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Abstract

With the introduction of event-based cameras, such as the dynamic vision sensor (DVS), new
opportunities have arisen for low-latency real-time visual data processing. Unlike traditional
frame-based cameras that capture entire frames at fixed intervals, each pixel in an event-
based camera operates asynchronously, generating an event whenever its brightness change
exceeds a certain threshold. Although DVS sensors inherently surpass traditional frame-
based cameras in capturing transient, high-speed phenomena, their performance bottleneck is
usually located in their address event representation (AER) readout interfaces. The commonly
used row-scanning synchronous AER, which encodes events in a full row at once, offers high
throughput. However, this approach also introduces inherent delays that limit its use in
applications requiring high temporal resolution. Conversely, while AER schemes based on
asynchronous digital circuits surpass synchronous schemes in temporal resolution, their event-
by-event transmission approach limits their overall throughput.

This work proposes a novel high-speed asynchronous AER interface, leveraging spatiotem-
poral correlations in DVS event-based data, to optimize the tradeoff between temporal reso-
lution and throughput. Supported by the recently proposed open-source asynchronous design
toolkit (ACT) flow for asynchronous digital circuits, we propose an address fuser to be in-
tegrated into the hierarchical token ring (HTR) AER scheme. This address fuser creates a
spatiotemporal window to exploit the inherent spatiotemporal correlations in DVS data. Af-
ter verification at both switch- and transistor-level simulations, we benchmarked our design
against the conventional HTR AER scheme using a representative set of input scenarios. Our
design achieved 196% of the throughput for multi-event transmissions when all pixels were
activated simultaneously, at the expense of an acceptable 18% latency increase for single-event
transmissions with a 10-ns temporal window.
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Introduction 1
Real-time high-temporal-precision image processing plays a critical role in the domains of
autonomous driving [9], robotics [10], and the Internet of Things (IoT). While conventional
frame-based computation consumes a significant amount of computational resources, event-
driven computation with an event-based camera ensures higher temporal resolution and re-
quires much fewer computational resources. Indeed, the event-based camera, also known as
the dynamic vision sensor (DVS), works in a different way than a conventional frame-based
camera: it detects the brightness changes asynchronously for each pixel. When the brightness
change in a pixel exceeds a certain threshold that is usually set by the user, it will gener-
ate an event, i.e. a spike. The asynchronously fired spikes are then transmitted through
a digital bus for further processing [11]. The difference in operation between the DVS and
a traditional frame-based camera is illustrated in Fig 1.1 [1]. For the constantly rotating
grey background and dot on the left, the traditional frame-based camera continually outputs
the whole image at a fixed frame rate. In contrast, the event-based DVS only outputs the
changing parts, which are events from the pixels where the rotating dot is located. This
characteristic brings the DVS many advantages over conventional frame-based vision sensors:
it can offer higher temporal resolution (in the µs range), lower power consumption (equal to
static power in static scenes), and higher dynamic range (> 120dB, against typically 60dB
for the conventional frame-based camera) [12].

As the DVS fires events asynchronously and with a µs-range temporal resolution, it re-
quires high-speed interfaces to transmit events. The address event representation (AER)
interface [13] has been adopted by most DVS designers because of its high speed, low latency,
and compatibility with event-based neuromorphic processing. The essence of the AER bus is
shown in Fig. 1.2 [2]. In the AER interface, the addresses of the requesting pixels are trans-
mitted in real-time by a sender-side encoder and received by a receiver-side decoder. The
AER encoder shown on the left side of Fig. 1.2 serves two primary functions: encoding and
arbitration. The encoder waits for events and encodes them based on their addresses, then
immediately sends them to the output bus. The arbitration function is needed because when
multiple events simultaneously request to be sent, it can prevent conflicts and determine their
sending sequence. The function of the AER receiver’s decoder is relatively straightforward.
It only needs to decode the encoded event from the AER sender. The AER interface is es-
sentially a kind of time-division multiplexing method. It eliminates the need for excessive
wiring among pixels while retaining the temporal information of events, where all pixels of
the sender, such as numbers 0, 1, 2, and 3 in Fig. 1.2, appear virtually connected to the
corresponding pixels 0, 1, 2, and 3 of the receiver.

1.1 Motivation

The fast growth of DVS sensors outlines new opportunities for the real-time processing of
visual data. Indeed, by design, they offer significant advantages over traditional frame-based

1



Figure 1.1: Difference between frame-based standard camera output and event-based DVS
output in capturing a black dot rotating around the center within a gray circle. The results
from the frame-based camera are frames at millisecond intervals. On the other hand, the
DVS is capable of rapidly capturing changes in the scene and producing a stream of events
at microsecond intervals. Modified from [1].

Figure 1.2: The essence of the AER bus. Adapted from [2]

cameras, especially in capturing transient, high-speed phenomena. However, the performance
of the DVS heavily relies on the precision and efficiency of its underlying AER interface.

Presently, most DVS implementations rely on a row-scanning synchronous AER [5,14,15]
primarily because it can transmit a large volume of data in a single burst over extended
periods, offering high throughput. However, with synchronous circuits scanning each row in
a fixed manner, there’s an inherent delay before responding to rapid, sparse changes in indi-
vidual pixels. The inability of synchronous row-scanning AER to capture intricate temporal
dynamics becomes noticeable in applications that require detailed tracking of subtle temporal
data changes, such as low-cost velocity monitoring [16] and ultra slow motion video [17].

Asynchronous AER, with its event-driven nature, presents a solution to the temporal reso-
lution challenge by precisely transmitting individual events, offering enhanced time precision.
However, this event-by-event transmission approach limits the overall throughput. There-
fore, current asynchronous AER implementations find it challenging to handle applications
with a dense stream of events. This trade-off between temporal resolution and throughput

2



significantly hampers the broader adoption of asynchronous AER interfaces in DVS designs.

Figure 1.3: Schematic diagram of falling raindrops in the field of view of a DVS, and each
cluster is formed by the accumulation of events with a duration of 0.4ms. OFF and ON events
are generated by decreases and increases in brightness, respectively. Events typically occur
close in time and space, highlighting their inherent spatiotemporal correlations. Modified
from [3].

Recognizing the dual need for high temporal precision and robust throughput, there is a
compelling demand for a method that bridges this gap. A core principle of our innovative
approach to enhancing the throughput of asynchronous AER interfaces lies in exploiting the
spatiotemporal correlations between events, which is typical of DVS data as illustrated in
Fig. 1.3. By capitalizing on these correlations, we aim to boost throughput without compro-
mising the inherent high temporal precision of asynchronous AER interfaces.

1.2 Contributions

The contributions of this thesis include:

• The design and implementation of a high-speed asynchronous AER interface exploiting
the spatiotemporal correlation of events.

• Benchmarks show our design, with a slight compromise in time precision, achieves nearly
double the throughput of current asynchronous AERs.

3



1.3 Thesis Outline

The rest of the thesis is organized as follows. Chapter 2 gives a brief introduction to the
asynchronous circuit, the used asynchronous circuit toolkit (ACT) flow illustrated with a
simple example, and a brief review of key state-of-the-art AER schemes. Chapter 3 provides
the design choices as well as implementation details of the proposed design. Then Chapter 4
shows the simulation results of the design. Lastly, in Chapter 5, the conclusion is drawn, and
the future work is discussed.

4



Background 2
This chapter provides a comprehensive background of asynchronous digital circuits, of the
ACT flow, and a brief review of key state-of-the-art AER schemes. First, some essential
concepts and principles of asynchronous digital circuits are introduced. Then, a simple exam-
ple is presented to aid the reader’s understanding of the selected ACT asynchronous circuit
design flow. Lastly, the three state-of-the-art AER schemes are reviewed and their pros and
cons are compared to propose our improvement.

2.1 Asynchronous digital circuits

Asynchronous circuits do not use any global clock signal to synchronize their state elements.
Instead, the synchronization depends on the arrival of data or of a control signal, which is
realized with a handshake protocol. As shown in Fig. 2.1., there are two types of handshake
protocol: 4-phase handshake and 2-phase handshake. Taking the most popular 4-phase hand-
shake as an example, when the previous operation is completed, the request (Req) signal is
set high, indicating that the next stage is allowed to start its operations for a new transaction.
Once the next stage completes its operation, it sets the acknowledge (Ack) signal high. Once
detecting a high Ack signal, the previous stage sets the Req signal low. Then if the next stage
detects that the Req signal is low, it sets the Ack signal low, finishing the 4-phase handshake.
In the end, the Req and Ack signals are set to their initial positions and ready for the next
round of handshake. For a 2-phase handshake, there is no resetting of Req and Ack and
the handshake is done by alternating between the first half or the second half of the 4-phase
handshake. Although it may seem that a 2-phase handshake is simpler and faster, its circuit
implementation is usually more complex because there are two possible initial states.

The independence from a clock makes it possible for asynchronous digital circuits to
operate faster than synchronous circuits as they do not need to wait for the clock signal to
start processing. Therefore, ideally, the speed of asynchronous circuits is only limited by the
propagation delays of the circuit elements. Another important characteristic of asynchronous
circuits is that the speed depends on the given input case, while for synchronous circuits, the
speed of the whole system is dependent on the “worst” case, which defines the maximum clock
speed for timing closure. Let us consider a 2-bit carry ripple adder as an example. The clock
cycle of the synchronous circuit is limited by the scenario where two carries are rippled (e.g.,
2’b11 + 1’b1). On the other hand, for the asynchronous circuit, the processing time scales
with the number of carries to propagate. This allows asynchronous circuits to outperform
synchronous circuits in situations where the worst-case scenario rarely occurs.

However, the overhead of handshake circuits for inter-module communication in asyn-
chronous circuits may result in poorer performance in terms of power consumption and area,
as such handshaking circuits are absent in synchronous circuits. More importantly, asyn-
chronous circuits are more challenging to design, test, and scale compared to synchronous
circuits. The primary reason for this is that synchronous digital circuits remain the main-
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Figure 2.1: Timing diagrams of 4-phase handshake and 2-phase handshake. For the 4-phase
handshake, ’Req’ and ’Ack’ return to their initial states after completing the handshake; for
the 2-phase handshake, there are two possible initial states for ’Req’ and ’Ack’. This figure
is modified from [4].

stream design style; hence, their electronic design automation (EDA) tools are continuously
updated and improved. In contrast, the EDA tools for asynchronous circuits have not received
the same level of development due to a smaller user base. The ACT asynchronous flow used
in this project is a first step toward alleviating this drawback.

2.2 The asynchronous circuit toolkit (ACT) design flow

Just as synchronous circuits have many design styles, asynchronous circuits also have a lot
of families. The ACT flow used in this project supports many design styles by using the
Communicating Hardware Processes (CHP) language [18] to make the communication be-
tween modules abstract, which can be translated into different logic families. This section
mainly introduces the circuit styles and flow we adopted, which is well supported by the ACT
asynchronous design flow, along with a simple example of a buffer circuit to aid the reader’s
understanding of the ACT flow.

