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Summary

In this thesis observations on the application of parametric drives to superconducting quan-
tum circuits in disparate parameter regimes are presented. By the nonlinear inductance of
the Josephson junction, a variety of interactions in circuit quantum electrodynamical systems
comprised of strongly, moderately, and weakly nonlinear oscillators are realized.

Chapter 1 contains an introduction to classical and quantum information and introduces su-
perconducting circuits as a platform for quantum information processing. An outline of the
contents of the thesis is also provided.

In Chapter 2 a theoretical foundation for the later chapters is established, spanning from
the classical harmonic oscillator to circuit quantum electrodynamical systems and parametric
driving. The transmon qubit, junction-embedded coplanar waveguide, tunable coupler, and
Josephson junction array resonator are introduced and some methods for realizing paramet-
rically activated interactions in such systems are discussed.

Chapter 3 focuses on the steps necessary for constructing a superconducting quantum cir-
cuit. The design, simulation, and fabrication methods necessary for creating the experimental
devices of later chapters are discussed.

In Chapter 4 results of the parametrically activated interactions between two tunably cou-
pled transmon qubits by flux modulation of a SQUID are presented. When the coupling SQUID
is modulated at the sum or difference frequencies of the transmons, level repulsion and at-
traction are observed spectroscopically. The viability of the platform for analog quantum
simulations is discussed and the experimental results are compared to analytical models and
numerical simulations of the quantum master equation.

In Chapter 5 spectroscopic signatures of a few-photon Kerr parametric oscillator are observed
upon the application of an all-microwave bichromatic drive to a Josephson junction-embedded
coplanar waveguide resonator. Semiclassical analytical, numerical, and quantum master equa-
tion simulations are performed and compared with the experimental results. An effective
model based on semiclassical methods proves insufficient in modelling the behaviour of the
system, indicating the presence of quantum effects.

In Chapter 6 a weakly nonlinear Josephson junction array resonator is bichromatically driven
into a parametric phase state. Stochastic switching between the two non-equilibrium sta-
tionary states of the system is observed and the time between stochastic switching events is
determined for a range of drive strengths. An additional microwave drive resonant with the
frequency of parametric response is applied and the system is biased into one of the phase
states. The biasing and change in switching time as a function of drive power and phase is
shown. The contributions of classical and quantum effects to the occurrence of switching
events is discussed.

xi



xii Summary

In Chapter 7 measurements of a strongly parametrically driven Duffing oscillator are pre-
sented. As the system is strongly driven at a variety of large negative detunings, signatures
of chaotic behaviour are observed in the output field spectrum and quadrature histograms.
The observed features are discussed and compared to known markers of chaotic behaviour in
classical parametrically driven Duffing oscillators.

Chapter 8 concludes the thesis, providing a review of the contents and findings of the previous
chapters. The thesis ends with an outlook and suggestions for potential future topics of study.



1
Introduction

My basic view of things is
not to have any basic view of things.

Ingmar Bergman

In this chapter we discuss classical and quantum information from a historical perspective,
introduce superconducting quantum circuits as quantum information processors, and sum-
marize the structure of the thesis.

1
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2 1. Introduction

1.1. Classical and Quantum Information
What do we think of when we think of information? Perhaps we envision a stack of papers,
a file folder, a computer hard drive, or a complicated network of nodes and connective lines.
Etymologically, we can argue that it means to "bring into form," but what is being brought
into form, and what form does it take? Is it necessary to communicate information, or does
information exist whether or not we inform anyone of anything?

I was first introduced to information in a formal sense during my undergraduate studies. I was
taught to think about information from a physical perspective vis-à-vis the work of Claude
Shannon, which enables one to quantify what we do and do not know about a set of things [1].
The very act of quantifying "things that we do and do not know" or "knowledge" or "informa-
tion" allows us to work with these concepts as mathematical quantities. For example, we may
consider how much information is contained in a coin. If we flip the coin, the result is either
heads or tails. According to Shannon, the information we have gained by flipping the coin and
observing the result is 1 bit of information. We can think of the coin as being an object which
encodes 1 bit of information.

Similarly, if we wish to transfer information to communicate with others, we can very sim-
ply turn off or on a bright lamp. When the lamp is on, it communicates some predetermined
message to another person conventionally in the affirmative, while if the lamp is off, it com-
municates a message conventionally in the negative. Alternatively, we can use the dots and
dashes of Morse code in order to communicate information to others. While the choice of dot
or dash is binary, the content of a message is determined by how it has been decided that
we map dots and dashes to letters. In the mapping to the Latin alphabet, the information
content of the message scales with the amount of dashes, dots, and pauses. In the same way,
we can convert zeroes and ones to other numbers with binary representations. Suddenly, a
collection of coins facing heads or tails can be used to communicate messages which contain
information.

If information can be encoded and communicated, one may also wonder whether information
can be processed to perform tasks. We have at hand a means by which we can prepare infor-
mation in binary states (0 or 1), and we wish to configure a collection of information in such
a way that it can be processed in order to complete a task. One can, for instance, decide that
some action should be performed provided that certain information has been received. For
example, if we receive a 0, we can return a 1. If we receive a 1, we can return a 0. Alternatively,
with two bits, if we receive 00, we can return 0. If we receive 01 or 10, we return 0. Lastly, if
we receive 11, we return 1. Such Boolean functions as the NOT and AND gates described above
can be used to construct logic gates, which transform binary inputs into binary outputs. If one
constructs a system with two lamps in which when the first lamped is turned on, the second
turns off, and when the first lamp is turned off, the second turns on, a circuit with a NOT gate
has been realized. If we wish to be more efficient, one can construct a system of electronic
components such as transistors, resistors, capacitors, and diodes connected in a circuit which
can perform all known logical operations on binary inputs, with light replaced by specific volt-
ages. If one continues building circuits of logic gates, in the end, a classical digital computer
will be constructed.

The amount of time between when humans first utilized information processors and when
we finally began to generally understand them was thousands of years. Indeed, the task of
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constructing machines which can be presented with information, perform operations given
that information, and return processed information as a human would is a monumental task.
Between the invention of the abacus and the punched card computer, a significant portion of
all of recorded human history transpired [2]. As a species, we did not properly understand what
computers were or could be in the modern understanding until the 19t h and 20t h centuries [3–
5]. Now, with devices containing billions of transistors in the hands of most of the population
of the world, computation seems an afterthought. It is now natural that one should be able to
compute virtually anything that the average person wishes within seconds of conceiving the
very thought of doing so. The vast majority of humanity are able to interface with such complex
machinery in order to complete exceedingly sophisticated tasks, all the while treating these
devices as perfectly opaque black boxes conceived by unknown individuals in the previous
century.

Figure 1.1: In contrast to a classical bit, a quantum bit is the state of a two-level quantum system. The
state of the system can be represented as a point on or in the Bloch sphere which illustrates the space
of possible quantum states [6].

In the late 19t h and early 20t h centuries, some of humanity’s brightest minds discovered that
the natural world was not sufficiently modellable by what is now known as classical physics [7–
10]. Towards the end of the 20t h century, following the early development of the modern gate-
based digital computer, the problem of simulating the natural (quantum) world was posited
[11–13]. If one is to use computers as a tool to understand the universe, and if the universe is
quantum mechanical, should those computers be quantum mechanical? What would happen
if we exchanged our transistors encoding information in the classical binary states 0 and 1 with
quantum systems such as electrons and photons with which we could encode information in
complex-valued quantum states? Through the rest of the 20th century, the groundwork for
quantum computation would be laid, with much theoretical and experimental work done on
what it would mean to construct a quantum bit, execute quantum algorithms, and discover
what could be achieved by doing so relative to using classical bits [14–78].
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By the turn of the millennium, it was understood that a system of coupled quantum bits could
be used to perform any quantum information processing task which could be achieved by uni-
tary operations - which in turn meant that, at the very least, such systems could simulate and
compute anything that a classical computer could [13, 41, 50]. It was also shown that certain
computational and simulational tasks could be performed with algorithms on qubits more ef-
ficiently than with any known algorithms on classical bits [37, 47, 50]. While such a universal
quantum computer could hypothetically be built, it was (and still is) an entirely different task
to actually build one. Firstly, which quantum systems are the most efficient, accurate, and
economical for encoding information and performing such universal processing tasks? If the
criterion is that we encode information in quantum states, shall we use photons, electrons,
atoms, ions, anyons, or something else [26, 43, 44, 61, 69, 75–77, 79–82]? After determining a
platform, in which basis should one encode information?

Classically, the basis seems natural given the platform - for a coin, heads or tails, and a lamp,
on or off. When it comes to the case of the photon, shall we encode information in its polar-
ization, spin, or energy? The choice of encoding depends on the efficiency and reliability with
which information can be processed, which depends on the lifetimes of the quantum states
and the fidelity of gates executed on those systems. Once information is encoded, errors will
inevitably occur in the preparation of states, execution of gates, and readouts of registers.
How should these errors be corrected? Much of the past few decades of research in quantum
information processing has been concerned with these questions, and it seems to be the case
that this will continue for the foreseeable future.

1.2. Superconducting Quantum Circuits
The quantum information processing platform that I have chosen to devote my study to is the
superconducting qubit. In Chapter 2, we discuss the superconducting qubit in more detail,
but here, suffice to say that we can think of the superconducting qubit as an artificial atom.
Such an artificial atom has a set of discrete energy levels that the electrons of the atom can
occupy. An electron will transition to a higher energy level if the atom absorbs a photon of
energy matching the difference between the two levels. Conversely, a photon can be emitted
from an atom if an electron occupying a higher energy level transitions to a lower level, with
the emitted photon having energy equal to the difference between the transitioned levels. In
both atoms and artificial atoms, such transition dynamics have been observed in great detail
[83, 84]. A natural choice for an artificial atom is one for which we can engineer and control
the transitions between individual energy levels, preferably with single photon and electron
resolution.

The origin of the superconducting qubit can be traced at least back to experimentation on
the quantum nature of Josephson junctions revealing macroscopic quantum tunnelling and
energy level quantization [18, 19, 85, 86]. As for the choice of artificial atom, the critical com-
ponent was found when a Josephson junction cooled to cryogenic temperatures and irradiated
with (microwave) photons of the appropriate energy (frequency) caused transitions between
quantized energy levels [19]. The energy levels were defined by a nonlinear potential, such
that the transition frequencies between levels were unequal - a key ingredient for building a
superconducting qubit, as will be discussed in Chapter 2. A mere three years after the most
well-known treatise on early quantum computation was published, what would become the
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key ingredient for the most popular quantum computing platform of the early 21st century
was revealed [12, 19]. While the first superconducting qubit, the "Cooper-pair box", was pro-
posed only a few years after the quantized energy level experiment, it would not be until the
last years of the millennium that the superconducting qubit truly took form once quantum
oscillations and control of coherent state evolution were demonstrated [71, 76, 87].

Figure 1.2: Artificial atoms and superconducting quantum circuits. (a) A two-level system excited by a
resonant microwave drive. (b) The circuit representation of a superconducting qubit (the transmon). The
inductance and capacitance of the Josephson junction are represented by a square with a cross. (c) An
image of a chip containing superconducting quantum circuits wirebonded to a printed circuit board.

In the years that followed, several alternative superconducting qubit designs were proposed
and their viability for quantum computation was experimentally demonstrated [55, 71, 76, 88–
111]. Mechanisms for control, readout, and coupling of superconducting qubits generally coa-
lesced around the framework of circuit quantum electrodynamics, in which networks of res-
onators and qubits formed by capacitors, inductors, and Josephson junctions are used to per-
form quantum gates and read out qubit states [111–118]. It is within this framework that the
experiments outlined in Chapters 4 - 7 were performed; superconducting quantum devices
formed by Josephson junctions, capacitors, and inductors, coupled to transmission-line res-
onators and irradiated with microwave signals.

A few additional threads of progress have also been developing since the late 1990s, even
within the field of superconducting quantum circuits specifically. The first is concerned with
whether the basis consisting of the ground and excited states of a superconducting qubit is
the most optimal way to encode information. An alternative approach is to encode informa-
tion in bosonic modes and continuous variables; this field of research has been the focus
of increased study in the 21st century with numerous exciting experimental developments
demonstrating the viability of quantum information processing with Schrödinger cat states,
grid states, and GKP states with quantum circuits and on other platforms [119–133]. Much the-
oretical and experimental progress has also been made with quantum error detection and
correction towards fault-tolerant quantum computation, regardless of the choice of platform
or basis of encoding [51, 134–158].

1.3. Thesis Outline
In Chapter 1 we have introduced the concept of quantum information and superconducting
quantum devices. In Chapter 2 we discuss more deeply the theoretical background necessary
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for understanding the later chapters, encompassing harmonic and anharmonic oscillators,
circuit quantum electrodynamics, and parametric driving. In Chapter 3 we discuss how one
goes about conceiving of, designing, simulating, and fabricating superconducting quantum
circuits. In Chapter 4 we present our findings on the parametrically activated interactions be-
tween two strongly nonlinear Kerr oscillators realized by flux modulation of a tunable coupler.
We discuss the circuit in detail theoretically and show that the device can be operated in dis-
tinct parameter regimes which can be used to investigate a variety of physical phenomena.
In particular, we observe level repulsion and attraction between the two nonlinear oscilla-
tors, with the spectroscopic signatures of two-mode squeezing observable in a regime where
the nonlinear cross-Kerr coupling is dominant. In Chapter 5 we report on the observation
of a parametric state in a moderately nonlinear Kerr oscillator generated by an all-microwave
bichromatic driving scheme. We investigate the response of the oscillator to bichromatic driv-
ing for a variety of pump parameters and observe response signatures which indicate the few-
photon oscillator state is not adequately described by semiclassical methods. In Chapter 6
we demonstrate the parametric driving of a quantum Kerr nonlinear oscillator into multista-
bility and show phase control over the system in the bistable state with the application of an
additional weak resonant drive. We investigate the switching dynamics for a variety of para-
metric pump parameters and observe a change in the characteristic stochastic switching time
over several orders of magnitude. We further observe a suppression of the switching time
as the oscillator is driven out of the parametric response region due to nonlinear effects. In
Chapter 7 we parametrically drive a quantum Duffing oscillator beyond bistability into chaos,
observing a variety of chaotic signatures in the output field spectrum and quadrature his-
tograms. In Chapter 8 we conclude, providing a review of the contents of the thesis, main
findings, and outlook. The relevant data for this thesis can be found at the following DOI:
https://doi.org/10.4121/0d0ef8aa-43d9-46ab-8afd-e02b76f2469a.v1.

https://doi.org/10.4121/0d0ef8aa-43d9-46ab-8afd-e02b76f2469a.v1


2
Theoretical Background

The fish you don’t catch is always the biggest.

Abe Kōbō

In this chapter we begin with the simple harmonic oscillator, building up a base of knowledge
until we eventually cover quantum anharmonic oscillators, transmon qubits, circuit quantum
electrodynamics, and the parametrically driven Duffing oscillator. This chapter establishes a
foundation from which the reader can better understand the underlying physics of the later
research chapters containing tunable couplers and parametrically driven quantum nonlinear
oscillators.

7
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2.1. Harmonic Oscillators and Engineerable Quantum (An)harmonic
Oscillators

2.1.1. Everyday Oscillators
Simple Harmonic Oscillators
While it may be common knowledge among physicists that a child being pushed on a swing
is described by many of the same fundamental equations as the motion of celestial bodies
and the dynamics of charges in electrical circuits, this understandably comes as a surprise to
the non-physicist. How should it be that such an everyday, commonplace activity has such a
deep correspondence with the most advanced technologies we have developed as a species
over the course of thousands of years? Most students would likely never expect that when
first introduced during high school to the famous equation [159]

®F = m ®a (2.1)

that this simple expression is not far removed from the vast majority of the mathematics
behind quantum circuits.

We can start with the simple harmonic oscillator, defined as a system in which an object dis-
placed from its equilibrium position is acted upon by a restoring force which returns the object
to the equilibrium position. For example, in the absence of friction, a mass attached to the
end of a stretched spring can be described by

®F = m ®a = m
d 2 ®x
d t 2 = −k ®x (2.2)

where k is a characteristic parameter of the spring (the spring constant), which relates the
force exerted on the spring to how far it is displaced [160]. One may think of this as a measure
of the stiffness of the spring. If we wish to uncover the position of the spring at any given
point in time, we can straightforwardly solve the differential equation for x under some initial
conditions (for example, that the spring is initially stretched to a position x0 and released
from rest) and determine that

x (t ) = x0 cos (ω0t ) (2.3)

where the natural frequency of the oscillator is given by ω0 =
√
k /m . Thus, at any given

point in time, the position of the mass is entirely parametrized by the frequency at which it
oscillates, which in turn depends on the mass of the object and the stiffness of the spring.
A heavy object with a loose spring will oscillate at a lower frequency (and thus move more
slowly) than a light object with a stiff spring.

We can solve this problem alternatively with the Lagrangian formulation, in which instead
of describing the system initially in terms of the forces present, we consider the kinetic and
potential energies

L = T −U (2.4)
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Figure 2.1: A diagram depicting a mass-spring system at equilibrium. When the mass is placed at the
position x0, the spring is stretched and the system has potential energy. When the mass is released, it
oscillates back and forth as potential energy and kinetic energy are exchanged.

where for the mass-spring system, we have T = 1
2m( dxd t )2 and U = 1

2k x
2. What this equation

tells us is that when the mass is displaced from equilibrium (when the spring is stretched or
compressed), the potential energy of the system is maximal, and when the mass is passing
through equilibrium where the spring is neither stretched nor compressed, the kinetic energy
is maximal. The energy in the system oscillates between being stored as potential energy and
released as kinetic energy.

We can apply the Euler-Lagrange equation to Eq. 2.4 as

d

d t

(
∂L
∂ ¤x

)
=
∂L
∂x

(2.5)

from which we recover our differential equation m d 2x
d t 2 = −k x as in Eq. 2.2. As we will later

see, describing our physical systems in terms of energies rather than forces will prove to be a
more natural approach, especially as we move towards unravelling the dynamics of quantum
circuits.

LC Resonators
As another more directly pertinent oscillator, it is useful to consider the flow of charge carriers
q in an electrical circuit containing a charged capacitor and an inductor arranged in parallel.
The charged capacitor with capacitance C has a potential differenceV across its two plates,
which generates an electric field in the gap of distance d , given by E = V

d whereV = q
C . As

the charge carriers move through the circuit due to the potential difference, they pass through
the inductor with inductance L, which generates a magnetic field B with flux ΦB = L dqd t and
induces a voltage given byV = − dΦB

d t .
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Figure 2.2: A diagram depicting an LC oscillator. Energy in the circuit oscillates between being stored in
the electric field E between the charged plates of the capacitor and in the magnetic field B generated
by charge carriers flowing through the inductor.

Thus, from the capacitor and inductor, we have

dq (t )
d t

= −C dV (t )
d t

(2.6)

V (t ) = L
d 2q

d t 2
. (2.7)

We can form a Lagrangian with the knowledge thatT = 1
2L( dqd t )2 andU = 1

2qV and solve the
Euler-Lagrange equation to obtain

L
d 2q

d t 2 = − q
C

(2.8)

which has a clear resemblance in form to Eq. 2.2. Similarly to the oscillations of the position
of the mass on a spring, the charge q (t ) = q0 cos (ω0t ) oscillates between the inductor and
capacitor at the resonant frequency ω0 = 1√

LC
.

In reality, springs and electrical circuits are not such idealized objects. These systems are
made of materials, and those materials have their own properties. Further, they are not closed
systems non-interacting with their environment. For example, how might our solutions differ
if the spring we use is rusty and slowly loses a small amount of stiffness as it oscillates? What
happens if we give the object a little push each time it extends to its maximum? How do the
resistive losses of the wires in our circuit change our equations? What if our object attached
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to the spring is an opened parachute that catches the wind as it returns to equilibrium? What
if we attach two springs together with different spring constants? Our simple toy problems can
very rapidly complicate themselves if we consider factors such as nonlinearities, couplings,
and driven oscillations, as we will see in later chapters.

Resonators and Modes
If you have ever found that you can blow air into a glass bottle in just the right way to produce
a loud ringing sound, you have already encountered a resonator [161]. The geometry of the
bottle determines the frequency of sound waves that can be hosted, and blowing into the
bottle causes the air inside to vibrate. Similarly, subjecting a wine glass to sound waves of a
specific frequency (typically on the order of a few kHz) will cause the rim of the glass to vibrate
at that resonant frequency.

In the case of a cylindrical tube closed at one end and open at the other, the quarter-wavelength
or λ/4 resonator can host a series of standing waves with frequencies increasing as fn = n vs4d ,
where n are positive integers, vs is the speed of sound in the tube, and d is the length of the
tube. While before our exercise with the mass-spring system showed one natural frequency,
here our open-ended tube hosts a series of normal modes of different frequencies, each sep-
arated by integer multiples of the speed of sound divided by the length of the pipe.

Conversely, a guitar string is fixed at both ends and hosts modes as in a half-wavelength or
λ/2 resonator closed at both ends, with frequencies given by fn = n vs2d where d is the length
of the string. When the string is strummed, a near-instantaneous "kick" is delivered, and a
combination of these modes are excited with the frequencies dependent on the tension of
the string set by the tuning peg and the position of the user’s fingers holding down the string
which modifies the effective length of the resonator.

I think that most non-physicists would be surprised to learn that there are strong correspon-
dences between such common activities as plucking a guitar string or bouncing a mass on a
spring and the quantum computers that they read about in the news or see in science fiction
media. All of the complicated quantum mechanical experiments outlined in later chapters are
fundamentally concerned with nonlinear LC oscillators and coplanar waveguide resonators,
which have resonance frequencies and normal modes that we excite in ways not dissimilar
to these simple classical systems. The modes may be hosted on "tubes" much thinner than
a human hair, and we may excite them with microwave signals rather than by blowing air or
plucking a string, but much of the physics underpinning these devices is the same as we ex-
perience in our everyday lives.

2.1.2. The Driven, Damped, Nonlinear Oscillator
If we want to discuss our qubit of choice (the superconducting transmon qubit) in any de-
tail, it is instructive to first expand our understanding of the simple harmonic oscillator to
include damping, driving, and nonlinearity. Much of the experimental work in this thesis is
concerned with driven, damped, anharmonic oscillators so it is useful to introduce each of
these ingredients in our construction of the experimental problems at hand.

We introduce the following equation, known widely as the Duffing equation, which describes
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the motion of forced Duffing oscillators as

d 2x

d t 2 + αx + δ
dx

d t
+ βx 3 = F cos (ωt ) (2.9)

which can be seen to closely resemble Eq. 2.2, with the addition of a term proportional to
the speed of the oscillator by a damping constant δ and a cubic nonlinearity in position with
constant β , as well as a periodic driving force with amplitude F at frequency ω. Neglecting
the applied force and damping, we can determine the kinetic and potential energies and write
the Lagrangian of the undriven oscillator as

L = T −U =
1
2
m

(
dx

d t

)2

− 1
2
mαx 2 − 1

4
mβx 4 (2.10)

which shows that this oscillator exists in a potential with quadratic and quartic contributions.
Later, we will show a correspondence between this potential and quantum circuits containing
Josephson junctions.

A commonly cited damping mechanism of an oscillator is friction (as an object slides along
a surface or through a non-vacuum medium such as air or oil), with the damped oscillator
characterized by whether δ is equal to 0, between 0 and 1, equal to 1, or greater than 1. In the
case of a damped oscillator, where we also consider β = F = 0, our example in Eq. 2.2 of the
mass-spring system would change to

m
d 2x

d t 2 + δ
dx

d t
= −k x (2.11)

and the solution would be modified with a decaying exponential set by the damping rate given
by

x (t ) = x0e
− δ

2m t cos (ωt ) (2.12)

where nowω =
√
ω2

0 − ( δ2m )2. In the case of an LC oscillator with resistive losses, the damping

of the oscillations in the circuit is due to the resistance R , with the quality factor Q = 1
R

√
L
C

of the oscillator set by the degree of damping.
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Figure 2.3: The steady-state response amplitude as a function of frequency, as defined in Eq. 2.15 with
m=0.1 kg. The response has a Lorentzian shape with linewidth determined by the damping factor δ .

If we extend Eq. 2.11 to now include a periodic driving force as

m
d 2x

d t 2 + k x + δ
dx

d t
= F cos(ωt ) (2.13)

we find that the problem quickly becomes more complicated, with the solutions strongly de-
pendent on the degree of damping. If we instead consider the driving force to be complex with
F (t ) = F e i ωt which maintains Re [F (t )] = F cos(ωt ), we can apply a general trial solution of
the form x (t ) = Ae i (ωt +φ) to solve for the steady-state solution. It is then straightforward to
express A in terms of the other parameters as

A =
F e−i ωt

m(ω2
0 − ω2) + i δω

(2.14)

and since we take A and x to be real, we have

A =
F√

m2(ω2
0 − ω2)2 + δ2ω2 (2.15)
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φ = − arctan
(

δω

k −mω2

)
(2.16)

and we can write x (t ) = A cos (ωt + φ) + xt where additive transient terms of the solution xt
are dependent on the initial conditions and degree of damping relative to the force amplitude
and frequency.

The system becomes much more complicated when we add the cubic nonlinearity βx 3 and
derive solutions to Eq. 2.9. Following Ref. [162], we can propose a trial solution

x (t ) = a cos (ωt ) + b sin (ωt ) (2.17)

which, when combined with Eq. 2.9 and after dropping the higher order harmonics, which play
a negligible role, yields

(−ω2a + ωδb + αa +
3
4
βa3 +

3
4
βab2 − F ) cos (ωt ) = (ω2b + ωδa − 3

4
βb3 − αb

− 3
4
βa2b) sin (ωt ) (2.18)

which we can solve to obtain

((ω2 − α − 3
4
β (a2 + b2))2 + δ2ω2)(a2 + b2) = F 2. (2.19)

We can reparametrize the solution to

x (t ) = z cos (ωt − φ) (2.20)

where z =
√
a2 + b2 and φ = arctan

(
b
a

)
. We can then find the characteristic Duffing response

by plotting z
F versus ω√

α
, or in other words, the force-normalized amplitude response of the

oscillator as a function of frequency of forcing relative to the "stiffness" (and in turn, the
natural frequency ω0) of the oscillator.

At certain forcing frequencies and amplitudes the response of the oscillator is multi-valued
and it can further be shown that the system exhibits hysteresis, in that the response depends
on whether the forcing frequency is increasing or decreasing as it is swept. These are charac-
teristic properties of the quantum circuits containing Josephson junctions under investigation
in later chapters. We will discuss the parametrically driven Duffing oscillator specifically in
Sec. 2.3, which is more directly relevant to our results in Chapters 4 - 7.
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2.1.3. Nonlinear LC Resonators
Superconductivity, Josephson Junctions, and SQUIDs

Figure 2.4: An example of a Josephson junction, with the superconducting material (blue) surrounding
a thin insulating layer (purple). Two electrons forming a Cooper pair are shown in the superconducting
material.

In order to construct quantum circuits, we require two components: a patternable layer of
superconducting metal for bulk structures (such as coplanar waveguide resonators and qubit
electrodes) and Josephson junctions (which themselves contain thin films of superconducting
metal sandwiching an insulating layer).

Superconductors are materials which exhibit zero electrical DC resistance and repel magnetic
fields when brought below their critical temperature Tc , which is typically at or below tens
of Kelvin. For the materials used in the experiments outlined later in this thesis, thin-film
NbTiN and Al, the critical temperatures are around 10 K and 1.2 K, respectively. To reach such
low temperatures, simply placing the devices in liquid nitrogen is insufficient, and so the use
of helium dilution refrigerators is necessary to reach milli-Kelvin temperatures far below the
critical temperatures of the device’s superconductors and satisfying the condition h̄ω ≫ kBT
to ensure the lack of thermal excitations on the order of the frequencies of the modes we are
interested in.

When a material superconducts, the electrons in the material tend to form weakly bonded
"Cooper pairs," which easily break apart at higher temperatures. Curiously, while electrons are
spin-1/2 fermions, Cooper pairs are bosons, so they are not restricted to separate quantum
states as electrons are. Thus, rather than considering single charge carriers moving through a
circuit, we are concerned with the quantum states associated with the presence and movement
of Cooper pairs, especially across Josephson junctions.

A Josephson junction is an element formed by separating two superconductors from each
other with an insulating layer. For the junctions in the devices discussed in this thesis, the
superconductors are Al, and the insulating layer is AlOx. On the left and right sides of the
junction, the quantum state of the Cooper pairs in the superconductors can be expressed as

Ψi = ψi e iφi (2.21)



2

16 2. Theoretical Background

where i can be l , r representing the left and right sides respectively, ψi is the amplitude (re-
lated to the number of charge carriers), andφi is the phase of the wavefunction. The junction
acts as a small capacitor, where instead of charges separated with a potential difference, there
are Cooper pairs, which yield a difference in energy across the junction ∆U = 2eV .

Following Ref. [163], we can apply the Schrödinger equation to obtain a system of equations
given by

ih̄
∂

∂t
(ψl e iφl ) = eVψl e iφl + Kψr e iφr (2.22)

ih̄
∂

∂t
(ψr e iφr ) = −eVψr e iφr + Kψl e iφl (2.23)

which can be rearranged to obtain

∂

∂t
(ψ2
l ) =

2
h̄
Kψlψr sin (δ ) (2.24)

∂

∂t
(ψ2
r ) = −2

h̄
Kψlψr sin (δ ) (2.25)

∂

∂t
(φl ) = −K

h̄

ψr
ψl

cos (δ ) − eV
h̄

(2.26)

∂

∂t
(φr ) =

K

h̄

ψl
ψr

cos (δ ) +
eV

h̄
(2.27)

where δ = φr − φl is the phase difference across the junction or the Josephson phase and
K is the amplitude of the coupling between the two sides of the junction. A consequence of
these equations and the presence of Cooper pairs is that current may flow (as Cooper pairs
tunnel) through the junction without an applied voltage. Supposing that the amplitudes on
either side of the barrier are equal, we can solve the above equations to obtain the Josephson
equations given by

I (t ) = Ic sin (δ (t )) (2.28)

∂δ

∂t
=

2eV (t )
h̄

=
2πV (t )

Φ0
(2.29)

where Φ0 = h
2e is the superconducting flux quantum. Further, by making use of the fact that

V = L dId t , we can rearrange the above to find the inductance of the junction given by

L(δ ) =
Φ0

2πIc cos (δ )
(2.30)

where the Josephson inductance is LJ = L(0) = Φ0
2πIc

, and we can determine the energy stored
in the junction as

E (δ ) = −IcΦ0

2π
cos (δ ) (2.31)

from which we can define the Josephson energy as EJ = E (0) = IcΦ0
2π where the energy is

calculated from E =
∫
I (t )V (t )d t . It is important to note the relationship between the time-

dependent voltage and Josephson phase in Eq. 2.29 has consequences for the Josephson
inductance and energy. If we integrate both sides of Eq. 2.29 with respect to time, we can find
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that δ (t ) = 2π
Φ0

∫
V (t )d t while we know from Sec. 2.1.1 that an inductor follows the relation

V (t ) = − dΦ
d t . The dependence of the phase difference on magnetic flux is explored below

during the discussion on SQUIDs.

From these, we can see that the current flowing across the junction is maximal at a critical
current Ic and modulated by the phase difference across the junction. We can also note that
the voltage across the junction is strictly determined by the rate of change of the phase dif-
ference across the junction, so we may have a flow of current with no voltage due to quantum
tunnelling. From the above, we can surmise that at very low temperatures, we can have very
small currents flow across a junction due to the change in phase of Cooper pairs in two su-
perconductors separated by an insulating layer. As we show later, we can use the charge and
phase as quantum operators in our quantization of circuits containing Josephson junctions.

Lastly, there is yet another interesting set of effects that manifest when two Josephson junc-
tions are placed in parallel, making a superconducting loop with two spatially separate insu-
lating barriers. The phase difference across the loop is then dependent on the quantized flux
threading the loop, given by

δ = 2π
Φa

Φ0
. (2.32)

Thus, the total current of the element is I = I1 + I2, which can be combined with Eq. 2.28 to
find the total flux-dependent critical current of the loop

Ic (Φa ) =

√
(Ic1 − Ic2)2 + 4Ic1Ic2 cos

(
2π

Φa

Φ0

)2
(2.33)

which shows that the critical current of a superconducting loop, or Superconducting Quan-
tum Interference Device (SQUID) is modulated by a cosine dependence on the magnetic flux
threading the loop relative to the magnetic flux quantum. Given that the critical current is
flux-dependent, it also follows that the Josephson inductance and Josephson energy of the
SQUID also inherit flux-dependence through the critical current. For two identical junctions,
the simple substitution Ic → 2Ic |cos (2π Φa

Φ0
)| can be used.

Quantum (An)harmonic Oscillators
If we revisit the case of the LC oscillator, replacing the linear inductance with the nonlinear
inductor which is the Josephson junction, we can effectively realize the basis for much of the
past few decades of research in superconducting qubits. However, before taking the step
of creating an anharmonic quantum oscillator, we may first start by quantizing the linear LC
oscillator.

If we consider the results of Eq. 2.6 - 2.8, we can construct a Lagrangian for an LC oscillator as

L =
1
2
L

(
dq

d t

)2

− 1
2
qV =

1
2

Φ2

L
− 1

2
q 2

C
(2.34)

where we make use of the fact thatV = q/C and Φ = L dqd t . We may then apply the Legendre
transform to obtain the Hamiltonian for the system as

H =
1
2

Φ2

L
+

1
2
q 2

C
. (2.35)
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and treat the charge and flux parameters as quantum operators with the following commuta-
tion relation

[Φ̂, q̂ ] = i h̄ (2.36)

where if we define

Φ̂ =

√
h̄

2ωC
(â† + â) (2.37)

q̂ =

√
h̄ωC

2
(â† − â) (2.38)

we can obtain the standard form of the quantum harmonic oscillator

Ĥ =h̄ω
(
â† â +

1
2

)
(2.39)

where again ω = 1√
LC

and â†, â are the creation and annihilation operators respectively.

We are now ready to replace the linear inductance of the quantized LC oscillator with the non-
linear inductance provided by the Josephson junction. Recalling that the phase-dependent
Josephson inductance is defined as in Eq. 2.30, with the phase-flux relation given by Eq. 2.32,
we can write the inductive potential energy of the circuit as −EJ cos(δ). We may now ex-
change the inductive potential energy of Eq. 2.35 with our nonlinear inductive potential energy
and write our new Hamiltonian as

H = 4EC n̂2 − EJ cos (δ̂ ) (2.40)

where EC = e2

2C is the charging energy and δ̂ = 2π Φ̂
Φ0

, n̂ = q̂

2e are the phase and charge
number operators respectively, and we take EJ ≫ EC which allows us to neglect an offset
charge arising from coupling of the oscillator to the environment [118].

