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SUMMARY

The spreading adoption of computationally intensive techniques such as Reverse Time Migration and Full
Waveform Inversion increases the need of efficiently solving the three-dimensional wave equation.
Common finite-difference discretization schemes lose their accuracy and efficiency in complex geological
settings with discontinuities in the

material properties and topography. Finite-elements on tetrahedral meshes follow the interfaces while
maintaining their accuracy and can have smaller meshes if the elements are scaled with the velocity. Here,
we consider two higher-order finite-element methods that allow for explicit time stepping: the continuous
mass-lumped finite-element method (CMLFE) and

the symmetric interior penalty discontinuous Galerkin method (SIPDG). The price paid for the ability to
perform explicit time stepping is an increase in computational cost: CMLFE requires a larger number of
discretization nodes to preserve accuracy, whereas SIPDG needs additional

fluxes to impose the continuity of the solution. Therefore, it is not obvious which one is more efficient.
We compare the two methods in terms of accuracy, stability and computational cost. Experiments on a
three-dimensional problem with a dipping interface show that CMLFE and SIPDG have similar stability
conditions, accuracy and efficiency, the last being measured as the computational time required to reach

a given accuracy of the result.
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Introduction

With the increasing complexity of seismic imaging problems, involving complex geabstructures,
weathered zones, sharp interfaces and topography, the need feraomurate and efficient solution
methods of the wave equation increases. This is especially important foiutatiopal intensive algo-
rithms such as Reverse Time Migration and Full Waveform Inversion. ,Hegefocus on the forward
modeling that is a significant part of these algorithms. Because finite-aliitermethods lose their ac-
curacy in complex settings and in case of topography, finite elements onetahimeshes are more
attractive. They offer more flexibility and are more accurate if the mesh fslldve geometry of the
interfaces and of the topography. The standard finite-element disti@tizd a scalar wave equation
requires matrix inversion, even if the explicit time stepping is used. We foou&o methods that can
avoid the inversion of the mass matrix: continuous mass-lumped finite elementsHE)MMulder,
1996; Chin-Joe-Kong et al., 1999) and the symmetric interior-penalty mliscmus Galerkin (SIPDG)
method (Grote and Schotzau, 2009). Combining either spatial discretizatibrihe leapfrog time-
integration scheme, which is second-order accurate and conditionallg,steéds to a fully explicit
scheme. Zhebel et al. (2011) already discussed the accuracy dad@ece of the continuous mass-
lumped elements of various polynomial degrees in a three-dimensional compt{ with topography.
Here, we compare continuous and discontinuous finite-element methodss @aéaccuracy, storage
requirements and performance on a 3-D example with a single, dipping teerfa

M ethod

The scalar wave equation for constant-density acoustics reads

CZ:(LX)UH (X,t) —Au(x,t) = s(x,t), Q)

with pressureu(x,t) at positionx € Q ¢ R3 and timet € [0, T], velocity ¢(x) varying in space and
source ternms(x,t). The operatoA denotes the Laplace operator in three dimensions. The boundary
conditions can be homogeneous Dirichlet boundary conditions in casé&ed aurface, homogeneous
Neumann boundary conditions for pure reflection, or absorbing beryrmbnditions when the domain

Q is truncated for computational purposes.

For a continuous Galerkin formulation with homogeneous boundary consglitiem introduce the weak
formulation of (1),

/Q §)uttde+/ Ou OvdQ — / n-0Ou) vdQ = /sde (2

for all test functionsv in a suitable space, whet&2 consists of the set containing internal boundaries
between elementdQ;; and external boundarie®Qey. We consider a partitiorsy, of the domainQ
such thatQ = Y. K, whereK are the elements of the partition — tetrahedra in our case.Niet

i =1,....,Np, denote the nodes of the partitian. We choose the test functions to be the Lagrange
polynomialsg;, j = 1,..,Ny, with ¢;(Nj) = &j ,i,j =1,...,Np, whereg; =1if i = jandg; =0 if

i # j. We express the functionsandu in (2) as a linear combination of the Lagrange polynomials:
V(X) = iNzhlvI @(x), u(xt) = zj ", Uj(t) @(x). Substituting this representation in (2), we obtain the
system of second-order ordinary dlfferentlal equations

Muyg +Ku =s, 3)

whereM denotes the mass matrix with elemeMs; = [, @ ¢ dQ, K is the stiffness matrix and

represents the source. For the continuous mass-lumped finite elements titkeMnes diagonal. To
avoid loss of accuracy compared to the original discretization with the fullixpatlynomials of higher
degree in the interior of the faces and of the element have to be includshtdrr the element of first
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degreeM = 1. In 3D on tetrahedra, we have an element of degree 1, of degreer2guées additional
polynomials of degree 4 on the faces and in the interior (Mulder, 199@)wa different elements of
degree 3 augmented with polynomials of degree 5 on the faces and 6 in therif@hin-Joe-Kong
et al., 1999). Elements of higher degree are unknown at present. Dhbe tontinuity, the third term
in (2) vanishes on the internal boundaries between the elemd€xtsand the stiffness matrix consists
of the second term in (2) j = /o O@ O¢; dQ. The structure of the stiffness matrix for continuous
mass-lumped elements is described elsewhere (Zhebel et al., 2011).

