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h i g h l i g h t s

• The current random walk based network embedding methods cannot well adapt to the scale-free feature of real-world networks.
• A degree-biased random walk method is proposed to adapt to the scale-free feature of real-world networks and extract topological information

as fully as possible for representation learning.
• The space and computation overhead for network embedding can be drastically reduced by adopting by condensing the fixed-length sequences

into variable-length ones based on nodes centrality.
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a b s t r a c t

Network embedding aims at learning node representation by preserving the network topology.
Previous embedding methods do not scale for large real-world networks which usually contain millions
of nodes. They generally adopt a one-size-fits-all strategy to collect information, resulting in a large
amount of redundancy. In this paper, we propose DiaRW, a scalable network embedding method based
on a degree-biased random walk with variable length to sample context information for learning. Our
walk strategy can well adapt to the scale-free feature of real-world networks and extract information
from them with much less redundancy. In addition, our method can greatly reduce the size of context
information, which is efficient for large-scale network embedding. Empirical experiments on node
classification and link prediction prove not only the effectiveness but also the efficiency of DiaRW on
a variety of real-world networks. Our algorithm is able to learn the network representations with
millions of nodes and edges in hours on a single machine, which is tenfold faster than previous
methods.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

In recent years, there is a growing tendency for the popular-
ity of intelligent applications in cities. These applications could
provide intelligent solutions that support millions of users, by
harnessing the predictive power behind humongous volumes of
data from cities and deployed sensors. Such data could involve
human collaboration, interactions, communication or social be-
haviors, which is highly nonlinear and complicated. Network,
represented by nodes and the connections between nodes as
edges, is a proper tool to characterize such high dimensional
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data and their interactions. In fact, networks have been widely
used to denote information in various areas including social
sciences(social network) [1], linguistics (semantic Web) [2], In-
ternet of Things(sensor network) [3] and biology (Protein–Protein
interaction network) [4].

The scale of complex networks ranges from hundreds to bil-
lions of nodes, leading to a problem of how to analyze large
networks in an efficient way. Network embedding, which maps
each node to a low-dimensional vector, provides a ubiquitous
way to study global and local properties of the networks [5,6].
Given a network, it is often desirable to extract latent infor-
mation associated with each node in the network. The latent
information can represent a variety of properties of the original
network. For example, it may preserve the local neighborhood
information of each node as well as global community structure
of the network. Therefore, the node representations can be used
as features for network analysis and network prediction tasks

https://doi.org/10.1016/j.future.2019.05.033
0167-739X/© 2019 Elsevier B.V. All rights reserved.
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such as classification [7], clustering [8,9], link prediction [10,11],
and visualization [12,13].

Despite the enormous potential of network embedding, we
argue that there exists two main challenges:

High non-linearity: As stated in [14], network data is often
sophisticated and the underlying structure of it is highly non-
linear, which means it is quite difficult to design a suitable model
that can well capture and preserve the network structure.

Scalability: With the arrival of the age of big data, the scale
of real-world networks is exploding. Taking social network as an
example, the Twitter network contains 175 million active users
and approximately twenty billion edges in 2012 [15]. Therefore,
when it comes to large-scale networks, the massive learning
task may cost months to complete, or even simply fail due to
insufficient memory, which is practically unfeasible for practical
applications.

The general network embedding method usually takes two
steps: In the first step, a sampling procedure which can ex-
plore non-linear relationship between nodes is performed to
get the node ‘corpus’, then word embedding method such as
word2vec [16] is applied to obtain the embedding vector for each
node. DeepWalk [5] is the pioneer work in using random walks
to learn node representations. Node2Vec [6] is an extension of
DeepWalk which introduces a biased random walk procedure
which combines BFS and DFS style neighborhood exploration.

Real-world networks are generally scale-free, i.e., most nodes
have a low degree while only a few have very high degrees. The
node degree skewness implies that the underlying information
around nodes could differ a lot. However, previous network em-
bedding methods based on random walks treated this with a
‘one-size fits all’ strategy which is sub-optimal to well preserve
the structure of networks: One the one hand, they simply take
a unified walk strategy for all nodes to sample from real-world
networks which makes them unable to adapt to the different
local properties; On the other hand, random walks with fixed
length for each node can generate a lot of redundancy which
are common in a scale-free network, restricting the scalability for
large-scale networks.

To demonstrate the inference above, we use Barabási–Albert
(BA) model [17] to generate a scale-free network with 216 nodes
and plot the degree distribution of nodes in Fig. 1(a). We can
find that the original network follows a standard power-law
distribution with a slope -2.6656. By contrast, we also plot the
degree distribution of nodes in a corpus generated by the uniform
random walk used in DeepWalk in Fig. 1(b). It can be seen that
the degree distribution generated by the uniform random walk
differs significantly from the real degree distribution. Therefore,
the uniform random walk is not well enough to preserve the
original network properties.

In order to effectively and efficiently preserve the network
topology, we propose a high-degree biased variable-length ran-
dom walk algorithm which considers the degree skewness. To
be specific, we allow a walk to step back to the nodes with
higher degree in a probabilistic way, which means high-degree
nodes tend to be revisited more and walks starting from them
could obtain richer information by traveling around the local
neighborhoods. Moreover, instead of setting fixed length for all
the random walks, we set the length of random walks starting
from each node based on its centrality in order to solve the
problem of generating redundant information. Taking degree cen-
trality as an example, we assume that high-degree nodes should
have longer walk length than low-degree nodes when served as
starting nodes. In this way, we can not only better preserve the
network topology to ensure the quality of node representations
but also drastically reduce space and computation overhead by
condensing the fixed-length sequences into variable-length ones,

making our algorithm more efficient and scalable on large-scale
networks.

