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SUMMARY

In this thesis observations on the application of parametric drives to superconducting quan-
tum circuits in disparate parameter regimes are presented. By the nonlinear inductance of
the Josephson junction, a variety of interactions in circuit quantum electrodynamical systems
comprised of strongly, moderately, and weakly nonlinear oscillators are realized.

Chapter 1 contains an introduction to classical and quantum information and introduces su-
perconducting circuits as a platform for quantum information processing. An outline of the
contents of the thesis is also provided.

In Chapter 2 a theoretical foundation for the later chapters is established, spanning from
the classical harmonic oscillator to circuit quantum electrodynamical systems and parametric
driving. The transmon qubit, junction-embedded coplanar waveguide, tunable coupler, and
Josephson junction array resonator are introduced and some methods for realizing paramet-
rically activated interactions in such systems are discussed.

Chapter 3 focuses on the steps necessary for constructing a superconducting quantum cir-
cuit. The design, simulation, and fabrication methods necessary for creating the experimental
devices of later chapters are discussed.

In Chapter 4 results of the parametrically activated interactions between two tunably cou-
pled transmon qubits by flux modulation of a SQUID are presented. When the coupling SQUID
is modulated at the sum or difference frequencies of the transmons, level repulsion and at-
traction are observed spectroscopically. The viability of the platform for analog quantum
simulations is discussed and the experimental results are compared to analytical models and
numerical simulations of the quantum master equation.

In Chapter 5 spectroscopic signatures of a few-photon Kerr parametric oscillator are observed
upon the application of an all-microwave bichromatic drive to a Josephson junction-embedded
coplanar waveguide resonator. Semiclassical analytical, numerical, and quantum master equa-
tion simulations are performed and compared with the experimental results. An effective
model based on semiclassical methods proves insufficient in modelling the behaviour of the
system, indicating the presence of quantum effects.

In Chapter 6 a weakly nonlinear Josephson junction array resonator is bichromatically driven
into a parametric phase state. Stochastic switching between the two non-equilibrium sta-
tionary states of the system is observed and the time between stochastic switching events is
determined for a range of drive strengths. An additional microwave drive resonant with the
frequency of parametric response is applied and the system is biased into one of the phase
states. The biasing and change in switching time as a function of drive power and phase is
shown. The contributions of classical and quantum effects to the occurrence of switching
events is discussed.

Xi



Xii SUMMARY

In Chapter 7 measurements of a strongly parametrically driven Duffing oscillator are pre-
sented. As the system is strongly driven at a variety of large negative detunings, signatures
of chaotic behaviour are observed in the output field spectrum and quadrature histograms.
The observed features are discussed and compared to known markers of chaotic behaviour in
classical parametrically driven Duffing oscillators.

Chapter 8 concludes the thesis, providing a review of the contents and findings of the previous
chapters. The thesis ends with an outlook and suggestions for potential future topics of study.



INTRODUCTION

My basic view of things is
not to have any basic view of things.

Ingmar Bergman

In this chapter we discuss classical and quantum information from a historical perspective,
introduce superconducting quantum circuits as quantum information processors, and sum-
marize the structure of the thesis.



2 1. INTRODUCTION

1. CLASSICAL AND QUANTUM INFORMATION

What do we think of when we think of information? Perhaps we envision a stack of papers,
a file folder, a computer hard drive, or a complicated network of nodes and connective lines.
Etymologically, we can argue that it means to "bring into form," but what is being brought
into form, and what form does it take? Is it necessary to communicate information, or does
information exist whether or not we inform anyone of anything?

| was first introduced to information in a formal sense during my undergraduate studies. | was
taught to think about information from a physical perspective vis-a-vis the work of Claude
Shannon, which enables one to quantify what we do and do not know about a set of things [1].
The very act of quantifying "things that we do and do not know" or "knowledge" or "informa-
tion" allows us to work with these concepts as mathematical quantities. For example, we may
consider how much information is contained in a coin. If we flip the coin, the result is either
heads or tails. According to Shannon, the information we have gained by flipping the coin and
observing the result is 1 bit of information. We can think of the coin as being an object which
encodes 1 bit of information.

Similarly, if we wish to transfer information to communicate with others, we can very sim-
ply turn off or on a bright lamp. When the lamp is on, it communicates some predetermined
message to another person conventionally in the affirmative, while if the lamp is off, it com-
municates a message conventionally in the negative. Alternatively, we can use the dots and
dashes of Morse code in order to communicate information to others. While the choice of dot
or dash is binary, the content of a message is determined by how it has been decided that
we map dots and dashes to letters. In the mapping to the Latin alphabet, the information
content of the message scales with the amount of dashes, dots, and pauses. In the same way,
we can convert zeroes and ones to other numbers with binary representations. Suddenly, a
collection of coins facing heads or tails can be used to communicate messages which contain
information.

If information can be encoded and communicated, one may also wonder whether information
can be processed to perform tasks. We have at hand a means by which we can prepare infor-
mation in binary states (o or 1), and we wish to configure a collection of information in such
a way that it can be processed in order to complete a task. One can, for instance, decide that
some action should be performed provided that certain information has been received. For
example, if we receive a 0, we can return a 1. If we receive a 1, we can return a 0. Alternatively,
with two bits, if we receive 00, we can return 0. If we receive 01 or 10, we return 0. Lastly, if
we receive 11, we return 1. Such Boolean functions as the NOT and AND gates described above
can be used to construct logic gates, which transform binary inputs into binary outputs. If one
constructs a system with two lamps in which when the first lamped is turned on, the second
turns off, and when the first lamp is turned off, the second turns on, a circuit with a NOT gate
has been realized. If we wish to be more efficient, one can construct a system of electronic
components such as transistors, resistors, capacitors, and diodes connected in a circuit which
can perform all known logical operations on binary inputs, with light replaced by specific volt-
ages. If one continues building circuits of logic gates, in the end, a classical digital computer
will be constructed.

The amount of time between when humans first utilized information processors and when
we finally began to generally understand them was thousands of years. Indeed, the task of
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constructing machines which can be presented with information, perform operations given
that information, and return processed information as a human would is a monumental task.
Between the invention of the abacus and the punched card computer, a significant portion of
all of recorded human history transpired [2]. As a species, we did not properly understand what
computers were or could be in the modern understanding until the 19t and 20!” centuries [3-
5]. Now, with devices containing billions of transistors in the hands of most of the population
of the world, computation seems an afterthought. It is now natural that one should be able to
compute virtually anything that the average person wishes within seconds of conceiving the
very thought of doing so. The vast majority of humanity are able to interface with such complex
machinery in order to complete exceedingly sophisticated tasks, all the while treating these
devices as perfectly opaque black boxes conceived by unknown individuals in the previous
century.

Figure 1.1: In contrast to a classical bit, a quantum bit is the state of a two-level quantum system. The
state of the system can be represented as a point on or in the Bloch sphere which illustrates the space
of possible quantum states [6].

In the late 19" and early 20!/ centuries, some of humanity’s brightest minds discovered that
the natural world was not sufficiently modellable by what is now known as classical physics [7-
10). Towards the end of the 20t” century, following the early development of the modern gate-
based digital computer, the problem of simulating the natural (quantum) world was posited
[11-13]. If one is to use computers as a tool to understand the universe, and if the universe is
quantum mechanical, should those computers be quantum mechanical? What would happen
if we exchanged our transistors encoding information in the classical binary states o and 1 with
quantum systems such as electrons and photons with which we could encode information in
complex-valued quantum states? Through the rest of the 20th century, the groundwork for
quantum computation would be laid, with much theoretical and experimental work done on
what it would mean to construct a quantum bit, execute quantum algorithms, and discover
what could be achieved by doing so relative to using classical bits [12-78].
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By the turn of the millennium, it was understood that a system of coupled quantum bits could
be used to perform any quantum information processing task which could be achieved by uni-
tary operations - which in turn meant that, at the very least, such systems could simulate and
compute anything that a classical computer could [13, 41, 50]. It was also shown that certain
computational and simulational tasks could be performed with algorithms on qubits more ef-
ficiently than with any known algorithms on classical bits [37, 47, 50]. While such a universal
quantum computer could hypothetically be built, it was (and still is) an entirely different task
to actually build one. Firstly, which quantum systems are the most efficient, accurate, and
economical for encoding information and performing such universal processing tasks? If the
criterion is that we encode information in quantum states, shall we use photons, electrons,
atoms, ions, anyons, or something else [26, 43, 44, 61, 69, 75-77, 79-82]? After determining a
platform, in which basis should one encode information?

Classically, the basis seems natural given the platform - for a coin, heads or tails, and a lamp,
on or off. When it comes to the case of the photon, shall we encode information in its polar-
ization, spin, or energy? The choice of encoding depends on the efficiency and reliability with
which information can be processed, which depends on the lifetimes of the quantum states
and the fidelity of gates executed on those systems. Once information is encoded, errors will
inevitably occur in the preparation of states, execution of gates, and readouts of registers.
How should these errors be corrected? Much of the past few decades of research in quantum
information processing has been concerned with these questions, and it seems to be the case
that this will continue for the foreseeable future.

1.2. SUPERCONDUCTING QUANTUM CIRCUITS

The quantum information processing platform that | have chosen to devote my study to is the
superconducting qubit. In Chapter 2, we discuss the superconducting qubit in more detail,
but here, suffice to say that we can think of the superconducting qubit as an artificial atom.
Such an artificial atom has a set of discrete energy levels that the electrons of the atom can
occupy. An electron will transition to a higher energy level if the atom absorbs a photon of
energy matching the difference between the two levels. Conversely, a photon can be emitted
from an atom if an electron occupying a higher energy level transitions to a lower level, with
the emitted photon having energy equal to the difference between the transitioned levels. In
both atoms and artificial atoms, such transition dynamics have been observed in great detail
[83, 84]. A natural choice for an artificial atom is one for which we can engineer and control
the transitions between individual energy levels, preferably with single photon and electron
resolution.

The origin of the superconducting qubit can be traced at least back to experimentation on
the quantum nature of Josephson junctions revealing macroscopic quantum tunnelling and
energy level quantization [18, 19, 85, 86]. As for the choice of artificial atom, the critical com-
ponent was found when a Josephson junction cooled to cryogenic temperatures and irradiated
with (microwave) photons of the appropriate energy (frequency) caused transitions between
quantized energy levels [19]. The energy levels were defined by a nonlinear potential, such
that the transition frequencies between levels were unequal - a key ingredient for building a
superconducting qubit, as will be discussed in Chapter 2. A mere three years after the most
well-known treatise on early quantum computation was published, what would become the
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key ingredient for the most popular quantum computing platform of the early 215! century
was revealed [12, 19]. While the first superconducting qubit, the "Cooper-pair box", was pro-
posed only a few years after the quantized energy level experiment, it would not be until the
last years of the millennium that the superconducting qubit truly took form once quantum
oscillations and control of coherent state evolution were demonstrated [71, 76, 87].

(a) " (b)
VU Ny ; % 1
Figure 1.2: Artificial atoms and superconducting quantum circuits. (a) A two-level system excited by a
resonant microwave drive. (b) The circuit representation of a superconducting qubit (the transmon). The

inductance and capacitance of the Josephson junction are represented by a square with a cross. (c) An
image of a chip containing superconducting quantum circuits wirebonded to a printed circuit board.

In the years that followed, several alternative superconducting qubit designs were proposed
and their viability for quantum computation was experimentally demonstrated [55, 71, 76, 88—
111]. Mechanisms for control, readout, and coupling of superconducting qubits generally coa-
lesced around the framework of circuit quantum electrodynamics, in which networks of res-
onators and qubits formed by capacitors, inductors, and Josephson junctions are used to per-
form quantum gates and read out qubit states [111-118]. It is within this framework that the
experiments outlined in Chapters 4 - 7 were performed; superconducting quantum devices
formed by Josephson junctions, capacitors, and inductors, coupled to transmission-line res-
onators and irradiated with microwave signals.

A few additional threads of progress have also been developing since the late 1990s, even
within the field of superconducting quantum circuits specifically. The first is concerned with
whether the basis consisting of the ground and excited states of a superconducting qubit is
the most optimal way to encode information. An alternative approach is to encode informa-
tion in bosonic modes and continuous variables; this field of research has been the focus
of increased study in the 215! century with numerous exciting experimental developments
demonstrating the viability of quantum information processing with Schrodinger cat states,
grid states, and GKP states with quantum circuits and on other platforms [119-133]. Much the-
oretical and experimental progress has also been made with quantum error detection and
correction towards fault-tolerant quantum computation, regardless of the choice of platform
or basis of encoding [51, 134-158].

1.3. THESIS OUTLINE
In Chapter 1 we have introduced the concept of quantum information and superconducting
quantum devices. In Chapter 2 we discuss more deeply the theoretical background necessary
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for understanding the later chapters, encompassing harmonic and anharmonic oscillators,
circuit quantum electrodynamics, and parametric driving. In Chapter 3 we discuss how one
goes about conceiving of, designing, simulating, and fabricating superconducting quantum
circuits. In Chapter # we present our findings on the parametrically activated interactions be-
tween two strongly nonlinear Kerr oscillators realized by flux modulation of a tunable coupler.
We discuss the circuit in detail theoretically and show that the device can be operated in dis-
tinct parameter regimes which can be used to investigate a variety of physical phenomena.
In particular, we observe level repulsion and attraction between the two nonlinear oscilla-
tors, with the spectroscopic signatures of two-mode squeezing observable in a regime where
the nonlinear cross-Kerr coupling is dominant. In Chapter 5 we report on the observation
of a parametric state in a moderately nonlinear Kerr oscillator generated by an all-microwave
bichromatic driving scheme. We investigate the response of the oscillator to bichromatic driv-
ing for a variety of pump parameters and observe response signatures which indicate the few-
photon oscillator state is not adequately described by semiclassical methods. In Chapter 6
we demonstrate the parametric driving of a quantum Kerr nonlinear oscillator into multista-
bility and show phase control over the system in the bistable state with the application of an
additional weak resonant drive. We investigate the switching dynamics for a variety of para-
metric pump parameters and observe a change in the characteristic stochastic switching time
over several orders of magnitude. We further observe a suppression of the switching time
as the oscillator is driven out of the parametric response region due to nonlinear effects. In
Chapter 7 we parametrically drive a quantum Duffing oscillator beyond bistability into chaos,
observing a variety of chaotic signatures in the output field spectrum and quadrature his-
tograms. In Chapter 8 we conclude, providing a review of the contents of the thesis, main
findings, and outlook. The relevant data for this thesis can be found at the following DOI:
https://doi.org/10.4121/0d0ef8aa-43d9-46ab-8afd-e02b76£2469a.v1.


https://doi.org/10.4121/0d0ef8aa-43d9-46ab-8afd-e02b76f2469a.v1

THEORETICAL BACKGROUND

The fish you don't catch is always the biggest.

Abe Kobo

In this chapter we begin with the simple harmonic oscillator, building up a base of knowledge
until we eventually cover quantum anharmonic oscillators, transmon qubits, circuit quantum
electrodynamics, and the parametrically driven Duffing oscillator. This chapter establishes a
foundation from which the reader can better understand the underlying physics of the later

research chapters containing tunable couplers and parametrically driven quantum nonlinear
oscillators.
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2.1. HARMONIC OSCILLATORS AND ENGINEERABLE QUANTUM (AN)HARMONIC

OSCILLATORS

244, EVERYDAY OSCILLATORS

SIMPLE HARMONIC OSCILLATORS

While it may be common knowledge among physicists that a child being pushed on a swing
is described by many of the same fundamental equations as the motion of celestial bodies
and the dynamics of charges in electrical circuits, this understandably comes as a surprise to
the non-physicist. How should it be that such an everyday, commonplace activity has such a
deep correspondence with the most advanced technologies we have developed as a species
over the course of thousands of years? Most students would likely never expect that when
first introduced during high school to the famous equation [159]

F=m3 (22)

that this simple expression is not far removed from the vast majority of the mathematics
behind quantum circuits.

We can start with the simple harmonic oscillator, defined as a system in which an object dis-
placed from its equilibrium position is acted upon by a restoring force which returns the object
to the equilibrium position. For example, in the absence of friction, a mass attached to the
end of a stretched spring can be described by

a*x
dt?

Fomi-mTX iz @2)

where k is a characteristic parameter of the spring (the spring constant), which relates the
force exerted on the spring to how far it is displaced [160]. One may think of this as a measure
of the stiffness of the spring. If we wish to uncover the position of the spring at any given
pointin time, we can straightforwardly solve the differential equation for x under some initial
conditions (for example, that the spring is initially stretched to a position x, and released
from rest) and determine that

x(t) = xo cos (wot) (2.3)

where the natural frequency of the oscillator is given by w, = Vk/m. Thus, at any given
point in time, the position of the mass is entirely parametrized by the frequency at which it
oscillates, which in turn depends on the mass of the object and the stiffness of the spring.
A heavy object with a loose spring will oscillate at a lower frequency (and thus move more
slowly) than a light object with a stiff spring.

