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Robust Differential Received Signal
Strength-Based Localization
Yongchang Hu, Member, IEEE, and Geert Leus, Fellow, IEEE

Abstract—Source localization based on signal strength measure-
ments has become very popular due to its practical simplicity.
However, the severe nonlinearity and non-convexity make the re-
lated optimization problem mathematically difficult to solve, espe-
cially when the transmit power or the path-loss exponent (PLE)
is unknown. Moreover, even if the PLE is known but not per-
fectly estimated or the anchor location information is not accu-
rate, the constructed data model will become uncertain, making
the problem again hard to solve. This paper particularly focuses
on differential received signal strength (DRSS)-based localization
with model uncertainties in case of unknown transmit power and
PLE. A new whitened model for DRSS-based localization with un-
known transmit powers is first presented and investigated. When
assuming the PLE is known, we introduce two estimators based on
an exact data model, an advanced best linear unbiased estimator
(A-BLUE) and a Lagrangian estimator (LE), and then we
present a robust semidefinite programming (SDP)-based estimator
(RSDPE), which can cope with model uncertainties (imperfect PLE
and inaccurate anchor location information). The three proposed
estimators have their own advantages from different perspectives:
the A-BLUE has the lowest complexity; the LE holds the best ac-
curacy for a small measurement noise; and the RSDPE yields the
best performance under a large measurement noise and possesses
a very good robustness against model uncertainties. Finally, we
propose a robust SDP-based block coordinate descent estimator
(RSDP-BCDE) to deal with a completely unknown PLE and its
performance converges to that of the RSDPE using a perfectly
known PLE.

Index Terms—Source localization, differential received sig-
nal strength (DRSS), path-loss exponent (PLE), least squares,
Lagrangian multiplier, semidefinite programming (SDP), convex
optimization, block coordinate descent.

I. INTRODUCTION

PRESENTLY source localization is a rather prevalent tech-
nique aimed at locating a target based on measurements

related to pre-deployed distributed sensors with prior known
locations [1], i.e., anchor nodes. Briefly speaking, the commonly
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used measurements include, for example, time-of-arrival (TOA),
time-difference-of-arrival (TDOA), angle-of-arrival (AOA) and
signal strength. Among those, signal strength, such as received
signal strength (RSS) [2] and differential RSS (DRSS) [3], grad-
ually becomes the primary concern of numerous engineers ow-
ing to its implementation simplicity. Compared with other kinds
of measurements, employing the signal strength as a measure-
ment requires neither clock synchronization as for TOA-based
or TDOA-based localization nor an antenna array which is in-
dispensable for AOA-based localization. Therefore, this kind of
source localization is more cost-effective in terms of both hard-
ware and software. Besides, sensors usually have very scarce
resources like limited computational abilities, constrained com-
munication capabilities and depletable batteries, which further
emphasizes its significance.

The signal strength measurement is determined by the sig-
nal power after successful demodulation [4], [5], which is still
subject to a complicated radio propagation channel [6]. Without
elaborating on the details, observe that the term “RSS”, in most
literature, actually refers to the large-scale fading, the average
of the instantaneous received signal power over several consecu-
tive time slots, such that the small-scale fading, which is usually
considered to be Rayleigh [7] or Nakagami [8] distributed, can
be neglected. Please also refer to Appendix A for details on the
RSS collection. Based on such an underlying assumption,
the log-normal shadowing model can be used to characterize
the RSS. Therefore, in Rd , the RSS between the i-th anchor
node, located at si , and the target node, located at x, can be
presented in dB by

Pi = P0,i − 10γlog10

( ||x − si ||2
d0

)
+ χi, i = 1, 2, · · · , N,

(1)
where P0,i is the received power related to the i-th anchor node
at the reference distance d0 , γ is the path-loss exponent (PLE),
χi ∼ N (0, σ2

χ) represents the shadowing effect and N is the
number of anchor nodes. Without loss of generality, we assume
d0 = 1 m. Note that P0,i can also be considered to be equivalent
to the transmit power of the RSS related to the i-th anchor node.
Then, the ultimate goal is to estimate the target location x from
the RSS samples Pi and known anchor locations si .

To achieve this goal, source localization techniques using
RSS measurements can be divided into three categories: maxi-
mum likelihood (ML), least squares (LS) based and semidefinite
programming (SDP) based. The ML method is asymptotically
optimal, but the related ML optimization problem is highly
non-linear and non-convex [9]. Admittedly speaking, it can be
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iteratively solved [10]–[14]. However, this actually comes at
the price of a high computational complexity. Moreover, the
non-convexity also implies multiple local minima and hence
an appropriate initialization is very important. The LS-based
method relies on tackling the non-linearity by converting the
non-linear ML optimization problem into a linear form such
that some (weighted) LS-based solutions can be easily ob-
tained [15]–[18]. However, these estimators are very suscep-
tible to a large shadowing effect. The SDP-based method deals
with the non-convexity by relaxing the non-convex optimiza-
tion problem to a convex one such that a global minimum can
be effectively found [15], [19]–[23]. However, this method still
requires a high complexity as well as a tight relaxation to guar-
antee an accurate estimate.

Besides those aforementioned issues, it is worth noting that
the RSS measurements can be collected either by anchors in a
distributed fashion or locally by the target node. To be specific,
the former indicates that the localization signal is broadcast only
by the target node and hence the transmit power P0,i ,∀i is obvi-
ously the same for all the RSS measurements. However, in the
latter case, when several localization signals are emitted by the
anchors, the related transmit power P0,i ,∀i should be consid-
ered different. This is because, even if anchors are equipped with
stable and sustainable power supplies to guarantee a consistent
transmit power, a deviation ΔP0,i can still occur due to some
unexpected power surges or system instabilities and hence we
have P0,i � P̄0 + ΔP0,i with P̄0 the nominal transmit power.
Besides, some transmit power control techniques are often car-
ried out for energy saving purpose, which could also result in
a ΔP0,i . Compared with the former case, which might require
particular networking protocols to aggregate the collected RSS
measurements to a computation center (CC) for localization, the
latter is more convenient and widely assumed, since the target
node can just listen and then self-estimate its location based
on the locally collected RSS measurements without increasing
any workload related to the wireless networking. However, to
the best of our knowledge, current RSS-based localization tech-
niques rarely consider the case of different P0,i .

In either one of the aforementioned cases, if the network
is not very cooperative or the signal transmitter intentionally
withholds information (e.g., for military scenarios), P0,i will be
unknown. Similarly, the PLE γ is often unknown as well, since
it might be very difficult or expensive to acquire, especially in
dynamic communication environments. Yet, many works simply
assume that they are perfectly known [12], [19], [20], [23], [24].
To tackle the problem of an unknown PLE γ, a pre-calibration
procedure of the PLE can be carried out among the anchor nodes
before the actual localization phase [25]–[28]. However, this
will consume extra resources and will make the implementation
more cumbersome. Consequently, some joint estimators of x
and γ appear in [10], [17], [18], [22], [29]–[32]. To handle the
issue of an unknown P0,i , there are also some joint estimators
for x and P0,i [15], [16], [21], [22], [30], [31].

In this paper, instead of utilizing RSS measurements, we
consider DRSS measurements for localization. The practical
advantages for using the DRSS measurements are similar to
those of TDOA-based localization. While preserving all the
advantages of RSS-based localization, it can significantly al-
leviate the passive dependence of localization on the signal

transmitter, which could be defective, malicious or uncoopera-
tive. Moreover, control overhead message between anchors and
target node is minimized or even no longer required, which
saves energy, bandwidth and throughput. This also conceals the
localization process from the signal transmitter, which is very
beneficial to surveillance or military applications. Therefore,
DRSS-based localization is very promising. Considering differ-
ent unknown transmit powers P0,i , the DRSS measurements can
be obtained from (1) as

Pi,1 = −10γlog10

(||x − si ||2
||x − s1 ||2

)
+ ΔP0,i,1 + χi,1 , i �= 1, (2)

where Pi,1 = Pi − P1 , ΔP0,i,1 � ΔP0,i − ΔP0,1 and χi,1 =
χi − χ1 . To construct a DRSS sample set, a reference node
(RN) is chosen and the measurements are taken w.r.t. that RN.
For convenience, the RN is appointed as the first anchor. Note
that, in such a case, the size of the DRSS sample set becomes
N − 1. In spite of the fact that (2) still remains non-linear and
non-convex, the benefit of using a DRSS sample set is that the
unknown nominal transmit power P̄0 vanishes. However, com-
pared with (1), the inevitable price is that the shadowing effect
and the transmit power deviation are exacerbated since χi,1 and
ΔP0,i,1 become correlated and (2) gets even more complicated
to solve. This is also the reason why very few papers study this
type of localization. To the best of our knowledge, some early
results occurred in [33], [34]. In [15], some initial DRSS-based
localization techniques were presented, yet having a worse accu-
racy than the corresponding RSS-based localization techniques,
except for a simple least squares (LS) estimator which merely
is slightly better. Recently, [3] presented a two-step weighted
LS estimator, yet it requires perfect knowledge of the variance
of the shadowing effect. Moreover, in practice, if the PLE and
anchor location information is inaccurate (e.g., especially in
military scenarios, some critical information might be unreli-
able), uncertainties have to be considered into the constructed
data model for DRSS-based localization. However, very few
results exist in this area, even for RSS-based localization. In a
nutshell, the research on DRSS-based localization is still in its
infancy and requires more attention.

