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Abstract
At crime scenes, various methods can be used to determine how much time has passed since the act
happened, for example a body left at the scene, camera footage or eye witnesses. In this thesis, how-
ever, a different method shall be used to determine the time of the crime. The time will be determined
using blood evidence.

To be exact, the goal of this thesis is to analyse the aging of bloodstains through colour analysis, and
constructing a Bayesian network (BN) which can accurately make predictions on the time of deposition
of a bloodstain.

The data used for the construction of the BNs was obtained from images provided by the Leiden In-
stitute of Physics (LION). To obtain the data, the bloodstains in the images first need to be isolated from
the background. Afterwards, the bloodstains are split into two parts: the inner part of the bloodstain and
the complete bloodstain. Both the isolation and the splitting are done using a method called masking.
Afterwards they can be converted to RGB (red, green, blue) values and using these RGB values, the
following data can be collected for each colour channel of both the inner part of the bloodstain and the
whole bloodstain: mean, min, max, variance, and the 5%, 20%, 50%, 80% and 95% quantiles.

Using various subsets of the data, BNs can be constructed. The structure of the BN is determined
using a structure-learning algorithm called hill-climbing . To determine the validity of a given structure
k-fold cross-validation can be performed using a given loss function. In this thesis, k=5 has been used,
and the Mean Squared Error (MSE) has been taken as the loss function. Upon comparison of the
MSE, it seems that the best model is given by the red values of a bloodstain. However, even the best
performing model found in this thesis still has a considerably poor performance as the BN for the red
variables has an MSE of 15149.81.
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1
Introduction

Time is of the essence in crime scene investigations. Be it homicide or kidnapping, knowing how much
time has passed since the incident can provide investigators with crucial information, which can con-
tribute to an arrest or even a conviction. There are many methods to determine the time of the crime
[14]. For a homicide, one of the most common methods would be using the body. However, when a
body is absent, investigators will be required to analyse other pieces of evidence. One possible option
being blood remains which could have been left at the site.

Research on the connection between blood and time has been attempted ever since 1907 [13], and
since then countless attempts have been made to find a method to trace a bloodstain’s age. However,
no method has yet been found with sufficient accuracy and validation [14]. Initially, research on the
time since deposition focused on the macroscopic changes of blood, i.e. the changes which are visible
to the naked eye. For example the colour of the blood [13], and the solubility of the blood in water
[7]. More recent research has developed to a more microscopic scale, and has been involving more
complicated methods. An example of a more recent study on this topic uses digital image analysis
and the statistical classification technique called Random Forests [12]. Although this study attained a
rather low error rate, it is good to mention that using Random Forests does not give an exact estimate
of how much time has passed. For Random Forests, an image is classified at certain time-point, for
example 15 min, 30 min, 1 h, 6 h, 1 day etc. So this method does provide an estimate of the time since
deposition, but the accuracy depends fully on the chosen time stamps over which is classified.

In this thesis, the focus will also be on digital image processing / visual data processing, and the
usage of mathematical constructs to create a model. To be exact, the goal of this thesis is to obtain the
best possible forecast to date blood traces, using Bayesian networks. Bayesian networks are proba-
bilistic graphical models capable of modeling the dependencies between various random variables. In
comparison to the aforementioned Random Forests, Bayesian networks are be able to make exact pre-
dictions of the time, rather than only classifying the time since deposition of a bloodstain. The Bayesian
networks in this thesis will be constructed using colour data obtained from images which tracked the
ageing of the blood traces. The images were provided by the Leiden Institute of Physics (LION) and
consisted of images for 10 different bloodstains. Each image is converted to RGB values (red, green
and blue), and various pieces of data shall be collected, such as the mean, minimum and maximum.

To attain the goal of accurately being able to determine a bloodstain’s age, it is first important to
achieve a better understanding of what currently has been researched, and the effectiveness of these
methods. Both determining the time since deposition (TSD) of a bloodstain and the implementation
of Bayesian networks in the forensic field have been investigated to some extent. The spectrum of
implementations for Bayesian networks within forensics is rather broad. Some studies focus more
on the usage of the visual aspect of the model. Whereas others make use of the model to evaluate
evidence at a crime scene [4]. In Chapter 2 the advances in these fields will be further described. After
having giving some background on the relevant research and implementations, Chapter 3 will elaborate
on the data that will be used (RGB), the methods used to obtain this data, and an preliminary analysis
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will be performed on the data. After having collected and analysed the data, a start can be made
on the Bayesian networks. It is necessary to first gain a better understanding of the theory involved
when constructing, analysing and using a Bayesian network. In Chapter 4, the required theory on
graph theory, probability theory, and Bayesian networks themselves shall be provided. Afterwards, in
Chapter 5 the collected data will be used to construct various Bayesian networks. These Bayesian
networks shall be analysed to see which variables are most relevant to the dating of the blood traces,
and the most optimal structure of the Bayesian network will be determined. Finally, the conclusion and
discussion will be compiled in chapters 6 and 7. In the Appendices, the used Python and R code can
be found, and there will also be more additional information, plots and tables.



