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We investigate the underlying physics behind the change in amplitude modulation coef-
ficient in noncanonical wall-bounded flows in the framework of the inner-outer interaction
model (IOIM) [Baars et al., Phys. Rev. Fluids 1, 054406 (2016)]. The IOIM captures the
amplitude modulation effect, and here we focus on extending the model to noncanonical
flows. An analytical relationship between the amplitude modulation coefficient and IOIM
parameters is derived, which is shown to capture the increasing trend of the amplitude
modulation coefficient with an increasing Reynolds number in a smooth-wall dataset. This
relationship is then applied to classify and interpret the noncanonical turbulent boundary
layer results reported in previous works. We further present the case study of a turbulent
boundary layer after a rough-to-smooth change. Both single-probe and two-probe hotwire
measurements are performed to acquire streamwise velocity time series in the recovering
flow on the downstream smooth wall. An increased coherence between the large-scale
motions and the small-scale envelope in the near-wall region is attributed to the stronger
footprints of the overenergetic large-scale motions in the outer layer, whereas the near-wall
cycle and its amplitude sensitivity to the superposed structures are similar to that of a
canonical smooth-wall flow. These results indicate that the rough-wall structures above
the internal layer interact with the near-wall cycle in a similar manner as the increasingly
energetic structures in a high-Reynolds number smooth-wall boundary layer.

DOI: 10.1103/PhysRevFluids.8.084602

I. INTRODUCTION

In turbulent boundary layers, large coherent structures are found in the logarithmic region. They
carry a high level of turbulent kinetic energy and make a significant contribution to Reynolds
stress production [1]. These structures can be further classified as large-scale motions (LSMs) and
very-large-scale motions (VLSMs). The former are associated with the vortex packets formed by
aligned hairpin vortices [2,3] and typically have a streamwise length of ∼3δ (δ is the boundary
layer thickness), while the latter may be related to the merging of multiple LSMs [2] and can reach
a streamwise extent up to 20δ with spanwise meandering [4,5]. These structures are observed to
leave a footprint in the near-wall region [4–6]. As the Reynolds number of a turbulent boundary
layer increases, the separation between the outer-scaled motions and viscous-scaled near-wall cycle
becomes more distinct, and the strength of these large-scale footprints also intensifies, resulting in
the growth of the ‘inner-peak’ magnitude in the broadband streamwise turbulence intensity [5,7].

In addition to the direct superposition effect manifested as large-scale footprints, it has also been
found that the near-wall small scales are modulated by the large scales in the outer layer [5,8,9]. In
the near-wall region, the amplitude and frequency of small-scale fluctuations show a decrease when
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FIG. 1. Schematic of a turbulent boundary layer over a rough-to-smooth change in surface condition. The
roughness transition occurs at x0, and x̂ = x − x0 denotes the fetch downstream of the transition. Reproduced
from Li et al. [38].

coexisting with large-scale low-speed regions, and vice versa in the case of large-scale high-speed
regions. These observations were harnessed by the “two-scale” framework, where a local (near-wall)
fine-mesh solution is coupled to the global coarse-mesh solution, to reduce computational costs at
high Reynolds numbers [10,11]. In terms of the modeling efforts, quasisteady quasihomogeneous
theory [12,13] provides an axiomatic description of the scale interaction in near-wall turbulence.
The modulation effect was also quantified in recent works [14–18], and a predictive model, termed
the inner-outer interaction model (IOIM), which outputs representative turbulence statistics in the
near-wall region based on an input signal in the logarithmic region, was developed by Marusic and
coworkers [19,20] and by Agostini and Leschziner [21]. The former was later revised by Baars
et al. [22] using spectral linear stochastic estimation. The IOIM provides an opportunity to push
the boundary of large-eddy simulations of wall-bounded flows to very high Reynolds numbers at
affordable costs, thanks to its ability to provide representative real-time small-scale signals in the
viscous-scaled near-wall region based only on large-scale outer-layer information [23–25].

Although similar amplitude modulation behaviours have been observed in turbulent boundary
layers, channel, and pipe flows [26], the existence of such scale interactions is less extensively
explored under noncanonical conditions. A sound understanding of how the inner- and outer-scale
relationship is affected by these conditions is essential for generalising its application to a wider
scope of flows. Enhanced amplitude modulation has been observed in various noncanonical flows,
including boundary layers over rough walls [27–31] or permeable surfaces [32,33], and boundary
layers with modified outer structures, such as energetic large-scale motions injected into the flow via
freestream turbulence [34,35], upstream dynamic roughness [36] and synthetic large-scale signals
generated by plasma actuators [37], to name a few. It is not yet well understood how these seemingly
different flow conditions all lead to a common increase in the amplitude modulation coefficient, and
we aim to bridge this gap by establishing a physics-based quantitative relationship between the
amplitude modulation coefficient and IOIM parameters.

Furthermore, here we look into another scenario where the introduced large scales in the outer
layer have an energy distribution across scales similar to that of a canonical boundary layer, and
only the amplitude is intensified. This is achieved by a sudden rough-to-smooth surface transition
occurring in the streamwise direction, as depicted in Fig. 1. Upstream of the transition, a turbulent
boundary layer develops on a rough wall with equivalent sand grain roughness height ks. Here, x
is the streamwise direction, x0 is the streamwise location of the surface transition and x̂ ≡ x − x0

is the distance downstream of the transition. At x = x0, the surface switches to a smooth wall,
while the boundary layer continues to evolve and gradually adjusts to the new surface. The effect
of the new surface condition is first felt in the near-wall region of the boundary layer and then
gradually propagates to the interior of the flow [39]. The layer that separates the modified near-wall
region from the unaffected oncoming flow farther away from the wall is generally referred to as the
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internal boundary layer (IBL) with a thickness denoted by δi. For more details on the observation
and modeling of the flow recovery, we refer to the works by Elliott [40], Antonia and Luxton [41],
Hanson and Ganapathisubramani [42], Rouhi et al. [43], and Li et al. [44,45].