2.2.1 Style and data encoding methods

The quasi-delay-insensitive (QDI) [19] design style is adopted in this project. In essence, QDI
circuits disregard the delay of wires and gates, and they are designed to form a self-locking
structure. This self-locking structure ensures that the completion of each stage unlocks the
next one, thereby enabling QDI circuits to operate strictly in a specific execution order. To
implement QDI circuits, the input, output, and internal intermediate variables are encoded in
the following three ways: bundled-data, dual-rail, and 1-of-N. To help reader understand, we
show an example of transmitting two-bit data ’11’ and the corresponding waveform diagrams
for each encoding.

6



Figure 2.2: Schematic diagram of bundled-data encoding, the example timing diagram for
the transmission of ’11’ data is on the bottom.

2.2.1.1 Bundled-data

Bundled-data is the most efficient way to transmit multi-bit data. As shown in Fig. 2.2, it
consists of a Req line, an Ack line, and data lines. There are 4 lines in total, two for the
2-bit data, one for the request, and the last one for the acknowledgment. If N-bit data needs
to be transmitted, a total of N+2 lines are required. As shown in the bottom waveform
diagram, the data must be ready before the Req is set high. And typical 4-phase handshake
is performed between the Req and Ack line. After Ack is set high, it means that the data is
received and thus does not need to be valid anymore.

In the bundled-data encoding, to ensure that the data is always available when the sender
puts the Req signal high (otherwise the receiver may receive the wrong data), a delay is added
to the Req line. This small delay overhead is usually favourable compared to the overhead of
the other two encoding schemes.

2.2.1.2 Dual-rail

Dual-rail is an encoding scheme that does not require any delay line. It consists of dual-rail
data lines and an Ack signal. In this encoding, each bit of the data is encoded with 2 wires,
as shown in Table 2.1.

In dual-rail encoding, 00 indicates no data, 01 represents a data value of 0, 10 represents a
data value of 1, and 11 indicates an error. Since 01 and 10 indicate that the data is valid, the
data itself can serve as the Req signal. Therefore, as shown in Fig. 2.3, there is no Req line and
the 4-phase handshake is performed between the data and the Ack. Here, (d3,d2) and (d1,d0)
are used to represent the two transmitted bits, and the Ack is only set high when both bits
of the data are ready. In dual-rail encoding, if N-bit data needs to be transmitted, it requires
2N+1 lines, which makes dual-rail encoding less scalable for multi-bit data transmission.
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Dual-rail encoding data

00 No data

01 0

10 1

11 Error

Table 2.1: The 4 possible cases of dual-rail encoding.

Figure 2.3: Schematic diagram of dual-rail encoding, the example timing diagram for the
transmission of ’11’ data is on the bottom, and uses 5 wires.

2.2.1.3 1-of-N

Like dual-rail, 1-of-N encoding does not require delay lines and represents data with one-hot
encoding. The four possible values that the 2-bit transmitted data can have are shown in
Table 2.2.

1-of-N encoding 2-bit encoded data

0000 No data

0001 00

0010 01

0100 10

1000 11

Other Error

Table 2.2: The 4 possible cases of 1-of-N encoding.

The (d3,d2,d1,d0) data wires can also be used as Req by setting any bit high as shown
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Figure 2.4: Schematic diagram of 1-of-N encoding, the example timing diagram for the trans-
mission of ’11’ data is on the bottom.

in Fig. 2.4. The Ack is only set high when any of the bits of the data is high to perform the
4-phase handshake. It is costly to transmit data in 1-of-N encoding since it will need 2N + 1
wires to encode N-bit data. However, in certain scenarios, 1-of-N encoding is also employed
due to its absence of delay lines and, in situations where there are conditional executions
based on data values, only one data line needs to be checked for each condition.

2.2.2 Asynchronous circuits design with ACT

The ACT flow supports the design of asynchronous digital circuits from the abstract level to
physical design. The design flow chart is shown in Fig. 2.5. This section will take a simple
buffer as an example to introduce the ACT design flow. The following sub-sections follow
each step of the flow, as outlined in Fig. 2.5.

2.2.2.1 High-level communication

The ACT flow works in a modular design style and starts by describing the circuit functionality
using the communicating hardware processes (CHP) language [18]. CHP mainly describes
high-level asynchronous communication between concurrently operating hardware modules
and their functions. Blocks that operate on their own are connected to each other via so-
called ”channels”. They send data via these channels to exchange information and synchronize
with other blocks via handshake. At this stage, neither the encoding scheme of the internal
variable nor the handshaking scheme of the channels is determined, but only the highly
abstract process of communication between blocks is designed. Similar to Verilog, CHP
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Figure 2.5: Steps of the ACT flow, examples are provided on the right.
11



supports operations such as serial operations, parallel operations, mathematical calculation,
and conditional execution to implement more complex functions. The designed block can be
simulated and verified with software called actsim in ACT. Unlike Verilog, any CHP code
that can be simulated by actsim implies that it can be synthesized. During the simulation,
actsim will synthesize the CHP code in a structured manner to verify the feasibility of the
CHP. However, the code synthesized automatically by actsim usually requires several tens
of times more transistors compared to the synthesis method we will use in the handshaking
expansion (section 2.2.2.2) and production rules expansion stage (section 2.2.2.3), hence it
should not be used directly.

Example : On the right side of the high-level communication step in Figure 2.5 is a simple
buffer example. The CHP code in?; out! describes the function of the buffer: it inputs data
from the port in and then immediately outputs from the port out. It can be noticed that
there is no further specification on the input and output channels. Users can verify the
function of the code with actsim.

2.2.2.2 Handshaking expansion

Handshaking expansion (HSE) is an intermediate step in the manual synthesis method pro-
posed by Alain J. Martin in [20]. Unlike the structural synthesis method by actsim mentioned
in the previous step, this method ensures the synthesis of a more concise circuit and often
leaves room for optimization. HSE transforms the behavioral description in CHP into an
intermediate state between behavior and structure, enabling further synthesis into a circuit.
It is performed with the original CHP code in high-level communication. While getting HSE
from CHP is largely based on experience, it generally involves the following steps:

1. Determine the type of handshake of the channel and the data encoding scheme.

2. Replace the communication on the channel with the selected handshaking scheme, and
replace the data with the selected encoding scheme.

3. Rearrange all channel variables and data variables such that all signals have handshakes
with other signals, to ensure they can be executed in sequence correctly.

4. Check the obtained HSE by using the real or assumed HSE of other blocks as input
and output conditions.

The obtained code after HSE is still based on the CHP language, but with all variables
being Boolean-valued and all abstract communication actions being defined. This is necessary
for the next step where we will infer their conditions to execute.

Example : As shown in the example on the right side of Fig 2.5, the original abstract
communication process and data operations are replaced by the actual operations on variables
of the selected encoding. Here, the input channel is implemented with zero-bit bundled-data
so there are two variables: the request (in.r) and the acknowledge (in.a), and similarly for the
output channel. All in.r, in.a, out.r, and out.a are Boolean-valued. Also, their execution
sequence is arranged such that all signals have handshakes with other signals. For example,
the variable ”in.a” has handshakes with ”in.r” and ”out.r”, which also has a handshake
with ”out.a”. This sequential handshake between variables ensures the sequential execution
of the QDI circuit.
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2.2.2.3 Production rule expansion

After obtaining the correct CHP through handshaking expansion, the next step is to gen-
erate a production rule set (PRS) that directly corresponds to complementary metal-oxide-
semiconductor (CMOS) circuits. As mentioned above, QDI circuits can ensure a strict execu-
tion order, which is realized through conditional execution of variables; that is, the completion
of one level’s variable acts as a prerequisite condition for the execution of the next level’s vari-
able. At this stage, the circuit states (i.e. the values of all variables) are used to determine
the execution conditions of the variables. Due to the characteristic inverted logic in CMOS
technology, production rules like x → y+ (y is pulled up when x is high) are not acceptable,
as a PMOS would be turned on with a high level. If the generated production rule is not
CMOS-implementable, extra effort, such as changing the variables, must be done. Sometimes
CHP cannot be converted into implementable PRS when there are too many identical states,
which is usually caused by improperly designed HSE but is hard to observe in the handshaking
expansion stage [21]. In such a case we need to correct the HSE and go over the second, third,
and fourth steps in Fig. 2.5 again. It is also important to consider the initialization of the
circuit, for which we need to carefully design the Reset phase of each module.

Example : Following the order indicated in Fig 2.5, we label the states of the circuit based
on the vectors (in.r, in.a, out.r, out.a) for the CHP after HSE, as shown in Fig. 2.6 where
any undetermined external signal is represented by X.

Figure 2.6: The state of each variable in the HSE code of the buffer example during each
execution step. The ’X’ in the table represents a don’t care state, which cannot be used to
infer the final expression and is typically linked to the external inputs of the modules.

The reader might wonder why ’in.r’ and ’out.a’ in the state diagram of Figure 2.6 are
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replaced by ’X’ even though they clearly have certain values. This is because these variables
are external variables controlled by other blocks. If we can infer the execution conditions
of other variables without using them (i.e. without assuming an external environment), then
the robustness of this block will be better. That way, an error in an external block does not
propagate. However, the values of external variables appearing after the waiting command
’[]’ should be determined and used. By examining these state vectors, we can infer the
execution conditions for each step. For example, from the second to the third state when
out.r transitions from 0 to 1, we observe that in.r is 0 and in.a is 1. Because among these
state vectors only the third step satisfies this condition, we can determine the condition for
out.r+ is (˜ in.r)&in.a. Here, the tilde symbol ”˜” denotes a low voltage level of the variable,
while the absence of the tilde indicates a high voltage level. Similarly, we can write out the
conditions for other transitions. However, when more than one state satisfies the inferred
condition, we need to introduce new variables or modify the HSE. All the PRS for this buffer
example can be expressed as:

in.r & ~out.r & ~out.a→ in.a+

out.r & out.a → in.a-

~in.r & in.a → out.r+

~in.a & out.a → out.r-,

Finally, to ensure that the obtained PRS is CMOS-implementable, we need to set all
variables in the pull-up networks to a low voltage level to drive PMOS transistors, and set
all variables in the pull-down networks to a high voltage level, to drive NMOS transistors.
To do this, we need to invert some variables. For example, in (˜in.r)&in.a → out.r+, we
have in.a in its high voltage level form in the pull-up network of out.r, and it is therefore not
CMOS-implementable. So we use an inverter and create the inverted form of in.a, which is
in a, and in this way the original PRS becomes (˜in.r)&(˜ in a) → out.r+. By using the
new variable in a, we can make the PRS CMOS-implementable. For detailed constraints
associated with using inverted variables, which are outside the scope of this thesis, we refer
the reader to [22]. The properly inverted PRS of the buffer example is:

in.r & _out_r & _out_a→ _in_a-

~_out_r & ~_out_a → _in_a+

~in.r & ~_in_a → out.r+

_in_a & out.a → out.r-

where in a is the inverted form of in.a, out r is the inverted form of out.r, out a is the
inverted form of out.a.