We can solve this problem alternatively with the Lagrangian formulation, in which instead
of describing the system initially in terms of the forces present, we consider the kinetic and
potential energies

L=T-U (2.4)
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3

Figure 2.2: A diagram depicting a mass-spring system at equilibrium. When the mass is placed at the

position xo, the spring is stretched and the system has potential energy. When the mass is released, it
oscillates back and forth as potential energy and kinetic energy are exchanged.

0

where for the mass-spring system, we have 7~ = %m(%)2 and U = Sk x?. What this equation
tells us is that when the mass is displaced from equilibrium (when the spring is stretched or
compressed), the potential energy of the system is maximal, and when the mass is passing
through equilibrium where the spring is neither stretched nor compressed, the kinetic energy
is maximal. The energy in the system oscillates between being stored as potential energy and
released as kinetic energy.

We can apply the Euler-Lagrange equation to Eq. 2.4 as

d (oL oL (25)
dt\ox ) ox >
from which we recover our differential equation mft’,‘ = —kx as in Eq. 2.2. As we will later

see, describing our physical systems in terms of energies rather than forces will prove to be a
more natural approach, especially as we move towards unravelling the dynamics of quantum
circuits.

LC RESONATORS

As another more directly pertinent oscillator, it is useful to consider the flow of charge carriers
g in an electrical circuit containing a charged capacitor and an inductor arranged in parallel.
The charged capacitor with capacitance C has a potential difference V across its two plates,
which generates an electric field in the gap of distance d, given by E = % where V = %. As
the charge carriers move through the circuit due to the potential difference, they pass through

the inductor with inductance L, which generates a magnetic field B with flux ®g = L% and

induces a voltage given by V = —d‘%‘?.
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Figure 2.2: A diagram depicting an LC oscillator. Energy in the circuit oscillates between being stored in
the electric field E between the charged plates of the capacitor and in the magnetic field B generated
by charge carriers flowing through the inductor.

Thus, from the capacitor and inductor, we have

dg(t) — dV(t)

_C (2.6)
dt dt
d*q
V(t)= L—. 27)
(t) e
We can form a Lagrangian with the knowledge that 7 = %L(%)2 and U = 7qV and solve the
Euler-Lagrange equation to obtain
2
9 __49 (2.8)
dt? C
which has a clear resemblance in form to Eq. 2.2. Similarly to the oscillations of the position

of the mass on a spring, the charge g(t) = g, cos (w,t) oscillates between the inductor and

capacitor at the resonant frequency w, = ‘Zﬁ

In reality, springs and electrical circuits are not such idealized objects. These systems are
made of materials, and those materials have their own properties. Further, they are not closed
systems non-interacting with their environment. For example, how might our solutions differ
if the spring we use is rusty and slowly loses a small amount of stiffness as it oscillates? What
happens if we give the object a little push each time it extends to its maximum? How do the
resistive losses of the wires in our circuit change our equations? What if our object attached
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to the spring is an opened parachute that catches the wind as it returns to equilibrium? What
if we attach two springs together with different spring constants? Our simple toy problems can
very rapidly complicate themselves if we consider factors such as nonlinearities, couplings,
and driven oscillations, as we will see in later chapters.

RESONATORS AND MODES

If you have ever found that you can blow air into a glass bottle in just the right way to produce
a loud ringing sound, you have already encountered a resonator [161]. The geometry of the
bottle determines the frequency of sound waves that can be hosted, and blowing into the
bottle causes the air inside to vibrate. Similarly, subjecting a wine glass to sound waves of a
specific frequency (typically on the order of a few kHz) will cause the rim of the glass to vibrate
at that resonant frequency.

Inthe case of a cylindrical tube closed at one end and open at the other, the quarter-wavelength
or A/4 resonator can host a series of standing waves with frequencies increasing as f,, = n:—g,
where n are positive integers, v, is the speed of sound in the tube, and d is the length of the
tube. While before our exercise with the mass-spring system showed one natural frequency,
here our open-ended tube hosts a series of normal modes of different frequencies, each sep-
arated by integer multiples of the speed of sound divided by the length of the pipe.

Conversely, a guitar string is fixed at both ends and hosts modes as in a half-wavelength or
A/2 resonator closed at both ends, with frequencies given by £, = nz"—; where d is the length
of the string. When the string is strummed, a near-instantaneous "kick" is delivered, and a
combination of these modes are excited with the frequencies dependent on the tension of
the string set by the tuning peg and the position of the user’s fingers holding down the string
which modifies the effective length of the resonator.

I think that most non-physicists would be surprised to learn that there are strong correspon-
dences between such common activities as plucking a guitar string or bouncing a mass on a
spring and the quantum computers that they read about in the news or see in science fiction
media. All of the complicated quantum mechanical experiments outlined in later chapters are
fundamentally concerned with nonlinear LC oscillators and coplanar waveguide resonators,
which have resonance frequencies and normal modes that we excite in ways not dissimilar
to these simple classical systems. The modes may be hosted on "tubes" much thinner than
a human hair, and we may excite them with microwave signals rather than by blowing air or
plucking a string, but much of the physics underpinning these devices is the same as we ex-
perience in our everyday lives.

21.2. THE DRIVEN, DAMPED, NONLINEAR OSCILLATOR

If we want to discuss our qubit of choice (the superconducting transmon qubit) in any de-
tail, it is instructive to first expand our understanding of the simple harmonic oscillator to
include damping, driving, and nonlinearity. Much of the experimental work in this thesis is
concerned with driven, damped, anharmonic oscillators so it is useful to introduce each of
these ingredients in our construction of the experimental problems at hand.

We introduce the following equation, known widely as the Duffing equation, which describes
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the motion of forced Duffing oscillators as

d*x
dt?

d
rax+ 5d_); +Bx3 = F cos (wt) (2.9)

which can be seen to closely resemble Eq. 2.2, with the addition of a term proportional to
the speed of the oscillator by a damping constant & and a cubic nonlinearity in position with
constant B, as well as a periodic driving force with amplitude F at frequency w. Neglecting
the applied force and damping, we can determine the kinetic and potential energies and write
the Lagrangian of the undriven oscillator as

2
L=T-U-= —m(ﬂ) - 1m0(x2 - 1m,Bx" (2.10)
2 2 4

which shows that this oscillator exists in a potential with quadratic and quartic contributions.
Later, we will show a correspondence between this potential and quantum circuits containing
Josephson junctions.

A commonly cited damping mechanism of an oscillator is friction (as an object slides along
a surface or through a non-vacuum medium such as air or oil), with the damped oscillator
characterized by whether & is equal to 0, between o0 and 1, equal to 1, or greater than 1. In the
case of a damped oscillator, where we also consider 8 = F = 0, our example in Eq. 2.2 of the
mass-spring system would change to

2
d*x + 52 = —kx (211)

Mae "%t

and the solution would be modified with a decaying exponential set by the damping rate given
by

x(t) = xoe_%t cos (wt) (242)

where now w = /wg - (%)2. In the case of an LC oscillator with resistive losses, the damping

of the oscillations in the circuit is due to the resistance R, with the quality factor Q = % é

of the oscillator set by the degree of damping.
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Figure 2.3: The steady-state response amplitude as a function of frequency, as defined in Eq. 2.15 with
m=0.1kg. The response has a Lorentzian shape with linewidth determined by the damping factor .

If we extend Eq. 2.11 to now include a periodic driving force as
2

A L

dt? dt
we find that the problem quickly becomes more complicated, with the solutions strongly de-
pendent on the degree of damping. If we instead consider the driving force to be complex with
F(t) = Fe'®! which maintains Re[F(t)] = F cos(wt), we can apply a general trial solution of
the form x(t) = Ae’@t*®) to solve for the steady-state solution. It is then straightforward to
express A in terms of the other parameters as

Fe—iwt

A= ——~ 21
m(w3 — w?) +idw (2:4)

m

= F cos(wt) (213)

and since we take A and x to be real, we have

F
A= \/mz(wg — w2)2 + 522 (215)
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¢ = —arctan ( (2.16)

k—maﬂ)

and we can write x(t) = A cos (wt + ¢) + x; where additive transient terms of the solution x;
are dependent on the initial conditions and degree of damping relative to the force amplitude
and frequency.

The system becomes much more complicated when we add the cubic nonlinearity Sx3 and
derive solutions to Eq. 2.9. Following Ref. [162], we can propose a trial solution

x(t) = acos(wt) + bsin(wt) (247)

which, when combined with Eq. 2.9 and after dropping the higher order harmonics, which play
a negligible role, yields

(—w’a+wbb+aa+ zﬂa3 * zﬂab2 — F)cos(wt) = (w’b + wSa — 2,6b3 —ab
- %,Bazb)sin (wt) (218)
which we can solve to obtain
(@ —a = 2l + ) + Sa)a + ) = P, (219)
We can reparametrize the solution to

x(t) = z cos (wt — ¢p) (2.20)

where z = Va2 + b2and ¢ = arctan(’;’). We can then find the characteristic Duffing response
by plotting % versus %, or in other words, the force-normalized amplitude response of the

oscillator as a function of frequency of forcing relative to the "stiffness" (and in turn, the
natural frequency w,) of the oscillator.

At certain forcing frequencies and amplitudes the response of the oscillator is multi-valued
and it can further be shown that the system exhibits hysteresis, in that the response depends
on whether the forcing frequency is increasing or decreasing as it is swept. These are charac-
teristic properties of the quantum circuits containing Josephson junctions under investigation
in later chapters. We will discuss the parametrically driven Duffing oscillator specifically in
Sec. 2.3, which is more directly relevant to our results in Chapters 4 - 7.
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21.3. NONLINEAR LC RESONATORS
SUPERCONDUCTIVITY, JOSEPHSON JUNCTIONS, AND SQUIDS

Figure 2.4: An example of a Josephson junction, with the superconducting material (blue) surrounding
a thin insulating layer (purple). Two electrons forming a Cooper pair are shown in the superconducting
material.

In order to construct quantum circuits, we require two components: a patternable layer of
superconducting metal for bulk structures (such as coplanar waveguide resonators and qubit
electrodes) and Josephson junctions (which themselves contain thin films of superconducting
metal sandwiching an insulating layer).

Superconductors are materials which exhibit zero electrical DC resistance and repel magnetic
fields when brought below their critical temperature T, which is typically at or below tens
of Kelvin. For the materials used in the experiments outlined later in this thesis, thin-film
NbTiN and Al the critical temperatures are around 10 K and 1.2 K, respectively. To reach such
low temperatures, simply placing the devices in liquid nitrogen is insufficient, and so the use
of helium dilution refrigerators is necessary to reach milli-Kelvin temperatures far below the
critical temperatures of the device's superconductors and satisfying the condition fiw > kgT
to ensure the lack of thermal excitations on the order of the frequencies of the modes we are
interested in.

When a material superconducts, the electrons in the material tend to form weakly bonded
"Cooper pairs," which easily break apart at higher temperatures. Curiously, while electrons are
spin-1/2 fermions, Cooper pairs are bosons, so they are not restricted to separate quantum
states as electrons are. Thus, rather than considering single charge carriers moving through a
circuit, we are concerned with the quantum states associated with the presence and movement
of Cooper pairs, especially across Josephson junctions.

A Josephson junction is an element formed by separating two superconductors from each
other with an insulating layer. For the junctions in the devices discussed in this thesis, the
superconductors are Al, and the insulating layer is AlOy. On the left and right sides of the
junction, the quantum state of the Cooper pairs in the superconductors can be expressed as

W, = y;e'? (2.21)
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where / can be /, r representing the left and right sides respectively, y; is the amplitude (re-
lated to the number of charge carriers), and ¢; is the phase of the wavefunction. The junction
acts as a small capacitor, where instead of charges separated with a potential difference, there
are Cooper pairs, which yield a difference in energy across the junction AU = 2eV.

Following Ref. [163], we can apply the Schrodinger equation to obtain a system of equations
given by

) . . .
lﬁa(y/,e’d”) = eVy e + Ky, e (2.22)
p) . . .
/ﬁa(y/re"p’) = —eVy/,e’¢’ + Ky/,e’d” (2.23)
which can be rearranged to obtain
0 2 .
E(W’z) = - Kyiyrsin (6) (2.24)
0 2 .
E(wf) =~ Kyiy; sin (6) (2.25)
0 K eV
E(qb/) = —F% cos (8) - R (2.26)
o] Ky eV
at(¢r) "y, cos(8) + - (2.27)

where § = ¢, — ¢, is the phase difference across the junction or the Josephson phase and
K is the amplitude of the coupling between the two sides of the junction. A consequence of
these equations and the presence of Cooper pairs is that current may flow (as Cooper pairs
tunnel) through the junction without an applied voltage. Supposing that the amplitudes on
either side of the barrier are equal, we can solve the above equations to obtain the Josephson
equations given by

I(t) = I, sin(6(¢)) (2.28)
06 2eV(t) 2aV(t)
“e . = (2.29)
ot h D,
where @ = % is the superconducting flux quantum. Further, by making use of the fact that
V= L%, we can rearrange the above to find the inductance of the junction given by
Do
L(§) = ———— 2.30
(6) 211, cos(8) (230)
where the Josephson inductanceis L, = L(0) = ;:}c, and we can determine the energy stored
in the junction as
I:®,
E(8) = === cos(8) (2.31)
27

from which we can define the Josephson energy as E; = E(0) = % where the energy is

calculated from E = II(t)V(t)dt. It is important to note the relationship between the time-
dependent voltage and Josephson phase in Eq. 2.29 has consequences for the Josephson
inductance and energy. If we integrate both sides of Eq. 2.29 with respect to time, we can find
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that 6(¢t) = fD—’Z I V(t)dt while we know from Sec. 2.1.1 that an inductor follows the relation

V(t) = —%. The dependence of the phase difference on magnetic flux is explored below
during the discussion on SQUIDs.

From these, we can see that the current flowing across the junction is maximal at a critical
current I, and modulated by the phase difference across the junction. We can also note that
the voltage across the junction is strictly determined by the rate of change of the phase dif-
ference across the junction, so we may have a flow of current with no voltage due to quantum
tunnelling. From the above, we can surmise that at very low temperatures, we can have very
small currents flow across a junction due to the change in phase of Cooper pairs in two su-
perconductors separated by an insulating layer. As we show later, we can use the charge and
phase as quantum operators in our quantization of circuits containing Josephson junctions.

Lastly, there is yet another interesting set of effects that manifest when two Josephson junc-
tions are placed in parallel, making a superconducting loop with two spatially separate insu-
lating barriers. The phase difference across the loop is then dependent on the quantized flux
threading the loop, given by

0}

=22, (2.32)

D,
Thus, the total current of the element is I = I, + I,, which can be combined with Eq. 2.28 to
find the total flux-dependent critical current of the loop

o

O 2
I(®,) = \/(Im — I P+ 4l I, cos (Mf) (2.33)

which shows that the critical current of a superconducting loop, or Superconducting Quan-
tum Interference Device (SQUID) is modulated by a cosine dependence on the magnetic flux
threading the loop relative to the magnetic flux quantum. Given that the critical current is
flux-dependent, it also follows that the Josephson inductance and Josephson energy of the
SQUID also inherit flux-dependence through the critical current. For two identical junctions,
the simple substitution I, — 2I;|cos (27r$—:)| can be used.

QUANTUM (AN)HARMONIC OSCILLATORS

If we revisit the case of the LC oscillator, replacing the linear inductance with the nonlinear
inductor which is the Josephson junction, we can effectively realize the basis for much of the
past few decades of research in superconducting qubits. However, before taking the step
of creating an anharmonic quantum oscillator, we may first start by quantizing the linear LC
oscillator.

If we consider the results of Eq. 2.6 - 2.8, we can construct a Lagrangian for an LC oscillator as

2 2
L 1L(ﬂ) —%qV=1(D -

L= T (2.34)

1q°
2C
where we make use of the factthat V = g/C and ® = L%. We may then apply the Legendre
transform to obtain the Hamiltonian for the system as

2 2
121

= . 2.35
2L 2C (235)
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and treat the charge and flux parameters as quantum operators with the following commuta-
tion relation

[®, §]=ih (2.36)
where if we define
A
D=/ —(57+5 (2.37)
20C )
g= @(Eﬁ - 3) (2.38)
2

we can obtain the standard form of the quantum harmonic oscillator
. sial ]
H =hw|4"4+ - (2.39)
2

;
vLC
We are now ready to replace the linear inductance of the quantized LC oscillator with the non-
linear inductance provided by the Josephson junction. Recalling that the phase-dependent
Josephson inductance is defined as in Eqg. 2.30, with the phase-flux relation given by Eq. 2.32,
we can write the inductive potential energy of the circuit as —E cos(§). We may now ex-
change the inductive potential energy of Eq. 2.35 with our nonlinear inductive potential energy
and write our new Hamiltonian as

and 4%, 4 are the creation and annihilation operators respectively.

where again w =

H = 4tEcA? — Ej cos () (2.40)

where E¢ = % is the charging energy and 6 = 27t§, A = % are the phase and charge
number operators respectively, and we take £, > E which allows us to neglect an offset

charge arising from coupling of the oscillator to the environment [118].