In case of a discontinuous Galerkin discretization, the solutioan be discontinuous at the boundary
between neighbouring elements and the third term in (2) does not vanisicogaler the symmetric
interior penalty discontinuous Galerkin (SIPDG) discretization (Grote amdt@au, 2009) with a weak
formulation given by

1

W{0v} dQ — /

 M{Dupda+ y/mim[u] v dQ — /Qs Vo,

5Qint
where[u] := u* —u~ is the jump across the element boundduy} := 1(u* +u~) is the average of a
function, andy is a penalty parameter defined gs- (M + 1)(M + 2)(M + 3)/(67), whereM is the
degree of the finite element and is the area of a face (Minisini et al., 2011). Discretizing the weak
formulation, we obtain for each element

Muyg +Ku+Fru+Fu =s, (4)

whereM andK are the local mass and stiffness matrix, respectively, both of dimehgjigx Npg, with

Npg = (M +1)(M +2)(M +3)/6; u~ denotes the solution on one of the neighbouring elements. We
also have the contribution of the fluxes. The téffn denotes the sum of outgoing fluxes over faces in
the given element. The second telfim contains incoming fluxes from the four neighbouring elements.

The discretization in space with the continuous mass-lumped elements or th& $ieihod leads to
a linear system of second-order ordinary differential equationspi(3%). By choosing a symmetric
time-marching scheme, for example leapfrog, we obtain a fully algebraicrsyfstethe continuous
mass-lumped elements,

Uns1=2Un—Un 1+ APM ™ (—Kun+s0), (5)

for SIPDG, for each element, we obtain
Uni1 = 2Up — Un_1+APM ™ (=Kup —Frun —Fuy +50). (6)

The only unknown is the vectar,. 1. The values of the solution at the previous time stepsdn— 1
are known. In the case of mass-lumped elements, the global mass matrix isaliagd trivial to invert.
In the case of SIPDG, the global mass matrix is block diagonal and also ga&ityed. Higher-order
time-stepping methods can be readily implemented (Dablain, 1986).

Results

We will compare the continuous mass-lumped and SIPDG finite element methodsnisnaieaccuracy,
stability and computational cost. The stability constraint for time stepping rexjaireestimate of the
spectral radius of the spatial operator, which in the continuous casgstef the stiffness matrix
left-multiplied by the inverse of the diagonal mass matrix. In the SIPDG casespidittal operator

also includes the fluxes and the global mass matrix is block-diagonal. ThEtgtadndition for time
stepping can be expresseds< CFL (d/C)min where(d/c)min is the minimum over all elements of the
ratio of the diameted of the inscribed sphere and the veloaditper element. The Courant-Friedrichs-
Lewy number can be taken &L = 2/(d,/ps), using the spectral radiyss of the spatial operator

and the largest diametelr of the inscribed spheres of the elements, evaluated for a simpler constant-
velocity case. For these simpler case, we have considered (i) the sifegknee element with Neumann

74" EAGE Conference & Exhibition incorporating SPE EUROPEC201
Copenhagen, Denmark, 4-7 June 2012



Lopennagen iz

Table 1 CFL condition for different degrees com- Table 2 Comparison of the number of nodes for

puted on the reference tetrahedron. mass-lumped and SIPDG elements.
CFL degreeM mass-lumped DG
degreeM | mass-lumped SIPDG compute| store | global
1 1.18 0.168 1 4 | 0.17 4.0 4
2 0.090 0.091 2 23| 8.5 6.7 10
3(1) 0.059 0.0596 3 50| 25 9.2 20
3(2) 0.102 4 35
4 0.0404

boundary conditions, (ii) the unit cube that can be partitioned into 6 tetrahetd (iii) its periodic
extension using Fourier stability analysis. This provides necessarpebbiaps not sufficient, stability
conditions. Table 1 lists the worst-case results of these three casesnforuoms mass-lumped and
SIPDG elements. The first-degree mass-lumped elements have a mucltirgessulting in a larger
allowable time step and in less computational time than required for SIPDCGCHIh#or elements of
second degree are comparable for both schemes. The second typetbirthdegree mass-lumped
element is more efficient than the first type and allows for a larger time stepe¢heired with SIPDG.
Since mass-lumped elements of degree 4 and higher are presently unlambyviine stability result for
SIPDG is given. The general trend for SIPDG is tbBL becomes smaller for higher-order elements.