2
Related work

This thesis focuses on dating blood traces using Bayesian networks. As mentioned in the Introduction,
both determining the time since deposition (TSD) of a bloodstain, and the implementation of Bayesian
networks in the forensic field are well researched topics. However, the combination of these topics is
still unexplored. In this chapter, the past and current developments of dating blood traces, and some
implementations of Bayesian networks in the forensic field will be discussed.

2.1. Time since Deposition of Blood
In the Introduction, some examples were given of past and more recent attempts at determining a
bloodstain’s age. None of these methods, however, have been successful enough to be used by both
scientists and in court. Even though these previous studies have not necessarily found a method to
reliably determine a bloodstain’s age, they can still provide valuable information.

Going back to the earliest studies on the tracing of a bloodstain’s age, it was discussed earlier that
Tomellini [13] and Leers [7] focused on the colour and the solubility, respectively. As blood ages, the
colour of the stain becomes darker and less vibrant, and the solubility of the blood in water decreases.
This is caused by the decay of hemoglobin (Hb), Hb being one of the main components of the red blood
cells in blood. Following these studies, various other scientists further expanded on these findings, and
were made aware of the effects of environmental influences, like UV-exposure and temperature, on the
properties of blood [14].

With time, more advanced methods were starting to be used, like atomic force microscopy (AFM)
which focuses on the elasticity of the red blood cells [11], or fluorescence analysis which focuses on
the changes in the fluorescence of the blood due to the protein degradation in the blood plasma.

Some more recent studies, which are closely related to the topic of this thesis, focused on a digital
image analysis / colour analysis approach [12] [10]. Both have attempted to date blood traces using
images captured by different smartphones, however, with greatly differing results. Thanakiatkrai et al.
[12] used the M-values (magenta) and the statistical classification technique Random Forests. Using
this, Thanakiatkrai et al. [12] was able to obtain an error rate of 12% for up to 42 days. As noted in the
Introduction, however, this method is only able to classify the time since deposition for a bloodstain. So
the prediction of the time since deposition is more limited, as it depends on the chosen time stamps for
the classification (15 min, 30 min, 6 h, 1 day etc.). On the other hand, Shin et al. [10] analysed the V-
values (brightness) of the bloodstains, and their method had difficulties providing accurate predictions
after the 42 hours mark.

This smartphone colour analysis approach could prove to be very useful, as due to its simplicity the
analysis of a bloodstain does not take long. Additionally, no professional is required to use this method,
and the method is non-invasive, so it does not compromise the evidence itself. However, there are still
many other factors which need to taken into consideration before this could become a viable option.
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For example, environmental factors like humidity, or contamination of the bloodstain by dust or soil
[14]. Thanakiatkrai et al. [12] has analysed a considerable number of environmental factors. They,
for example, looked at different phone cameras, temperature, humidity, and light exposure. But also
the effects when blood was placed on different surfaces and materials. However, these factors were
tested for different constants, so fluctuations, e.g. the temperature fluctuations of day and night, are
not taken into consideration.

It is clear that themethods have been becoming increasingly more advanced. Not only in themethod
used to collect the data, but also in the ways that the acquired data is evaluated and processed. More
on the various techniques, used to determine the age of blood traces, and more details on the aging of
blood can be found in the article by Weber and Lednev [14].

2.2. Bayesian Networks and Forensics
Bayesian networks have been employed in countless fields, for example, in medicine, artificial intel-
ligence, agriculture and, of course, forensic science. As mentioned before the combination of blood
tracing and Bayesian networks have not been investigated before, but Bayesian networks have defi-
nitely caught the eye of forensic scientists. The visual aspect of a Bayesian network is very intuitive,
and can therefore be useful when making a case in court. Additionally, various hypotheses can be
added to the Bayesian network in the form of probabilities and used for inference. The scope of prob-
lems that can be treated using Bayesian networks is endless, and even when singling out a single
topic the questions that can be asked and answered can be very diverse. Take evidence evaluation for
example, a model can be constructed to draw inferences on the source of DNA evidence found at the
site, for example.