Turbulent boundary layers over a rough-to-smooth change in the streamwise direction offer a new
perspective to further understand the physics of inner-outer interactions. When normalized by the
friction velocity at the wall, LSMs and VLSMs above δi are similar to their smooth-wall counterparts
[46,47], but they are overenergized compared to the near-wall small scales. The former retain a
memory of the upstream rough wall friction velocity whereas the latter scale on the much lower
local smooth-wall friction velocity. How these structurally similar but more energized large-scale
motions interact with the near-wall cycle will be investigated in this study.

The remainder of the paper is organized as follows: in Sec. II, we first present a summary of the
definition of the amplitude modulation coefficient and the IOIM framework, as well as a quantitative
relation between the two. We then review the previous studies on the amplitude modulation in
noncanonical flows in Sec. III. In Sec. IV, we present a case study on the flow downstream of a
rough-to-smooth change in the surface condition.

II. PHYSICAL UNDERPINNING OF AMPLITUDE MODULATION

In this section, we first briefly summarize the definition of the amplitude modulation coefficient
R and the IOIM formulation, and then we provide a quantitative description of the relation between
the two, supported by results computed from synthetic signals.

A. Amplitude modulation coefficient and IOIM formulation

The amplitude modulation coefficient R is a commonly reported diagnostic, largely due to the
fact that it provides a straightforward quantification of the degree of amplitude modulation within
a single-point time series. An example of the R profile is shown in Fig. 2(a). It is defined as the
correlation between the low-pass-filtered envelope of small-scale fluctuations and the large-scale
fluctuations at the same location [14]:

R(z+) = 〈EL[u+
d (z+, t+)]u+

S (z+, t+)〉√〈
E2

L [u+
d (z+, t+)]

〉√〈
u+2

S (z+, t+)
〉 . (1)

Here, the superscript (·)+ indicates inner scaling with the local friction velocity as the velocity
scale, the angle brackets 〈·〉 denotes time average, u represents the streamwise velocity, u+

S is the
zero-mean large-scale superposition signal, which is usually obtained by low-pass filtering the time
series with a threshold of λ+

x = 7000 and u+
d ≡ u+ − u+

S is the detrended signal. EL[·] denotes a
low-pass-filtered envelope of the signal

EL[u+
d (z+, t+)] = L

[√
u+2

d (z+, t+) + H2[u+
d (z+, t+)]

]
, (2)

where H[·] is the Hilbert transform,
√

u+2
d (z+, t+) + H2[u+

d (z+, t+)] is the analytic signal, and L[·]
denotes a low-pass filter.

The definition can be further generalized to a time-shifted amplitude modulation coefficient

Rτ (z+, τ+) = 〈EL[u+
d (z+, t+)]u+

S (z+, t+ − τ+)〉√〈
E2

L [u+
d (z+, t+)]

〉√〈
u+2

S (z+, t+)
〉 . (3)

By definition, R(z+) ≡ Rτ (z+, 0) [see Fig. 2(b)]. The relative shift τ+
a is the lag between the super-

position imprint u+
S and the low-pass filtered envelope EL[u+

d ] such that Rτ reaches its maximum,
i.e., Rτ (z+, τ+

a ) = max[Rτ (z+, τ+)], as marked by the solid circles in Fig. 2(b).
According to the IOIM [22], the statistical prediction of the fluctuating velocity u+

p can be
constructed by considering a superposition effect of large-scale content with additively a universal

084602-3



LI, BAARS, MARUSIC, AND HUTCHINS

(a)

(b)

(c)

(d)

FIG. 2. (a) Amplitude modulation coefficient R(z+) [Eq. (1)] of a smooth-wall turbulent boundary layer
with Reτ = 1.3 × 105 [48]. (b) Isocontour of the time-shifted amplitude modulation coefficient Rτ (z+, τ+)
[Eq. (3)] of the same boundary layer profile. The solid contour lines are from 0.1 to 0.5 with a step of 0.1, and
the dashed contour lines are from −0.3 to −0.1 with a step of 0.1. The solid and filled circles mark the τ+ values
where Rτ reaches its maximum and minimum at each wall-normal location, respectively. (c) Premultiplied
energy spectra of the measured velocity u+, universal small scales u∗ and superposition u+

S at z+ ≈ 10, and
u+

O , the velocity measured by the outer probe at z+
O = 469. (d) The gain of the linear kernel |H̃L| and the

linear coherence spectrum γ 2( f +) at z+ ≈ 10. The vertical dotted line in panels (c) and (d) marks the cutoff
wavelength λ+

x = 7000 (with the mean velocity at the outer probe as the convective velocity) used by Mathis
et al. [20] to separate large and small scales.

signal u∗ that is subject to an amplitude modulation

u+
p (z+, t+) = u∗(z+, t+){1 + �(z+)u+

S (z+, t+ − τ+
a )}︸ ︷︷ ︸

amplitude modulation

+ u+
S (z+, t+)︸ ︷︷ ︸

superposition

. (4)

Here, � is the amplitude sensitivity, and the large-scale imprints u+
S can be found from a given

outer-layer large-scale signal u+
O (t+) via

u+
S (z+, t+) = F−1{H̃L(z+, f +)F[u+

O (t+)]}, (5)

where F[·] and F−1[·] represent a Fourier transform and inverse Fourier transform, respectively, and
H̃L( f +) is the linear transfer kernel incorporating the large-scale coherence between the near-wall
and outer regions.