Simply by replacing the linear inductive energy with that of the energy stored in the Josephson
junction, we have now arrived at a very powerful equation from which we can adjust and
expand to uncover the dynamics of the quantum circuits that will be discussed in this thesis.
For example, by maintaining that the Josephson energy is far larger than the charging energy,
we can Taylor expand the cosine potential and retain terms to fourth order, yielding

1 a0 1 &
H = 4,EcA® + —E;6° — —E 6 (2.41)
2 24

which, together with the definitions

1/4
6= (E) (6" + b) (2.42)

/4
ﬁ=i( Es ) (6" - b) (2.43)
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Figure 2.5: The energy potential for a quantum harmonic (blue) and anharmonic (red) oscillator. The
harmonic oscillator shown contains only a quadratic dependence on phase, and the anharmonic po-
tential contains the full cosine dependence as in Eq. 2.40. The spacing between each energy level of
the harmonic potential is equal (Aw) while the energy level spacings for the anharmonic potential are
non-equidistant and depend on the nonlinearity of the oscillator.

allows us to write the Hamiltonian of a superconducting qubit (the "transmon" [111]) as
aen Ec,ae A
H = 8ECE,;b'h - 1—2C(bT + by (2.48)

for which the first term is as in Eq. 2.39, and the second bestows our device with a quartic
nonlinearity. This oscillator will be discussed further in Sec. 2.2.

We can further simplify our Hamiltonian by expanding out the fourth order term and dropping
terms which are fast-rotating by applying the Rotating Wave Approximation (RWA), under the
argument that in a frame rotating at w, (provided that Aw > E—f) the contributions of these
fast-rotating terms to the dynamics of the system average out. In this situation, we can arrive
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at the simplified Kerr Hamiltonian

Hh~wb'b+Kb bbb ~ wb'b+ —b"b"bb (2.45)
where iw = V8EcE, — Ec is the frequency of the transmon and K = —g—g is the self-
Kerr nonlinearity, where again provided that £, > E, we may take @ ~ —E/hA to be the
anharmonicity of the oscillator.

When the nonlinearity (anharmonicity) is sufficiently large relative to the strengths of the
drives we apply to excite our oscillator, we are justified in truncating our Hilbert space to
a computational subspace usually consisting of the ground and first excited states, which re-
alizes a qubit [118]. In the case that we restrict ourselves to only the first two energy levels
of the transmon, we may then exchange our creation and annihilation operators for the Pauli
operators {ox, Oy, 0z} and obtain the spin-like qubit Hamiltonian

A
Hy = 562. (2.46)

The transmon qubit is a very commonly constructed and robust device, given that it may be
realized by simply placing a Josephson junction in parallel to a capacitor. These devices are
often realized on nanofabricated chips by defining one or two electrodes separated from a
ground plane by a small gap to realize a capacitance, connected only via a Josephson junc-
tion. By tuning the critical current of the junction and the capacitance of the electrode(s), the
frequency and nonlinearity of the qubit can be directly engineered.

If the reader has noticed a resemblance between Eq. 2.10 and Eq. 2.41, this is not a coincidence -
nonlinear LC oscillators based on Josephson junctions, in the parameter regime where % >

%, are very well-described as Duffing oscillators [111].

2.2. CIRCUIT QUANTUM ELECTRODYNAMICS

2.2.1. RESONATORS AND QUBITS

While even today, there is still not yet a consensus on which platform is best to realize quantum
computing, within the superconducting qubit community, there were several viable candidates
in the early 2000s for the ideal qubit. The charge qubit, followed by the flux and phase qubits,
had numerous studies presented in high profile publications, but it would end up being a
tweak to the charge qubit that brought the transmon qubit to virtually take over the field [55,
71, 76, 88-98, 100-110]. While the circuit quantum electrodynamics (circuit QED) foundation
was laid a few years earlier, the field would blossom with the marriage of the transmon qubit
and the readout resonator [111-117].

Drawing from the field of cavity quantum electrodynamics (cavity QED), it was posited that
the artificial atom of the superconducting qubit together with the transmission line resonator
would be a suitable architecture for quantum computing [112, 164-167]. While originally em-
bedded in the waveguide itself, in general, coupling a superconducting qubit to a coplanar
waveguide (CPW) resonator (or even a 3D cavity) will realize a Jaynes-Cummings interaction
and yield a qubit-photon interaction in the same way as the atoms in cavity QED [114, 115, 168].



2.2. CIRCUIT QUANTUM ELECTRODYNAMICS 21

THE TRANSMISSION LINE RESONATOR

The storage and relaying of microwave frequency electromagnetic signals is often achieved by
the use of transmission lines. A transmission line is a distributed circuit element which sup-
ports the transmission of electromagnetic energy along its length and hosts a variety of trans-
verse electromagnetic (TEM) modes of propagation. If one wishes to construct a resonator-
transmon system in an integrated circuit platform, transmission line resonators are a natural
choice to achieve such a goal, given the decades of history of microfabrication of such struc-
tures. Further, they can be constructed with superconducting materials and cooled down to
cryogenic temperatures, a key ingredient required for operating these devices as coherent
quantum systems.

In the following, we draw from the derivations of Ref. [169, 170]. We can characterize the
system as a series of distributed inductors and capacitors of infinitesimal length Ax, through
which currents can be passed and voltages can be applied. Given the distributed nature of
the circuit, the currents and voltages at any given point along the line can vary given the large
discrepancy between the total length of the line / between [—//2,//2] and each individual
distributed element with resistance, conductance, inductance, and capacitance scaled by the
length segment Ax given by R, G, L and C respectively.

In the case of a lossless transmission line where R = G = 0, we can define the characteristic
impedance of the line to be

L

Z, = e (2.47)

where the steady-state voltage and current as a function of position along the line are given
by

I(x,t) I(x+Ax,t)
:_ 9

W—— 0" .

RAXx LAX

V(x,t) GAXx < CAX—— V(x+Ax,t)

< AXx >

Figure 2.6: A circuit diagram adapted from Ref. [169]. Displayed are the resistance, conductance, induc-
tance, capacitance, voltage, and current for a segment Ax of a transmission line.

V(x) = vge—"f’x + Vo e'Bx (2.48)
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1 . .
I(x)= ?(vge-'ﬂx — Vv, eP) (2.49)

(o]

where 8 = wVLC is the imaginary component of the propagation constanty = a + i, w is
the frequency of the wave propagating along the line, "+" denotes propagation in the positive

x direction, and "—" in the negative x direction. We can also define the wavelength and phase
i i Y/ Y/ S =@ -1 i
velocity of the lineas A = 5 = ovic and vp 5= Ve respectively.

If the transmission line is terminated at one end by a load with impedance Z;, we can better
understand how this system can be considered as a resonator. If we place a load Z; at position
X = 0, we can use Eq. 2.48, 2.49 to determine that

Vo +Vy
Z =V I -_° ° z .
L =V(0)/I(0) Ve v e (2.50)

where the incident wave is propagating in the +x direction and originating from x < 0. We
can then take the ratio of the voltages of the returning (negatively propagating) and incident
(positively propagating) waves to find the voltage reflection coefficient

Vo~ Z - Z
r= v°+ = # (2.51)
o L + ZO

and reparametrize the voltage and current in the line in terms of the incident wave and the
reflection coefficient as

V(x) = V(e Px + re'P) (2.52)
V0+ —iBx iBx

I(x)= =(e - re'fX). (2.53)
Z,

Given that the voltage and current vary along the line and depend on the load impedance, we
can also define the input impedance or impedance at the beginning of the lineat x = —//2in
terms of the characteristic impedance and reflection coefficient as

1+Te 1B Z, +iZytan(BL)

Zin=VI(-I I(-1/2) = Z, g~ <o ‘
=12/ 1(=1/2) = Zo———=75 Zo+iZ tan(Bh)

(2.54)

We now have the tools necessary to analyze the cases in which the lineis short (Z, =0, = —1)
and open (Z; — oo, T = 1). We can plot the voltages and currents as a function of position for
both cases using Eq. 2.52, 2.53 and find that there are voltage anti-nodes and current nodes at
integer multiples of the quarter-wavelength for the short line and at integer multiples of the
half-wavelength for the open line.

We can also consider the case where the terminating load is, in fact, another transmission line

with characteristic impedance Z,, in which case the reflection coefficientis I' = 2:2’ and we

can define the transmission coefficient as T = 1 + I which represents the voltage fraction of
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the incident wave which carries on through into the second line rather than reflecting back
in the negative direction. If the characteristic impedances of both lines are equal, all of the
incident waves are transmitted, and none is reflected (T = 1, T = 0), while if the second line’s
impedance is infinitely smaller than the first, the incident wave is entirely reflected (T = o,
r=1).

If we follow the same treatment above instead for a lossy transmission line where R; 7 o and
G/ 7 o, where before the arguments of our exponentials were /3, we can exchange /3 for the
full propagation constant

y=a+if=v(R+iwL)G +iwC) (2.55)

where a is the attenuation constant of the line, and re-define the characteristic impedance

as
Zy = /M (2.56)
G+iwC

With the above, we may now finally examine the short A/4 and open A/2 transmission line
resonators, which are the most relevant for the content in later sections of this thesis. Follow-
ing our definitions in Eq. 2.48, 2.49,2.54 under the exchange /8 — y, we can define the input
impedances of the short and open transmission lines of total length / = A/4and / = A/2 as

A
Zins = Zotanh (YZ) (2.57)

A
Zino = Zo coth (y;). (2.58)

If we consider small losses, such that tanh (a) ~ a, we can simplify the above to

1
Zin,s = (2.59)

l .
;—0 +2/C(w — wo)

Zo
al + I'ﬂ'(a%) - 1)

which are equal to the input impedances of equivalent parallel RLC circuits with resonance
frequencies w, = 1VLC, resistances R = %, inductances L = #, capacitances
o

Zino =
e (2.60)

T
C =
s o Zo (2.61)
T
C =
o A (2.62)

and quality factors Q = woRC = %
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THE COPLANAR WAVEGUIDE RESONATOR

While transmission line resonators may be realized in a variety of configurations (i.e. mi-
crostrip, stripline, slotline, coaxial line, etc.), we will consider the most commonly used inte-
grated 2D transmission line resonator in circuit QED; the coplanar waveguide (CPW) resonator.
The CPW is formed by arranging a layer of (super)conductive metal of thickness t on top of a
substrate of thickness A with relative permittivity (dielectric constant) €,.

o 1t

!
‘ I

Figure 2.7: A diagram displaying a coplanar waveguide resonator as described in the main text. A super-
conducting thin film is laid on top of a substrate with the width (s) and length (/) of the center trace, gap
width (w), film thickness (t), substrate height (h), and relative permittivity (¢,) indicated.

The layer of metal is then etched such that a center trace of width s and length / is beset on
each side by gaps of width w, separating the conductor from the rest of the metal layer. The
center conductor then forms a capacitance with the rest of the metal layer and has a linear
geometric inductance determined by /, s, and w. Following Ref. [170-173], conformal mapping
techniques can be used to determine the inductance and capacitance of the resonator in re-
lation to its geometry. If we define the ratio of the complete elliptic integral of the first kind
to its complementary function as

K(k) n/(ln (211:‘\%)) foro < k < 0.7
o (2.63)

(k) |4 VK
2 n (21—W foro.7 <k <1

where k¥’ = V1 — k2 and k = ==, we can write the characteristic impedance of the line as

s¥2w’!
3o K(k') (2.60)
= — 2.
°" Ve KK N
where €/ is the effective dielectric constant given by
er —1 K(k")K(k
€/ =1+ r M (2.65)

2 K(OK(K])

with k, = Sinh(ZL;)/sinh (ﬂ(sé:w)).

From these, we can determine the fundamental frequency, inductance per unit length, and
capacitance per unit length of the / = A/2 waveguide resonator as

Wo c Vp 1

= === (2.66)

o 2l\E 2l 2L, G
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and for the / = A/4 waveguide resonator we obtain

=Sl — .6
27 4/\/€_I 4l 4INL, Cy (2.67)

Wo C Vp 1

with
_ Ho KK
L, = 4 K& (2.68)
KW
C/ = 4606/m (2.69)

where o, €, are the vacuum permeability and permittivity, respectively.

If a CPW is coupled on one side to the end of a transmission line with characteristic impedance
Z, =500 via a capacitor Cg, we can find that

Lo o yNL(C+Co) (2.70)

bYs
C+C,
Qe = woC—‘ﬁZo (2.71)
Qi ® woR(C + Ce) (272)

where R is the parallel resistance of the CPW and Q., Q; are the external and internal quality
factors with Q = 1/(6 + QL). Following a similar procedure as in the previous subsection, we
can then determine the reflection coefficient for the system in this reflection geometry to be

Ki—Ke *+2i(w — wo)
rr(w) = .
Ki+Ke+2i(w— wy)

(2.73)

where {ke, ki } = {wo/Qe, wo/Q;} are the external and internal loss rates of the CPW.

If we instead arrange the CPW to be capacitively side-coupled to a transmission line rather
than capacitively terminating the line, one can show that the external quality factor changes
with respect to the reflection geometry expression in Eq. 2.71 as Q¢ — 2Q, [174, 175]. In this
case, the transmission coefficient becomes

Ki+2i(w — wo)

Tsc(w) = 1+ Tgew) = (2.74)

Ki+Ke*2i(w—wo)

Devices constructed for circuit QED experiments are commonly designed to be in the reflection
or side-coupled transmission geometries, where the CPW is driven and probed through its
capacitive coupling to the transmission line serving as a measurement feedline which is in
turn connected via coaxial cables to measurement instruments.
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THE RESONATOR-TRANSMON PARADIGM

If we proceed with the transmon Hamiltonian from Eq. 2.41 and the linear LC resonator Hamil-
tonian from Eq. 2.39, we can introduce a coupling term between the two if we suppose that
they are capacitively coupled to each other, which yields

H =ﬁw,(5*§ + ) +4Ec(A + A2 — E; cos(8) (2.75)

1
2

where we now include the addit[onal charge due to the capacitive coupling of the qubit to the

resonator Cg, given by A, = f;g: where §, is as in Eq. 2.38, and C; is the capacitance of the
resonator itself. Here, we consider only the fundamental mode of the resonator, supposing
that the transmon mode is far detuned from all other resonator modes, which are then neg-
ligible. Expanding the Hamiltonian and renormalizing the resonator frequency, we can again

apply the RWA to arrive at the following

H ~hw4"4 +hwab'b — —=b"bTbb +hig(a™b + 4b7) (2.76)

where g = w,g—;(fT’C)v“‘ / ”Tez, /é—: and the final coupling term is known as the beam-splitter

or photon-hopping interaction. If again we enforce that the transmon nonlinearity be suffi-
ciently large, we can exchange to Pauli operators and obtain the Jaynes-Cummings Hamilto-
nian

+

>

+

0>
>
0>

H ~hw,

NS

wg67 +hg(a'6_ + 46.) 77

where &, = %(6)( + /8y) are the raising and lowering operators, which when coupled through
4" and 4 serve to mediate excitations between the qubit and resonator modes. The magnitude
of the coupling strength g in relation to other parameters enables the ability to operate the
qubit-resonator system in a variety of different regimes, with one in particular (the "dispersive

regime") allowing for non-destructive readout of the qubit state.
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COUPLING REGIMES

=

Figure 2.8: An illustration showing a highlighted measurement feedline (blue), readout resonator (pur-
ple), coupling pad segment (green), transmon electrodes (orange), and Josephson junction (red). The
resonator is arranged in a side-coupled transmission configuration with capacitive coupling C¢ to the
feedline. The size of the coupling segment and its proximity to the transmon electrodes can be adjusted
to tune the coupling capacitance C. between the resonator and qubit.

The resonator-transmon system can be engineered to serve a variety of purposes. For in-
stance, if we wish to bestow upon our linear resonator a degree of nonlinearity inherited from
its interaction with the transmon, how strong must the coupling g be, and how far should
they be detuned A from each other in frequency? In another case, if we wish to only have the
resonator be used to non-destructively probe the state of our qubit, what should these values
be? To answer these questions, we must also consider the role that the environment plays in
the approach that we have taken thus far. Indeed, our resonator-transmon system is implicitly
connected to some measurement apparatuses with which we may drive and probe the state of
our system. Additionally, our device does not exist in a perfect world without dielectric losses,
parasitic modes, two-level systems living in and on our materials, charge and flux noise, and
all of the coupling mechanisms associated with these channels ignored when we made the
demarcation between the resonator-transmon system and the rest of the universe.