To compare accuracy and performance, we need a problem that lesensolution. We consider a
three-dimensional domain of siz& km)3 with two halfspaces having velocities of 1.5 and 3.0 km/s.
The interface runs from 0.7 to 1.3 km depth between 0 and 2 kxso the dip angle is 1627 A shot
is located at (779.7, 1000, 516.3) m, 350 m above the interface in the sHallewelocity part of the
model. The receivers are located 250 m above the interface and fisetsdfom 100 to 700 m with a 25-
m interval, parallel to the interface in the down-dip direction of the souee Fsgure 1. We subtracted
the direct wave by replacing the velocity model with a constant velocity of i/ land subtracting the
computed traces from those obtained for original model. The timestep washeepame, as was the
mesh. In this way, the numerical errors in the direct wave are remove@lhsie resulting reflected
wave was then compared to the exact solution. The Figure 3 shows tha@cend the computational
performance, the last being measured as the computational time requiredthoargiven accuracy of
the result.

Table 2 lists the number of nodes per element. In the DG case, due to thedoualdtion for each
element, the number of nodes per element listed in the last column, is the sanoenfoutation and
storage. The continuous elements have a larger number of nodes penglisted in column 2. Since
nodes on vertices, edges and faces are shared, the effectivemafmbees that needs to be stored per

Figure 1 Velocity model. The source is denoted Figure 2 Snapshot of the wave fiel
by a red star and receivers by yellow triangles.
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Figure 3 (a) Absolute error as a function of ¢, where is N is the number of degrees of freedom for
CMLFE or SIPDG of degree 3. The dashed lines represent the maximatmm the drawn the 2-norm.
(b) Absolute error as a function of computational time on 12 cores usiren®P. To save storage the
mass and stiffness matrices are recomputed each time step.

elementis smaller, as can be seen in the third column, obtained by taking tinesshsember of degrees
of freedom divided by the number of elements for the finest mesh used cotiigarison. If the stiffness
matrix is computed on the fly at each time step to save storage, the cost of §spemélement will
depend on number of nodes per element, as given in column 2 for the couginase and column 5 for
DG. If the global stiffness matrix is assembled in the continuous case, gwied number of nodes to
store is listed in the fourth column, being the square root of the average naint@umns per degree
of freedom. The results show that in case of global assembly of the ssfimatrix, the continuous
mass-lumped finite elements require less storage than SIPDG. When thesstiffagix is computed on
the fly during each time step, the two methods require a similar amount of staletgemined mainly
by the unknowns that describe the wavefield at two consecutive time #tepgelocity model and the
data structure that describes the tetrahedra.

Conclusions

We have compared the continuous mass-lumped finite-element method (CMLRE)symmetric inte-
rior penalty discontinuous Galerkin method (SIPDG) in terms of accur&alilisy and computational
performance. Both methods are combined with a time-marching scheme thatdeadslly explicit

formulation. The stability analysis for time stepping has shown that both metrendsdomparable
stability limits, except for elements of degree 1 and second type of degmleeBe CMLFE has more
favourable time-stepping stability limit. Experiments on a 3-D problem with dippingfate show that
CMLFE and SIPDG have similar accuracy, but CMLFE is faster due to itefaijpwable time step.

References

Chin-Joe-Kong, M.J.S., Mulder, W.A. and van Veldhuizen, [R99] Higher-order triangular and tetrahedral
finite elements with mass lumping for solving the wave equmatiournal of Engineering Mathematic35(4),
405-426, doi:10.1023/A:1004420829610.

Dablain, M.A. [1986] The application of high-order differ@ing to the scalar wave equatid@eophysics51(1),
54-66, doi:10.1190/1.1442040.

Grote, M.J. and Schétzau, D. [2009] Optimal error estimé&iethe fully discrete interior penalty DG method for
the wave equatiorlournal of Scientific Computing0(1-3), 257-272, doi:10.1007/s10915-008-9247-z.

Minisini, S., Zhebel, E., Kononov, A. and Mulder, W.A. [2J1A comparison of 3-D explicit continuous and dis-
cogtin_uogs Galerkin methods for the second-order waveteguaumerical Linear Algebra and Applications
submitted.

Mulder, W.A. [1996] A comparison between higher-order inélements and finite differences for solving the
wave equationProceedings of the Second ECCOMAS Conference on Numerithbls in Engineeringlohn
Wiley & Sons, Chichester, 344-350.

Zhebel, E., Minisini, S., Kononov, A. and Mulder, W.A. [201%olving the 3D acoustic wave equation with
higher-order mass-lumped tetrahedral finite elementsd E3XGE Conference & Exhibition, Extended Ab-
stracts, A010, Vienna, Austria.

74" EAGE Conference & Exhibition incorporating SPE EUROPEC201
Copenhagen, Denmark, 4-7 June 2012