Simply by replacing the linear inductive energy with that of the energy stored in the Josephson
junction, we have now arrived at a very powerful equation from which we can adjust and
expand to uncover the dynamics of the quantum circuits that will be discussed in this thesis.
For example, by maintaining that the Josephson energy is far larger than the charging energy,
we can Taylor expand the cosine potential and retain terms to fourth order, yielding

H = 4EC n̂2 +
1
2
EJ δ̂

2 − 1
24
EJ δ̂

4 (2.41)

which, together with the definitions

δ̂ =
(

2EC
EJ

) 1/4

(b̂† + b̂) (2.42)

n̂ = i
(
EJ

32EC

) 1/4

(b̂† − b̂) (2.43)
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Figure 2.5: The energy potential for a quantum harmonic (blue) and anharmonic (red) oscillator. The
harmonic oscillator shown contains only a quadratic dependence on phase, and the anharmonic po-
tential contains the full cosine dependence as in Eq. 2.40. The spacing between each energy level of
the harmonic potential is equal (h̄ω) while the energy level spacings for the anharmonic potential are
non-equidistant and depend on the nonlinearity of the oscillator.

allows us to write the Hamiltonian of a superconducting qubit (the "transmon" [111]) as

H =
√

8ECEJ b̂†b̂ −
EC
12

(b̂† + b̂)4 (2.44)

for which the first term is as in Eq. 2.39, and the second bestows our device with a quartic
nonlinearity. This oscillator will be discussed further in Sec. 2.2.

We can further simplify our Hamiltonian by expanding out the fourth order term and dropping
terms which are fast-rotating by applying the Rotating Wave Approximation (RWA), under the
argument that in a frame rotating at ω, (provided that h̄ω ≫ EC

4 ) the contributions of these
fast-rotating terms to the dynamics of the system average out. In this situation, we can arrive
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at the simplified Kerr Hamiltonian

H/h̄ ≈ ωb̂†b̂ + K b̂†b̂†b̂ b̂ ≈ ωb̂†b̂ +
α

2
b̂†b̂†b̂ b̂ (2.45)

where h̄ω =
√

8ECEJ − EC is the frequency of the transmon and K = −EC2h̄ is the self-
Kerr nonlinearity, where again provided that EJ ≫ EC , we may take α ≈ −EC /h̄ to be the
anharmonicity of the oscillator.

When the nonlinearity (anharmonicity) is sufficiently large relative to the strengths of the
drives we apply to excite our oscillator, we are justified in truncating our Hilbert space to
a computational subspace usually consisting of the ground and first excited states, which re-
alizes a qubit [118]. In the case that we restrict ourselves to only the first two energy levels
of the transmon, we may then exchange our creation and annihilation operators for the Pauli
operators {σX ,σY ,σZ } and obtain the spin-like qubit Hamiltonian

Hq =
h̄

2
σ̂Z . (2.46)

The transmon qubit is a very commonly constructed and robust device, given that it may be
realized by simply placing a Josephson junction in parallel to a capacitor. These devices are
often realized on nanofabricated chips by defining one or two electrodes separated from a
ground plane by a small gap to realize a capacitance, connected only via a Josephson junc-
tion. By tuning the critical current of the junction and the capacitance of the electrode(s), the
frequency and nonlinearity of the qubit can be directly engineered.

If the reader has noticed a resemblance between Eq. 2.10 and Eq. 2.41, this is not a coincidence -
nonlinear LC oscillators based on Josephson junctions, in the parameter regime where IcΦ0

2π ≫
e2

2C , are very well-described as Duffing oscillators [111].

2.2. Circuit Quantum Electrodynamics
2.2.1. Resonators and Qubits
While even today, there is still not yet a consensus on which platform is best to realize quantum
computing, within the superconducting qubit community, there were several viable candidates
in the early 2000s for the ideal qubit. The charge qubit, followed by the flux and phase qubits,
had numerous studies presented in high profile publications, but it would end up being a
tweak to the charge qubit that brought the transmon qubit to virtually take over the field [55,
71, 76, 88–98, 100–110]. While the circuit quantum electrodynamics (circuit QED) foundation
was laid a few years earlier, the field would blossom with the marriage of the transmon qubit
and the readout resonator [111–117].

Drawing from the field of cavity quantum electrodynamics (cavity QED), it was posited that
the artificial atom of the superconducting qubit together with the transmission line resonator
would be a suitable architecture for quantum computing [112, 164–167]. While originally em-
bedded in the waveguide itself, in general, coupling a superconducting qubit to a coplanar
waveguide (CPW) resonator (or even a 3D cavity) will realize a Jaynes-Cummings interaction
and yield a qubit-photon interaction in the same way as the atoms in cavity QED [114, 115, 168].
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The Transmission Line Resonator
The storage and relaying of microwave frequency electromagnetic signals is often achieved by
the use of transmission lines. A transmission line is a distributed circuit element which sup-
ports the transmission of electromagnetic energy along its length and hosts a variety of trans-
verse electromagnetic (TEM) modes of propagation. If one wishes to construct a resonator-
transmon system in an integrated circuit platform, transmission line resonators are a natural
choice to achieve such a goal, given the decades of history of microfabrication of such struc-
tures. Further, they can be constructed with superconducting materials and cooled down to
cryogenic temperatures, a key ingredient required for operating these devices as coherent
quantum systems.

In the following, we draw from the derivations of Ref. [169, 170]. We can characterize the
system as a series of distributed inductors and capacitors of infinitesimal length ∆x , through
which currents can be passed and voltages can be applied. Given the distributed nature of
the circuit, the currents and voltages at any given point along the line can vary given the large
discrepancy between the total length of the line l between [−l /2, l /2] and each individual
distributed element with resistance, conductance, inductance, and capacitance scaled by the
length segment ∆x given by R ,G , L and C respectively.

In the case of a lossless transmission line where R = G = 0, we can define the characteristic
impedance of the line to be

Z0 =

√
L

C
(2.47)

where the steady-state voltage and current as a function of position along the line are given
by

Figure 2.6: A circuit diagram adapted from Ref. [169]. Displayed are the resistance, conductance, induc-
tance, capacitance, voltage, and current for a segment ∆x of a transmission line.

V (x ) =V +
0 e

−i βx +V −
0 e

i βx (2.48)
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I (x ) =
1
Z0

(V +
0 e

−i βx −V −
0 e

i βx ) (2.49)

where β = ω
√
LC is the imaginary component of the propagation constant γ = α + i β , ω is

the frequency of the wave propagating along the line, "+" denotes propagation in the positive
x direction, and "−" in the negative x direction. We can also define the wavelength and phase
velocity of the line as λ = 2π

β = 2π
ω
√
LC

and vp = ω
β = 1√

LC
respectively.

If the transmission line is terminated at one end by a load with impedance ZL , we can better
understand how this system can be considered as a resonator. If we place a load ZL at position
x = 0, we can use Eq. 2.48, 2.49 to determine that

ZL =V (0)/I (0) =
V +

0 +V −
0

V +
0 −V −

0
Z0 (2.50)

where the incident wave is propagating in the +x direction and originating from x < 0. We
can then take the ratio of the voltages of the returning (negatively propagating) and incident
(positively propagating) waves to find the voltage reflection coefficient

Γ =
V −

0

V +
0

=
ZL − Z0

ZL + Z0
(2.51)

and reparametrize the voltage and current in the line in terms of the incident wave and the
reflection coefficient as

V (x ) =V +
0 (e−i βx + Γe i βx ) (2.52)

I (x ) =
V +

0

Z0
(e−i βx − Γe i βx ). (2.53)

Given that the voltage and current vary along the line and depend on the load impedance, we
can also define the input impedance or impedance at the beginning of the line at x = −l /2 in
terms of the characteristic impedance and reflection coefficient as

Zi n =V (−l /2)/I (−l /2) = Z0
1 + Γe−i l β

1 − Γe−i l β
= Z0

ZL + i Z0 tan (β l2 )

Z0 + i ZL tan (β l2 )
. (2.54)

We now have the tools necessary to analyze the cases in which the line is short (ZL = 0, Γ = −1)
and open (ZL → ∞, Γ = 1). We can plot the voltages and currents as a function of position for
both cases using Eq. 2.52, 2.53 and find that there are voltage anti-nodes and current nodes at
integer multiples of the quarter-wavelength for the short line and at integer multiples of the
half-wavelength for the open line.

We can also consider the case where the terminating load is, in fact, another transmission line
with characteristic impedance Z1, in which case the reflection coefficient is Γ = Z1−Z0

Z1+Z0
and we

can define the transmission coefficient asT = 1 + Γ which represents the voltage fraction of
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the incident wave which carries on through into the second line rather than reflecting back
in the negative direction. If the characteristic impedances of both lines are equal, all of the
incident waves are transmitted, and none is reflected (T = 1, Γ = 0), while if the second line’s
impedance is infinitely smaller than the first, the incident wave is entirely reflected (T = 0,
Γ = 1).

If we follow the same treatment above instead for a lossy transmission line where R l ̸= 0 and
G l ̸= 0, where before the arguments of our exponentials were i β , we can exchange i β for the
full propagation constant

γ = α + i β =
√

(R + i ωL)(G + i ωC ) (2.55)

where α is the attenuation constant of the line, and re-define the characteristic impedance
as

Z0 =

√
R + i ωL
G + i ωC

. (2.56)

With the above, we may now finally examine the short λ/4 and open λ/2 transmission line
resonators, which are the most relevant for the content in later sections of this thesis. Follow-
ing our definitions in Eq. 2.48, 2.49,2.54 under the exchange i β → γ, we can define the input
impedances of the short and open transmission lines of total length l = λ/4 and l = λ/2 as

Zi n,s = Z0 tanh
(
γ
λ

4

)
(2.57)

Zi n,o = Z0 coth
(
γ
λ

2

)
. (2.58)

If we consider small losses, such that tanh (α ) ≈ α , we can simplify the above to

Zi n,s =
1

αl
Z0

+ 2i C (ω − ω0) (2.59)

Zi n,o =
Z0

αl + i π
(
ω
ω0

− 1
)

(2.60)

which are equal to the input impedances of equivalent parallel RLC circuits with resonance
frequencies ω0 = 1

√
LC , resistances R = Z0

αl , inductances L = 1
ω2

0C
, capacitances

Cs =
π

4ω0Z0
(2.61)

Co =
π

2ω0Z0
(2.62)

and quality factors Q = ω0RC = β
2α .
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The Coplanar Waveguide Resonator
While transmission line resonators may be realized in a variety of configurations (i.e. mi-
crostrip, stripline, slotline, coaxial line, etc.), we will consider the most commonly used inte-
grated 2D transmission line resonator in circuit QED; the coplanar waveguide (CPW) resonator.
The CPW is formed by arranging a layer of (super)conductive metal of thickness t on top of a
substrate of thickness h with relative permittivity (dielectric constant) ϵr .

Figure 2.7: A diagram displaying a coplanar waveguide resonator as described in the main text. A super-
conducting thin film is laid on top of a substrate with the width (s ) and length (l ) of the center trace, gap
width (w ), film thickness (t ), substrate height (h), and relative permittivity (ϵr ) indicated.

The layer of metal is then etched such that a center trace of width s and length l is beset on
each side by gaps of widthw , separating the conductor from the rest of the metal layer. The
center conductor then forms a capacitance with the rest of the metal layer and has a linear
geometric inductance determined by l , s , andw . Following Ref. [170–173], conformal mapping
techniques can be used to determine the inductance and capacitance of the resonator in re-
lation to its geometry. If we define the ratio of the complete elliptic integral of the first kind
to its complementary function as

K (k )
K (k ′)

=


π/

(
ln

(
2 1+

√
k ‘

1−
√
k ′

))
for 0 ≤ k ≤ 0.7

1
π ln

(
2 1+

√
k ′

1−
√
k ‘

)
for 0.7 ≤ k ≤ 1

(2.63)

where k ′ =
√

1 − k 2 and k = s
s+2w , we can write the characteristic impedance of the line as

Z0 =
30π
√
ϵl

K (k ′)
K (k )

(2.64)

where ϵl is the effective dielectric constant given by

ϵl = 1 +
ϵr − 1

2
K (k ′)K (k1)
K (k )K (k ′1 )

(2.65)

with k1 = sinh (πs4h )/sinh
(
π(s/2+w )

2h

)
.

From these, we can determine the fundamental frequency, inductance per unit length, and
capacitance per unit length of the l = λ/2 waveguide resonator as

ω0

2π
=

c

2l
√
ϵl

=
vp

2l
=

1

2l
√
L lC l

(2.66)
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and for the l = λ/4 waveguide resonator we obtain

ω0

2π
=

c

4l
√
ϵl

=
vp

4l
=

1

4l
√
L lC l

(2.67)

with

L l =
µ0

4
K (k ′)
K (k )

(2.68)

C l = 4ϵ0ϵl
K (k )
K (k ′)

(2.69)

where µ0, ϵ0 are the vacuum permeability and permittivity, respectively.

If a CPW is coupled on one side to the end of a transmission line with characteristic impedance
Z0 = 50Ω via a capacitor Ce , we can find that

ω0

2π
= 1/

√
L(C + Ce ) (2.70)

Qe ≈
C + Ce
ω0C

2
eZ0

(2.71)

Q i ≈ ω0R (C + Ce ) (2.72)

where R is the parallel resistance of the CPW andQe ,Q i are the external and internal quality
factors with Q = 1/( 1

Q i
+ 1
Qe

). Following a similar procedure as in the previous subsection, we
can then determine the reflection coefficient for the system in this reflection geometry to be

Γr (ω) =
κi − κe + 2i (ω − ω0)
κi + κe + 2i (ω − ω0)

(2.73)

where {κe , κi } = {ω0/Qe ,ω0/Q i } are the external and internal loss rates of the CPW.

If we instead arrange the CPW to be capacitively side-coupled to a transmission line rather
than capacitively terminating the line, one can show that the external quality factor changes
with respect to the reflection geometry expression in Eq. 2.71 as Qe → 2Qe [174, 175]. In this
case, the transmission coefficient becomes

Tsc (ω) = 1 + Γsc (ω) =
κi + 2i (ω − ω0)

κi + κe + 2i (ω − ω0)
. (2.74)

Devices constructed for circuit QED experiments are commonly designed to be in the reflection
or side-coupled transmission geometries, where the CPW is driven and probed through its
capacitive coupling to the transmission line serving as a measurement feedline which is in
turn connected via coaxial cables to measurement instruments.
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The Resonator-Transmon Paradigm
If we proceed with the transmon Hamiltonian from Eq. 2.41 and the linear LC resonator Hamil-
tonian from Eq. 2.39, we can introduce a coupling term between the two if we suppose that
they are capacitively coupled to each other, which yields

H =h̄ωr

(
â† â +

1
2

)
+ 4EC (n̂ + n̂r )2 − EJ cos (δ̂ ) (2.75)

where we now include the additional charge due to the capacitive coupling of the qubit to the
resonator Cc , given by n̂r = Cc q̂r

2eCr
where q̂r is as in Eq. 2.38, and Cr is the capacitance of the

resonator itself. Here, we consider only the fundamental mode of the resonator, supposing
that the transmon mode is far detuned from all other resonator modes, which are then neg-
ligible. Expanding the Hamiltonian and renormalizing the resonator frequency, we can again
apply the RWA to arrive at the following

H ≈h̄ωr â† â +h̄ωq b̂†b̂ −
EC
2
b̂†b̂†b̂ b̂ +h̄g (â†b̂ + â b̂†) (2.76)

where g = ωr
Cc
Cq

( EJ2EC
)1/4

√
πe2

h

√
Lr
Cr

and the final coupling term is known as the beam-splitter

or photon-hopping interaction. If again we enforce that the transmon nonlinearity be suffi-
ciently large, we can exchange to Pauli operators and obtain the Jaynes-Cummings Hamilto-
nian

H ≈h̄ωr â† â +
h̄

2
ωq σ̂Z +h̄g (â†σ̂− + â σ̂+) (2.77)

where σ̂± = 1
2 (σ̂X ± i σ̂Y ) are the raising and lowering operators, which when coupled through

â† and â serve to mediate excitations between the qubit and resonator modes. The magnitude
of the coupling strength g in relation to other parameters enables the ability to operate the
qubit-resonator system in a variety of different regimes, with one in particular (the "dispersive
regime") allowing for non-destructive readout of the qubit state.
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Coupling Regimes

Figure 2.8: An illustration showing a highlighted measurement feedline (blue), readout resonator (pur-
ple), coupling pad segment (green), transmon electrodes (orange), and Josephson junction (red). The
resonator is arranged in a side-coupled transmission configuration with capacitive coupling Ce to the
feedline. The size of the coupling segment and its proximity to the transmon electrodes can be adjusted
to tune the coupling capacitance Cc between the resonator and qubit.

The resonator-transmon system can be engineered to serve a variety of purposes. For in-
stance, if we wish to bestow upon our linear resonator a degree of nonlinearity inherited from
its interaction with the transmon, how strong must the coupling g be, and how far should
they be detuned ∆ from each other in frequency? In another case, if we wish to only have the
resonator be used to non-destructively probe the state of our qubit, what should these values
be? To answer these questions, we must also consider the role that the environment plays in
the approach that we have taken thus far. Indeed, our resonator-transmon system is implicitly
connected to some measurement apparatuses with which we may drive and probe the state of
our system. Additionally, our device does not exist in a perfect world without dielectric losses,
parasitic modes, two-level systems living in and on our materials, charge and flux noise, and
all of the coupling mechanisms associated with these channels ignored when we made the
demarcation between the resonator-transmon system and the rest of the universe.

We can start by defining the coupling strength of our resonator to the environment (everything
which is not our transmon) with κ = κe +κi , where κe is the engineered external coupling to the
measurement feedline (such as via a coupling capacitor Ce ) and κi is the total "internal" loss
rate associated with couplings to neither the transmon nor the measurement chain (as in the
case of a parallel resistor as discussed above). In this thesis, κe is always set by the capacitive
or inductive coupling of the resonator to a transmission line, through which we may measure
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the device as each port of the transmission line is, in turn, connected via coaxial cables to our
measurement devices, such as signal generators, vector network analyzers (VNA) or spectrum
analyzers. We may also define the loss rate of the transmon as γ, which characterizes the rate
at which the transmon exchanges energy with elements of the environment which are not the
fundamental resonator mode.

We can then define quality factors of the resonator and transmon similarly as in Sec. 2.1.2 by
Qr = ωr

κ and Qq = ωq
γ . The resonator may be further characterized in terms of the ratio of

the external to total loss rate, η = κe
κ = Qr

Qe
where Qr = 1/( 1

Qe
+ 1
Q i

) as before. We can then
characterize the resonator as being overcoupled, critically coupled, or undercoupled to our
measurement transmission line by whether η > 0.5, = 0.5, or < 0.5, respectively. For our
purposes, it is preferable to engineer devices to be in the overcoupled regime, such that the
majority of the photons in the resonator are interacting with either our measurement chain
or the transmon.

Measurements of transmission line parameters are not always as straightforward as the dis-
cussions above may indicate. Impedance mismatches and Fano interference caused by the
presence of multiple background paths and insufficient isolation between measurement ports
which interfere with resonant signals can lead to distortions in the real and imaginary com-
ponents of reflection and transmission coefficients as functions of frequency [176, 177]. The
determination of accurate external and internal quality factors of devices can prove difficult,
in particular for overcoupled devices [177]. Developing calibrated design and simulation work-
flows which consistently produce devices with reliable external quality factors, as well as engi-
neering microwave environments which reduce impedance mismatches and improve isolation
can help to alleviate these issues.

If we wish to uncover the behaviour of the system in different coupling regimes, it is illustrative
to return to the Jaynes-Cummings Hamiltonian in Eq. 2.77. The coupling between the resonator
and qubit leads to a change in the energy landscape from the bare (uncoupled) spectrum to
the dressed (coupled) spectrum, in which energy levels are split proportional to the degree of
coupling when the bare energy levels are degenerate [112, 118]. If we define the joint system
state as |σ, n⟩ where n denotes the number of excitations in the resonator mode and |σ⟩ may
be |g ⟩ or |e⟩ to represent the qubit being in the ground or excited state respectively, we can
determine the dressed energy levels of the system as

E±,n =h̄ωr n ±
h̄

2

√
4ng 2 + ∆2 (2.78)

where ∆ = ωq − ωr is the frequency detuning between the resonator and qubit, |±, n⟩ repre-
sents the state split to higher (+) or lower (-) energy relative to the level with n total excitations,
and Eg ,0 = −h̄2ωq is the ground state of the system. Given the above, when the detuning be-
tween the qubit and resonator is made to be zero, the levels which would be degenerate in
the bare spectrum instead have their degeneracy lifted by 2g

√
n for joint states in which the

resonator and transmon share n total excitations.

Thus, the Jaynes-Cummings interaction enables one to create maximally entangled states be-
tween the qubit and resonator when resonant and induce vacuum Rabi oscillations between
the |g , 1⟩ and |e, 0⟩ states at the Rabi frequency g

π . When this coupling is larger than the
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total loss rates of the qubit γ and resonator κ , one can resolve the energy level splitting and
operate the system in the strong coupling regime where g ≫ κ, γ.

Figure 2.9: An energy level diagram showing the dressed (center) and bare (left, right) spectra for the
Jaynes-Cummings Hamiltonian when the qubit and resonator are made resonant (∆ = 0) [112]. The states
{|g ⟩ , |e⟩} represent the ground and excited states of the qubit, while |n⟩ represents the number of
excitations in the resonator. For a joint system state with n total quanta of energy, the level degeneracy
in the dressed spectrum is lifted by 2g

√
n .

However, in the case where the coupling g is made to be ultra-strong, where it approaches or
even exceeds the resonance frequencies of the oscillators ωq ,ωr , several assumptions that
we have made about our system up to this point break down [178–180]. For example, our
applications of the RWA are no longer valid, and we must now not only consider counter-
rotating terms of the Hamiltonian such as h̄g (â†σ̂+ + â σ̂−), but the justification for truncating
the transmon to a two-level system also breaks down, and we must consider the interactions
between the higher-level transitions of the joint system.

Dispersive Readout
If one instead wishes to do operations on and perform readout of the qubit state, it is then
preferable to operate the system in a regime where the qubit and resonator are not resonant
(∆ ̸= 0) but still with sufficiently large coupling g to control and probe the state of the qubit
via the resonator. To better understand the effects of the coupling and detuning on the system
dynamics, we may expand the square root of Eq. 2.78 in g/∆ and retain terms to fourth order
to obtain

E±,n ≈h̄ωr n ±
h̄

2
(∆ + 2n

g 2

∆
− 2n2 g

4

∆3 ) (2.79)
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which holds for a small number of excitations n and g < ∆. If we instead restrict ourselves to
g ≪ ∆ in the large-detuning limit and maintain a small number of excitations defined by

ncr i t = (
∆

2g
)2 (2.80)

we can retain only terms of the expansion to second order and find that rather than having
degenerate eigenenergies with splitting 2g

√
n , the energy levels are shifted down by g 2/∆ if

the qubit is in the ground state and up by the same amount of the qubit is in the excited state.
The transition frequency of the qubit is shifted to

ωq → ωq +
g 2

∆
(n +

1
2

) (2.81)

which is composed of the photon-dependent Stark shift n g
2

∆ and the Lamb shift g
2

2∆ [115, 181,
182]. Conversely, we can interpret this change in the energy level landscape as the resonator
frequency experiencing a corresponding shift where

ωr → ωr + σ̂Z
g 2

∆
. (2.82)

This qubit-state-dependent shift of the resonator frequency in the dispersive regime is the
basis for the quantum non-demolition (QND) mapping of the qubit state onto the cavity [118,
183, 184]. This can be seen by the commutativity of σ̂Z with the dispersive Hamiltonian which
modifies Eq. 2.77 to yield

Hd i sp ≈
h̄

2
(ωq +

g 2

∆
)σ̂Z + (h̄ωr +h̄

g 2

∆
σ̂Z )â† â . (2.83)

If we recall that our transmon is not a perfect two-level system but rather an anharmonic
oscillator with anharmonicity α = −EC /h̄, we can incorporate a correction from a higher
order term in the perturbative expansion of the Jaynes-Cummings Hamiltonian which takes
into account the effects of the coupling of the resonator to the second excited state of the
transmon with

Hd i sp ≈
h̄

2
(ωq +

g 2

∆
)σ̂Z + (h̄(ωr + χ

∆
α

) +h̄χσ̂Z )â† â (2.84)

where we define χ = α
∆
g 2

∆+α as the dispersive shift of the cavity frequency dependent on the
qubit state [111, 118, 185]. Depending on the sign of ∆ (whether the qubit is higher or lower
frequency relative to the resonator) as well as how large the detuning is relative to the an-
harmonicity, the sign of χ can change from negative to positive. The region in which χ is
positive is known as the straddling regime as it exists for only a relatively narrow parameter
range where the cavity frequency is between the first and second transition frequencies of the
transmon with 0 < ∆ < EC [111].
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Figure 2.10: An energy level diagram showing the dressed (center) and bare (left, right) spectra for the
Jaynes-Cummings Hamiltonian when the system is in the dispersive regime [118]. The states {|g ⟩ , |e⟩}
represent the ground and excited states of the qubit, while |n⟩ represents the number of excitations in
the resonator. The qubit transition frequency is increased by χ while the resonator transition frequency
is shifted by ±χ dependent on the state of the qubit.

Lastly, if we insist that the dispersive shift χ be much larger than the decay rates κ , γ, we can
enter the strong dispersive regime of circuit QED. In this coupling regime, the qubit spectrum
forms an array of photon number peaks which can be used to determine the resonator photon
number distribution, and the resonator frequency shift is large enough to resolve the qubit
state even at the single photon level [117, 184, 186].

If we return to Eq. 2.79 once more and include the fourth order term, it can be shown that in
the case of sufficiently strong coupling, the resonator frequency shift becomes dependent on
the number of photons in the resonator, proportional to n g

4

∆3 . Thus, in this anharmonic strong
dispersive limit, the resonator is sufficiently coupled to the qubit to inherit nonlinearity from
it, in which case the resonator itself should be treated as a Kerr oscillator with its own self-Kerr
nonlinearity [187–189].

2.2.2. Josephson Cavities
Junction-Embedded Coplanar Waveguide Resonators
Recalling the quantized nonlinear LC oscillator, we can investigate how the system changes
when we consider there to be both linear and nonlinear inductances in the circuit. We may first
consider an LC resonator in which the capacitance, linear geometric inductance, and nonlinear
Josephson inductance are all in parallel with each other. We can revisit Eq. 2.35 and Eq. 2.40
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and write the circuit of our new nonlinear resonator Hamiltonian as

H = 4EC n̂2 +
1
2

Φ̂2

L
− EJ cos

(
2π

Φ̂
Φ0

)
. (2.85)

We can again Taylor expand the cosine potential, retain terms to fourth order, and find

H = 4EC n̂2 +
1
2

(
1
L

+
1
LJ

)
Φ̂2 − 2

3

(
π

Φ0

)4

EJ Φ̂4 (2.86)

which is simply our previous nonlinear LC oscillator Hamiltonian where the inductance in the
quadratic term has been modified to

L → 1/(1/L + 1/LJ ). (2.87)

This straightforward derivation is unfortunately not the full picture if we wish to realize such
a nonlinear oscillator by, for example, embedding a Josephson junction within a CPW res-
onator [190]. While the individual modes of transmission line resonators can be represented
by lumped-element LC circuits, the full system is best described as an infinite series of induc-
tances and capacitances per unit length L l ,C l for a resonator of length 2l , as discussed in
Sec. 2.2.1.

Further, while we have until now neglected the small capacitance of the Josephson junction
CJ , we must consider how both the capacitance and inductance of the junction change the
normal modes of the resonator. When introducing a Josephson junction to the transmission
line, we must rather consider a discretized representation in which the junction placed at
some position modifies the boundary conditions of the system as a function of its position,
given that now the energy stored in the system is distributed between the nonlinear junction
and the linear resonator dependent on the normal mode amplitudes along the length of the
resonator [191]. This distribution can be parameterized in terms of the capacitive and inductive
participation ratios ηc,m and ηl ,m , which take into account the contributions of the linear and
nonlinear parts to the modified normal modes of the system.

Following Ref [191], it can be shown that the wavevector of the nonlinear resonator modes
km = ωm/ν where ν = 1/

√
L lC l for modem can be determined by solving the transcendental

equation

km =
1
l

[−(km l )2 CJ
C l l

+
L l l

LJ
][tan (km (xJ − l ) + φ+

m ) − tan (km (xJ + l ) − φ−
m )] (2.88)

where the junction is positioned at xJ , the inductance and capacitance per unit length on
either side of the junction are considered to be equal, andφ(+,−)

m are phases parameterized by
any external coupling capacitance the waveguide may have at either endpoint which tend to
π
2 as the coupling capacitance goes to zero [191]. For our purposes, we will consider systems
which are capacitively coupled on only one end with capacitance Ce to a transmission line
which yields an external loss rate as discussed in Sec. 2.2.1.
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Figure 2.11: A discretized circuit representation of a junction-embedded CPW capacitively coupled on one
side to a feedline [191]. The junction is placed at position xJ along a CPW of length 2l , bridging a gap in
the center conductor of the CPW.

While we may determine the frequencies of the modes from the above equation, if we wish
to uncover the nonlinearities we must determine the capacitive and inductive participation
ratios of the modes of the system. We can define them as

ηC ,m = CJ/Cm (2.89)

ηL,m = Lm/LJ (2.90)

where Cm = Ct ot /∆u2
m and Lm = ∆u2

m/(ω
2
mCt ot ) are determined by the total capacitance of

the system Ct ot and the mode amplitude difference across the junction ∆um which is calcu-
lated for each mode by solving Eq. 2.88 and obtaining the amplitude of the mode at positions
immediately on either side of the junction {x +

J , x
−
J }. In most cases, we haveCJ ≪ Cm and so

we may take ηC ,m → 0, in which case the parameter we are most interested in is the inductive
participation ratio ηL,m .

We can then find the self-Kerr nonlinearity of a given mode as Kmm = −EC ,mηL,m/(2h̄) where
EC ,m = e2/(2Cm ) and the cross-Kerr coupling between pairs of modes is Kmn = 2

√
KmmKnn

which shifts each mode in frequency. While it may seem that the system is directly parameter-
ized by the total capacitance Ct ot , junction inductance LJ , and position xJ , the calculation
for the mode amplitude difference ∆um is non-trivial and varies strongly with mode number
and the boundary conditions of the waveguide. For instance, for the fundamental mode of the
system, the self-Kerr nonlinearity converges to K00 = −e2/(4Ct ot h̄) for LJ ≫ L l l rather than
continuing to grow as LJ is increased. In this limit of dominant Josephson inductance, we can
see how the nonlinearity converges to that of a transmon. Indeed, if the total linear inductance
is negligible, we recover the transmon qubit, where each section of the CPW center conductor
on either side of the junction is effectively an electrode of the transmon. The quintessential
double-island transmon qubit can be approximated as a junction-embedded CPW in the limit
that the waveguide is made exceptionally short, reducing the linear inductance and capaci-
tance. This recalls the early cavity in-line Cooper-pair box and transmon designs [111, 112, 114,
192].

If we take the limit where Kmm ≫ κ , we can recover the initial nonlinear resonator Hamil-
tonian in Eq. 2.85 where EC and L are adjusted according to ∆um for each mode and the
Hamiltonian resembles that of a transmon with a non-negligible parallel linear inductance
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contribution. Alternatively, in the limit where Kmm < κ , we can realize a weakly nonlin-
ear device which can be well-operated as a parametric amplifier. In the intermediate regime
where Kmm ⪆ κ , we can operate the device as a few-photon quantum parametric oscillator
which exhibits photon blockade and can be driven into small coherent and cat states. Later,
in Chapter 5, we investigate the dynamics of a junction-embedded CPW in the intermediate or
mesoscopic nonlinearity regime subject to parametric driving.

Dimerized Josephson Junction Arrays

Figure 2.12: A discretized circuit representation of a dimerized Josephson junction array resonator,
adapted from Ref. [193]. The square enclosing a cross represents a junction with inductance LJ in par-
allel with capacitance CJ . Each SQUID has a capacitance to ground Cg , forming a series of islands on
either side of a large capacitor with capacitance Cc with capacitance to ground Cgc . The resonator is
galvanically connected to an external port for measurement at one end and shorted to ground at the
other end.

Another useful system to consider is the Josephson junction array resonator, in which a series
of N SQUIDs are connected together, each with identical Josephson capacitances and induc-
tances CJ , LJ and capacitances to ground Cg . Following Ref. [193], such a system has a set
of normal modes defined by the number of junctions and the values of the capacitances and
inductances, as expected for a nonlinear LC oscillator. However, we can additionally separate
the array into two halves by adding a large coupling capacitor to the center, with coupling
capacitance Cc and capacitance to ground Cgc , which dimerizes the system, splitting each of
the normal modes into two hybridized dimer modes separated from each other by the strength
of their coupling, which depends on Cc . Provided that no applied drives induce interactions
between the two modes of the circuit, each can be treated as an individual Kerr nonlinear os-
cillator. Such a system is a natural platform for investigating systems of coupled KNOs as well,
in which multiple parametrically driven modes could be used together with coupling drives to
investigate the dynamics of linearly coupled Kerr parametric oscillators (KPOs).

This system can be considered in some sense as a variation on the junction-embedded CPW
discussed above, under the exchange of series linear inductors L l to a series of nonlinear
junctions with LJ , CJ , and by exchanging the CPW’s junction in the center with a large capaci-
tor Cc . We may even similarly define an inductive participation ratio γL = LJ ,t ot /(LJ ,t ot + Ls )
for the fundamental mode where LJ ,t ot is the total nonlinear inductance of the junctions in
series while Ls is the linear flux-independent stray geometric and kinetic inductance contri-
butions of the superconducting metal composing the device. In the lumped element model,
the frequency of the fundamental mode can then be written as

ω0(Φ) =
1√

Ct ot (LJ ,t ot (Φ) + Ls )
(2.91)
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where Ct ot is the total capacitance of the device.

However, as we saw with the junction-embedded CPW, the simple approach of the lumped
element model is not always applicable. If we wish to determine the Hamiltonian and normal
modes of this circuit composed of a series of inductors and capacitors, it is better to start with
the Lagrangian written as

L =
1
2
®¤ΦT C®¤Φ − 1

2
®ΦT L−1 ®Φ (2.92)

where the superconducting phase across the n t h junction island φn determines the node
flux Φn = h̄φn

2e where the node fluxes along the chain can be collected into the flux vector
®ΦT =

[
Φ0 · · · ΦN

]
and C, L are the capacitance and inductance matrices respectively.