To enrich the research on DRSS-based localization and to
tackle the earlier mentioned problems, the first contribution of
this paper is to introduce a new whitened model for DRSS-
based localization with different unknown transmit powers.
Based on this model, an advanced best linear unbiased esti-
mator (A-BLUE), a Lagrangian estimator (LE) and a robust
SDP-based estimator (RSDPE) are respectively proposed, as-
suming the PLE is known, in which the RSDPE is particularly
designed to cope with model uncertainties. Their computational
complexities are discussed and verified by experiments. We also
conduct simulations to study their performances under differ-
ent noise conditions, different PLEs, imperfect PLE knowledge
and inaccurate anchor location information. Finally, after ac-
cumulating enough insights by studying the three proposed es-
timators, we take a step further and develop an RSDP-based
block coordinate descent estimator (RSDP-BCDE) to cope with
the case when the PLE is totally unknown. Some issues re-
lated to a real-life implementation are also considered and
discussed.
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Fig. 1. Comparison between the least squares cost functions related to the models in (2) and (4): In R2 , the target node is at (28.7, 16.3); the anchor nodes are
located at (22.5, 10.2), (44.9, 38.1), (44.1, 14.2), (33.6, 33.2), (6.1, 20.3), (13.7, 35.8), (14.1, 44.8), (41.3, 19.5), (24.9, 34.7) and (41.7, 30.5), of which
the RN is selected as the one at (22.5, 10.2). Obviously, the target node cannot overlap with the anchor nodes and hence every anchor location becomes a singular
point in J1 yielding multiple minima while J2 has only a single optimal point.

After this brief introduction, Section II elaborates on our
new whitened model for DRSS-based localization with different
unknown transmit powers, which is used throughout this paper.
Then, three different kinds of estimators based on a known PLE
(i.e., the A-BLUE, the LE and the RSDPE) are proposed in
Section III. Their complexities and performances in different
situations are also analyzed and studied by numerical simula-
tions. Based on those studies, Section IV presents a solution
(i.e., the RSDP-BCDE) to the DRSS-based localization prob-
lem when the PLE is completely unknown. We also simulate and
discuss this solution at the end of Section IV. Finally, Section V
summarizes the results of this paper.

II. WHITENED MODEL FOR DRSS-BASED LOCALIZATION

We would firstly like to cope with the non-linearity issue of
(2). To do this, we transform (2) into

||x − si ||22P ′
i,1 = ΔP ′

0,i,1χ
′
i,1 ||x − s1 ||22 , i �= 1, (3)

where P ′
i,1 � 10

P i , 1
5 γ , ΔP ′

0,i,1 � 10
Δ P 0 , i , 1

5 γ , and χ′
i,1 � 10

χ i , 1
5 γ .

Then, unfolding the Euclidean norm in (3), introducing d2
1 �

||x − s1 ||22 and stacking equations into matrices, our linear
model for DRSS-based localization can be written as

p = Ψθ + ε, (4)

where

Ψ �

⎡
⎢⎢⎢⎣

...
...

2sT
1 − 2P ′

i,1s
T
i P ′

i,1 − 1
...

...

⎤
⎥⎥⎥⎦, θ � [xT , ||x||22 ]T,

p �

⎡
⎢⎢⎣

...
||s1 ||22 − ||si ||22P ′

i,1
...

⎤
⎥⎥⎦, and ε �

⎡
⎢⎢⎣

...
d2

1(1 − ΔP ′
0,i,1χ

′
i,1)

...

⎤
⎥⎥⎦.

By respectively denoting [·]i as the i-th element of a
vector and [·]1:i as the subvector containing the first i elements
of a vector, we observe that [θ]1:d corresponds to the target loca-
tion x and, more importantly, a new parameter is introduced at
[θ]d+1 which corresponds to ||x||22 . Our optimization problem
w.r.t. θ obviously becomes easier and any estimate of θ leads to
an estimate of x, i.e., x̂ = [θ̂]1:d .

To be more explicit, the model (4) is smoother than (2). To
illustrate that, let us apply the least squares criterion to (2) and
(4), leading to the respective cost functions in x:

J1 =
N∑

i=2

[
Pi,1 + 10γlog10

( ||x − si ||2
||x − s1 ||2

)]2

and

J2 = ||Ψ
[

x
||x||22

]
− p||22 .

As depicted in Fig. 1, J1 has multiple minima while J2 be-
comes convex w.r.t. x yielding only a single optimal point. Note
that we explicitly take the dependence in θ into account when
formulating J2 . In other words, we assume

[θ]T1:d [θ]1:d = [θ]d+1 ,

which also implies that θ is bound to a non-convex set since the
dependence in θ is considered.

To obtain our whitened model for DRSS-based localization,
let us denote an element of ε as εi = d2

1(1 − ΔP ′
0,i,1χ

′
i,1),

i �= 1. For a sufficiently small shadowing effect and transmit
power deviation, εi can be approximated by its first-order Tay-
lor series expansion1

εi = d2
1

(
1 − 10

Δ P 0 , i , 1 + χ i , 1
5 γ

)
= C(ΔP0,i,1 + χi,1), (5)

which is apparently zero-mean yet mutually correlated, where

C � − ln(10)d2
1

5γ is a scaling factor. For the record, when the

1ax = 1 + xln(a) + · · · + (xln (a ))n

n ! + · · · , −∞ < x < ∞.
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shadowing effect or the transmit power deviation grows very
large, the approximation in (5) might become inaccurate. Notice
that εi is subject to the PLE γ as well as the distance d1 from
the target to the RN. We cannot do much about the PLE, but it
is clear that choosing a close RN will suppress the model error
ε. Therefore, in this paper, the RN is chosen as the anchor node
that has the highest RSS, since that anchor node is most likely
the one that is closest to the target node. Note that in a mobile
scenario, the RN should be updated in time, but we will not
consider that in this paper.

For convenience, we respectively define the correlated DRSS
measurement noise in (2) as ni,1 � ΔP0,i,1 + χi,1 and the in-
dependent measurement noise as ni � ΔP0,i + χi . Recalling
that ΔP0,i,1 = ΔP0,i − ΔP0,1 and χi,1 = χi − χ1 , we have
ni,1 = ni − n1 . Hence, from (5), the unwhitened model error ε
can be approximated as

ε = CΓn,

where n stacks all independent DRSS measurement noise terms
ni and

Γ �
[−1(N −1)×1 IN −1

]
(N −1)×N

, (6)

with I the identity matrix, 0 the zero matrix and 1 the all-one
matrix (sizes are mentioned in the subscript if needed). In this
paper, we assume that ΔP0,i is a zero-mean Gaussian variable
with variance σ2

P0
. Therefore, we can obtain ε ∼ N (0,Σε) and

the covariance matrix of ε can be computed as

Σε = C2(σ2
P0

+ σ2
χ)ΓΓT = C2σ2

nΓΓT ,

where σ2
n � σ2

P0
+ σ2

χ is the variance of the independent mea-
surement noise ni (or simply called measurement noise from
now on), i.e., n ∼ N (0, σ2

nIN ).
Finally, from (4), we can obtain the whitened model as

Σ−1/2
ε p = Σ−1/2

ε Ψθ + Σ−1/2
ε ε (7a)

⇒ (ΓΓT )−1/2p = (ΓΓT )−1/2Ψθ + (ΓΓT )−1/2ε (7b)

⇒ ρ = Φθ + υ (7c)

where ρ � (ΓΓT )−1/2p, Φ � (ΓΓT )−1/2Ψ and υ �
(ΓΓT )−1/2ε. Obviously, the model error υ in (7c) is
whitened, since its covariance matrix is a scaled identity, i.e.,
Συ = C2σ2

nIN −1 .
An important observation that we would like to make about

our whitened DRSS-based data model is that no information is
lost by taking differences of RSSs, since our model can be al-
ternatively derived from a properly whitened RSS-based model
after orthogonally projecting out the unknown average power P̄0
(see Appendix B for details). As a result, the choice of the RN
has no effect on the performance of the localization accuracy.

