)

whereM denotes the mass matrix with elementsMi, j =
∫

Ω φi φ j dΩ, K is the stiffness matrix ands
represents the source. For the continuous mass-lumped finite elements, the matrix M is diagonal. To
avoid loss of accuracy compared to the original discretization with the full matrix, polynomials of higher
degree in the interior of the faces and of the element have to be included, except for the element of first
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degreeM = 1. In 3D on tetrahedra, we have an element of degree 1, of degree 2 that requires additional
polynomials of degree 4 on the faces and in the interior (Mulder, 1996), and two different elements of
degree 3 augmented with polynomials of degree 5 on the faces and 6 in the interior (Chin-Joe-Kong
et al., 1999). Elements of higher degree are unknown at present. Due tothe continuity, the third term
in (2) vanishes on the internal boundaries between the elementsδΩint and the stiffness matrix consists
of the second term in (2),Ki, j =

∫

Ω ∇φi ∇φ j dΩ. The structure of the stiffness matrix for continuous
mass-lumped elements is described elsewhere (Zhebel et al., 2011).

In case of a discontinuous Galerkin discretization, the solutionu can be discontinuous at the boundary
between neighbouring elements and the third term in (2) does not vanish. Weconsider the symmetric
interior penalty discontinuous Galerkin (SIPDG) discretization (Grote and Schötzau, 2009) with a weak
formulation given by
∫

Ω

1
c2(x)

utt vdΩ+
∫

Ω
∇u ∇vdΩ−

∫

δΩint

[u]{∇v}dΩ−
∫

δΩint

[v]{∇u}dΩ+ γ
∫

δΩint

[u][v]dΩ =
∫

Ω
s vdΩ,

where[u] := u+ −u− is the jump across the element boundary,{u} := 1
2(u+ + u−) is the average of a

function, andγ is a penalty parameter defined asγ = (M + 1)(M + 2)(M + 3)/(6A ), whereM is the
degree of the finite element andA is the area of a face (Minisini et al., 2011). Discretizing the weak
formulation, we obtain for each element

Mutt +Ku+F
+u+F

−u− = s, (4)

whereM andK are the local mass and stiffness matrix, respectively, both of dimensionNDG×NDG, with
NDG = (M + 1)(M + 2)(M + 3)/6; u− denotes the solution on one of the neighbouring elements. We
also have the contribution of the fluxes. The termF

+ denotes the sum of outgoing fluxes over faces in
the given element. The second termF

− contains incoming fluxes from the four neighbouring elements.

The discretization in space with the continuous mass-lumped elements or the SIPDG method leads to
a linear system of second-order ordinary differential equations, (3)or (4). By choosing a symmetric
time-marching scheme, for example leapfrog, we obtain a fully algebraic system for the continuous
mass-lumped elements,

un+1 = 2un−un−1 +∆t2
M

−1(−Kun + sn) , (5)

for SIPDG, for each element, we obtain

un+1 = 2un−un−1 +∆t2
M

−1(

−Kun−F
+un−F

−u−
n + sn

)

. (6)

The only unknown is the vectorun+1. The values of the solution at the previous time stepsn andn−1
are known. In the case of mass-lumped elements, the global mass matrix is diagonal and trivial to invert.
In the case of SIPDG, the global mass matrix is block diagonal and also easilyinverted. Higher-order
time-stepping methods can be readily implemented (Dablain, 1986).

Results

We will compare the continuous mass-lumped and SIPDG finite element methods in terms of accuracy,
stability and computational cost. The stability constraint for time stepping requires an estimate of the
spectral radius of the spatial operator, which in the continuous case consists of the stiffness matrix
left-multiplied by the inverse of the diagonal mass matrix. In the SIPDG case, thespatial operator
also includes the fluxes and the global mass matrix is block-diagonal. The stability condition for time
stepping can be expressed as∆t ≤ CFL(d/c)min where(d/c)min is the minimum over all elements of the
ratio of the diameterd of the inscribed sphere and the velocityc per element. The Courant-Friedrichs-
Lewy number can be taken asCFL = 2/(d

√ρs), using the spectral radiusρs of the spatial operator
and the largest diameterd of the inscribed spheres of the elements, evaluated for a simpler constant-
velocity case. For these simpler case, we have considered (i) the single reference element with Neumann
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Table 1 CFL condition for different degrees com-
puted on the reference tetrahedron.