The Hamiltonian can then be written after performing a Legendre transformation as

H =
1
2
®QT C ®Q +

1
2
®ΦT L−1 ®Φ (2.93)

where Qn = ∂L
∂ ¤Φn

are the components of the charge vector ®Q . The normal mode frequencies
ωm of the circuit are then determined by solving the eigenequation

C− 1
2 L−1C− 1

2 ®ψm = ω2
m ®ψm (2.94)

and the eigenvectors ®ψm are related to the flux node vector by

®Φ =
∑
m

C− 1
2 ®ψm

√
h̄

2ωm
(â† + â). (2.95)

Thus, after determining the inductance and capacitance matrices of the circuit, a Lagrangian
can be derived, and after quantizing the circuit, retaining terms to fourth order, and applying
the RWA as in Sec. 2.1.3, the system can be represented as a series of cross-Kerr coupled
nonlinear oscillators with Hamiltonian given by

H/h̄ =
N −1∑
m=0

(ωm â
†
m âm − Kmm

2
â†m â

†
m âm âm ) −

N −1∑
m ̸=n

Kmn
2
â†m âm â

†
n ân (2.96)

where

Kmm = 2
h̄π4

Φ4
0

EJηmmmm
C 2
Jω

2
m

(2.97)

Kmn = 4
h̄π4

Φ4
0

EJηmmnn
C 2
Jωmωn

(2.98)

where ηmmnn is a scaling factor determined from the capacitance matrix and ®ψm , ®ψn . By
changingN , LJ , and the capacitances, the frequencies and nonlinearities of the device normal
modes can be engineered into a variety of parameter regimes, as in the case of the junction-
embedded CPW above.

Upon measuring the device spectroscopically, due to the dimerization of each mode induced
by the linear coupling of the central capacitor, rather than measuring a mode with frequency
ωm , two modes split by 2Jm are observed instead. If the spacing between modes ∆m,n =



2

36 2. Theoretical Background

ωn −ωm is large relative to the strength of hybridization Jm induced on each individual mode,
we can treat any given dimer as a system of two linearly coupled harmonic oscillators with
Hamiltonian

H/h̄ = ω1 â
†
1 â1 + ω2 â

†
2 â2 + Jm (â†1 â2 + â1 â

†
2 ) (2.99)

where the observed dimer frequencies are

ωm,± =
ω1 + ω2

2
±

√
(
ω1 − ω2

2
)2 + J 2

m . (2.100)

Similarly to the case of the junction-embedded CPW, circuits formed by Josephson junction
arrays can also be engineered to be operated as parametric amplifiers, with the self-Kerr non-
linearity Kmm made to be much smaller than the loss rates of each mode κm . However, here,
a unique driving scheme exists which results in nondegenerate parametric amplification via
four-wave-mixing for the dimerized Josephson junction array, in which a strong pump placed
between any dimer modes ωm,± will result in gain at both dimer frequencies which coincide
with the signal and idler frequencies [193, 194]. This is in contrast to degenerate parametric
amplification, in which the signal and idler frequencies fall within the linewidth of a single
driven mode [194].

2.2.3. Tunable Couplers
Tunable Couplings With SQUIDs
In our discussions of transmon qubits and resonators, we have so far only considered the
linear, capacitive coupling and the various regimes associated with the coupling strength rel-
ative to other system parameters. However, we may consider what happens when we not
only couple two oscillators together capacitively, but also via the nonlinear inductance of the
Josephson junction.

We can begin by considering two single-island transmon qubits capacitively coupled by Cc ,
for which the system Hamiltonian can be written as

H =h̄ω1 â
† â − EC 1

2
â† â† â â +h̄ω2b̂

†b̂ − EC 2

2
b̂†b̂†b̂ b̂ + J [(â†b̂† + â b̂) − (â†b̂ + â†b̂)]

(2.101)
where the last term gives the capacitive coupling J = 4EC

C
n̂1n̂2, n̂ i is the charge number

operator for each transmon, and the modified charge energies are given by

EC 1 =
e2

2
CC + C2

C1C2 + CC (C1 + C2)
(2.102)

EC 2 =
e2

2
CC + C1

C1C2 + CC (C1 + C2)
(2.103)

ECC =
e2CC

C1C2 + CC (C1 + C2)
(2.104)

so we can write the coupling as

J = −ECC
(
EJ 1EJ2

4EC 1EC 2

) 1/4

(2.105)
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which describes the capacitively coupled two-transmon system.

Figure 2.13: A circuit representation of a SQUID tunable coupling between two single-island transmon
qubits. Each transmon i has its own capacitance Ci and maximal Josephson energy E iJ . The transmons
are coupled by a flux-tunable SQUID inductance with Josephson energy EC

J
and a fixed capacitance Cc .

The negligible junction capacitances are not shown.

If we now additionally couple the transmons via a flux-tunable SQUID placed in parallel to
the coupling capacitor, the Hamiltonian gains a nonlinear inductive potential term as H →
H + HS where

HS = −ECJ cos (δ̂2 − δ̂1) (2.106)

where ECJ is the Josephson energy of the coupling SQUID. We can Taylor expand this cosine
potential and again retain terms to fourth order, finding that the effect of the SQUID is to
modify the linear coupling, add a nonlinear cross-Kerr coupling, and shift the frequencies of
the oscillators as we make the following exchanges

EJ i → EJ i + ECJ (2.107)

J1,2 = ±(4EJ 1EJ2EC 1EC 2)1/4
(

ECJ√
EJ 1EJ2

∓ CC√
(C1 + CC )(C2 + CC )

)
(2.108)

and define the cross-Kerr coupling strength as

V = −2ECJ

√
EC 1EC 2

EJ 1EJ2
(2.109)



2

38 2. Theoretical Background

to finally obtain the system Hamiltonian

H =h̄ω1 â
† â − EC 1

2
â† â† â â +h̄ω2b̂

†b̂ − EC 2

2
b̂†b̂†b̂ b̂

+ J1(â†b̂ + â b̂†) + J2(â†b̂† + â b̂) +V â† â b̂†b̂ (2.110)

where we now have
ωi =

√
8EJ iECi − ECi +

V

2
. (2.111)

The presence of the SQUID tunable coupler in the circuit allows the user of the device to
tune the transmon frequencies and strengths of the various couplings via the flux-dependent
ECJ (Φ) and also enables the selective activation of certain couplings under parametric driving,
as will be explored in Chapter 4 for a circuit with two double-island transmons. While often the
off-resonant â†b̂† + â b̂ two-mode squeezing interaction is neglected, here it is retained due
to the fact that we will be able to activate it under parametric flux modulation of the coupler
SQUID.

Tunable Couplings With SNAILs
Another useful tool that we have at our disposal when designing quantum circuits is the Su-
perconducting Nonlinear Asymmetric Inductive Element (SNAIL) [195]. The SNAIL is, in some
sense, an extension of the SQUID, in which one arm of the superconducting loop contains
n junctions with energy EJ and the other arm contains only one junction with energy ηEJ
where η is a scaling factor. The effect of this modification is to create an asymmetric potential
dependent on n and η, which can be chosen to engineer previously difficult-to-control sys-
tem parameters, especially those related to nonlinear interactions such as the cross-Kerr and
optomechanical couplings. The inductive energy of the SNAIL is given by

UL = −EJ [η cos (δ̂ ) + n cos
(

Φ − δ̂
n

)
] (2.112)

where Φ is the applied flux through the superconducting loop in units of 2π
Φ0

and δ̂ is the

phase operator, with the above potential valid for EJ ≫ e2

2CJ
and CJ

n2 ≫ Cg where CJ is the
capacitance of each junction and Cg is the capacitance of the SNAIL electrode(s) to ground.

The utility of the SNAIL in quantum circuits becomes apparent after Taylor expanding the in-
ductive potential about a minimal phase difference δm and defining the effective phase op-
erator ˜̂δ = δ̂ − δm , in which case we can reorganize the inductive potential in order of ˜̂δ
as

UL = c1
˜̂δ + c2

˜̂δ2 + c3
˜̂δ3 + c4

˜̂δ4 (2.113)

where

c1 = EJ (η sin (δm ) − sin
(

Φ − δm
n

)
) (2.114)

c2 =
EJ
2

(−η cos (δm ) +
1
n

cos
(

Φ − δm
n

)
) (2.115)

c3 =
EJ
6

(−η sin (δm ) +
1
n2 sin

(
Φ − δm
n

)
) (2.116)
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c4 =
EJ
24

(−η cos (δm ) − 1
n3 cos

(
Φ − δm
n

)
). (2.117)

Figure 2.14: A circuit representation of a SNAIL tunable coupling between two single-island transmon
qubits for the case n = 3. Similarly to the SQUID tunable coupler, each transmon i has its own capacitance
Ci and maximal Josephson energy E iJ . The transmons are coupled by a flux-tunable SNAIL inductance,
with each junction having Josephson energy EJ and a fixed capacitance Cc . The small junction capaci-
tances and individual capacitances of the SNAIL electrodes to ground are not shown.

We can immediately see that in comparison to the inductive potential from Eq. 2.41, we now
have terms which are linear and cubic in ˜̂δ . Further, given that each of the parameters ci have
two terms with two degrees of freedom, we would expect to be able to engineer a wide variety
of inductive potentials.

Similarly to the case of the SQUID coupler, we may take two transmons and couple them to-
gether via a capacitor Cc and a SNAIL with inductive energyUL and exchanging δ̂ → δ̂2 − δ̂1
as before. Following the same procedure, while the full Hamiltonian is extensive, some of the
more interesting terms indicate that we will again have interactions (â†b̂+â b̂†) and (â†b̂†+â b̂)
which scale with c2, as well as interactions (â†2b̂ + â2b̂†), (â†2b̂† + â2b̂), and â† â(b̂† + b̂) (plus
equivalent terms under exchange of â, b̂) which scale with c3. While many of the higher-order
interactions are typically far off-resonant and negligible, there are driving schemes which can
activate these terms. The term â† â(b̂† + b̂) often arises in the field of quantum optomechan-
ics, in which the occupation of one mode drives the coupled mode in a radiation pressure or
photon pressure interaction, which is useful for designing quantum circuits which emulate the
physics of optomechanical systems [196, 197]. In a similar manner to the parametric driving
with a SQUID coupler shown in Chapter 4, one would be able to activate these SNAIL-enabled
interaction terms by the use of flux modulation.

One of the more frequently stated use-cases for SNAIL-based devices is the ability to minimize
c4 in order to remove the cross-Kerr interaction in circuits which is often unwanted, especially
when one is trying to perform two-qubit gates specifically enabled by linear couplings between
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qubits. Interestingly, with the appropriate choice of EJ , n , and η, it is possible to design c4 to
be positive, zero, or negative, which means that one may engineer devices with positive self-
Kerr nonlinearities as well [195, 198, 199]. Lastly, parametric amplifiers based on SNAILs rather
than SQUIDs have also been proposed, given the possibilities enabled by the engineerable
asymmetric inductive potential [200, 201].

2.3. Parametric Driving
2.3.1. Parametrically Driven Oscillators
The Vertically Driven Pendulum
While we previously discussed driven oscillators in Sec. 2.1.2, we only considered systems
linearly driven at and around the resonant frequency of the oscillator. However, it is just as
possible for us to drive an oscillator by varying a parameter of the system. For instance, for
the case of a mass-spring system, instead of forcing along its axis of movement resonantly,
what happens if we vary the spring constant of the system as a function of the resonance
frequency? Or, what happens if the damping varies periodically?

Figure 2.15: A diagram depicted a vertically driven pendulum. An oscillating drive A cos (ωt ) is applied,
which modulates the position of the pivot point of the pendulum at a frequency ω.

A nice example is the classic pendulum, in which the most commonly observed stable position
is for the mass at the end of the pendulum to be positioned downwards at θ = 0 due to the
force of gravity. However, if the system is driven not along its axis of rotation but rather if
the pivot point of the pendulum itself is driven to oscillate up and down at a given frequency,
a stable point at θ = π can emerge for certain values of driving amplitude and frequency.
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Following Ref. [202–206], the equation of motion of the vertically driven pendulum is given as

d 2θ

d t 2 + (ω2
0 + A cos (ωt )) sin (θ) = 0 (2.118)

which is the form of a damped parametric oscillator. For small θ such that sin θ ≈ θ, the
differential equation has the form of the well-known Mathieu equation for which the solutions
are Mathieu functions [207–210]. With the addition of a damping term γ dθd t , the above equation
can be rewritten under the substitution θ = φe−γt/2 as

d 2φ

d t 2 + (ω2
0 − γ2/4 + A cos (ωt ))φ = 0. (2.119)

This particular system is stabilized upside-down at θ = π for A >
√

2ω2
0

(ω2+ω2
0)2+γ2ω2

ω2+ω2
0

. Con-
versely, we can consider the problem as one of destabilizing a downwards-oriented pendulum
if we consider those driving parameters which cause θ = 0 to be an unstable point. The sys-
tem can be mapped out entirely in terms of the drive parameters A and ω to identify where
regions of stability and instability (also known as Arnold tongues) exist [211–213].

The regions in which the system is unstable are those in which the parametric resonance con-
dition of integer n t h order is met. With damping, the instability regions are pushed to stronger
drive amplitudes and stable frequencies with stronger driving are made possible when those
same drive parameters would lead to instability in the undamped case.

The Parametrically Driven Duffing Oscillator
In our description of the parametrically driven Duffing oscillator, we can build on Eq. 2.119 by
following Ref. [214]. We start by adding the Duffing nonlinearity term from Sec. 2.1.2, as well as
a nonlinear damping term, yielding the equation of motion for 2ω driving as

d 2x

d t 2 + ω2
0(1 − λ cos (2ωt ))x + γ

dx

d t
+ αx 3 + ηx 2 dx

d t
= 0 (2.120)

where λ = A/ω2
0 is the scaled driving amplitude, η is the nonlinear damping coefficient, α is

the Duffing nonlinearity, and γ is the linear damping coefficient. We can recast this equation in

terms of dimensionless parameters under the substitutions y =
√

α
ω0
x and τ = ω0t to obtain

d 2y

dτ2 + (1 − λ cos (2Ωτ))y + γ̃
dy

dτ
+ y 3 + η̃y 2 dy

dτ
= 0 (2.121)

where Ω = ω/ω0, γ̃ = γ/ω0, η̃ = ηω0/|α | are all rescaled dimensionless parameters.

While the above equation is nontrivial to solve, there do exist several stable solutions from
which we can derive stability diagrams as a function of drive amplitude and frequency, as in
the case of the vertically driven pendulum. One can apply the van der Pol transformation
and averaging theorem to this equation to obtain two slow-flow equations in rotating frame
coordinates (u,v ). We then have x = u cos (ωt )−v sin (ωt ) which can be solved to determine
the steady states of the oscillator, where du

d t = dv
d t = 0 and the amplitude response is given by

|X |=
√
u2 + v 2. This averaging approach is analogous to our previous application of the RWA,

in that we are deriving equations that describe the dynamics of our system on long timescales
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and neglecting any contributions that average out over multiple periods of oscillations. One
can then obtain the coupled equations

du

d t
= − 1

2Ω
[γ̃Ωu + v (∆Ω +

λ

2
) +

3
4

(u2 + v 2)v + Ω
η̃

4
(u2 + v 2)u ] (2.122)

dv

d t
= − 1

2Ω
[γ̃Ωv + u (−∆Ω +

λ

2
) − 3

4
(u2 + v 2)u + Ω

η̃

4
(u2 + v 2)v ] (2.123)

Figure 2.16: Characteristic response of the parametrically driven Duffing oscillator. a) A phase diagram
with different parametric response regions indicated for η̃ = 0.5 and γ̃ = 0.01. In Region I, the system has
one zero-amplitude solution (monostable). In Region II (bistable), there are two stable phase states and
one unstable (the zero-amplitude) solutions. In Region III (tristable) there are three stable (the zero-
amplitude and two stable phase states), and two unstable solutions. Regions II′ and III′ are the bistable
and tristable regions in the absence of dissipation. b) The oscillator response for driving amplitude λ =
0.03, indicated by the green dashed line in a). The damped oscillator with η̃ = 0.5 and γ̃ = 0.01 is bistable
between pointsA andB and tristable betweenB andC . BetweenA andB , the zero-amplitude response
is represented by a dotted line, which indicates that it is not a stable solution in the bistable region. At
low driving frequencies, both oscillator steady-states are given by the zero-amplitude solution alone.
The tristable region for the undamped oscillator (η̃ = γ̃ = 0) extends beyond the point C.

where ∆Ω = 1 − Ω2. The above slow-flow equations are valid for small damping, nonlinearity,
and drive amplitude relative to the oscillator resonance frequency, which, in the case of the
several gigahertz frequency Duffing oscillators studied in later sections, generally holds true.
Luckily, there are several analytical solutions to the equation du

d t = dv
d t = 0, including one

trivial zero-amplitude solution in which u = v = 0. The five (lengthy) expressions for the
amplitude responses are shown in Appendix A.1.

The simplest stability region (for the zero-amplitude solution) is defined by drive amplitudes
λ < λt h where

λt h = 2
√

(Ωγ̃)2 + ∆2
Ω (2.124)

which bears a strong resemblance to the parametric threshold at which gain diverges for
Josephson Parametric Amplifiers (JPAs)

λt h,JPA =
√
κ2/4 + ∆2 (2.125)
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where there, ∆ = ω0 − ω/2 and κ is the total loss rate [215]. When operating such a device to
produce gain, the JPA is parametrically driven close to, but below, the parametric threshold
such that gain is produced before instability.

Beyond λt h , the zero-amplitude state becomes unstable, and the oscillator undergoes a pitch-
fork bifurcation, yielding two bistable solutions separated from each other in phase space by
π radians [216]. Given the presence of nonlinear damping and Duffing nonlinearity, there exists
another parametric threshold defined by

λt h,η =
2Ω|3γ + η(Ω2 − 1)|

√
η2Ω2 + 9

(2.126)

which occurs for detuned parametric drives with the same sign as that of the nonlinearity, in
which the zero-amplitude state exists along with the bistable states, while there also exists a
pair of unstable states π shifted in phase. This region is known as the tristable regime, given
that the two bistable states and the zero-amplitude state are stable solutions.

The ability to generate multistable states in parametrically driven Duffing oscillators is of key
importance for later chapters, in which we parametrically drive our quantum circuits beyond
these thresholds. For example, in Chapter 6 we explore the bistable regime and demonstrate
control over the dynamics of the bifurcating system while in Chapter 7 we drive a Duffing
oscillator through the multistable regimes described above and into chaos.

2.3.2. Modulated Nonlinear Inductance in a Quantum Circuit
Bichromatic Driving and Flux Modulation
While one may implement a parametric drive on a pendulum by oscillating its pivot point ver-
tically, if we instead wish to parametrically drive superconducting quantum circuits, a straight-
forward way to do so is via the nonlinear inductance of the Josephson junction [215]. Given
Eq. 2.28 -2.30, we can express the nonlinear inductance of the junction in terms of the current
and flux as

L = LJ [1 +
1
6

(
I

Ic
)2 + ...] = LJ [1 +

1
2

(2π
Φ
Φ0

)2 + ...] (2.127)

where we may then modulate the nonlinear inductance via control over the current and/or
flux. Given that the quantum circuits discussed so far have inductance-dependent frequencies,
current or flux driving of these devices at I = Ia cos (ωd t + φ) or Φ = Φa cos (ωd t + φ) will
lead to a time-dependent modulation of the oscillator inductance (and thus frequency) as a
function of ωd .

We may first consider the case of modulating the inductance of a Josephson junction-based
Kerr oscillator with resonance frequency ω0 and self-Kerr nonlinearity K as in Eq. 2.45. If we
choose to apply two microwave drives with frequenciesω1 andω2, such that ∆12 = ω1−ω2 and
δ = ω0− (ω1+ω2)

2 (thus,ω1 +ω2 = 2ω0 for δ = 0), one of the results of this pumping scheme is to

generate a two-photon pumping term ϵ2
2 â

†2 + ϵ
∗
2

2 â
2 where ϵ2 = 4Kα1α2 is the parametric pump

strength and αi are the classical pump field amplitudes [215]. Compared to a single microwave
drive on resonance at ω0, in this bichromatic driving scheme (named due to the presence of
two drives of different frequencies), we are able to separate the pumps from the oscillator
spectrally [215, 217]. This simplifies analysis of the oscillator response for large values of ∆12
relative to ϵ2, given that we may set our measurement bandwidth to capture only the system
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dynamics of interest and exclude the presence of our applied drives and higher-order effects,
which would not be straightforward if we instead applied a single near-resonant microwave
drive to realize a parametric pump.

Figure 2.17: An illustration of a SQUID loop being parametrically driven via flux modulation. The loop
formed by superconducting metal (blue) and two Josephson junctions in parallel (grey) is threaded by
a magnetic field with a static component and a time-dependent component. The time-dependent com-
ponent modulates the amplitude of the flux threading the loop at a frequency ωd .

Similarly, if the flux we apply to the oscillator’s SQUID loop is composed of a static and time-
dependent component Φ(t ) = Φdc + Φac cos (ωd t ) and we set the modulation frequency
ωd = 2ω0, we will again generate a two-photon pumping term with ϵ2 = −2EJΦac sin (Φdc )ECω0
[215]. In the case of a SQUID tunable coupler connecting two frequency-detuned oscillators
ωA andωB , flux modulation of the coupler at the sum and difference frequenciesωA±ωB can
selectively activate either the beam-splitter or two-mode squeezing interactions respectively,
as will be shown in Chapter 4. In the case of a SNAIL coupler, the flux can be modulated at
various frequencies to activate higher-order interactions, such as the optomechanical photon-
pressure coupling and to induce multi-photon transitions between the oscillators.

In the language of the classical parametrically driven Duffing oscillator, the consequence of
applying these microwave and flux drives in such a way to modulate the inductance of the os-
cillator at twice its resonance frequency is to drive the system towards first-order parametric
resonance. The application of this two-photon pump to quantum Duffing (or Kerr) oscilla-
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tors can be used to generate gain or, upon stronger driving, push the oscillator beyond the
parametric threshold into multistable regimes. In Chapters 5, 6, and 7, we show the driving
of a quantum circuit below, into, and beyond the multistable regimes discussed above and
demonstrate phase control of the oscillator state in the bistable regime.





3
Device Design and Fabrication

Thou shouldst not have been old
till thou hadst been wise.

William Shakespeare

In this chapter we outline the process necessary for building a quantum circuit. In order to
construct a quantum circuit, one must progress through multiple levels of abstraction - from
the device as a quantum system (the Hamiltonian level), to the device as a circuit (the circuit
representation level), to the device as a multidimensional simulacrum with defined physical
properties (the multiphysical model level), and lastly to the device as a material object (the
fabrication level). As we move from abstraction to reality, the idealities we impose on the
mathematical modeling of our system at the Hamiltonian level are always at risk of degrading
if we fail to account for the effects of additional physical processes at subsequent levels. The
goal is to have at the end of the process fabricated a quantum circuit from which one can
acquire measurement data unveiling exciting physical phenomena that can be analyzed and
interpreted with mathematical models.

47
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3.1. Design and Simulation
3.1.1. QuTiP
The first step in designing a quantum circuit is determining which physical parameters to engi-
neer. While we may now know what the resonance frequency and anharmonicity of a transmon
qubit are for a given set of capacitances and inductances, we should first decide what we want
those values to actually be. For example, we may wish to understand the system consisting of
a CPW capacitively coupled to an external feedline on one side and a transmon qubit on the
other. In this case, the system Hamiltonian is as in Eq. 2.76, given by

H =h̄ωr â† â +h̄ωq b̂†b̂ −
EC
2
b̂†b̂†b̂ b̂ +h̄g (â†b̂ + â b̂†) (3.1)

along with total resonator and transmon loss rates κ , γ respectively. How do the transmon
and resonator exchange interactions over time with the inclusion of collapse operators? If
we want to understand the dynamics of this system and explore the consequences of varying
the ratios of these parameters, it is useful to first simulate it before starting to construct the
circuit itself.

Alternatively, we may want to simulate the interactions between two transmons which are
connected via a SQUID tunable coupler, as in Eq. 2.110

H =h̄ω1 â
† â − EC 1

2
â† â† â â +h̄ω2b̂

†b̂ − EC 2

2
b̂†b̂†b̂ b̂

+ J1(â†b̂ + â b̂†) + J2(â†b̂† + â b̂) +V â† â b̂†b̂ . (3.2)

As another example, in order to produce a Josephson cavity which can be driven with a two-
photon pump beyond the parametric threshold, what should the resonance frequency, non-
linearity, and linewidth be? Then, in the frame of the resonant two-photon pump, we have

Hr ot = K â† â† â â + ϵ2(â†2 + â2). (3.3)

What responses do we expect to be displayed on laboratory instruments upon measuring such
devices?

The Quantum Toolbox in Python (QuTiP) is a Python library which contains a variety of objects
and functions which are useful for simulating quantum systems [218]. QuTiP can be straight-
forwardly used to take a Hamiltonian and construct energy level diagrams, investigate the
time evolution with loss channels and time-dependent drives, and visualize the state of a
system in many ways, such as on the Bloch sphere, with Wigner functions or by its emission
spectrum. In this thesis, QuTiP was always used when designing new devices in order to un-
derstand what parameters we should be targeting once we start the fabrication process and
to have a foundation for what to expect upon measurement.



3.1. Design and Simulation

3

49

Figure 3.1: The simulated transmission coefficient |S21 | for a Kerr oscillator under a range of applied
probe powers side-coupled to a measurement feedline.

We now proceed with a few illustrative examples. We can start by simulating the expected
transmission coefficient when probing the state of a Kerr oscillator in a side-coupled trans-
mission geometry. This system may be realized by an on-chip Z0 = 50Ω transmission line to
which a junction-embedded CPW is capacitively coupled at one end and shorted to ground
via a junction at the other. In this case, we consider a fundamental mode frequency of ω0 = 5
GHz and a self-Kerr nonlinearity of K = -200 kHz, with κe = 0.9 MHz and κi = 0.1 MHz. We can
write the system Hamiltonian in the rotating frame of a weak probe tone of strength ϵpr and
frequency ωpr by

H = (ω0 − ωpr )â† â + K â† â† â â + i ϵpr (â† − â) (3.4)

and solve for the steady-state of the system under single-photon loss â at rate κt ot imple-
mented as a Lindbladian collapse operator [219]. We could also consider the collapse oper-
ators of an oscillator coupled to a thermal bath, but here we assume that h̄ω ≫ kBT and
thus the thermal occupation of the mode we are interested in is n t h = (eh̄ω/kBT − 1)−1 ≈ 0, as
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would be the case for GHz circuits thermalized to the ≈ 10-20 mK plates of dilution refrigera-
tors. We can then sweep ωpr about ω0 and calculate the expectation value of â and find |S21 |
= 1− ⟨â⟩ κe

2ϵpr
, given the simulated steady-state of the system ρss , which is displayed in Fig. 3.1

for various probe powers [220]. QuTiP then yields the theoretically expected response - as the
probe power increases (and thus, the number of photons in the oscillator increases as a func-
tion of the proximity of the probe to the oscillator frequency), the resonance frequency shifts
proportional to the self-Kerr nonlinearity and at strong enough driving the oscillator exhibits
a "shark fin" shape indicative of bifurcation. We may relate the probe strength to power via

ϵpr =

√
κePpr

h̄ωpr
(3.5)

where Ppr is the incident power at the device and can be related to the number of photons in
the oscillator mode by

⟨n⟩ =
κe

( κt ot2 )2 + (ωpr − ω0)2
⟨npr ⟩ (3.6)

where ⟨npr ⟩ = Ppr
h̄ωpr

is the number of photons applied at the device input [221, 222]. Thus,
a simple QuTiP simulation can quickly be used to aid in preparing one’s experimental setup
to facilitate delivering an appropriate amount of photons to the circuit given a set of design
parameters, but can also be used as an analysis tool to determine unknown device parameters
upon measurement (in this instance, with a VNA).

Our second example is that of the Kerr oscillator under a two-photon drive, as in Eq. 3.3. We
can use QuTiP to calculate the expectation value of the photon number operator and Wigner
function of the simulated state as a function of time ρ(t ), again under single-photon loss at
rate κt ot . The Wigner function is a quasi-probability distribution which describes the state
of a quantum system in phase space, with quadratures x and p [223, 224]. Working in units
where ω0 = 5 and the two-photon drive frequency is set to ωd = 2ω0, we set κt ot = 1/1000,
K = −κt ot /2, and ϵ2 = −5K and obtain the mode’s photon number expectation value ⟨n⟩ as
well as the Wigner function associated with ρ(t ) shown in Fig. 3.2, 3.3.

This system is closely related to the parametrically driven Duffing oscillator, as can be seen by
the Wigner function of the steady state of the system in the bottom-right panel of Fig. 3.2. The
oscillator steady-state under sufficiently strong two-photon driving is that of a parametrically
driven Duffing oscillator in the bistable regime, represented by two displaced coherent states
of equal amplitude and opposite phase.

Given our choice of parameters, the approximation of the Duffing oscillator as a Kerr oscillator
here holds true. Indeed, we can shift our drive ωd from resonance with 2ω0 to being detuned
by a negative value δ to observe a tristable state and to observe the zero-amplitude state
we may either decrease our two-photon pump strength or detune to sufficiently positive fre-
quencies (the opposite sign of the nonlinearity), as shown in Fig. 3.4. We may also replace the
self-Kerr term with the full Duffing nonlinearity K ′(â† + â)4 and set K ′ = −κt ot /12 and obtain
similar results to the bistable Kerr oscillator.
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Figure 3.2: The Wigner function of a Kerr nonlinear oscillator over the course of its time evolution under
two-photon driving.

Figure 3.3: The time-dependent expectation value of the photon number operator of a parametrically
driven Kerr nonlinear oscillator.
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Figure 3.4: Wigner functions of the steady state of a two-photon driven Kerr (Duffing) oscillator when in
the various stability regimes. When considering a Kerr oscillator, the left panel is the zero-amplitude
state for δ = 0.02, and the center panel is for the tristable state δ = −0.01. The right panel is the
bistable state for an oscillator with an explicit Duffing nonlinear term.

3.1.2. QuCAT

Figure 3.5: A lumped element circuit generated with QuCAT of a transmon qubit capacitively coupled to
a resonator with a Z0 = 50Ω feedline.

If we proceed with the resonator-transmon system as an example, the next step in designing a
device is to translate the frequencies and couplings into capacitances and inductances. To this
end, we can use the Quantum Circuit Analyzer Tool (QuCAT), which is a high-level Python library
with which a user can draw RLC circuits, input values, and extract their expected frequencies,
loss rates, couplings, and nonlinearities [225]. We can start by drawing a lumped element
circuit representation of a λ

2 CPW resonator capacitively coupled to a transmon qubit and a
Z0 = 50Ω transmission line, as shown in Fig. 3.5.

Once this circuit has been drawn, the user can input capacitance and inductance values to
calculate the eigenfrequencies and nonlinearities of each normal mode of the circuit. Each
of these circuit parameters can be iterated over, allowing the user to sweep over variables of
interest to see how the circuit is changed. For example, when sweeping the Josephson induc-
tance of a transmon qubit (as one may do by varying the magnetic flux through a transmon’s
SQUID loop), the qubit frequency can be swept through the resonator frequency which gives
rise to an avoided crossing related to the linear coupling between the resonator and trans-
mon. We can also plot the self-Kerr nonlinearities of the resonator and transmon, as well
as the cross-Kerr coupling, as a function of swept Josephson inductance and note that when
the modes strongly hybridize the resonator inherits nonlinearity from the transmon, as was
discussed in Sec. 2.2.1.
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Figure 3.6: The calculated frequencies and nonlinearities of the circuit in Fig. 3.5 for a range of junction
inductance values LJ with other circuit parameters fixed.

3.1.3. Qiskit Metal and Ansys HFSS
Once we know our desired capacitances and inductances, the last step is to "physicalize" our
circuit by actually constructing waveguides and electrodes. From our discussions on transmis-
sion lines, we have some inclination as to what the waveguide capacitance and inductance per
unit length will be given the widths of the center conductor and gaps as well as the proper-
ties of selected materials given Eq. 2.63 - 2.69, but so far we do not have any intuition as to
how a transmon should be physically represented on a chip. While we know that we need an
electrode (or two) and capacitances to ground and to our CPW, we don’t yet have any under-
standing of how the representation of the resonator-transmon system relates to its existence
in physical space. Thus, we require a way to construct the geometries which we wish to later
pattern on a chip in a file format that will be understandable by the nanofabrication machines
we will use to do so, as well as a simulation software capable of telling us whether our chip lay-
out matches to what we would like to make after our conclusions from theoretical equations
and QuTiP and QuCAT simulations.

Luckily, there exists a Python library developed by IBM Quantum named Qiskit Metal, which
can be used to construct such chip layouts in the form of .gds files, with the added bonus
of being able to easily interface with the multiphysics simulation software Ansys HFSS [226,
227]. After programmatically drawing a circuit with Qiskit Metal, we can use HFSS to deter-
mine the eigenfrequencies of the normal modes of the system after defining the properties
of the intended materials, such as relative permittivity and surface inductance. We can also
determine the capacitance matrix of any set of elements being simulated by lumped oscil-
lator model (LOM) calculations, as well as use the results of the eigenmode simulation with
the Python library pyEPR to determine the self- and cross-Kerr nonlinearities as well as the
capacitive and inductive participation ratios [228].
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Figure 3.7: A resonator-transmon system programmatically defined in Qiskit Metal and rendered in Ansys
HFSS.

As an example, we may follow the process of designing a resonator-transmon system using
Qiskit Metal and HFSS. After defining the geometry of Z0 = 50Ω transmission lines following
the equations in Sec. 2.2.1 taking into account an expected surface inductance of Ls = 0.98
pH for a 100nm thick NbTiN film (quoted by SRON, the organization which supplied the wafers
used for fabricating various devices in our research group), we can set the approximate reso-
nance frequency of the CPW resonator by its length [229]. We may then run simulations iter-
ating over the length and distance of the "hanger" section parallel to the feedline to obtain
a desired external coupling κe and turn our attention towards the transmon. The transmon
frequency, nonlinearity, and coupling to the resonator are set by the Josephson inductance,
the size of the qubit electrodes, the gap between the electrodes and the ground plane, as well
as the capacitance to the coupling pad of the resonator. For this analysis, we have set LJ =
5nH and CJ = 1fF.

After performing an eigenmode analysis, the magnitude of the electric field of each mode
can be plotted as shown in Fig. 3.8, illustrating that our CPW is indeed λ/2, and showing that
for our transmon, the majority of the electric field is concentrated around the junction and
the edges of the electrodes. In general, transmon designs that yield a lower concentration
of the electric field in certain regions are desirable so as not to excite two-level systems on
materials surfaces and interfaces which act as loss channels for the transmon mode [230–236].
Neglecting factors of 2π for convenience, the eigenmode analysis yields frequenciesωq = 8.38
GHz and ωr = 6.46 GHz as well as Qe,q = 3.3e5 and Qe,r = 4.5e3 which are the Purcell-limited
quality factor of the transmon and the external quality factor of the resonator respectively.
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After performing a pyEPR analysis of the eigenmode solution, the expected qubit frequency
slightly changes to ωq = 8.12 GHz while the resonator is unchanged at ωr = 6.46 GHz. We also
obtain an inductive participation ratio for the qubit of 0.965, with Kq = -129.5 MHz, Kr = -2.4
kHz, andVq ,r = 2.23 MHz for the self-Kerr nonlinearities and the cross-Kerr. Then, we perform
a LOM analysis of the circuit, which simulates only the immediate region around the transmon
electrodes, including the ground plane and coupling pad of the resonator. After inputting the
expected resonator frequency from the eigenmode and pyEPR analyses, the expected trans-
mon frequency again changes to ωq = 8.54 GHz and the self-Kerr to Kq = -163.5 MHz. We also
obtain the coupling g = 156 MHz, dispersive shift χ = 4.40 MHz, and charge dispersion 2.41 Hz
indicating that our ratio of EJ/EC is indeed sufficiently large (here, about a factor of 100)
[111]. Our obtained capacitance matrix also indicates that Cc = 24 fF and each electrode has a
capacitance to ground of Cg ,1 = 39 fF, Cg ,2 = 47 fF, with total qubit capacitance Cq = 65 fF.