III. ESTIMATORS FOR KNOWN PATH-LOSS MODEL

In this section, we assume that the PLE γ is known and our
derivations start from an exactly known data model. Considering
our whitened model (7c) and ignoring the dependence in θ, it is
possible to formulate the following unconstrained optimization
problem

min
θ

||Φθ − ρ||22 . (8)

This leads to the unconstrained best linear unbiased estimator
(U-BLUE) for x, which can be presented as

x̂u−blue =
[
θ̂u−blue

]
1:d

=
[

(ΦT Σ−1
υ Φ)−1ΦT Σ−1

υ ρ
]
1:d

=
[

(ΦT Φ)−1ΦT ρ
]
1:d . (9)

Note that the unknowns C and σ2
n are eliminated in this solu-

tion. Although there are other similar least squares (LS) solu-
tions [15], [17], [18], none of them is the BLUE since their data
models are still coloured. Here, the U-BLUE will not perform
very well as we will illustrate later on. Hence, in this section, we
introduce two alternative methods based on an exactly known
data model and then take some model uncertainties into account,
which finally leads to a robust estimator for DRSS-based local-
ization. We conduct simulations to study their performances
under different noise conditions, different PLEs, imperfect PLE
knowledge and inaccurate anchor location information. Their
complexities are also studied and numerical results are pre-
sented. We end this section by discussing some practical issues.

A. Advanced Best Linear Unbiased Estimator

To boost the performance of the U-BLUE, we will take the de-
pendence in θ into account and hence our optimization problem
has to be reformulated as

min
θ

||Φθ − ρ||22 (10a)

subject to [θ]T1:d [θ]1:d = [θ]d+1 . (10b)

The commonly known method to solve this problem indi-
rectly is by constructing a new data model [3], [16], [33]–[36].
For instance, the new model can be given by

g = Qz + m, (11)

where g � [[θ̂u−blue ]21 , · · · , [θ̂u−blue ]2d , [θ̂u−blue ]d+1]T , Q �
[Id , 1d×1 ]T , z � [[x]21 , · · · , [x]2d ]

T and

m �

⎡
⎢⎢⎢⎢⎢⎢⎣

[θ̂u−blue ]21 − [x]21
...[

θ̂u−blue

]2
d
− [x]2d[

θ̂u−blue

]
d+1

− ||x||22

⎤
⎥⎥⎥⎥⎥⎥⎦
≈

⎡
⎢⎢⎢⎢⎢⎢⎣

2[x]1([θ̂u−blue ]1 − [x]1)
...

2[x]d([θ̂u−blue ]d − [x]d)[
θ̂u−blue

]
d+1

− ||x||22

⎤
⎥⎥⎥⎥⎥⎥⎦

.

(12)

Based on this model, the location estimate considering the con-
straint (10b) can be obtained as

x̂ = [sign([θ̂u−blue ]1)
√

[ẑ]1 , · · · , sign([θ̂u−blue ]d)
√

[ẑ]d ]T ,

where sign(·) indicates the signum function and ẑ is an esti-
mate of z. However, note that this method actually estimates the
squared element of the target location x and the squaring pro-
cedure on θ̂u−blue , which leads to the new observation vector
g, might exacerbates the estimation error in θ̂u−blue .

Here, we propose an advanced best linear unbiased es-
timator (A-BLUE) to solve (10) directly, which fine-tunes
θ̂u−blue without any squaring procedure. Recalling from (9)
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that θ̂u−blue = (ΦT Φ)−1ΦT ρ, the cost function in (10a) can
be rewritten as

J = (Φθ − ρ)T (Φθ − ρ)

= (θ − θ̂u−blue)T ΦT Φ(θ − θ̂u−blue). (13)

In order to take the constraint (10b) into account, θ has to be
reformulated as a function of [θ]1:d , i.e.,

θ =

[
[θ]1:d

[θ]T1:d [θ]1:d

]
. (14)

By now using the first-order Taylor series expansion of θ −
θ̂u−blue for [θ]1:d in the vicinity of x̂u−blue , we obtain

θ − θ̂u−blue = θ|[θ]1 :d = x̂u −b l u e
− θ̂u−blue

+
∂θ

∂[θ]T1:d

∣∣∣∣
[θ]1 :d = x̂u −b l u e

([θ]1:d − x̂u−blue)

= τ + G([θ]1:d − x̂u−blue), (15)

where

τ �θ|[θ]1 :d = x̂u −b l u e
− θ̂u−blue =

[
0d×1

||x̂u−blue ||22 − [θ̂u−blue ]d+1

]

and G � ∂θ
∂ [θ]T1 :d

∣∣∣
[θ]1 :d = x̂u −b l u e

=
[

Id

2x̂T
u −b l u e

]
.

Substituting (15) into (13), we obtain

J = (τ + G([θ]1:d − x̂u−blue))T ΦT Φ(τ

+ G([θ]1:d − x̂u−blue)). (16)

Taking the derivative of (16) w.r.t. [θ]1:d , we have

∂J

∂[θ]1:d
= 2GT ΦT ΦG([θ]1:d − x̂u−blue) + 2GT ΦT Φτ .

(17)

Finally, by forcing (17) to 0, the A-BLUE can be expressed as

x̂a−blue = x̂u−blue − (GT ΦT ΦG)−1GT ΦT Φτ . (18)

B. Lagrangian Estimator

The A-BLUE approximates (15) by linearizing it around
[θ]1:d = x̂u−blue , which implies that its accuracy will certainly
be degraded if there is a large estimation error in the U-BLUE.
In this subsection, we would like to go one step further to find
an estimator without any approximation.

In order to do so, we need to rewrite the constraint in (10b)
and reformulate our optimization problem (10) as

min
θ

||Φθ − ρ||22 (19a)

subject to θT Aθ + 2bT θ = 0, (19b)

whereA �
[
Id 0
0 0

]
andb �

[
0d×1
− 1

2

]
. The Lagrangian of (19)

is

L(θ; λ) = (Φθ − ρ)T (Φθ − ρ) + λ(θT Aθ + 2bT θ), (20)

where λ is the Lagrangian multiplier. Taking the derivative of
(20) w.r.t. θ, we have

∂L(θ; λ)
∂θ

= 2ΦT Φθ − 2Φρ + 2λAθ + 2λb (21)

and forcing (21) to 0 leads to our Lagrangian estimator (LE)
which is given by

θ̂le(λ) = (ΦT Φ + λA)−1(ΦT ρ + λb). (22)

Since λ is unknown, it is required to find an appropriate value
for λ. A similar problem also appears in [37], [38], where all pos-
sible values of λ should be calculated to determine the desired
one. Note that some of those values might lead to a maximum of
the Lagrangian in (20), since the second-order optimality con-
ditions are not examined [9]. Besides, the above method is very
cumbersome and, recalling the fact that θ is bound to a non-
convex set, a suboptimal value of λ might be selected, yielding
a local solution. Without going into many details, we will not
further discuss it. Here, the idea is to firstly pinpoint an interval
for λ, in which only one single global solution is guaranteed,
and then to search for that solution.

To find such an interval, note that the solution in (22) is a
minimum of the Lagrangian in (20) if the Hessian of (20) is
positive semidefinite, i.e.,

ΦT Φ + λA 	 0

⇒ (ΦT Φ)
1
2 (IN −1

+ λ(ΦT Φ)−
1
2 A(ΦT Φ)−

1
2 )(ΦT Φ)

1
2 	 0

. (23)

In order to guarantee (23), the eigenvalues of IN −1 +
λ(ΦT Φ)−

1
2 A(ΦT Φ)−

1
2 should be all non-negative. Obviously,

all the eigenvalues of (ΦT Φ)−
1
2 A(ΦT Φ)−

1
2 are non-negative.

Then denoting the largest eigenvalue of (ΦT Φ)−
1
2 A(ΦT Φ)−

1
2

as λmax , we need 1 + λλmax ≥ 0, which provides a useful
interval for λ as

I = (−1/λmax,∞).

On such an interval, we can find the desired value of λ, say λ̂le ,
such that

θ̂le(λ̂le)T Aθ̂le(λ̂le) + 2bT θ̂le(λ̂le) = 0. (24)

Then, the Lagrangian estimator (LE) for x can be obtained as
x̂le = [θ̂le(λ̂le)]1:d .

Now the problems left are how to search for λ̂le and whether
or not the LE yields the global solution. Before going into the
details, it is important to firstly realize that the problem (19) is a
quadratically constrained quadratic program (QCQP) which can
be cast as a generalized trust region subproblem (GTRS) [39],
for which an optimal solution can be found within a bounded
interval, i.e., the interval I. In this paper, we actually consider
a simpler case with an equality constraint (19b) rather than an
inequality constraint, yet some results can still be used to support
the following discussions.

To search for λ̂le , let us define a function f(λ) as f(λ) �
θ̂le(λ)T Aθ̂le(λ) + 2bT θ̂le(λ), which is already known to be
strictly decreasing on the interval I [40, Theorem 5.2], such
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that λ̂le , which satisfies the constraint (24), can be effectively
found by the bisection method. Next, the LE is guaranteed as a
global solution [40, Theorem 3.2], since it follows the Karush-
Kuhn-Tucker (KKT) conditions. This also indicates that there
only exists one solution, i.e., the global solution, in the interval
I, which is the reason why it is called the trust region. Besides,
note that the case λ̂le = −1/λmax is called the hard case [41]
(since it is relatively difficult to solve), which is very rare and
has never been seen in our numerous simulations. The hard case
is also found to be very rare in other papers, e.g., in [31], [42].