But the problem could also be taken more broadly. The question of whether evidence left at a crime
scene is relevant to the case could also be modeled using a Bayesian network (Biedermann and Taroni
[3]). So, for example, if fingerprints are found on a knife, was it actually used to commit a murder or
was it used to cut some vegetables? Or perhaps if fingerprints are found on a balcony railing, does
this indicate that someone climbed up, or was someone just leaning on the railing. These type of more
general questions to fingerprint evidence left at a scene were explored by de Ronde [4] using Bayesian
networks. In this dissertation, various factors such as the location and direction of the fingerprints were
taken into consideration. But also things like the exerted pressure and the transfer of the fingerprint.
Using Bayesian networks a high accuracy could be obtained to distinguish between writing and read-
ing a letter (98.0%), however, the accuracy became highly volatile when more actions were performed
such as the folding of the letter and would drop by 64.4%. This research definitely shows promise in the
usage of Bayesian networks for forensic science, but it does seem that additional research is required.

Comparable research on Bayesian networks for the transfer of evidence from the criminal to the
scene has been performed by Garbolino and Taroni [5], and shows how the likelihood ratios can be de-
termined for some node of interest for the varying scenarios. This definitely showcases the usefulness
of Bayesian networks for these types of problems, however, these examples are all left very general
and have not been tested for real-life scenarios. Or at least no exact statistics on the successful usage
rate has been given. Thus in this case the accuracy of the Bayesian networks in practice is not known.
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Image Processing of Blood Traces

In this chapter, the process of acquiring and processing the data is described. All used data was col-
lected using a climate control chamber, and was provided by the Leiden Institute of Physics (LION).

First, the setting of the experiment will be described. Some basic information will be given on
the circumstances within the climate control chamber, the samples themselves, and also how images
could be converted to data. More specifically, the conversion of images to the RGB colour system.
Secondly, the processing of the images themselves will be further elaborated on. The irregularities
within the samples will be described, and it will be shown how these irregularities are dealt with during
the processing of the images. After that, an overview will be given of all data that is collected during the
processing, and a description of each collected variable will be given. Finally, an exploratory analysis
will be performed on the collected data. Various plots will be shown, and the observations from these
plots will be further elaborated on.

3.1. Image Collection Setting
To model the ageing of bloodstains, data is required. This data was collected through an experiment
performed in a climate control chamber at the Leiden Institute of Physics (LION) (see Appendix A.1
Figure A.1). Within this chamber, the temperature and humidity can be controlled. These factors were
kept constant for the data used in this thesis:

temperature: 25∘𝐶
humidity: 35%

Our data was collected from a total of 12 samples. 10 of these samples are actual blood traces de-
posited onto a piece of control paper. Control paper is used, as the exact colour values (RGB) for this
piece of paper are known. The remaining 2 samples are control samples for which no blood has been
deposited onto it. These control samples can be used to detect any irregularities, e.g. changes in the
background colour or lighting. For each of these samples an image was taken every 13 / 14 minutes
for approximately 20 days. Which totals up to 2178 images for each sample. (See [2] for further details
on the used equipment and the image capturing.)

Each image has a resolution of 640x480, i.e. each image consists of 640 pixels per column and
480 pixels per row. The colour of each pixel can be described using various colour systems. For our
data the RGB (red, green, blue) colour system was used. In this case, the colour of each pixel is
determined by assigning each colour channel R, G and B a value between 0 and 255. The value of
the colour represents its presence, i.e. the higher the value, the stronger the colour’s presence. The
combination (0, 0, 0) and (255, 255, 255) represent black (absence of all colours) and white (presence
of all colours) respectively. Additionally, the data for the grayscale (black and white) images were also
collected. Converting an RGB image to a grayscale image can be done using the following formula:

GRAY = 0.299 ⋅ 𝑅 + 0.587 ⋅ 𝐺 + 0.114 ⋅ 𝐵 (3.1)

5
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There also exist other colour systems, e.g. the CMYK (cyan, magenta, yellow, key) and HSV (hue,
saturation, value) colour systems. In this thesis, we did not make use of the CMYK and the HSV colour
systems, but as mentioned in Section 2.1 the chosen colour system varies for different papers and
gives varying results.