The gain of the linear kernel |H̃L| is related to the linear coherence spectrum γ 2( f +) via

|H̃L( f +)| =
√

γ 2( f +)
〈|F[u+]|2〉
〈|F[u+

O]|2〉 , (6)
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where γ 2( f +) is given by Bendat and Piersol [49]

γ 2( f +) = |F[u+
O]F[u+]|2

〈|F[u+
O]|2〉〈|F[u+]|2〉 , (7)

with (·) denoting the complex conjugate.
As shown in Figs. 2(c) and 2(d), only the large-scale energy of the outer velocity signal u+

O
is retained in the superposition signal u+

S , which contributes to the large-scale end of the energy
spectrum of u+. The small-scale end of the spectrum, however, is mainly from the universal small
scale, u∗. The linear transfer kernel |H̃L| enables a smooth roll-off of the coherence from large
to small scales, and the scale separation here is around the commonly used cutoff threshold of
λ+

x = 7000.

B. Quantitative relationship between R and IOIM parameters

In this subsection, we derive a quantitative relationship of the amplitude modulation coefficient
by expressing R in the framework of IOIM. Following Duvvuri and McKeon [36], we work with a
modified expression of the amplitude modulation coefficient

R2(z+) = 〈E2L[u+
d (z+, t+)]u+

S (z+, t+)〉√〈
E2

2L[u+
d (z+, t+)]

〉√〈
u+2

S (z+, t+)
〉 , (8)

where

E2L[v(t+)] = L{v2(t+) + H2[v(t+)]} (9)

for an arbitrary time series v(t+). The modified coefficient R2 uses the square of the analytic
signal to avoid the difficulty in dealing with the square root in Eq. (2), leading to a simpler
mathematical expression, and given that the amplitude modulation coefficient is a normalized
measure, no significant difference is expected in the values of R and R2. This can be easily verified
using experimental data.

By expressing the velocity signals u+
d and u+

S in a series of Fourier modes, and with some
trigonometric manipulations, Duvvuri and McKeon [36] showed that

R2 = 2
〈
u+2

d u+
S

〉√〈
E2

2L[u+
d ]

〉√〈
u+2

S

〉 . (10)

We substitute the detrended signal expressed using the notations of IOIM (i.e., u+
d = u∗[1 +

�u+
S (t+ − τ+

a )]) into Eq. (10) and noting that 〈u∗2u+
S 〉 = 0 because u∗ is not modulated by u+

S by
definition (the universal small-scale signal u∗ is constructed by removing the modulation between
u∗ and u+

S ; see, for example, Ref. [20]). R2 can then be expressed as

R2 = 4�〈u∗2〉〈u+
S (t+)u+

S (t+ − τ+
a )〉 + 2�2〈u∗2〉〈u+

S (t+)u+2
S (t+ − τ+

a )〉√
〈{E2L[u∗] + 2�L[u∗2u+

S + H[u∗]H[u∗u+
S ]] + �2E2L[u∗u+

S ]}2〉
√〈

u+2
S

〉 . (11)

Comparing the orders of u∗, u+
S and � in the terms in the denominator of Eq. (11) and noting that

both L[·] and H[·] are linear operators give rise to

E2L[u∗] ∼ 〈u∗2〉, (12a)

�L[u∗2u+
S + H[u∗]H[u∗u+

S ]] ∼ �
〈
u+2

S

〉1/2〈u∗2〉, (12b)

�2E2L[u∗u+
S ] ∼ �2

〈
u+2

S

〉〈u∗2〉. (12c)
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(a) (b) (c)

FIG. 3. Amplitude modulation coefficient R of the velocity signal constructed with various (a) τ+
a , (b) �,

and (c) 〈u+2
S 〉 values. The baseline parameters are denoted by τ+

a0, �0, and 〈u+2
S0 〉, respectively, and they are

computed from the dataset at Reτ = 13 300 in Baars et al. [22]. The arrows in the panels indicate the direction
of increasing the ratio between the varied parameter and the baseline.

Typically, � is a relatively small number ranging from O(0.01) to O(0.10) [22], and 〈u+2
S 〉 < 〈u∗2〉

especially in the near-wall region of z+ � 200 which is the current focus. Therefore, terms contain-
ing higher orders of �〈u+2

S 〉1/2 can be neglected, and Eq. (11) is then reduced to

R2 ≈ 4�〈u∗2〉〈u+
S (t+)u+

S (t+ − τ+
a )〉√〈

E2
2L[u∗]

〉√〈
u+2

S

〉 . (13)

We identify the following three parameters that can contribute to a change in R2:
(1) The relative shift τ+

a .
(2) The amplitude sensitivity �.
(3) The amplitude of large-scale imprints 〈u+2

S 〉.
Interestingly, R2 is not affected by changes in the amplitude of universal small scales 〈u∗2〉. This

is because both the numerator and the denominator in Eq. (11) [and Eq. (13) as well] contain the
same order of 〈u∗2〉, which eventually cancel out. Note that changes in the energy distribution across
scales in u+

S or u∗ have more complicated consequences: for u+
S , it will affect the autocorrelation

term 〈u+
S (t+)u+

S (t+ − τ+
a )〉 with a given τ+

a , and for u∗, it will affect how much energy remains in
E2L[u∗] after a low-pass filter is applied. Therefore, we limit the quantitative analysis to changes in
the amplitude of u+

S and u∗ fluctuations.
In canonical smooth-wall turbulent boundary layers, the IOIM parameters (u∗, �, τ+

a , and H̃L) are
Reynolds number invariant over the range of Reτ ≈ 7350–13 300 tested in the calibrations [50], and
only a change in the large-scale imprint amplitude 〈u+2

S 〉 was observed when varying the Reynolds
number. However, τ+

a , �, and 〈u+2
S 〉 can all be modified under noncanonical conditions, and it

is important to understand how they individually contribute to the overall amplitude modulation
coefficient R.