The last step is to add a reset mechanism and perform optimization to the PRS. The
Reset signal is a global signal shared by all modules of the asynchronous circuit. Normally,
we can simply add Reset to the left side of the PRS:

_Reset & in.r & _out_r & _out_a→ _in_a-

~_Reset |(~_out_r & ~_out_a) → _in_a+

~Reset & ~in.r & ~_in_a → out.r+

Reset | (_in_a & out.a) → out.r-,

Where Reset is the inverted form of Reset. In this way, when the Reset is pulled up in
the reset phase, every variable in the circuit is reset.
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2.2.2.4 Switch-level simulation

After obtaining a PRS that is CMOS-implementable, the prs2sim software from the ACT
flow can be used to directly convert the PRS into a transistor-based implementation. The
process design lit (PDK) is not yet determined at this stage, so the switch model is used
instead. The switch-level model simply considers PMOS transistors as turned on by a low
voltage and NMOS transistors as turned on by a high voltage, independently of the technology.
They can be approximated as switches, which brings a considerable improvement in simulation
speed.

Figure 2.7: A typical state-holding gate. Its PRS expressions are ˜a& ˜ b → c+ and a&b →
c−, and due to the asymmetry of pull-up network and pull-down network, a weak keeper is
required at the output to hold the previous value. The output c is the inverted form of c.

During this step, the software will also determine whether the generated circuit belongs
to combinational logic or state-holding logic based on the input PRS. State-holding logic is
characterized by non-complementary pull-up and pull-down networks. For example, a pull-
up network ˜a& ˜b, and its pull-down network a&b make a gate state-holding instead of
combinational. In this example, the generated circuit consists of two PMOS and two NMOS
transistors in series, as shown in Fig. 2.7. When the inputs a and b are such that one is 0 and
the other is 1, neither the pull-up network nor the pull-down network is activated, resulting
in a floating output. Usually, we want to maintain the output at its last activated state, and
therefore an additional state keeper is needed and connected to the output, which results
in extra circuit overhead. Therefore, when designing circuits, it is essential to avoid using
state-holding logic where it is not strictly necessary.

Example : The prs2sim in the ACT flow automatically generates the corresponding
switch-level netlist for the PRS with combinational logic or state-holding logic. In the exam-
ple shown in Fig 2.5, all PRS expressions translate to state-holding logic and the tool will
automatically generate keepers for them. Afterwards, we can simulate the asynchronous dig-
ital circuit using the obtained switch-level netlist, which is similar to simulating synchronous
digital circuits.
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2.2.2.5 Transistor-level simulation

After verifying the circuit in switch-level simulation, we then replace the obtained switch
models with Spice models from the PDK and perform transistor-level simulation using Spice
simulation software, as for analog circuit simulations. This step can be accomplished using
the prs2net tool from the ACT flow. By comparing the transistor-level waveforms with
the switch-level waveforms under different inputs, we can identify issues related to sizing,
arbiters, and other hidden problems that have not been discovered in earlier steps, and better
characterize the performance of the design. For the open-source Spice simulation software
Xyce [23], simulating thousands of transistors requires a large amount of memory and is prone
to convergence issues. Therefore, the simulation and verification of large-scale asynchronous
circuits is still a major scalability bottleneck for asynchronous circuit design.

2.2.2.6 Layout and routing

The placement and routing in the ACT flow primarily consist of the following steps as men-
tioned in Fig 2.5 (the open-source Skywater 130nm process is assumed [24])

1. Generating required cells from PRS using prs2cell: The prs2cell software in the ACT
flow can divide the PRS of a module into different cell implementations, where a cell can
be assimilated to a logic gate. A cell contains a different number of inputs and one output
and may include the required weak keeper. These cells are typically reused and encompass
all components for implementing an asynchronous circuit. Hence, for the Skywater130 PDK,
numerous standard cells have been provided. However, due to the variability and asymmetry
of PRS, most cells typically still require custom design.

2. Generating basic layout for each cell in Magic VLSI : The ACT flow includes the
conversion of the generated cells into scripts for the widely used open-source layout tool,
Magic VLSI [25]. By running this script in Magic VLSI, basic layers including N, P diffusion,
polysilicon, and labels representing connection relationships are generated automatically. This
step generates a first draft for each cell.

3. Optimizing the layout for each cell in Magic VLSI : The automatically generated
layout is often not optimally placed and requires intra-cell connections. Manual connections
need to be done with usually three layers of polysilicon (poly), metal1 (m1), and metal2 (m2)
and follow a basic rule of preferred vertical or horizontal wiring directions.

4. Automatic cell placement using Dali : Unlike the cells with standardized heights in
synchronous circuits, cells in the ACT flow often have non-identical heights. To address
the placement challenges of cells with non-identical heights, Dali was developed [26]. After
completing all cell layouts, a script in the ACT flow first converts the layout of cells in Magic
VLSI into a .rect file that can be read by Dali. Then, we can use Dali in the ACT flow for
placement. Dali abstracts all cells into rectangles of a certain size and attempts to place them
according to the density provided by the designer, and then generates .lef and .def files.

5. Automatic routing using TritonRoute : TritonRoute [27] is a routing tool designed
with compatibility with Dali. It can interpret the .lef and .def files provided by Dali and uses
metal3 (m3) and metal4 (m4) for automatic routing, thereby generating new .lef and .def files.
m3 and m4 also follow the basic rule of preferred vertical or horizontal routing directions.

6. Final checking: Importing the routed .lef and .def files in Magic VLSI results in the post-
placement and routing layout. However, at this stage and due to a lack of maturity, there are
typically some design rule check (DRC) errors, usually caused by metal layer distance. After
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manually correcting these DRC errors, to verify if the layout design matches the functionality
of the previous PRS, we can use the extract command in Magic VLSI and the ext2sim
software in the ACT flow to convert the layout back into a switch-level and a transistor-
level netlist, so as to perform switch-level and transistor-level simulation using irsim and
Xyce. This step can be viewed as an equivalent of the layout versus schematic (LVS) in the
synchronous digital circuit design flow.

2.3 Review of key state-of-the-art address event representa-
tion (AER) schemes

In this section, we will introduce the three prevalent AER schemes: synchronous row scanning,
the binary arbiter tree, and the token ring. The pros and cons of each scheme will also be
discussed at the end of this section.

2.3.1 Synchronous row scanning scheme

To accommodate the increase in resolution, many commercial DVS [5, 15] employ a syn-
chronous row scanning scheme. The synchronous row scanning scheme (or column scan
scheme, depending on the definition) operates by sequentially scanning all rows and send-
ing all events in the scanned row at once. As illustrated in Fig. 2.8, the scan is controlled
by the control logic at the top. It operates the row (column) driver to sequentially inspect
each scanned row (column) for requests. If there is no request, it will skip this row (column).
If any request is detected, the entire row’s (column’s) event is copied as a one-dimensional
vector and sent out. This method of encoding multiple events in a certain order and sending
them in one packet is also called group-encoding. Group-encoding and sending these events
imply an overhead of a few clock cycles. After sending the vector, the row (column) driver
will continue to scan the next row (column). The synchronous row scanning AER interface
in [5] directly copies the entire row and transmits events in all 960 pixels in the row, while
the one in [15] copies the entire row of 1280 pixels. With synchronous row scanning AER,
they achieve the throughput with the maximum event rates of 1300 Meps (Mega events per
second) and 1066 Meps, respectively. Such throughputs are notably higher than those seen in
earlier AER designs. A primary advantage of these synchronous designs is the maturity and
scalability of synchronous digital circuit design, making it well-suited for Very Large Scale
Integration (VLSI). However, there are inherent drawbacks to the synchronous row scanning
scheme:

1). Sequential scanning, instead of event-based operation, introduces timing inaccuracy
caused by the event-handling order. For example, at low event rates, this scheme scans
in a fixed sequence, regardless of the presence or absence of events requiring scanning. In
particular, such low event rates (¡ 10 Meps) are the typical operating condition for DVS,
occurring over 70% of the time according to [28]. However, rows scanned recently have to
wait a full cycle until they are scanned again. The time required to scan one row without
skipping in [5] is approximately 1.47 µs. For the scan length of hundreds of rows, the µs-range
temporal resolution of DVS will be lost. Moreover, this always-on scanning by the AER does
not match the event-driven power consumption of the DVS.

2). Low efficiency in row/column-based group-encoding. The maximal event rate scenario
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Figure 2.8: Schematic diagram of the row (column) scanning scheme, modified from [5].
It uses control logic to operate the column (row) driver, which will sequentially scan each
column.

of the synchronous row-scanning scheme is unrealistic, as it would imply that every pixel in a
row (or column) gets activated every time a row is scanned. In reality, events are more likely
to appear in spatiotemporal clusters rather than aligning in rows or columns. Even worse, if
every pixel of a column requests, using a row-based scan to transmit these events does not
allow for any row skipping.

2.3.2 Asynchronous Binary arbiter tree scheme

In 2000, Boahen for the first time proposed the concept of AER for multi-point interconnection
in large-scale neuromorphic chips [6]. His design follows an asynchronous 2-D binary arbiter
tree scheme, which performs a hierarchical row-first column-second arbitration to select one
of the simultaneous events to output. The 2-D arbiter tree circuit has been widely popular
ever since. It works as follows:

1. Select one of the requesting rows using a row-wise binary arbiter tree.

2. Then select one of the requesting pixels in the selected row using a column-wise binary
arbiter tree.

The binary arbiter trees of rows and columns are formed by 2-to-1 arbiter cells, as shown
in Fig. 2.9. The working principle of a 2-to-1 arbiter cell is that when it has a request from
only one input, it will transmit that request. When it has requests from both inputs, it will
randomly select and transmit one input’s request, leaving the other input’s request to wait.
The circuit details of the arbiter cells are out of the scope of this thesis and can be found
in [6]. In the binary arbiter tree, the handshake logic of each row and column is connected to
an input of an arbiter cell, and the outputs of the arbiter cells become the input for the next
layer of arbiter cells until there is only one single output, thus N rows/columns are connected
to a log2N -level binary arbiter tree. Each connection includes two wires (Req and Ack) to
realize a handshake protocol. When two rows/columns request simultaneously, their requests
will traverse the layer of arbiter cells until there is an arbiter cell for which both inputs
have requests. This arbiter cell will then randomly select one of the inputs and propagate
it while having the other input waiting. Subsequently, the acknowledgment is propagated
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back along the same path as the request to the selected requesting row/column, completing
the handshake protocol. This type of AER circuit is called ”greedy”, which means that the
arbitration is completely random because of the use of fair arbiters. In the greedy binary
arbiter tree, if the rows in a column that just has been selected continue to trigger requests,
this column may be immediately selected again, and the other columns have to wait until
they are randomly selected. This behavior might not be desirable because it will cause timing
distortion in waiting columns.

Figure 2.9: Schematic diagram of the arbiter tree structure. Each arbiter cell has two inputs
and one output channel, and each channel consists of a Req and an Ack wire [6].