We can start by defining the coupling strength of our resonator to the environment (everything
which is not our transmon) with k = k. +k;, where k. is the engineered external coupling to the
measurement feedline (such as via a coupling capacitor C,) and «; is the total "internal" loss
rate associated with couplings to neither the transmon nor the measurement chain (as in the
case of a parallel resistor as discussed above). In this thesis, k¢ is always set by the capacitive
or inductive coupling of the resonator to a transmission line, through which we may measure
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the device as each port of the transmission line is, in turn, connected via coaxial cables to our
measurement devices, such as signal generators, vector network analyzers (VNA) or spectrum
analyzers. We may also define the loss rate of the transmon as y, which characterizes the rate
at which the transmon exchanges energy with elements of the environment which are not the
fundamental resonator mode.

We can then define quality factors of the resonator and transmon similarly as in Sec. 2.1.2 by
Qr = % and Qg = % The resonator may be further characterized in terms of the ratio of

the external to total loss rate, n = ';—s = % where Q, = 1/(& + é) as before. We can then
characterize the resonator as being overcoupled, critically coupled, or undercoupled to our
measurement transmission line by whether . > 0.5, = 0.5, or < 0.5, respectively. For our
purposes, it is preferable to engineer devices to be in the overcoupled regime, such that the
majority of the photons in the resonator are interacting with either our measurement chain

or the transmon.

Measurements of transmission line parameters are not always as straightforward as the dis-
cussions above may indicate. Impedance mismatches and Fano interference caused by the
presence of multiple background paths and insufficient isolation between measurement ports
which interfere with resonant signals can lead to distortions in the real and imaginary com-
ponents of reflection and transmission coefficients as functions of frequency [176, 177]. The
determination of accurate external and internal quality factors of devices can prove difficult,
in particular for overcoupled devices [177]. Developing calibrated design and simulation work-
flows which consistently produce devices with reliable external quality factors, as well as engi-
neering microwave environments which reduce impedance mismatches and improve isolation
can help to alleviate these issues.

If we wish to uncover the behaviour of the system in different coupling regimes, it is illustrative
to return to the Jaynes-Cummings Hamiltonian in Eq. 2.77. The coupling between the resonator
and qubit leads to a change in the energy landscape from the bare (uncoupled) spectrum to
the dressed (coupled) spectrum, in which energy levels are split proportional to the degree of
coupling when the bare energy levels are degenerate [112, 118]. If we define the joint system
state as |0, n) where n denotes the number of excitations in the resonator mode and |o’) may
be |g) or |e) to represent the qubit being in the ground or excited state respectively, we can
determine the dressed energy levels of the system as

h
E.,=hw,n+ —+\/4ng? + A2 (2.78)
2

where A = wg — w, is the frequency detuning between the resonator and qubit, |+, n) repre-
sents the state split to higher (+) or lower (-) energy relative to the level with n total excitations,
and Ego = —gwq is the ground state of the system. Given the above, when the detuning be-
tween the qubit and resonator is made to be zero, the levels which would be degenerate in
the bare spectrum instead have their degeneracy lifted by 2g+/n for joint states in which the
resonator and transmon share n total excitations.

Thus, the Jaynes-Cummings interaction enables one to create maximally entangled states be-
tween the qubit and resonator when resonant and induce vacuum Rabi oscillations between
the |g,1) and |e, 0) states at the Rabi frequency ‘%. When this coupling is larger than the
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total loss rates of the qubit y and resonator k, one can resolve the energy level splitting and
operate the system in the strong coupling regime where g > «,y.

’n+1> 2g\n+1 |n>

1) — 29 0)

9) )

Figure 2.9: An energy level diagram showing the dressed (center) and bare (left, right) spectra for the
Jaynes-Cummings Hamiltonian when the qubit and resonator are made resonant (A = 0) [112]. The states
{lg),|e)} represent the ground and excited states of the qubit, while |n) represents the number of
excitations in the resonator. For a joint system state with n total quanta of energy, the level degeneracy
in the dressed spectrum is lifted by 2gx/ﬁ.

However, in the case where the coupling g is made to be ultra-strong, where it approaches or
even exceeds the resonance frequencies of the oscillators wy, w/, several assumptions that
we have made about our system up to this point break down [178-180]. For example, our
applications of the RWA are no longer valid, and we must now not only consider counter-
rotating terms of the Hamiltonian such as ﬁg(éT& + 46_), but the justification for truncating
the transmon to a two-level system also breaks down, and we must consider the interactions
between the higher-level transitions of the joint system.

DISPERSIVE READOUT
If one instead wishes to do operations on and perform readout of the qubit state, it is then
preferable to operate the system in a regime where the qubit and resonator are not resonant
(A # o) but still with sufficiently large coupling g to control and probe the state of the qubit
via the resonator. To better understand the effects of the coupling and detuning on the system
dynamics, we may expand the square root of Eq. 2.78 in g/A and retain terms to fourth order
to obtain

g g

h
E.,~hw,n+ —(A+2n2— —2n (2.79)
+.n r 2( A A3
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which holds for a small number of excitations n and g < A. If we instead restrict ourselves to
£ < Ain the large-detuning limit and maintain a small number of excitations defined by

A
Nerie = (—) (2.80)
28

we can retain only terms of the expansion to second order and find that rather than having
degenerate eigenenergies with splitting 2g+/n, the energy levels are shifted down by g2/A if
the qubit is in the ground state and up by the same amount of the qubit is in the excited state.
The transition frequency of the qubit is shifted to

g, .1
W s w.+S(ne 2 (2.81)
o= wq+ Bt )

which is composed of the photon-dependent Stark shift n— and the Lamb sh|ft [115, 181,
182]. Conversely, we can interpret this change in the energy level landscape as the resonator
frequency experiencing a corresponding shift where

2

W, > W+ &Z‘%. (2.82)

This qubit-state-dependent shift of the resonator frequency in the dispersive regime is the
basis for the quantum non-demolition (QND) mapping of the qubit state onto the cavity [118,
183, 184]. This can be seen by the commutativity of 67 with the dispersive Hamiltonian which
modifies Eq. 2.77 to yield

h 2 AT A
Haisp =~ E(wq %)az + (Aw, +ﬁgA 67)4" 4. (2.83)

If we recall that our transmon is not a perfect two-level system but rather an anharmonic
oscillator with anharmonicity @« = —E¢ /A, we can incorporate a correction from a higher
order term in the perturbative expansion of the Jaynes-Cummings Hamiltonian which takes
into account the effects of the coupling of the resonator to the second excited state of the
transmon with

h g Dy s
Haisp = —(wg + Z=)67 + (Alw, + y =) +hy67)3" 4 (2.84)
2 A a
where we define y = & A‘%a as the dispersive shift of the cavity frequency dependent on the

qubit state [111, 118, 185]. Depending on the sign of A (whether the qubit is higher or lower
frequency relative to the resonator) as well as how large the detuning is relative to the an-
harmonicity, the sign of y can change from negative to positive. The region in which y is
positive is known as the straddling regime as it exists for only a relatively narrow parameter
range where the cavity frequency is between the first and second transition frequencies of the
transmon with o < A < E¢ [111].
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Figure 210: An energy level diagram showing the dressed (center) and bare (left, right) spectra for the
Jaynes-Cummings Hamiltonian when the system is in the dispersive regime [118]. The states {|g),|e)}
represent the ground and excited states of the qubit, while |n) represents the number of excitations in
the resonator. The qubit transition frequency is increased by y while the resonator transition frequency
is shifted by +y dependent on the state of the qubit.

Lastly, if we insist that the dispersive shift y be much larger than the decay rates «, y, we can
enter the strong dispersive regime of circuit QED. In this coupling regime, the qubit spectrum
forms an array of photon number peaks which can be used to determine the resonator photon
number distribution, and the resonator frequency shift is large enough to resolve the qubit
state even at the single photon level [117, 18z, 186].

If we return to Eq. 2.79 once more and include the fourth order term, it can be shown that in
the case of sufficiently strong coupling, the resonator frequency shift becomes dependent on
the number of photons in the resonator, proportional to n‘i—;. Thus, in this anharmonic strong
dispersive limit, the resonator is sufficiently coupled to the qubit to inherit nonlinearity from
it, in which case the resonator itself should be treated as a Kerr oscillator with its own self-Kerr
nonlinearity [187-189].

2.2.2, JOSEPHSON CAVITIES

JUNCTION-EMBEDDED COPLANAR WAVEGUIDE RESONATORS

Recalling the quantized nonlinear LC oscillator, we can investigate how the system changes
when we consider there to be both linear and nonlinear inductances in the circuit. We may first
consider an LC resonator in which the capacitance, linear geometric inductance, and nonlinear
Josephson inductance are all in parallel with each other. We can revisit Eq. 2.35 and Eq. 2.40
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and write the circuit of our new nonlinear resonator Hamiltonian as

192 ®
H =4EcH® + ST E; cos (27r3). (2.85)

o

We can again Taylor expand the cosine potential, retain terms to fourth order, and find

4
1M1 1)\, 2« A
H = 4EcA + | —+ — |®* - - —| E,;&" (2.86)
2\ L 3\ D,
which is simply our previous nonlinear LC oscillator Hamiltonian where the inductance in the
quadratic term has been modified to

L —a/(1/L+1/L}). (2.87)

This straightforward derivation is unfortunately not the full picture if we wish to realize such
a nonlinear oscillator by, for example, embedding a Josephson junction within a CPW res-
onator [190]. While the individual modes of transmission line resonators can be represented
by lumped-element LC circuits, the full system is best described as an infinite series of induc-
tances and capacitances per unit length L, C; for a resonator of length 2/, as discussed in
Sec. 2.2.1.

Further, while we have until now neglected the small capacitance of the Josephson junction
C,, we must consider how both the capacitance and inductance of the junction change the
normal modes of the resonator. When introducing a Josephson junction to the transmission
line, we must rather consider a discretized representation in which the junction placed at
some position modifies the boundary conditions of the system as a function of its position,
given that now the energy stored in the system is distributed between the nonlinear junction
and the linear resonator dependent on the normal mode amplitudes along the length of the
resonator [191]. This distribution can be parameterized in terms of the capacitive and inductive
participation ratios ¢, and ny,,, which take into account the contributions of the linear and
nonlinear parts to the modified normal modes of the system.

Following Ref [191], it can be shown that the wavevector of the nonlinear resonator modes
km = wm/vwherev = 1/4/L;C, for mode m can be determined by solving the transcendental
equation

2C-/

1
km - 7[_(km/) C_//

. LL—’J’utan (ks = 1)+ @) —tan (ks + =) (2.88)

where the junction is positioned at x, the inductance and capacitance per unit length on
either side of the junction are considered to be equal, and ¢f;’_) are phases parameterized by
any external coupling capacitance the waveguide may have at either endpoint which tend to
% as the coupling capacitance goes to zero [191]. For our purposes, we will consider systems
which are capacitively coupled on only one end with capacitance C, to a transmission line
which yields an external loss rate as discussed in Sec. 2.2.1.
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Figure 2.41: A discretized circuit representation of a junction-embedded CPW capacitively coupled on one
side to a feedline [191]. The junction is placed at position x; along a CPW of length 2/, bridging a gap in
the center conductor of the CPW.

While we may determine the frequencies of the modes from the above equation, if we wish
to uncover the nonlinearities we must determine the capacitive and inductive participation
ratios of the modes of the system. We can define them as

ne,m =Cy/Cn (2.89)

Nem=Lm/Ly (2.90)

where Cp, = Ctor/Au?% and Ly, = AU2 [(w?, Cyo¢) are determined by the total capacitance of
the system C;,; and the mode amplitude difference across the junction Au,, which is calcu-
lated for each mode by solving Eq. 2.88 and obtaining the amplitude of the mode at positions
immediately on either side of the junction {xJ, x }. In most cases, we have C; < Cp and so
we may take ¢ m» — 0, in which case the parameter we are most interested in is the inductive
participation ratio n; .

We can then find the self-Kerr nonlinearity of a given mode as Km = —Ec.mf.m/(2h) where
Ec.m = €%/(2Cy,) and the cross-Kerr coupling between pairs of modes is K, = 2VKnmKnn
which shifts each mode in frequency. While it may seem that the system is directly parameter-
ized by the total capacitance C;o¢, junction inductance L, and position xy, the calculation
for the mode amplitude difference Au,, is non-trivial and varies strongly with mode number
and the boundary conditions of the waveguide. For instance, for the fundamental mode of the
system, the self-Kerr nonlinearity converges to Koo = —€2/(4Cto¢h) for L > L,/ rather than
continuing to grow as L is increased. In this limit of dominant Josephson inductance, we can
see how the nonlinearity converges to that of a transmon. Indeed, if the total linear inductance
is negligible, we recover the transmon qubit, where each section of the CPW center conductor
on either side of the junction is effectively an electrode of the transmon. The quintessential
double-island transmon qubit can be approximated as a junction-embedded CPW in the limit
that the waveguide is made exceptionally short, reducing the linear inductance and capaci-
tance. This recalls the early cavity in-line Cooper-pair box and transmon designs [111, 112, 114,
192].

If we take the limit where K,,, > &, we can recover the initial nonlinear resonator Hamil-
tonian in Eq. 2.85 where E¢ and L are adjusted according to Au,, for each mode and the
Hamiltonian resembles that of a transmon with a non-negligible parallel linear inductance
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contribution. Alternatively, in the limit where K,,,, < k, we can realize a weakly nonlin-
ear device which can be well-operated as a parametric amplifier. In the intermediate regime
where K, % k, we can operate the device as a few-photon quantum parametric oscillator
which exhibits photon blockade and can be driven into small coherent and cat states. Later,
in Chapter 5, we investigate the dynamics of a junction-embedded CPW in the intermediate or

mesoscopic nonlinearity regime subject to parametric driving.

DIMERIZED JOSEPHSON JUNCTION ARRAYS
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Figure 212: A discretized circuit representation of a dimerized Josephson junction array resonator,
adapted from Ref. [193]. The square enclosing a cross represents a junction with inductance L in par-
allel with capacitance C,. Each SQUID has a capacitance to ground Cg, forming a series of islands on
either side of a large capacitor with capacitance C, with capacitance to ground Cgc. The resonator is
galvanically connected to an external port for measurement at one end and shorted to ground at the
other end.

Another useful system to consider is the Josephson junction array resonator, in which a series
of N SQUIDs are connected together, each with identical Josephson capacitances and induc-
tances C,, L, and capacitances to ground C,. Following Ref. [193], such a system has a set
of normal modes defined by the number of junctions and the values of the capacitances and
inductances, as expected for a nonlinear LC oscillator. However, we can additionally separate
the array into two halves by adding a large coupling capacitor to the center, with coupling
capacitance C. and capacitance to ground Cg, which dimerizes the system, splitting each of
the normal modes into two hybridized dimer modes separated from each other by the strength
of their coupling, which depends on C.. Provided that no applied drives induce interactions
between the two modes of the circuit, each can be treated as an individual Kerr nonlinear os-
cillator. Such a system is a natural platform for investigating systems of coupled KNOs as well,
in which multiple parametrically driven modes could be used together with coupling drives to
investigate the dynamics of linearly coupled Kerr parametric oscillators (KPOs).

This system can be considered in some sense as a variation on the junction-embedded CPW
discussed above, under the exchange of series linear inductors L, to a series of nonlinear
junctions with L, C,, and by exchanging the CPW’s junction in the center with a large capaci-
tor C.. We may even similarly define an inductive participation ratio y; = L tor/(Ljtor + Ls)
for the fundamental mode where L ;. is the total nonlinear inductance of the junctions in
series while L is the linear flux-independent stray geometric and kinetic inductance contri-
butions of the superconducting metal composing the device. In the lumped element model,
the frequency of the fundamental mode can then be written as
1

wo(®) =
VCiot(L s ot (@®) + L) (2.91)




2.2. CIRCUIT QUANTUM ELECTRODYNAMICS 35

where C;,; is the total capacitance of the device.

However, as we saw with the junction-embedded CPW, the simple approach of the lumped
element model is not always applicable. If we wish to determine the Hamiltonian and normal
modes of this circuit composed of a series of inductors and capacitors, it is better to start with
the Lagrangian written as

12 re 1> -
L= ;d)TCCD - ;CIDTL_16D (2.92)

where the superconducting phase across the n'/ junction island ¢, determines the node
flux &, = ﬁ%" where the node fluxes along the chain can be collected into the flux vector

o7 = [CDO CDN] and C, L are the capacitance and inductance matrices respectively.
The Hamiltonian can then be written after performing a Legendre transformation as

127 = 1o -
H = ;QTCQ + EGJTL‘% (2.93)

where Q,, = :T{ are the components of the charge vector Q. The normal mode frequencies

wp, of the circuit are then determined by solving the eigenequation
CELTC P = Wi W (2.94)

and the eigenvectors ¥, are related to the flux node vector by

- 1. h
D= C Y, /2—(&1T + 8). (2.95)
m Wm

Thus, after determining the inductance and capacitance matrices of the circuit, a Lagrangian
can be derived, and after quantizing the circuit, retaining terms to fourth order, and applying
the RWA as in Sec. 2.1.3, the system can be represented as a series of cross-Kerr coupled
nonlinear oscillators with Hamiltonian given by

N-1
(H/ﬁ = Z(wmé\;ém -7 5rnéjn§m5m) - an (2.96)
m=0

where
i EiNmmmm

Kmm =2— (2.97)
o5 Ciwp,

A EjNmmnn
Kmn=tb—— —— 2.98
mn (Dg Cjwmwn (2.98)
where Nmmnn is a scaling factor determined from the capacitance matrix and ¥, ¥,. By
changing N, L, and the capacitances, the frequencies and nonlinearities of the device normal
modes can be engineered into a variety of parameter regimes, as in the case of the junction-
embedded CPW above.