Figure 3.8: The magnitude of the electric field for each normal mode plotted in Ansys HFSS. The results
are found after running an eigenmode simulation.

Inputting these capacitances back into QuCAT, we can obtain estimated self- and cross-Kerr
nonlinearities of Kq = -147 MHz, Kr = -2.12 kHz, andVq ,r = 2.23 MHz, with frequencies ωr = 6.46
GHz andωq = 8.81 GHz, which are similar to the values obtained through HFSS, LOM, and pyEPR
analyses. Given that the QuCAT simulation uses the lumped element representation of the
circuit and does not include kinetic inductance, we take the pyEPR analysis of the eigenmode
solutions to be authoritative in the designing of our circuits.

3.2. Fabrication
3.2.1. Substrates and Superconducting Thin Films
In order to create superconducting quantum devices, we must first determine the materials
with which we wish to construct our circuits. As the devices will contain coplanar waveguides,
we will require a semiconductor substrate and a superconducting film on top of it, which we
can use to define our structures. The devices measured in this thesis were fabricated at the
Kavli Nanolab Delft facility at the TU Delft [237].

For our substrate and superconductor, we use Si and NbTiN, respectively. For the chips fabri-
cated during the course of this research, we used wafers supplied by the Netherlands Institute
for Space Research (SRON), which were Si with NbTiN deposited on top [229]. The Si was 525 µm
thick, and the NbTiN was either 100 nm or 200 nm thick. The choice of materials strongly influ-
ences the processing and handling of devices, as well as the final frequencies, nonlinearities,
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and couplings of the constructed quantum circuits. For example, certain materials grow unde-
sired oxide layers at different rates, some lead to interfaces with higher loss tangents which
reduce our device quality factors, and some materials simply do not have well-established
processes for creating superconducting qubits with [231, 235, 238–251]. Substrates commonly
used for superconducting qubits are Si and Al2O3 (sapphire), while superconducting metals are
often Al, Nb, TiN, NbTiN, and Ta [235, 252–255]. Our usage of Si and NbTiN is thus partially due
to the availability of wafers through an arrangement with SRON, the existence of established
treatment processes, and their well-understood characteristics in the context of fabricating
quantum circuits. For example, whichever superconductor we choose will have kinetic in-
ductance which contributes along with the geometric inductance of the defined structures to
yield a total linear inductance. The kinetic inductance can also contribute to device loss rates,
given that the fraction of kinetic to total inductance affects the responsivity of oscillators to
quasiparticles [256, 257]. The kinetic inductance per unit length of a CPW is

Lk = gLs = gµ0λL coth
(
t

λL

)
(3.7)

whereLs is the surface inductance, t is the thickness of the superconductor, µ0 is the magnetic
permeability of vacuum, λL is the London penetration depth

λL =

√
h̄ρ

πµ0∆s
(3.8)

and g is a geometric factor written as

g =
π + ln

(
4πs
t

)
− k ln

(
1+k
1−k

)
4s (1 − k 2)K 2(k )

+
k [π + ln

(
4π(s+2w )

t

)
− 1
k ln

(
1+k
1−k

)
]

4s (1 − k 2)K 2(k )
(3.9)

where ρ is the resistivity of the film, ∆s ≈ 1.764kBTc is the theoretical superconducting gap at
zero temperature, the critical temperature isTc ≈ 14.4K for our NbTiN film, and K (k ), k , s,w
are as defined in Sec. 2.2.1 [229, 258–260].

Uniformity of NbTiN deposition across the entire wafer can be difficult to achieve, leading to
variations in Lk as a function of position. This means that there will be some variation in Lk
for any given chip diced from the wafer, with the greatest uniformity in thickness towards the
center of the wafer for typical deposition processes [229]. Thus, while one may fabricate a
CPW resonator on a chip from the center of a wafer, measure its frequency, and calibrate their
simulation parameters accordingly to account for the kinetic inductance, there will likely be
variation again upon fabrication and measurement of an identical resonator on a chip taken
from the edge of a wafer. Luckily, for the wafers provided to us by SRON, the expected variation
in thickness (and thus frequency) is only on the order of a few percent. For our 100 nm and
200 nm films, we expect Ls = 0.98 pH and Ls = 0.53 pH respectively, which can be converted
to the kinetic inductance per unit length via the geometric factor g for any CPW geometry. For
transmon qubits, the kinetic inductance of the qubit electrodes is typically negligible, and in
any case, the junction inductance is engineered to dominate over the total linear inductance.
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3.2.2. Lithography
After preparing the wafers, we must then define the structures which comprise the circuit,
in this case, by lithographically defining them into a resist, developing the resist, and then
etching away regions of metal to form our CPW traces and qubit electrodes. In this thesis,
we have mostly used electron beam resist with electron beam (e-beam) lithography, however
the use of photoresist with UV photolithography is also possible, albeit with larger spatial
resolution compared to the electron beam. A resist is an organic compound sensitive to light
(and electrons) that undergoes a change in its chemical structure upon exposure. A resist
is defined as positive or negative by whether the written area is weakened or strengthened
upon exposure to light or electrons, after which the written or unwritten area may then be
developed away in a solvent respectively.

Figure 3.9: A double-island transmon qubit capacitively coupled to a readout resonator. The main struc-
tures have already been written, developed, and etched. A secondary lithography step has been per-
formed which defined the Josephson junction connecting the two qubit electrodes. The written resist
has been developed and the sample is ready to proceed towards junction evaporation.

When a resist is written, the e-beam gun delivers electrons to the sample, depositing their
energy into the resist and scattering into the surrounding area. For positive resists, this de-
composes the resist by breaking bonds which have been delivered energy larger than the
bond-dissociation energy. The regions of the resist which have been exposed are thus made
weaker and are then dissolved in the appropriate developer.
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When preparing a sample for lithography, we first clean the surface of the chip with ace-
tone and isopropyl alcohol (IPA). We then spincoat the chip with a resist and bake the chip
to harden the resist. The spincoating of any given resist leads to a final thickness dependent
on the spincoating speed and the resist properties. We then pattern the resist with an e-beam
writer (Raith EBPG-5000+), with e-beam gun parameters dependent on the resist used and
circuit feature sizes [261]. For example, when defining the relatively large bulk structures of
transmission lines and electrodes, we use the resist AR-P 6200.18 (CSAR62) spun to 800 nm
thickness and deliver a dose of 350uC/cm2 at a spot size of 62 nm, current of 192 nA, and ac-
celeration voltage of 100 kV [262]. However, when defining the comparatively small junctions,
we use a bi-layer resist stack of PMMA A6 950k spun to 500 nm on top of MAA 8.5% EL6 at 180
nm written with 1850uC/cm2, 21 nm, 1344 pA, and 100 kV [263].

The written sample then has the resist developed in a solvent, which for AR-P 6200.18 was
pentyl acetate, and for the MAA/PMMA stack was a mixture of cold H2O and IPA in a 1:3 ratio.
After developing the unwanted resist and etching the exposed metal away, the resist was then
stripped with either dimethylformamide (DMF) or N-Methyl-2-pyrrolidone (NMP) and cleaned
with acetone and IPA. As we used positive resists, the areas which were written were devel-
oped and etched away, in which case our written patterns were defining the spaces where the
substrate would be exposed to air, such as the gaps of our CPW traces.

3.2.3. Reactive Ion Etching
After the pattern has been written and the sample has been developed, the exposed metal
areas must then be etched away to produce the trenches separating transmission line cen-
ter traces and transmon electrodes from the ground plane, which defines our feedlines, res-
onators, and qubits. This is done by reactive ion etching (RIE), in which the chip is placed into a
reactor under vacuum and is bombarded by ions produced by a plasma generated by passing
a gas through a strong electromagnetic field [264]. This field is generated by parallel plates
on the top and bottom of the reactor across which a voltage is applied, which, when made
sufficiently strong will ionize the gas. As a negative charge builds on the sample, the positive
gas ions bombard the surface of the chip following the vertical direction of the electric field,
reacting both with the exposed metal and the leftover resist. The hardened resist is etched
at a much lower rate than the NbTiN for the RIE compounds used (in our case, O2, SF6, and
CF4), leading to an anisotropic etch of the exposed metal areas which reveal the underlying
substrate and leave vertical walls [265].

The anisotropy of the etch and smoothness of the exposed substrate is strongly determined by
the sample materials, the etchant used, and the etching conditions, such as reactor pressure,
plate bias power, and rate of flow of the etchant. If these conditions are sub-optimal, there can
be various deleterious effects. For instance, etched material may be redeposited onto other
areas of the chip, and we may also have unintended chemical reactions between the products
of the gas ionization and our sample, leading to the creation of fluorocarbon residues [266–
271]. In the case of CF4, example products such as CF3

+, CF3
-, CF3, F+, and F-, may all be present in

the reactor chamber along with our sample. Along with achieving the goal of etching the NbTiN
and briefly over-etching the exposed Si, these products may also recombine, interact with
etched and/or exposed material, and form unwanted compounds that negatively affect the
quality of the device. The most common unwanted products are fluorocarbon polymers, which
can form when there is an insufficiently large ratio of fluorine to carbon for a given electric
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field strength in the chamber. If polymers form on the surfaces of the chip, these dielectrics
and other lossy compounds formed can drastically reduce the internal quality factors of final
devices, especially if they exist near areas with large electric field concentrations such as
junctions.

Figure 3.10: Images showing the structures resulting after a reactive ion etch. a) A CPW with space in the
center for the evaporation of a Josephson junction. b) A shorted measurement feedline due to insufficient
etching of the waveguide trenches. This may be due to an improper development of the resist in this
region of the sample or failure due to an insufficiently clean surface. c) A scanning electron microscope
(SEM) image of the corner of an etched NbTiN structure on top of a Si substrate. d) Un-etched material
left on the substrate due to improper etching conditions.

3.2.4. Evaporation and Liftoff
After the bulk structures of the device have been defined, another round of lithography and
development will expose the areas of the sample on which we wish to construct Josephson
junctions. As we use Al/AlOx/Al junctions in this thesis, we will be evaporating Al onto the
entire surface of the chip, which will deposit and remain only on the exposed areas and, in
other regions, will be removed along with the resist during the liftoff process. During liftoff,
the sample is left in a solvent which strips the resist from the chip along with the Al adhered
to it while leaving behind the Al which was evaporated onto the exposed metal and substrate.

Aside from contributions to loss in the substrate and superconducting film, a significant source
of loss can be found within the junction itself. Charged two-level systems (TLSs) can form in
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dielectrics due to material defects or impurities, which then couple to our relevant device
modes, leading to energy exchange with the TLS and critical current noise causing dephasing
[233, 252, 272, 273]. Some TLSs can exist in the AlOx layer of the junction, as well as in the nearby
oxide layers of the substrate and superconducting film. In addition to TLSs, non-equilibrium
quasiparticles (broken Cooper pairs caused by high energy photons) can directly contribute
to a decrease in relaxation times in quantum circuits with Josephson junctions [111, 274–282].
In recent years, methods to combat the negative effects of quasiparticles have included im-
proved qubit designs, substrate phonon injection, phonon trapping, phase biasing, extensive
device shielding, dynamical decoupling by pulsed driving, and the use of alternative materials
[283–290].

Figure 3.11: Optical microscope and SEM images showing before and after completion of the junction
fabrication process. a) The geometry of a SQUID loop is defined by e-beam lithography and the resist
is developed away. b) After evaporation and liftoff, the junctions are fabricated. The SQUID bridges the
ground plane to the electrode of a single-island transmon qubit. c) A SEM image of a test SQUID with
two probing pads. d) The result of a failed liftoff process. An insufficient amount of time and physical
agitation in the resist stripping solvent caused a portion of the aluminum inside the SQUID loop to not
fully detach.

In contrast to the standard Dolan-bridge, we formed junctions via double angle shadow evap-
oration [291–295]. We use a relatively tall resist stack in conjunction with a high angle of evap-
oration along two directions, which allows for evaporation of Al directly along the "streets"
defined by our resist, while the "shadow" cast by the resist prevents deposition along or-
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thogonal directions. A sufficient height for a given angle of evaporation and junction width
can be determined, allowing for the formation of junctions by deposition of the bottom layer,
followed by oxidation, and lastly an orthogonal deposition of the top layer. This method al-
lows for a high degree of reproducibility in overlapping junction areas, which in turn leads
to reliable junction inductance values for a given overlap area, provided the evaporation and
oxidation conditions among other factors are unchanged across fabrication runs.

Special care is taken with this step, as it is the most critical for the construction of nonlinear
quantum oscillators. While parameter targeting is especially affected by the adherence of the
fabricated junction geometry to design and the oxidation conditions (which largely determine
junction inductance), we must also take steps to ensure that the junctions are formed on top of
clean surfaces free of lossy materials. Thus, after developing the resist and before evaporating
Al, we first clean the chip with an exposure to oxygen plasma as a descum step to remove any
leftover unwanted resist in the vicinity of the junctions, which may not have fully developed
away [296].

We then perform a dip in hydrofluoric acid (HF) which removes any oxides on the surface of our
chip. However, once the chip is in ambient conditions again, typically used materials begin to
reoxidize with few-nm thick layers growing on the order of minutes, meaning that transporting
the sample from the HF dip into the Al evaporator and bringing the chamber to vacuum as
soon as possible is also important [245, 297–300]. Another method for preparing the sample
surfaces for Al evaporation is by ion milling, such as with Ar. Ion milling the exposed metal
can be effective in cleaning the surface to prepare for the deposition of Al, but can also cause
damage to the Si substrate surface and may also be detrimental for some metals [301–304].
In order to selectively mill the metal without damaging the substrate, one may apply the ion
mill at a high angle, with a rotation of 45 degrees relative to the junction directions, with the
angle dependent on the width of the junctions and height of the resist [294].

The junction characteristics are largely determined by the area of overlap of the junction elec-
trodes and the deposition and oxidation conditions of junction formation [305–315]. Once a
junction has been formed, the normal state resistance can be probed at room temperature.
The critical current, Josephson inductance, and Josephson energy can be estimated via the
Ambegaokar-Baratoff relation, given an expected value for the superconducting gap of thin-
film Al, which can be related to the critical temperature of Al [316–318]. Estimating a critical
temperature ofTC = 1.174-1.405 K asTC increases for thinner films, the superconducting gap
in frequency units can be taken as 2∆/h ≈ 84 GHz given junction film thicknesses on the order
of tens of nanometers [317, 319, 320]. Then, we have

EJ =
h∆

8e2RN
=
π∆Z0

RN
(3.10)

where RN is the normal state resistance and Z0 =h̄/(2e )2 is the reduced impedance quantum.
Then, we can directly relate the Josephson inductance to the normal state resistance with a
conversion factor as

LJ = RN

(
Φ0

2π

)2 ( 1
πZ0∆

)
= RN

(
0.3183h̄

∆

)
≈ RN ×

(
1.2
nH

kΩ

)
. (3.11)

In Fig. 3.12, the relationship between the junction overlap area and the normal state resistance
and conductance is shown. It is often useful to plot the inverse of the junction resistance (the
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normal state conductance,GN = 1/RN ) against the area of overlap, given that there is a linear
relationship between conductance and area. For a given instance of junction evaporation and
oxidation, the standard deviation in normal state resistance for width values from 100 - 300
nm was generally found to be small, with a relative error of less than 5%. Across different
instances of performed lithography, development, evaporation, oxidation, and liftoff steps
used, fits of the conductance for separate fabrication runs show a relative deviation of less
than 20% for single junctions and 25% for SQUIDs.

This increased variation over different fabrication runs can be due to a variety of factors, in-
cluding changes in the lithographically defined area versus the designed area, changes in
oxidation conditions during the formation of the junction, and human error leading to un-
conscious deviations from the established recipe. To account for lithographic deviations, the
junction area can be checked by measuring the fabricated junction with a scanning electron
microscope (SEM) and comparing the normal state characteristics to fabricated rather than
designed areas. Junction resistances can also be tuned post-fabrication by the use of laser
annealing, to bring the device parameters closer to designed values [321].

Figure 3.12: Junction parameters determined from room temperature probe measurements versus de-
signed junction areas. a) The measured normal state resistance from two point probe measurements of
junctions of varying overlap area. The top and bottom junction electrodes were designed to be of equal
length and width in the region of overlap. As the junction area increases, the resistance decreases for
both single junctions and SQUIDs. b) Estimated normal state conductance across several independent
fabrication runs totaling 152 probe measurements. Plotted points with error bars are the mean and stan-
dard deviation of the junction characteristics of each instance of fabrication. Lines are linear fits to the
characteristics determined for each fabrication run. R 2 ≥ 0.995 for all except two SQUID dataset fits,
which were R 2 ≈ 0.989 and R 2 ≈ 0.918.

The mean and standard deviation of the slopes in Fig. 3.12 b) for single junction fits indicate
a conductance of 3.81 ± 0.752 mS/µm2 and for SQUIDs 6.72 ± 1.60 mS/µm2. Given Eq. 2.30 -
2.33, 3.10, 3.11 we should expect for symmetric junctions that the SQUID conductance is twice
that of the single junction, which is within the bounds set by the standard deviations of the
datasets. The dynamic oxidation steps which formed the junctions were set to 11 minutes at
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1.3 mbar, and for each junction, the bottom layer of aluminium was 35 nm thick, and the top
layer was 75 nm thick. The oxidation step was repeated as the final step to terminally cap the
junctions.

After the junctions have been probed, the sample bondpads are wirebonded to a printed cir-
cuit board (PCB) and the device is installed inside of a gold-plated copper enclosure. Prior to
wirebonding, the coaxial cable connection ports are soldered to the PCB. The entire package
is then installed into a cryogenic refrigerator, and the measurement equipment is connected
to the device via coaxial cables. The engineering of the microwave packaging is also of im-
portance to ensure that the device is well thermally anchored to the mixing chamber plate
of the dilution refrigerator, to reduce signal crosstalk, and to suppress the negative effects of
package modes [322].





4
Flux Modulated Tunable Couplings

of Two Nonlinear Oscillators

Try to make things that can become better in other
people’s minds than they were in yours.

Brian Eno

Access to a wide variety of couplings between oscillators on a single device is highly desir-
able in order to effectively simulate a host of quantum systems. A superconducting circuit
containing two transmon qubits connected both capacitively and inductively by a flux-tunable
coupler has shown promise for accessing disparate coupling regimes, such as those in which
the single-photon hopping interaction dominates over the cross-Kerr coupling, and vice versa.
While such controllability is useful for quantum information processors, it also enables the
analog simulation of various physical phenomena including arbitrary spin-spin interactions.
Wide tunability also facilitates the study of driven-dissipative oscillator dynamics in previ-
ously unexplored parameter regimes. In this work, we demonstrate the ability to selectively
enter into regimes in which the system dynamics are dominated by either photon-hopping,
two-mode squeezing, or cross-Kerr interactions with the use of parametric modulation. In do-
ing so, we observe level repulsion and attraction in two strongly Kerr-nonlinear oscillators in
regimes where the couplings and nonlinearities exceed the decay rates of the system.

J. D. Koenig, G. Barbieri, F. Fani Sani, M. Kounalakis, C.A. Potts and G.A. Steele, Flux Modulated Tunable Couplings of
Two Nonlinear Oscillators, in preparation (2024).
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4.1. Introduction
Quantum information processors based on superconducting circuits have long relied on the
transmon qubit as a robust, reliable, and high-coherence building block in the journey toward
large-scale digital quantum computation [111, 323, 324]. Circuit quantum electrodynamical
(cQED) devices are also of great interest to the development of analog quantum simulators -
devices which are custom-built to emulate the behaviour of distinct systems which are oth-
erwise typically challenging to control or probe directly [325, 326]. Such devices would enable
the probing of physics in otherwise inaccessible parameter regimes due to the high degree of
engineerability in superconducting circuits afforded by modern nanofabrication techniques
and materials science [327–329].

These transmon-based cQED systems may be described as collections of coupled Kerr-nonlinear
oscillators, which in recent years have been imbued with in-situ tunable resonance frequen-
cies, couplings, and nonlinearities achievable by external control [330–336]. While such de-
velopments have greatly contributed to progress in digital gate-based architectures, there is
still unexplored territory in using such platforms to emulate other physical systems such as
extended Bose-Hubbard and spin- 1

2 models [337–343].

Tunable couplers have been successfully used to implement high-fidelity two-qubit gates and
are useful elements for mitigating undesirable interactions in designs for scalable quantum
computing architectures [344–354]. They have also been of great interest to the field of analog
quantum simulations, in which systems of nonlinear oscillators able to enter into and exit
out of distinct coupling regimes would be capable of emulating physics from fractional Bloch
oscillations to gauge-invariant synthetic magnetic fields and lattice gauge theories [333, 337,
339, 340, 343, 355, 356].

For instance, Kerr-nonlinear oscillators (KNOs) with purely longitudinal coupling exhibit the
same dynamics as antiferromagnetically coupled Ising spins, while control over all σXσX ,
σY σY , and σZ σZ couplings individually would allow for analog simulation of arbitrary XYZ
spin-model Hamiltonians [343, 357, 358]. Devices with couplers containing more highly nonlin-
ear elements may also be used to enter into regimes where strictly nonlinear couplings such
as correlated photon hopping and photon-pair tunnelling terms dominate, allowing for the
simulation of more exotic physics [195].

The dual phenomena of level repulsion and level attraction have been previously investi-
gated in a broad array of platforms ranging from Bose-Einstein condensates to magnonic and
nano-optomechanical systems operating in various parameter regimes characterized by the
resonance frequencies, coupling strengths and decay rates of the constituent oscillators [193,
194, 359–375]. These interactions have been used to great effect in other contexts to enable
(quantum-limited) nondegenerate parametric amplification and perform two-qubit gate op-
erations [193, 194, 346].

Beyond their applicability for quantum information processing tasks, the wide selectivity of
system parameters in tunably coupled nonlinear oscillators is of particular interest due to
the ability to investigate the formation of instability regimes, their application to parametric
amplification, the generation of entanglement, and the non-Hermiticity of generable Hamilto-
nians [326, 376, 377]. Exquisite control over these couplings would enable direct investigation
of the coherence-dissipation competition in coupled nonlinear oscillators and bring predicted
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applications in topological energy transfer, quantum sensing, and nonreciprocal photon trans-
mission closer to experimental realization [366, 368, 378, 379].

Here, we present measurements of a superconducting circuit containing two flux-tunable trans-
mon qubits connected by both a fixed capacitive coupling and a tunable nonlinear induc-
tive coupling provided by a highly symmetric superconducting quantum interference device
(SQUID). By parametrically modulating the external flux threading the SQUID loop of the cou-
pler, we operated the device in regimes where the longitudinal (cross-Kerr, or ZZ) coupling was
dominant over a two-mode squeezing interaction, and in which the single-photon exchange
interaction (beam-splitter) and cross-Kerr strengths were comparable.

We observed two-mode squeezing effects through the use of parametric modulation, which,
together with the single-photon hopping interaction, are characterized by level attraction and
repulsion between the oscillators, respectively. In contrast to previous studies where such ef-
fects were explored in linear systems, our measurements represent spectroscopic observation
of level attraction between two strongly Kerr-nonlinear oscillators [365, 369, 372]. Our results
further illustrate the utility of platforms based on nonlinear oscillators containing tunable
couplers to act as analog quantum simulators, which can be driven to explore more highly
nonlinear effects and exotic parameter regimes in future studies.

4.2. Device and Flux Modulation
The system consists of two transmon qubits coupled both capacitively and inductively by a
SQUID, realizing a tunable coupler as seen in Fig. 4.1 (a), (b). The coupling between the two
oscillators is solely characterized by the charging and Josephson energies of the constituent
circuit elements, with linear and non-linear interactions tunable via the total DC flux threading
the coupler SQUID loop. The Josephson energy of the coupler is written as

ECJ (ΦDC ) = ECJmax |cos
(
π

ΦDC
Φ0

)
|

√
1 + d 2

c tan2

(
π

ΦDC
Φ0

)
(4.1)

where ECJmax is determined by the inductance of the unbiased SQUID loop, dc is a measure
of the asymmetry of the junction inductances comprising the SQUID, and ΦDC is the DC flux
threading the loop [332]. Each of the two transmons is capacitively coupled to its own copla-
nar waveguide resonator, which are in turn coupled to a common feedline through which the
device is driven and probed. The Josephson energies of the two qubits are related to their
own flux biases ΦA and ΦB in the same form as Eq. 4.1. In the coupled system, the ground to
excited state transition frequency for transmon i is given in units where h̄ = 1 as

ωi ≈
√

8Ẽ iJE
i
C
− E iC (4.2)

with Ẽ iJ = E iJ + ECJ /4 the modified Josephson energy due to the coupler and E iC the charging
energy of transmon i.

We obtain a Hamiltonian following the procedure outlined in Sec. 4.6.2 and Ref. [333] in which
we quantize the circuit shown in Fig. 4.1 (a) and retain terms in the expansions of the energy
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potentials of the SQUIDs to fourth-order. We can obtain a simplified Hamiltonian given by

H = ωA â† â +
αA
2
â† â† â â + ωB b̂†b̂ +

αB
2
b̂†b̂†b̂ b̂

+ J1(â†b̂ + â b̂†) + J2(â†b̂† + â b̂) +V â† â b̂†b̂ (4.3)
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where J1 is the strength of the hopping interaction, J2 the squeezing,V the cross-Kerr, αi ≈
−E iC the anharmonicity, and we have neglected higher order terms which are far off-resonant
from the relevant dynamics of the measurements performed.

Figure 4.1: Device and measurement scheme. (a) Circuit diagram for the device. On the left and right
sides are two flux-tunable transmon qubits consisting of asymmetric SQUIDs with gate capacitances to
the ground. The tunable coupler in the center consists of a coupling capacitor and symmetric SQUID. (b)
Optical microscope image of the device, including transmission line, readout resonators (R i ), drive lines
(Di ), flux lines (Φi ), two transmons (Q i ), and the tunable coupler. (c) Schematic of the experiment. The
flux incident on the coupler SQUID loop is modulated at either the difference or sum frequency of the
two transmons. (d) Optical microscope image of Qubit B.
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Under the Rotating Wave Approximation (RWA) and when the two transmons are brought into
resonance, the single-photon hopping and cross-Kerr effects are observable with strengths J1
andV , while the two-mode squeezing interaction is far off-resonant. In previous measure-
ments on this device, the single-photon hopping and cross-Kerr interactions were shown to
be highly tunable dependent on the choice of static coupler flux bias point with deep access
to the regime J1 > V [333]. Unfortunately, the region J1 < V was not clearly accessible due to
hybridization with a tertiary circuit mode (see Sec. 4.6.2) at the particular bias points at which
it was theoretically expected to be accessible. However, by parametrically modulating the flux
threading the SQUID loop of the coupler, we can access parameter regimes in which either the
photon hopping or two-mode squeezing terms can be selectively activated, as well as access
the region where J1,2 < V .

We consider the case in which the magnetic flux threading the coupler contains a static DC
component as well as a periodic AC component, where the total flux is given by

ΦC (t ) = ΦDC + ΦAC cos (ωm t ) (4.6)

andωm is the frequency of the modulation. Provided that the strength of modulation is small
relative to the bias point (sin (ΦDC ) ≫ sin (ΦAC )), we can insert Eq. 4.6 into Eq. 4.1 and obtain
a new expression for the Josephson energy of the coupler as

ECJ (ΦC (t )) ≈ ECJmax |cos
(
π

ΦDC
Φ0

)
− πΦAC

Φ0
sin

(
π

ΦDC
Φ0

)
cos (ωm t )|

√
1 + d 2

c tan2

(
π

ΦDC
Φ0

)
= ECJ ,DC + ECJ ,AC (t ) (4.7)

which is now comprised of a static term EC
J ,DC

and a time-dependent term EC
J ,AC

(t ) due to
the modulation.

After re-deriving the expressions for the hopping and two-mode squeezing interactions, it can
be shown that by modulating the coupler at the difference or sum frequencyωm = |ωA ±ωB |,
either interaction can be selectively activated for non-resonant oscillators as the coupling
strengths under modulation are modified to

J1 → [J1,DC + JAC (e i ωm t + e−i ωm t )](â†b̂e i (ωA−ωB )t + â b̂†e−i (ωA−ωB )t ) (4.8)

J2 → [J2,DC + JAC (e i ωm t + e−i ωm t )](â†b̂†e i (ωA+ωB )t + â b̂e−i (ωA+ωB )t ) (4.9)

where J1,DC , J2,DC are as in Eq. 4.4 and the strength of the modulated interaction may be
approximated as

JAC ≈ πΦAC
4
√

2Φ0
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)
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EACE
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ẼAJ Ẽ
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) 1/4

. (4.10)

After applying the RWA, we may choose to activate either interaction with strength JAC de-
pending on the frequency of modulation, while other terms not commensurate with the mod-
ulation become fast-rotating and play a negligible role in the system dynamics. The full form
of Eq. 4.10 and the contributions from higher order interactions are shown in Sec. 4.6.2.
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4.3. Observation of Parametrically Activated Couplings
In order to measure the strength of the couplings under time-periodic pumping, we modulated
the DC current supplied to the tunable coupler at a frequency ωm . From the full Hamiltonian,
the static component of the system under modulation can be written as

HDC = ωAa†a +
αA
2
a†a†aa + ωBb†b +

αB
2
b†b†bb +V a†ab†b (4.11)

with additional terms present depending on the frequency at which the coupler flux is modu-
lated. When modulating at the red sideband (RSB), we have

HRSB = HDC + H∆ (4.12)

H∆ = JAC (a†b + ab†) (4.13)

and when modulating at the blue sideband (BSB), we similarly obtain

HBSB = HDC + HΣ (4.14)

HΣ = JAC (a†b† + ab). (4.15)

Figure 4.2: Single-photon hopping interaction induced by red sideband flux modulation of the coupler.
(a) Change in normalized transmission amplitude while driving transmon B and sweeping the modula-
tion frequency of the DC signal incident on the tunable coupler through the red sideband of the two
oscillators. The black dashed lines are guides for the eye. The horizontal dashed line is the first tran-
sition frequency of transmon B, and the diagonal dashed line is (ωA − ωm )/2π . (b) Eigenfrequencies
obtained from fitting to the level repulsion model (green markers) and the normalized expectation value
of b̂ obtained from a numerical simulation of a quantum master equation for the system [218].
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In Fig. 4.2 we set ωA/2π = 6.471 GHz, ωB/2π = 4.713 GHz, ΦDC = 0.342Φ0 and performed two-
tone spectroscopy on transmon B while sweepingωm/2π through (ωA −ωB )/2π . As the mod-
ulation frequency approached the red sideband of the oscillators, we observed an avoided
crossing from which we extracted a single-photon hopping interaction strength of JAC /2π =
7.09 MHz and a cross-Kerr strength ofV /2π = −6.79 MHz by finding ®Φ = [ΦA,ΦB ,ΦDC ,ΦAC ].
Extracted parameters were determined by an analytical level repulsion model given observed
oscillator frequencies and interaction strengths, as well as by numerically simulating the sys-
tem Hamiltonian as outlined in Sec. 4.6.3. The magnitude of the observed splitting reflects the
strength of the exchange interaction between the two oscillators at the resonance condition
met under parametric modulation. The values of all parameters which comprise Eq. 4.12 were
calculated from ®Φ and are displayed in Table 4.1 shown in Sec. 4.6.3.

Figure 4.3: Two-mode squeezing interaction induced by blue sideband flux modulation of the coupler.
(a) Transmission amplitude while driving transmon A and sweeping the modulation frequency of the DC
bias incident on the tunable coupler through the blue sideband of the two oscillators. (b) The dashed
lines are the sum frequency resonance condition (ωm − ωB )/2π and the same shifted byV /2π . The
dotted lines are the eigenfrequencies of the system determined from fits of the data to the analytical
level attraction model outlined in the main text. The underlying spectrum is the normalized expectation
value of â obtained from a numerical simulation of a quantum master equation for the system [218].

Similarly, in Fig. 4.3 we set ωA/2π = 6.705 GHz, ωB/2π = 5.573 GHz and ΦDC = 0.214Φ0
and performed two-tone spectroscopy on transmon A while sweeping ωm/2π through (ωA +
ωB )/2π . As the pump frequency crossed the blue sideband, we observed features associated
with the phenomenon of level attraction occurring between the two oscillators. Following
an analytical model outlined in Sec. 4.6.3, we extracted a two-mode squeezing strength of
JAC /2π = 1.852 MHz and a cross-Kerr strength of V /2π = −9.161 MHz with the cross-Kerr
shifted transition additionally visible below the frequency of the primary oscillator response.
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In the level attraction region where frequency degeneracy of the eigenmodes is theoretically
predicted, we observed the primary resonance feature disappear. In this same region, we ob-
served the emergence of a dark dash in the transmission spectrum related to a loss of excited
state population in transmon A. This dash is shifted from the primary resonance feature by
V /2π and is associated with the swept microwave drive bringing the oscillator to its ground
state from the |11⟩ state populated by the parametric modulation. In Sec. 4.6.3, we discuss this
feature in more detail and provide additional numerical simulations of the change in system
state under simultaneous parametric modulation and microwave driving.

4.4. Coupling Regimes and Analog Quantum Simulations
Through the use of parametric modulation, we were able to observe interactions between two
nonlinear oscillators in coupling regimes which were previously inaccessible with this device
when changing the static flux bias point alone [333]. When modulating the flux through the
coupler, the strength of the single-photon hopping and two-mode squeezing interactions are
to first order linearly dependent on the amplitude of the modulation signal and thus can be
tuned to far lower or higher interaction strengths relative to the cross-Kerr for a wide range
of static biases. The dependence of the interaction strengths on bias point and modulation
amplitude is shown in Fig. 4.4, where the green region indicates the range of possible cross-
Kerr values depending on the flux bias points of the transmons and coupler. In contrast, the
grey region shows the values of JAC /2π for a range of modulation strengths.

While we demonstrated the ability to enter into this coupling regime, we were also able to ob-
serve two-mode squeezing interactions, which are typically far off-resonant and fast-rotating
in the frame of the oscillators. This interaction generates entangled signal and idler photon
pairs between the two systems and has been used to perform two-qubit gate (bSWAP) opera-
tions in the truncated qubit subspace [346, 380, 381]. The ability to activate this term enables
the tuning of XX-YY interactions between the oscillators, broadening the array of systems that
such devices can effectively simulate. The modulated strength is tunable over a wide range,
enabling the possibility for simulation of arbitrary XYZ spin-model Hamiltonians when coupled
with the controllability demonstrated by the XX+YY and ZZ interactions [343].