In 2008, Lichsteiner et al. proposed modifications to this scheme in their popular DVS [11],
where the ”greedy” behavior is changed to a ”non-greedy” one. This modification ensures that
a serviced row will not be serviced again until all other registered requests have been served.
The ”non-greedy” scheme significantly decreases the potential timing distortion caused by
random selection as there will be no rows/columns that need to wait infinitely if they are not
lucky enough to be randomly selected.

The binary arbiter tree offers a key advantage in providing optimal performance when
sending single or sparse events. For example, according to [8], it takes the binary arbiter
tree scheme 2.8 ns to process a single event among 256 inputs, which is much lower than
the typical cycle time of the row scanning scheme. However, the binary arbiter tree also has
evident drawbacks:
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1). Due to the randomness of the arbiter’s selection, events generated in close regions
may be sent separately due to random selection, so the spatiotemporal correlation between
events is not exploited. For two events generated in adjacent rows/columns, the worst case
for non-greedy binary arbiter trees is one being selected first and the other being processed
after all other requests have been processed; while greedy trees offer no bound.

2.3.3 Asynchronous token-ring scheme

Figure 2.10: (a). Schematic diagram of the token-ring structure, modified from [7]. It uses a
counter to record the location of the token to determine the sending address. (b). Schematic
diagram of the hierarchical token rings (HTR) structure, adapted from [8]. It adds an ad-
ditional layer of Hserver (red blocks) to bypass the token movement of the first-layer server
(Lserver), increasing the efficiency of token movement in long-distance moving.

In 2011, a new AER scheme was proposed in [7]. It replaces the binary arbiter tree with a
token-ring mutual exclusion architecture. This architecture mainly consists of three elements,
namely the server, the shared counter, and the token. Servers are used to communicate with
each other and to pass the token, the shared counter is used to track the current position of
the token, and the token is used to grant a server permission to access the output bus. When
a server receives a request, instead of sending the request through an arbiter tree, it requests
a token from its neighboring server. If its neighboring server has the token, it will pass the
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token to the neighboring requesting server and increase the shared counter by one, otherwise,
it will request further neighboring servers. The request is sent in one direction, and therefore
the data in the shared counter (i.e. the number of times the token has been moved) can be
used to represent the position of the token. If it receives a token, the request is processed.
For example, as shown in Fig. 2.10(a), when the second input requests, its server will first
request the token from the server below it. Secondly, the requested server will again request
the token from the server below it. And thirdly, the last server will request the token from the
first server, which processes the token. There are three requests in total, the token will thus
be moved three times and the counter will increase by three, thereby recording the current
position of the token.

In 2021, a new asynchronous AER arbitration scheme called hierarchical token rings
(HTR) [8] was proposed as an optimization over the original token-ring scheme. This structure
builds upon the initial token-ring scheme of [7] with an additional bypass layer to accelerate
the movement of the token within the circuit, as shown in Fig. 2.10(b). In the HTR scheme,
the token can be transferred through both the first layer server (Lserver) and the high-level
server (Hserver). To track the token’s position, two counters are employed: an Lcounter for
the first layer server and an Hcounter for the high-level server. The HTR addresses the in-
herent latency challenge in the original token-ring during sparse event handling through the
incorporation of a bypass layer. For N rows (columns), assuming the initial token position
is at the first row (column), and an event occurs in the middle of these rows (columns), the
HTR would require only (H + L)/2 moves [8], where N = H × L, with H representing the
total number of Hserver and L representing the number of Lservers in each Hserver. This
improvement comes at the cost of an additional circuit overhead from the Hserver and the
fact that the token can no longer freely be moved between adjacent servers because it might
have to be first moved through an Hserver.

The general advantage of the token-ring architecture is that requests near the token can
be processed quickly as the token moves in the token ring. For processing N requests from N
rows (column), the binary tree scheme needs 2N × (log2N - 1) operations, while the token-
ring scheme requires only N. The advantage of the token-ring scheme becomes increasingly
pronounced as N grows. However, its disadvantages include:

1). For individual or sparse events, the distance by which the token needs to move may
be long. For example, if the token is in the first server and there is a request in the N-th
server, it will need to move N times for the traditional token ring, and H+L times for HTR
to reach the requesting server, resulting in a higher delay than the binary tree.

2). Access to a shared counter is an inherent issue for the token-ring scheme. Because
each time a token is moved, the server will request the shared counter to record the token
movement. Since all servers need to be connected to the shared counter, when the number of
servers increases, accessing the counter necessitates a more complex structure. Consequently,
this can slow down the system and potentially become a bottleneck [8].

2.3.4 Summary and discussion

The advantages and disadvantages of the three schemes are summarized in the Table 2.3:
Currently, most high-resolution DVS systems employ the synchronous row scanning scheme.
This preference stems from its potential to offer substantial theoretical throughput. However,
a notable limitation of this scheme is its fixed, always-on scanning behavior. In contrast,
asynchronous schemes are inherently event-driven, their execution sequences adapt in real
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Table 2.3: Advantages and disadvantages of the three introduced schemes.

Schemes Advantage Disadvantage

Synchronous
row scanning

1. Mature and easily scalable
2. Theoretically highest

throughput

1. Timing inaccuracy caused by
event-handling sequence

2. Inefficient row/column-based group encoding
3. Power wastage due to always-on scanning

at low event rates

Token-ring
Fastest for

dense event streams

1. Slow for sparse event streams
due to long-distance token movement
2. Slower access to the shared counter
as the number of servers increases

Binary
arbiter tree

Fastest for
sparse event streams

1. Lower throughput as
event streams become denser

2. Spatiotemporal correlation not exploited due
to random selection

time based on event requests, thereby resolving the issues associated with fixed sequences.
Furthermore, studies suggest that properly designed asynchronous circuits can outperform
their synchronous counterparts in terms of speed [29, 30]. Yet, for binary arbiter tree and
token-ring schemes, each arbitration or selection only transmits one event, which significantly
constrains their throughput.

It is apparent from Table 2.3 that combining (i) an asynchronous HTR scheme with (ii)
a group encoding scheme based on spatiotemporal correlations of input events would allow
combining the strength of the various schemes without their drawbacks. To our knowledge,
this scheme has not been introduced yet, which we will further elaborate upon in Chapter 3.
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Address-fused Hierarchical
Token Ring (HTR) design 3
In this chapter, we first provided the design considerations and choices made based on the
previous discussion. Then, an overview of the proposed address fused HTR structure is
presented. Next, we briefly introduced each module in the address-fused HTR: address fuser,
Lserver, Hserver, request merger and data merger, Counter, and lastly, the output buffer.
Finally, we discussed the method we adapted in parameterizing the design.

3.1 Design considerations

We have considered the following requirements:

• The design should have an improved throughput to accommodate the high event rate
(>100 Meps as suggested by [31]) generated by high-resolution DVS.

• The design should not introduce significant timing inaccuracy to maintain the µs-range
temporal resolution in conventional DVS.

• The architecture of the design should exploit the spatiotemporal correlation between
events.

• The design must be scalable.

Considering various factors, we believe that among the introduced AER schemes, HTR is
the most fitting choice for integrating with the group-encoding that leverages spatiotemporal
correlations. While the binary arbiter tree is simple in structure and easy to scale, its random
arbitration makes it unsuitable for leveraging spatial correlation. The traditional token-ring
architecture, on the other hand, is efficient for transmitting multiple events but is considerably
slower for sparse events due to the extended token movement. This slowdown does not align
with our objective of minimizing temporal distortion. HTR strikes a balance by combining the
strengths of both, introducing an additional bypass layer to the token-ring for quicker token
movement across longer distances, ensuring optimal performance for both sparse and dense
event streams. Consequently, our approach involves refining the HTR scheme, leveraging
spatiotemporal correlations, and adapting HTR components accordingly.

3.2 Architecture overview

To exploit spatiotemporal correlations, we propose an address fuser that collects all events
within a certain spatiotemporal window, encodes them as a group, and then sends them
into the modified HTR scheme. The address fuser is connected to a region encompassing
multiple pixels, known as the sensing field, and any pixel within this field can trigger the
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Figure 3.1: Schematic diagram of the proposed address-fused HTR.

address fuser. Fig 3.1 illustrates the overall structure of the proposed asynchronous address-
fused HTR. The proposed design consists of several modules, namely the Address fuser, the
Low-level server (Lserver), the High-level server (Hserver), the Counter, the data
merger, the request merger, and the Output buffer. When an event is emitted in its
sensing field, as shown in step 1 in Fig. 3.1, the address fuser will store the event and wait for
a certain time t. During this time, it is able to collect more events from the sensing field, as
shown in step 2 in Fig. 3.1. This principle is the core idea of the proposed ”group-encoding”
principle. After the delay, it will send a request to the modified HTR along with the sampled
data, as shown in step 3. All ports in this design use bundled-data encoding because of its
better scalability efficiency in sending multiple bits (see section 2.2.1).

Fig. 3.2 provides an example that briefly describes the steps of sending events at once. In
this figure, each step illustrates the operation related to token movement with blue lines and
arrows, while operations related to pixel data are indicated by green lines and arrows. The
token in this design has the same function as the token in the token-ring introduced in section
2.3.2. There is only one token and only the Lserver holding the token can access the Output
buffer. During the Reset phase, one Lserver is reset to possess the token, while the other
Lservers or Hservers do not. For a clear description, only the address fusers and Lservers
involved in this event transmission, and the first and last Hserver are shown in Fig. 3.2. The
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four shown address fusers and Lservers are labeled with numbers from [0] to [3], and the
two shown Hservers are labeled with numbers [0] and [1]. In the Reset phase, the token is
initialized to Lserver[0]. The other steps are as follows:

1. When any pixel sends a request, it triggers the circuitry within the address fuser that
corresponds to the region to which the pixel belongs. From this first request, the address
fuser will accept other requests during a certain period of time. Once this period is finished,
the address fuser encodes the collected requests using bundled-data. The address fuser then
requests the Lserver with the data attached (green triangle in Fig. 3.2). In this example, the
Address fuser[2] requests the Lserver[2].

2. Then, Lserver[2] receives the pixel data from Address fuser[2] and sends a request to
Lserver[3] to request the token.

3. Since Lserver[3] does not possess the token, it will again request the token from its
neighbouring server, which is Hserver[1].

4. Because Hserver[1] or any of its Lservers still does not possess the token, it will request
the token from its neighbouring Hserver, this process continue until Hserver[0], which has the
token in one of its Lservers, is requested.

5. The Hserver with the token in one of its Lserver is requested, and then it requests the
token from the Lserver that possesses the token.

6. The token is moved in the opposite direction from which it was requested. To track the
token’s location, each movement of the token in the Lserver or Hserver causes an increment
in the corresponding counter. The increment is done by the request sent from the Lserver
or Hserver before moving the token. For example, Lserver[0] will request the shared counter
and then move the token to Hserver[0].

7. The token is moved to Lserver[2] that requested the token in the first place. Now
Lserver[2] is granted access to the output bus. The pixel data in Lserver[2] received from
address fuser[2] will then be sent to the output buffer via the data merger.