Upon measuring the device spectroscopically, due to the dimerization of each mode induced
by the linear coupling of the central capacitor, rather than measuring a mode with frequency
wm, two modes split by 2/, are observed instead. If the spacing between modes Ap, , =
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wn —wp is large relative to the strength of hybridization J,, induced on each individual mode,
we can treat any given dimer as a system of two linearly coupled harmonic oscillators with
Hamiltonian

H = w,8] 8, + w,8. 8, + Jp(4) 8, + 5,4)) (2.99)
where the observed dimer frequencies are

wq + Wy
Wm,+ = + 4 /(
2 2

wq, — W-:
! 2%+ J2,. (2.100)

Similarly to the case of the junction-embedded CPW, circuits formed by Josephson junction
arrays can also be engineered to be operated as parametric amplifiers, with the self-Kerr non-
linearity K, made to be much smaller than the loss rates of each mode «,,. However, here,
a unique driving scheme exists which results in nondegenerate parametric amplification via
four-wave-mixing for the dimerized Josephson junction array, in which a strong pump placed
between any dimer modes w, 1 will result in gain at both dimer frequencies which coincide
with the signal and idler frequencies [193, 194]. This is in contrast to degenerate parametric
amplification, in which the signal and idler frequencies fall within the linewidth of a single
driven mode [1924].

2.2.3. TUNABLE COUPLERS

TUNABLE COUPLINGS WITH SQUIDs

In our discussions of transmon qubits and resonators, we have so far only considered the
linear, capacitive coupling and the various regimes associated with the coupling strength rel-
ative to other system parameters. However, we may consider what happens when we not
only couple two oscillators together capacitively, but also via the nonlinear inductance of the
Josephson junction.

We can begin by considering two single-island transmon qubits capacitively coupled by C,,
for which the system Hamiltonian can be written as
Ecy rvprpp " N
2 576Tbb + JI(4TH" + 4b) - (87h + 47 B)]
(2101)
where the last term gives the capacitive coupling J = 4Egﬁ1ﬁ2, A; is the charge number
operator for each transmon, and the modified charge energies are given by

E -
H =ha, "5~ =575 25 +hw,b'h -
2 2

Ec, = e_2 Cc+ G (2102)
"2 GG+ CelC+ Cy) '
e’ CC + C1
Er, = — (2103)
c2 2 C1 C2 + CC(C1 + Cz)
2
Eg e’Cc (2104)

" GG+ CelCi+ C)
so we can write the coupling as

EE 4

c J1tJ

J=-E¢ 2 (2.1105)
4tEc,Ec,
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which describes the capacitively coupled two-transmon system.
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Figure 243: A circuit representation of a SQUID tunable coupling between two single-island transmon
qubits. Each transmon / has its own capacitance C; and maximal Josephson energy E}. The transmons

are coupled by a flux-tunable SQUID inductance with Josephson energy EJC and a fixed capacitance C¢.
The negligible junction capacitances are not shown.

If we now additionally couple the transmons via a flux-tunable SQUID placed in parallel to
the coupling capacitor, the Hamiltonian gains a nonlinear inductive potential term as H —

H + Hs where
Hs = —EJC cos (8, — &,) (2.106)

where EJC is the Josephson energy of the coupling SQUID. We can Taylor expand this cosine
potential and again retain terms to fourth order, finding that the effect of the SQUID is to
modify the linear coupling, add a nonlinear cross-Kerr coupling, and shift the frequencies of
the oscillators as we make the following exchanges

Ej,' — EJ,- + EJC (2.‘]07)

EJC Ce

VEREr  (Ci+ColCsCa)

(2108)

Jia = +GE L E ;ECy ECz)1/4(

and define the cross-Kerr coupling strength as

V= —2ch,/% (2109)
EJ1EJ2
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to finally obtain the system Hamiltonian

. E . e A
H =huw,a78 — =<2 575755 +huw,bTh —

N
N

+ (876 +867)+ 157D + 5b)+ V5 T46TH  (2110)

where we now have v
w; = 8E ;iEci — Eci + —. (2411)
2

The presence of the SQUID tunable coupler in the circuit allows the user of the device to
tune the transmon frequencies and strengths of the various couplings via the flux-dependent
EJC(CD) and also enables the selective activation of certain couplings under parametric driving,
as will be explored in Chapter 4 for a circuit with two double-island transmons. While often the
off-resonant 476" + 46 two-mode squeezing interaction is neglected, here it is retained due
to the fact that we will be able to activate it under parametric flux modulation of the coupler
SQUID.

TUNABLE COUPLINGS WITH SNAILS

Another useful tool that we have at our disposal when designing quantum circuits is the Su-
perconducting Nonlinear Asymmetric Inductive Element (SNAIL) [195]. The SNAIL is, in some
sense, an extension of the SQUID, in which one arm of the superconducting loop contains
n junctions with energy E; and the other arm contains only one junction with energy nE,
where 17 is a scaling factor. The effect of this modification is to create an asymmetric potential
dependent on n and n, which can be chosen to engineer previously difficult-to-control sys-
tem parameters, especially those related to nonlinear interactions such as the cross-Kerr and
optomechanical couplings. The inductive energy of the SNAIL is given by

] (2112)

. -6
UL = —Ej[ncos(6) + ncos( )

where @ is the applied flux through the superconducting loop in units of %’; and & is the

phase operator, with the above potential valid for £, > % and % > C, where C, is the
capacitance of each junction and C, is the capacitance of the SNAIL electrode(s) to ground.

The utility of the SNAIL in quantum circuits becomes apparent after Taylor expanding the in-
ductive potential about a minimal phase difference §,, and defining the effective phase op-
erator § = 6 — &m, in which case we can reorganize the inductive potential in order of 8
as

X

U = c1<§ +C, 0%+ 0353 + 046:" (2113)
where 5
CD —
¢, = Ej(nsin(8,) — sin ( p m )) (2.114)
E D-6
c, = —J(—r] cos (&) + 1 cos ( m )) (2.115)
2 n n
E . 1 . ([©0-6
C = ?J(—q sin (&) + — sin ( p m)) (2.116)
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E 1 (ORI
¢, = —J(—q cos(6,) — po cos (T)) (2117)
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Figure 244: A circuit representation of a SNAIL tunable coupling between two single-island transmon
qubits for the case n = 3. Similarly to the SQUID tunable coupler, each transmon / has its own capacitance
C; and maximal Josephson energy Ej. The transmons are coupled by a flux-tunable SNAIL inductance,
with each junction having Josephson energy E; and a fixed capacitance C¢. The small junction capaci-
tances and individual capacitances of the SNAIL electrodes to ground are not shown.

We can immediately see that in comparison to the inductive potential from Eq. 2.1, we now
have terms which are linear and cubic in 8. Further, given that each of the parameters c¢; have
two terms with two degrees of freedom, we would expect to be able to engineer a wide variety
of inductive potentials.

Similarly to the case of the SQUID coupler, we may take two transmons and couple them to-
gether via a capacitor C; and a SNAIL with inductive energy U; and exchanging 5— 32 - 51
as before. Following the same procedure, while the full Hamiltonian is extensive, some of the
more interesting terms indicate that we will again have interactions (47 5+456%) and (4767 + 4b)
which scale with ¢,, as well as interactions (4726 + §26%), (41267 + 526), and 47 4(b" + b) (plus
equivalent terms under exchange of 4, 6) which scale with ¢5. While many of the higher-order
interactions are typically far off-resonant and negligible, there are driving schemes which can
activate these terms. The term 47 4(b" + b) often arises in the field of quantum optomechan-
ics, in which the occupation of one mode drives the coupled mode in a radiation pressure or
photon pressure interaction, which is useful for designing quantum circuits which emulate the
physics of optomechanical systems [196, 197]. In a similar manner to the parametric driving
with a SQUID coupler shown in Chapter 4, one would be able to activate these SNAIL-enabled
interaction terms by the use of flux modulation.

One of the more frequently stated use-cases for SNAIL-based devices is the ability to minimize
¢, in order to remove the cross-Kerr interaction in circuits which is often unwanted, especially
when one is trying to perform two-qubit gates specifically enabled by linear couplings between
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qubits. Interestingly, with the appropriate choice of E}, n, and n, it is possible to design c, to
be positive, zero, or negative, which means that one may engineer devices with positive self-
Kerr nonlinearities as well [195, 198, 199]. Lastly, parametric amplifiers based on SNAILs rather
than SQUIDs have also been proposed, given the possibilities enabled by the engineerable
asymmetric inductive potential [200, 201].

2.3. PARAMETRIC DRIVING

2.3.1. PARAMETRICALLY DRIVEN OSCILLATORS

THE VERTICALLY DRIVEN PENDULUM

While we previously discussed driven oscillators in Sec. 2.1.2, we only considered systems
linearly driven at and around the resonant frequency of the oscillator. However, it is just as
possible for us to drive an oscillator by varying a parameter of the system. For instance, for
the case of a mass-spring system, instead of forcing along its axis of movement resonantly,
what happens if we vary the spring constant of the system as a function of the resonance
frequency? Or, what happens if the damping varies periodically?

lg

¢

Acos(wt)

Figure 2.15: A diagram depicted a vertically driven pendulum. An oscillating drive A cos (wt) is applied,
which modulates the position of the pivot point of the pendulum at a frequency w.

Anice example is the classic pendulum, in which the most commonly observed stable position
is for the mass at the end of the pendulum to be positioned downwards at 6 = o due to the
force of gravity. However, if the system is driven not along its axis of rotation but rather if
the pivot point of the pendulum itself is driven to oscillate up and down at a given frequency,
a stable point at 8 = & can emerge for certain values of driving amplitude and frequency.
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Following Ref. [202-206], the equation of motion of the vertically driven pendulum is given as

d*6
dt?

+ (w2 + Acos(wt))sin(0) = 0 (2118)

which is the form of a damped parametric oscillator. For small 8 such that sin8 ~ 6, the

differential equation has the form of the well-known Mathieu equation for which the solutions

are Mathieu functions [207-210]. With the addition of a damping term yd—9 the above equation

e’
can be rewritten under the substitution 6 = pe™*/? as
b i 116)
P (wg — y?/u+ Acos(wt))p = o. 2119
. . . - . 5 (W2+w2 P +y2w?
This particular system is stabilized upside-down at 8 = & for A > 2wy — 3, =—. Con-
o

versely, we can consider the problem as one of destabilizing a downwards-oriented pendulum
if we consider those driving parameters which cause 8 = o to be an unstable point. The sys-
tem can be mapped out entirely in terms of the drive parameters A and w to identify where
regions of stability and instability (also known as Arnold tongues) exist [211-213].

The regions in which the system is unstable are those in which the parametric resonance con-
dition of integer n'" order is met. With damping, the instability regions are pushed to stronger
drive amplitudes and stable frequencies with stronger driving are made possible when those
same drive parameters would lead to instability in the undamped case.

THE PARAMETRICALLY DRIVEN DUFFING OSCILLATOR
In our description of the parametrically driven Duffing oscillator, we can build on Eq. 2.119 by
following Ref. [214]. We start by adding the Duffing nonlinearity term from Sec. 2.1.2, as well as
a nonlinear damping term, yielding the equation of motion for 2w driving as

d*x dx dx

ol w2(1— Acos (2wt))x + Yot axd+ qxzz =0 (2:120)

where A = A/w} is the scaled driving amplitude, 7 is the nonlinear damping coefficient, « is
the Duffing nonlinearity, and y is the linear damping coefficient. We can recast this equation in

terms of dimensionless parameters under the substitutions y = /wiox and 7 = wyt to obtain

d*y
dr?

dy

- = (2421)
drt ©

d
+(1—}lcos(z(')'r))y+}7d—{+y3+/7y2

where Q = w/wg, ¥ = y/wo, fi = Nwo/|a| are all rescaled dimensionless parameters.

While the above equation is nontrivial to solve, there do exist several stable solutions from

which we can derive stability diagrams as a function of drive amplitude and frequency, as in

the case of the vertically driven pendulum. One can apply the van der Pol transformation

and averaging theorem to this equation to obtain two slow-flow equations in rotating frame

coordinates (u, v). We then have x = v cos(wt)— v sin (wt) which can be solved to determine
du _ dv

the steady states of the oscillator, where 3= = 77 = 0 and the amplitude response is given by

| X |= Vu? + v2. This averaging approach is analogous to our previous application of the RWA,
in that we are deriving equations that describe the dynamics of our system on long timescales
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and neglecting any contributions that average out over multiple periods of oscillations. One
can then obtain the coupled equations

du 1 A3 A
2 pau s vidg + )+ 2w + vy + 0w + v2)ul (2122)
dt 20 2" 4 4
dv 1 A 3 A
e pav s ul-ng + 2) = 2w+ v 0w+ vi)v] (2423)
dt 20 2 4 4
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0.05 | ‘\\ // o2 b— Damped /
soal TN A N
\ / 4
~< 0.03 \‘- / = // e
. & ; /ﬁ;_, __,—C x / //
0.02 | AT // //
/ / ,l II
0.01 | Il Il /)
1
0.00 1 1 1 00— —%-----ns e 1
7098 099 1.00 101  1.02 0.98 A 1.0 B C 102
wW/2wo WRwo

Figure 216: Characteristic response of the parametrically driven Duffing oscillator. a) A phase diagram
with different parametric response regions indicated for /7 = 0.5 and ¥ = 0.01. In Region |, the system has
one zero-amplitude solution (monostable). In Region Il (bistable), there are two stable phase states and
one unstable (the zero-amplitude) solutions. In Region Il (tristable) there are three stable (the zero-
amplitude and two stable phase states), and two unstable solutions. Regions Il” and I’ are the bistable
and tristable regions in the absence of dissipation. b) The oscillator response for driving amplitude A =
0.03, indicated by the green dashed line in a). The damped oscillator with /j = 0.5 and ¥ = 0.01 is bistable
between points Aand B and tristable between B and C. Between A and B, the zero-amplitude response
is represented by a dotted line, which indicates that it is not a stable solution in the bistable region. At
low driving frequencies, both oscillator steady-states are given by the zero-amplitude solution alone.
The tristable region for the undamped oscillator (7 = ¥ = 0) extends beyond the point C.

where Ag = 1 — Q2. The above slow-flow equations are valid for small damping, nonlinearity,
and drive amplitude relative to the oscillator resonance frequency, which, in the case of the
several gigahertz frequency Duffing oscillators studied in later sections, generally holds true.
Luckily, there are several analytical solutions to the equation % = % = 0, including one
trivial zero-amplitude solution in which v = v = 0. The five (lengthy) expressions for the

amplitude responses are shown in Appendix A.1.

The simplest stability region (for the zero-amplitude solution) is defined by drive amplitudes
A < A¢p Where
Ath = 24/(QF)? + A, (2124)

which bears a strong resemblance to the parametric threshold at which gain diverges for
Josephson Parametric Amplifiers (JPAs)

Athypa = VK2 4+ 2 (2.125)
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where there, A = w, — w/2 and « is the total loss rate [215]. When operating such a device to
produce gain, the JPA is parametrically driven close to, but below, the parametric threshold
such that gain is produced before instability.

Beyond A;p, the zero-amplitude state becomes unstable, and the oscillator undergoes a pitch-
fork bifurcation, yielding two bistable solutions separated from each other in phase space by
7 radians [216]. Given the presence of nonlinear damping and Duffing nonlinearity, there exists
another parametric threshold defined by

3 20[3y + n(Q* —1)|

which occurs for detuned parametric drives with the same sign as that of the nonlinearity, in
which the zero-amplitude state exists along with the bistable states, while there also exists a
pair of unstable states s shifted in phase. This region is known as the tristable regime, given
that the two bistable states and the zero-amplitude state are stable solutions.

Atk (2126)

The ability to generate multistable states in parametrically driven Duffing oscillators is of key
importance for later chapters, in which we parametrically drive our quantum circuits beyond
these thresholds. For example, in Chapter 6 we explore the bistable regime and demonstrate
control over the dynamics of the bifurcating system while in Chapter 7 we drive a Duffing
oscillator through the multistable regimes described above and into chaos.