Prospects for bichromatic flux pumps are also promising, where phase differences between
simultaneously applied red and blue sideband pumps would allow for pure XX or YY inter-
actions. Such driven coupler schemes have been previously investigated in the context of
Floquet engineering, in which tunable and selectively activatable interactions are integral to
the proposed analog quantum simulation of Kitaev honeycomb models [343]. The nonstoquas-
tic terms which a parametrically modulated tunable coupler can contribute to the system are
also of great interest with respect to the study of possible quantum advantage over classical
approaches in annealing protocols [337, 382, 383].

In addition to the utility that transmon-based devices containing tunable couplers contribute
to the development of analog quantum simulators, the parametric interactions that we ac-
tivate provide insight into the dual phenomena of level repulsion and attraction. The red
and blue sideband measurements illustrate the ability to transition between coherent (real)
coupling and dissipative (imaginary) coupling without the use of coherence-dissipation en-
gineering but rather with an applied modulation pump. Such couplings have long been the
focus of study in magnonic, Bose-Einstein condensate, and optomechanical systems, typically



4.4. Coupling Regimes and Analog Quantum Simulations

4

73

operating in regimes where the nonlinearities of the oscillators are small [359, 360, 362–366,
368–370, 372, 379].

Figure 4.4: Interaction strengths and distinct response parameter regimes. (a) The calculated interaction
strengths as the DC flux bias point of the coupler is changed. The gradient of curves in green shows
the possible values of the cross-Kerr interaction for the range of ΦA,B ∈ [0.0, 0.5Φ0] at each value of
ΦDC . The gradient of curves in gray shows the values of single-photon hopping or two-mode squeezing
interactions for a range of modulation strengths between ΦAC = ΦDC /50 and ΦAC = ΦDC /10. The
diamond (V /2π) and cross (JAC /2π) markers indicate the extracted interaction strengths from Fig. 4.2
(red) and Fig. 4.3 (blue). (b), (c) The photon number expectation value for one mode of a system of two
coupled Kerr-nonlinear oscillators subject to a drive-induced two-mode squeezing interaction where
the strength of the interaction J2, detuning of the drive from the sum frequency resonance condition
δ , and nonlinearity α are varied relative to the loss rates of the oscillators κ . (d), (e) The second-order
correlation function of one of the oscillators as in (b), (c).

In the case of level attraction, a system of coupled linear oscillators exhibits a region of para-
metric instability with two exceptional points indicating the transition of the system to one
with complex eigenfrequencies with opposite-sign imaginary components. In this situation,
one eigenmode grows exponentially and becomes unstable while the other decays exponen-
tially. Such a situation arises only when the dissipation rates of the two oscillator modes are
commensurate and the coupling exceeds the oscillator decay rates [365]. For our two oscilla-
tors, the linewidths are each on the order of a few MHz for the flux points investigated, and the
coupling strength can be tuned to less than or greater than the dissipation rates for typical
transmon coherence times given the choice of modulation amplitude.

The same interaction was also previously observed between two coupled weakly nonlinear
modes of a SQUID-terminated coplanar waveguide resonator subject to flux modulation [384].
Nondegenerate parametric oscillations were observed when the system was driven beyond
the parametric instability threshold for a range of sufficient detunings and modulation strengths.
In this system, the self-Kerr and cross-Kerr couplings of the modes were much smaller than
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the decay rates, while the parametric response diagram for each mode is similar to those
of parametrically driven (single-mode squeezed) Kerr and Duffing nonlinear oscillators [384–
387]. Upon the application of an additional drive, such phase-degenerate oscillators can also
become injection-locked to the drive [384, 388, 389].

The main distinctions between the behaviour outlined above and what is shown in Fig. 4.3 are
that the oscillators measured are strongly nonlinear and that we do not observe a region of
parametric instability due to the low strength of the two-mode squeezing interaction relative
to the decay rates and self-Kerr nonlinearities of the oscillators. Further, our oscillators are
additionally cross-Kerr coupled which yields a frequency shift of the spectroscopic features.
In order to investigate these distinctions and better understand the contributions of the self-
Kerr and cross-Kerr terms to the phenomenon of level attraction between strongly nonlinear
oscillators, we numerically simulated both weakly and strongly nonlinear oscillators.

In Fig. 4.4(b-e), we show for one mode the photon number expectation values ⟨a†a⟩ and
second-order correlation function g (2) = ⟨â†2 â2⟩/⟨â† â⟩2 in a system of two Kerr-nonlinear
oscillators as in Eq. 4.14 where the correlated squeezing terms are set to zero, determined
from quantum master equation simulations [218]. We setV = −2κ and vary the strength of
the two-mode squeezing term J2 and detuning of the modulation frequency from the sum
frequency resonance condition δ for the case of weakly nonlinear oscillators α = 0.1κ and
strongly nonlinear oscillators α = 75κ . For the weakly nonlinear system, as the strength of the
two-mode squeezing interaction increases, the parametric response region, which provides
an increased photon number, shifts to large, negative detunings. Additionally, a sudden peak
in g (2) bounds the parametric response region from below, which is a known marker of a phase
transition in Kerr-nonlinear oscillators [390, 391].

In contrast, for the strongly nonlinear oscillators (i.e. transmon qubits), for J2 < EC and in a
region centered about the cross-Kerr shifted sum frequency resonance condition, the photon
number expectation and second-order correlation function remain below one. In this case,
the two-mode squeezing interaction acts effectively on the qubit subspace alone, generating
an XX-YY interaction. The large self-Kerr nonlinearities of the oscillators prevents the system
from reaching a parametric instability as in the case of the linear and weakly nonlinear two-
mode squeezed systems, instead generating a low photon number entangled state.

In Sec. 4.6.3, we also display the relative change in the occupation of the first two oscillator
energy levels with the self-Kerr and cross-Kerr terms included in the system Hamiltonian. We
find that the negative cross-Kerr nonlinearity shifts down the energy of the |11⟩ state, leading
to the appearance of a “ghost" level attraction window corresponding to the population being
driven out of the jointly excited state by the qubit drive, which the parametric modulation
populates.

4.5. Conclusion
We have demonstrated the operation of a transmon-based circuit containing a flux tunable
coupler in a way that allowed for access into different coupling regimes, including where the
cross-Kerr effect is the dominant interaction between two nonlinear oscillators. By paramet-
rically modulating the inductance of the coupler SQUID loop with an applied time-dependent
magnetic field, we were able to selectively activate either a single-photon hopping interac-
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tion or two-mode squeezing between two transmon qubits with strength tunable by choice of
DC flux bias point and the amplitude of modulation. In combination with previously reported
values of strong single-photon hopping interactions, this enables access to parameter regions
where J1,2 > V , J1,2 ≈V , and J1,2 < V [333].

This tunability allows for the simulation of various systems, including Ising ZZ, Bose-Hubbard,
and Heisenberg XXZ models, as in the qubit subspace these regimes are equivalent to (σXσX±
σY σY ) > σZ σZ , (σXσX ±σY σY ) ≈ σZ σZ , and (σXσX ±σY σY ) < σZ σZ [325, 326, 338, 343,
392, 393]. The ability to tune into and out of these regimes is of particular interest to the field of
analog quantum simulations, where such superconducting devices can be made to emulate a
variety of physical systems with solely in-situ control and a broad range of coupling strengths
achievable. Our model predicts that further measurements in which such couplers are modu-
lated to satisfy other resonance conditions should also activate more highly nonlinear effects
such as photon-pair tunnelling, correlated photon hopping, and photon-pressure interactions.
The exchange of SQUIDs for asymmetric nonlinear elements such as SNAILs would also enable
the simulation of more exotic interactions and enable tunability of several device parameters,
such as the self-Kerr, which can be tuned from negative to positive values [195, 394–396].

In addition, we observed level attraction in a system of coupled strongly nonlinear oscillators
under tunable blue sideband modulation. The behaviour of the system differs from previ-
ously established theoretical descriptions and experimental observations of linear systems
exhibiting level attraction [365, 369, 372]. Using an extension of existing methods and numer-
ical simulations, we were able to determine that the cross-Kerr coupling yields an additional
shifted spectroscopic feature of level attraction. Under bichromatic 2ωA and 2ωB pumps, such
a system would also be useful for investigating stabilized dissipation in driven Bose-Hubbard
systems containing entangled modes [397]. Further, the independently tunable strengths of
the photon hopping and two-mode squeezing interactions should allow for investigation into
novel parametric interaction regimes such as those studied in optomechanical systems [376,
398].
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oretical analysis. M.K. designed and fabricated the device in the group of Leo DiCarlo. J.D.K.,
F.F.S, and M.K. conducted the measurements. J.D.K and G.B. performed the simulations. C.A.P.
and G.A.S. supervised the project. J.D.K. wrote the chapter with input from the authors. The au-
thors acknowledge financial support by the EU program H2020-FETOPEN project 828826 Quro-
morphic. This contribution statement is tentative and may be changed prior to publication of
these results.
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4.6. Supplementary Information
4.6.1. Experimental Setup

Figure 4.5: Measurement setup for the experiment. (a) Wiring configuration from the top of the dilution
refrigerator to the device. The input and flux lines are attenuated before reaching the device, while the
outgoing signal passes through two isolators and is amplified before returning to the network analyzer.
(b) Wiring configuration at the instrument rack. The device probe and drive signals are sent from ports 1
and 3 of the vector network analyzer (VNA), while the returning signal is further amplified before arriving
at port 2. The DC signals sent to the flux lines are produced at a current source, with the coupler current
modulated by a signal from an additional microwave source. The microwave source and VNA share a
common reference clock signal. (c) Legend for microwave components.

The device in Fig. 4.1 (b) of the main text contains a transmission line with input and output
for probing and driving of the qubits, two coplanar waveguide readout resonators, two trans-
mon qubits with dedicated flux lines and (unused) drive lines, and the tunable coupler with a
dedicated flux line. The device is the same as in Ref. [333], with elements defined on a NbTiN
film deposited on a Si substrate, with the chip wirebonded to a printed circuit board mounted
inside of a copper box, and the entire unit housed in a mu-metal shield for protection against
external magnetic fields.

The measurement setup shown in Fig. 4.5 consists of a Keysight PNA N5222A network ana-
lyzer connected to the device transmission line for spectroscopy measurements as well as a
Keysight E8257D signal generator connected to a bias tee to supply the modulation signal to
the coupler flux line. The input and output lines had DC blocks installed at room temperature.
The DC currents were supplied by a QuTech SPI Rack S4g current source module to the three
flux lines. For amplification of the signal returning from the circuit, we used the Low Noise
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Factory cryogenic amplifier LNF-LNC4_8C and a room temperature Narda-MITEQ amplifier in
the 4-8 GHz range. The drive powers quoted in the main text are those at the output of the
measurement instruments.

4.6.2. Circuit Quantization
We begin by treating the circuit in the harmonic limit by neglecting the nonlinear contributions
of the inductors. We can construct a Lagrangian for our circuit by defining the node basis as
ΦT =[Φ1,Φ2,Φ3,Φ4] with

L = EC − EL =
1
2
¤ΦT [C] ¤Φ − 1

2
ΦT [L−1]Φ (4.16)

where the capacitance and inductance matrices are written as

[C] =
©«
C + C1g −C 0 0
−C C + C2g + Cc −Cc 0

0 −Cc C + C2g + Cc −C
0 0 −C C + C1g

ª®®®¬ (4.17)

[L−1] =
©«

1/L1 −1/L1 0 0
−1/L1 1/L1 + 1/Lc −1/Lc 0

0 −1/Lc 1/L2 + 1/Lc −1/L2
0 0 −1/L2 1/L2

ª®®®¬. (4.18)

We perform a change of basis to express the first two normal modes of the circuit as what will
become the transmon modes, ΨA ≡ Φ1 − Φ2 and ΨB ≡ Φ3 − Φ4. There exists a third normal
mode associated with the coupler, as charge oscillations “slosh" across the circuit. We define
this mode as ΨS ≡ 1

2 (Φ1 + Φ2 − Φ3 − Φ4). There also exists a final zero-frequency “rigid"
mode associated with the charging of all capacitors in unison, defined as ΨR ≡ 1

2 (Φ1 + Φ2 +
Φ3 + Φ4). The change of basis from ΦT to ΨT =[ΨA,ΨB ,ΨS ,ΨR ] leads to the redefinition of the
capacitance matrix as

[C′] =

©«
C1g +C2g

8 0 C1g −C2g
8

C1g −C2g
8

0 C1g +C2g +2Cc
8

−C1g +C2g +2Cc
8

C1g −C2g −2Cc
8

C1g −C2g
8

−C1g +C2g +2Cc
8 C + C1g +C2g +2Cc

4 −Cc4
C1g −C2g

8
C1g −C2g −2Cc

8 −Cc4 C + C1g +C2g +2Cc
4

ª®®®®®¬
. (4.19)

We now treat the inductors as nonlinear elements with energy in reduced units of flux quanta,
ψi = 2π

Φ0
Ψi . After defining the conjugate momenta as Q i = ∂L

∂ψi
, we perform a Legendre

transformation and obtain

H =
Q 2
A

2C̃
+
Q 2
B

2C̃
+
Q 2
S

2C̃S
+
Q 2
R

2C̃R
+
CcC

2
1g

4Det [C′]
QAQB +

1

C̃ABS
QS (QA − QB )

+
1

C̃ABR
QR (QA + QB ) − EAJ cos(ψA) − E BJ cos(ψB ) − ECJ cos

(ψA −ψB
2

−ψS
)

(4.20)
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where

C̃ = 4Det [C′][C1gC2g (C1g + C2g ) + C1gCc (C1g + 2C2g )

+ C (C1g + C2g )(C1g + C2g + 2Cc )]−1 (4.21)

C̃S = 2
C1g (C2g + 2Cc ) + C (C1g + C2g + 2Cc )

4C + C1g + C2g + 2Cc
(4.22)

C̃R = 2
C1gC2g + C (C1g + C2g )

4C + C1g + C2g
(4.23)

C̃ABS = 2
C1g (C2g + 2Cc ) + C (C1g + C2g + 2Cc )

C2g − C1g + 2Cc
(4.24)

C̃ABR = 2
C1gC2g + C (C1g + C2g )

C2g − C1g
(4.25)

Det [C′] =
C1gC2g + C (C1g + C2g )

4(C1g (C2g + 2Cc ) + C (C1g + C2g + 2Cc ))
. (4.26)

We can neglect the rigid mode entirely by shifting the charging energies of the transmons and
coupler, account for the addition of inductive energy from the coupler to each transmon by
taking E iJ → E iJ + ECJ /4 from here on, and express the Hamiltonian in the number basis as
N = 1

2eQ . We expand the cosine terms above and retain terms to fourth order, obtaining
H = HT + HS where

HT = 4ECN 2
A +

EAJ
2
ψ2
A −UAψ4

A
+ 4ECN 2

B +
E BJ
2
ψ2
B −UBψ4

B + ECC NANB

+
4e2

C̃ABS
NS (NA − NB ) −

ECJ
4
ψAψB −

ECJ
2

(ψA −ψB )ψS

−
ECJ
64
ψ2
Aψ

2
B +

ECJ
96

(ψ3
A
ψB +ψAψ3

B ) −
ECJ
16

(ψA −ψB )2ψ2
S +

ECJ
12

(ψA −ψB )ψ3
S

(4.27)

HS = 4E SCN
2
S +

ECJ
2
ψ2
S −

ECJ
24
ψ4
S

(4.28)

where HT is the transmon Hamiltonian, HS is the “sloshing" mode Hamiltonian, e is the

electron charge, EC = e2

2 ( 1
˜C
−

˜CR
˜C 2
ABR

), EC
C

= e2(
CcC

2
1g

4Det [C ′] −
˜CR

˜C 2
ABR

), E S
C

= e2

2 ˜CS
, and Ui =

E iJ/24 + ECJ /384.

We can now move to the harmonic oscillator basis by defining

ψA =
(
2
EC

EAJ

) 1/4

(â† + â) (4.29)

ψB =
(
2
EC

E BJ

) 1/4

(b̂† + b̂) (4.30)
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ψS =
(
2
E S
C

ECJ

) 1/4

(ŝ† + ŝ ) (4.31)

NA = i
(
EAJ

32EC

) 1/4

(â† − â) (4.32)

NB = i
(
E BJ

32EC

) 1/4

(b̂† − b̂) (4.33)

NS = i
(
ECJ

32E S
C

) 1/4

(ŝ† − ŝ ) (4.34)

for the two transmons A and B, and the sloshing mode given by S. The terms proportional to
N 2,ψ2, andψ4 describe uncoupled Duffing oscillators. The interaction terms solely between
the transmons may be expressed in this basis as

ECC NANB =
(
EAJ E

B
J

32E 2
C

) 1/4

[(a†b + ab†) − (a†b† + ab)] (4.35)

ECJ
64
ψ2
Aψ

2
B =

ECJ EC

8
√
EAJ E

B
J

[a†ab†b +
1
2

(a†a + b†b) +
1
4

(a†2b2 + a2b†2)]

+
1
4

(a†2b†2 + a2b2) +
1
4
a†a(b†2 + b2) +

1
4
b†b(a†2 + a2)] (4.36)

ECJ
96
ψ3
A
ψB =

ECJ EC

48((EAJ )3E BJ )1/4
[(a†b + ab†) + (a†b† + ab) + 2(a† + a)a†a(b† + b)

+ (a†3b + a3b†) + (a†3b† + a3b)] (4.37)

ECJ
96
ψAψ

3
B =

ECJ EC

48(EAJ (E BJ )3)1/4
[(a†b + ab†) + (a†b† + ab) + 2(a† + a)b†b(b† + b)

+ (a†b3 + ab†3) + (a†b†3 + ab3)] (4.38)

while those also involving the sloshing mode are written as

NS (NA − NB ) =
4e2

C̃ABS
[
(
ECJ E

A
J

32E S
C
EC

) 1/4

((a†s + as†) − (a†s† + as ))

−
(
ECJ E

B
J

32E S
C
EC

) 1/4

((b†s + bs†) − (b†s† + bs ))] (4.39)

ECJ
12

(ψA −ψB )ψ3
S

=
1
6

(ECJ EC (E SC )3)1/4[
1

(EAJ )1/4
(a†s 3 + as†3) +

1
(E BJ )1/4

(b†s 3s + bs†3)]

(4.40)
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ECJ
16
ψ2
Aψ

2
S =

1
4

√√
ECJ ECE

S
C

EAJ
(a†a + s†s + 2a†as†s ) (4.41)

ECJ
16
ψ2
Bψ

2
S =

1
4

√√
ECJ ECE

S
C

E BJ
(b†b + s†s + 2b†bs†s ) (4.42)

ECJ
8
ψAψBψ

2
S =

1
2

√
ECJ ECE

S
C

(EAJ E
B
J )1/4

(s†s +
1
2

)[(a†b + ab†) + (a†b† + ab)]. (4.43)

Notably, the sloshing mode contributes small corrections to the transmon frequencies and
hopping/squeezing interactions, as well as cross-Kerr effects between the transmons and the
sloshing mode. Most transitions of the sloshing mode are far off-resonant from the transmon
transition frequencies. However, the 0-3 transition of the sloshing mode is near-resonant for
ΦDC ≈ 0.3Φ0.

In the context of Eq. 4.12 and Eq. 4.14 from the main text, we then have for i∈ {A,B}:

ωi =
√

8E iJEC + αi −
1
4

√√
ECJ ECE

S
C

E iJ

(4.44)

αi = −EC
[
1 −

ECJ
16

(
1
E iJ

− 1√
EAJ E

B
J

)]
(4.45)

ωS =
√

8ECJ E
S
C

+ αS −
1
4

√
ECJ ECE

S
C

(
1√
EAJ

+
1√
E BJ

)
(4.46)

αS = −E SC (4.47)

V = −
ECJ EC

8
√
EAJ E

B
J

(4.48)

JAC =
πΦAC
8Φ0

ECJmax sin
(
πΦDC

Φ0

) [(
4E 2

C

EAJ E
B
J

) 1/4

− EC
12

(
1

((EAJ )3E BJ )1/4
+

1
(EAJ (E BJ )3)1/4

)
−

(
E 2
C (E S

C
)2

EC 2
J EAJ E

B
J

) 1/4]
(4.49)

JnA =
πΦAC
24Φ0

ECJmax sin
(
πΦDC

Φ0

)
EC

(
1

(EAJ )3E BJ

) 1/4

(4.50)

JnB =
πΦAC
24Φ0

ECJmax sin
(
πΦDC

Φ0

)
EC

(
1

EAJ (E BJ )3

) 1/4

(4.51)
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JnS =
πΦAC

2Φ0
ECJmax sin

(
πΦDC

Φ0

) (
E 2
C (E S

C
)2

(ECJ )2EAJ E
B
J

) 1/4

(4.52)

Vi S = − 1
2

√√
ECE

S
C

ECJ

E iJ

(4.53)

where all E iJ for the transmons and coupler are dependent on their static flux biases. For
simulations of the system, we use EAJ /h = 21.97GHz, E BJ /h = 21.02GHz, ECJ /h = 7.75GHz,
dc = 0.051, C1 = 39fF, C2 = 39fF, C1g = 61fF, C2g = 87fF, and Cc = 20fF where E iJ are the
values at the zero flux points [333]. For E iJ ≫ E iC as is the case for this device, Eq. 4.49 may
be approximated as Eq. 4.10 given the small contributions to the coupling of the second and
third terms. When simulating the system, the full expressions were used.

4.6.3. Extraction of Couplings
We begin with the full system Hamiltonian given in Sec. 4.6.2. Most terms are fast-rotating
in the frame of the drives, but the choice of modulation frequency can selectively activate
certain interactions. Whether modulating at the sum or difference frequency ωm = ωA ± ωB ,
we retain the static terms which account for the frequencies, self-Kerr, and cross-Kerr coupling
of the two transmons. Neglecting higher-order interactions with negligible effect and the small
contributions of the sloshing mode, we are left with two Kerr-nonlinear oscillators

HDC = ωAa†a +
αA
2
a†a†aa + ωBb†b +

αB
2
b†b†bb +V a†ab†b . (4.54)

When modulating at the difference and sum frequencies, we have in addition, the couplings
given by

H∆ = (JAC + JnAa
†a + JnB b

†b + JnS s
†s )(a†b + ab†) (4.55)

HΣ = (JAC + JnAa
†a + JnB b

†b + JnS s
†s )(a†b† + ab) (4.56)

which includes the occupation-dependent modifications of the single-photon hopping and
two-mode squeezing interactions. In determining the total interaction strength under red and
blue sideband modulation, we consider J̃AC = JAC + JnAnA + JnB nB + JnS nS where n i are the
photon number expectation values of each mode, simply fitting to the total strength of the
observed interaction.

The presence of crosstalk between the flux ports could allow for the modulation of each of
the two transmon SQUIDs, which would produce contributions to the interactions generated
by the coupler alone [399, 400]. Thus, J̃AC is the total strength of the hopping and squeezing
interactions which we observe upon modulation of the flux signal incident on the coupler
SQUID, however the magnitude of the observed interaction is likely not entirely due to the
coupler alone. In previous measurements on this device reported in Ref. [333], the DC flux
crosstalk was found to be approximately 10% between the flux ports of the coupler and those
of each transmon.

We first compare our measurements to an analytical equation following the method of Ref.
[365]. For the case of red sideband modulation, we use the real component of the level repul-
sion equation, which yields the system eigenfrequencies

ω∆ =
ωA + ωB

2
±

√
(
ωA − ωB

2
)2 + J̃ 2

AC
(4.57)
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Table 4.1: Parameters determined from comparison of spectroscopy measurements to level repulsion
and level attraction models, as well as numerical simulations for the data shown in Fig. 4.2 and Fig. 4.3.

Extracted Parameters
Name Variable RSB Value BSB Value

Frequency of Transmon A ωA/2π 6.471 GHz 6.705 GHz
Frequency of Transmon B ωB/2π 4.713 GHz 5.573 GHz

Anharmonicity of Transmon A αA/2π −244.053 MHz −241.252 MHz
Anharmonicity of Transmon B αB/2π −237.811 MHz −236.367 MHz

Linewidth of Measured Transmon κ/2π 2.439 MHz 1.299 MHz
Flux Bias of Transmon A ΦA/Φ0 0.113 0.016
Flux Bias of Transmon B ΦB/Φ0 0.479 0.320

Flux Bias of Coupler ΦDC /Φ0 0.342 0.214
AC Modulation Strength ΦAC ΦDC /18.002 ΦDC /29.100

Hopping / Squeezing J̃AC /2π 7.090 MHz 1.852 MHz
Cross-Kerr V /2π −6.787 MHz −9.161 MHz

and under blue sideband modulation, the eigenfrequencies for level attraction are given by

ωΣ =
ωA + ωB

2
±

√
(
ωA − ωB

2
)2 − J̃ 2

AC
. (4.58)

Following Ref. [365], we can expand on Eq. 4.58 by including the self-Kerr and cross-Kerr terms
to the system Hamiltonian. For oscillator A, these simply shift the frequency ωA → ωA +
αAnA +V nb and vice-versa for oscillator B. Then, when the two-mode squeezing interaction
is applied at the appropriate frequencies, we expect to observe regions of level attraction
at frequencies ωΣ shifted by the self-Kerr and cross-Kerr nonlinearities dependent on the
oscillator states. The secondary set of eigenfrequencies shown in Fig. 4.3 reflects this shifted
feature. Then, using Eq. 4.57 and 4.58, we obtain the coupling strengths shown in Table 4.1.

When performing the numerical simulations with QuTiP, we obtain the expectation value of the
photon annihilation operator for either mode as well as the state occupation probabilities for
the system subject to a driveHd = ϵd (a†e−i ωd t +ae i ωd t ) when measuring qubit A and similarly
Hd = ϵd (b†e−i ωd t + be i ωd t ) for qubit B. The time evolution of the system is calculated under
driving while sweeping the modulation frequency through either the red or blue sideband. The
data for the full time evolution is then used to calculate the relevant expectation values once
the system has reached a steady state, which is compared with the results of the analytical
equations in Fig. 4.2 and Fig. 4.3.

Below are the results of numerical simulations performed with QuTiP, which show the relative
change in the population of each state spanned by the ground and first excited states of the
two oscillators as functions of drive and modulation frequency for red and blue sideband
modulation [218]. The relative change is shown in arbitrary units, given that the change in
population is dependent on the choice of qubit drive power in the simulation, which has not
been fitted to the experimental data. The purpose of the qubit drive in these simulations is to
reveal in a probative manner the effects of the couplings activated by parametric modulation,
which were determined and shown in the main text of the chapter.
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Figure 4.6: The relative change in population for each of the joint two-qubit states as predicted by QuTiP,
given the parameters in Fig. 4.2 and with a small thermal occupation of each oscillator. Around the
region of the avoided crossing, there is a relative increase in the |01⟩ state as expected, correlated with
a relative decrease in |01⟩ populated by the drive away from the RSB modulation resonance condition.
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Figure 4.7: The relative change in population for each of the joint two-qubit states as predicted by QuTiP,
given the parameters in Fig. 4.3 and with a small thermal occupation of each oscillator. Around the BSB
modulation frequency, which activates the two-mode squeezing interaction, there is a relative increase
in the |00⟩ and |01⟩ populations and an associated decrease in the |10⟩ and |11⟩ populations at the
cross-Kerr shifted resonance condition. When the system is modulated on the BSB, driving at the cross-
Kerr shifted frequency induces a relative population transfer down from the higher-level state occupied
by the modulation.
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Spectroscopic Observation of a

Few-Photon Parametric State in a
Kerr Nonlinear Oscillator

If you want to be a different fish,
you’ve got to jump out of the school.

Captain Beefheart

Driven-dissipative nonlinear oscillators have been utilized for a variety of important applica-
tions ranging from parametric amplification for quantum-limited signal detection to analog
quantum simulations and digital quantum computation. The nonlinear oscillators frequently
employed in Josephson junction-based quantum circuits continue to be the focus of physical
inquiry beyond their practical applicability. Here, we present the response of a Kerr nonlinear
oscillator to an all-microwave bichromatic two-photon drive and the associated dynamical
phase transition. We analyze our results with a theoretical model derived from the classical
parametrically driven Duffing oscillator and perform quantum master equation simulations,
finding discrepancies between our results and those predicted by semiclassical methods.

J. D. Koenig, O. Ameye, S. Lécuyer-Seguineau, G. C. Arends, C. A. Potts, O. Zilberberg and G.A. Steele, Spectroscopic
Observation of a Few-Photon Parametric State in a Kerr Nonlinear Oscillator, in preparation (2024).
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5. Spectroscopic Observation of a Few-Photon Parametric State in a Kerr Nonlinear

Oscillator

5.1. Introduction
Driven-dissipative Duffing and Kerr nonlinear oscillators have a long history of physical study
across a wide variety of fields, including nanomechanics, optics, electronics, and magnon-
ics. [401–413]. These nonlinear oscillators are also ubiquitous in superconducting quantum
circuits, from readout resonators to parametric amplifiers and transmon qubits. The vast dis-
parity in exhibited behaviour and platforms with which these oscillators are realizable, along
with their highly engineerable characteristics, couplings to other systems, and implementable
driving and tomography schemes has sustained decades-long research interest in terms of
both practical applications, quantum information processing, and inquiries into fundamental
nonlinear and quantum physics [111, 116, 118, 414–421].

One defining parametrization of Kerr oscillators is the ratio of nonlinearity K to damping
κ , with transmon qubits often used for superconducting quantum computation having high
nonlinearity and low damping. In contrast, the opposite is true for the Josephson parametric
amplifier (JPA) used for quantum noise-limited amplification and detection of weak signals
[415, 416, 422, 423]. While devices operating in these two extremes have enjoyed a high degree
of utility, the intermediate regime of nonlinearity and damping which includes the single-
photon Kerr regime is also of physical interest given the ability to induce photon blockade,
generate Schrödinger cat states, and serve as an alternative platform for quantum information
processing and analog quantum simulation [191, 358, 424–429].

Driven-dissipative Duffing and Kerr nonlinear oscillators, especially those parametrically pumped,
have been previously studied in contexts ranging from the generation of long-lived metastable
states, observations of dissipative phase transitions, symmetry breaking and chaotic behaviour,
as well as have provided insight into the nature of classical versus quantum transitions [385,
387, 429–442]. In particular, the parametrically driven Kerr oscillator is known to exhibit rich
physics both near and above the parametric threshold, with proposals to use such systems to
prepare superpositions of quasienergy states, implement Ising models, and enable dissipation-
induced dynamical phase transitions [358, 443–445].

In this work, we observe a parametrically pumped Kerr nonlinear oscillator as it is driven
into a parametric state. In this regime, the oscillator response is strongly modified about the
frequency of the parametric tone, and we observe exceptional-point-like behaviour as the
pump is swept in frequency. This provides evidence of the occurrence of a dynamical phase
transition characterized by an exchange of the signal and idler modes about the parametric
tone before and after the system is driven into a parametric state [445, 446]. We find agreement
between this system and a rescaled effective model derived from the classical parametrically
driven nonlinear oscillator which determines the response of the system under a variety of
parametric drive strengths and detunings.

5.2. Device and Bichromatic Driving
Our device is a nonlinear microwave circuit consisting of a superconducting coplanar waveg-
uide resonator with an embedded Josephson junction. A false-color micrograph of the device
is shown in Fig. 5.1 (c) with a zoom-in of the Josephson junction in Fig. 5.1 (d). We can model the
device, keeping terms up to fourth order, as a quantum Duffing oscillator with the Hamiltonian

ĤD/h̄ = ω0 â
† â + β (â† + â)4 (5.1)



5.2. Device and Bichromatic Driving

5

87

Figure 5.1: System and schematic of the experiment. (a) The oscillator is realized by a superconducting
coplanar waveguide cavity with an embedded Josephson junction. (b) Two coherent microwave drives
are applied to the device, with frequency spacing ∆12 and detuning of the midpoint of the drives from
the oscillator resonance by δ . (c) A false color optical micrograph of the coplanar waveguide (blue) and
Josephson junction (red). (d) The Josephson junction connects the two segments of the waveguide.

where ω0 is the resonance frequency of the oscillator and β is the Duffing nonlinearity [215].
In this work, we focus on the third eigenmode of this resonator, which was engineered to have
a nonlinearity slightly larger than its damping κ . We neglect the couplings of this mode to
the other resonator normal modes, given that they are far detuned from the drives we apply
in the experiment. Thus, their contributions to the system dynamics average out in a frame
rotating at the oscillator frequency under the rotating wave approximation (RWA).

As depicted in Fig. 5.1, the nonlinear cavity is capacitively coupled on one side to a transmission
line in a side-coupled geometry through which we drive and probe the system and monitor
its output field. When measuring the transmission coefficient under a weak probe tone of
frequency ωpr, the theoretically expected response is a dip in transmission with a Lorentzian
lineshape centered at ω0 given by

S21 = 1 − κe

κ + 2i (ωpr − ω0) (5.2)

where the linewidth is set by the total damping or decay rate κ = κi + κe = 2π × 322 kHz,
where κe = 2π × 275 kHz and κi, κe are the internal and external decay rates, respectively.
In this experiment, we apply two microwave drives of frequencies ω1 and ω2 to the system,
with the drives separated by a spacing ∆12 = ω2 − ω1. It has been previously shown that
such a bichromatic scheme can be used to generate a parametric drive on the oscillator [215,
217]. In this scheme, illustrated in Fig. 5.1 (b), we parameterize our driven system in terms of
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the detuning δ of the midpoint of the drives ωp from the oscillator, where δ = ωp − ω0 =
(ω1+ω2)

2 − ω0. Given the nonlinearity of the Josephson junction, the effect of these drives is to
modulate the inductance of the junction near twice the resonance frequency of the oscillator,
which realizes an effective two-photon pump or parametric drive of strength λ in a frame
rotating at the parametric drive frequency ωp.

At low bichromatic drive powers, the strength of the two-photon pump is insufficient to gen-
erate any parametric response in the oscillator. However, the oscillator response to each
individual drive may be observed, as shown in Fig. 5.2 (a). As the two drives are swept in
frequency at equal fixed powers, the cavity frequency shifts due to its nonlinearity as the in-
tracavity photon number n = ⟨â† â⟩ increases as a result of the nearby drives. Such an effect
is well understood in the Kerr nonlinear oscillator (KNO), to which the Duffing oscillator in Eq.
5.1 may be well approximated for |β |≪ ω0. The Hamiltonian of the KNO is given by

ĤK/h̄ = ω̃0 â
† â + K â† â† â â (5.3)

where ω̃0 = ω0−2K = 2π × 6.5477 GHz andK = 6β ≈ 2π × -523 kHz is the self-Kerr nonlinearity.
The oscillator frequency is then shifted by nK from its intrinsic undriven value. A second
spectroscopic feature (the idler) appears as a peak in |S21 |, which can be seen in Fig. 5.2 (a),
(b) on the opposite side of each drive with respect to the shifted oscillator frequency. Due to
the interaction of the probe tone and drive with the KNO, two sidebands are generated at the
shifted signal frequency and symmetrically spaced idler frequency, which are generated via a
four-wave mixing process [374, 447].