C. Robust Semidefinite Programming Based Estimator

The previously proposed estimators are both based on an
exactly known data model. However, when the data model is not
perfectly known due to an imperfect PLE estimate or inaccurate
anchor location information, a huge bias will obviously occur
in these estimates. Therefore, in this subsection, we present a
robust semidefinite programming based estimator (RSDPE) that
can cope with such model uncertainties.

First, after using the Schur complement [43] and forming
some linear matrix inequalities (LMIs), we equivalently rewrite
the constraint in (10b) as

[
Id [θ]1:d

[θ]T1:d [θ]d+1

]
	 0, (25a)

rank

([
Id [θ]1:d

[θ]T1:d [θ]d+1

])
= d. (25b)

The semidefinite relaxation (SDR) approach then relaxes the
set of θ by dropping the rank constraint in (25b). This procedure
is also used in [15], [19]–[23], but they all assume an exactly
known data model.

We want to go one step further and consider an uncertain Φ as
Φ◦ � Φ + ΔΦ , where the perturbation matrix ΔΦ collects the
uncertainties caused by an imperfect PLE estimate or inaccurate
anchor location information. Although the data model is not ex-
actly known, a known upper bound ζ for ||ΔΦ ||2 could be very
helpful, i.e., ||ΔΦ ||2 ≤ ζ, where || · ||2 here denotes the spec-
tral norm, i.e., the largest singular value of the corresponding
matrix.

The idea of the RSDPE is to cope with the worst-case model
uncertainties using the SDP procedure. Therefore, we reformu-
late (10) as a minmax SDP optimization problem

min
θ,t

max
||ΔΦ ||2 ≤ζ

t (26a)

subject to

[
IN −1 (Φ◦ − ΔΦ )θ − ρ

((Φ◦ − ΔΦ )θ − ρ)T t

]
	 0,

(26b)[
Id [θ]1:d

[θ]T1:d [θ]d+1

]
	 0. (26c)

where t is an auxiliary slack variable.

Note that ΔΦ only affects the constraint (26b) and hence we
can isolate ΔΦ in (26b) as

B(θ, t) 	
[
0 ΔΦθ

0 0

]
+

[
0 0

(ΔΦθ)T 0

]

⇒ B(θ, t) 	 TT ΔΦL(θ) + L(θ)T ΔT
ΦT, (27)

where

B(θ, t) �
[

IN −1 (Φ◦θ − ρ)
(Φ◦θ − ρ)T t

]
,

T �
[
IN −1 0

]
and L(θ) �

[
0 θ

]
. Obviously, for the max-

imization in (26), the constraint (27) has to be reformulated
considering the worst-case ΔΦ .

To do so, we can easily state that

B(θ, t) 	 TT ΔΦL(θ) + L(θ)T ΔT
ΦT, ∀ΔΦ : ||ΔΦ ||2 ≤ ζ

(28)
if and only if

x̌T B(θ, t)x̌ ≥ max
||ΔΦ ||2 ≤ζ

{x̌T TTΔΦL(θ)x̌ + x̌T L(θ)TΔT
ΦTx̌}

= max
||ΔΦ ||2 ≤ζ

{2||ΔΦL(θ)x̌||2 ||Tx̌||2}

= 2ζ||L(θ)x̌||2 ||Tx̌||2 ,∀x̌ ∈ RN . (29)

After introducing the bound ζ into (29), a new problem arises
since the vector Tx̌ ∈ RN −1 does not have the same size as the
vector L(θ)x̌ ∈ Rd+1 . To bypass this issue, we introduce a new
auxiliary vector y̌ ∈ Rd+1 , which is bounded using x̌, such that
we can use the Cauchy-Schwarz inequality on (29) to unfold the
norm. To be specific, only after the worst-case constraint (29) is
reformulated as

x̌T B(θ, t)x̌ ≥ 2ζ||y̌||2 ||L(θ)x̌||2 ,∀x̌, y̌ : ||Tx̌||2 ≥ ||y̌||2 ,
(30)

we can obtain a new constraint without the norm from (30) as

x̌T B(θ, t)x̌ ≥ ζ(y̌T L(θ)x̌ + x̌T L(θ)T y̌),∀x̌, y̌ : ||Tx̌||2
≥ ||y̌||2 . (31)

Although both (30) and (31) consider the worst-case ΔΦ , we
have to use the latter one to facilitate the derivations, which is
actually a weaker condition due to the Cauchy-Schwarz inequal-
ity. Then, for convenience, we respectively rewrite ||Tx̌||2 ≥
||y̌||2 as

[
x̌
y̌

]T [
TT T 0

0 −Id+1

] [
x̌
y̌

]
≥ 0 (32)

and (31) as

[
x̌
y̌

]T [ B(θ, t) −ζL(θ)T

−ζL(θ) 0

] [
x̌
y̌

]
≥ 0, (33)

where note that (33) is a necessary condition to (32).
Finally, according to the S-procedure [44, p. 23], the impli-

cation that (32) leads to (33) holds true if and only if there exists
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an α such that
[

B(θ, t) −ζL(θ)T

−ζL(θ) 0

]
− α

[
TT T 0

0 −Id+1

]
	 0 (34a)

⇔

⎡
⎢⎣

(1 − α)IN −1 Φ◦θ − ρ 0

(Φ◦θ − ρ)T t −ζθT

0 −ζθ αId+1

⎤
⎥⎦ 	 0. (34b)

Replacing (26b) by the new constraint (34b) leads to the
following SDP optimization problem

min
θ,t,α

t (35a)

subject to

⎡
⎢⎣

(1 − α)IN −1 Φ◦θ − ρ 0

(Φ◦θ − ρ)T t −ζθT

0 −ζθ αId+1

⎤
⎥⎦ 	 0, (35b)

[
Id [θ]1:d

[θ]T1:d [θ]d+1

]
	 0, (35c)

which can be solved by CVX [45], [46]. The solution is our new
RSDPE.

To end this subsection, we discuss how to determine the value
of ζ. One possibility is that ζ can be computed from the total
least squares (TLS) method [47]. More specifically, we can com-
pute the singular value decomposition (SVD) of the augmented
matrix [Φ◦ ρ] = UΣVT and the corrected [Φ◦ ρ] is given by
[Φ̂ ρ̂] = UΣ̂VT , where Σ̂ is obtained by forcing the (d + 2)-th
diagonal of Σ to 0, which is the typical low-rank approximation
[48]. In fact, Φ̂ can be viewed as an estimate of the exact Φ
and also observe that ||ΔΦ ||2 = ||Φ◦ − Φ||2 ≤ ||Φ◦ − Φ||F ,
where || · ||F indicates the Frobenius norm or the Hilbert-
Schmidt norm. Therefore, in this paper, ζ is computed as
ζ = ||Φ◦ − Φ̂||F , which will also be used in our simulations
later.

D. Complexity Analysis

We now calculate the computational complexity of the differ-
ent methods without considering the whitening procedure [49].
It is easy to derive that the complexity of the U-BLUE is O[d2N ].
As for the A-BLUE, its complexity is O[d2N 2 ] considering that
the extra cost is mainly comes from the second step in (18).

For the LE, the complexity is mostly due to the bisection
method. Suppose that the bisection method takes K steps to
find an appropriate λ, which has already been observed to be
around 20. In each iteration, first the θ̂le(λ) in (22) is computed
and then f(λ) is calculated to check if the outcome is smaller
than the tolerance. As a result, the cost of each iteration is
O[d2N 2 ] and hence the complexity of the LE is O[Kd2N 2 ].

Finally, let us focus on the RSDPE. We consider the worst-
case complexity for solving (35), which can be derived from
employing the interior-point algorithm [9]. This implies that
the complexity for each iteration is O[d2N 2 ] and the iteration
number is bounded by O[

√
Nln(1/ξ)] [43], where ξ is the

iteration tolerance. Therefore, the complexity of the RSDPE in
this paper is O[d2N 2.5 ln(1/ξ)].

Obviously, the RSDPE has the highest complexity among all
the proposed estimators. To verify the complexities, we conduct
an experiment in a 2-D space with 10 anchor nodes and use
the average computational time as a complexity measure. The
experiment is implemented in Matlab R2013b on a Lenovo
IdeaPad Y570 (Processor 2.0 GHz Intel Core i7, Memory 8 GB).
We observe that the U-BLUE and the A-BLUE respectively
have the least and the second least average computational time
of 0.026 ms and 0.049 ms while the RSDPE holds the highest
one with 314.0 ms. Compared with the others, the complexity
of the LE is reasonable with a computational time of 4.8 ms.

E. Numerical Results

We have conducted a Monte Carlo (MC) simulation using
1000 trials on a 50 m × 50 m field, where one target node is
randomly deployed for each trial. Our proposed estimators are
compared against two existing methods: the RSS-based joint
estimator (SDP-RSS) which is the best estimator from [15]
and applies the SDP procedure on a 
1-norm approximation
to jointly estimate the transmit power and the target location;
and the recent DRSS-based two-step weighted least squares
estimator (WLS-DRSS) of [3] which requires perfect knowledge
of the variance of the measurement noise σ2

n . Recall that, in this
paper, the measurement noise includes the shadowing effect
and transmit power derivations. For computing the Cramér-
Rao lower bound (CRLB), see Appendix C. The root mean
square error (RMSE) is used to evaluate the performance of all
estimators.