CFL

degreeM mass-lumped SIPDG
1 1.18 0.168
2 0.090 0.091
3 (1) 0.059 0.0596
3 (2) 0.102
4 0.0404

Table 2 Comparison of the number of nodes for
mass-lumped and SIPDG elements.

degreeM mass-lumped DG
compute store global

1 4 0.17 4.0 4
2 23 8.5 6.7 10
3 50 25 9.2 20
4 35

boundary conditions, (ii) the unit cube that can be partitioned into 6 tetrahedra and (iii) its periodic
extension using Fourier stability analysis. This provides necessary, butperhaps not sufficient, stability
conditions. Table 1 lists the worst-case results of these three cases for continuous mass-lumped and
SIPDG elements. The first-degree mass-lumped elements have a much largerCFL, resulting in a larger
allowable time step and in less computational time than required for SIPDG. TheCFL for elements of
second degree are comparable for both schemes. The second type of the third-degree mass-lumped
element is more efficient than the first type and allows for a larger time step thenrequired with SIPDG.
Since mass-lumped elements of degree 4 and higher are presently unknown, only the stability result for
SIPDG is given. The general trend for SIPDG is thatCFL becomes smaller for higher-order elements.

To compare accuracy and performance, we need a problem that has anexact solution. We consider a
three-dimensional domain of size(2 km)3 with two halfspaces having velocities of 1.5 and 3.0 km/s.
The interface runs from 0.7 to 1.3 km depth between 0 and 2 km inx, so the dip angle is 16.7◦. A shot
is located at (779.7, 1000, 516.3) m, 350 m above the interface in the shallowlow-velocity part of the
model. The receivers are located 250 m above the interface and have offsets from 100 to 700 m with a 25-
m interval, parallel to the interface in the down-dip direction of the source, see Figure 1. We subtracted
the direct wave by replacing the velocity model with a constant velocity of 1.5 km/s and subtracting the
computed traces from those obtained for original model. The timestep was kept the same, as was the
mesh. In this way, the numerical errors in the direct wave are removed as well. The resulting reflected
wave was then compared to the exact solution. The Figure 3 shows the accuracy and the computational
performance, the last being measured as the computational time required to reach a given accuracy of
the result.

Table 2 lists the number of nodes per element. In the DG case, due to the local formulation for each
element, the number of nodes per element listed in the last column, is the same for computation and
storage. The continuous elements have a larger number of nodes per element, listed in column 2. Since
nodes on vertices, edges and faces are shared, the effective number of nodes that needs to be stored per

Figure 1 Velocity model. The source is denoted
by a red star and receivers by yellow triangles.

Figure 2 Snapshot of the wave field.bla bla bla
blabla blabla blabla blabla blabla
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Figure 3 (a) Absolute error as a function of N1/3, where is N is the number of degrees of freedom for
CMLFE or SIPDG of degree 3. The dashed lines represent the maximumnorm, the drawn the 2-norm.
(b) Absolute error as a function of computational time on 12 cores using OpenMP. To save storage the
mass and stiffness matrices are recomputed each time step.

element is smaller, as can be seen in the third column, obtained by taking the observed number of degrees
of freedom divided by the number of elements for the finest mesh used in thiscomparison. If the stiffness
matrix is computed on the fly at each time step to save storage, the cost of assembly per element will
depend on number of nodes per element, as given in column 2 for the continuous case and column 5 for
DG. If the global stiffness matrix is assembled in the continuous case, the effective number of nodes to
store is listed in the fourth column, being the square root of the average number of columns per degree
of freedom. The results show that in case of global assembly of the stiffness matrix, the continuous
mass-lumped finite elements require less storage than SIPDG. When the stiffness matrix is computed on
the fly during each time step, the two methods require a similar amount of storage,determined mainly
by the unknowns that describe the wavefield at two consecutive time steps,the velocity model and the
data structure that describes the tetrahedra.

Conclusions

We have compared the continuous mass-lumped finite-element method (CMLFE)to the symmetric inte-
rior penalty discontinuous Galerkin method (SIPDG) in terms of accuracy, stability and computational
performance. Both methods are combined with a time-marching scheme that leadsto a fully explicit
formulation. The stability analysis for time stepping has shown that both methods have comparable
stability limits, except for elements of degree 1 and second type of degree 3,where CMLFE has more
favourable time-stepping stability limit. Experiments on a 3-D problem with dipping interface show that
CMLFE and SIPDG have similar accuracy, but CMLFE is faster due to its larger allowable time step.
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