The reminder of the paper is organized as follows. In Section 2,
we first give a review for the related work. Then, we give the pro-
posed method in Section 3. In Section 4, we empirically evaluate
our method on predicting tasks, i.e., node classification and link
prediction, on large-scale networks and analyze the parameter
sensitivity as well as scalability of our algorithm. The paper is
concluded in Section 5.

2. Related work

Network representation has become an important way to
analyze complex network. The learning methods can be catego-
rized into two types: matrix factorization (MF)-based and neural
network-based [18].

MF-based methods are either linear [19] or nonlinear [20]
in learning node embedding. The former employs the linear
transformations to embed network nodes into a low dimensional
embedding space, such as singular value decomposition (SVD)
and multiple dimensional scaling (MDS) [19]. However, the latter
maps network nodes into a low dimensional latent space by uti-
lizing the nonlinear transformations, e.g., kernel PCA [21], spectral
embedding, marginal fisher analysis (MFA) [22], and manifold
learning approaches including LLE [23] and ISOMAP [20]. Gen-
erally speaking, MF-based methods have two main drawbacks:
(1) Due to the eigen-decomposition operations on data matrices,
they are usually computationally expensive and are difficult to
be applied on large-scale network data [24,25]; (2) the perfor-
mance is rather sensitive to the predefined proximity measures
for calculating the affinity matrix.

Neural network-based methods are the state-of-art node rep-
resentation learning techniques. The pioneer work DeepWalk [5]
extended the idea of Skip-Gram [16] to model network, which
is convert to a corpus of node sequences by performing trun-
cated random walks. The Node2Vec algorithm [6] can essentially
be considered as an extension of DeepWalk, introducing a bi-
ased random walk procedure which combines BFS style and
DFS style neighborhood exploration. However, both of them
adopted a global walk strategy which ignores individual hetero-
geneity. In addition, another shortcoming of Node2Vec is that
its second-order random walks take too much time to compute
the interconnections between neighbors of every node. There
are some follow-up works exploiting both 1st-order and 2nd-
order proximity between nodes to embed networks. Specifically,
LINE [26] derives a joint optimization function for preserving
the first and the second order proximity. It performs the op-
timization by stochastic gradient descent with edge sampling,
aiming at efficient embedding of large-scale networks. The goal
is similar as our paper, nevertheless, the performance tends to
be inferior compared to ours due to its limitation and inflexibil-
ity for low order proximity. HOPE [27] defines some similarity
measures between nodes which are helpful for preserving higher-
order proximity as well and formulates those measures as a
product of sparse matrices to efficiently find the latent represen-
tations. However, the algorithm still showed poor scalability for
large-scale networks.

3. Proposed method

In this section, we introduce DiaRW, a network embedding
method based on Skip-Gram model. In fact, the efficiency of
the Skip-Gram based methods largely depends on the sampling
strategies. In our method, instead of using uniform random walk
for sampling, we propose a high-degree biased backtracking
method to extract information from the network. In addition,
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Fig. 1. The degree distributions of (a) the original BA network with 216 nodes and (b) the corpus generated by uniform random walk from the original network.

Table 1
Table of notation.
G = (V , E) An input network G with set V of nodes

and set E of edges
Φ(u) Node representations of u
NS (u) Neighbor set of node u generated by a

sampling strategy S
P(u, v) Transit probability from node u to

node v

Q (u, v) Probability of selecting node v as next hop
of node u

A(u, v) Probability of accepting node v as next
hop of node u when v is selected

R(v, u) Probability of backtracking from node v

to node u
S(u, v) Similarity score of node u and node v

Deg(u) Degree of node u
Lmax Upper bound of walk length
L(u) Actual walk length starting at node u
k Times of random walks per node
d Dimension of vector representations
w Window size of context of the Skip-Gram

we also introduce a variable-length strategy based on the cen-
trality of source node for the random walks, in order to reduce
redundancy in the sampling process.

A network is defined as G = (V , E), where V is node set and
E is the set of edges. Table 1 includes notation used throughout
the paper.

3.1. Network embedding framework

Network embedding aims to learn a mapping function Φ:
V → Rd(d ≪ |V |), where we use Φ(u) to represent the
embedding vector of node u, and d is the dimension of Φ(u).
The function Φ preserves network topology, such that two nodes
which are similar in the original network should also be close in
the embedding space.

Inspired by [5,6], we formulate network embedding as a maxi-
mum likelihood optimization problem. For every center node u ∈

V , we define the neighbor set of u as NS(u), which is generated by
a sampling strategy S. For example, NS(u) can be a set of nodes
within k-hop distance from u. Therefore, we give the objective
function that we need to optimize as:

argmax
∑
u∈V

logPr(NS(u)|Φ(u)) (1)

Skip-Gram [16] is a language model that maximizes the co-
occurrence probability among the words that appear within a
window size w, in a sentence. It can approximate the conditional
probability in Eq. (1) by assuming that predicting nodes in a
context set is independent of each other as:

Pr(NS(u)|f (u)) =

∏
ni∈NS (u)

Pr(ni|Φ(u)) (2)

Algorithm 1 [5] shows the extension of Skip-Gram model
to networks. We map each node u from walk sequences to its
current representation vector Φ(u). Given the representation of
u, in order to maximize the probability of its neighbors, we use
stochastic gradient descent to iteratively update it (line 3–4).