5.3. Spectroscopy of a Parametric Phase State
As the powers of the drives are increased, the frequency shift of the oscillator due to each
nearby drive becomes more pronounced, and a new feature appears at the midpoint of the
drives visible in Fig. 5.2 (b). Under the RWA and in a frame rotating at ωp, we can rewrite the
above Hamiltonian as the Cassinian or Kerr parametric oscillator (KPO) Hamiltonian given by

ĤKPO/h̄ = −∆eff â
† â + K â† â† â â +

λ

2
â†2 +

λ∗

2
â2 (5.4)

where ∆eff is the effective detuning of the oscillator due to the drives and we have a parametric
drive frequency detuning δ̃ = ω̃0 − ωp from the undriven oscillator frequency. Given that the
oscillator experiences a frequency shift due to the two drives, the full expression of Eq. 5.4 is
given in Sec. 5.6.2.

From the KPO Hamiltonian, we can calculate the eigenvalues of the dynamical matrix describ-
ing the excitation spectrum of the system, which determines the fluctuations around extremal
points of the quasipotential defined by the above Hamiltonian [445]. These complex eigenval-
ues can be written as

ωKPO,0 = ± 1
2

√
∆2

eff − λ2 (5.5)



5.3. Spectroscopy of a Parametric Phase State

5

89

Figure 5.2: Observation of parametric oscillations in a bichromatically driven KNO. (a) The oscillator is
probed by a weak signal at frequency ωpr detuned from the undriven oscillator resonance frequency
by ∆0 = ωpr − ω̃0 and bichromatically driven with a swept detuning of the center of the drives δ̃ , with
power at the output of the generator Pout = -20 dBm and drive spacing ∆/2π = 80 MHz. When each
component of the bichromatic drive is far detuned, the linear response of the oscillator to the weak
probe is a dip in the transmission magnitude |S21 |. However, as either drive approaches resonance, the
oscillator bifurcates, and its frequency shifts with increasing intracavity photon number. In addition to
the frequency-shifted signal mode, a second idler mode emerges symmetrically about the nearby drive
as a peak in |S21 |, resulting from a four-wave mixing process between the probe tone and drive tone with
the two sidebands generated by the cavity nonlinearity. (b) As the strengths of the two drives increase
to Pout = -8 dBm, a modification of the oscillator response is observed near the midpoint of the drives.
(c) At stronger drive powers Pout = 12 dBm, as the frequency of the midpoint of the drives is swept
through the oscillator resonance, the response sharply narrows at the frequency of the parametric drive
ωp where each component of the bichromatic drive is positioned at ωp ± ∆12/2 with ∆12/2π = 200 MHz
yielding λ/2π = 686 kHz. The detunings δ̃ where the modified oscillator response is observed are in
good agreement with the drive parameters for which our rescaled effective model predicts a parametric
response, as discussed in Sec. 5.6.2.
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for the zero-amplitude (non-parametric) state and

ωKPO,par = ±2
√
λ(∆eff + λ) (5.6)

for the parametric (bistable) state. These eigenvalues provide insight into the stability of the
system as well as the frequencies of the signal and idler modes under parametric driving.
These eigenvalues fully determine which parametric drive detunings and strengths will pro-
duce a parametric response from the oscillator, with the zero-amplitude state dynamically
unstable for |λ | > |∆eff | which yields exceptional points in the spectrum of the oscillator. The
non-equilibrium stationary states which can be determined by this eigenvalue analysis have
also been found to be quantum metastable states in certain parameter regimes [438, 448].

Upon closer inspection of this feature at the midpoint of the bichromatic drives in Fig. 5.2 (c),
we observe the effect of the parametric driving on the oscillator. As ωp nears the parametric
resonance condition, the signal and idler modes appear to converge to a sharp dip in trans-
mission, and we observe a narrow response feature at the frequency of the parametric drive.
Symmetrically spaced about the excitation atωp, a dip and barely-visible peak in the transmis-
sion are additionally observed. As ωp is further detuned, the signal and idler modes reappear
swapped to opposite sides of the parametric drive frequency, following a small window of
detunings where all five spectroscopic features are visible concurrently.

A similar effect has been previously observed in coupled KPOs subject to sum frequency driv-
ing, which induced a two-mode squeezing interaction (nondegenerate parametric oscillation)
between the oscillators. It was shown that upon the application of an additional near-resonant
drive, either mode became injection locked to the frequency of the secondary drive within a
narrow window, while with a difference frequency drive, parametric locking was observed [384,
389]. In our system, we instead observe the formation of a distinct parametric state in which
the response of a single KPO appears to converge to synchronize in frequency with the pump
at ωp, while in reality, it is driven into a parametric state with eigenfrequencies spaced about
the midpoint of the bichromatic drives [445].

5.4. Occurrence of a Dynamical Phase Transition
A theoretical analysis of the system for the applied parametric drive detunings and strength
in Fig. 5.2 (c) shows that the signal and idler sidebands at positive and negative frequencies
relative toωp correspond to the nondegenerate imaginary parts of the KPO Hamiltonian eigen-
values [445]. In contrast, the degenerate real parts relate to the decay rates of each sideband
mode. When a KPO is driven into a squeezed state, the imaginary parts become degenerate
and zero-valued, while the real parts diverge and become nondegenerate. This nondegener-
acy of the decay rates of the two modes is indicative of phase-dependent gain of the KPO as
the steady-state fluctuations become overdamped in this parametric locking regime [445].

For low dissipation, the KPO would ordinarily acquire at least one positive real eigenvalue,
which causes the fluctuations to diverge and leads to instability as the system is driven be-
yond the parametric threshold into a region of the parameter space often referred to as an
Arnold tongue or parametric lobe. When the KPO is driven above the threshold, it can instead
acquire two stable steady-state solutions with equal amplitude and opposite phase, called
phase states, while the previous zero-amplitude steady-state becomes unstable. Such a tran-
sition is known as a pitchfork bifurcation or critical slowing down, where the bifurcation is
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supercritical as we enter the lobe and subcritical as we exit the lobe [216]. Depending on the
drive parameters (in particular the detuning), the system may maintain the zero-amplitude
state as a stationary state along with the phase states, in which case the system is said to
be tristable [385, 387]. In this region, the system has nondegenerate imaginary components
(frequency) and degenerate real components (decay rates) [445].

The effect of dissipation in the KPO is to push the parametric threshold to stronger drive pow-
ers, unveiling a region of the parameter space where the system can be parametrically driven
below threshold to produce phase-dependent gain. The stability brought to the system by
dissipative processes such as single-photon loss has led to the region to be called dissipation
stabilized and transitions through this region to be called dissipation-induced phase transi-
tions (DIPT) [445]. Within this region, which only exists in the presence of damping, the motion
of the oscillator under these squeezed fluctuations is locked to the parametric drive at ωp
as the detuning is swept. In contrast, on either side of the region, the signal and idler mode
frequencies are exchanged relative to ωp.

This exchange of the signal and idler modes is evidence that a dynamical phase transition has
occurred and is related to the fact that the monostable zero-amplitude states of the system
on either side of the dissipation-stabilized and parametric regimes are dynamically different.
For weak parametric drive strengths and large detunings, the KPO Hamiltonian potential re-
sembles a single well, with the stationary state the zero-amplitude monostable state of the
system. After the parametric drive is swept in frequency through the dissipation-stabilized
regime, the KPO Hamiltonian potential changes to an inverted well. Thus, after the transition
has occurred, the steady-state is the state which would be - in the absence of dissipation -
the excited state of the KPO driven into tristability [445].

For the response shown in Fig. 5.2 (c), the oscillator transitions through each of the regimes
discussed above. Initially, the system is monostable, but as the parametric drive is swept in
frequency, it briefly becomes squeezed, followed by an extended window where it is bistable
between approximately δ̃/2π = -7 MHz and -9 MHz. This bistability is resolved spectrally by
the appearance of sidebands on either side of the response at ωp, with the sideband corre-
sponding to a dip in transmission more visible. For a small range of detunings near δ̃/2π =
-9 MHz, the signatures of the inverted monostable state coexist with the bistable state, indi-
cating that the system becomes tristable. After this, the system is in the inverted monostable
state, evidenced by the exchange in signal and idler frequencies relative to ωp.

The exchange of frequencies and corresponding inversion of the steady-state potential after
undergoing such a dynamical phase transition can be seen as a sign inversion of the symplec-
tic norm of the excitation spectrum eigenvalues [216, 445]. This inversion can also be seen
as an excitation changing from particle-like to hole-like in nature or the transition from a
positive-mass particle in a well to a negative-mass particle in an inverted well [445]. A similar
phenomenon was recently observed in a strongly driven, weakly nonlinear optomechanical
system, where an inversion was observed as a change from a positive mass to an effective
negative mass oscillator [449].

In order to fully determine the dynamics of this system under bichromatic driving, we de-
rive an effective model from the semiclassical equations of a Duffing oscillator subject to two
drives with a fixed spacing ∆12. We may then solve for the steady-state response of the sys-
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Figure 5.3: Expected response of the system based on an effective model Hamiltonian (a) The semi-
classical stability diagram of the system given the device parameters and analytical steady-state so-
lutions of the mean-field equations shown in Sec. 5.6.2. The grey region indicates the dissipation-
stabilized regime, purple indicates bistability, blue indicates tristability, white indicates zero-amplitude
monostability, and green indicates inverted monostability. (b), (c) The second-order correlation function
g (2) = ⟨â†2 â2⟩/⟨â† â⟩2 and photon number expectation value ⟨â† â⟩ determined from a numerical sim-
ulation of the rescaled effective model Hamiltonian as discussed in Sec. 5.6.2. The dashed and dotted
lines indicate the approximate parametric drive strengths corresponding to the range of detunings which
provided a parametric response in the datasets shown in Fig. 5.2 (c) and in (d) of this figure, respectively.
(d) Spectroscopic response of the device with Pout = 16 dBm and ∆12/2π = 200 MHz yielding λ/2π = 993
kHz. (e) QuTiP spectroscopy simulation of the oscillator at the parametric drive settings indicated by the
green dotted lines in (b), (c).

tem as a function of drive parameters. From this model outlined in Sec. 5.6.2, we can obtain
the predicted parametric drive strength and drive-induced frequency shift of the oscillator in
terms of the nonlinearity and coherent fields of the two drives.

From this model, we can determine the number of stable and unstable solutions of the os-
cillator under bichromatic driving for any set of drive frequencies and strengths, as shown in
Fig. 5.3 (a). The white region marks the region with the monostable zero-amplitude steady-
state solution, the grey marks the region of dissipation-induced stability and squeezing, the
purple indicates the region of bistability in which the stationary states of the KPO are Ú2 sym-
metric phase states, blue marks the region of tristability, and green marks the region with the
inverted monostable state [445].

The black dashed and dotted lines in Fig. 5.3 (a) indicate the predicted range of detunings for
which a parametric response is produced in a measurement starting with ωp at positive de-
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tuning swept toward negative frequencies. We mark the beginning of the parametric response
as occurring at the force for which we observe a modification of the oscillator response spec-
troscopically, which is the point where the signal and idler modes converge. The semiclassical
effective model predicts that the device will continue to produce a parametric response to
large negative detunings, a result which is in disagreement with experimental observations.
Given that the width of the region of parametric response is 4λ per Eq. 5.6, we determined that
the value of λ predicted by the effective model was too large for the observed detunings at
which a parametric response was produced and the observed frequency shifts of the oscilla-
tor from the bare, undriven frequency. Thus, for quantitative analysis, we applied a rescaling
factor to the two-photon pump strength, as discussed in Sec. 5.6.2.

In Fig. 5.3 (b), (c) we plot the second-order correlation function g (2) and photon number expec-
tation value ⟨â† â⟩ numerically calculated with QuTiP [218] as a function of effective bichro-
matic drive force and parametric detuning with the rescaled expression for the two-photon
pump strength. The dashed and dotted lines indicate the detunings of modified response for
the spectroscopy measurements in Fig. 5.2 (c) and Fig. 5.3 (d), respectively, for the forces which
provided the closest agreement between simulation and data. In Fig. 5.3 (b), (c), we observe
peaks occurring at spacings of 2K corresponding to multi-photon resonances as expected
theoretically [390].

Abrupt changes in g (2) and ⟨â† â⟩ are known to be markers of dissipative phase transitions,
while values of g (2) < 1 indicate sub-Poissonian statistics which coincide with the regions of
multistability [390]. A peak in g (2) was previously used to identify the occurrence of a first-
order dissipative phase transition in a similar system [438]. In Fig. 5.3 (d), we show the results of
a spectroscopy simulation performed with QuTiP for a sweep of δ̃/2π at F /2π corresponding
to the value at the dotted green line. We find that the range of detunings which provide a
parametric response matches with experimental observations, albeit with deviations in the
frequency shifts of the signal and idler modes. We ascribe the source of these discrepancies
to the same effects outlined in Sec. 5.6.2 and note that an improved effective model is currently
being developed in order to obtain closer agreement.

In Fig. 5.4 (a), (b), we display the measured output field power spectral density (PSD) for the
drive detunings and powers corresponding to where the parametric response in Fig. 5.2 (c) was
observed. Within the parametric response region, we observe a Lorentzian gain peak in the
PSD and an oblong distribution in the 2D histogram of the output field quadratures, shown in
Fig. 5.4 (b), (f) respectively. From the numerical simulations of the rescaled effective model in
Fig. 5.3 (c), we expect the photon number of the state generated by the parametric drive to
only be on the order of a few photons. In general, we expect small photon number states to
be produced given that the device is operated in the mesoscopic nonlinear regime, where for
K /κ = 1.62 and δ̃/2π = -8 MHz it can be estimated that the device can support bistable states
of size between n = 2.55 photons and n = 7.65 photons [428].

In Fig. 5.4 (c), (d) we plot the numerically simulated Wigner quasiprobability distibution for
the zero-amplitude and small bistable states predicted by the rescaled effective model to
correspond to the drive parameters which were used to obtain the measurements in Fig. 5.4
(e), (f) [223, 450]. Given the size of the small photon number signal relative to the added noise
of the 1.5 K noise temperature cryogenic amplifiers in our measurement chain, such a bistable
state is not expected to be resolvable without the use of a noise-limited parametric amplifier
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at the output of the device or by following a more complex detection and analysis protocol
[416, 417, 451, 452].

Figure 5.4: Output field spectrum, quadratures, and simulated Wigner functions while transiting the para-
metric regime (a) The output field power spectral density (PSD) as δ̃ is swept through the region observed
in Fig. 5.2 (c). (b) Linecuts from (a) at detunings δ̃/2π = -7 MHz, -7.5 MHz, -8 MHz, -8.5 MHz, and -9 MHz
from top to bottom. (c), (d) Wigner functions simulated for δ̃/2π = -5 MHz and δ̃/2π = -8 MHz for the
system parameters determined from the rescaled effective model. (e), (f) Output field quadrature 2D
histograms for δ̃/2π = -5 MHz and δ̃/2π = -8 MHz respectively.
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5.5. Conclusion
In this chapter, we have presented spectroscopic and output field measurements, which show
the effects of the application of a parametric pump generated by an all-microwave bichromatic
driving scheme to a few-photon Kerr nonlinear oscillator. Spectroscopically, we observed a
modification of the oscillator response at the midpoint of red-detuned bichromatic drives for
sufficiently strong drive powers. These effects were observable in the shift of the oscillator
from its bare frequency and the exchange of the signal and idler modes relative to the mid-
point of the pump as the parametric response region was crossed indicating that a dynamical
phase transition had occurred. Additionally, the appearance of modes on either side of the
midpoint of the drives in the parametric response region was observed, as expected for a KPO
driven into a bistable state. We also observed the coexistence of signatures of the monostable
and bistable states spectroscopically, indicating that the system was driven into tristability.

We performed semiclassical analysis to derive an effective model of the system under bichro-
matic driving to determine the expected frequency shift of the oscillator and parametric drive
strengths given the device and bichromatic driving parameters. We found discrepancies be-
tween the semiclassical approach and our observations, which indicated either deficiencies
in the form of the equations of motion used, quantum mechanical effects not captured by
the semiclassical techniques, or both. We applied a rescaling factor to the parametric drive
strength predicted by the semiclassical approach and found agreement with the measure-
ments with respect to the spectral positions of the observed modifications of the oscillator
response due to parametric effects. Additional research is being done to further investigate
these discrepancies.

Dissipative phase transitions have previously been investigated and experimentally observed
in similar systems, where a sharp change in the expectation values of the driven mode is in-
dicative of the occurrence of a phase transition and the transient dynamics of the bistable
state were investigated [390, 391, 438, 439, 453–456]. Similarly, comparisons with semiclas-
sical methods as well as the generalized Jaynes-Cummings model were used to analyze the
response of a qubit-resonator system, where the nonlinear resonator operated in the K < κ
regime [391]. In contrast, we have investigated the steady-state response of the system spec-
troscopically as the parameters of bichromatic driving are swept, in the K > κ regime. Previ-
ous measurements performed in the K > κ regime showed that quantum fluctuations were
significant in the system, leading to the identification of the out-of-equilibrium stationary
states as quantum metastable states [438].

The reconstruction of the Wigner function of the few-photon parametric state is a natural
next step to enable direct comparison of the system state with results determined from quan-
tum master equation simulations. For example, it was recently demonstrated that the Wigner
function of few-photon KPO states could be reconstructed from their output field spectra
[452]. Recent theoretical work has also shown that the Wigner function can be determined
from spectroscopic measurements following a scheme involving the application of a time-
dependent drive field [457]. Such techniques would allow for further investigations into the
relative contributions of classical and quantum effects to the dynamics of few-photon KPOs.
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5.6. Supplementary Information
5.6.1. Experimental Setup

Figure 5.5: Experimental setup. (a) The device is mounted to the mixing chamber plate of a Bluefors di-
lution refrigerator and connected to our measurement instruments via coaxial cables. On the microwave
input line, the signals are attenuated at each stage to varying degrees, with stronger attenuation at lower
stages. The input signal then passes through a filter (Mini-Circuits VHF-3500+) and a circulator (Paster-
nack PE8402). The gold-plated copper box which houses the printed circuit board to which the device
chip is connected is contained within a mu-metal magnetic shielding can. The box is also thermally an-
chored to the mixing chamber plate. On the output line, two terminated circulators (Pasternack PE8402)
are placed between the device and the high electron mobility transistor (HEMT) amplifier (Low Noise
Factory LNF-LNC4_8F) to reduce the thermal occupation of the device due to the thermal noise of the
HEMT. DC blocks (BLKD-183-S+) are placed at room temperature on the input (A) and output (B) lines.
(b) The bichromatic drives and probe tone are sent from two microwave generators (Rohde & Schwarz
SGS100A) and a vector network analyzer (VNA) (Keysight N5221A PNA) through power combiners (Mini-
Circuits ZFSC-2-10G+) into the input line of the fridge. An unused directional coupler (SM Electronics
MC2045-10) is present in the drive line. The returning signal from the output line of the fridge is further
amplified at room temperature (AT Microwave AT-LNA-0408-2501X) and passed through a directional cou-
pler (Pasternack PE2CP1104) to the VNA and spectrum analyzer (Keysight N9010B EXA).

In Fig. 5.5, we show the experimental setup for the measurements performed on the device
outlined in this chapter. The drive powers at the output of the measurement instruments
corresponding to Fig. 5.2 (c) and Fig. 5.3 (d) are 12 dBm and 16 dBm respectively. For the drives,
when accounting for the attenuators and insertion loss of components (approximately -80 dB),
and attenuation of the cables used both at room temperature and cryogenic temperatures
(approximately -20dB), we can compare the expected power at the device to the forces of the
bichromatic drives predicted from the theoretical model.

Considering the detuning at which we first observe the emergence of a parametric response
spectroscopically for each drive power configuration, we expect the two measurements to
correspond to drive forces of F /2π = 125.7 MHz and 155.6 MHz for the Pout = 12 dBm and 16
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dBm datasets respectively. We can calculate the expected drive strength at the device by

F =
√
κePdev
h̄ω where κe is the external linewidth of the oscillator, Pdev is the power at the

device considering the total attenuation in the line, and ω is the frequency of the drive. From
this, we can estimate values of F /2π ≈ 124.6 MHz and 127.4 MHz for the higher frequency and
lower frequency component respectively given Pout = 12 dBm, and values of F /2π ≈ 198.9
MHz and 202.0 MHz given Pout = 16 dBm. While the expected forcing given the lower drive
power dataset with Pout = 12 dBm agrees well with our rescaled theoretical model, there is a
discrepancy of approximately 46.4 MHz (2.5 dBm) for the Pout = 16 dBm dataset.

We ascribe this discrepancy to the neglect of higher order effects of bichromatic driving in
determining the effective parametric drive force and detuning with the semiclassical theoret-
ical model, in particular those effects due to nonlinear mixing of the drives. In determining
the effective model parameters, the responses at the two bichromatic drive frequencies are
treated linearly, and back-action of the generated response at the midpoint of the drives to
the drives themselves are not accounted for. Additionally, we apply a simple scalar factor to
the effective parametric drive strength rather than a factor with parameter dependence (see
Sec. 5.6.2). When comparing the agreement of the Pout = 12 dBm and Pout = 16 dBm drive
powers to the model, it appears that this scaling factor becomes insufficient for increasing
powers. When comparing to the detunings at which a parametric state first emerges in Fig. 5.2
(c) and Fig. 5.3 (d), the unscaled model predicts forces of F /2π ≈ 180 MHz and 223 MHz (a
difference of 1 to 3 dBm) respectively. However, the unscaled model predicts that the region
of parametric response is sustained for far larger, negative detunings than what was observed
experimentally.

5.6.2. Effective Model
Mean-Field Equations of Motion
In the following, units h̄ = m = 1 are taken. We consider the quantized phase space coordinates
x̂ and p̂ . The Hamiltonian of our system is

H (x, t ) =
p̂2

2
+
ω2

0

2
x̂ 2 +

α

4
x̂ 4 − Fc (cos (ω1t ) + cos (ω2t ))x̂ (5.7)

where ω1 = ω0 + δ − ∆/2 and ω2 = ω0 + δ + ∆/2. In the main text above, ∆ is written ∆12.
Our system is a nonlinear oscillator subject to two drives of equal force Fc separated by a
frequency spacing ∆. The goal is to compute an effective time-independent Hamiltonian, which
describes the parametric response at the midpoint of the pumps, at frequencyω3 = ω1+ω2

2 . For
this, we employ a Floquet expansion as in Ref. [458, 459]. We begin by utilizing harmonic
balance methods to analyze the system at the frequencies

ω1 = ω0 + δ − ∆/2, ω2 = ω0 + δ + ∆/2 and ω3 = ω0 + δ (5.8)

The expansion can be understood as the result of measuring the system at three different
frequencies with a lock-in amplifier [460].

The resulting mean-field equation of motion are

i ¤α1 = (∆1 − 2K1)α1 + K1 |α1 |2α1 + 4K1(|α2 |2 + |α3 |2)α1 + 2K1α
∗
2α

2
3 + F1

i ¤α2 = (∆2 − 2K2)α2 + K2 |α2 |2α2 + 4K2(|α1 |2 + |α3 |2)α2 + 2K2α
∗
1 α

2
3 + F2

i ¤α3 = (∆3 − 2K3)α3 + K3 |α3 |2α3 + 4K3(|α1 |2 + |α2 |2)α3 + 4K3α1α2α
∗
3

(5.9)
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where ∆i =
ω2
i
−ω2

0
2ωi

, Ki = 3h̄α
8ω2

i
and Fi = Fc

2
√

2ωi h̄
are the frequency rescaled detunings, non-

linearities, and forces. The steady-state solutions of the above system of equations can be
calculated and are displayed as the boundaries between the parametric response regions in
the main text of the chapter, Fig. 5.3 (a). These boundaries are also in agreement with the
results of harmonic balance analysis performed with the HarmonicBalance.jl suite [461].

Deriving an Effective Hamiltonian
By analyzing the equation for the coherent field at the midpoint of the pumps α3, we can see
that it contributes an effective squeezing term

Geff = 4K3α1α2 (5.10)

and frequency shift on the oscillator

∆eff = 4K3(|α1 |2 + |α2 |2). (5.11)

Hence, we may consider the response of the system at ω3 to be an effective Kerr parametric
oscillator (KPO) with the Hamiltonian

Heff = −(∆eff − 2K3)b̂†b̂ + K3b̂
†b̂†b̂ b̂ +

Geff

2
b̂†b̂† +

G ∗
eff

2
b̂ b̂ . (5.12)

However, to have a more complete effective model we require the contributions from the
solutions of the coherent fieldsα1 andα2 which also depend onα3. This effective system is the
same as can be found in Ref. [215]. The expression forGeff and ∆eff in terms of the parameters
of the device can be derived using secular perturbation theory, however the following also
yields the same result [462]. The bichromatically driven KNO Hamiltonian can be written as

HKerr = ω̃0b̂
†b̂ + K b̂†b̂†b̂ b̂ + F (e i ω1t b̂ + e i ω2t b̂ + h.c .) (5.13)

where ω̃0 = ω0 − 2K and F1 = F2 = F . Given that we want to determine the effective re-
sponse of the Kerr oscillator at ω3, we perform a frame rotation following the transformation
b̂ → b̂3e

−i ω3t . In addition to integrating out the drives, we also apply a displacement trans-
formation

b̂3 → b̂3 + α1e
−i ω1t + α2e

−i ω2t . (5.14)

Here αi is the classical zeroth-order response for either drive with αi ≈ Fi
∆3i

with ∆3i =
ω2

3−ω2
i

2ω3
the rescaled detuning. Applying these transformations and averaging at ω3 results in the fol-
lowing effective model

Heff = −∆̃eff b̂
†b̂ +

ω2
0K0

ω2
3
b̂†b̂†b̂ b̂ +

Geff

2
b̂†b̂† +

G ∗
eff

2
b̂ b̂ (5.15)

where

Geff =
256F 2

3 K3ω
2
3

∆4 − 16∆2ω2
3

=
256F 2

0K0ω
3
0

ω3
(
∆4 − 16∆2ω2

3
) (5.16)

∆̃eff = ∆̃30 +
512F 2

3 K3ω
2
3
(
∆2 + 16ω2

3
)(

∆3 − 16∆ω2
3
)2 =

ω2
3 − ω2

0

2ω3
−

2K0ω
2
0

ω2
3

+
512F 2

0K0ω
3
0
(
∆2 + 16ω2

3
)

ω3
(
∆3 − 16∆ω2

3
)2 (5.17)
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with F0 = F3
√
ω3/ω0 = ( 3

8

√
ω3

0
3K0

)(
√
αFc
ω3

0
) the effective force on the oscillator due to the two

drives denoted F in the main text andK0 = K3ω
2
3/ω

2
0 the renormalized nonlinearity [460]. For

the measurements performed in the main text of this chapter, all variables of this Hamiltonian
are known with the exception of the force F0, which uniquely determines the parametric drive
strengthGeff (written λ in the main text) and the frequency shift of the oscillator ∆̃eff .

During the comparison of the theoretical predictions with experimental data, we observed
that the boundaries between stability regions found from Eq. 5.9, the regions of parametric
response indicated by Eq. 5.16, 5.17, and a numerical harmonic balance stability analysis of the
system following Eq. 5.7 indicated regions of parametric response which were sustained for
a wide range of parametric drive detunings δ̃ , which was not supported by the experimental
data [461]. Numerical simulations performed with QuTiP following the effective Hamiltonian
in Eq. 5.15 also produced these wide regions of parametric response at fixed values of F0,
which did not agree with experimental observations. However, a simple rescaling of Eq. 5.16
by a factor of ≈ 0.2 brought the regions of parametric response calculated by QuTiP close to
agreement with the data shown in the main text of this chapter. The source of this discrepancy
is the current focus of our theoretical studies, and we endeavor to resolve this disagreement
prior to publication of these results. Given that the discrepancy exists also in the numerical
harmonic balance stability analysis, we suspect that the source is in the omission of higher
order effects, and due to the fact that our device satisfies K > κ which in general is known to
make semiclassical analysis techniques insufficient where quantum effects must be consid-
ered [390, 428, 438].

Wigner Functions and State Populations under Parametric Driving

Figure 5.6: System state while traversing the parametric regime. (a), (b), (c), (d), (e), (f), (g) Wigner func-
tion of the system, given the effective Hamiltonian in Eq. 5.15, for drive detunings of δ̃/2π = -16 MHz, -15
MHz, -14 MHz, -13 MHz, -12 MHz, -11 MHz, and -10 MHz respectively, for F /2π = 155.6 MHz. (h) The Fock
state populations of the first ten energy levels of the system as the parametric drive frequency is swept.

Using the effective model, we can numerically simulate the Wigner function and Fock state
population distribution for a variety of drive detunings and powers. In Fig. 5.6 we show a



5.6. Supplementary Information

5

101

subset of Wigner functions corresponding to the drive parameters displayed in Fig. 5.4 (d),
where F /2π = 155.6 MHz, along with the expected Fock state populations. As the drive is swept
towards larger negative detunings, the system state evolves from a squeezed monostable
state to bistable, tristable, and lastly to a squeezed inverted monostable state.
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Biased Switching Dynamics in a

Parametrically Driven Kerr
Nonlinear Oscillator

And you may ask yourself,
"Well, how did I get here?".

David Byrne

In recent years, the parametrically driven Kerr nonlinear oscillator (KNO) has been investigated
for its relevance to various quantum information processing tasks. Quantum Kerr parametric
oscillators (KPOs) have been studied as devices to be utilized for computation based on coher-
ent and cat states, quantum annealing, and analog quantum simulations. The KPO has also
been the focus of intense theoretical study, in particular with regards to the relative contribu-
tions of classical and quantum effects to the dynamics of non-equilibrium stationary states.
Here, we show a KPO driven into bistability by the application of an all-microwave bichromatic
two-photon drive. As the system stochastically switches between two phase states, we mea-
sure the change in switching time as a function of drive power and discuss the contributions
of classical and quantum effects. In addition, we demonstrate control over the phase of the
state upon the application of a symmetry-breaking weak resonant microwave drive.

J. D. Koenig, O. Ameye, L. R. van Everdingen, C. A. Potts, O. Zilberberg and G.A. Steele, Biased Switching Dynamics in a
Parametrically Driven Kerr Nonlinear Oscillator, in preparation (2024).
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6.1. Introduction
Nonlinearity is a highly desirable characteristic of engineerable classical and quantum oscil-
lators, in large part due to the exploitable effects which are enabled by such oscillators upon
the application of parametric driving. Nonlinear parametric oscillators have been used to
great effect in the amplification of small signals with minimal added noise, the generation of
squeezed states of light, and as integral components of quantum information processors [84,
194, 415, 416, 422, 423, 426, 463–465]. Parametric oscillators with Duffing or Kerr-type nonlinear-
ities are well-known to have multistable stationary states when driven above the parametric
threshold, where the strength of parametric driving exceeds the dissipation rates of the sys-
tem. Such multistable states have been predicted and experimentally observed in nonlinear
oscillators realized on a variety of platforms, ranging from microwave to optical, nanomechan-
ical, magnonic, and optomechanical systems [398, 405, 406, 409, 432, 446, 466–488]

Systems driven into large-photon number multistable states have been the focus of great
interest in recent decades, in particular with respect to their applications in quantum infor-
mation processing [120, 358, 425, 426, 443, 457, 489–494]. The KPO Hamiltonian has so far been
utilized to achieve these purposes in superconducting systems by introducing nonlinear junc-
tion elements (SNAILs) and by engineered dissipation [490, 495, 496]. In such systems, infor-
mation has been encoded in the space spanned by linear combinations of bistable states,
which can realize error-protected and noise-biased qubits with lengthy coherence times.

Prior to these recent works, the KPO had also been investigated for its unique physical proper-
ties, which dictate the system’s dynamics. In particular, the processes by which the oscillator
switches between multistable states have been found to have both classical and quantum
mechanical contributions, from thermally-induced hopping as well as quantum activation via
diffusion over quasienergy level states in each well and tunnelling through the barrier [434].
These contributions to the system dynamics from classical and quantum processes have been
recently explored, finding that in devices with larger ratios of nonlinearity to dissipation semi-
classical methods for predicting the switching rate fail, necessitating modelling with a full
quantum master equation including stochastic noise processes [428].

6.2. Device, Bichromatic Driving, and Bistability
Our device consists of two arrays of SQUIDs connected via a large capacitor, with one end
shorted to ground and the other galvanically connected to a reflection measurement port,
as shown in Fig. 6.1 (a), (b). Additionally, there is a separate drive line independent of the
reflection port through which we apply drives via capacitive coupling to the junction array.
This device is known as a Dimer Josephson Junction Array Amplifier (DJJAA), which may be
operated as a parametric amplifier and hosts a series of amplification bands at the N normal
modes of the circuit determined by the number of junctions in each array [193].

Provided that we do not drive at frequencies which induce interactions between our mode of
interest and the off-resonant modes of the system, we can reasonably well describe the mode
as a single Duffing oscillator, which may be approximated as a Kerr oscillator after neglecting
fast-rotating terms with the Hamiltonian written as

H/h̄ = ω0 â
† â + K â† â† â â (6.1)

where ω0/2π = 4.604 GHz is the bare oscillator frequency, with K /2π ≈ -10.571 kHz, total
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linewidth κ/2π = 15.825 MHz and external linewidth κe/2π = 6.043 MHz [193]. The linear re-
sponse of the system to a weak probe tone is a dip in |S11 | as shown in Fig. 6.1 (c). This dimer
is the second normal mode of the device and the lower frequency component of the dimer is
spaced approximately 560 MHz away. Additional information regarding the device is given in
Sec. 6.6.1.

Figure 6.1: Device and system. (a) The device is a Josephson junction array amplifier with a reflection
port and drive line wirebonded to a printed circuit board, with a thermal connection to the board via
silver epoxy. The photograph was taken before wirebonding. (b) A zoom-in of a section of the aluminium
Josephson junction array. (c) A characteristic reflection measurement at low probe power exhibits a
Lorentzian response centered at the natural frequency of a mode of the device. (d) A diagram illustrating
the change in Hamiltonian function from a harmonic potential to the double-well KPO potential upon
the application of a parametric drive which realizes a two-photon pump.