1. Effect of the relative shift τ+
a

We can conclude from Eq. (13) that R2 would increase with a decreasing |τ+
a |, as a result of

reduced time lag, or improved alignment between modulation and superposition signals. Typically,
the relative shift τ+

a is much smaller than the time period of u+
S below the center of the log region,

where the predictive model is applied. Therefore, u+
S (t+) and u+

S (t+ − τ+
a ) are largely in phase. The

autocorrelation term 〈u+
S (t+)u+

S (t+ − τ+
a )〉 is positive, and increases with a decreasing |τ+

a |.
Figure 3(a) shows R [Eq. (1)] computed from the velocity signals constructed from u∗ and u+

S
with a range of different τ+

a values following Eq. (4). The IOIM parameters and the baseline values
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(a) (b)

FIG. 4. (a) Amplitude modulation coefficients R (gray circles) and R2 (blue triangles) computed from the
experimental data of a canonical smooth-wall turbulent boundary layer and plotted against the corresponding
superposition signal intensity 〈u+2

S 〉 at z+ = 50. From pale to dark blue, the shade of blue triangles indicates
Reτ increasing from 2800 to 13 400. The dot-dashed blue line is Eq. (13) with the autocorrelation term
〈u+

S (t+)u+
S (t+ − τ+

a )〉/〈u+2
S 〉 estimated from a fit of the experimental data. (b) Autocorrelation of u+

L , low-pass
filtered streamwise velocity fluctuations from experimental data, at z+ = 50.

of τ+
a0, �0, and 〈u+2

S0 〉 are taken from the dataset at Reτ = 13 300 [22]. The decreasing trend of R
with an increasing |τ+

a | confirms the conclusion based on Eq. (13).

2. Effect of the amplitude sensitivity �

According to Eq. (13), R2 will increase with an increasing �. This trend is corroborated by the
increasing R computed from the signals constructed following Eq. (4) with an increasing �/�0 [see
Fig. 3(b)].

3. Effect of the superposition intensity 〈u+2
S 〉

Based on Eq. (13), R2 will increase with an increasing 〈u+2
S 〉. In fact, a closer examination of

Eqs. (13) and (11) reveals that � and 〈u+2
S 〉 can be grouped into a single variable �〈u+2

S 〉1/2. This is
confirmed by the same trends of R with � and 〈u+2

S 〉1/2 in Figs. 3(b) and 3(c), respectively. We note
that the monotonic increase of R2 with �〈u+2

S 〉1/2 breaks down when �〈u+2
S 〉1/2 becomes comparable

with or larger than 〈u∗2〉1/2 (not shown in the figure), and the full expression of Eq. (11) can
introduce nonmonotonic dependence on �〈u+2

S 〉1/2. However, given that � is typically small, and
〈u+2

S 〉 is much smaller than 〈u∗2〉 in the near-wall region at the Reynolds number range investigated
in the experimental dataset (Reτ � 2 × 104), the nonmonotonic is less likely to occur.

To summarize, we have shown analytically that the amplitude modulation coefficient will
increase with (i) a reducing |τ+

a |, (ii) an increasing �, and (iii) an increasing 〈u+2
S 〉, provided

�〈u+2
S 〉1/2 	 〈u∗2〉1/2.

C. Verification with a smooth-wall turbulent boundary layer dataset

The analysis above is verified using an experimental smooth-wall turbulent boundary layer
dataset with Reτ ranging from 2800 to 13 400 [48]. In this series of canonical smooth-wall boundary
layer profiles, both τ+

a and � are expected to remain constant, and only 〈u+2
S 〉 increases with

an increasing Reτ as a consequence of more energetic large-scale motions in the outer layer,
providing an ideal test ground to examine the dependence of R on 〈u+2

S 〉. Figure 4(a) shows the
amplitude modulation coefficients R and R2 computed directly from the velocity time series. The
large-scale imprint intensity 〈u+2

S 〉 is approximated by 〈u+2〉 − 〈u∗2〉, where 〈u∗2〉 is the intensity
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of the universal small-scale signal from the calibration data of Baars et al. [22]. The large-scale
imprint intensity 〈u+2

S 〉 increases with an increasing Reτ as expected. The two coefficients R and R2

have very similar values, and they exhibit an increasing trend with 〈u+2
S 〉, which is well captured

by Eq. (13). The autocorrelation term 〈u+
S (t+)u+

S (t+ − τ+
a )〉/〈u+2

S 〉 in Eq. (13) is smaller than 1
for a finite time shift τ+

a , but the exact value needs to be determined from the time series of u+
S .