Algorithm 1: Skip-Gram (Φ , walks, w)

Input: matrix of node representations Φ

walk sequences walks
window size w

1 for each node u ∈ walks and its index as inxu do
2 for each node ni ∈ walks [inxu − w, inxu + w] do
3 J(Φ) = −logPr(ni|Φ(u))
4 Φ = Φ − α ∗

∂ J
∂Φ

5 end for
6 end for

And we use soft-max function to model the conditional
likelihood of every center-neighbor node pair as:

Pr(ni|Φ(u)) =
exp(Φ(ni) · Φ(u))∑
v∈V exp(Φ(v) · Φ(u))

, (3)

As computing
∑

v∈V exp(Φ(v) ·Φ(u)) is very expensive, we use
the negative sampling method [16] to speed up training.

3.2. Scale-free networks

A scale-free network is a network whose degree distribution
follows a power law, or at least asymptotically. Most of real world
networks are reported to be scale-free [17], from web graphs to
social networks, protein networks and semantic networks.

In Fig. 2, we give a toy example of scale-free network, where
most nodes have a low degree but some have a very high
degree. Nodes with a number of edges that greatly exceeds
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Fig. 2. A toy example of scale-free network(nodes colored red are hubs).

Fig. 3. An example of uniform random walk sampling on a scale-free network.
It starts from hub node 4 with the number of walks 5 and walk length
4, generating node sequences(shown in solid line) like ‘‘4-29-42-29’’(blue),‘‘4-
0-7-24’’(black),‘‘4-27-4-37’’(green),‘‘4-19-36-39’’(gray) and ‘‘4-17-43-17’’(yellow).
(For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

the average are called hubs in the network (red color nodes
in Fig. 2). Hubs usually play important roles in the network.
For example, the hubs can help information spreads to more
people [28,29], and we can control the epidemic spreading by
separating the infected hub individuals from the susceptible pop-
ulation [30]. We show how the uniform random walk fails to
extract structure information for the hub nodes in Fig. 3. We
set the number of walk to be 5 and the walk length to be 4.
Taking the walks starting from hub node 4 as an example, we can
get walks such as ‘‘4-29-42-29’’(blue),‘‘4-0-7-24’’(black),‘‘4-27-4-
37’’(green),‘‘4-19-36-39’’(gray) and ‘‘4-17-43-17’’(yellow). On a
limited budget of samples, we can see that uniform random
walks from node 4 fails to completely capture the neighborhood
information around it with a large part of immediate neighbors
unvisited. This problem can be more serious for real world net-
works since there exists nodes with degrees of tens of thousands
whose structure is hard to be well extracted under acceptable
sample size. As the hubs and low-degree nodes can have different
roles in the network, we need to treat them differently when
performing the sampling procedure.

3.3. Sampling strategy

3.3.1. High-degree biased backtracking
Given a random walk on network starting from node u, the

transition process could be decomposed into two actions of se-
lection and acceptance or rejection, which means a neighbor v of
node u have the probability of Q (u, v) to be selected, and once
it happens, node v will then be accepted as next hop of the walk
with probability of A(u, v), otherwise it will be rejected. According
to Metropolis–Hastings algorithm [31], the desired node distri-
bution π generated by the random walk can be associated with
A(u, v) and Q (u, v) as:

A(u, v) =

{
1,

π (v)Q (v, u)
π (u)Q (u, v)

}
(4)

For a uniform random walk, the neighboring node of u has
equal probability to be selected and the transition will definitely
happen after the selection. Therefore, we have Q (u, v) =

1
Deg(u)

and A(u, v) is 1. According to Eq. (4), we have π (u) =
d(u)
2|E|

,

which means the node distribution of uniform random walk is
linear with the degree in this scenario. We argue that the bias for
high-degree nodes is still inadequate to stress the importance of
hubs, since there is a large number of low-degree nodes in scale-
free networks, greatly diluting the distribution of high-degree
nodes, which also theoretically accounts for the demonstration in
Section 3.2 that uniform random walk fails to completely capture
the neighborhood information.

To further intensify the bias for high-degree nodes, we simply
replace the linear relationship with quadratic relationship and
modify the desired distribution as: π (u)

π (v) =
d(u)2

d(v)2
. Substituting

it into Eq. (4), along with Q (u, v) =
1

Deg(u) , we could obtain

the revised acceptance probability as A(u, v) =

{
1, Deg(v)

Deg(u)

}
, the

corresponding rejection probability R(u, v) can then be computed
as: R(u, v) = 1 − A(u, v) = max

{
0, 1 −

Deg(v)
Deg(u)

}
.