1) Impact of the Anchor Node Placement: We first discuss
the impact of the anchor node placement, where the simula-
tion is conducted with a perfectly known data model. Obvi-
ously, a good anchor node placement is very significant for any
kind of localization. To be specific, if the anchor nodes get
clustered, the measurements and the locations of those anchor
nodes are both very close to each other, which easily leads to
an ill-posed optimization problem for localization. For exam-
ple, the cluster of anchor nodes in Fig. 2(d) causes the matrix
Φ to be ill-conditioned, thus making our optimization problem
very susceptible to the measurement noise. To verify that, two
simulations are conducted one with a good and one with a bad
anchor node placement. These two anchor node placements and
the numerical results are shown in Fig. 2. Clearly, when a good
anchor node placement is considered, our proposed estimators,
especially the LE, can yield a performance very close to the
CRLB with a known PLE, i.e., CRLB3 in Appendix C. How-
ever, a bad anchor node placement causes a considerable gap
between our proposed estimators and CRLB3 .

To include the effect of different anchor node placements, in
the following simulations, 10 anchor nodes will be randomly
deployed within the 50 m × 50 m field in each simulation trial
and, hence, an average CRLB will be considered since the CRLB
varies over the anchor node placement.

2) Impact of the Measurement Noise: In Fig. 3, we study all
estimators with a perfectly known data model under large and
small measurement noise when the PLE is known and fixed at
γ = 4. The following observations can be made:

i) U-BLUE: Even based on a whitened data model and being
a BLUE, the U-BLUE still yields a very bad performance
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Fig. 2. Impact of the anchor node placement: In R2 , 10 anchor nodes are considered with different placements and the target node is randomly deployed within
a 50 m × 50 m field where the path-loss exponent is considered γ = 4. The anchor location information is accurate.

Fig. 3. Performance comparison of different estimators under different noise conditions when the actual PLE is known and fixed at γ = 4. The anchor location
information is accurate.

especially under a large measurement noise since it does
not consider the dependence in the parameter vector θ.

ii) WLS-DRSS: Even requiring perfect knowledge of the
variance of the measurement noise σ2

n to construct its
system model and its weighting matrices, the WLS-
DRSS is still no better than any of our proposed DRSS-
based estimators except for the U-BLUE. This is because
many approximations are used in its derivation and the
DRSS measurements are used themselves to construct the
weighting matrices. Therefore, when the measurement
noise grows more severe, those approximations become
more inaccurate and the DRSS measurements are more
corrupted, making the weighting matrices less effective
as they are in a small noise situation.

iii) A-BLUE: Even without any knowledge of the variance
of the measurement noise, the A-BLUE still has a better
performance than the WLS-DRSS under a large mea-
surement noise, as shown in Fig. 3(a). Under a small
measurement noise, the A-BLUE becomes very accurate

and only worse than the LE, as shown in Fig. 3(b). To
explain this, the approximation in the second step of the
A-BLUE is taken in the vicinity of the estimate x̂u−blue

from the U-BLUE, which remains accurate under a small
measurement noise. However, under a severe measure-
ment noise, the U-BLUE yields a very bad performance
and hence it becomes more difficult for the A-BLUE to
fine-tune the U-BLUE estimate.

iv) LE: The LE outperforms all the other estimators under
a small measurement noise due to the fact that it re-
quires neither any approximation nor dropping a con-
straint. In fact, the LE is the exact solution to our opti-
mization problem in (19) if our model error υ is perfectly
whitened. Therefore, we can observe from Fig. 3(b) that
its performance is very close to the CRLB. However,
the LE becomes only the second best estimator under
a large measurement noise. To explain that, we need to
recall that the approximation in (5) might become inac-
curate under a large measurement noise, thus making our
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Fig. 4. Performance of different estimators under different PLEs when the
variance of the measurement noise is σ2

n = 10. The anchor location information
is accurate.

proposed whitened model not as effective as it is under a
small measurement noise. On the other hand, a bad an-
chor node placement can also exacerbate the impact of a
large measurement noise, which heavily deteriorates the
performance of our proposed estimators.

v) RSDPE: Unlike the A-BLUE, the RSDPE does not use
any approximation to deal with the non-linearity issue.
Instead, the RSDPE uses the SDR procedure in (26) to
guarantee a global yet suboptimal solution at a price
of dropping the rank constraint in (25b). This explains
why the RSDPE under a small measurement noise can
not have a very accurate performance, which is merely
close to the WLS-DRSS as shown in Fig. 3(b). However,
the RSDPE surprisingly becomes the best estimator un-
der a large measurement noise, as shown in Fig. 3(a). It
seems that the RSDPE possesses a very good robustness
to the deviation of the whitening procedure caused by the
approximation inaccuracy in (5) under a large measure-
ment noise. An interpretation for this is that this deviation
yields the same impact as that of ΔΦ . And the robustness
to a bad anchor node placement is also shown in Fig. 2(c).

vi) SDP-RSS: The SDP-RSS yields the worst performance
under a small measurement noise. Besides the fact that the
SDP procedure yields a suboptimal solution, this is also
because using the 
1-norm might not be the best choice
for the SDP-RSS due to a lack of ML optimality. Under
a large measurement noise, the SDP-RSS becomes bet-
ter, almost the same as the A-BLUE. However, the high
computational complexity brought by the SDP procedure
and a lack of robustness make it lose its advantage over
our proposed estimators.

3) Impact of the Path-Loss Exponent: We are also interested
in how the PLE impacts our proposed estimators and hence
we study our proposed estimators with a perfectly known data
model under different PLEs when considering a large measure-
ment noise. In fact, the PLE increases when the surrounding
environment becomes more severe. Interestingly though, all the
estimators grow more accurate in a more severe surrounding
environment, as clearly depicted in Fig. 4. The performance of
our proposed estimators can also be interpreted from our model
error υ in (7c), where the covariance of υ obviously drops with
an increasing PLE.

4) Impact of Imperfect Path-Loss Exponent Estimate: We
previously assumed that the PLE γ is perfectly known. How-
ever, in practice, the PLE is calibrated or estimated before the

localization phase [27], [28]. Hence, we have to consider the
case where the PLE is not perfectly known, i.e., the model
uncertainty is considered. Therefore, to study the performance
of our proposed estimators in such a case, we have also con-
ducted two MC simulations, where for each trial an imper-
fect PLE γ̃ is used to carry out the localization. The deviation
Δγ, i.e., γ̃ � γ + Δγ, of the imperfect PLE from the actual
PLE is considered to be zero-mean Gaussian distributed with
variance σ2

γ .
As shown in Fig. 5(a), all the estimators become worse with

an increasing variance of the PLE estimate. The U-BLUE, the
A-BLUE and the LE are all heavily impacted, while the RSDPE
behaves relatively better, especially under a worse PLE estimate,
due to its robust design.

To explain this in more detail, by using the imperfect PLE
γ̃, the imperfect P ′

i,1 used to construct our data model in (4) is

given by P̃ ′
i,1 = 10

P i , 1
5 (γ + Δ γ ) . Using the first order Taylor series

expansion of P̃ ′
i,1 w.r.t. Δγ, we obtain

P̃ ′
i,1 = P ′

i,1

[
1 − ln(10)Pi,1

5γ2 Δγ

]
. (36)

Then, for a sufficiently small noise, (2) can be presented as

Pi,1 ≈ −5γlog10

(
d2

i

d2
1

)
and hence (36) can be rewritten as

P̃ ′
i,1 ≈ P ′

i,1

[
1 + ln

(
d2

i

d2
1

)
Δγ

γ

]
. (37)

Since Δγ ∼ N (0, σ2
γ ), from (37), we can clearly see that an

increasing variance σ2
γ of the imperfect PLE γ̃ incurs a more

severe impact on our proposed estimators. Fortunately, under a
large PLE γ, the impact of σ2

γ becomes less severe than under
a small PLE, which can also be seen from Fig. 5(b). Finally,
to better serve the following discussions, we should emphasize
again that, among all the estimators, the RSDPE yields the best
performance in case of an imperfect PLE.

5) Impact of Inaccurate Anchor Location Information: In
real life, the anchor location information might be inaccurate, if
obtained by the global positioning system (GPS). Especially in
military scenarios, this kind of information might be even more
difficult to obtain, unreliable or tampered with by attackers.
Therefore, we have to consider the model uncertainty in case
of inaccurate anchor location information. Two MC simulations
have been conducted, where for each trial every anchor location
is given with a deviation, i.e., s̃i � si + δs ,∀i, where δs ∼
N (0, σ2

s Id).
As shown in Fig. 5(c), all the estimators behave worse with

an increasing variance of the anchor location inaccuracy, but
the RSDPE again yields the best performance, due to its design
for coping with model uncertainties. Finally, we notice that, if
an inaccurate anchor location s̃i is used for constructing our
data model in (4), considering the fact that δs is scaled by P ′

i,1 ,
a large PLE will lead to a small value of P ′

i,1 and hence can
suppress the impact of δs , which can be observed in Fig. 5(d).