We consider the effect of two pumps at frequencies ω1 and ω2, where ∆12 = ω2 − ω1 and
δ = (ω1+ω2)

2 − ω0 are the inter-pump detuning and parametric drive detuning respectively. In
a frame rotating at the frequency of the midpoint of the pumps, we may rewrite our effective
Hamiltonian under the effects of bichromatic driving as

H ′/h̄ ≈ −∆ef f â† â +
ϵp

2
â†2 +

ϵ∗p

2
â2 + K â† â† â â (6.2)

where ϵp is the two-photon pump strength, the oscillator frequency is shifted by the field
amplitudes of each pump to ∆ef f , and additional terms fast-rotating at frequency ∆12 may be
neglected under the RWA for ∆12 ≫ ϵp [215].
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The effect of applying two detuned pumps with their center frequency held near the oscillator
is to induce a frequency shift proportional to pump strength and self-Kerr nonlinearity, as well
as to generate a two-photon pump interaction. When the midpoint of the pumps aligns with
the shifted oscillator frequency, we are left with the Cassinian or Kerr Parametric Oscillator
(KPO) Hamiltonian given by

Hc/h̄ =
ϵp

2
â†2 +

ϵ∗p

2
â2 + K â† â† â â . (6.3)

The Hamiltonian function V (x , y ) of this system in the absence of dissipation, illustrated
along one axis in Fig.6.1 (d), takes the shape of a double-well with two valleys of equal depth
at (x , y ) = (±α0, 0) whereα0 =

√
ϵp/2K is the size of the coherent state with photon number n

= |α0 |2. Their equal depths indicate that these two stationary states |±α0⟩ where ∇V = 0 are
degenerate ground states of the Hamiltonian. Thus, our two-photon pumped Kerr-nonlinear
oscillator can be driven into a parameter regime in which the two stable solutions of the
system are states of equal amplitude and opposite phase, also known as the bistable KPO.

For weak nonlinearities relative to damping κ ≫ K , the KPO can be well described by the clas-
sical equations of motion for a parametrically driven Duffing oscillator. In Sec. 6.6.2, we provide
a theoretical description of the system from a classical perspective and identify the bichro-
matic drive parameter regimes in which the steady-states of the driven-dissipative system are
single-valued and multistable. However, the intra- and inter-well dynamics have classical and
quantum contributing factors, as will be discussed below [434, 497]. For example, while the
parametric drive strengths and detunings that yield a bistable state of a given size can be
well described by classical equations, in certain oscillator parameter regimes (i.e. K ≈ κ and
K > κ), quantum mechanical effects must also be accounted for to fully capture the system
dynamics as the steady-state photon numbers above the parametric threshold are low [390,
428, 452].
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6.3. Output Field Measurements of a Parametric Phase State

Figure 6.2: Transition from gain to bistability after crossing the parametric threshold. (a) As the effec-
tive parametric pump strength ϵp/2π increases with P2, the power spectral density (PSD) displays an
increasing amount of gain in the output field of the device. In the region of parametric instability (ap-
proximately indicated by dashed lines), the output field spectrum is a narrow, high-amplitude peak. The
frequency response is shown as a function of detuning ∆0/2π from the undriven oscillator frequency. (b)
The oscillator is bichromatically driven with two microwave tones, which realizes an effective parametric
pump on the system. (c) Linecuts of the plot in (a) are representative of the PSD for a zero-amplitude
state (grey), squeezed state (blue), and bistable state (red). (d) A histogram of the IQ quadratures of
the device output field under low parametric drive strengths (zero-amplitude state), (e) under strong
parametric driving below the instability threshold (squeezed state), and (f) upon crossing the paramet-
ric threshold (bistable state). Beyond the threshold, the output field changes from a squeezed state as
it enters a bistable regime in which the oscillator stochastically switches between two coherent states
of equal amplitude and opposite phase.

In order to bring the device into bistability, we first apply a bichromatic drive as shown in
Fig. 6.2 (b) with the lower frequency (red-detuned) component of the pair with a fixed, high
strength of P1 = 20 dBm and sweep the higher frequency (blue-detuned) drive power P2. The
inter-drive spacing is set to ∆12/2π = 40 MHz, and the center of the pumps is fixed to a value of
δ/2π = -45 MHz, which anticipates the negative frequency shift of the oscillator with increasing
drive power. As the strength of the blue-detuned drive P2 is increased, the effective parametric
drive strength ϵp/2π grows, and the frequency of the primary oscillator response shifts into
resonance with δ/2π .

At this point, we observe gain in the PSD and squeezing of the output field IQ quadratures of
the device as shown in Fig. 6.2, with the phase-dependent gain increasing with drive power.
This is consistent with the frequency components of the dynamical eigenvalues (imaginary
parts) of the system Hamiltonian becoming degenerate as the oscillator frequency synchro-
nizes with the parametric pump tone at δ/2π [445]. This response occurs for a range of bichro-
matic drive strengths and detunings which coincide with the region where the same oscillator
would be driven into multistability if it were a closed, undamped system. In this so-called
dissipation-stabilized region, the presence of a large decay rate κ/2π allows for a wide vari-
ety of parametric driving conditions which produce phase-dependent gain such as that seen
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in Fig. 6.2 [445].

As the effective parametric drive strength increases, we continue to observe larger amounts
of gain until the parametric threshold is reached, at which point the system is pushed into
bistability. Beyond this threshold, we observe a narrow high-amplitude peak in the PSD and
the formation of two distinctly separate phase states of equal and opposite amplitude in
the IQ quadrature histograms, as shown in Fig. 6.2 (f). The linewidth of this narrow peak in
the bistable regime is known to relate to the lifetime of the phase states sustained between
stochastic switching events [467, 468, 498].

As the drive strength is further increased, we observe a return to phase-dependent gain as the
system transits through the region of bistability. The parametric response phase space for this
system shown in Sec. 6.6.2 is highly complicated. For some parametric drive parameters δ/2π ,
∆12/2π , and P1, the system would next return from a squeezed state to the zero-amplitude
state with further increasingP2. For other values (generally for large drive powers and negative
detunings of δ/2π), the system may also exhibit chaotic behaviour as explored in Chapter 7.

6.4. Stochastic Switching and Phase Control
An analysis of the switching rates in Fig. 6.3 within the bistability region shows a several order
of magnitude increase in the time between switching events, from microseconds to seconds.
At the optimal pump power for this value of δ/2π , we observe an average amount of time
spent in either bistable state of 3.25 seconds. The rate of increase and decrease of switching
time with respect to drive strength is exponential, with a slower decrease from the maximal
value compared to the increase from the onset of bistability. This qualitative dependence on
P2 is best understood through the relationship of switching time on the effective two-photon
pump strength ϵp/2π in this region of the corresponding parametric response diagram, which
predicts a bistable response. As discussed in Sec. 5.6.2, Sec. 6.6.2, and Chapter 7, this behaviour
is strongly dependent on the choice of δ/2π and each of the drive strengths P1 and P2 which
contribute to ϵp/2π . Sweeping only the detuning or effective parametric drive strength alone
does not allow one to continually evolve the system inside the region of bistable response
with increasingly large photon numbers, but rather to transit through the bistable region.

While the boundary between the dissipation-stabilized region defined by phase-dependent
gain and the bistable regime defined by the emergence of distinct phase states and stochastic
switching is clear theoretically, we observe experimentally a continuous transition in the time-
resolved output field IQ data. For example, in Fig. 6.3 (a), the fluctuations in voltage for each
phase state are a significant portion of the amplitude of each phase state. It is only at higher
parametric drive powers that the fluctuations become much smaller than the phase state
amplitudes. Thus, for very small phase states, the output field quadratures that we measure
may be obscured under the added noise of our measurement chain, in particular by the HEMT
amplifier placed after the device output. When the signal of the small-photon number phase
state is much smaller than the added noise of the HEMT amplifier, the bistable state only
appears to be squeezed as the magnitude of fluctuations causes the states to seem to overlap
in amplitude.

We may consider the contributions to this stochastic switching to be due to three effects:
thermal hopping, quantum activation, and quantum tunnelling [499–502]. Switching due to



6.4. Stochastic Switching and Phase Control

6

109

quantum tunnelling is expected to be rare except for extremely low oscillator damping rates,
which is not the case for our device [500, 502]. Thermally activated switching events due to
escape from metastable states are well understood to have an exponential form dependent
on the system potential, given by Kramers [503, 504]. However, in KPOs cooled to h̄ω ≫ kBT ,
such thermal effects are expected to be negligible, and other factors should primarily cause
switching events to occur.

Figure 6.3: Exponential increase in the stochastic switching time of the oscillator bistable state with
increased drive power. (a) After crossing the instability threshold, the system rapidly switches between
two low-amplitude coherent states, where P2 = 13.52 dBm. (b) As the parametric drive strength becomes
greater, the switching time and amplitude of the phase states increases, where P2 = 13.62 dBm. (c) At
the optimal drive strength, the oscillator switches between phase states on the timescale of seconds,
where P2 = 13.76 dBm. (d) The switching time exponentially increases to a maximal value of 3.25 seconds
between switches, after which it decreases as the parametric drive parameters become incongruous with
the bistability lobe.

For low thermal occupations, quantum heating, which gives rise to the phenomenon of quan-
tum activation, has been predicted to be a key contributor to switching dynamics in the KPO
[434, 497]. In the non-rotating frame, the state of the system is a linear combination of Fock
states for which an excited state relaxes over time to the ground state |0⟩. However, in the
parametrically driven rotating frame, which defines our KPO Hamiltonian, the system state is
best described by quasienergy levels existing in each well defined by linear combinations of
Fock states [434].

While relaxation mechanisms in Fock space lead to the occupation of the ground state, these
same mechanisms (for example, single-photon loss) lead to larger occupations of lower lev-
els, but also quantum heating up to higher quasienergy levels due to quantum noise [434, 505,
506]. This diffusion across levels leads to nonzero occupation of higher quasienergy states,
which then switch stochastically to the corresponding quasienergy level of the opposite well
and remain in that well until a diffusion-induced switching event again occurs. As the geom-
etry of the potential depends on the parametric driving, the upward transition rates through
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quasienergy levels are greater for weak driving, which leads to more switching events and
lower for strong driving, at which a greater switching time is reached and switching events are
rare, corresponding to further separation between the wells in phase space [434].

Figure 6.4: Observation of spontaneous Z2 symmetry breaking under a weak, phase-biased resonant
drive. (a) A histogram of the IQ quadratures of the device output field under a weak resonant drive,
orthogonal to the axis of bistability. (b) As the strength of the drive is increased and brought close to
phase-alignment with one of the states, the switching time increases and more counts are observed in
the phase-aligned state rather than the state of the opposite phase. (c) At strong drive power and when
driven in phase with one of the states, the switching time further increases, and the system is heavily
biased into one of the two states. (d) In addition to the bichromatic drives, a weak, resonant microwave
drive is applied to the bistable oscillator. (e) As the strength and phase of the drive are varied, the system
can be phase-biased into either state. For strong phase-aligned drives, the switching time is increased
by orders of magnitude. The bichromatic drive powers are fixed at P1 = 20dBm and P2 = 13.5 dBm.

The expected switching rate for a parametrically driven nonlinear oscillator can be calculated
given the device parameters and conditions of parametric driving. Further, the individual con-
tributions to the switching rate from each of the mechanisms discussed above can be pre-
dicted [434, 502, 507, 508]. It is the focus of current theoretical work to calculate the contribu-
tions of each to the observed switching rates given the driving parameters in Fig. 6.3 (d). Once
the expected switching rates due to thermal hopping, quantum activation, and quantum tun-
nelling are calculated, we intend to compare our results to the theoretically predicted values
and determine the relative contributions of each effect. We expect this and other analyses
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will enable us to determine the role of classical and quantum effects on the system as the
oscillator evolves from a few-photon to a large photon number bistable state.

Once a bistable state has been prepared, one can lift the two-fold ground state degeneracy
of the KPO with the application of a resonant drive with the form ϵ0e

iφ0 x̂ . This biases the
system preferentially into the |±α0⟩ state for φ0 = {0, π} with resultant energy splitting
between the ground states related to the strength of the drive and size of the phase states,
causing one well to be lower in energy compared to the other [358, 429]. This biasing of the
double-well potential creates an asymmetry in the switching rates, leading to an exponential
increase in lifetime for the biased state due to the first-order sin(φ0) dependence of the
upward transition rates over the well quasienergy levels [441].

In Fig. 6.4 (b), we illustrate the aforementioned bichromatic driving scheme with the addition of
a weak resonant drive, which is varied in power P0 and phaseφ0. As the strength of this bias is
increased with vector components aligned along the phase axis of the bistable states, the os-
cillator is biased into that particular phase-aligned state as the system potential is deformed.
As one well becomes deeper and further nondegenerate with the other, the stationary state of
the system approaches that of a single displaced coherent state as the probability of switching
events is suppressed. In Fig. 6.4 (a) - (c), this effect is observed as the system is more strongly
biased into the positive amplitude state with few observed counts in the IQ quadrature his-
tograms at the negative amplitude position. Shown in Fig. 6.4 (e) is the phase-dependence of
the switching time for various bias drive strengths, with more pronounced biasing observed
for stronger drives.

6.5. Conclusion
We have parametrically driven a Kerr nonlinear oscillator into bistability and observed the de-
vice output field PSD and quadratures for a range of red-detuned bichromatic drive strengths.
As the strength of the upper-frequency bichromatic drive was increased, we observed an expo-
nential increase and decay in the time between stochastic switching events in the KPO phase
states. The parameter regime in which a change in switching time occurs can be understood
from a stability analysis of the parametrically driven Duffing oscillator, as shown in Sec. 6.6.2.
The oscillator state is bistable for only a subset of possible bichromatic drive parameters. De-
pending on the detuning of the bichromatic drives and strength of the fixed lower frequency
component, after performing a sweep of the upper-frequency drive power, the system may
return to a monostable zero-amplitude state, or it may instead evolve into a multistable state
with more than two stable solutions. This topic is explored further in Chapter 7.

Further, we showed control over the phase of the bistable state upon the application of an
additional resonant drive. The modification of switching time with the application of a phase-
biasing drive demonstrates a controllable deformation of the KPO Hamiltonian double-well
potential. Such control enables one to stabilize the phase of the parametric state and mitigate
noise, which could be used to enhance sensitive detection schemes based on phase-locked
parametric oscillators (PPLOs) [429, 473, 509, 510]. The application of a resonant drive breaks
the time-translation symmetry between the parametric phase states, enabling the further in-
vestigation of new dynamical phases in parametrically driven quantum many-body systems
[441, 511, 512].
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In networks of coupled KPOs, such bias drives have been proposed to be used to investigate
Boltzmann sampling in Ising machines enabled by quantum heating [513]. Additionally, the
effects of bias drives on quasienergy states prepared by Landau-Zener-type transitions could
be the topic of future study [443]. The KPO is an essential component for the implementa-
tion of a variety of proposed quantum information processing tasks, to which end a deeper
understanding of its classical and quantum behaviour when subject to bichromatic and flux
modulated parametric drives is a compelling topic of further study [358, 428, 429, 431, 433–436,
438, 446, 491, 492, 494, 514–516].
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the chapter with input from the authors. The original design for the DJJAA was provided by
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6.6. Supplementary Information
6.6.1. Experimental Setup

Figure 6.5: Experimental setup (a) The device is mounted to the mixing chamber plate of a Bluefors dilu-
tion refrigerator and connected to our measurement instruments via coaxial cables. On the microwave
input line, the signal is attenuated at each stage to varying degrees, with stronger attenuation at lower
stages. The input signal then passes through a filter (Mini-Circuits VHF-3500+) and a circulator (Paster-
nack PE8402). The box which houses the printed circuit board to which the device chip is connected is
contained within a mu-metal magnetic shielding can. A superconducting coil is attached directly to the
bottom of the device packaging inside of the shielding and connected via a loom to room-temperature
electronics for flux biasing of the device with a current source (Stanford RS CS580). The reflected signal
returns to the circulator, then passes through an additional isolator (LNF-ISC4_8A) placed between the
circulator and the high electron mobility transistor (HEMT) amplifier (Low Noise Factory LNF-LNC4_8F) to
reduce the thermal occupation of the device due to the thermal noise of the HEMT. An additional pump
line with reduced attenuation is connected to the dedicated drive port of the device, filtered (ZLSS-11G-
S+) below the mixing chamber plate. DC blocks (BLKD-183-S+) are placed at room temperature on the
input (A), output (B), and pump (C) lines. (b) The bichromatic drives are sent from microwave genera-
tors (Rohde & Schwarz SGS100A) and combined (Mini-Circuits ZFSC-2-10G+), which then pass through a
directional coupler (SM Electronics MC2045-10) to which the resonant bias drive supplied from a third
generator (Anapico APUASYN20) is coupled, and all drives are sent to the pump line. The probe tone is
sent by a vector network analyzer (VNA) (Keysight N5221A PNA) through power combiners and into the
input line of the fridge. The returning signal from the output line of the fridge is further amplified at
room temperature (AT Microwave AT-LNA-0408-2501X) and passed through a directional coupler (Paster-
nack PE2CP1104) to the VNA and spectrum analyzer (Keysight N9010B EXA).

In Fig. 6.5 we show the experimental setup for the measurements performed on the device in
this chapter. The actual temperature of the mode measured depends on how well thermalized
the sample is to the ≈ 20 mK mixing chamber stage. In addition to fits of stochastic switching
rates to thermal effects in the bistable regime, additional measurements can be performed
to determine the effective temperature of the mode under investigation in the future [322,
517–523].
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The drive powers quoted in the main text are those at the output of the measurement instru-
ments. When accounting for the attenuators and insertion loss of components (approximately
-58.5 dB for the bichromatic drives and -114 dB for the bias drive), and attenuation of the ca-
bles used both at room temperature and cryogenic temperatures (approximately -20 dB), we
can use the expected power at the device to obtain the bichromatic drive strengths predicted
from the theoretical model. For the bias drive powers shown in Fig. 6.4, this corresponds to a
sweep of estimated drive strength in frequency units from F0/2π = 3.54 MHz to 14.10 MHz. For
the bichromatic drive powers shown in Fig. 6.2, the values of P1 and P2 correspond to F1/2π
= 21.25 GHz and F2/2π from 9.56 GHz to 11.50 GHz. For the bichromatic drive powers of P1 =
20 dBm and P2 = 13.5 dBm used in Fig. 6.4, we estimate the parametric drive strength from
Eq. 6.7 and obtain ϵp/2π = 23.17 GHz. We note that this value is found without the application
of a scaling factor as was done in Chapter 5, and that the effective parametric drive strength
is likely much lower in reality for these bichromatic drive powers.

We can estimate the photon number in the bistable state with these drive parameters for an
unbiased dissipative KPO following Ref. [496] using n = 1

2K

√
(2ϵp )2 − κ2 and find n ≈ 2.18×106

photons for the bichromatic drive powers used in Fig. 6.4 and n ≈ 2.25×106 photons for the
bichromatic drive powers used in Fig. 6.3 (c). This corresponds to an exponential increase in
switching time by a factor of×4.88 per photon, a scaling larger than the×1.4 per photon found
in Ref. [496]. We can also estimate the bounds for generable photon numbers in the bistable
state following Ref. [428], where n± = − ∆eff

K [1∓
√

1 − 3
4 (1 + κ2

4∆2
eff

)] which yields photon numbers

between 1.90×106 and 5.76×106 photons for P2 between 13.5 dBm and 13.76 dBm.

These values are estimates, given that we previously observed the need for corrections to ac-
count for higher order effects which necessitated the application of a scaling factor in Chap-
ter 5. Here, the bichromatic drive powers used are much stronger than in Chapter 5, where
effective parametric drive strengths were of order 1 MHz. Given this, we expect that the true
values of ϵp/2π used in the experiment are lower than what we have calculated above. Fur-
ther, harmonic balance analysis of this device indicates that one would achieve parametric
responses for lower values of F1 and F2, on the order of a few GHz, rather than 10-20 GHz.
Additional unaccounted for attenuation is required for our applied drive powers to reconcile
with the results of the harmonic balance analysis. However, another potentiality is that the
forces and detunings for which our unscaled effective model and harmonic balance simula-
tions predict parametric effects become unreliable for extreme drive conditions of large forces
and detunings. This is expected, as HarmonicBalance.jl makes an RWA-like approximation that
the drive forces are less than the frequency of the oscillator, which is not the case for such
large powers as used in the experiment (provided there was not additional unknown atten-
uation). Nonetheless, the response of the system under extreme parametric driving to first
order can be used to qualitatively determine whether it can in general be driven into states
with large numbers of solutions using harmonic balance analysis, albeit for inaccurate drive
forces and detunings. We endeavour to complete analysis of the system with an improved
model accounting for higher order effects prior to publication of these results.

DJJAA Parameters
The DJJAA was fabricated on a sapphire wafer of thickness 330 µm with a ground plane formed
on the underside of the chip by a 150 nm platinum coating and 5 nm titanium layer. The
end of the DJJAA shorted to ground was galvanically connected to the ground plane by silver
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epoxy. The junctions were formed by optical lithography to define each layer followed by two
aluminium evaporation and liftoff processes. The first layer of aluminium was 30 nm thick
and the second was 40 nm thick. Before deposition of the top layer, the first aluminium layer
was cleaned by Ar ion milling prior to oxidation and deposition. The oxidation was performed
at pressures of 30 mbar for 3 minutes and 15 seconds. The DJJAA consists of two sections of
800 SQUIDs capacitively coupled to each other by a large capacitor Cc . Each junction had
a designed overlap area of 4 µm × 4 µm. DJJAAs fabricated at wafer scale varied from RN =
42.5kΩ to 148.2kΩ per half of the arrays.

The designs of the DJJAAs and thicknesses of the sapphire wafer and deposited aluminium
were identical to those of Ref. [193] and have been reported on in Ref. [524]. However, the
potential for small variations in realized feature sizes exists due to mismatches between fab-
ricated and originally designed geometries. We take the same parameters as for Ref. [193]
"Sample II" as a starting point and compare calculations of device mode frequencies to the
frequencies of the measured modes of the DJJAA. The obtained values written in Fig. 6.6 imply
smaller than designed overlap areas for this device, within the typical variation of ≈ 1-2 µm
for our optical lithography processes.

Figure 6.6: Circuit diagram of the DJJAA. We find good agreement with observed mode frequencies for
LJ = 103.25 pH, Ls = 19.67 pH, γL = 0.84, R i nN = 77.40 kΩ, Rout

N
= 78.55 kΩ, Cgc = 25 fF, Cg = 0.26 fF, Cc

= 40 fF, and CJ = 700 fF, where R i nN and Rout
N

are the resistances from the input port to the coupling
capacitor and from the coupling capacitor to ground respectively, Ls is the stray inductance, and γL is
the inductance participation ratio γL = LJ /(LJ + Ls ).

6.6.2. Effective Model and Stability Analysis
In the following, units h̄ = m = 1 are taken. We consider the quantized phase space coordinates
x̂ and p̂ . The Hamiltonian of the system is

H (x, t ) =
p̂2

2
+
ω2

0

2
x̂ 2 +

α

4
x̂ 4 − (F1,c cos (ω1t ) + F2,c cos (ω2t ))x̂ (6.4)

whereω1 = ω0+δ−∆/2 andω2 = ω0+δ+∆/2. In the main text above, ∆ is written ∆12. Our system
is a nonlinear oscillator subject to two drives of unequal force F1,c and F2,c separated by a
frequency spacing ∆. The goal is to compute an effective time-independent Hamiltonian, which
describes the parametric response at the midpoint of the pumps, at frequencyω3 = ω1+ω2

2 . For
this, we employ a Floquet expansion as in Ref. [458, 459]. We can utilize harmonic balance
methods to analyze the system at the frequencies

ω1 = ω0 + δ − ∆/2, ω2 = ω0 + δ + ∆/2 and ω3 = ω0 + δ . (6.5)
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The expansion can be understood as the result of measuring the system at three different
frequencies with a lock-in amplifier [460]. We analyze the response of the system at these
three frequencies using the HarmonicBalance.jl suite [461].

We can derive an effective parametric drive strength and detuning as in Sec. 5.6.2 for unbal-
anced pumps and find the Hamiltonian

Heff = −∆̃eff b̂
†b̂ +

ω2
0K0

ω2
3
b̂†b̂†b̂ b̂ +

Geff

2
b̂†b̂† +

G ∗
eff

2
b̂ b̂ (6.6)

where

Geff =
256F1F2K0ω

3
0

ω3
(
∆4 − 16∆2ω2

3
) (6.7)

∆̃eff =
ω2

3 − ω2
0

2ω3
−

2K0ω
2
0

ω2
3

+
256K0ω

3
0
(
F 2

1 (∆ + 4ω3)2 + F 2
2 (∆ − 4ω3)2)

ω3
(
∆3 − 16∆ω2

3
)2 (6.8)

with Fi = Fi ,c
2
√

2ωi h̄
, Ki = 3h̄α

8ω2
i

, and K0 written as K in the main text.

Figure 6.7: Stability diagrams determined by numerical harmonic balance analysis for δ/2π = -45 MHz
and ∆12/2π = 40 MHz as in the main text. Colorbars show the number of solutions. (a) Stability diagram
indicating regions of the bichromatic driving force parameter space yielding varying numbers of stable
solutions for the system. (b) The same as in (a), but showing numbers of Hopf solutions.

We perform a sweep of the normalized dimensionless forces determined by F1,c and F2,c and
obtain a set of parameters for which the response of the system is stable (the eigenvalues of
the Jacobian matrix of the system have negative real parts) and for which the solutions are
Hopf-like (there are two eigenvalues with positive real parts which are complex conjugates
of each other) [461]. In Fig. 6.7 (a), we can see that there are large regions of the stability
diagram where there are only one, two, three, or four stable solutions. In the harmonic balance
analysis, these are regions in which the system may be in a zero-amplitude monostable state,
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a squeezed state, a bistable phase state, or a tristable state. In this chapter, we only examine
the behaviour of the oscillator driven into bistable states, while in Chapter 7 we explore in
more detail the system which is driven to admit larger numbers of solutions.

Interestingly, there appear to be regions where more solutions than those corresponding to
bistable or tristable states are accessible, as well as regions with no stable solutions. Further,
in Fig. 6.7 (b), where we show the Hopf-like solutions, there is a large region of parameter space
in which the driving forces can produce zero, one, two, four, six, or eight solutions which are
Hopf-like. The above numerical simulation produced no regions where three, five, or seven
Hopf solutions were found, but this may change upon analysis with finer resolution.

Of particular interest are the interfaces of regions with many stable and Hopf solutions, as
beyond the density of solutions which can indicate chaotic behaviour, they may also indicate
that a Hopf bifurcation has occurred (where a stable solution changes to a Hopf solution) [216].
When Hopf bifurcations occur, stable solutions change into periodic solutions such as limit
cycles. Beyond the drive powers used in Fig. 6.2, Fig. 6.3 in the main text of this chapter and for
different parametric drive detunings, we observe responses indicative of chaotic behaviour.
These topics are discussed further in Chapter 7.
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Chaotic Behaviour of a Strongly

Parametrically Driven Duffing
Oscillator

Why should things be easy to understand?

Thomas Pynchon

Parametrically driven damped Duffing oscillators are nonlinear systems that can be operated
to produce phase-dependent gain and can be driven into multistability, chaos, and limit cycles.
In this chapter, we operate superconducting circuits at cryogenic temperatures, which are en-
gineered to have the properties of Duffing oscillators. We apply an all-microwave bichromatic
drive, which realizes an effective parametric pump on the oscillator and causes the system to
exhibit a variety of parametric responses. We perform numerical harmonic balance simula-
tions of the classical system which provides insight into the measured responses.

J. D. Koenig, O. Ameye, M. Hylkema, L. R. van Everdingen, C. A. Potts, O. Zilberberg and G.A. Steele, Chaotic Behaviour
of a Strongly Parametrically Driven Duffing Oscillator, in preparation (2024).
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7.1. Introduction
Chaotic behaviour has long been understood to be a property of nonlinear oscillators, espe-
cially so in strongly driven Duffing oscillators [213, 216, 402, 525–532]. When operating driven
Duffing and Kerr nonlinear oscillators as degenerate parametric amplifiers, they are inten-
tionally operated at low enough driving powers that they produce only conventionally useful
effects from an engineering perspective such as phase-dependent gain [415, 416, 464, 533–
537]. When these systems are driven strongly, they exceed the parametric response threshold
and generate multiple stationary states [387]. When pushed even further, the strongly driven
Duffing oscillator is well known to undergo Hopf bifurcations, exhibit chaotic behaviour, and
can be driven into limit cycles [216, 526, 527, 537–548]. Despite the widespread employment
of Duffing and Kerr nonlinear oscillators in quantum information processors in the form of
parametric amplifiers and superconducting qubits, the out-of-equilibrium dynamics of such
nonlinear quantum circuits in exotic driving regimes have been the focus of limited experi-
mental investigation [411, 549–551].

The emergence of chaotic behaviour in parametrically driven nonlinear oscillators was pre-
viously shown to be a universal characteristic of nonlinear systems, with a few key spectral
markers of and common routes to chaos [527, 552–556]. Such systems may follow the period-
doubling route to chaos, where a cascade of period-doubling bifurcations produces turbulent,
aperiodic dynamics [526, 527, 557–561]. These successive bifurcations produce a spectrum of
peaks with universally determinable Fourier components [527]. After several period-doubling
bifurcations have occurred, chaotic behaviour can emerge with the associated appearance of
noise rise [539, 541, 543, 545, 551, 562–567]. The physical origin of noise rise associated with
period-doubling bifurcations has been previously attributed to an increase in device noise
temperature due to the effects of telegraph noise-induced switching between the two steady
states of a period-doubled oscillator [543]. The ratio of noise gain to signal gain of the oscilla-
tor near a period-doubling bifurcation depends on the detuning and strength of the drive, with
many regions of the parameter space allowing for a significant amount of noise gain versus
signal gain [543].

The time-domain output field quadratures of chaotic nonlinear circuits display aperiodic be-
haviour, which, when displayed as a two-dimensional histogram, leads to the appearance of
diffuse points broadly distributed in phase space [564, 568–573]. The phase space representa-
tion of the output field quadratures can provide insight into the trajectories of the oscillator
integrated over a period of time. In particular, for the bistable Duffing oscillator, chaotic be-
haviour can be observed around the two fixed-amplitude phase states of the system where
intra-well and inter-well dynamics are dictated by chaos in some regions of parameter space
[569, 573–576]. The aperiodic dynamics are then localized around either bistable phase state
in between switching events (intra-well dynamics) and distributed between the phase states
during switching events (inter-well dynamics), causing a characteristic diffuse phase space
portrait to form.

7.2. Devices and Chaotic Behaviour in Duffing Oscillators
The system and driving scheme are the same as in Chapter 6, for which the details are repeated
here. The data displayed in this chapter and Appendix B.2 were obtained from measurements
on modes of two separate devices with the similar circuit designs, denoted "Device A" and
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"Device B." Each device consists of two arrays of 800 SQUIDs connected via a large capacitor,
with one end shorted to ground and the other galvanically connected to a reflection measure-
ment port, as shown in Fig. 7.1 (a), (b) and previously discussed in Sec. 6.6.1. Additionally, there
is a separate drive line independent of the reflection port through which we apply drives via
capacitive coupling to the junction array. This device is known as a Dimer Josephson Junction
Array Amplifier (DJJAA), which may be operated as a parametric amplifier and hosts a series
of amplification bands at the N normal modes of the circuit determined by the number of
junctions in each array [193].

Figure 7.1: Device and system. (a) Each device is a Josephson junction array amplifier with a reflection
port and drive line wirebonded to a printed circuit board, with thermal connection to the board via silver
epoxy. The photograph was taken prior to wirebonding. (b) A zoom-in of a section of the aluminium
Josephson junction array. (c), (d) Simulated characteristic quadrature response of a classical bistable
Duffing oscillator driven to exhibit chaotic behaviour [577]. In (c) aperiodic behaviour in the position of
the oscillator is shown distributed about two fixed displacements corresponding to the stationary states
of the bistable oscillator. In (d), the phase portrait of the system is shown as the oscillator quadratures
evolve over time. Darker colours correspond to earlier times, while lighter colours correspond to later
times.

Provided that we do not drive at frequencies which induce interactions between our mode of
interest and the off-resonant modes of the system, we can reasonably well describe the mode
as a single Duffing oscillator after retaining terms in the expansion of the inductive potential
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of the circuit to fourth order to obtain the Hamiltonian

H/h̄ = ω0 â
† â +

K

6
(â† + â)4 (7.1)

where for Device A we have ω0/2π = 5.405 GHz as the bare oscillator frequency, with K /2π ≈
-27.737 kHz, total linewidth κ/2π = 23.465 MHz, and external linewidth κe/2π = 14.562 MHz. For
Device B we haveω0/2π = 4.604 GHz as the bare oscillator frequency, withK /2π ≈ -10.571kHz,
total linewidth κ/2π = 15.825 MHz and external linewidth κe/2π = 6.043 MHz. In Sec. 7.6.1 we
discuss the experimental setups for each device, and note that Device A is not expected to
have satisfied the relation h̄ω > kBT . Thus, to the degree that there exist any quantum
mechanical contributions to the observed behaviour outlined in this chapter, they would be
found in measurements of Device B and are left undetermined in this work.

We consider the effect of two pumps at frequencies ω1 and ω2, where ∆12 = ω2 − ω1 and δ =
(ω1+ω2)

2 −ω0 are the inter-pump spacing and parametric drive detuning respectively. In a frame
rotating at the frequency of the parametric drive, we may rewrite our effective Hamiltonian
under the effects of bichromatic driving under the Kerr approximation of the Duffing oscillator
as

H ′/h̄ ≈ −∆ef f â† â +
ϵp

2
â†2 +

ϵ∗p

2
â2 + K â† â† â â (7.2)

where ϵp is the two-photon pump strength, the oscillator frequency is shifted by the field
amplitudes of each pump |α1 |2, |α2 |2 to ∆ef f , and additional terms fast-rotating at frequency
∆12 may be neglected under the RWA for ∆12 ≫ ϵp . When the parametric drive is resonant
with the frequency-shifted oscillator, the RWA breakdown condition becomes ∆12 ≫ κ where
κ is the total linewidth of the oscillator [215].

The effect of applying two detuned pumps with their center frequency held near the oscillator
is to induce a frequency shift proportional to pump strength and self-Kerr nonlinearity, as well
as to generate a two-photon pump interaction. When the midpoint of the pumps aligns with
the shifted oscillator frequency, we are left with the Cassinian or Kerr Parametric Oscillator
(KPO) Hamiltonian given by

Hc/h̄ =
ϵp

2
â†2 +

ϵ∗p

2
â2 + K â† â† â â . (7.3)

The Hamiltonian functionV (x , y ) of this system in the absence of dissipation takes the shape
of a double-well with two valleys of equal depth at (x , y ) = (±α0, 0) where α0 =

√
ϵp/2K is the

size of the coherent state with photon number n = |α0 |2. Their equal depths indicate that these
two stable states |±α0⟩ where∇V = 0 are degenerate ground states of the Hamiltonian. Thus,
our two-photon pumped Duffing oscillator can be driven into a parameter regime in which the
two steady states of the system are equal amplitude phase states. For weak nonlinearities
relative to damping κ ≫ K , the KPO can be well described by the classical equations of
motion for a parametrically driven Duffing oscillator. In the rotating frame, the steady states
of the KPO (or, parametron) are known as out-of-equilibrium or non-equilibrium stationary
states (NESS), given that stable solutions of the system are located at the extrema of the
quasipotential [481, 487, 578–581].