To define rejection in a walk process, we introduce a novel
backtracking mechanism in random walk, specifically, when car-
rying out a walk from node u, we randomly select a neighbor v of
node u and transit to node v directly, once satisfying the rejection
condition, we perform a backtracking from node v to node u.
Formally, the high-degree biased backtracking mechanism can be
described with the transition and backtracking probability as:

P(u, v) =
1

Deg(u)
,

R(v, u) = max
{
0, 1 −

Deg(v)
Deg(u)

} (5)

From a macro perspective, by restricting search from high-
degree nodes to local neighborhoods, the high-degree biased
backtracking simulates a BFS-like explorations in the dense area,
while in the sparse area, it tends to perform a DFS-like explo-
rations by moving further away from low-degree nodes, thus
better capturing the local and global network structure.

3.3.2. Variable-length walk
Random walk based methods like Node2Vec and DeepWalk

set the fixed walk length for each node in networks, which is
poorly adaptive to the local density of networks. On the one
hand, long-length walks could sample a lot of redundant infor-
mation in the sparse area such as back and forth walks between
low-degree nodes, training samples generated by such invalid
node sequences may increase the risk of over-fitting. In addition,
setting the walk length too large would directly increase the sam-
pling time as well as storage and computation cost for training
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Skip-Gram model, and then restrict the algorithm’s scalability to
large-scale networks. However, short-length walks lack ability to
sufficiently capture the neighborhood information in the dense
area of the network such as community structures.

Considering the limitation of fixed-length strategy, we propose
a variable-length walk strategy based on the centrality of nodes,
since the local density of networks could be refined into the
centrality of nodes, which means dense areas in a network should
be constructed with important nodes. There are many ways to
define node centrality in a network: such as degree [32], close-
ness [33], betweenness [34], PageRank and HITS. Betweenness
centrality and closeness centrality involve calculating the shortest
paths between all pairs of nodes on a network, which is unfeasible
for practical application. Therefore, we simply abandon them and
evaluate the effectiveness and efficiency of introducing the other
three measures on our variable-length strategy respectively. We
combine the three variable-length walk strategies with Skip-
Gram to obtain the node representations for BA networks with
increasing network sizes from 103 to 105 nodes. The time of cen-
trality computation and the AUC of link prediction based on the
corresponding node representations are shown in Table 2, from
which we can find that these three centrality measures achieve
almost equal performances for AUC. However, PageRank and HITS
require considerable extra time for iterative computation. In sum-
mary, we choose degree to measure the node centrality for our
variable-length strategy.

Intuitively, to respond to the high-degree biased backtrack-
ing strategy, it is more reasonable to give high-degree nodes
longer walk length to better cover the backtracking process. The
standard definition of degree centrality is the number of links
incident upon a node without normalization, which means it
can be directly used as walk length without scale factor. In this
way, we can focus more on high-degree nodes by giving them
larger walk length. Nevertheless, with the expanding of scale-
free networks, the degree of nodes will vary by several orders of
magnitude and the degree of hubs may have tens of thousands
of links. We argue it unnecessary and time-consuming to set
this long walk length for an individual node in a walk , because
the walk may have already returned to the starting nodes and
repeated multiple times. Therefore, we smooth the huge differ-
ences between degree by setting a upper bound of walk length
to restrict hub nodes. Formally, for any starting node u, the walk
length can be computed as

L(u) = min {Deg(u), Lmax} + 1 (6)

The actual length is increased by 1 to guarantee that walks
from nodes of degree one could happen. Algorithm 2 depicts our
complete sampling strategy.

We compare our DiaRW sampling strategy with the uniform
random walk sampling strategy of DeepWalk in Fig. 4 for BA net-
works with increasing network sizes from 102 to 106 nodes. We
set all the parameters to be the same except that in DeepWalk,
the walk length is fixed as 80, in our work, we set Lmax = 80. We
find that our sampling strategy outperforms Deepwalk both in the
scale of walk sequences and sampling time. Our method is able to
finish sampling the BA network with millions of nodes in dozens
of minutes while it takes several hours for Deepwalk for the same
dataset. Most surprisingly, the degree distribution generated by
our random walk from the BA network given in Fig. 1(a) shows
a slope of −2.6632 (Fig. 5), which is much closer to the original
network degree distribution (−2.6656) compared to the uniform
random walk sampling (−2.2167 given in Fig. 1(b)).

Table 2
Evaluation of different centrality measure (AUC/time).
Size Degree PageRank HITS

1 000 0.6099/5.4E−4 0.5984/0.24 0.6040/0.81
10 000 0.6399/6.0E−3 0.6413/2.24 0.6418/13.42

100 000 0.6395/0.06 0.6406/21.65 0.6412/280.48

3.4. The DiaRW algorithm

The pseudo-code of our entire method DiaRW is given in
Algorithm 3. The algorithm consists of two main components: (1)
a sampling generator and (2) a learning procedure. Algorithm 2
serves as the sampling generator, and we use algorithm 1 shown
in 3.1 to train and learn the node representations.