2.3.2, MODULATED NONLINEAR INDUCTANCE IN A QUANTUM CIRCUIT
BICHROMATIC DRIVING AND FLUX MODULATION
While one may implement a parametric drive on a pendulum by oscillating its pivot point ver-
tically, if we instead wish to parametrically drive superconducting quantum circuits, a straight-
forward way to do so is via the nonlinear inductance of the Josephson junction [215]. Given
Eq. 2.28 -2.30, we can express the nonlinear inductance of the junction in terms of the current
and flux as I ®

L=Lyh+ %(I—C)2 +. =L+ %(2%;0)2 +..] (2127)
where we may then modulate the nonlinear inductance via control over the current and/or
flux. Given that the quantum circuits discussed so far have inductance-dependent frequencies,
current or flux driving of these devices at I = I, cos(wgt + ¢) or @ = @, cos(wgyt + @) will
lead to a time-dependent modulation of the oscillator inductance (and thus frequency) as a
function of wy.

We may first consider the case of modulating the inductance of a Josephson junction-based
Kerr oscillator with resonance frequency w, and self-Kerr nonlinearity K as in Eq. 2.45. If we
choose to apply two microwave drives with frequencies w, and w,, such that A,, = w, —w, and
S = wo— (“’1%2) (thus, w, +w, = 2w, for & = 0), one of the results of this pumping scheme is to
generate a two-photon pumping term % 472+ 62—;22 where €, = 4K a,a, is the parametric pump
strength and a; are the classical pump field amplitudes [215]. Compared to a single microwave
drive on resonance at wy, in this bichromatic driving scheme (named due to the presence of
two drives of different frequencies), we are able to separate the pumps from the oscillator
spectrally [215, 217]. This simplifies analysis of the oscillator response for large values of A,,
relative to €,, given that we may set our measurement bandwidth to capture only the system
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dynamics of interest and exclude the presence of our applied drives and higher-order effects,
which would not be straightforward if we instead applied a single near-resonant microwave
drive to realize a parametric pump.

A\
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Figure 247: An illustration of a SQUID loop being parametrically driven via flux modulation. The loop
formed by superconducting metal (blue) and two Josephson junctions in parallel (grey) is threaded by
a magnetic field with a static component and a time-dependent component. The time-dependent com-
ponent modulates the amplitude of the flux threading the loop at a frequency wg.

Similarly, if the flux we apply to the oscillator's SQUID loop is composed of a static and time-
dependent component ®(t) = dy. + D, cos (wyt) and we set the modulation frequency
Wy = 2w,, We will again generate a two-photon pumping term with €, = —2E;®, sin (mdc)i_i
[215]. In the case of a SQUID tunable coupler connecting two frequency-detuned oscillators
w4 and wg, flux modulation of the coupler at the sum and difference frequencies w4 +wg can
selectively activate either the beam-splitter or two-mode squeezing interactions respectively,
as will be shown in Chapter 4. In the case of a SNAIL coupler, the flux can be modulated at
various frequencies to activate higher-order interactions, such as the optomechanical photon-
pressure coupling and to induce multi-photon transitions between the oscillators.

In the language of the classical parametrically driven Duffing oscillator, the consequence of
applying these microwave and flux drives in such a way to modulate the inductance of the os-
cillator at twice its resonance frequency is to drive the system towards first-order parametric
resonance. The application of this two-photon pump to quantum Duffing (or Kerr) oscilla-
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tors can be used to generate gain or, upon stronger driving, push the oscillator beyond the
parametric threshold into multistable regimes. In Chapters 5, 6, and 7, we show the driving
of a quantum circuit below, into, and beyond the multistable regimes discussed above and
demonstrate phase control of the oscillator state in the bistable regime.






DEVICE DESIGN AND FABRICATION

Thou shouldst not have been old
till thou hadst been wise.

William Shakespeare

In this chapter we outline the process necessary for building a quantum circuit. In order to
construct a quantum circuit, one must progress through multiple levels of abstraction - from
the device as a quantum system (the Hamiltonian level), to the device as a circuit (the circuit
representation level), to the device as a multidimensional simulacrum with defined physical
properties (the multiphysical model level), and lastly to the device as a material object (the
fabrication level). As we move from abstraction to reality, the idealities we impose on the
mathematical modeling of our system at the Hamiltonian level are always at risk of degrading
if we fail to account for the effects of additional physical processes at subsequent levels. The
goal is to have at the end of the process fabricated a quantum circuit from which one can
acquire measurement data unveiling exciting physical phenomena that can be analyzed and
interpreted with mathematical models.

47
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3.1. DESIGN AND SIMULATION

31a. QuTIP

The first step in designing a quantum circuit is determining which physical parameters to engi-
neer. While we may now know what the resonance frequency and anharmonicity of a transmon
qubit are for a given set of capacitances and inductances, we should first decide what we want
those values to actually be. For example, we may wish to understand the system consisting of
a CPW capacitively coupled to an external feedline on one side and a transmon qubit on the
other. In this case, the system Hamiltonian is as in Eq. 2.76, given by

—;~ E

H =Fw, 44 +hw,b'b - —Sb76'bb +hg(a'h + 46" 31

along with total resonator and transmon loss rates «, y respectively. How do the transmon
and resonator exchange interactions over time with the inclusion of collapse operators? If
we want to understand the dynamics of this system and explore the consequences of varying
the ratios of these parameters, it is useful to first simulate it before starting to construct the
circuit itself.

Alternatively, we may want to simulate the interactions between two transmons which are
connected via a SQUID tunable coupler, as in Eg. 2.110

Eci it an p g
SUPPIFY +ﬁw2bTb -
2 2

H =Fuw,4 5 -

As another example, in order to produce a Josephson cavity which can be driven with a two-
photon pump beyond the parametric threshold, what should the resonance frequency, non-
linearity, and linewidth be? Then, in the frame of the resonant two-photon pump, we have

H,or = K&T5785 + €,(57% + 3%). (3.3)

What responses do we expect to be displayed on laboratory instruments upon measuring such
devices?

The Quantum Toolbox in Python (QuTiP) is a Python library which contains a variety of objects
and functions which are useful for simulating quantum systems [218]. QuTiP can be straight-
forwardly used to take a Hamiltonian and construct energy level diagrams, investigate the
time evolution with loss channels and time-dependent drives, and visualize the state of a
system in many ways, such as on the Bloch sphere, with Wigner functions or by its emission
spectrum. In this thesis, QuTiP was always used when designing new devices in order to un-
derstand what parameters we should be targeting once we start the fabrication process and
to have a foundation for what to expect upon measurement.
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Figure 3.1: The simulated transmission coefficient | Sy | for a Kerr oscillator under a range of applied
probe powers side-coupled to a measurement feedline.

We now proceed with a few illustrative examples. We can start by simulating the expected
transmission coefficient when probing the state of a Kerr oscillator in a side-coupled trans-
mission geometry. This system may be realized by an on-chip Z, = 50Q transmission line to
which a junction-embedded CPW is capacitively coupled at one end and shorted to ground
via a junction at the other. In this case, we consider a fundamental mode frequency of w, =5
GHz and a self-Kerr nonlinearity of K = -200 kHz, with k¢ = 0.9 MHz and «; = 0.1 MHz. We can
write the system Hamiltonian in the rotating frame of a weak probe tone of strength €, and
frequency wp, by

H = (wo —wpr)d 4+ Ka'a" 48+ i€, (8" - 8) (3.4)
and solve for the steady-state of the system under single-photon loss 4 at rate ko imple-
mented as a Lindbladian collapse operator [219]. We could also consider the collapse oper-
ators of an oscillator coupled to a thermal bath, but here we assume that Aiw > kgT and
thus the thermal occupation of the mode we are interested in is nyp, = (dw/keT — 1)1 ~ 0, as
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would be the case for GHz circuits thermalized to the = 10-20 mK plates of dilution refrigera-
tors. We can then sweep w,, about w, and calculate the expectation value of 4 and find | S|
=1—(8) 2:; , given the simulated steady-state of the system p,;, which is displayed in Fig. 3.1
for various probe powers [220]. QuTiP then yields the theoretically expected response - as the
probe power increases (and thus, the number of photons in the oscillator increases as a func-
tion of the proximity of the probe to the oscillator frequency), the resonance frequency shifts
proportional to the self-Kerr nonlinearity and at strong enough driving the oscillator exhibits
a "shark fin" shape indicative of bifurcation. We may relate the probe strength to power via

KeP,
€pr = 4| (3.5)
hwp,

where P, is the incident power at the device and can be related to the number of photons in
the oscillator mode by

Ke

5 {Npr) (3.6)

<n> = (Ktot

2 )2 + (wpr - wo)

P
where (np,) = &=

o,y is the number of photons applied at the device input [221, 222]. Thus,
a simple QuTiP simulation can quickly be used to aid in preparing one’s experimental setup
to facilitate delivering an appropriate amount of photons to the circuit given a set of design
parameters, but can also be used as an analysis tool to determine unknown device parameters

upon measurement (in this instance, with a VNA).

Our second example is that of the Kerr oscillator under a two-photon drive, as in Eq. 3.3. We
can use QuTiP to calculate the expectation value of the photon number operator and Wigner
function of the simulated state as a function of time p(t), again under single-photon loss at
rate k¢o¢. The Wigner function is a quasi-probability distribution which describes the state
of a quantum system in phase space, with quadratures x and p [223, 224]. Working in units
where w, = 5 and the two-photon drive frequency is set to wy = 2wy, We set k;o¢ = 1/1000,
K = —k¢0t/2, and €, = —5K and obtain the mode’s photon number expectation value {n) as
well as the Wigner function associated with p(¢) shown in Fig. 3.2, 3.3.

This system is closely related to the parametrically driven Duffing oscillator, as can be seen by
the Wigner function of the steady state of the system in the bottom-right panel of Fig. 3.2. The
oscillator steady-state under sufficiently strong two-photon driving is that of a parametrically
driven Duffing oscillator in the bistable regime, represented by two displaced coherent states
of equal amplitude and opposite phase.

Given our choice of parameters, the approximation of the Duffing oscillator as a Kerr oscillator
here holds true. Indeed, we can shift our drive wy from resonance with 2w, to being detuned
by a negative value § to observe a tristable state and to observe the zero-amplitude state
we may either decrease our two-photon pump strength or detune to sufficiently positive fre-
quencies (the opposite sign of the nonlinearity), as shown in Fig. 3.z. We may also replace the
self-Kerr term with the full Duffing nonlinearity K’(4" + 4)* and set K’ = —k;o¢/12 and obtain
similar results to the bistable Kerr oscillator.
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Figure 3.2: The Wigner function of a Kerr nonlinear oscillator over the course of its time evolution under
two-photon driving.
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Figure 3.3: The time-dependent expectation value of the photon number operator of a parametrically
driven Kerr nonlinear oscillator.
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Un 13 un

Figure 3.4: Wigner functions of the steady state of a two-photon driven Kerr (Duffing) oscillator when in
the various stability regimes. When considering a Kerr oscillator, the left panel is the zero-amplitude
state for & = 0.02, and the center panel is for the tristable state § = —0.01. The right panel is the
bistable state for an oscillator with an explicit Duffing nonlinear term.

34.2. QUCAT
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Figure 3.5: A lumped element circuit generated with QuCAT of a transmon qubit capacitively coupled to
a resonator with a Z, = 50Q feedline.
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If we proceed with the resonator-transmon system as an example, the next step in designing a
device is to translate the frequencies and couplings into capacitances and inductances. To this
end, we can use the Quantum Circuit Analyzer Tool (QuCAT), which is a high-level Python library
with which a user can draw RLC circuits, input values, and extract their expected frequencies,
loss rates, couplings, and nonlinearities [225]. We can start by drawing a lumped element
circuit representation of a /;‘ CPW resonator capacitively coupled to a transmon qubit and a
Z, =500 transmission line, as shown in Fig. 3.5.

Once this circuit has been drawn, the user can input capacitance and inductance values to
calculate the eigenfrequencies and nonlinearities of each normal mode of the circuit. Each
of these circuit parameters can be iterated over, allowing the user to sweep over variables of
interest to see how the circuit is changed. For example, when sweeping the Josephson induc-
tance of a transmon qubit (as one may do by varying the magnetic flux through a transmon'’s
SQUID loop), the qubit frequency can be swept through the resonator frequency which gives
rise to an avoided crossing related to the linear coupling between the resonator and trans-
mon. We can also plot the self-Kerr nonlinearities of the resonator and transmon, as well
as the cross-Kerr coupling, as a function of swept Josephson inductance and note that when
the modes strongly hybridize the resonator inherits nonlinearity from the transmon, as was
discussed in Sec. 2.2.1.
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Figure 3.6: The calculated frequencies and nonlinearities of the circuit in Fig. 3.5 for a range of junction
inductance values L ; with other circuit parameters fixed.

3.1.3. QISKIT METAL AND ANSYS HFSS

Once we know our desired capacitances and inductances, the last step is to "physicalize" our
circuit by actually constructing waveguides and electrodes. From our discussions on transmis-
sion lines, we have some inclination as to what the waveguide capacitance and inductance per
unit length will be given the widths of the center conductor and gaps as well as the proper-
ties of selected materials given Eq. 2.63 - 2.69, but so far we do not have any intuition as to
how a transmon should be physically represented on a chip. While we know that we need an
electrode (or two) and capacitances to ground and to our CPW, we don't yet have any under-
standing of how the representation of the resonator-transmon system relates to its existence
in physical space. Thus, we require a way to construct the geometries which we wish to later
pattern on a chip in a file format that will be understandable by the nanofabrication machines
we will use to do so, as well as a simulation software capable of telling us whether our chip lay-
out matches to what we would like to make after our conclusions from theoretical equations
and QuTiP and QuCAT simulations.

Luckily, there exists a Python library developed by IBM Quantum named Qiskit Metal, which
can be used to construct such chip layouts in the form of .gds files, with the added bonus
of being able to easily interface with the multiphysics simulation software Ansys HFSS [226,
227]. After programmatically drawing a circuit with Qiskit Metal, we can use HFSS to deter-
mine the eigenfrequencies of the normal modes of the system after defining the properties
of the intended materials, such as relative permittivity and surface inductance. We can also
determine the capacitance matrix of any set of elements being simulated by lumped oscil-
lator model (LOM) calculations, as well as use the results of the eigenmode simulation with
the Python library pyEPR to determine the self- and cross-Kerr nonlinearities as well as the
capacitive and inductive participation ratios [228].
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Figure 3.7: A resonator-transmon system programmatically defined in Qiskit Metal and rendered in Ansys
HFSS.

As an example, we may follow the process of designing a resonator-transmon system using
Qiskit Metal and HFSS. After defining the geometry of Z, = 50Q transmission lines following
the equations in Sec. 2.2.1 taking into account an expected surface inductance of Lg = 0.98
pH for a 100nm thick NbTiN film (quoted by SRON, the organization which supplied the wafers
used for fabricating various devices in our research group), we can set the approximate reso-
nance frequency of the CPW resonator by its length [229]. We may then run simulations iter-
ating over the length and distance of the "hanger" section parallel to the feedline to obtain
a desired external coupling ke and turn our attention towards the transmon. The transmon
frequency, nonlinearity, and coupling to the resonator are set by the Josephson inductance,
the size of the qubit electrodes, the gap between the electrodes and the ground plane, as well
as the capacitance to the coupling pad of the resonator. For this analysis, we have set L, =
snH and C) = 1fF.

After performing an eigenmode analysis, the magnitude of the electric field of each mode
can be plotted as shown in Fig. 3.8, illustrating that our CPW is indeed A/2, and showing that
for our transmon, the majority of the electric field is concentrated around the junction and
the edges of the electrodes. In general, transmon designs that yield a lower concentration
of the electric field in certain regions are desirable so as not to excite two-level systems on
materials surfaces and interfaces which act as loss channels for the transmon mode [230-236].
Neglecting factors of 27 for convenience, the eigenmode analysis yields frequencies w, = 8.38
GHz and w, = 6.46 GHz as well as Q¢ 4 = 3.3e5 and Qg , = 4.5e3 which are the Purcell-limited
quality factor of the transmon and the external quality factor of the resonator respectively.
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After performing a pyEPR analysis of the eigenmode solution, the expected qubit frequency
slightly changes to wg = 8.12 GHz while the resonator is unchanged at w, = 6.46 GHz. We also
obtain an inductive participation ratio for the qubit of 0.965, with K = -129.5 MHz, K = 2.4
kHz, and Vj; , = 2.23 MHz for the self-Kerr nonlinearities and the cross-Kerr. Then, we perform
a LOM analysis of the circuit, which simulates only the immediate region around the transmon
electrodes, including the ground plane and coupling pad of the resonator. After inputting the
expected resonator frequency from the eigenmode and pyEPR analyses, the expected trans-
mon frequency again changes to wg = 8.54 GHz and the self-Kerr to K = -163.5 MHz. We also
obtain the coupling g = 156 MHz, dispersive shift y = 4.40 MHz, and charge dispersion 2.41 Hz
indicating that our ratio of E,/E¢ is indeed sufficiently large (here, about a factor of 100)
[111]. Our obtained capacitance matrix also indicates that C, = 24 fF and each electrode has a
capacitance to ground of C,; = 39 fF, C; , = 47 fF, with total qubit capacitance C, = 65 fF.