The autocorrelation term at z+ = 50 can be estimated from the low-pass filtered experimental
data (i.e., 〈u+

S (t+)u+
S (t+ − τ+

a )〉/〈u+2
S 〉 ≈ 〈u+

L (t+)u+
L (t+ − τ+

a )〉/〈u+2
L 〉 with threshold λ+

x = 7000
for the low-pass filter) and is observed to increase slightly from the lowest to the highest Reτ

measurements [Fig. 4(b)], because the relative phase shift |τ+
a |U +/λ+

S reduces with increasing
Reτ , with |τ+

a | remaining constant and λ+
S , the most energetic wavelengths of u+

S , growing with
the boundary layer thickness δ+ (≡Reτ ). This increasing trend in 〈u+

L (t+)u+
L (t+ − τ+

a )〉/〈u+2
L 〉 can

be approximated by a linear fit of 0.11〈u+2
S 〉 + 0.43 as shown by the black dashed line. With the

autocorrelation term approximated by the linear fit, the prediction of Eq. (13) [dot-dashed blue line
in Fig. 4(a)] captures the trend of data points with a small error of less than 10% of the local R2

value, which is mainly attributed to the potential difference between 〈u+
S (t+)u+

S (t+ − τ+
a )〉/〈u+2

S 〉
and 〈u+

L (t+)u+
L (t+ − τ+

a )〉/〈u+2
L 〉. In summary, the increase in R and R2 with increasing Reτ for a

canonical smooth-wall turbulent boundary layer is primarily originated from the growing 〈u+2
S 〉, and

the slight increase in the autocorrelation term also makes a small contribution to the growth.

III. REVISITING SCALE INTERACTIONS IN PREVIOUS STUDIES

In this section, we present a summary of data from the literature and the current work, focusing
on how the IOIM parameters change in various flow types and with increasing Reτ , and discuss
their commonalities and differences in the scale interaction mechanism.

The IOIM parameters reported in previous studies of various flow conditions are summarized
in Table I. Notably, almost all noncanonical flows collected in the table exhibit a higher positive
amplitude modulation coefficient R in the near-wall region. Further analysis of the IOIM parameters
reveals that the increase in R is contributed by different mechanisms. For rough-wall flows, although
the strength of 〈u+2

O 〉 is similar to that of a smooth-wall boundary layer, the coherence between
the inner and outer layer is reduced, presumably due to the disruption of shedded vortices in the
roughness sublayer. The small-scale fluctuations arise from wake vortices generated by roughness
elements, the intensity of which is proportional to uS . Therefore, the modulation sensitivity � in
rough-wall flows is stronger than that in smooth-wall flows [28], which leads to a higher positive
R. Similarly, the near-wall region of a permeable substrate is dominated by upwelling/downwelling
associated with the large-scale streamwise motions [32,33], resulting in an increase in R in the near-
wall region as well. Considering that for both rough and permeable substrates, the deviation from
a canonical flow is introduced near to the wall, whereas the outer layer remains largely unchanged
under correct scaling, these flows can be classified as the “bottom-up” category.

The common feature that links boundary layers with an increasing Reτ , freestream turbulence, an
upstream dynamic roughness element or a R-to-S change in the wall condition (Sec. IV) is that more
energetic large scales are introduced in the outer layer, while the near-wall cycle (represented by the
intensity of u∗) remains largely unaltered. These flows are classified as the “top-down” category in
the context of large-scale modulation. The coherence between large scales in the inner and outer
regions, which manifests in |H̃L|, either remains the same (canonical smooth wall with increasing
Reτ ), or increases (freestream turbulence, R-to-S change), and they both lead to stronger footprints
〈u+2

S 〉 close to the wall. The stronger 〈u+2
S 〉 is primarily responsible for the increased R in the “top-

down” flow cases.
In summary, based on whether the near-wall cycle is modified from that of an impermeable

smooth wall, various flow types collected in Table I can be further classified as “top-down” and
“bottom-up” categories, which indicates whether the deviation from a canonical flow is introduced
in the outer layer or near to the wall. However, we note that more complex flows, such as turbulent
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ż

et
al

.[
56

]

084602-9



LI, BAARS, MARUSIC, AND HUTCHINS

boundary layers subjected to nonzero pressure gradients [51], do not fit either category in the
classification because both the near-wall modulation mechanism and outer-layer large-scale motions
are modified. Moreover, the work by Andreolli et al. [52] reaches a conclusion that is worth
investigating further in the future, e.g., that when amplitude modulation is artificially blocked,
large-scale superposition also ceases to exist. This may suggest that the IOIM parameters are
interconnected, although in the present paper we treat them independently and focus on their
contribution to the overall modulation effect.

IV. CASE STUDY: TURBULENT BOUNDARY LAYER FOLLOWING A STEP CHANGE
IN SURFACE ROUGHNESS

In this section, we present the new experimental results of a turbulent boundary layer down-
stream of a rough-to-smooth change in the surface conditions, which is another noncanonical flow
configuration in the “top-down” category. We will present the experimental conditions in Sec. IV A,
and then explore the detailed modulation behaviours using both single-probe and two-probe results
in Secs. IV B–IV C. The results are briefly discussed in Sec. IV D.

A. Experimental setup

Simultaneous two-probe hotwire anemometry measurements are performed in the high Reynolds
number boundary layer wind tunnel (HRNBLWT) at the University of Melbourne. An upstream
portion of the 27 m working section floor is covered by P24 sandpaper (SP40F, Awuko Abra-
sives) from the inlet to x0 = 7.2 m, while the remaining length is a smooth aluminium surface.
The peak-to-trough roughness height is kp ≈ 1.2 mm, and the equivalent sand grain roughness is
ks ≈ 2.43 mm. A nominal zero-pressure gradient is achieved by adjusting the bleeding slots on the
tunnel roof. More details of the facility can be found in Refs. [44,57].