Algorithm 2: DiaRW walk(G, u, Lmax)

Input: Network G(V , E), max walk length Lmax
Output: Node sequence walk
1 Initialize walk to [u]
2 l = min {Deg(u), Lmax} + 1
3 for i = 0 to l do
4 curr = walk [−1]
5 Select a node v uniformly from neighbors of curr
6 Append v to walk
7 Generate a random value p ∈ [0, 1]
7 if p < (1 −

Deg(v)
Deg(u) ) then

9 Append curr to walk
10 end for
11 return walk

Algorithm 3: DiaRW(G, Lmax, k, w, d)

Input: Network G(V , E)
max walk length Lmax
walks per node k
window size w

embedding dimension d
Output: matrix of node representations Φ ∈ R|V |×d

1 Initialize walks to empty
2 for iter = 1 to k do
3 for all nodes u ∈ V do
4 walk = DiaRW walk(G, u, Lmax)
5 Append walk to walks
6 SkipGram(Φ , walks, w)
7 end for
8 end for
9 return Φ

4. Experimental evaluation

We compare our DiaRW algorithm with four other base-
line methods, i.e., DeepWalk [5], Node2Vec [6], LINE [26] and
HOPE [27], for the tasks of multi-label node classification and link
prediction. Our experiment environment is listed in Table 3.
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Fig. 4. The Space and Time cost of walk.

Fig. 5. The node frequency distribution of the corpus generated by DiaRW
random walk for BA graph.

Table 3
Experiment environment.
OS CentOS 4.8.5-16 Linux 4.4.114
MEMORY 128 GB
DISK 300 GB
CPU Xeon(R) CPU E5-2620 v4 @ 2.10 GHz

Table 4
Network datasets.
Network |V | |E| Avg.deg Density Avg.cc Labels

YouTube 1 134 890 2 987 624 5.265 4.6E−6 0.40 47
PPI 56 944 818 716 28.75 5.0E−4 0.18 121
Flickr 80 513 5 899 882 146.55 1.8E−2 0.16 194

email-Eu-core 1 005 25 571 33.24 0.03 0.39
Wiki-Vote 7 115 103 689 28.32 0.003 0.14
p2p-Gnutella 8 114 26 013 6.41 7.9E−4 7.2E−3
Astroph 18 722 198 110 21.10 1.1E−3 0.63
Cit-HepPh 34 546 421 578 24.36 7.0E−4 0.28
Epinions 75 877 508 837 10.69 1.4e−4 0.13
Twitter 11 316 811 85 331 846 11.23 9.9E−7 0.14

4.1. Network datasets

Table 4 gives a summary of network datasets used in our
experiments. To prove the efficiency and effectiveness of our
algorithm, we choose the datasets of different sizes, ranging

from thousands to millions of nodes. The detailed information of
network datasets for the multi-label classification task is given as
follows:

• YouTube [35]: A social network between users on Youtube.
This is a large network containing 1,157,827 nodes, 4,945,382
edges and 47 labels. The labels represent groups of users who
enjoy common video genres.

• Protein–Protein Interaction (PPI) [36]: The network con-
tains 56,944 nodes, 818,716 edges and 121 labels. Each of the
labels corresponds to a biological function of the proteins.

• Flickr [35]: This is a network of the contacts between
users of the photo sharing website. It contains 80,513 nodes,
5,899,882 unweighted edges and 194 labels. The labels represent
the interest groups of the users such as ’black and white photos’.

The datasets used for link prediction are as follows:
• email-Eu-core [37]: The network was generated using email

data from a large European research institution. The emails
only represent communication between institution members
(the core), and the dataset does not contain incoming messages
from or outgoing messages to the rest of the world, it contains
1,005 nodes and 25,571 edges.

• Wikipedia vote network(Wiki-Vote) [38]: The network
extracted all administrator election and voting history data from
Wikipedia community, where node represents the users who had
participated in the election or been elected and edge indicates a
voting process. The network contains 7,115 nodes and 103,689
edges.

• Gnutella peer-to-peer network (p2p-Gnutella) [37]: A
sequence of snapshots of the Gnutella peer-to-peer file shar-
ing network from August, 2002. Nodes represent hosts in the
Gnutella network and edges represent connections between the
them. The network contains 8,114 nodes and 26,013 edges.

• High-energy physics citation network(Cit-HepPh) [39]:
This is a citation network generated from papers submitted to
the e-print arXiv where nodes represent papers, if a paper cites
another paper, the network contains a directed edge between
them. It has 34,546 nodes and 421,578 edges.

• Astrophy collaboration [37]: This is a collaboration network
generated from papers submitted to the e-print arXiv where
nodes represent scientists, and an edge is formed between two
scientists if they have collaborated on one paper. The network
has 18,722 nodes and 198,110 edges.

• Epinions [40]: The network represents who-trust-whom
relationships between users of the epinions.com product review
website. It has 75,877 nodes and 508,837 edges.

• YouTube [35]: The same dataset used in the node-
classification task.
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Table 5
Time cost on embedding for multilabel classification (seconds).

DiaRW Node2Vec DeepWalk LINE

YouTube 3391 581 726 31 668 272 833
PPI 290 1 573 572 2 538
Flickr 2166 179 917 2 487 11 001

• Twitter [41]: Twitter is a social news website. It can be
viewed as a hybrid of email, instant messaging and SMS mes-
saging all rolled into one neat and simple package. The nodes
represent users and friends are represented using edges. This is
a typical large-scale network with ten million nodes and edges,
taking up 1 GB storage.

4.2. Baseline methods

We use the following four methods as the baselines:
• DeepWalk [5]: DeepWalk adopts uniform random walk

for node sampling and Skip-Gram model to generate network
representation.