Figure 3.8: The magnitude of the electric field for each normal mode plotted in Ansys HFSS. The results
are found after running an eigenmode simulation.

Inputting these capacitances back into QUCAT, we can obtain estimated self- and cross-Kerr
nonlinearities of Ky = -147 MHz, K = -212 kHz, and V,; , = 2.23 MHz, with frequencies w, = 6.46
GHz and wq = 8.81 GHz, which are similar to the values obtained through HFSS, LOM, and pyEPR
analyses. Given that the QuCAT simulation uses the lumped element representation of the
circuit and does not include kinetic inductance, we take the pyEPR analysis of the eigenmode
solutions to be authoritative in the designing of our circuits.

3.2. FABRICATION

3.2.1. SUBSTRATES AND SUPERCONDUCTING THIN FILMS

In order to create superconducting quantum devices, we must first determine the materials
with which we wish to construct our circuits. As the devices will contain coplanar waveguides,
we will require a semiconductor substrate and a superconducting film on top of it, which we
can use to define our structures. The devices measured in this thesis were fabricated at the
Kavli Nanolab Delft facility at the TU Delft [237].

For our substrate and superconductor, we use Si and NbTiN, respectively. For the chips fabri-
cated during the course of this research, we used wafers supplied by the Netherlands Institute
for Space Research (SRON), which were Si with NbTiN deposited on top [229]. The Si was 525 um
thick, and the NbTiN was either 100 nm or 200 nm thick. The choice of materials strongly influ-
ences the processing and handling of devices, as well as the final frequencies, nonlinearities,
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and couplings of the constructed quantum circuits. For example, certain materials grow unde-
sired oxide layers at different rates, some lead to interfaces with higher loss tangents which
reduce our device quality factors, and some materials simply do not have well-established
processes for creating superconducting qubits with [231, 235, 238-251]. Substrates commonly
used for superconducting qubits are Si and AL, 05 (sapphire), while superconducting metals are
often Al, Nb, TiN, NbTiN, and Ta [235, 252-255]. Our usage of Si and NbTiN is thus partially due
to the availability of wafers through an arrangement with SRON, the existence of established
treatment processes, and their well-understood characteristics in the context of fabricating
quantum circuits. For example, whichever superconductor we choose will have kinetic in-
ductance which contributes along with the geometric inductance of the defined structures to
yield a total linear inductance. The kinetic inductance can also contribute to device loss rates,
given that the fraction of kinetic to total inductance affects the responsivity of oscillators to
quasiparticles [256, 257]. The kinetic inductance per unit length of a CPW is

t
Ly = gls = guoAL coth (A_) (3.7)
L

where L is the surface inductance, t is the thickness of the superconductor, y, is the magnetic
permeability of vacuum, A; is the London penetration depth

A
A= |22 (3.8)
oA
and g is a geometric factor written as
7 +1n (%) —kln (;;kk) Kz +n (—M(S;N)) -2l (;;kk)] (9)
BT T st kKR 4G — KIK(K)

where p is the resistivity of the film, A; ~ 1.764kg T, is the theoretical superconducting gap at
zero temperature, the critical temperature is T, =~ 14.4K for our NbTiN film, and K(k), k, s, w
are as defined in Sec. 2.2 [229, 258-260].

Uniformity of NbTiN deposition across the entire wafer can be difficult to achieve, leading to
variations in L as a function of position. This means that there will be some variation in Ly
for any given chip diced from the wafer, with the greatest uniformity in thickness towards the
center of the wafer for typical deposition processes [229]. Thus, while one may fabricate a
CPW resonator on a chip from the center of a wafer, measure its frequency, and calibrate their
simulation parameters accordingly to account for the kinetic inductance, there will likely be
variation again upon fabrication and measurement of an identical resonator on a chip taken
from the edge of a wafer. Luckily, for the wafers provided to us by SRON, the expected variation
in thickness (and thus frequency) is only on the order of a few percent. For our 100 nm and
200 nm films, we expect L; = 0.98 pH and L = 0.53 pH respectively, which can be converted
to the kinetic inductance per unit length via the geometric factor g for any CPW geometry. For
transmon qubits, the kinetic inductance of the qubit electrodes is typically negligible, and in
any case, the junction inductance is engineered to dominate over the total linear inductance.
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3.2.2. LITHOGRAPHY
After preparing the wafers, we must then define the structures which comprise the circuit,

in this case, by lithographically defining them into a resist, developing the resist, and then
etching away regions of metal to form our CPW traces and qubit electrodes. In this thesis,
we have mostly used electron beam resist with electron beam (e-beam) lithography, however
the use of photoresist with UV photolithography is also possible, albeit with larger spatial
resolution compared to the electron beam. A resist is an organic compound sensitive to light
(and electrons) that undergoes a change in its chemical structure upon exposure. A resist
is defined as positive or negative by whether the written area is weakened or strengthened
upon exposure to light or electrons, after which the written or unwritten area may then be

developed away in a solvent respectively.
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Figure 3.9: A double-island transmon qubit capacitively coupled to a readout resonator. The main struc-
tures have already been written, developed, and etched. A secondary lithography step has been per-
formed which defined the Josephson junction connecting the two qubit electrodes. The written resist
has been developed and the sample is ready to proceed towards junction evaporation.

When a resist is written, the e-beam gun delivers electrons to the sample, depositing their
energy into the resist and scattering into the surrounding area. For positive resists, this de-
composes the resist by breaking bonds which have been delivered energy larger than the
bond-dissociation energy. The regions of the resist which have been exposed are thus made

weaker and are then dissolved in the appropriate developer.
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When preparing a sample for lithography, we first clean the surface of the chip with ace-
tone and isopropyl alcohol (IPA). We then spincoat the chip with a resist and bake the chip
to harden the resist. The spincoating of any given resist leads to a final thickness dependent
on the spincoating speed and the resist properties. We then pattern the resist with an e-beam
writer (Raith EBPG-5000+), with e-beam gun parameters dependent on the resist used and
circuit feature sizes [261]. For example, when defining the relatively large bulk structures of
transmission lines and electrodes, we use the resist AR-P 6200.18 (CSAR62) spun to 800 nm
thickness and deliver a dose of 350uC/cm? at a spot size of 62 nm, current of 192 nA, and ac-
celeration voltage of 100 kV [262]. However, when defining the comparatively small junctions,
we use a bi-layer resist stack of PMMA A6 950k spun to 500 nm on top of MAA 8.5% EL6 at 180
nm written with 1850uC/cm?, 21 nm, 1344 pA, and 100 kV [263].

The written sample then has the resist developed in a solvent, which for AR-P 6200.18 was
pentyl acetate, and for the MAA/PMMA stack was a mixture of cold H,0 and IPA in a 1:3 ratio.
After developing the unwanted resist and etching the exposed metal away, the resist was then
stripped with either dimethylformamide (DMF) or N-Methyl-2-pyrrolidone (NMP) and cleaned
with acetone and IPA. As we used positive resists, the areas which were written were devel-
oped and etched away, in which case our written patterns were defining the spaces where the
substrate would be exposed to air, such as the gaps of our CPW traces.

3.2.3. REACTIVE ION ETCHING

After the pattern has been written and the sample has been developed, the exposed metal
areas must then be etched away to produce the trenches separating transmission line cen-
ter traces and transmon electrodes from the ground plane, which defines our feedlines, res-
onators, and qubits. This is done by reactive ion etching (RIE), in which the chip is placed into a
reactor under vacuum and is bombarded by ions produced by a plasma generated by passing
a gas through a strong electromagnetic field [264]. This field is generated by parallel plates
on the top and bottom of the reactor across which a voltage is applied, which, when made
sufficiently strong will ionize the gas. As a negative charge builds on the sample, the positive
gas ions bombard the surface of the chip following the vertical direction of the electric field,
reacting both with the exposed metal and the leftover resist. The hardened resist is etched
at a much lower rate than the NbTiN for the RIE compounds used (in our case, 0,, SFg, and
CF,), leading to an anisotropic etch of the exposed metal areas which reveal the underlying
substrate and leave vertical walls [265].

The anisotropy of the etch and smoothness of the exposed substrate is strongly determined by
the sample materials, the etchant used, and the etching conditions, such as reactor pressure,
plate bias power, and rate of flow of the etchant. If these conditions are sub-optimal, there can
be various deleterious effects. For instance, etched material may be redeposited onto other
areas of the chip, and we may also have unintended chemical reactions between the products
of the gas ionization and our sample, leading to the creation of fluorocarbon residues [266—
271]. Inthe case of CF,, example products such as CF;*, CF;”, CF5, F*,and F*, may all be presentin
the reactor chamber along with our sample. Along with achieving the goal of etching the NbTiN
and briefly over-etching the exposed Si, these products may also recombine, interact with
etched and/or exposed material, and form unwanted compounds that negatively affect the
quality of the device. The most common unwanted products are fluorocarbon polymers, which
can form when there is an insufficiently large ratio of fluorine to carbon for a given electric
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field strength in the chamber. If polymers form on the surfaces of the chip, these dielectrics
and other lossy compounds formed can drastically reduce the internal quality factors of final
devices, especially if they exist near areas with large electric field concentrations such as
junctions.
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Figure 3.10: Images showing the structures resulting after a reactive ion etch. a) A CPW with space in the
center for the evaporation of a Josephson junction. b) A shorted measurement feedline due to insufficient
etching of the waveguide trenches. This may be due to an improper development of the resist in this
region of the sample or failure due to an insufficiently clean surface. c) A scanning electron microscope
(SEM) image of the corner of an etched NbTiN structure on top of a Si substrate. d) Un-etched material
left on the substrate due to improper etching conditions.

3.2.4. EVAPORATION AND LIFTOFF

After the bulk structures of the device have been defined, another round of lithography and
development will expose the areas of the sample on which we wish to construct Josephson
junctions. As we use Al/AlOy /Al junctions in this thesis, we will be evaporating Al onto the
entire surface of the chip, which will deposit and remain only on the exposed areas and, in
other regions, will be removed along with the resist during the liftoff process. During liftoff,
the sample is left in a solvent which strips the resist from the chip along with the Al adhered
to it while leaving behind the Al which was evaporated onto the exposed metal and substrate.

Aside from contributions to loss in the substrate and superconducting film, a significant source
of loss can be found within the junction itself. Charged two-level systems (TLSs) can form in
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dielectrics due to material defects or impurities, which then couple to our relevant device
modes, leading to energy exchange with the TLS and critical current noise causing dephasing
[233, 252, 272, 273]. Some TLSs can exist in the AlOy layer of the junction, as well as in the nearby
oxide layers of the substrate and superconducting film. In addition to TLSs, non-equilibrium
quasiparticles (broken Cooper pairs caused by high energy photons) can directly contribute
to a decrease in relaxation times in quantum circuits with Josephson junctions [111, 274-282].
In recent years, methods to combat the negative effects of quasiparticles have included im-
proved qubit designs, substrate phonon injection, phonon trapping, phase biasing, extensive
device shielding, dynamical decoupling by pulsed driving, and the use of alternative materials
[283-290].

(@) (b)

9)

( (d)

Figure 3.11: Optical microscope and SEM images showing before and after completion of the junction
fabrication process. a) The geometry of a SQUID loop is defined by e-beam lithography and the resist
is developed away. b) After evaporation and liftoff, the junctions are fabricated. The SQUID bridges the
ground plane to the electrode of a single-island transmon qubit. ¢) A SEM image of a test SQUID with
two probing pads. d) The result of a failed liftoff process. An insufficient amount of time and physical
agitation in the resist stripping solvent caused a portion of the aluminum inside the SQUID loop to not
fully detach.

In contrast to the standard Dolan-bridge, we formed junctions via double angle shadow evap-
oration [291-295]. We use a relatively tall resist stack in conjunction with a high angle of evap-
oration along two directions, which allows for evaporation of Al directly along the "streets"
defined by our resist, while the "shadow" cast by the resist prevents deposition along or-
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thogonal directions. A sufficient height for a given angle of evaporation and junction width
can be determined, allowing for the formation of junctions by deposition of the bottom layer,
followed by oxidation, and lastly an orthogonal deposition of the top layer. This method al-
lows for a high degree of reproducibility in overlapping junction areas, which in turn leads
to reliable junction inductance values for a given overlap area, provided the evaporation and
oxidation conditions among other factors are unchanged across fabrication runs.

Special care is taken with this step, as it is the most critical for the construction of nonlinear
quantum oscillators. While parameter targeting is especially affected by the adherence of the
fabricated junction geometry to design and the oxidation conditions (which largely determine
junction inductance), we must also take steps to ensure that the junctions are formed on top of
clean surfaces free of lossy materials. Thus, after developing the resist and before evaporating
Al, we first clean the chip with an exposure to oxygen plasma as a descum step to remove any
leftover unwanted resist in the vicinity of the junctions, which may not have fully developed
away [296].

We then perform a dip in hydrofluoric acid (HF) which removes any oxides on the surface of our
chip. However, once the chip is in ambient conditions again, typically used materials begin to
reoxidize with few-nm thick layers growing on the order of minutes, meaning that transporting
the sample from the HF dip into the Al evaporator and bringing the chamber to vacuum as
soon as possible is also important [245, 2907-300]. Another method for preparing the sample
surfaces for Al evaporation is by ion milling, such as with Ar. lon milling the exposed metal
can be effective in cleaning the surface to prepare for the deposition of Al, but can also cause
damage to the Si substrate surface and may also be detrimental for some metals [301-304].
In order to selectively mill the metal without damaging the substrate, one may apply the ion
mill at a high angle, with a rotation of 45 degrees relative to the junction directions, with the
angle dependent on the width of the junctions and height of the resist [294].

The junction characteristics are largely determined by the area of overlap of the junction elec-
trodes and the deposition and oxidation conditions of junction formation [305-315]. Once a
junction has been formed, the normal state resistance can be probed at room temperature.
The critical current, Josephson inductance, and Josephson energy can be estimated via the
Ambegaokar-Baratoff relation, given an expected value for the superconducting gap of thin-
film Al, which can be related to the critical temperature of Al [316-318]. Estimating a critical
temperature of T¢ = 1174-1.405 K as T¢ increases for thinner films, the superconducting gap
in frequency units can be taken as 2A/h = 84 GHz given junction film thicknesses on the order
of tens of nanometers [317, 319, 320]. Then, we have
hA TAZ,

= = -10
8e?Ry Rn (310)

J

where Ry is the normal state resistance and Z, =fi/(2¢)? is the reduced impedance quantum.
Then, we can directly relate the Josephson inductance to the normal state resistance with a
conversion factor as

o \*( 1 0.3183A nH
L;=Rn|— =R ~ Ry X [1.2—]. a1
o B R G B (£ R

In Fig. 3.12, the relationship between the junction overlap area and the normal state resistance
and conductance is shown. It is often useful to plot the inverse of the junction resistance (the
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normal state conductance, Gy = 1/Ry) against the area of overlap, given that there is a linear
relationship between conductance and area. For a given instance of junction evaporation and
oxidation, the standard deviation in normal state resistance for width values from 100 - 300
nm was generally found to be small, with a relative error of less than 5%. Across different
instances of performed lithography, development, evaporation, oxidation, and liftoff steps
used, fits of the conductance for separate fabrication runs show a relative deviation of less
than 20% for single junctions and 25% for SQUIDs.

This increased variation over different fabrication runs can be due to a variety of factors, in-
cluding changes in the lithographically defined area versus the designed area, changes in
oxidation conditions during the formation of the junction, and human error leading to un-
conscious deviations from the established recipe. To account for lithographic deviations, the
junction area can be checked by measuring the fabricated junction with a scanning electron
microscope (SEM) and comparing the normal state characteristics to fabricated rather than
designed areas. Junction resistances can also be tuned post-fabrication by the use of laser
annealing, to bring the device parameters closer to designed values [321].
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Figure 342: Junction parameters determined from room temperature probe measurements versus de-
signed junction areas. a) The measured normal state resistance from two point probe measurements of
junctions of varying overlap area. The top and bottom junction electrodes were designed to be of equal
length and width in the region of overlap. As the junction area increases, the resistance decreases for
both single junctions and SQUIDs. b) Estimated normal state conductance across several independent
fabrication runs totaling 152 probe measurements. Plotted points with error bars are the mean and stan-
dard deviation of the junction characteristics of each instance of fabrication. Lines are linear fits to the
characteristics determined for each fabrication run. R? > 0.995 for all except two SQUID dataset fits,
which were R? ~ 0.989 and R? ~ 0.918.