Two-probe hotwire measurements are performed at two freestream velocities, 22.5 m s−1 and
31.0 m s−1, and these two cases are named as R-to-S1 and R-to-S2, respectively. The flow conditions
of these cases correspond to the single-point dataset of cases Re10ks16 and Re14ks22 in Ref. [44],
and the local friction velocity Uτ of the current cases is interpolated from the skin-friction versus x̂
trajectory in the same study, which was measured directly at the wall using oil-film interferometry.
The procedures of the two-probe hotwire anemometry measurements are similar to that described
by Mathis et al. [20] and Baars et al. [22]. The outer probe is fixed at z+

O = 3.9
√

Reτ , which is the
geometric center of the logarithmic region where the large-scale motions are highly active. The inner
probe is traversed from the wall to below the outer probe with approximately 20 logarithmically
spaced points in between. Both probes are conventional single-wire hotwire probes with a Wollaston
wire etched to expose the sensing element. The length-to-diameter ratio of the exposed filament
is l/d � 200 [58]. For the case R-to-S1, both wires have a diameter of d = 2.5 µm, leading to a
viscous-scaled filament length of l+

I , l+
O ≈ 21. For the case R-to-S2, d = 1.5 µm wire is selected for

the inner probe to maintain a similar spatial resolution with l+
I ≈ 19 with an increased freestream

(and friction) velocity, while the outer probe filament diameter remains d = 2.5 µm because only the
large-scale signal at this location is of the interest. Both probes are conventional single-wire hotwire
probes operated by an in-house Melbourne University constant temperature anemometer (MUCTA).
The hotwire sampling time Ts is more than 20 000 boundary layer turn-over time (δ99/U∞) to achieve
a good convergence of the statistics. A two-probe smooth-wall dataset from Mathis et al. [20]
and Baars et al. [22] is also included for comparison in this study. Parameters of the two-point
measurements are summarized in Table II.

B. Single-probe results

We first present the evolution of the mean velocity and turbulence statistics downstream of
the rough-to-smooth change in Fig. 5. Generally speaking, immediately after the rough-to-smooth
change, the rough-wall turbulent boundary layer starts adapting to the new surface conditions first at
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TABLE II. Experimental parameters of the two-point hotwire measurements, where the outer probe
remains at a fixed location z+

O and the inner probe is traversed between [0, z+
O ]. l+

I and l+
O are the viscous-scaled

hotwire filament length of the inner and outer probes, respectively.

U∞ Uτ

Case Color x̂/δ0 Reτ 3.9
√

Reτ (ms−1) (ms−1) z+
O δ+

i l+
I l+

O

Smooth black – 7350 334 10.0 0.34 441 – 22 22
R-to-S1 green 2.3 7200 330 22.5 0.69 331 890 21 21
R-to-S2 magenta 2.3 9600 382 31.0 0.92 388 1180 19 31

the wall, and as the modified region enlarges, to the interior of the flow. The skin-friction coefficient
experiences an undershoot before gradually increasing to the smooth-wall value. Figure 5(a) shows
the inner-scaled mean velocity profiles, where the velocity scale is selected as the friction velocity
Uτ measured locally with oil-film interferometry over the smooth surface. Note that in this paper,
the superscript (·)+ indicates inner scaling with the local friction velocity as the velocity scale.
Figure 5(b) shows the outer-scaled profiles, where the velocity scale is chosen as the friction velocity
Uτ0 measured on the rough wall just upstream of the rough-to-smooth transition at x̂ → 0−. The
inner-scaled mean velocity profiles of Fig. 5(a) collapse with the smooth-wall reference first close to
the wall, while the outer-scaled profiles in Fig. 5(b) agree well with the rough-wall reference above
the IBL (marked by the open circles). In the turbulence intensity profiles, a strong “outer-peak”
manifests at the IBL, which is a result of the remaining energetic rough-wall structures. These

(a) (b)

FIG. 5. Profiles of mean streamwise velocity and turbulence intensity corresponding to the flow conditions
of R-to-S1. (a) is inner scaled using the local smooth-wall Uτ , while (b) is outer scaled, but using Uτ0, the
friction velocity measured just upstream of the rough-to-smooth transition. Line colors indicate the fetch, from
orange to green to blue corresponds to x̂/δ0 = 0.2, 0.5, 0.9, 1.9, 4.2, 7.4, 14.8, 29.2, and 53.1. The solid black
line is a smooth-wall reference with Reτ = 1.0 × 104 acquired in the same facility and normalized using the
corresponding smooth-wall friction velocity [48], and dashed black line is a rough-wall reference acquired just
upstream of the rough-to-smooth change and normalized by the rough-wall friction velocity. The white circles
represent the edge of the IBL, determined from the variance profile [44]. The profile highlighted by triangular
symbols is close to the streamwise location where the two-probe measurements in this study are performed.
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FIG. 6. Amplitude modulation coefficient R at various streamwise locations downstream of a rough-to-
smooth change. Line colors indicate the fetch, from red to blue corresponds to x̂/δ0 = 0.08, 0.2, 0.5, 0.9,
1.9, 4.2, 7.4, 14.8, 29.2, and 53.1. The white circles represent the edge of the IBL. The solid black line is a
smooth-wall reference with Reτ = 1.0 × 104 [48].

structures leave a strong footprint in the near-wall region, as evidenced by the increased inner-peak
magnitude in wall units shown in Fig. 5(a). The case R-to-S2 has a higher Reτ0 and k+

s0 compared
to the case R-to-S1, thus, stronger large-scale motions (which scale on Uτ0) above the internal
boundary layer are expected in the former. The amplitude modulation coefficient R [Eq. (1)] at a
range of downstream locations from x̂/δ0 = 0.08 to 53.1 is shown in Fig. 6. The cutoff wavelength
of the large-scale filter L[·] is computed using the local friction velocity. Only the results of R-to-S1
are presented here for brevity, while the R-to-S2 case shows similar behavior. At small x̂/δ0, a high R
is observed in the near-wall region. The coefficient R decreases with an increasing x̂/δ0, and beyond
x̂/δ0 > 20, it becomes very similar to that of a smooth-wall boundary layer in the near wall region.