• Node2Vec [6]: This method extends DeepWalk by per-
forming biased random walks to generate the corpus of node
sequences. It contains the in–out and return hyper-parameters p
and q. We have performed a grid search over p, q ∈ {0.25, 0.5,
1, 2, 4} and 10-fold cross-validation on labeled data to select the
best embedding, as suggested by [6].

• LINE [26]: This method optimizes both the 1st-order and
2nd-order proximity in a network. We use the LINE (1st+2nd)
method which has shown the best results in their paper. The
original version of LINE is implemented in C++, for compari-
son fairness, we use an implementation of LINE in Python with
TensorFlow.

• HOPE [27]: This method defines similarity measures be-
tween nodes which are helpful for preserving higher-order
proximity and formulates these measures as a product of sparse
matrices to efficiently find the latent representations. The authors
experimented with different similarity measures, including Katz
Index, Rooted PageRank, Common Neighbors, and Adamic–Adar
score. The Katz index with decay parameter β = 0.1 is selected
for HOPE’s high-order proximity measurement, since this setting
gave the best performance in the original article.

4.3. Experiments on multi-label classification

Predicting node labels using network topology is widely
applied in modern applications ranging from document classifi-
cation [42] to interest prediction [43]. Among these applications,
multi-label node classification is significantly challenging, espe-
cially for networks with a large number of labels. To perform
this task, we use the learned node vector and an one-vs-rest
logistic regression classifier (using the LIBLINEAR library with L2
regularization) [44]. When training the classifier, we randomly
sample a portion of the labeled nodes as the training set and the
rest as the testing set. For PPI, we randomly sample 10% to 90% of
the nodes as the training samples and use the left ones to test the
performance. For Flicker and YouTube, we randomly sample 1% to
10% of the nodes as the training samples and use the left nodes
to test the performance, which corresponds to the fact that these
two datasets have only a small part of labeled nodes for entire
networks. We repeat the experiment for 5 times and report the
averaged Micro-F1 and Macro-F1.

The results are shown in Fig. 6 and Table 5. Since HOPE failed
to learn the embedding in our current experimental environment
for all the datasets on multi-label classification, we only show the
results of the remaining three methods as baselines and compare

them with our DiaRW. The time cost for learning embedding
is given in Table 5. From the results, we have the following
observations and analysis:

• In Fig. 6, we observe that random walk based methods
outperform LINE in the multi-label classification task. The main
reason can be inferred from the fact that LINE simply aims to
capture low-order proximities for nodes: only nodes which are
at most two hops away from a center node are considered as
its context. This is not enough for node classification as high-
order proximity neighbors can also be classified by the same
labels. In contrast, by generating random walks in the network,
the neighborhoods are not restricted to just one-hop or two-hop
neighbors but can have vastly different structures.

• More precisely, as shown in Fig. 6, we can see that Node2Vec
gives a satisfactory performance in the multi-label classification
task. As mentioned in [6], Node2Vec preserves homophily as well
as structural equivalence between nodes. Results suggest this
can be useful in node classification. In particular, Node2Vec is
not inferior to DeepWalk for all datasets, which means biased
random walks have better adaptability and accuracy for capturing
network structures to generate a corpus with high fidelity than
uniform random walks. However, despite the gaining for accuracy
over DeepWalk, Node2Vec is far less efficient than DeepWalk
(Table 5). It takes at least three times longer than DeepWalk to
learn the embedding for the same dataset, which is even more
noticeable for large-scale networks. This is because, Node2Vec
requires a preprocess procedure to compute and store the inter-
connections between the neighbors of every node for 2nd-order
random walks, which is pretty expensive on both time and space
for large-scale networks, therefore greatly affects the efficiency
and scalability of embedding.

• In addition, our method DiaRW shows a competitive perfor-
mance to Node2Vec, but with much higher efficiency. Specifically,
regarding to the Macro-F1 and Micro-F1 score, our method shows
comparable results as Node2vec and DeepWalk in YouTube net-
work. In PPI network, our method improves Macro-F1 score by
9.8% and Micro-F1 score by 1.5% over DeepWalk. In Flicker net-
work, our method outperforms all the baselines, gaining 12.5%
improvement on Macro-F1 score compared to Node2vec. Taking
time cost showing in Table 5 together, we can conclude that
DiaRW can finish embedding several times faster than DeepWalk
and dozens of times faster than Node2Vec while maintaining the
effectiveness for multi-label classification. The huge gains in time
are mainly due to the variable-length walk strategy we adopt,
which has drastically reduced the size of node sequences and
accelerated walking and training as well.

• The experimental results proved that there is a lot of redun-
dancy information sampled by uniform random walk with fixed
length, which will not only be useless for accuracy but also greatly
slow down the algorithm. For networks with many types of labels
but short of labeled data such as Flicker [35], our method can get
even better performance than prior excellent works due to better
representative of network structure.

4.4. Experiments on link prediction

Networks are constructed from the observed links between
nodes, which may be incomplete or inaccurate. The challenge
often lies in identifying spurious interactions and predicting miss-
ing links. Link prediction refers to the task of predicting either
missing links or contacts that may appear in the future in an
evolving network [11,45]. Link prediction can be translate into the
similarity-based problem, where each pair of nodes, u and v, is
assigned a similarity score S(u, v) and the links connecting more
similar nodes are supposed to be of higher existence likelihoods.