F. Discussions
In this subsection, we present the proposed estimators in a

more general context. This discussion is also suitable for other
localization problems, since there exist some common issues
between the proposed localization problems and other ones.
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Fig. 5. Performance comparison of different estimators with model uncertainties when the variance of the measurement noise is σ2
n = 1.

For optimal localization problems, non-linearity and non-
convexity issues are inevitable, both of which are due to the dis-
tance norm di = ||x − si ||2 . To be more specific, the distance
norm is obviously non-linear w.r.t. x, and the target cannot phys-
ically overlap with the anchors, i.e., x �= si ,∀i, which explains
the non-convexity. Most localization techniques first cope with
non-linearity, either by directly applying a Taylor series expan-
sion (TSE) around an appropriate value of x, or by squaring and
unfolding the distance norm. The former leads to some itera-
tive ML methods, where a good initiation is critical for coping
with the non-convexity as shown in Fig. 1(a). The latter one,
which is our main focus, requires squaring the distance norm as
d2

i = ||x||22 − 2sT
i x + ||si ||22 , where R � ||x||22 has to be con-

sidered as a new unknown parameter to avoid non-linearity.
As a result, a linear unconstrained localization problem can be
formulated, which has [xT , R]T as a new unknown parameter
vector (other unknown parameters could be jointly estimated as
well), directly leading to a closed-form (weighted) LS solution.
We categorize this kind of estimator as the unconstrained lin-
ear least squares estimator (ULLSE), and obviously the ULLSE
ignores the fact that the new parameter vector [xT , R]T (or the
one that contains it) is still bound to a non-convex set. To cope
with that, the relation R = xT x should be considered, and ac-
cordingly other localization techniques can be considered:

1) The two-step linear least squares estimation (TLLSE)
first obtains an initial estimate from the ULLSE and
then fine-tunes it in the second step based on R = xT x,
equivalently the constraints in (10b) and (14). The
Achilles’ heel of the TLLSE are approximations like (12)
or (15), which are often carried out to facilitate the up-
date of the estimate. The goodness of such approximations
often relies on the ULLSE. Under a small measurement

noise and an exactly known data model, the ULLSE and
hence the approximations are reliable, leading to a very
good performance of the TLLSE. However, when the mea-
surement noise becomes severe or there exist considerable
model uncertainties, the approximations deteriorate, thus
significantly undermining the performance of the TLLSE.
In this paper, the A-BLUE tries to minimize the impact of
the approximations as much as possible, e.g., by sticking
to the original data model instead of constructing a new
one. Please refer to Section III-A for details and references
therein.

2) The semidefinite relaxation (SDR)-based estimator
(SDRE) reformulates R = xT x as an LMI as in (26c)
such that an SDP problem can be constructed. More
importantly though, this also requires introducing slack
variables so as to change the optimization problem from
minimizing the cost function to its upper bound. All those
procedures lead to a relatively worse performance of the
SDRE under a small measurement noise, but guarantee
a very good estimation accuracy under a large noise. In
this paper, the RSDPE is particularly improved with a ro-
bust design against model uncertainties. Please refer to
Section III-C for details and references therein.

3) The exact estimator (EE) is the theoretically optimal so-
lution when considering the relation R = xT x. The EE
translates it into a new constraint as in (19b) without any
approximation or dropping a constraint. Therefore, given
an exactly known data model, if the solution that meets
the KKT conditions can be precisely found, the EE should
perform the best under both small and large measurement
noises. It is worth noting that (19b) is still a non-convex
constraint, which makes the search for the global solution
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TABLE I
COMPARISON OF DIFFERENT KINDS OF ESTIMATION FOR LOCALIZATION PROBLEM

aFor convenience, the examples are provided only in the field of RSS/DRSS-based localization, but the conclusions are not limited to this field.
b[17] eliminates R by taking differences between a selected reference and the other nodes, which is equivalent to ignoring R = xT x .
cThe approximation here only refers to the one related to the relation R = xT x .

TABLE II
COMPARISON OF DIFFERENT METHODS FOR PLE CALIBRATION

aA pervasive method is a method that can be implemented in any kind of wireless network, i.e., without any external assistance or information.
bThey still require some external information (e.g., network density) or a frequently changing receiver configuration and hence are not pervasive.

very important. In this paper, the LE provides a useful
interval, in which only the global solution resides. How-
ever, when the data model is uncertain, the global solution
will be more difficult to find and hence the EE will not
perform as good as expected. Please refer to Section III-B
for details and references therein.

Localization techniques from the same category have a sim-
ilar level of computational complexity and hence we can refer
to Section III-D. We give a general comparison of the ULLSE,
the TLLSE, the SDRE and the EE in Table I, where also some
other examples beyond the proposed estimators are listed.

Also, it is very important to notice that most localization
techniques (not limited to the RSS/DRSS-based) use a colored
data model, which will generally degrade the localization per-
formance and also explains why our proposed estimators are
relatively better. Furthermore, some data models are very diffi-
cult or even impossible to whiten, since the true nodal distances
might be required for whitening like the one in [3] and the
famous Chan algorithm [17], [33]–[35]. Additionally, taking
differences between the observations, e.g., generating TDOA
or DRSS measurements, also leads to a colored model noise,
which is often ignored in literature [17], [18], [33], [34], [50].

After all, it is hard to say which kind of estimator is overall
the best. Based on Table I, we can choose the most suitable esti-
mator or adaptively switch from one to another according to the
demands. For example, if a low complexity is the most impor-
tant consideration, the TLLSE could be the best choice. Under a
severe measurement noise or given an uncertain data model, the
SDRE is recommended. If there is no particular requirement,
the EE is a good choice, since it has a good performance and
yields the best accuracy under a small measurement noise.

IV. ESTIMATOR FOR UNKNOWN PATH-LOSS MODEL

In the previous sections, we have introduced robust DRSS-
based localization for a known PLE. Based on these studies,
we want to take one step further and explore a new iterative
estimator which can jointly estimate the unknown PLE γ and
the unknown location x.

A. Handling Unknown Path-Loss Exponent

Before introducing our new method, we would like to first
discuss the current techniques to cope with an unknown PLE.
Presently, many RSS/DRSS based localization methods assume
a perfect pre-calibration stage without any PLE estimation er-
ror. Ironically though, PLE calibration techniques are still rarely
studied. Here, we try to collect and summarize them in Table II.
The anchor-based methods [11], [51]–[53] have to be carried
out between the anchors and hence are very susceptible to inac-
curate anchor location information. Based on some geometric
constraints, the anchor-free methods [26], [54] can estimate
the unknown PLE for temporarily grouped nodes without any
location information. But, they still require intensive node co-
operation and might cause a heavy network load. Therefore, if
each node can self-estimate the PLE in a distributed fashion, this
could solve the aforementioned issues [25]. Pervasiveness is an-
other shortcoming which we have to conquer, since the PLE is a
very crucial wireless channel parameter and we want to enable a
collective PLE self-estimation [27], [28] that can be used in any
kind of wireless device for facilitating efficient communication
and networking designs. In a nutshell, a more robust and cost
effective PLE pre-calibration stage can undoubtedly benefit the
localization procedure.
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Alternatively, we can conveniently skip the PLE pre-
calibration when it is not available or reliable. Then, we have
to jointly estimate the unknown PLE and the target location,
which could also save a lot of resources. In this section, we
are particularly interested in this kind of solution. Commonly,
an initial guess for the unknown PLE γ has to be adopted
to obtain a quasi-estimate of the target location, which can
then be used to update the PLE estimate [10], [17], [18],
[22], [29]–[32]. Obviously, this will cause model uncertain-
ties for the localization problem, which are often ignored how-
ever. Therefore, based on the previous studies, we want to
seek a new robust DRSS localization approach in case of an
unknown PLE.

B. Prototype of the Proposed Iterative Estimator

In addition to the model in (4), if given a known target loca-
tion, we can obtain another linear model from (2) as

π = λγ + ν, (38)

where π � [· · · , Pi,1 , · · · ]T , ν � [· · · , ni,1 , · · · ]T and λ �
[· · · , −10log10

(
||x−si ||2
||x−s1 ||2

)
, · · · ]T . Again, we stack the equa-

tions for a fixed RN and all anchor nodes i �= 1. However, it
is very difficult to obtain a single linear model for both an un-
known target location and an unknown PLE. This enlightens us
that a block coordinate descent (BCD) method might be appli-
cable to this problem [55]. In order to do so, we need to redefine
the parameter vector θ to be estimated as θ � [xT , ||x||22 , γ]T .
The BCD is implemented by partitioning θ into two blocks,
[xT ||x||22 ]T and γ, and then at each iteration a cost function
is minimized with respect to one of the blocks while the other
is held fixed. We denote the θ estimate at the k-th iteration as
θ̂

(k)
, the iteration tolerance as ξ and the cost functions for esti-

mating the target location and the PLE respectively as J ′(·) and
J ′′(·). The prototype of our proposed estimator is presented in
Algorithm 1.