As discussed in Sec. 6.6.2, we can determine the number of stable, unstable, and Hopf solu-
tions for the classical parametrically driven Duffing oscillator by numerical harmonic balance
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analysis [461, 582, 583]. In the case where stable solutions become Hopf solutions, limit cycles
(a kind of periodic orbit) are known to form [216]. Given that chaotic behaviour is known to oc-
cur in regions of parameter space with dense periodic solutions, the region of overlap between
Hopf and stable solutions is of particular interest. In Fig. 7.2, we plot the number of stable and
Hopf solutions as a function of the normalized dimensionless forcing

√
αFi /ω

3
0 where Fi is

the classical force of either bichromatic drive and α is the nonlinearity (see Sec. 6.6.2). In
this parametrization, changes in the frequency and nonlinearity of the oscillator serve only
to shift the forces at which we predict parametric responses. The device parameters used are
the same as for the experimental data displayed in Fig. 7.3.

We focused our analysis on the ranges of Fi for which Hopf solutions were found and observed
an overlap in parameter space with regions of bistability. Here, one real solution corresponds
to monostability, two corresponds to photon-dependent frequency shifts, bifurcation, and
squeezing, and three corresponds to bistability. The numerical harmonic balance analysis
can provide insight into regions where chaotic behaviour may be observed through the large
number of coexisting solutions but cannot provide information on the effects of chaos in these
regimes. This is due to the harmonic balance analysis requiring the frequencies of response
to be specified initially, while in chaotic regions, responses at new frequencies are created,
which are not captured. There are additionally higher order effects which are not captured by
harmonic balance analysis, as discussed in Sec. 6.6.1.

Figure 7.2: Stability phase diagram of the parametrically driven Duffing oscillator determined by numer-
ical harmonic balance analysis. (a), (b), (c) The number of stable solutions for Device A are plotted for
∆12/2π = 80 MHz and δ/2π = -45 MHz, -25 MHz, and -20 MHz respectively for swept values of bichromatic
drive forces. (d), (e), (f) The number of Hopf solutions for the parameters in (a), (b), and (c) respectively.
The analysis predicts a small region of parameter space in which Hopf solutions exist and stable solu-
tions do not, which appears for the furthest detuned parametric drive shown at δ/2π = -45 MHz.
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7.3. Emergence of Chaotic Signatures

Figure 7.3: Emergence of chaotic behavior under detuned bichromatic driving. (a) The device (Device
A) PSD is shown for increasing parametric drive strength at a fixed detuning of δ/2π = -20 MHz and
bichromatic drive spacing ∆12/2π = 80 MHz. As the drive strength is increased, output field phase-
dependent gain (squeezing) is observed for a narrow region of powers before the oscillator returns to
a zero-amplitude state. (b) For a further detuned parametric drive with detuning δ/2π = -25 MHz gain
is briefly observed before the system is driven into bistability, evidenced by a narrow peak in the PSD.
As the drive power is further increased, the system again exhibits output field gain before returning to
a zero-amplitude state. (c) At a large detuning of δ/2π = -45 MHz, the oscillator state transitions from
squeezed to bistable before entering into a chaotic regime in which wide-band noise rise is observed
in the PSD. As the pump strength is further increased, we again observe a transition into bistability, fol-
lowed by squeezing, before the system returns to a zero-amplitude state. (d) Representative linecuts in
the gain (squeezing), bistable, and chaotic regimes at parametric pump detunings δ/2π = -20 MHz, -25
MHz, and -45 MHz, and P2 = 3.2 dBm, 7.2 dBm, and 8.5 dBm marked by data shown in blue, peach, and red
respectively.

In Fig. 7.3, we show the output field power spectral density (PSD) of Device A for a set of para-
metric drive detunings. We sweep the power of the upper-frequency bichromatic drive while
holding the lower-frequency drive fixed at P1 = 13 dBm. This effectively increases the para-
metric drive strength, allowing us to probe the state of the oscillator at different detunings
for which we expect to transit distinct regions of the parametric response phase space of the
system depicted in Fig. 7.2.
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At a relatively small detuning of δ/2π = -20 MHz, we simply observe phase-dependent gain
(squeezing) for a range of drive powers, consistent with the oscillator transiting the dissipation-
stabilized region below the parametric instability threshold. As we further detune the para-
metric drive to δ/2π = -25 MHz and sweep the power, we briefly observe gain before the oscil-
lator crosses the instability threshold and becomes bistable indicated by a narrow peak in the
PSD. In this region, the oscillator stochastically switches between two equal amplitude phase
states before returning to a squeezed state as the power is further increased. This behaviour
is consistent with transiting the dissipation-stabilized and bistable regions. In general, the
parametric phase states are directly identifiable via the device output spectra by both the
narrow, high amplitude feature at the frequency of parametric driving and the appearance of
two broad peaks of lesser amplitude symmetrically spaced on either side of the narrow peak
[445, 446]. In Appendix B.2, several datasets displaying these side peaks are shown, where the
frequency and linewidth of the peaks can be determined from the eigenvalues of the dynami-
cal matrix of the Hamiltonian [445, 446]. For power spectra, the relative amplitudes of the two
peaks are generally asymmetric and their positions are a function of parametric drive strength
and the geometry of the Hamiltonian function of the system [445, 584]

With even further detuned parametric driving at δ/2π = -45 MHz, after the oscillator state again
transitioned from squeezed to bistable, we observed a significant increase in the noise floor
of the spectrum by ≈ 10 dBm over a wide frequency range as well as a broad, asymmetric peak
and the disappearance of the narrow signature in PSD indicative of bistability. This behaviour
persisted for a wide range of powers until finally, the system returned to bistability, followed
again by squeezing and return to a zero-amplitude state. This increase in output field noise
(noise-rise) is well-known to occur in nonlinear oscillators as they are parametrically driven
into chaos [539, 541, 543, 545, 551, 562, 564, 566, 567].

7.4. Confluence of Period-Halving and Doubling Bifurcation Cas-
cades

Along with noise rise, another signature of chaos in parametrically driven nonlinear oscilla-
tors is subharmonic generation, in which the output field of a periodically modulated oscil-
lator displays an increasingly dense spectrum of peaks around the frequency of parametric
driving [526, 527, 557–559]. These peaks increase in number as the system undergoes suc-
cessive period-doubling bifurcations, until the system eventually becomes chaotic. In Fig. 7.4
Device B under strong and far-detuned bichromatic driving displays uniformly spaced peaks
bounded between the two microwave drives as well as noise rise as the drive strength is
increased. Rather than immediately undergoing successive period-doublings, the oscillator
suddenly transitions to a chaotic state characterized by multiple peaks. As we increase the
pump strength we observe period-halving bifurcations until approximately the midpoint of
the region, after which point the system then undergoes a cascade of period-doubling bifur-
cations. The sudden transitions into and out of a chaotic state are reminiscent of an oscillator
following the crisis route to chaos [569, 585, 586].

Interestingly, the period-doubling bifurcation cascade appears to bring the system into a zero-
amplitude state and out of the region of noise rise, while the successive period-halving bi-
furcations bring the system into the center of the region. In general, period-halving bifurca-
tions enable the suppression and control of chaotic behaviour in nonlinear systems as period-
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doubling is reversed [587–590]. As the period-halving and period-doubling bifurcations meet
at the center of this region, we observe an absence of sharp peaks. Given that this occurs
where the successive period-doublings begin and the period-halvings end, this is indicative
of a region of suppressed chaotic effects.

Figure 7.4: Observation of structured spectral features in the output field of a Duffing oscillator paramet-
rically driven into chaos. (a) The oscillator (Device B) output field PSD is shown for increasing parametric
drive strength at a detuning of δ/2π = -50 MHz, P1 = 20 dBm, and bichromatic drive spacing ∆12/2π = 30
MHz. As the drive power is increased, the oscillator transitions directly from a zero-amplitude state into
a region where wide-band noise rises. As the system transits this region, evenly spaced peaks appear
and uniformly converge, followed by splitting and diverging into an array of peaks before the system
exits the chaotic region. (b) Linecut of the output field PSD at the power P2 = 15.6 dBm, indicated by the
dotted line in (a). (c) The same is true for the power indicated by the dot-dashed line at P2 = 16 dBm, (d).
The same is true for the power indicated by the dashed line at P2 = 16.6 dBm,. (e), (f), (g) Output field
quadrature histograms of the device at the indicated drive powers as in (b), (c), and (d) respectively.

It has been long established that the nonlinear systems and periodically driven Duffing oscil-
lator have solutions which allow for the formation of stable “bubbles" in which period-halving
and period-doubling bifurcations meet [587–590]. Such a situation is similar to the results of
the measurements in Fig. 7.4 (e), in which we observe the most structure in the output field
quadrature histogram for the center of the chaotic region. An alternative explanation is that
the system is driven into period-k orbits, which can be sustained from suppressed chaotic
behaviour in doubly-forced Duffing oscillators with unbalanced drives and in systems with
deformed double well potentials [591–594]. Here, the quadrature voltage counts are less dif-
fuse than at the edges of the region, as the majority of the oscillator dynamics appear to be
concentrated around a handful of points. This occurs far away from the edges of the noise-
rise region, where multiple period-doubling bifurcations have taken place and we expect the
most chaotic behaviour. As the drive power is increased, the escape of the oscillator from the
chaotic region is as sudden as the transition into chaotic behaviour from the zero-amplitude
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state.

In Fig. 7.5, we show the stable and Hopf solutions for Device B subject to the drive param-
eters of Fig. 7.4. In comparison with the measurements on Device A, our analysis predicts a
greater number of both stable and Hopf solutions. Given the large number of solutions and
overlap between regions of stable and Hopf solutions, further measurements and analysis in
this parameter regime may reveal the presence of Hopf bifurcations and limit cycles [216]. The
boundaries of the region indicated to have no stable solutions, but several Hopf solutions are
of particular interest. The stability diagrams in this chapter and Appendix B.2 indicate that
larger numbers of solutions are found for smaller bichromatic drive spacings ∆12 and larger
parametric detunings δ while the use of unbalanced pump strengths is required to fully ex-
plore the system parameter space.

We found that regions with odd numbers of Hopf solutions were, in general, far less common
than regions with even numbers, where in the case of Fig. 7.5 no region was found containing
seven solutions for the forces analyzed and in Fig. 7.2 (d) no region with three solutions was
found. Additional analyses with finer resolution may produce regions with these numbers of
solutions, but for the simulations shown in this thesis, points in the parameter space with odd
numbers of Hopf solutions were found far less often than for even numbers.

Figure 7.5: Large solution number stability phase diagram of the parametrically driven Duffing oscillator
determined by numerical harmonic balance analysis. (a) The number of stable solutions for Device B is
plotted for ∆12/2π = 30 MHz and δ/2π = -50 MHz for swept values of bichromatic drive forces. (b) The
number of Hopf solutions for the same parameters. For both stable and Hopf solutions, a larger number
is found relative to the parameters used in Fig. 7.2.

The doubly-forced or quasiperiodically forced Duffing oscillator (in our language, bichromati-
cally driven), in particular, has been previously investigated and was found to exhibit chaotic
behaviour under certain driving conditions, while unbalanced drives can be used to suppress
chaotic behaviour [593, 595–597]. Such driving schemes can result in quasiperiodic orbits, in
which the oscillator dynamical evolution is defined by orbits which never return to their same
point each cycle [597]. The oscillator behaviour shown in Fig. 7.3 and Fig. 7.4 represents only a
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small subspace of the parametric response phase diagram of the system. In Appendix B.2, we
show several more measurements displaying the response of strongly bichromatically driven
Duffing oscillators at various δ , ∆12, P1, and P2. While dense spectra of peaks around the
frequency of driving and noise rise are consistent features, we observed a broad array of be-
haviours in the output field quadrature histograms which we attribute to chaotic intra-well
and inter-well dynamics in multistationary states [213, 575, 576]. We also provide PSD datasets
along the δ and ∆12 axes for P2 sweeps with fixed P1 at each ∆12. From this, we can infer
the general structure of a region of the parametric response phase diagrams of the devices,
by observing for which ranges of powers and detunings markers of phase-dependent gain,
bistability, and chaos are visible in the device output field.

7.5. Conclusion
We have performed a series of measurements on parametrically driven Duffing oscillators re-
alized in superconducting quantum circuits. The system was driven at a variety of parametric
detunings and for various drive strengths for which we observed the transition from phase-
dependent gain, to bistability, and into regimes where signatures of chaotic behaviour were
present in the output field of the device. We compared our results to the theoretically ex-
pected behaviour of strongly parametrically driven Duffing oscillators in chaotic regimes and
identified similarities in the experimental data.

We performed numerical harmonic balance analysis of the classical Duffing oscillator for the
bichromatic drive frequencies utilized experimentally. We produced parameter sweeps to
identify stability diagrams which illustrate the response of the classical Duffing oscillator at
the parametric drive frequency for various classical driving forces. We found a region of the
dual-force parameter space in which Hopf solutions exist, in the vicinity of regions where two
stable solutions exist (the bistable state). Given that our observations of other signatures
associated with chaos (noise-rise, period-doubling bifurcations) occurred in the vicinity of
parameter space which produced bistable states, we focused our analysis on regions where
large numbers of stable and Hopf solutions were predicted by harmonic balance.

Strongly driven superconducting quantum circuits in the Duffing regime are highly engineer-
able and controllable systems which can be used for the study of non-equilibrium and chaotic
behaviour at cryogenic temperatures. Given the high degree of control over system parame-
ters, possibility of dissipation engineering, and the ability to linearly and nonlinearly couple
to other systems, superconducting circuits are a promising platform for experimentally in-
vestigating and utilizing chaotic behaviour in nonlinear oscillators. The use of an additional
resonant phase biasing drive to controllable deform the potential of the system could be used
in such chaotic regimes to further explore the range of accessible system responses. The inter-
section of classical and quantum effects in chaotic regimes, among other nonlinear dynamics
topics, could be further explored with such devices [436, 437, 566, 586, 598–622].

7.5.1. Contributions
Author names are as given in the List of Publications. O.A. carried out the semiclassical the-
oretical analysis with the supervision of O.Z. L.R.vE. designed and fabricated the device. J.D.K.
conducted the measurements with the supervision of C.A.P. and G.A.S. M.H. contributed to the
experimental setup. J.D.K. performed the harmonic balance simulations. O.Z. and G.A.S. super-
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vised the project. J.D.K. wrote the chapter with input from the authors. The original designs
for the DJJAAs were provided by the group of Ioan M. Pop at the Karlsruhe Institute of Technol-
ogy. The authors acknowledge financial support by the EU program H2020-FETOPEN project
828826 Quromorphic. This contribution statement is tentative and may be changed prior to
publication of these results.
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7.6. Supplementary Information
7.6.1. Experimental Setup

Figure 7.6: Experimental setup.(a) The device (Device B) is mounted to the mixing chamber plate of a
Bluefors dilution refrigerator and connected to our measurement instruments via coaxial cables. On
the microwave input line, the signal is attenuated at each stage to varying degrees, with the stronger
attenuation at lower stages. The input signal then passes through a filter (Mini-Circuits VHF-3500+) and
a circulator (Pasternack PE8402). The box which houses the printed circuit board to which the device
chip is connected is contained within a mu-metal magnetic shielding can. A superconducting coil is
attached directly to the bottom of the device packaging inside of the shielding and connected via a
loom to room temperature electronics for flux biasing of the device with a current source (Stanford RS
CS580). The reflected signal returns to the circulator, then passes through an additional isolator (LNF-
ISC4_8A) placed between the circulator and the high electron mobility transistor (HEMT) amplifier (Low
Noise Factory LNF-LNC4_8F) to reduce the thermal occupation of the device due to the thermal noise of
the HEMT. An additional pump line with reduced attenuation is connected to the dedicated drive port of
the device, filtered (ZLSS-11G-S+) below the mixing chamber plate. DC blocks (BLKD-183-S+) are placed
at room temperature on the input (A), output (B), and pump (C) lines. (b) The bichromatic drives are
sent from microwave generators (Rohde & Schwarz SGS100A) and combined (Mini-Circuits ZFSC-2-10G+),
which then pass through a directional coupler (SM Electronics MC2045-10) to which the resonant bias
drive supplied from a third generator (Anapico APUASYN20) is coupled, and all drives are sent to the
pump line. The probe tone is sent by a vector network analyzer (VNA) (Keysight N5221A PNA) through
power combiners and into the input line of the fridge. The returning signal from the output line of the
fridge is further amplified at room temperature (AT Microwave AT-LNA-0408-2501X) and passed through
a directional coupler (Pasternack PE2CP1104) to the VNA and spectrum analyzer (Keysight N9010B EXA).

Shown in Fig. 7.6 is the experimental setup for the measurements performed on Device B. The
drive powers quoted in the main text are those at the output of the measurement instruments.
The experimental setup for Device B is the same as in Chapter 6. The drive powers quoted in
the main text are those at the output of the measurement instruments.

The room temperature measurement setup for Device A was similar; however, with zero at-
tenuation at the output of the vector network analyzer (VNA). Device A was measured at the
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300 mK stage of an Entropy Cryogenics cryostat with -10 dB attenuation at each of the 70 K
and 4 K stages and -20 dB at the 1 K stage for both the input and pump lines. The input line
had an additional -6 dB of attenuation at the 300 mK stage. We can thus estimate a total
attenuation including cables to be approximately -64 dB. The output line contained an isola-
tor at the 300 mK stage and a HEMT at the 4 K stage. Devices A and B were wirebonded to a
PCB, thermalized to the PCB with silver epoxy, and the PCB was then mounted into a copper
package with SMA connectors. The closed package was then mounted with a superconducting
coil and placed inside of magnetic shielding. Each device contained junction arrays with 2
× 800 SQUIDs and the details of Device B are given in Sec. 6.6.1. Differences in the parame-
ters of Device A compared to Device B are likely a consequence of variation under wafer-scale
fabrication processes causing inhomogeneity in realized junction overlap areas, as indicated
by the large variation in measured normal state resistances of the arrays across numerous
samples.

We expect that the contributions of thermal effects to the out-of-equilibrium dynamics of
Device A were much larger than those of Device B, given the difference in temperature of the
lowest stages of the dilution refrigerators each were measured in (≈ 300 mK and ≈ 20 mK
respectively) and the frequencies of the modes. Indeed, Device A does not satisfy h̄ω > kBT .
The actual temperatures of the modes measured also depend on how well thermalized the
samples are to the mK stages. In addition to fits of stochastic switching rates to thermal
effects in the bistable regime, additional measurements can be performed to determine the
effective temperatures of the modes under investigation in the future [322, 517–523].

As discussed in Sec. 6.6.1, for the extreme drive parameters which we apply to our devices in
Chapters 6, 7, the quantitative predictions of effective parametric drive strengths and detun-
ings which produce large numbers of solutions for the parametrically driven system are ex-
pected to be inaccurate. Another analysis one can perform is to estimate the total circulating
current in the device relative to the critical currents of the SQUIDs composing the DJJAA. Given
the mode inductance and frequency, one can calculate the circulating current upon resonant

driving of the mode by I =
√

2E
L =

√
2nh̄ω
L . Given for Device B a per-SQUID Josephson induc-

tance of LJ = 103.25 pH and stray inductance Ls = 12.67 pH found in Sec. 6.6.1 with 800 SQUIDs
per half of the array, we can calculate the circulating current in the mode to be I = 7.877 nA
×
√
n for n photons.

For the drive parameters used in Fig. 7.4 (d), (g), we can determine n = κe
(∆12/2)2+(κ/2)2

P
h̄ω from

Ref. [222] to obtain 5.05×106 and 1.59×106 photons from each drive individually and can cal-
culate the mean-field estimate of the corresponding photon number of the parametric state
following Ref. [496] by using n = 1

2K

√
(2ϵp )2 − κ2, which yields 5.58×106 photons. We thus find

that the circulating current is I = 18.61 µA, which can be compared to the per-SQUID critical
current of Ic = 3.19 µA. While the parametric drive strength value from our unscaled model
likely overestimates the strength and thus the number of photons, the photons from each of
the two bichromatic drives are comparable to this value and are determined only from the
line attenuation. We note that in Ref. [563], it was found that a relationship between regions
of chaos and finite voltage in the parameter space of driven Josephson parametric amplifiers
exists. As our estimates indicate that we are driving the system beyond the critical currents of
the constituent SQUIDs of the array, we find this to be another indication that what we observe
is chaotic behaviour and that the system is likely driven into a finite-voltage state.
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Conclusion

"It began as toil for bread and butter
and ended in a love of science".

Wild Strawberries, Ingmar Bergman
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8.1. Findings
In this thesis we presented experimental observations on parametrically driven supercon-
ducting quantum circuits containing systems ranging from strongly nonlinear in the transmon
qubit limit, to moderately nonlinear in the Kerr regime, and lastly to weakly nonlinear in the
Duffing oscillator limit. We explored the quantum interactions between two tunably coupled
transmon qubits, the dynamics of a few-photon Kerr oscillator at the interface of the quan-
tum and classical regimes, and of the large amplitude parametric responses of strongly driven
Duffing oscillators.

In Chapter 4 we applied a parametrically modulated flux to a SQUID loop which inductively
coupled two transmon qubits. Together with the contributions of a fixed capacitive coupling,
the tunable contributions of the inductive energy of the SQUID to the linear and cross-Kerr
couplings can be controlled by the application of static DC biases. When the two oscillators
were flux tuned to be far off-resonant from each other, we applied red sideband and blue side-
band amplitude modulations to the DC bias of the coupler SQUID, with modulation frequency
equal to the difference and sum frequencies of the transmons respectively. When modulating
on the red sideband, we observed spectroscopic signatures of level repulsion and extracted
the strength of the single-photon hopping interaction between the oscillators from numerical
simulations and an analytical model. When modulating on the blue sideband, we observed
level attraction between the two transmons, with a cross-Kerr shifted signature visible spec-
troscopically below the primary resonance feature. Similarly, we determined the strength of
the corresponding two-mode squeezing interaction between the oscillators from numerical
simulations and an analytical model.

In Chapter 5 we reported observations of a moderately Kerr-nonlinear oscillator (KNO) sub-
ject to a parametric pump realized by an all-microwave bichromatic driving scheme. When
the center frequency of the two drives was applied red-detuned from the bare oscillator fre-
quency, we observed a modification of the oscillator response at the midpoint of the drives.
For strong bichromatic drives swept in frequency through the shifted oscillator response we
observed signatures of a few-photon parametric phase state generated in the KNO character-
ized by a strongly modified response at the midpoint of the pumps and the appearance of two
modes on either side of the frequency of the parametric tone. This behaviour is well known to
occur in the Kerr parametric oscillator (KPO) when the system is driven above the parametric
threshold determined by its damping. When driven into a parametric state, the KPO gains two
bistable solutions with mode frequencies determined by the eigenvalues of the dynamical
matrix of the system. As the parametric drives were further detuned, the oscillator returned
to a zero-amplitude state, however with an exchange of the signal and idler mode frequencies
relative to the midpoint of the drives. This exchange in signal and idler modes has been previ-
ously identified as evidence of a dynamical phase transition in which the third stationary state
of the tristable KPO becomes the steady state of the system in the presence of dissipation.
We measured the output field of the device subject to parametric driving and observed gain in
the region of detuning for which the parametric response was observed spectroscopically. We
compared our observations with a semiclassical effective model and used a modified version
to perform numerical simulations of the quantum master equation to estimate the photon
number and second-order correlation function of the system subject to bichromatic drives.
We observed deviations from the semiclassical model consistent with previous reports not-
ing the necessity of accounting for quantum effects in such systems and due to higher order
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effects of the bichromatic driving scheme not accounted for in the model.

In Chapter 6 we applied the same all-microwave bichromatic driving scheme to a weakly non-
linear oscillator realized by a superconducting quantum circuit. For strong bichromatic drives
red-detuned from the bare oscillator frequency, we observed in the output field PSD of the
device the formation of an extremely narrow and high amplitude peak at the frequency of the
midpoint of the drives. The output field quadrature histograms for swept drive powers at this
frequency revealed the formation of parametric phase states consistent with the behaviour
expected of weakly nonlinear KPOs driven above the parametric threshold. The combination
of low nonlinearity and strong damping enabled the generation of large photon number phase
states with correspondingly long stochastic switching times between the bistable stationary
states of the system. We measured the time-dependent output field quadratures as the drive
strength was increased and found an exponential increase in the stochastic switching time
to a maximal value followed by a decay in switching times until the system was no longer
bistable. We discussed this behaviour in the context of the stability diagram of the para-
metrically driven Duffing oscillator, where regions of parameter space for which bistability is
possible are finite. Before entering and after exiting bistability, the system may be in zero-
amplitude monostable, tristable, or other out-of-equilibrium stationary states. The decrease
in switching time with increasing power from a maximal value is consistent with the oscilla-
tor exiting the bistable regime due to nonlinear effects. Lastly, we applied a weak resonant
microwave drive at the midpoint of the pumps while the oscillator was bistable and demon-
strated control over the phase biasing and switching time as a function of drive power and
phase relative to the bistable states. We discussed these observations in the context of known
quantum and classical contributions to the stochastic switching rates in the KPO and expect
to quantify the relative contributions of these effects upon the further development of our
theoretical model.

In Chapter 7 we applied bichromatic drives to a weakly nonlinear Duffing oscillator realized
in a superconducting quantum circuit. We discussed the expected behaviour of such sys-
tems when strongly parametrically driven, which include the exhibiting of chaotic behaviour
following period-doubling bifurcation cascades and the associated noise-rise of the device
output field. We drove two Duffing oscillators beyond bistability for a variety of bichromatic
drive detunings and strengths and observed noise-rise and the formation of dense spectra be-
tween the drives in the output field PSD, as well as fluctuations in the output field quadratures
which presented as diffuse points about islands of larger occupation in the 2D histograms. We
performed numerical harmonic balance analysis on the system and identified regions of the
bichromatic driving parameter space which permit large numbers of stable, unstable, and Hopf
solutions, albeit with deficiencies due to the neglect of higher order effects.

8.2. Outlook
While tunable couplings will likely continue to find great applicability in digital quantum in-
formation processors, their utility in enabling the emulation of physics from entirely different
platforms and to perform analog quantum simulations is also exciting. In particular, combi-
nations of parametric drives of different frequencies applied to SQUID couplers with phase
control would enable the simulation of arbitrary XYZ, Ising ZZ, Bose-Hubbard, and Heisen-
berg XXZ models [325, 326, 338, 343, 392]. The use of asymmetric nonlinear inductive elements
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such as SNAILs to tunably couple transmons or KNOs would enable a variety of interactions
to be selectively activated when the coupler is parametrically driven, including the linear and
quadratic optomechanical photon pressure interactions and photon-pair tunnelling in sys-
tems where the self-Kerr nonlinearities of the coupled oscillators may be tuned from negative
to positive values [195, 394, 395]. The phenomenon of level attraction in parametrically driven
strongly nonlinear oscillators is also of interest, in particular in the context of understanding
more deeply the relationship between coherent and dissipative couplings, and the equiva-
lence of level repulsion and attraction subject to an exchange of frequency and dissipation
rates [365, 369, 372].

The few-photon KPO has been the focus of a number of theoretical studies and experiments
in recent years and the platform is expected to continue to be a topic of interest into the
future. KPOs in this parameter regime are ideal systems for investigating the intersection of
quantum and classical effects, with several theoretical proposals that can be experimentally
implemented. When considering KPOs with larger photon numbers as well as weakly nonlinear
Duffing oscillators, the breadth of topics of future study grows to include information process-
ing and quantum simulation, noise mitigation and sensitive detection schemes, as well as the
investigation of dynamical phase transitions and symmetry breaking operations in many-body
systems [358, 425–429, 433, 435, 441, 443, 452, 457, 473, 510–513, 515].

The strongly parametrically driven Duffing nonlinear oscillator is a system known to exhibit
chaotic behaviour. Given that within the field of circuit quantum electrodynamics the ability
to fabricate superconducting quantum circuits which are well described as Duffing oscillators
with engineerable frequencies, nonlinearities, couplings, and dissipations exists, there is great
potential in using Josephson junction-based devices at cryogenic temperatures to investigate
chaotic behaviour in systems that exhibit both classical and quantum dynamics. Such studies
can be extended to systems of linearly and nonlinearly coupled oscillators, in a variety of pa-
rameter regimes, and subject to resonant and parametric drives. Given that superconducting
circuits are able to emulate the physics of various other systems (i.e. optomechanical) and
couple to other platforms (i.e. magnonic, phononic) in hybrid quantum systems, it may be
interesting to investigate these strongly driven Duffing oscillators in such situations. A natural
extension is to combine the techniques used in the experiments performed on the tunable
coupler to enable the emulation of exotic interactions with the use of asymmetric inductive
coupling elements and apply strong parametric drives to the constituent nonlinear oscillators
of the system [195, 196, 436, 437, 566, 586, 598–604, 606, 607, 609–621, 623].



Appendices

A.1. Solutions to the Parametrically Driven Duffing Oscillator
For the below equations the variables are the dimensionless parameters given in Sec. 2.3,
where here we omit the tildes. The analytical solutions are those of Eq. 2.122, 2.123 where |X |=√
u2 + v 2 and they account for the monostable, bistable, and tristable states. The solutions

were determined by using the symbolic mathematics Python library, SymPy [624].
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−4Ω6η3γ + 24Ω6η2 − 2Ω4η3γλ + 4Ω4η3γ − 12Ω4η2γ2 + 6Ω4η2λ

W

+
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√
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√
Z

W
+

(
1
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√
Z

)2

G

×
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√
Z

)
×
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√
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)
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√
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√
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√
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√
Z − 54λ + 108

√
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)
where

(6)G = Ω2λ
(
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1
3

Ω2η +
1
6
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3
η + γ
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B.2. Additional Datasets of Parametrically Driven Duffing Non-
linear Oscillators

B.2.1. Stability Diagrams
Below we show additional stability diagrams obtained by numerical harmonic balance analysis
of Device A and Device B which, together with the diagrams in Chapters 6 and 7, illustrate the
structure of the parametric response phase space for many of the bichromatic drive power
sweeps shown in this section.

Figure 1: Stability diagrams for Device A. (a) The forces of the bichromatic drives are swept for δ/2π =
-60 MHz and ∆12/2π = 50 MHz are the numbers of stable solutions are shown. (b) The same with δ/2π
= -45 MHz and ∆12/2π = 40 MHz. (c) The same with δ/2π = -60 MHz and ∆12/2π = 160 MHz. (d) The same
with δ/2π = -40 MHz and ∆12/2π = 140 MHz. (e), (f), (g), (h) The number of Hopf solutions for the drive
parameters in (a), (b), (c), and (d) respectively.
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Below we show a force-detuning sweep for the parameters of Device A for equal bichromatic
drive forces Fc and ∆12/2π = 80 MHz.

Figure 2: Force-detuning stability diagram for Device A. (a) The force of the bichromatic drives Fc and
the detuning δ/2π are swept for ∆12/2π = 80 MHz, with the numbers of stable solutions shown. (b) The
same as in (a), but with the numbers of Hopf solutions shown.

B.2.2. Shared Spectroscopic Features of Parametric States for Detuning and
Power Sweeps of Duffing and Kerr Oscillators

On the next page we show again data from Chapter 5 (top row) to compare with additional
data from the first device discussed in Chapter 7 (bottom row). The dataset in the top row
shows the output field PSD and |S21 | for a parametric pump detuning sweep on a K ≳ κ
Kerr oscillator, while the bottom row shows the same for a parametric pump power sweep
on a K ≪ κ Duffing oscillator. In each case, the oscillators are driven above the parametric
threshold, but in the case of the Kerr oscillator the excitations at the frequencies symmetric
about the pump are below the measurement chain noise floor due to a modest Geff and the
small size of the few-photon parametric state generated. In contrast, for the Duffing oscillator
gain at the frequencies symmetric about the pump are clearly visible due to the greater Geff
and larger photon number parametric states generated.
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Figure 3: Output field PSD and |S21 | for two oscillators in different parameter regimes. a), b) The response
of the moderately nonlinear Kerr oscillator (the device from Chapter 5) to a parametric pump detuning
sweep. Here, P1 = P2 = 12dBm and ∆12/2π = 200 MHz. c), d) The response of the weakly nonlinear Duffing
oscillator ("Device A" from Chapter 7) to a parametric drive power sweep. Here, P1 = 19dBm, ∆12/2π = 140
MHz and δ/2π = -40 MHz at the analysis (c) and probe (d) frequency difference from the bare resonance
∆0/2π .
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B.2.3. Response Snapshots of a Parametrically Driven Duffing Oscillator
for Various Drive Parameters

Below we plot additional data measured from the device discussed in Chapters 6 - 7, "Device B".
In the left-hand column are displayed the output field PSD and |S21 | of the device as a function
of swept upper frequency bichromatic drive power P2 (with the lower frequency drive fixed at
P1 = 20dBm), δ/2π = -45 MHz, and ∆12/2π = 40 MHz where ∆0/2π is the frequency response
detuning relative toω0/2π . In the center column, the PSD and |S21 | as a function of frequency
are shown at the powers indicated by the green dotted lines in the leftmost column plots. In
the rightmost column is the output field quadrature 2D histogram for the powers indicated by
the green dotted lines, measured with an analysis bandwidth of 25 MHz.
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Below we show in the same format the Device B response for fixed P1 = 20dBm, δ/2π = -50
MHz, and ∆12/2π = 30 MHz, with the quadratures measured with an analysis bandwidth of 20
MHz.
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Below we show in the same format the Device B response for fixed P1 = 20dBm, δ/2π = -60
MHz, and ∆12/2π = 50 MHz, with the quadratures measured with an analysis bandwidth of 24
MHz.
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B.2.4. Response Map of a Parametrically Driven Duffing Oscillator for Var-
ious Drive Parameters

On the next page we show a response map for the Device A discussed in Chapter 7 where each
column is the PSD for a fixed bichromatic pump detuning δ with varied ∆12, P1, and across
each row there is a fixed ∆12, P1 and varied δ . For each PSD, the response as a function of P2
is shown. From top to bottom, the values of P1 in each row are [19, 19, 16, 16, 13, 10, 8] dBm.
For each plot, the y-axis is P2 (dBm) and the x-axis is ∆0/2π (MHz).
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On the next pages we show in more detail a subset of PSD plots from the previous response
map (Device A) along with their corresponding |S21 | measurements. In each panel a separate
parametric drive detuning δ is fixed and the power of the upper frequency bichromatic drive
P2 is swept.
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Below we show over a wider frequency range the dependence of the PSD on the fixed power
P1 of the lower frequency component of the bichromatic drive for Device A. For ∆12/2π = 160
MHz, δ/2π = -60 MHz, we set P1 in each plot from left to right as [19, 18, 17] dBm.

Figure 6: From right to left as P1 is increased from 17 dBm to 19 dBm, additional evenly-spaced gain
peaks appear in the PSD, indicating that a chaotic response is accessible nearby these bichromatic drive
parameter settings.
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