To perform link prediction in a network, we first randomly
remove half of its edge. The node representation is then learned
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Fig. 6. Performance evaluation on various datasets for multi-label classification.

Fig. 7. Degree distribution of synthetic networks with different cutoff κ .

Table 6
Area Under Curve (AUC) scores for link prediction.

DiaRW Node2Vec DeepWalk HOPE LINE

email-Eu-core 0.8572 0.8222 0.8270 0.8618 0.7870
Wiki-Vote 0.9356 0.7957 0.7946 0.9283 0.8101
p2p-Gnutella 0.7641 0.7025 0.6947 0.6254 0.6878
Cit-HepPh 0.9517 0.9576 0.9472 0.5125 0.7356
Astrophy 0.9159 0.9217 0.9088 0.5320 0.8896
Epinions 0.8972 0.8512 0.8463 ∗ 0.8417
YouTube 0.7985 0.7726 0.7681 ∗ 0.6463
Twitter 0.9010 ∗ ∗ ∗ ∗

from the remaining part. To create the negative labels for the
prediction task, we randomly select pairs of nodes that are not
connected in the original network. The number of such pairs is
equal to the number of removed edges. The ‘‘negative’’ pairs and
the pairs from edges that have been removed, are used together

Table 7
Time cost for link prediction task (seconds).

DiaRW Node2Vec DeepWalk HOPE LINE

email-Eu-core 3 25 8 1 10
Wiki-Vote 10 113 28 180 29
p2p-Gnutella 7 111 59 25 87
Cit-HepPh 53 405 167 725 230
Astrophy 46 438 175 157 953
Epinions 109 3 466 1 069 ∗ 4 066
YouTube 1 448 581 726 31 668 ∗ 272 833
Twitter 37 167 ∗ ∗ ∗ ∗

to form the labeled data for this task. Given embedding vector
Φ(u) and Φ(v) of two nodes u and v, we define the similarity
score S(u, v) as inner product Φ(u) ·Φ(v), along with AUC metric
to evaluate the performance. The results are given in Table 6.
In addition, we also measure the time cost of representation
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Table 8
The impact of degree heterogeneity on the performance of link prediction task.
Cutoff κ |V | |E| CV Hm AUC of DiaRW AUC of DeepWalk

16 10 000 10 252 1.2596 0.0583 0.5059 0.4724
32 10 000 11 329 1.5261 0.0671 0.5692 0.4865
64 10 000 12 714 1.7791 0.0748 0.6279 0.4956

128 10 000 14 007 2.0099 0.0849 0.6616 0.5136

learning for all the methods in Table 7, where ‘‘∗’’ means the
algorithm fails under the limitation of computation resources
(Table 3) and time requirement (one week). From the results, we
have the following observations and analyses:

• DiaRW gains the best overall performance in this task. More
precisely, it achieves 8.8% improvement on AUC for p2p-Gnutella,
5.4% for Epinions and 3.95% for Youtube, compared to the best
results from baseline methods. In addition, for the two small
datasets: email-Eu-core and Wiki-Vote, DiaRW shows competi-
tive performance to HOPE, which is far superior to other methods,
and it performs as well as Node2Vec for Cit-HepPh and Astrophy
networks. In summary, experimental results sufficiently show the
advantage of our method on link prediction task, which can well
adapt to networks of various sizes and fields.

• As shown in Table 6, in comparison with Node2Vec, DiaRW
gains significant improvements on AUC for all the datasets except
for Cit-HepPh and Astrophy networks, ranging from 4% and 18%.
We observe that these datasets all exhibit such characteristics
with low link density and average degree relative to the number
of nodes, which means their degree distribution presents more
notable heterogeneity. Therefore, we can infer that our walk
strategy can better adapt to this scale-free and skew phenomenon
and thus can effectively retain the network structures. As for Cit-
HepPh and Astrophy networks with higher density and clustering,
our walk strategy shows less obvious difference from uniform
random walk, leading to a close performance with other random
walk based methods.

To further verify the deduction above, we quantitatively ex-
plore the impact of degree heterogeneity on the performance
of embedding. We use the model proposed in [46] to generate
synthetic networks with different degree heterogeneity by mul-
tiplying the parameter exponential cutoff κ from 32 to 128 with
α = 2. The degree distribution of these synthetic networks is
shown in Fig. 7. We choose coefficient of variation(CV ), defined
as the ratio of the standard deviation to the mean and a de-
gree heterogeneity measure(Hm) proposed in [47], to measure
the heterogeneity of the synthetic networks. We also compute
the AUC on link prediction task to evaluate the representations
learned by DiaRW and DeepWalk for comparison. The results are
given in Table 8, we find that, with the increase of heterogeneity,
the performance of DiaRW achieves significant improvement on
AUC. Additionally, DiaRW shows great advantages over Deep-
Walk, providing strong evidence that DiaRW can better adapt
to heterogeneity property of real-world networks than uniform
random walks.

• The performance of LINE in link prediction task is obviously
better than that in the multi-label classification task, which is
even comparable to that of random walk based methods on some
datasets. We can infer from that low-order proximity can be
helpful for link prediction task. However, real-world networks
tend to be so sparse that we cannot extract enough low-order
information for representation learning. In view of this, random
walk based methods is more flexible and effective as they use
a random walk to enrich the neighbors of nodes, which is able
to introduce higher order proximities. The performance of HOPE
is highly dependent on the dataset , which implies its poor
adaptability to different networks.