8. After the output buffer receives pixel data from Lserver[2] via the data merger, it will
request the shared counters for their current values to obtain the address of the Lserver
possessing the token. Now the final data including the pixel data and address of the address
fuser, which is represented by the number of times the token has moved, is in the output
buffer and ready to be sent with a 4-phase handshake protocol.

With the working principle above and supported by the ACT flow, the proposed design
can overcome the limited throughput and scalability issues for which asynchronous circuits
have not yet been shown to outperform synchronous designs. In terms of throughput, first
of all, the high-speed operation of asynchronous circuits ensures the event-driven and circuit-
delayed-based execution of each operation with low temporal distortion. Secondly, the use
of group-encoding increases the maximum number of events that can be sent each time.
Thirdly, the address fuser exploiting the spatiotemporal correlation of events increases the
encoding efficiency compared to the row/column-based group-encoding used by synchronous
designs. Finally, group encoding reduces the number of required Lservers per Hserver, thereby
easing fan-in requirements. The modularity and scalability of the proposed design are also
guaranteed as it is composed of multiple reusable modules, which can be easily reconfigured
to form the required size and structure thanks to the support of the ACT flow.
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Figure 3.2: Steps of sending grouped events at once in the proposed design.
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3.3 Address fuser

Figure 3.3: (a). Schematic of a 2-pixel address fuser. (b). The internal variables used in this
2-pixel address fuser.

The address fuser is the component directly connected to pixels. It can be connected to
multiple pixels, but for clarity, let us consider the example of two pixels: a and b as shown in
Fig. 3.3(a). a and b both use two wires to communicate with the address fuser, namely the
request wire (.r) and the acknowledge wire (.a). For the 2-pixel address fuser, the output o is
encoded with 2-bit bundled-data with the data lines o.d[0] and o.d[1]. When a pixel requests,
it sets request .r high and performs handshaking with the address fuser. After the request
passes through the address fuser, the encoded request in the sensing field will be outputted
through o. The encoding scheme is fairly simple, here o.d[0] and o.d[1] indicate whether a or
b have a request, respectively. To perform the encoding operation, three internal variables
are used, which are defined in Fig. 3.3(b). The CHP code of the address fuser is as follows:

CHP: [ (#a|#b)-> z+; // z is set high if there is request in a or b.

[[#a->o.d[0]+;a? [] ~#a -> va+], // Detect if there is request in a.

[#b->o.d[1]+;b? [] ~#b -> vb+]]; // Detect if there is request in b.

o!; // Send out the detection result via o.

o.d[0]-,o.d[1]-; z-;va-,vb-] //Resetting everything for the next round.

Here [X→... []Y→... ] is the format of so-called deterministic selection, which means one
and only one of the conditions X or Y is true and executed. The comma between operations
means that they are executed in parallel. The ”#” symbol represents a probe, which is used to
determine if there is a pending communication action on a port. For example, ”#a” indicates
querying whether ”a” is attempting to send. In QDI circuits, a probe is usually translated
into a wait instruction at the HSE stage. When the address fuser is triggered by the request
of a or b, z is pulled up. There is a delay line between the input (#a | #b) and the z variable,
which is not shown in the CHP as CHP only describes high-level communication. The details
of how the delay line functions in z can be found in Appendix A.1. In order to facilitate the
reader’s understanding, an example timing diagram of the address fuser, accompanied by its
corresponding CHP and annotated with step numbers, is presented in Fig. 3.4.
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Figure 3.4: An example timing diagram of the address fuser accompanied by its corresponding
CHP and annotated with step numbers.

3.4 Low-level server

The Lserver is connected to the address fuser, neighbouring Lservers, request merger, and
data merger. It is responsible for receiving pixel data from the address fuser, requesting the
token, requesting the shared counter to track the position of the token, and sending out the
pixel data. Compared to the CHP for the Lserver provided in [8], a new control flow is applied
to support the use of the address fuser.

Figure 3.5: (a). Schematic diagram of the Lserver. (b). The interconnection between Lservers
and address fusers. For brevity, the inputs of address fusers are omitted.

The structure of the Lserver is shown in Fig. 3.5(a), assuming that each address fuser is
connected to N pixels. It has five ports, namely R, U, C, D, and S, and an internal variable
b to represent if the Lserver possesses the token. The R and S ports are encoded in N -bit
bundled-data to transfer the N -bit data from address fuser, while the other three ports U, D
and C use a request (.r) and an acknowledge wire (.a) as they only involve handshaking and
not data transfer. The functions of each port and the internal variable are shown in Table 3.1.

Fig 3.5(b) shows the interconnections between Lservers and address fusers. For brevity,
the input of the address fuser is omitted. The R port is connected to the o port of the address
fuser, and the D port of the top Lserver is connected to the U port of the bottom Lserver.

28



Port name Function

R Receive request and data from the o port of the address fuser.

U Receive request for the token from another Lserver or Hserver.

C Request the counter to increase by 1

D Request the token from Lserver or Hserver

S Request the output buffer and send the received data

b Indicate whether the current Lserver has the token.

Table 3.1: Functions of each port and internal variable of the Lserver.

The C port and S port are connected to the request merger and data merger, respectively,
to access shared resources. The CHP code of the Lserver is as follows:

[|#R -> [b -> skip[]~b -> D!]; //If it receives a request from the

//address fuser and has the token,

//then skip, otherwise request.

b+; R?v; S!v; //Once the token is received, then

//receive the data from the address

//fuser and output it via the S port.

[]#U -> [b -> skip[]~b -> D!]; //If requested for the token, check if there

//is a token, If so, skip, otherwise request.

C!; b-; U?|], //Increase the counter and lose the token.

Here [|X→... []Y→... |] is the format of so-called non-deterministic selection, meaning
that more than one condition may be true at the same time and an arbiter is needed. This
non-deterministic selection is used for the input ports R and U because the data input from
the address fuser and the requests from the neighbouring Lserver could occur simultaneously.
In such cases, in order to ensure the circuit’s state is strictly correct, an arbiter is used. The
arbiter is able to select one of its inputs to execute and keep the other one waiting (the
working principle of an arbiter is introduced in Appendix A.2).

When theR port receives a request from the address fuser, the Lserver first checks whether
it has the token. If it does, it skips the request on D; if it does not, it passes the request to its
neighbouring Lserver or Hserver through the D port and once the handshake of D finishes,
b is set to 1. A value of 0 means no token, while a value of 1 means it has the token. Then,
the Lserver completes the handshake on the R port, receiving the pixel data from the address
fuser. Finally, it sends the data to the Output buffer via the S port. Here, v is a dummy
variable used to conform to the grammar of the CHP language, and it is used to indicate that
the data sent by the S port is identical to the data received by the R port.

When the U port receives a request, the Lserver also checks if it has the token. Similarly,
if it does, it skips the request on D; if it does not, it passes the request to its neighbouring
Lserver or Hserver through the D port. Once the handshake of D finishes, it requests the
shared counter to increment by 1 through the C port, and then it sets b to 0, indicating it
loses the token.

In order to understand how the Lserver requests tokens from other Lservers, the reader
needs to remember that the D port of the Lserver is connected to the U port of the neigh-
bouring Lserver. A simple example and flowchart are shown in Fig. 3.6 with red arrows

29



Figure 3.6: A simple example about requesting tokens between Lservers. The process is
shown on the left, and the interconnection of L1, L2, and L3 is shown on the right.

indicating the execution sequence. There are three interconnected Lservers L1, L2, and L3,
among which L3 has the token and the R port of L1 requests.

3.5 High-level server

The Hserver is connected to both Lservers and Hservers, acting as a bypass for token move-
ment. The ports of the Hserver are illustrated on the left side of Fig. 3.7. It has five ports,
which are U, UH, D, DH, and CH, and an internal variable b to represent the position of
the token. Its U and D ports are similar to those in the Lservers. They are connected to
the Lservers, which enables the token movements between Lservers and their Hserver. The
UH and DH ports of the Hserver serve similar functions except that they are connecting
Hservers with each other. The CH port serves as the port to access the shared counter for
Hservers. Since there is no multi-bit data transmission involved, all ports of the Hserver are
implemented with only two wires, namely the request wire and the acknowledge wire. The
CHP code of the Hserver has been provided in [8] and it is reused unchanged:

*[[| #U -> // Request from its Lserver.

[b=0 -> skip // If it has the token, skip.

[]b=1 -> D! // If b is 1, request the token from an Lserver.

[]b=2 -> DH!];b:=1; U? // If b is 2, request the token from other

// Hservers, and then set b=1 and finish
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Figure 3.7: (a). Schematic diagram of the Hserver. (b). The interconnection between Hservers
and Lservers.

// the handshake on U.

[] #UH -> // Request from another Hserver.

[b=0 -> skip // If it has the token, skip.

[] b=1 -> D! // If b is 1, request the token from an Lserver.

[] b=2 -> DH!]; // If b is 2, request the token from another

CH!; b:=2; UH? // Hserver, increase the counter, set b=2

|]] // and finish handshake on UH.

Similar to the Lserver, the U and UH ports in the Hserver may be requested simultaneously,
so non-deterministic selection is used. The variable b represents the token status in the
Hserver. The three possible values of b are as follows:

1. When b=0, it indicates that the Hserver holds the token.

2. When b=1, it means that one of its Lservers possesses the token.

3. When b=2, it means that neither the Hserver nor its Lserver has the token.

When theU port is requested by an Lserver, the Hserver will operate differently depending
on the value of b. If b=0, it skips requesting the token and sets b to 1, indicating that the
token is now in one of its Lservers; if b=1, it will request the token from the first of its
Lservers; if b=2, then it will request the token from other Hservers via the DH port and the
handshake of DH will not be completed until it finds the token. Regardless of the situation,
the result at the end must be b=1, that is, the token is moved to one of its Lservers. Lastly,
the handshake on the U port will be completed.

When the UH port is requested by another Hserver, similarly, the Hserver will operate
differently depending on the value of b. If b=0, it skips and sets b to 2, indicating that the
token has been passed to another Hserver; if b=1, it will request the token from its Lserver;
if b=2, it will continue to requests token from other Hservers. The result at the end must
be b=2, that is, the token is moved to another Hserver, and the shared counter of Hservers
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Figure 3.8: A simple example about requesting tokens between Lservers via Hservers. The
process is shown on the left, and the interconnection of L1, L2, L3, L4, H1, and H2 is shown
on the right.

will be requested to record the position of the token. Lastly, the handshake on the UH port
will be completed

As we did for Lserver, we also provide a simple example flowchart shown in Fig. 3.8
with red arrows indicating the execution sequence to help the reader understand the working
principles of the Hserver. There are two interconnected Hservers, H1 and H2, and their
Lservers L1, L2, L3, and L4, among which L4 has the token and L1 requests it.