C. Robust Semidefinite Programming Based Block Coordinate
Descent Estimator

To fully describe our method, we need to elaborate on
the minimizations in (39) and (40). Since the RSDPE has a
very good robustness to imperfect PLE knowledge, applying a
similar method to (38) might also result in a good robustness
to imperfect target location knowledge. Therefore, the idea
behind our robust SDP-based block coordinate descent esti-
mator (RSDP-BCDE) is to utilize this method to update both
the location and the PLE. Considering that our method intro-
duces two new auxiliary variables, next to the parameter vec-
tor θ, we introduce the slack variables t1 , α1 and t2 , α2 to
update the target location estimate and the PLE estimate, re-
spectively. Additionally, two bounds ζ1 and ζ2 are also needed,
which are both computed in the same way as the RSDPE does
for ζ.

For updating the block [xT , ||x||22 ]T , we use

(
[θ̂

(k+1)
]1:d+1 , t̂

(k+1)
1 , α̂

(k+1)
1

)
= arg min

[θ]1 :d + 1 ,t1 ,α1

t1

Algorithm 1: PROTOTYPE of proposed iterative estimator.

1 Initialization: Choose the initial value θ̂
(0)

;

2 Loop: Given θ̂
(k)

= [[θ̂
(k)

]T1:d+1 , [θ̂
(k)

]d+2]T , solve[
θ̂

(k+1)]
1:d+1

= arg min
[θ]1 :d + 1

J ′
(
[θ]1:d+1 , [θ̂

(k)
]d+2

)
;

(39)

3 Given [[θ̂
(k+1)

]T1:d+1 , [θ̂
(k)

]d+2]T , solve[
θ̂

(k+1)]
d+2

= arg min
[θ]d + 2

J ′′
(
[θ̂

(k+1)
]1:d+1 , [θ]d+2

)
;

(40)

4 Let θ̂
(k+1)

= [[θ̂
(k+1)

]T1:d+1 , [θ̂
(k+1)

]d+2]T ;

5 If ||[θ̂(k+1)
]1:d − [θ̂

(k)
]1:d ||2 ≤ ξ, continue. Otherwise

go back to Loop;

6 return θ̂
(k+1)

;

subject to⎡
⎢⎢⎣

(1 − α1)IN −1 Φ̃
(k)

[θ]1:d+1 − ρ̃(k) 0

(Φ̃
(k)

[θ]1:d+1 − ρ̃(k))T t1 −ζ1 [θ]T1:d+1

0 −ζ1 [θ]1:d+1 α1Id+1

⎤
⎥⎥⎦

	 0,[
Id×d [θ]1:d

[θ]T1:d [θ]d+1

]
	 0, (41)

where t̂
(k+1)
1 and α̂

(k+1)
1 are respectively the estimates of t1 and

α1 at the (k + 1)-th iteration, Φ̃
(k)

and ρ̃(k) are respectively the
Φ and the ρ constructed by the imperfect PLE estimate at the

k-th iteration, i.e., [θ̂
(k)

]d+2 .
For updating γ, we notice from (38) that ν = Γn and

hence the covariance matrix of ν is Σν = σ2
nΓΓT . Hence, the

whitened model of (38) can be expressed as

Σ−1/2
ν π = Σ−1/2

ν λγ + Σ−1/2
ν ν (42a)

⇒ (ΓΓT )−1/2π = (ΓΓT )−1/2λγ + (ΓΓT )−1/2ν (42b)

⇒ c = dγ + e, (42c)

where c�(ΓΓT )−1/2π, d�(ΓΓT )−1/2λ and e �
(ΓΓT )−1/2ν. Note that now the covariance matrix of e
is Σe = σ2

nIN . Based on the whitened data model (42c), we
update γ as
(
[θ̂

(k+1)
]d+2 , t̂

(k+1)
2 , α̂

(k+1)
2

)
= arg min

[θ]d + 2 ,t2 ,α2

t2

subject to⎡
⎢⎣

(1 − α2)IN −1 c − d̃(k+1)[θ]d+2 0

(c − d̃(k+1)[θ]d+2)T t2 −ζ2 [θ]Td+2

0 −ζ2 [θ]d+2 α2Id+1

⎤
⎥⎦ 	 0,

(43)
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Fig. 6. Performance of our proposed RSDP-BCDE under different noise conditions: the PLE is γ = 2; the initial value of the PLE estimate is γ̂(0) = 4; k is the
iteration number when the RSDP-BCDE stops the iterative procedure.

where t̂
(k+1)
2 and α̂

(k+1)
2 are respectively the estimates of t2 and

α2 at the (k + 1)-th iteration, d̃(k+1) is the d constructed by
the imperfect target location estimate at the (k + 1)-th iteration,

i.e., [θ̂
(k+1)

]1:d .
Finally, the optimization problems (41) and (43) are solved by

CVX and the complexity of the RSDP-BCDE after k iterations
is O[kd2N 2.5 ln(1/ξ)].

D. Numerical Results

To study the performance of the RSDP-BCDE, we have con-
ducted an MC simulation. We select the initial value of the PLE
estimate as 4 considering that the PLE normally ranges from 2
to 6 [6]. In the simulation, the PLE is set to 2 and the rest of the
MC simulation settings are the same as before. The numerical
results are shown in Fig. 6.

The RSDP-BCDE is studied for different iteration numbers
k and compared against one of the RSS-based estimators (J-
RSS) from [31], which jointly estimates the unknown transmit
power and PLE. According to the simulation results, our pro-
posed method outperforms the J-RSS. As shown in Fig. 6(a),
with more iterations, the performance of the RSDP-BCDE be-
comes better and gradually approaches that of the RSDPE using
a perfect γ. The PLE estimate also becomes more accurate with
an increasing iteration number k, as shown in Fig. 6(b). We also
notice that, after the first iteration, the performance of the RSDP-
BCDE is already very close to the CRLB with an unknown PLE
or target location due to a good initial value of the PLE. Then,
with more iterations, the knowledge of the target location and
the PLE becomes better, thus improving the performance of the
RSDP-BCDE over the CRLB with unknown PLE or target lo-
cation. Additionally, the RSDP-BCDE converges quickly under
a small measurement noise.

To end this section, we can conclude from the numerical
results that even if the path-loss model is unknown, the RSDP-
BCDE is still able to obtain an accurate location estimate. How-
ever, note that the SDP procedure has a very large complexity in
each iteration. Hence, if the PLE is already accurate enough, we
can similarly replace the SDP procedure with the A-BLUE or
the LE to estimate the location such that the total computational
complexity can be greatly reduced.

V. CONCLUSION

A whitened model for DRSS-based localization has been in-
troduced and studied. Based on such a model, we have proposed

and analyzed three different estimators for a known path-loss
model (i.e., the A-BLUE, the LE and the RSDPE), where the
latter is robust against an imperfect PLE estimate or inaccurate
anchor location information. We have also proposed one robust
iterative estimator for an unknown path-loss model (i.e., the
RSDP-BCDE).

Simulation results have shown that, when the PLE is known,
our three proposed estimators outperform an RSS-based joint es-
timator (SDP-RSS), which applies the SDP-procedure on an 
1-
norm approximation, as well as a recent weighted least squares
estimator (WLS-DRSS), which requires perfect knowledge of
the variance of the measurement noise. The performance of
our three proposed estimators for a known PLE is studied un-
der different noise conditions, different PLEs, imperfect PLE
knowledge and inaccurate anchor location information. Their
computational complexities are also investigated. Each estima-
tor has its own advantages: the A-BLUE has the lowest com-
putational complexity; the LE yields the best performance for
a small measurement noise; and the RSDPE holds the best ac-
curacy under a large measurement noise, an imperfect PLE and
inaccurate anchor location information. Besides, in case of an
unknown PLE, it is finally shown that, with more iterations,
the performance of the RSDP-BCDE can approach that of the
RSDPE with a known path-loss model. In real-life, to meet dif-
ferent practical demands when encountering different situations,
different proposed estimators are provided as options.

APPENDIX A
RSS COLLECTION

Assume the received signal y(t) with the time index t can be
expressed as

y(t) = x(t) � h(t) + n(t), (A.1)

where � denotes the convolution operator, x(t) is the transmit-
ted signal, h(t) indicates the channel response and n(t) is the
additive zero-mean white Gaussian noise. In most literature, the
RSS refers to the signal power after a successful demodulation.
To be specific, if the signal y(t) can successfully be demod-
ulated, n(t) is cancelled and hence we can easily observe the
signal envelope r(t) � |x(t) � h(t)|, from which the RSS can
be computed. In [4], [5], real-life experiments have been con-
ducted to collect RSS measurements from demodulated signals,
thereby demonstrating that the noise can be ignored. Moreover,
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Fig. 7. Performance of RSS collection under different sample sizes and dif-
ferent values of m and Ω.

the case of no signal demodulation is also investigated therein,
but we feel this is beyond the scope of this paper.