Table 9
Evaluations of DiaRW BT and DiaRW VarL.

DeepWalk DiaRW BT DiaRW VarL DiaRW

email-Eu-core 0.8270 0.8475 0.8229 0.8572
Wiki-Vote 0.7946 0.8477 0.7922 0.9356
Cit-HepPh 0.9472 0.9543 0.9336 0.9517
Astrophy 0.9088 0.9151 0.8885 0.9159
Epinions 0.8463 0.8673 0.8188 0.8852

• Results from Table 7 prove once again that our method is
very scalable and efficient for large-scale networks. Taking a typ-
ical large-scale network Twitter as an example, all the methods
except for DiaRW have failed to obtain the node representations.
As a contrast, it takes only ten hours for DiaRW to learn the
embedding for Twitter, with a superior performance for link
prediction task.

4.5. Separate effect of backtracking and variable-length

Our walk strategy DiaRW walk can be divided into two sub-
strategies as high-degree biased backtracking and variable-length
walk. In order to explore their effects separately, we design two
variants of DiaRW based on the two sub-strategies respectively,
naming DiaRW BT and DiaRW VarL. Taking several networks
from Section 4.1 as examples, we use link prediction task to
evaluate DiaRW BackTrack and DiaRW VarL, along with DiaRW
and DeepWalk as comparisons.

As shown in Table 9, separate variable-length walk has lit-
tle impact on the improvement of AUC when compared with
DeepWalk, since it aims to improve the efficiency of network
embedding. While high-degree biased backtracking can indeed
increase the accuracy of prediction task with superior node
representations, as described in Section 3.3.1, we can better cap-
ture the local and global network structures by paying more
attention to high-degree nodes, bringing about a modest im-
provement on AUC. And notably, this improvement can be further
enhanced when combined with variable-length walk, verifying
the illustration from Section 3.3.2 that high-degree nodes need
larger walk length to cover the loss of frequent backtracking.
In summary, we can conclude that both of the sub-strategies
from Section 3.3 take effects, of which the high-degree biased
backtracking can directly benefit good effectiveness of node rep-
resentations, and variable-length walk gains huge improvement
on efficiency, meanwhile further exploiting the advantages of the
former for better performance.

4.6. Parameter sensitivity

We explore how the different choices of parameters affect the
performance of DiaRW. Fig. 8 shows the AUC gained by DiaRW
on link prediction task for p2p-Gnutella network. Except for the
parameter being tested, all the other parameters in the experi-
ment are set to their default value. We find that the parameters
related to the walk process(times of walk per node k, upper
bound of walk length Lmax) all have impact on the performance
of embedding. The parameter Lmax has less influence since based
on our random walk strategy, the actual walk length for every
nodes depends not only on this parameter, but also on their
degrees to a great extent. With the increase of parameter k or
parameter Lmax, the AUC will have a significant improvement at
first. This benefits from a greater overall sampling budget to learn
representation. However, when these two parameters increase
too much, the AUC tends to remain stable or even decrease,
which means the current sampling size is sufficient to extract
the network structures. This further implies that redundant in-
formation does no good for representation learning. Similarly, we
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Fig. 8. Parameter sensitivity of DiaRW in p2p-Gnutella.

Fig. 9. Scalability of DiaRW on Barabási–Albert networks.

observe that increasing the context size w for Skip-Gram model
will also improve the AUC since larger context size could discov-
ery higher order relationships in the network which is helpful
for network inference. However, once this parameter is set too
large, it will in turn introduce noise, attenuating the impact of
closer neighborhoods, which accounts for the slight degradation
of performance. The effectiveness of our method also depends on
the dimension number d of output vector representations. We
can infer that vectors with too small dimensions lack expressive
ability, embedding in this representation space may not be able
to preserve the structure information of the networks, while con-
tinuously increasing the number of vector dimensions by adding
more nodes on the hidden layer of neural network will increase
the risk of over-fitting problem, which could also negatively affect
the performance.

4.7. Scalability

To test scalability, we have learned the node representation
using DiaRW with default parameter values for BA networks with
increasing size of networks from 210 to 220 nodes and edges
attaching from a new node to existing nodes of 10. Fig. 9 depicts
the running time required for sampling and both sampling and
optimization. DiaRW is able to learn embeddings for networks
with millions of nodes in dozens of hours and scales linearly with
respect to the size of network. Since the optimization phase is
made efficient using negative sampling [48] and asynchronous
SGD [49], nearly total learning time belongs to the step of
sampling nodes.

5. Conclusions and future work

In this work, we have proposed DiaRW, an efficient method
for network embedding, which can easily scale up to networks
with millions of nodes and billions of edges. The core of DiaRW is
a sampling procedure with biased backtracking mechanism and
variable-length strategy, which can well adapt to the scale-free
characteristic of real-world networks and greatly reduce the re-
dundant information when compared with fixed-length random
walks, thus ensuring its competitive performance on prediction
tasks and its significant improvement on efficiency comparing
with state-of-the-art baseline methods. As future work, we plan
to extend our method to networks with special properties such
as heterogeneous information networks, networks with explicit
domain features for nodes and edges and signed-edge networks.
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