3.6 Request merger and data merger

A module that can effectively handle the situation where multiple modules need to access the
same shared resource is needed in the proposed address-fused HTR. For example, all Lservers,
as well as Hservers, will access the corresponding shared counter every time they move the
token in order to track its position. Also, when an Lserver acquires the token and tries to
send out the pixel data, it needs to access the shared Output buffer. While also needed in
the original HTR scheme [8], no specific implementation was proposed, hence we propose our
solution here.

Fig. 3.9(a) shows the structure of the request merger module. The request to access the
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Figure 3.9: Schematic of the (a). request merger module and (b). data merger. The major
difference between a data merger and a request merger is that for a data merger, a delay
needs to be added to the ’out.r’ OR gate tree to ensure that it propagates slower than the
data.

counter from an Lserver or an Hserver will not be directly connected to the OR-gate tree
but will be connected to a buffer first. This is because if the handshake with the counter is
performed directly through the OR-gate tree, since the acknowledge signal of the counter is
shared by all, the C ports of Lservers would be directly interconnected with each other, while
the CH ports of Hservers would also be interconnected, which is dangerous. For N inputs
from servers, the request merger consists of N buffers and an OR-gate tree with N inputs.
The C ports of Lservers (or the CH ports of Hservers) are connected to the in ports of the
buffers, and the output request wires of the buffers are connected to the inputs of the OR-gate
tree. The output acknowledge wires of all buffers are connected to a single acknowledge wire
from the shared counter. The tree formed by the 4-input OR gate shown in Fig. 3.9(a) is just
an example. The design and sizing of the OR-gate tree is flexible and can be optimized based
on specific cases.

The data merger is similar to the request merger, so they are introduced together. The
function of the data merger is to ensure quick and conflict-free accesses from the S ports of
all Lservers to the output buffer. As shown in Fig. 3.9(b), the key difference with the request
merger is two-fold: (i) it requires an OR gate tree for all data, and (ii) the handshaking OR
gate tree contains a delay to ensure that the data arrives first.

An example flowchart shown in Fig. 3.10 is provided to illustrate the workflow of request
merger and data merger. When out.r and out.d[N] are propagated through the OR-gate
tree, out.r may propagate faster than some of the bits of out.d[N], causing erroneous data
received by the Output buffer. The delay lines in the OR-gate tree of out.r are used to ensure
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that out.r always arrives at the Output buffer later than out.d[N]. For this reason, we delay
the output of each OR-gate in the OR-gate tree for out.r with a delay line of 1 ns.

Figure 3.10: The workflow of request merger and data merger.

The buffer used in the request merger is the same as the one in the example of Section
2.2, and the implementation details of the buffer can be referred to in Fig. 2.5. The CHP
code for the buffer is as follows,

*[in?;out!] // If ’in’ is requested, immediately

// send this request via ’out’.

The CHP code for an N-bit buffer used in the data merger is as follows:

*[in?n;out!n] // If ’in’ is requested, receives data

// and immediately send this data via ’out’.

Here, ’n’ is a dummy variable used to conform to the grammar of CHP language, indicating
that the data sent via the out port is the data received by in port. The S ports of Lservers
are connected to the in port of N-bit buffers. The function of this buffer is to accept all the
input data immediately from the in port and send it via the out port. To transfer correct
data with the buffer, it should be guaranteed that the output data out.d[N] is correct before
out.r is pulled up. To ensure this, a small delay is added to out.r to delay the execution of
out.r+ (the complete HSE code can be referred to in Fig. 2.5). The example timing diagram
of the buffer that transmits n-bit data is shown in Fig. 3.11:

3.7 Counter

To track the address of the L/Hserver that possesses the token, a simple ripple carry-based
counter is used, as shown in Fig. 3.12. The increment of the counter is designed to match
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Figure 3.11: Example timing diagram of the N-bit buffer.

each request made by an L/Hserver when moving the token. In this way, the value of the
counter corresponds to the position of the token. In this project, a simple ripple carry counter
based on [32] is used.

Figure 3.12: Schematic diagram of the counter.

There are three ports: A, E, and o, along with an internal variable b. As shown in
Fig. 3.13, the A port is connected to the output of the request merger and receives increment
requests from an L/Hserver. The E port is connected to the E port of the Output buffer,
which controls when the counter will output its value. Lastly, the o port is connected to the
C1/C2 port of the Output buffer, and is responsible for outputting the current count value,
b, with o.d[x] . The variable b is an x-bit internal variable that keeps track of the current
value of the counter. The value of x is determined by the number of Lservers and Hservers.
For instance, with 8 Hservers, a 3-bit b is required to represent the token’s position among
Hservers. The CHP of the counter is as follows:

*[[#A -> b:=b+1 ;A? //When there is a request from an L/Hserver,

//make b=b+1, and finish the handshake.

[]#E -> o!b;E?]]} //When there is a request from the output buffer,

//send out the data and finish the handshake.

The function of this counter is very straightforward. It has only two functions: 1) When
A receives the request, it will increment itself and record the data into b. 2) When E receives
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the request, it will send the data b out from o port.

Figure 3.13: Schematic diagram illustrating the interconnections between the counter, Output
buffer, and other modules.

3.8 Output buffer

Figure 3.14: Schematic diagram of the Output buffer.

The purpose of the Output buffer is to receive data from the data merger and values in
the counter for the final output. The final output data consists of the grouped pixel data and
the address of the token. As illustrated in Fig. 3.13, the R port is connected to the out port
of the data Merger. The E port is connected to the E port of the shared counters of both
Lservers and Hservers. C1 and C2 are respectively connected to the o port of the shared
counters of Lserver and Hserver. Finally, the O port, representing the final output of the
design, is connected externally. The ports and internal variables of the Output buffer are
shown in Fig. 3.14 and the CHP code of the Output buffer is as follows:
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*[[#R-> R?a; // Receive pixel data and store in variable a.

E!; // Requesting two counters for token address.

C1?b,C2?c; // Receive the token address from C1 and C2 port.

O!(a,b,c)] // Output the pixel data and corresponding token address.

3.9 Parameterization of the design

Figure 3.15: Schematic diagram of the parameterized address-fused HTR, with the parameters
t, N, Y, and Z highlighted in red.

In Section 3.3, we only introduce a 2-pixel address fuser for clarity, but the spatiotemporal
window of the address fuser is configurable. Also, the number of Lservers in each Hserver is
configurable as well. Different application scenarios require different spatiotemporal windows
and indeed, configuration of HTR topology. To quickly adjust the address-fused HTR, we
parameterized the entire design. For a total of P pixels and an address fuser delay of t,
we assume that the number of pixels in the sensing field of each address fuser is N, that Y
Lservers belong to each Hserver, and that there are Z Hservers in total. They follow the
relationship of P = N × Y × Z, and the corresponding schematic diagram is shown in
Fig 3.15.

In the ACT process, similar to most programming languages, there are built-in parame-
terization features that allow for module generation using parameters. We used this feature
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and parameterized the PRS of every module including the length of the delay line in the
address fuser. However, the connections between these modules cannot be automated by the
tools in the ACT flow. To solve this issue, a simple program has been written in Python for
this project. It can generate the corresponding interconnections between the parameterized
modules. In this way, the PRS of an address-fused HTR for N pixels with a temporal window
of t can be easily generated by specifying (t,N,Y,Z). This can provide good scalability for
our design and ease our simulations in the next chapter.
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Results and discussion 4
4.1 Overview

This chapter presents the simulation results and the discussion. Simulation results include
switch-level and transistor-level simulation, layout and verification of the address fuser, and
a comparison between conventional HTR and the proposed address-fused HTR with 16, 64,
and 256 inputs, under different input behavior modes. Lastly, the discussion of the results is
presented.

4.2 Verification of the design

4.2.1 Simulation setup

The PRS of a (2,2,2,2) example generated with the parameterization method mentioned in
Section 3.9 is used to verify the correctness of our design. The generated PRS is converted into
a switch-level netlist and a transistor-level one. Then, the netlists are simulated with Irsim
and Xyce, for switch- and transistor-level simulation, respectively. The schematic diagram of
the example is shown in Fig. 4.1. It consists of two Hservers, two Lservers for each Hserver,
and each address fuser is connected to two pixels with a temporal window of 2 ns. We make
three pixels, p[2], p[3], and p[4], request simultaneously after the Reset phase and observe the
behavior of our design. The operations that happened in the Reset phase can be referred to
in Section 3.2 and Fig. 3.2.

4.2.2 Switch-level simulation

The process of token movement between Lservers and Hservers, as described in their HSE in
Appendix A.3 and A.4, involves a large number of variables. In order to allow readers who are
not familiar with the detailed HSE and PRS of the whole architecture to grasp the workflow
of our design, visualization and a subset of representative signals are shown in Fig. 4.2. The
signals of interest include the external input request and acknowledge signals for p[2], p[3],
and p[4] (p[2].r, p[2].a, p[3].r, p[3].a, p[4].r, p[4].a), the stored pixel data in theOutput buffer
(out[0], out[1]), the request signals to the shared Counters via the request merger (c1.A.r
and c2.A.r), as well as the signals from the Output buffer used to request the internal values
of the two shared Counters (c1.E.r, c2.E.r). The waveform at the bottom of Fig. 4.2 shows
the switch-level simulation results obtained using Irsim and the corresponding steps in the
workflow are marked in red font.

In the switch-level simulation, the design is shown to operate correctly. While switch-
level simulation offers a fast and accurate behavioral simulation of the system, it is based
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Figure 4.1: Schematic diagram of a simple 8-input address-fused HTR structure. The signals
of interest are marked in red.

solely on simplified transistor models and does not take into account the complex transistor-
level phenomena that may be introduced by arbiters and weak keepers (see Section 2.2.2.4).
Therefore, transistor-level simulation is also necessary to validate the system.

4.2.3 Transistor-level simulation

In the transistor-level simulation, we replaced the original switch model with CMOS transis-
tors from the Skywater 130nm PDK [24]. The Skywater 130nm PDK is an open-source PDK
and well-supported by the ACT flow. With the same input scenario and the same signals of
interest, transistor-level simulation is performed, and results are shown in Fig. 4.3.

As per the test setup, the requests for p[2], p[3], and p[4] are simultaneously pulled up at
t=2.5 ns. After the requests are acknowledged by the corresponding address fusers, they are
then pulled down at t=10 ns. To facilitate a straightforward comparison between switch-level
and transistor-level simulation results, we have annotated the numbers corresponding to the
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Figure 4.2: Workflow and timing diagram of an 8-input address-fused HTR when p[2], p[3],
and p[4] request simultaneously. The sequence numbers in the timing diagram correspond to
the steps in the workflow and the signals of interest are highlighted in red. These results were
obtained from a switch-level simulation, hence time is shown with arbitrary units (a.u.).
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Figure 4.3: Transistor-level simulation results. For clarity, the numbers at the bottom corre-
spond to the steps presented in the switch-level simulation.
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steps presented in the switch-level simulation at the bottom of Fig. 4.3. It can be observed
that the order of appearance of the signals is exactly the same as simulated in the switch-level
simulation. This result confirms the circuit’s integrity when the transistor-level effects, such
as those in arbiters and weak keepers, are considered in the design.