To further explain the RSS collection procedure, we notice
that r(t) is affected by small-scale fading. For simplicity,
we will remove the time index t from now on to represent
an instantaneous value. If the Nakagami-m distribution is
considered, which actually characterizes the instantaneous
signal envelope r, the instantaneous received power p � r2 is
Gamma distributed as

P (p|Ω) =
1

Γ(m)

(m

Ω

)m

pm−1e−
m p
Ω . (A.2)

where m is the fading parameter and a small value of m indicates
a severe fading. The other parameter Ω, defined as Ω � E(p), is
the RSS to collect, but expressed in watts. Therefore, collecting
RSS measurements corresponds to estimating Ω.

Denoting Ωi as the Ω associated with the i-th anchor, the
maximum likelihood (ML) estimate of Ωi is readily given by

Ω̂i =
1
K

K∑
k=1

p
(k)
i , (A.3)

where p
(k)
i ,∀k = 1, . . . ,K, represent K consecutive samples of

p related to the i-th anchor. Due to the fact that V ar(p) = Ω2

m ,
we can easily obtain

V ar(Ω̂i) =
Ω2

i

Km
, (A.4)

which indicates that the estimation error can be reduced by
taking more samples. Obviously, the ML estimate Ω̂i is unbiased
and, denoting Ω̂i = Ωi + ΔΩi , ΔΩi is asymptotically Normal

distributed as ΔΩi ∼ N (0, σ2
ΔΩ i

) with σ2
ΔΩ i

= Ω2
i

K m .
Expressing the RSS estimate in dB and applying the first-

order Taylor series expansion w.r.t. ΔΩi results in

P̂i = 10log10(Ω̂i) = 10log10(Ωi + ΔΩi) ≈ Pi + ΔPi, (A.5)

where the estimation error of P̂i is denoted as ΔPi � 10
ln(10)

ΔΩ i

Ω i

and hence ΔPi ∼ N (0, σ2
ΔPi

) with σ2
ΔPi

= 100
ln(10)2 K m . We no-

tice that, compared with σ2
ΔΩ i

, σ2
ΔPi

does not depend on Ωi any
more, i.e., the RSS estimation error in dB is independent of the
anchors. This means that, even if not enough samples are col-
lected, the impact of ΔPi is still similar to that of the shadowing

effect χi . We have also conducted a simple simulation for RSS
collection. As shown in Fig. 7, the collection error decreases
with a large m and more samples. But more importantly, dif-
ferent values of Ω yield no significant impact on the collection
error if considered in dB. In a nutshell, we can assume the RSS
is perfectly collected in this paper without loss of generality.

APPENDIX B
DERIVATION FROM RSS-BASED MODEL

In this appendix, we show that our whitened DRSS-based
model can also be derived from a properly whitened RSS-based
model after orthogonally projecting out the unknown P̄0 .

To show that, let us first rewrite (1) as

||x − si ||22 =
P̄ ′

0ΔP ′
0,i χ′

i

P ′
i

, (B.1)

where P ′
i � 10

P i
5 γ , P̄ ′

0 � 10
P̄ 0
5 γ , ΔP ′

0,i � 10
Δ P 0 , i

5 γ , χ′
i � 10

χ i
5 γ

and the reference distance is again d0 = 1 m without loss of
generality. For a sufficiently small noise and using the first-
order Taylor series expansion on (B.1), we obtain

||x||22 − 2sT
i x + ||si ||22 =

P̄ ′
0

P ′
i

[
1 +

ln(10)
5γ

ni

]
, (B.2)

where ni = ΔP0,i + χi . Then, we can formulate a linear model
as

Bφ = h + ς (B.3)

where

B �

⎡
⎢⎢⎣

...
...

...
2sT

i −1 1/P ′
i

...
...

...

⎤
⎥⎥⎦ ,

φ � [x, ||x||22 , P̄ ′
0 ]

T , h � [· · · , ||si ||22 , · · · ]T and ς � [· · · ,

− ln(10)P̄ ′
0

5γP ′
i

ni , · · · ]T . Every element of ς , say ςi , is a zero-

mean Gaussian variable with variance [ln(10)]2 P̄ ′2
0 σ 2

n

25γ 2 P ′2
i

and hence
the covariance matrix of ς can be expressed as Σς =
ln(10)2 P̄ ′2

0 σ 2
n

25γ 2 D′−2 , where D′ = diag([P ′
1 , · · · , P ′

N ]T ) with
diag(·) a diagonal matrix with its argument on the diagonal.

Let us first describe the relation between the model in
(4) and the RSS-based model in (B.3). By recalling the
definitions of p and h, we can easily observe that p =
Ph, where P �

[
1(N −1)×1 diag([−P ′

2,1 , · · · , −P ′
N,1 ]

T )
]

=
− 1

P ′
1
ΓD′, and similarly, PBφ = Ψθ and Pς = ε.

Hence, before the whitening procedure, the DRSS-based
model (4) can be viewed as the RSS-based model (B.3), where
we remove the influence of P̄ ′

0 by applying the transformation
matrix P. However, it is hard to judge at this point whether this
operation will cause a loss of information or not.
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In order to do that, let us first whiten the RSS-based model
(B.3), which leads to

Σ−1/2
ς Bφ = Σ−1/2

ς h + Σ−1/2
ς ς (B.4a)

⇒ D′Bφ = D′h + D′ς (B.4b)

⇒ B′φ = h′ + ς ′, (B.4c)

where B′ � D′B, h′ � D′h and ς ′ � D′ς with the covariance
matrix Σς ′ = ln(10)2 P̄ ′2

0 σ 2
n

25γ 2 IN .
Now, to see the relation between our whitened DRSS-

based model (7) and this whitened RSS-based model ((B.4)),
we can show that Φθ = (ΓΓT )−1/2PBφ = P′B′φ, where
P′ � − 1

P ′
1
(ΓΓT )−1/2Γ. So, after the whitening procedure, the

whitened DRSS-based model (7) can be viewed as the whitened
RSS-based model ((B.4)), where we remove the influence of
P̄ ′

0 by applying the transformation matrix P′. The crucial ob-
servation now is that this transformation matrix P′ is a (scaled)
unitary operator, i.e., P′P′T = 1

P ′2
1
IN ×N , and hence by taking

differences of RSSs to eliminate the unknown transmit power,
our whitened DRSS-based model does not entail any loss of
information compared to the whitened RSS-based model.

APPENDIX C
CRAMÉR-RAO LOWER BOUNDS

To derive the Cramér-Rao lower bounds (CRLBs) used in this
paper, we recall from (2) that the vector of DRSS samples, say
π, is Gaussian distributed as π ∼ N (μ,Σπ), where for i �= 1
we have π � [· · · , Pi,1 , · · · ]T , μ = [· · · , μi, · · · ]T with μi =

−10γlog10

(
||x−si ||2
||x−s1 ||2

)
and according to (6), Σπ = σ2

nΓΓT .

To obtain the CRLB, the Fisher information matrix (FIM) can
be computed as [56]

[J]n,m =
[

∂μ

∂θn

]T

Σ−1
π

[
∂μ

∂θm

]
+

1
2
tr[Σ−1

π

∂Σπ

∂θn
Σ−1

π

∂Σπ

∂θm
],

(C.1)

where depending on the scenarios θ = x, θ = [xT , γ]T , or
θ is the scaler θ = γ, and ∂μ

∂θn
� [· · · , ∂ [μ]i

∂ θn
, · · · ]T . Since

Σπ does not depend on θ, we can simplify (C.1) as

[J]n,m =
[

∂μ
∂θn

]T
Σ−1

π

[
∂μ

∂θm

]
. Letting x = [x1 , · · · , xd ]T and

si = [si,1 , · · · , si,d ]T , we obtain

∂[μ]i
∂xk

= − 10γ

ln(10)

× (xk − si,k )||x − s1 ||22 − (xk − s1,k )||x − si ||22
||x − si ||22 ||x − s1 ||22

,

k = 1, · · · , d (C.2)

and ∂ [μ]i
∂ γ = −10log10

(
||x−si ||2
||x−s1 ||2

)
.

a) CRLBs on Joint Location Estimate and PLE Estimate:
In this case, θ = [xT , γ]T in Rd+1 and the CRLB for the location

estimate is obtained as

CRLB1 =

√√√√ d∑
k=1

[J−1 ]k,k ,

while the CRLB for the PLE estimate is obtained as

CRLB2 =
√

[J−1 ]d+1,d+1 .

b) CRLB on Location Estimate with a Known PLE: In
this case, θ = x in Rd and the CRLB for the location estimate
with a known PLE is obtained as

CRLB3 =

√√√√ d∑
k=1

[J−1 ]k,k .

c) CRLB on PLE estimate with a known location: In this
case, θ = γ and the CRLB for the PLE estimate with a known
location is simply given by

CRLB4 =
√

1/ [J]1,1 ,

where we note that J is just a scaler here.
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