Isocontours of Rτ [Eq. (3)] at x̂/δ0 = 0.2 (orange) and 0.9 (green) are shown in Fig. 7. In addition
to the difference in the magnitude, at small fetches, the contours of positive correlations also shifts
to the positive τ+ direction. In other words, close to the rough-to-smooth change, there is a smaller
time lag between the envelope of the small-scale fluctuations and large-scale motions. The optimal
positive correlation achieved at the time shift τ+

a is shown in Fig. 7(d). Similar to the zero-time-shift
R (shown in Fig. 6), the maximum Rτ values are also higher at smaller fetches, implying that the
high magnitudes of R observed in Fig. 6 is more than the consequence of a smaller lag between the
envelope and large-scale motions.

A comparison of τ+
a (time shift required for the optimum positive correlation) can be found

in Fig. 8(a), where τ+
a becomes more negative with an increasing fetch. Figure 8(b) shows the

argument of the complex cospectrum φ at z+ = 50, premultiplied by the time period 1/ f +,
following Jacobi and McKeon [59,60] and Deshpande et al. [61]. The cospectrum is defined as
φ ≡ 〈F[u+

S ]F[EL[u+
d ]]〉, and it can be viewed as the spectral equivalent of the amplitude modulation

coefficient R. The premultiplied argument τ+
a ( f +) ≡ arg(φ)/(2π f +) is essentially the time shift

between u+
S and EL[u+

d ] in each Fourier mode, and it is reasonable that the overall time shift τ+
a falls

in the same range as τ+
a ( f +) at each corresponding measurement location. In addition, the increase

of the time lag with increasing fetch is also apparent here, confirming the trend of τ+
a in Fig. 8(a).

Further, the absolute time lag |τ+
a ( f +)| is smaller at higher frequencies, meaning that the amplitude

of small scales are more in-phase with the higher-frequency modes of the large scales. The increased
maximum Rτ values at smaller fetches can partially be explained by the smaller scatter of τ+

a ( f +)
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(a) (b)

(c) (d)

FIG. 7. (a) Isocontours of Rτ at x̂/δ0 = 0.2 (a, orange) and 0.9 (b, green) and the smooth-wall reference
(c, black). The solid contour lines are from 0.1 to 0.5 with a step of 0.1, and the dashed contour lines are from
−0.3 to −0.1 with a step of 0.1. The solid and empty circles mark the τ+ values where Rτ reaches its maximum
and minimum at each wall-normal location, respectively. (d) Maximum Rτ values, which are essentially Rτ at
the locations marked by solid circles in panels (a)–(c).

(a) (b)

FIG. 8. (a) Time shift required for Rτ to reach its maximum. (b) Argument of the complex cospectrum
of u+

S and EL[u+
d ] at z+ = 50 (marked in panel (a) by the vertical dashed line), premultiplied by the time

period 1/ f +. Legends are the same as in Fig. 6. The solid black line is a smooth-wall reference with Reτ =
1.3 × 104 [48].
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FIG. 9. Premultiplied spectra of (a) u+ and (d) u∗. The contour levels in both plots are from 0.2 to 2 with
a spacing of 0.2. Line colors black, green, and magenta represent the smooth, R-to-S1, and R-to-S2 cases,
respectively. Panels (b) and (c) are the difference in f +φ+

uu between the R-to-S1 and R-to-S2 cases and the
smooth-wall reference, and panels (e) and (f) are the corresponding difference in f +φ+

u∗u∗ .

across a range of frequencies, because a single time shift τ+
a can better align all Fourier modes in

the u+
S and EL[u+

d ] signals in these cases.
The increase in R compared to the smooth-wall reference has been previously observed in

rough-wall flows and attributed to the stronger correlation between the amplitude of the small-scale
turbulence associated with the roughness elements and the large-scale motions [28]. Compared to
the most downstream location, R in the logarithmic region is still noticeably higher at x̂/δ0 = 0.9,
which is equivalent to x̂/kp ≈ 110, a fetch where we might expect a large portion of the small-scale
motions directly generated from the flow interaction with the roughness elements to diminish.
However, small scales may form through the shear between the surviving rough-wall structures,
and exhibit a stronger amplitude modulation effect with those structures from which they originate.

In summary, based on the single-point measurements of the rough-to-smooth cases, the increase
in R is contributed by both reduced |τ+

a | and increased 〈u+2
S 〉, which are two out of the three factors

identified in the analysis in Sec. II. Further two-probe measurements are required to quantify the
effect of the modulation sensitivity �.

C. Two-probe results

To further understand the origin of the enhanced modulation effect observed in Sec. IV B, IOIM
calibration following the procedure detailed in Baars et al. [22] is performed on the three cases listed
in Table II. In the results below, we will be using black for the smooth-wall reference, green and
magenta for the R-to-S1 and R-to-S2 cases, respectively.