We can also see some non-idealities in the circuit. For example, slow rise and fall times
due to load, signal overshoot, and undershoot due to frequency response, etc. They did
not make the operation of the design erroneous but are still worthy of attention. These
non-idealities are largely due to the sizing of transistors. Bad sizing will produce non-ideal
effects, affect performance, and even make the circuit unable to operate if the sizing is not
large enough to drive the next-level signal in the QDI circuits. However, in the ACT flow,
we do not directly design the size of a single transistor, but specify the drive strength of
the PRS for sizing (the sizing method in the ACT flow can be referred to Appendix A.5).
In contrast to the well-established optimization techniques for synchronous circuits, modern
design tools for asynchronous circuits, including the ACT flow, do not have an effective
solution to automatically optimize the driving strength for the whole system. In our design,
we employ the minimal unit drive strength for all signals, excluding the output requests within
each module. For those output requests, we allocate double the unit drive strength. This
allows the circuit to function properly but might not be an optimal setup. How to optimize
the drive strength as a whole for large-scale asynchronous circuits is still an ongoing research
topic.

4.2.4 Layout and routing of address fuser

Following the process of the ACT flow, we used Magic VLSI [25], Dali [26], and TritonRoute
[27] to complete the layout and routing with the Skywater130 PDK. Due to the large number
of cells that need to be manually drawn in asynchronous circuits and the limited time, we only
demonstrate the layout and routing of the key module, an example address fuser with two
inputs. The layout of a 2-input address fuser in the Magic VLSI and its schematic diagram
is shown in Fig. 4.4.

As mentioned in Chapter 2, the needed cells are first generated by prs2sim in the ACT
flow, which are the blocks named abc acx* on the left side of Fig. 4.4. These automatically
generated cells are incomplete, as they do not contain connections between ports. Hence,
designers are required to handcraft the layout for each cell using both metal1 and metal2
layers. An example cell ’abc acx3’ is shown on the bottom right of Fig.4.4. The layout of a
2-input address fuser includes a total of 147 transistors, with automated placement by Dali
with a density of 0.58. The routing of the third metal layer (metal3) and fourth metal layer
(metal4) was completed by TritonRoute and four metal layers in total were used in the layout
process. After manually rectifying a few DRC errors that arose during the routing phase,
we obtained the final layout of the 2-input address fuser, of which the area is 35.5 µm by
30 µm. For the post-layout simulation and final check, we used Magic VLSI and ACT to
generate the netlist of the address fuser and compared it with the result in the pre-layout
simulation by manually setting r[1].r high at t=4ns. The r[1].r here is a wire of the address
fuser, connected to the request emitted from an external pixel. Given that the internal module
signal execution sequence delves into specific PRS translation, we have included the PRS code
of the address fuser in Appendix A.1 and conducted a side-by-side analysis in Fig. 4.5, which
presents the transistor-level simulation results of active signals from both pre-layout and post-
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Figure 4.4: Layout of a two-input address fuser with the Skywater130 PDK, viewed in Magic
VLSI, and its corresponding schematic diagram. The abc acx* names are auto-generated cell
names.

layout netlists, placed side-by-side with pre-layout results in black and post-layout results in
red.

Most signals align closely with the pre-layout simulation results. However, the fall time of
o.r deviates by approximately 1 ns from its pre-layout counterpart. This can be attributed to
the parasitic capacitance and parasitic resistance in the layout. However, because of the quasi-
delay insensitivity characteristic of QDI circuits, such delays impact only the performance and
not the correctness of the circuit operations.

4.3 Comparison between address-fused HTR and conventional
HTR

In comparison to the HTR proposed in [8], the proposed address-fused HTR introduces the
address fuser, extra control logic in Lserver, as well as the request merger, data merger, and
Output buffer. Conversely, the address-fused HTR can send multiple events within the defined
spatiotemporal window at once, reducing the number of transactions required. In order to
fairly evaluate the proposed scheme, we also implemented the HTR structure proposed in [8]
with the same Skywater 130nm PDK and compared it with the proposed address-fused HTR
under different input scenarios. As shown in Fig. 4.6, these input scenarios include a single
event located in the middle of the input pixel frame, simultaneous requests from half of the
pixels in the middle of the input pixel frame (half frame), and simultaneous requests from all
pixels (full frame). Furthermore, though not shown in Fig. 4.6, the random events scenario
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Figure 4.5: Comparison of Spice pre-layout and post-layout simulation results for the of the
two-input address fuser. The pre-layout results are in black, while the post-layout results are
in red.

and clustered events scenario are also included.

The parameterization method in Chapter 3 (section 3.9) is used. ForN×Y×Z inputs with
a temporal window of t nanoseconds in address fuser, the address-fused HTR is represented
by (t, N, Y, Z), where N is the data width in each address fuser (i.e., the number of
connected pixels in each address fuser), Y is the number of Lservers in each Hserver, and Z
is the number of Hservers. On the other hand, the conventional HTR is parameterized by
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Figure 4.6: Schematic diagram of the three tested input scenarios, a single event, a half frame,
and a full frame of (a). Proposed address-fused HTR, and (b). Conventional HTR.

(Y, Z), where Y is the number of Lservers in each Hserver, and Z is the number of Hservers.
Based on the findings in [8], for the conventional HTR, we select Y = Z to achieve a balanced
performance across various input scenarios.

Figure 4.7: Single-event scenario: overall latency of the conventional HTR and our proposed
design.

We begin with the input scenario of a single event, with results illustrated in Fig. 4.7. It
is evident that the latency of our proposed design is consistently higher by approximately 18
ns compared to the conventional HTR. This delay primarily stems from two sources: firstly,
the latency within the address fuser. In this example, with a 10 ns temporal window set
in the address fuser, requests from pixels already experience a 10 ns delay before reaching
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the Lserver. The second component of the delay is the additional control logic, such as the
need in our design to route pixel data from the address fuser through the data merger to
the output buffer after the Lserver has acquired the token. It is noteworthy that this delay
remains almost constant, irrespective of the increase in input activity.

Figure 4.8: Half-frame scenario: overall latency of the conventional HTR and our proposed
design.

In the context of the half-frame input scenario, the results are depicted in Fig. 4.8. Our
proposed design exhibits a significant reduction in the required time compared to the conven-
tional HTR, which is accentuated with the growth in input count: for 16 inputs and X=2,
our design outperforms the original by approximately 28%; for 256 inputs and X=16, it ex-
ceeds the original performance by 52%. This pronounced advantage is attributed to the high
spatiotemporal correlation in the half-frame scenarios. The address-fused HTR encodes and
transmits multiple events simultaneously, substantially reducing the number of transmissions,
which consequently mitigates the overhead of the control flow in the address fuser. Meanwhile,
the delay introduced by the temporal window of the address fuser becomes less pronounced.
Therefore, the speed benefits of the address fuser increase with the input activity and the
number of pixels per address fuser (N).

The results for the full-frame input scenario corroborate our aforementioned discussion,
as illustrated in Fig. 4.9. Still, with the presence of a high spatiotemporal correlation in the
inputs, both the conventional HTR and address-fused HTR transmit double the events of the
half frame roughly twice the time.

Since the aforementioned benchmarks were conducted under high spatiotemporal corre-
lation conditions, we further tested our proposed design and the conventional HTR under
a random-event scenario and a scenario with a moderate spatiotemporal correlation with
the 256-input configurations. Both of these scenarios comprised ten pixel requests. In the
random-event configuration, ten events were generated by a simple random number genera-
tor with values ranging from 0 to 255, yielding the following ten numbers: 134, 70, 17, 188,
197, 143, 179, 249, 105, and 132. Conversely, the scenario with a moderate spatiotemporal
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Figure 4.9: Full-frame scenario: overall latency of the conventional HTR and our proposed
design.

correlation featured a 2x5 event cluster. We postulated that the temporal window employed
was long enough to encompass this 2x5 event cluster. To simulate a typical scenario, this
2x5 event cluster was placed at the juncture of four neighbouring address fusers, as shown in
Fig. 4.10(a). Under these two input scenarios, the time required for the proposed design and
the conventional HTR are shown in Fig. 4.10(b).

Figure 4.10: (a). Schematic representation of the 256-input configuration, the 4×4 sensing
field in the address fuser, and the 2×5 event cluster positioned at the intersection of four
adjacent address fusers, with random events highlighted in green. (b). Time needed for
event transmission in the random-event scenarios and those with moderate spatiotemporal
correlation for both the conventional HTR and our proposed approach.

In both the random-event scenario and the moderate-correlation scenario, our proposed
design consistently outperforms the conventional HTR in terms of the required time. In
the random-event scenario, there are two main reasons for which the address-fused HTR

48



has a more favourable latency. Firstly, it effectively groups events 134, 143, 132, and 179,
197 together, thereby reducing the transmission count from ten to seven. Secondly, with
fewer Lservers and Hservers needed, the token movement among these events is expedited.
In contrast, the conventional HTR requires ten separate transmissions and a longer token
travel time, leading to nearly double the processing time. Interestingly, in the scenario with a
moderate spatiotemporal correlation, the advantage of our design over the conventional HTR
becomes less pronounced. This is due to our design transmitting the event cluster in four
times since it spans four address fusers. Even though the conventional HTR still needs ten
transmissions, the closeness of these requests results in shorter token movements, improving
efficiency.

Overall, at the exception of the single-event scenario, the proposed address-fused HTR
design is able to exploit spatiotemporal correlation in a broad range of scenarios and consid-
erably outperform the conventional HTR scheme.

4.4 Software verification of spatiotemporal correlation

To understand the influence of spatiotemporal window dimensions on the event reduction
rate, we conducted experiments with the Neuromorphic-MNIST (N-MNIST) dataset [33].
The NMNIST dataset is an artificially generated event dataset based on the conventional
MNIST dataset of handwritten digits at the same visual scale (28x28 pixels). Given that the
NMNIST dataset is an early small-scale dataset that may not reflect high-speed scenarios, we
accelerated it to achieve an event rate of 166 Meps, which surpasses the event rate observed
in noisy environments as reported in [28]. We test a random sample with the digit ’9’ and
obtain the results shown in Fig. 4.11.

Figure 4.11: Trend of the event reduction rate as the size and shape of the spatio-temporal
window changes.
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Where the event reduction rate is calculated by :

Event reduction rate = (1− Number of transmissions

Total number of events
)× 100% (4.1)

In Fig. 4.11, the legend 4x4, 5x5, 7x7, and 28×1 refer to the shape of the spatial windows. For
instance, when using the 28x28 NMNIST dataset, a 4x4 window implies that the dataset will
be divided into 7x7 pitches of 4×4 pixels each. The x axis denotes the size of the temporal
window, which is essentially the span of time during which the address fuser can sample
and transmit data collectively. It is evident that the event reduction rate increases with the
size of the spatiotemporal window, while this increase gradually flattens out. Among these
spatiotemporal windows, the conventional row/column-based 28x1 spatial window proves to
be the least efficient when transmitting the NMNIST dataset. It encompasses 28 pixels, yet
its event reduction rate is slightly below that of the 4x4 window which only encompasses 16
pixels.