The mean and standard deviation of the slopes in Fig. 3.12 b) for single junction fits indicate
a conductance of 3.81 + 0.752 mS/um? and for SQUIDs 6.72 + 1.60 mS/um?. Given Eq. 2.30 -
2.33, 310, 3.11 we should expect for symmetric junctions that the SQUID conductance is twice
that of the single junction, which is within the bounds set by the standard deviations of the
datasets. The dynamic oxidation steps which formed the junctions were set to 11 minutes at
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1.3 mbar, and for each junction, the bottom layer of aluminium was 35 nm thick, and the top
layer was 75 nm thick. The oxidation step was repeated as the final step to terminally cap the
junctions.

After the junctions have been probed, the sample bondpads are wirebonded to a printed cir-
cuit board (PCB) and the device is installed inside of a gold-plated copper enclosure. Prior to
wirebonding, the coaxial cable connection ports are soldered to the PCB. The entire package
is then installed into a cryogenic refrigerator, and the measurement equipment is connected
to the device via coaxial cables. The engineering of the microwave packaging is also of im-
portance to ensure that the device is well thermally anchored to the mixing chamber plate
of the dilution refrigerator, to reduce signal crosstalk, and to suppress the negative effects of
package modes [322].






FLUX MODULATED TUNABLE COUPLINGS
OF TWO NONLINEAR OSCILLATORS

Try to make things that can become better in other
people’s minds than they were in yours.

Brian Eno

Access to a wide variety of couplings between oscillators on a single device is highly desir-
able in order to effectively simulate a host of quantum systems. A superconducting circuit
containing two transmon qubits connected both capacitively and inductively by a flux-tunable
coupler has shown promise for accessing disparate coupling regimes, such as those in which
the single-photon hopping interaction dominates over the cross-Kerr coupling, and vice versa.
While such controllability is useful for quantum information processors, it also enables the
analog simulation of various physical phenomena including arbitrary spin-spin interactions.
Wide tunability also facilitates the study of driven-dissipative oscillator dynamics in previ-
ously unexplored parameter regimes. In this work, we demonstrate the ability to selectively
enter into regimes in which the system dynamics are dominated by either photon-hopping,
two-mode squeezing, or cross-Kerr interactions with the use of parametric modulation. In do-
ing so, we observe level repulsion and attraction in two strongly Kerr-nonlinear oscillators in
regimes where the couplings and nonlinearities exceed the decay rates of the system.

J. D. Koenig, G. Barbieri, F. Fani Sani, M. Kounalakis, C.A. Potts and G.A. Steele, Flux Modulated Tunable Couplings of
Two Nonlinear Oscillators, in preparation (2024).
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4. INTRODUCTION

Quantum information processors based on superconducting circuits have long relied on the
transmon qubit as a robust, reliable, and high-coherence building block in the journey toward
large-scale digital quantum computation [111, 323, 324]. Circuit quantum electrodynamical
(cQED) devices are also of great interest to the development of analog quantum simulators -
devices which are custom-built to emulate the behaviour of distinct systems which are oth-
erwise typically challenging to control or probe directly [325, 326]. Such devices would enable
the probing of physics in otherwise inaccessible parameter regimes due to the high degree of
engineerability in superconducting circuits afforded by modern nanofabrication techniques
and materials science [327-329].

These transmon-based cQED systems may be described as collections of coupled Kerr-nonlinear
oscillators, which in recent years have been imbued with in-situ tunable resonance frequen-
cies, couplings, and nonlinearities achievable by external control [330-336]. While such de-
velopments have greatly contributed to progress in digital gate-based architectures, there is
still unexplored territory in using such platforms to emulate other physical systems such as
extended Bose-Hubbard and spin-3 models [337-343].

Tunable couplers have been successfully used to implement high-fidelity two-qubit gates and
are useful elements for mitigating undesirable interactions in designs for scalable quantum
computing architectures [344-354]. They have also been of great interest to the field of analog
quantum simulations, in which systems of nonlinear oscillators able to enter into and exit
out of distinct coupling regimes would be capable of emulating physics from fractional Bloch
oscillations to gauge-invariant synthetic magnetic fields and lattice gauge theories [333, 337,
339, 340, 343, 355, 356].

For instance, Kerr-nonlinear oscillators (KNOs) with purely longitudinal coupling exhibit the
same dynamics as antiferromagnetically coupled Ising spins, while control over all oxox,
oyoy, and ozoz couplings individually would allow for analog simulation of arbitrary XYZ
spin-model Hamiltonians [343, 357, 358]. Devices with couplers containing more highly nonlin-
ear elements may also be used to enter into regimes where strictly nonlinear couplings such
as correlated photon hopping and photon-pair tunnelling terms dominate, allowing for the
simulation of more exotic physics [195].

The dual phenomena of level repulsion and level attraction have been previously investi-
gated in a broad array of platforms ranging from Bose-Einstein condensates to magnonic and
nano-optomechanical systems operating in various parameter regimes characterized by the
resonance frequencies, coupling strengths and decay rates of the constituent oscillators [193,
194, 359-375]. These interactions have been used to great effect in other contexts to enable
(quantum-limited) nondegenerate parametric amplification and perform two-qubit gate op-
erations [193, 194, 346].

Beyond their applicability for quantum information processing tasks, the wide selectivity of
system parameters in tunably coupled nonlinear oscillators is of particular interest due to
the ability to investigate the formation of instability regimes, their application to parametric
amplification, the generation of entanglement, and the non-Hermiticity of generable Hamilto-
nians [326, 376, 377]. Exquisite control over these couplings would enable direct investigation
of the coherence-dissipation competition in coupled nonlinear oscillators and bring predicted
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applications in topological energy transfer, quantum sensing, and nonreciprocal photon trans-
mission closer to experimental realization [366, 368, 378, 379].

Here, we present measurements of a superconducting circuit containing two flux-tunable trans-
mon qubits connected by both a fixed capacitive coupling and a tunable nonlinear induc-
tive coupling provided by a highly symmetric superconducting quantum interference device
(SQUID). By parametrically modulating the external flux threading the SQUID loop of the cou-
pler, we operated the device in regimes where the longitudinal (cross-Kerr, or ZZ) coupling was
dominant over a two-mode squeezing interaction, and in which the single-photon exchange
interaction (beam-splitter) and cross-Kerr strengths were comparable.

We observed two-mode squeezing effects through the use of parametric modulation, which,
together with the single-photon hopping interaction, are characterized by level attraction and
repulsion between the oscillators, respectively. In contrast to previous studies where such ef-
fects were explored in linear systems, our measurements represent spectroscopic observation
of level attraction between two strongly Kerr-nonlinear oscillators [365, 369, 372]. Our results
further illustrate the utility of platforms based on nonlinear oscillators containing tunable
couplers to act as analog quantum simulators, which can be driven to explore more highly
nonlinear effects and exotic parameter regimes in future studies.

4.2. DEVICE AND FLUX MODULATION

The system consists of two transmon qubits coupled both capacitively and inductively by a
SQUID, realizing a tunable coupler as seen in Fig. .1 (a), (b). The coupling between the two
oscillators is solely characterized by the charging and Josephson energies of the constituent
circuit elements, with linear and non-linear interactions tunable via the total DC flux threading
the coupler SQUID loop. The Josephson energy of the coupler is written as

o} o}
EJC(CDDC) = EJCmaX|COS (ﬂ DC)I\/1 +d2tan? (71' DC) (4)
Do @,

where EJCmax is determined by the inductance of the unbiased SQUID loop, d. is a measure
of the asymmetry of the junction inductances comprising the SQUID, and ®p¢ is the DC flux
threading the loop [332]. Each of the two transmons is capacitively coupled to its own copla-
nar waveguide resonator, which are in turn coupled to a common feedline through which the
device is driven and probed. The Josephson energies of the two qubits are related to their
own flux biases ® 4 and ®p in the same form as Eq. 4.1. In the coupled system, the ground to

excited state transition frequency for transmon i is given in units where i = 1 as

w; ~ \|8ETEL — EL (4.2)

with i::j = E} + E¥ /4 the modified Josephson energy due to the coupler and E.. the charging
energy of transmon i.

We obtain a Hamiltonian following the procedure outlined in Sec. 4.6.2 and Ref. [333] in which
we quantize the circuit shown in Fig. 4.1 (a) and retain terms in the expansions of the energy



68 4. FLUX MODULATED TUNABLE COUPLINGS OF TWO NONLINEAR OSCILLATORS

potentials of the SQUIDs to fourth-order. We can obtain a simplified Hamiltonian given by

a Arn QB pipnan
H=wad'a+ 44735+ wpb'b+ —2575"bb
J(&7b+5bT)+ J(87HT + 4b) + VaTabTD  (43)

+

where we have defined:

TAE /4
EAEBEAEBY' EC EC
J1,2 ':i( ] c¢c < + ~J — (4.43)
. JELEE  2\[E4ED
and
EC | EAEB
vVi=-——L, ¢ (4.5)
8 \EFET

where J, is the strength of the hopping interaction, J, the squeezing, V' the cross-Kerr, a; ~
—E the anharmonicity, and we have neglected higher order terms which are far off-resonant
from the relevant dynamics of the measurements performed.

(@)

Figure 4.1: Device and measurement scheme. (a) Circuit diagram for the device. On the left and right
sides are two flux-tunable transmon qubits consisting of asymmetric SQUIDs with gate capacitances to
the ground. The tunable coupler in the center consists of a coupling capacitor and symmetric SQUID. (b)
Optical microscope image of the device, including transmission line, readout resonators (R;), drive lines
(D;), flux lines (®;), two transmons (Q;), and the tunable coupler. (c) Schematic of the experiment. The
flux incident on the coupler SQUID loop is modulated at either the difference or sum frequency of the
two transmons. (d) Optical microscope image of Qubit B.
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Under the Rotating Wave Approximation (RWA) and when the two transmons are brought into
resonance, the single-photon hopping and cross-Kerr effects are observable with strengths J,
and V/, while the two-mode squeezing interaction is far off-resonant. In previous measure-
ments on this device, the single-photon hopping and cross-Kerr interactions were shown to
be highly tunable dependent on the choice of static coupler flux bias point with deep access
to the regime J; > V [333]. Unfortunately, the region J; < V was not clearly accessible due to
hybridization with a tertiary circuit mode (see Sec. 4.6.2) at the particular bias points at which
it was theoretically expected to be accessible. However, by parametrically modulating the flux
threading the SQUID loop of the coupler, we can access parameter regimes in which either the
photon hopping or two-mode squeezing terms can be selectively activated, as well as access
the region where J,, < V.

We consider the case in which the magnetic flux threading the coupler contains a static DC
component as well as a periodic AC component, where the total flux is given by

Oc(t) = PDpe + Pac cos(wmt) (4.6)

and wp, is the frequency of the modulation. Provided that the strength of modulation is small
relative to the bias point (sin (®pc) > sin (D)), we can insert Eq. 4.6 into Eq. 4.1 and obtain
a new expression for the Josephson energy of the coupler as

(o)
EC(@c(t) ~ ES _ |cos (71 qfc)

o

() (o) (0]
— 122C sin | 7225 | cos (wmt)|4 |1+ d2tan? (7 be
Do ) Do

= EJC:DC + EfAC(t) (47)

which is now comprised of a static term EJCDC and a time-dependent term EJCAC(t) due to
the modulation.

After re-deriving the expressions for the hopping and two-mode squeezing interactions, it can
be shown that by modulating the coupler at the difference or sum frequency w,, = |wa + wg|,
either interaction can be selectively activated for non-resonant oscillators as the coupling
strengths under modulation are modified to

Jy = hpe + Jac(emt + e 0mt))(57 be/@awelt 4 55T g=/(wawelt) )

J, = lope + Jacle™nt + e /omt)|(37 b e/ warwslt . gpe~iwawn)t (4.9)

where J; pc, Jo.pc are as in Eq. 4. and the strength of the modulated interaction may be

approximated as
ArB
TOac . opc).c (Eckc e
JAC =~ sin | Jmax ﬁ .
4\20, Do Ej Ej
After applying the RWA, we may choose to activate either interaction with strength Jsc de-
pending on the frequency of modulation, while other terms not commensurate with the mod-

ulation become fast-rotating and play a negligible role in the system dynamics. The full form
of Eq. 410 and the contributions from higher order interactions are shown in Sec. 4.6.2.

(420)
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4.3. OBSERVATION OF PARAMETRICALLY ACTIVATED COUPLINGS

In order to measure the strength of the couplings under time-periodic pumping, we modulated
the DC current supplied to the tunable coupler at a frequency w,,. From the full Hamiltonian,
the static component of the system under modulation can be written as

a a
Hpc = waaa+ ?AaTaTaa +wgb'b+ TBbTbTbb +Va'ab™h (4.1)

with additional terms present depending on the frequency at which the coupler flux is modu-
lated. When modulating at the red sideband (RSB), we have

Hrse = Hpc + Ha (4.12)

H, = ./Ac(aTb + abT) (413)

and when modulating at the blue sideband (BSB), we similarly obtain
Hgsg = Hpc + Hs (414)

Hs = Jac(a'b’ + ab). (4.5)
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Figure 4.2: Single-photon hopping interaction induced by red sideband flux modulation of the coupler.
(a) Change in normalized transmission amplitude while driving transmon B and sweeping the modula-
tion frequency of the DC signal incident on the tunable coupler through the red sideband of the two
oscillators. The black dashed lines are guides for the eye. The horizontal dashed line is the first tran-
sition frequency of transmon B, and the diagonal dashed line is (w4 — wm)/27. (b) Eigenfrequencies
obtained from fitting to the level repulsion model (green markers) and the normalized expectation value
of b obtained from a numerical simulation of a quantum master equation for the system [218].
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In Fig. 4.2 we set wa /27 = 6.471 GHz, wg /27 = 4.713 GHz, ®pc = 0.342D, and performed two-
tone spectroscopy on transmon B while sweeping w,, /2 through (w4 — wg)/27. As the mod-
ulation frequency approached the red sideband of the oscillators, we observed an avoided
crossing from which we extracted a single-photon hopping interaction strength of J4c /27 =
7.09 MHz and a cross-Kerr strength of V /27 = —6.79 MHz by finding ® = [® 4, ®g, pe, Dacl.
Extracted parameters were determined by an analytical level repulsion model given observed
oscillator frequencies and interaction strengths, as well as by numerically simulating the sys-
tem Hamiltonian as outlined in Sec. 4.6.3. The magnitude of the observed splitting reflects the
strength of the exchange interaction between the two oscillators at the resonance condition
met under parametric modulation. The values of all parameters which comprise Eq. 4.12 were
calculated from ® and are displayed in Table 4.1 shown in Sec. 4.6.3.
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Figure 4.3: Two-mode squeezing interaction induced by blue sideband flux modulation of the coupler.
(a) Transmission amplitude while driving transmon A and sweeping the modulation frequency of the DC
bias incident on the tunable coupler through the blue sideband of the two oscillators. (b) The dashed
lines are the sum frequency resonance condition (w, — wg)/2m and the same shifted by V /2x. The
dotted lines are the eigenfrequencies of the system determined from fits of the data to the analytical
level attraction model outlined in the main text. The underlying spectrum is the normalized expectation
value of 4 obtained from a numerical simulation of a quantum master equation for the system [218].

Similarly, in Fig. 4.3 we set wa/2m = 6.705 GHz, wg /27 = 5.573 GHz and ®pe = 0.214D,
and performed two-tone spectroscopy on transmon A while sweeping w,,/27 through (w4 +
wg)/27. As the pump frequency crossed the blue sideband, we observed features associated
with the phenomenon of level attraction occurring between the two oscillators. Following
an analytical model outlined in Sec. 4.6.3, we extracted a two-mode squeezing strength of
Jac/2m = 1.852 MHz and a cross-Kerr strength of V /2w = —9.161 MHz with the cross-Kerr
shifted transition additionally visible below the frequency of the primary oscillator response.
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In the level attraction region where frequency degeneracy of the eigenmodes is theoretically
predicted, we observed the primary resonance feature disappear. In this same region, we ob-
served the emergence of a dark dash in the transmission spectrum related to a loss of excited
state population in transmon A. This dash is shifted from the primary resonance feature by
V /2 and is associated with the swept microwave drive bringing the oscillator to its ground
state from the |11) state populated by the parametric modulation. In Sec. 4.6.3, we discuss this
feature in more detail and provide additional numerical simulations of the change in system
state under simultaneous parametric modulation and microwave driving.

4.4. COUPLING REGIMES AND ANALOG QUANTUM SIMULATIONS

Through the use of parametric modulation, we were able to observe interactions between two
nonlinear oscillators in coupling regimes which were previously inaccessible with this device
when changing the static flux bias point alone [333]. When modulating the flux through the
coupler, the strength of the single-photon hopping and two-mode squeezing interactions are
to first order linearly dependent on the amplitude of the modulation signal and thus can be
tuned to far lower or higher interaction strengths relative to the cross-Kerr for a wide range
of static biases. The dependence of the interaction strengths on bias point and modulation
amplitude is shown in Fig. 4.4, where the green region indicates the range of possib<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>