Premultiplied energy spectra of the measured velocity fluctuation and the universal small-scale
signal are shown in Figs. 9(a) and 9(d), respectively. Figures 9(b) and 9(c) are the difference between
the rough-to-smooth and smooth-wall reference. A band with excess energy at 1/ f + ≈ 2000 is
interpreted as the large-scale footprints in the near-wall region. The universal small scale spectra of
the three cases [Fig. 9(d)] are very similar, indicating a reestablishment of the near-wall cycle after
the rough-to-smooth change.
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FIG. 10. Amplitude sensitivity �(z+). Line colors black, green and magenta represent the smooth, R-to-S1
and R-to-S2 cases, respectively.

The sensitivity of small scales to amplitude modulation is indicated by �: for a higher �, the
universal small-scale signal u∗ will be multiplied by a higher fraction of the superposition signal
u+

S to generate the prediction. Two calibrations of a smooth-wall turbulent boundary layer at Reτ ≈
7350 and 13 300 result in very similar � [22]. For rough-to-smooth cases, as shown in Fig. 10,
� from the three calibrations reach a good overall agreement, suggesting that the overenergized
rough-wall structures in the outer layer do not seem to alter the amplitude modulation mechanism
in the near-wall region.

Figure 11(a) shows |H̃L|, the gain of the linear kernel [which relates the superposition u+
S to the

outer-layer large-scale signal u+
O via Eq. (5)], at a wall-normal position of z+ = 100. Similar trends

are also seen in other wall-normal positions, and are not shown here for brevity. The magnitude
of the linear transfer kernel |H̃L| is found to increase in the rough-to-smooth cases compared to
the smooth-wall reference. The linear coherence spectra are shown in Fig. 11(b). In the rough-to-
smooth cases, γ 2 deviates from 0 at a smaller 1/ f +, and remains higher than that of the smooth-wall
reference. A higher γ 2 indicates a stronger correlation between the velocity fluctuations obtained

(a) (b)

FIG. 11. (a) |H̃L|, gain of the linear kernel, and (b) γ 2, linear coherence spectra between the fixed outer and
moving inner probe at z+ = 100. Both quantities are filtered by a 25% bandwidth moving filter. Line colors
black, green, and magenta represent the smooth, R-to-S1, and R-to-S2 cases, respectively. The premultiplied
energy spectrum f +φ+

uu is also shown in panel (b) by thin lines of corresponding colors on the left vertical axis
for reference.
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by the inner and outer probes. These results suggest that for a given structure in the outer layer, it
will leave a stronger footprint (superposition) in the near-wall region in the rough-to-smooth case
as a result of the enhanced inner-outer coherence.

D. Discussion

Overall, the amplitude modulation mechanism appears to be little modified after introducing a
roughness heterogeneity (at least at x̂/δ0 = 2.3 as examined here). However, there is a stronger
correlation between the large-scale velocity fluctuations obtained by the inner and outer probes, and
the gain in the linear kernel is also higher in rough-to-smooth cases. The large-scale fluctuation 〈u+2

O 〉
is already stronger in the rough-to-smooth cases, and a larger fraction of it will contribute to the
near-wall superposition signal through the increased gain |H̃L|. In light of the analysis in Sec. II, the
increase of 〈u+2

S 〉 is primarily responsible for the higher R value downstream of a rough-to-smooth
change.

It is interesting to draw a direct comparison between the freestream turbulence [34,35] and the
current rough-to-smooth cases, as both are in the “top-down” category with broadband energetic
large-scale motions imposed in the outer region. The increased strength in the outer large scales
makes them less susceptible to the interruptions from near-wall motions, leading to an increase in
the correlation between outer- and near-wall large-scale signals, which is eventually reflected in an
higher |H̃L| in both. The major difference between the two is in the coefficient �: the former has a
lower �, while the value is unchanged in the latter, similar to the independence of � on Reτ values
observed in canonical smooth-wall boundary layers [22]. We speculate that such difference is rooted
in the manner in which the outer large scales are organized, as well as the energetic wavelengths.
In the freestream turbulence case, the outer structures are created by an active grid, which are
inherently different from the structures organized by hairpin vortices in a developing boundary
layer. The dissimilarity in the generation mechanism between large- and small-scale structures in
the freestream turbulence might be the reason for the reduction in �. The highly energetic large
scales arranged in a manner similar to that of a naturally developed boundary layer in the current
configuration makes it a good mimetic of a smooth-wall turbulent boundary layer at very high
Reynolds numbers.

V. CONCLUDING REMARKS

In this work, we start with examining the mechanism behind the increased amplitude modulation
coefficient as reported in previous studies, utilising the framework of IOIM. An analytical relation-
ship between the amplitude modulation coefficient R2 and IOIM parameters is derived and verified
using a smooth-wall turbulent boundary layer dataset. This framework is then applied to classify and
interpret the reported amplitude modulation behaviours in previous works. We then present the case
study of a turbulent boundary layer downstream of a rough-to-smooth change with both single probe
and simultaneous two-probe measurements. A stronger amplitude modulation effect evidenced by
higher positive R is observed. Further analysis of the two-probe data reveals that the modulation
strength � is similar to that of a canonical smooth-wall turbulent boundary layer, and it remains the
same for the two Reynolds numbers tested. The increase in R is primarily attributed to the stronger
large-scale footprints 〈u+2

S 〉 in the near-wall region, which is contributed by both the overenergetic
outer layer motions 〈u+2

O 〉 and stronger coherence between the inner and outer layers. These results
and analyses offer a new perspective to interpret the abundant literature on the the scale interactions
of noncanonical turbulent boundary layers, which can be meaningful for incorporating the IOIM in
the numerical simulation of a wide range of flow conditions.
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