4.5 Discussion

Figure 4.12: Performance comparison the between binary arbiter tree scheme, the token-ring
scheme, and the proposed address-fused HTR compared with the conventional HTR scheme.
Summarised from [8].

This research started with the proposition of a novel asynchronous AER interface that
capitalizes on spatiotemporal correlations between events, aiming to combine the benefits of
enhanced throughput while maintaining high temporal precision. To evaluate our results, we
implemented the conventional HTR as described in [8], using the Skywater 130nm process.
Combining our results with the findings in [8], where the conventional HTR is contrasted with
the binary arbiter tree scheme and token-ring scheme under a 65nm process, we developed the
comparative analysis presented in Fig. 4.12. This comparison is grounded on two assumptions:

1. We overlook circuit-level optimizations, like the sizing of the asynchronous circuits,
focusing more on the architectural comparison rather than detailed circuit implementations.
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2. We assume that the relative latencies of the compared schemes are primarily determined
by their architectures rather than the technology node. Their relative latencies should not
exhibit significant variations under different processes.

Under these two assumptions, the proposed address-fused HTR shows clear advantages
in overall performance. In single-event scenarios, our design introduces an additional time
of 18% when the temporal window of the address fuser is set to 10 ns compared to the
conventional HTR scheme. This trade-off results in nearly double the throughput in the
half-frame, full-frame, and random-event scenarios, as well as in scenarios with a moderate
spatiotemporal correlation. Compared to the token-ring design, ours is faster in the half-
and full-frame scenarios and also better for single-event transmissions, establishing itself as
a clear winner. When benchmarked against the binary arbiter scheme, our design exhibits
a seven-fold latency penalty for single-event transmissions when the temporal window is set
to 10ns. However, as the number of events increases, our design achieves approximately five
times the speed. Thus, provided that the single-event transmission delay of our design meets
specific requirements, it stands out as offering the most favourable trade-off among the three.
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Conclusion 5
In this chapter, we revisit the initial design motivation and objectives, then conclude the work
and results of this thesis, and propose directions for future research.

5.1 Claims

To reconcile the dual objectives of achieving high temporal precision while also delivering
robust throughput, we designed a novel asynchronous AER interface based on the HTR
architecture that can capture events within a certain spatiotemporal window, using the open-
source ACT asynchronous digital design flow. It makes the following advances over the
prevalent binary arbiter-tree, token-ring, and HTR:

1. Striking a balance between high throughput and low temporal distortion:
Our design, when compared to the conventional HTR, achieves roughly double the throughput
for multi-event transmissions at the expense of an 18% efficiency penalty in single-event
transmission for a temporal window of 10 ns. Furthermore, in comparison with the token-
ring scheme, our design not only outperforms in single-event transmissions but also in both
half and full-frame scenarios. This advantage firmly establishes its superiority over the token-
ring scheme. In contrast to the binary arbiter scheme, our design faces a seven-fold latency
penalty for single-event transmissions with a temporal window of 10 ns. Yet, when the event
count rises, the latency of our design is roughly one-fifth that of the binary arbiter scheme.

2. Leveraging the spatiotemporal correlation of events with a customizable
spatiotemporal window: Unlike the traditional row- or column-based AER interfaces, our
design captures events within a customizable spatiotemporal window to reduce the required
number of transmissions. Software simulations on the NMNIST dataset indicate that the
customizable spatiotemporal window, specifically a 4×4 window, achieves over 1% better
event reduction rate than traditional 28×1 row/column-based windows, even while being
42% smaller in size. To the best of our knowledge, we are the first to integrate the address
fuser, which exploits spatiotemporal correlations within a given window, with AER circuits.

In summary, while there remains room for optimization in transistor sizing and the se-
lection of spatiotemporal window dimensions, our design effectively balances throughput en-
hancement while maintaining temporal precision. This aligns with our aim to combine the
benefits of improved throughput without sacrificing high temporal precision.

5.2 Future work

Several areas in our work are identified that could benefit from further exploration:

• The binary arbiter tree scheme and the synchronous row-scanning scheme should be im-
plemented using the same Skywater 130nm process to allow for an unbiased comparison
with our design.
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• The transistor sizes in our design can be further optimized based on criteria such as
area, speed, and balanced configurations. For now, only a simple operating design point
was demonstrated.

• The effectiveness of the design can be further evaluated using larger, more complex, and
longer-duration datasets. For instance, the dataset in [28] captures challenging night-
time urban driving scenarios, while the dataset from [34] presents high-speed bullet
scenes. Using these varied datasets can provide a more comprehensive assessment.

• This design can be applied to other domains requiring point-to-point transmission across
multiple nodes rather than just DVS. We have already identified its potential for count-
ing photons of varying energies [35]. In this context, hundreds of sensors asynchronously
receive photons and emit different numbers of spikes in different channels based on their
energies. Our design may have the potential to be used in photon energy readout by
making slight modifications to the address fuser.
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Appendix name A
A.1 HSE and PRS of address fuser

The HSE of the a 2-input address fuser is as follows:

HSE: [(r0.r|r1.r)->z+;

[r0.r->o.d[0]+;r0.a+;

[] ~r0.r->vr0+],

[r1.r->o.d[1]+;r1.a+;

[] ~r1.r->vr1+],

o.r+;[o.a];o.d[0]-,o.d[1]-;

vr0-,vr1;z-; o.r-;

[~o.a&~r0.r&~r1.r];

r0.a-,r1.a-; ]]

The PRS of the a 2-input address fuser is as follows:

PRS:

delay_line<2> dl(_z,_2z); //Place a delay line of 2ns

//between _z and _2z.

~_r0_r & ~o2_r & ~o.a & ~_2z & ~vr0-> r0.a+

_r0_r & _o_r & _2z & _o_a -> r0.a-

~_r1_r & ~o2_r & ~o.a & ~_2z & ~vr1-> r1.a+

_r1_r & _o_r & _2z & _o_a -> r1.a-

~_Reset |(~_o_a & ~vr0 & ~vr1) -> _z+

_Reset & (r0.r | r1.r) & _r0_a & _r1_a -> _z-

~Reset & ~_r0_r & ~o2_r & ~o.a & ~_2z & ~vr0 -> o.d[0]+

Reset |(o2_r & o.a)-> o.d[0]-

~Reset & ~_r1_r & ~o2_r & ~o.a & ~_2z & ~vr1 -> o.d[1]+

Reset |(o2_r & o.a)-> o.d[1]-

(~_vr0|~_r0_a) & (~_vr1|~_r1_a) & ~o.a & ~_2z -> o_r+

_2z -> o_r-

~Reset & ~r0.r & ~r0.a & ~o2_r & ~o.a & ~_2z -> vr0+

Reset |(o2_r & o.a)->vr0-

~Reset & ~r1.r & ~r1.a & ~o2_r & ~o.a & ~_2z -> vr1+
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Reset |(o2_r & o.a)->vr1-

Reset=>_Reset- // It means that _Reset is the inverted version of Reset.

r0.r => _r0_r-

r1.r => _r1_r-

r0.a => _r0_a-

r1.a => _r1_a-

vr0 => _vr0-

vr1 => _vr1-

o.a => _o_a-

o_r => _o_r-

_o_r => o2_r-

A.2 Working principle of the used arbiter

This arbiter consists of an input NAND gate pair and a NOR gate pair utilizing transmission
gate logic. The input NAND gate pair allows that when both inputs are high, one of ’ r’ and
’ u’ is set low, where a low ’ r’ indicates that ’a’ is selected, and a low ’ u’ indicates that ’b’ is
selected. As this selection process might take a while, a NOR-gate pair is used as a stabilizer
in the output to ensure that the arbiter consistently outputs either a high or low-level voltage.

Figure A.1: Schematic of a common arbiter, where ’a’ and ’b’ are the inputs and they could
possibly be both true. ’ r’ and ’ u’ represent whether ’a’ or ’b’ is selected by the arbiter
respectively, and there is at most one of them that is low. ’r’ and ’u’ are the inverted forms
of ’ r’ and ’ u’ after stabilization, with at most one of them being high.

A.3 HSE of Lserver

The HSE of the Lserver is as follows:
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HSE: *[[| R.r -> r+; [~R.r]; r-

[] U.r -> u+; [~U.r]; u-

|]],

*[[r ->[w -> skip // (w,v): dual-rail encoding of b.

[]v -> d.r+;[d.a];w+;d.r-;[~d.a]];

v-;s.d[n]=r.d[n],s.r+;[s.a];

R.a+;[~r];s.r-;[~s,a];R.a-

[]u -> [w -> c.r+;[c.a];U.a+;[~u];

[]v -> d.r+;[d.a];U.a+;[~u];d.r-;[~d.a];c.r+;[c.a]

];w-,v+;U.a-;c.r-;[~c.a]

]]

A.4 HSE of Hserver

The HSE of the Hserver is as follows:

HSE :

*[[| u.r -> a+; [~u.r]; a-

[] uh.r -> c+; [~uh.r]; c-

|]],

*[[a ->

[ ~b1 & ~b2 -> u.a+;[~a]; // (b2,b1): bundled-data encoding of b.

[]b1 & ~b2 -> d.r+; [d.a]; u.a+;[~a];d.r-; [~d.a]

[]~b1 & b2 -> dh.r+;[dh.a];u.a+;[~a];dh.r-;[~dh.a]

]; b1+, b2-; u.a-

[]

c ->

[ ~b1 & ~b2 -> ch.r+;[ch.a];uh.a+;[~c];

[]b1 & ~b2 -> d.r+; [d.a];uh.a+;[~c];d.r-;[~d.a];ch.r+;[ch.a];

[]~b1 & b2 -> dh.r+;[dh.a];uh.a+;[~c];dh.r-;[~dh.a];ch.r+;[ch.a];

]; b1-, b2+;uh.a-;ch.r-;[~ch.a]

]]

A.5 Sizing in the ACT flow

Sizing in ACT requires manual definition by the designer, rather than automatic optimization
by EDA tools as in synchronous circuits. The manual definition method involves specifying
P/N ratios and driving strength. For example:

PRS of a NOR gate:

~a<20> | ~b<20> -> c+

a<20> & b<20> -> c-

Here the width of the NMOS and PMOS of variables a and b are manually specified.
But specifying the width of all the transistors one by one is simply unrealistic for large-scale
design. Therefore, the sizing in ACT is usually done by specifying the driving strength of the
output variable. For example, the above PRS will be replaced with:
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PRS of a NOR gate:

a & b -> c-

~a | ~b -> c+

sizing{c{-1}}

The sizing{} here is used to specify the sizing (i.e. driving strength) of the output. The
negative sign in -1 refers to the pull-down network, and 1 refers to a driving strength of 1.
In this way, sizing{c{-1}} commands the tool to adjust the sizes of the PMOS and NMOS
transistors inside the PRS of c to achieve a driving strength of 1 unit.
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