3.2. Images
In the previous section, some basic information was provided on the environmental factors, the blood
samples, and the conversion of the images of these blood samples. Now the images themselves
will be discussed, i.e. the images shall be inspected, and the factors which affect the consistency of
the images and the samples shall be addressed. Also the processing of these images using masks
will be described. An explanation will be given on what masks are, how they are constructed using
thresholding, and what an image looks like when a mask is applied.

3.2.1. Images of Blood Samples
In Figure 3.1, some samples can be seen to gain an understanding of what the images from LION
look like. From these images a few noteworthy matters should be addressed, i.e. the location of the
bloodstain within the image and the lighting.

As can be seen when comparing the samples, it is clear that the bloodstains are varying sizes,
and different areas of the bloodstain are captured within the images. Most important is the area of the
bloodstain captured within the image, as the captured area is directly connected to the distribution of the
colours within the image. In Figure 3.1e and 3.1h, for example, a substantial difference in captured area
can be observed when comparing two different samples. This difference is caused by the centering
of the bloodstain with respect to the camera. But also when we look at a single sample, significant
changes to observed area can occur, e.g. in Sample 11. In this case, the shift in area is most likely
caused by the drying and therefore shrinking of the bloodstain. The exact effects of the captured area
on the data will become more apparent when plotting the data, and will be further analysed during
the exploratory analysis (Section 3.4). This problem of non-aligned samples could be solved to some
extent using methods like edge detection, but this shall be at the cost of losing data from the images.
Methods to remedy this problem will not be implemented in this thesis due to the time constraint on the
project, but in the Discussion some possible methods will be mentioned.

(a) Sample 1: Initial (b) Sample 4: Initial (c) Sample 10: Initial (d) Sample 11: Initial

(e) Sample 1: After 1 day (f) Sample 4: After 1 day (g) Sample 10: After 1 day (h) Sample 11: After 1 day

Figure 3.1

Another factor, which has led to some inconsistencies within the images, is the lighting. The samples
are affected by the lighting in two ways. Firstly, the amount of data provided by the bloodstain can be
influenced. When the bloodstain is wet (Figure 3.1a) or when certain areas turn dry (Figure 3.1h), the
blood can express reflective behaviour. These areas will reflect the lighting, and lead to a white glare on
top of the bloodstain. This glare can be removed using masking, but the colour at that area cannot be
determined. So no information will be obtained from those areas. In Subsection 3.2.2, an explanation
will be given on what masking is and how it is done. Secondly, the RGB values within an image could
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be changed as a whole. Changes in the brightness of the lighting can overexpose or underexpose the
image which will lead to an increase or decrease in the RGB values, respectively. Although the light
equipment maintains a constant illumination, multiple outliers have still been detected. In Figure 3.2,
the difference in illumination is visualised. In Section 3.4, a more in-depth analysis will be executed to
determine the frequency of these outliers, and also the significance of their influence. The cause for
this fluctuation in lighting is still unknown, but will be addressed in future experiments.

(a) Overexposure (b) Normal exposure (c) Underexposure

Figure 3.2: Image of bloodstains with overexposure, normal exposure and underexposure to light

3.2.2. Masks of Images
Every pixel within the image has RGB values, even the areas which are not part of the bloodstain, e.g.
the background and the white glare on the bloodstain caused by the lighting (for example in Figure
3.1a). To remove the obstructive areas of the image, a mask is constructed using image thresholding.

In our case, a mask describes whether a pixel is part of a bloodstain. A mask is the same format
as the image it covers, as each pixel in the mask refers to the corresponding pixel of the image. The
pixels in the mask have 2 states; the pixel is in the mask, i.e. the pixel is part of the bloodstain. In this
case the RGB pixel values of the original image are retained. Or the pixel is not in the mask, so it is
not part of the bloodstain and the RGB pixel values in the image are all set to a predetermined value,
which is (0, 0, 0) in this report. Each pixel of the mask can be described as following:

𝑥𝑖,𝑗 = {
1, if pixel 𝑥𝑖,𝑗 is contained within the mask
0, otherwise

Determining whether the pixel is retained, i.e. whether it is included in the mask, is done using
image thresholding. To perform image thresholding, an RGB image is first converted to a grayscale
image, this can be done using Equation 3.1. Each pixel of the grayscale image will then be compared
to a certain threshold, and depending on whether the pixel value is larger or smaller, the corresponding
pixel will be retained by the mask or not. The threshold can be chosen as a constant 𝑇, but there are
also automatic thresholding methods, i.e. thresholding methods which use algorithms to determine
the optimal threshold for each (group of) pixels. One such method is called Otsu’s method, and this is
also the method that was used during the processing of the data (see [1] for more information on Otsu’s
method). In Example 1, however, a fixed threshold 𝑇 shall be taken to give an idea of what thresholding
looks like.
Example 1. Let us consider an image of 3x2 pixels with the following RGB and grayscale arrays.

RGB = [(90, 3, 24) (66, 20, 26) (40, 15, 33)
(87, 8, 20) (58, 17, 4) (20, 3, 18) ] ⟹ GRAY = [31.407 34.438 24.527

32.989 27.777 9.793 ]

If a fixed threshold 𝑇 = 25 is taken, then the mask for the grayscale image would be as following;

[1 1 0
1 1 0]

Using this binary mask, the masked grayscale and RGB arrays for the image can be obtained applying
elementwise multiplication. So the masked image would be represented by the following arrays:

Masked RGB = [(90, 3, 24) (66, 20, 26) (0, 0, 0)
(87, 8, 20) (58, 17, 4) (0, 0, 0)] , Masked GRAY = [31.407 34.438 0

32.989 27.777 0]
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Figure 3.3: Image of Sample 1
(May 5th 2023, 07:51)

After having seen an example, the idea of thresh-
olding should be clear and now it is time to actually
apply it to our images. In Figure 3.3, an image can be
seen of Sample 1 (May 3rd 2023, 07:51) which shall
be used as an example to visualise what the mask-
ing process looks like. The code used to construct
the mask and to determine the masked image can be
found in Appendix C. As mentioned above, this code
uses Otsu’s method for the thresholding. In Figure
3.4 the mask obtained from running the code can be
seen, and also the corresponding masked image. In
the masked image, the area outside of the mask is set
to white for the sake of visualisation. Keep in mind
that this image should not be run with the code, as
the white area does not translate to the correct RGB
values. When visually analysing the figure, the blood-
stain has been fully isolated from the background and
the white glare has been removed.

However, there are still some irregularities within the bloodstain itself which have been retained.
Take the edge for example, there is a clear dark red border around the bloodstain. And there are also
dark patches and cracks spread throughout the middle of the bloodstain. To further rid the bloodstain
of its irregularities, the image could be masked another time. In Figure 3.5, the mask can be found
in the case that we were to mask twice in a row, and also the corresponding masked image. The
mask obtained when masking twice shall be referred to as the ”inner mask”, and the obtained image /
bloodstain shall be referred to as the ”inner image / bloodstain”. When analysing the inner bloodstain
visually, it seems that the bloodstain is more consistent in colour, but now the shape of the bloodstain
has been compromised. A large number of holes are present, and the information provided by the edge
has become very limited.

(a) Mask (b) Masked image

Figure 3.4: Images of the mask and the corresponding masked image of Sample 1
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(a) Mask (b) Masked image

Figure 3.5: Images of the inner mask and the corresponding masked image of Sample 1

Whether masking once or twice, there are clear sacrifices made for either technique. Masking once
gives us a more consistent area, but less consistent colouring. Whereas masking twice gives us more
consistent colouring, but less consistent area. How the consistency of these two factors relate to the
time since deposition of the bloodstain is still unknown. For this reason, data will be collected for both
the complete and inner masked bloodstain. Which information is collected shall be further elaborated
on in Section 3.3, and the influence of the images shall be discussed in Chapter 5,

To further expand on the construction of the mask, it is good to refer to one of the problems men-
tioned back in Subsection 3.2.1, i.e. the problem with the inconsistent areas within a single sample.
As mentioned, the area of a bloodstain can change throughout the time, due to the drying of the blood.
However, shifts caused by the drying of the blood are usually most prominent within the first day, and
afterwards the area of the bloodstain will stabilise. With the sheer amount of images that are taken,
the amount of greatly shifted images should be small. To confirm this theory, the choice was made to
look at an universal mask with a specified coverage percentage. A pixel is contained in this universal
mask if it is present in a certain percentage of all the masks for a sample. This universal mask shall be
referred to as a ”coverage mask”.

In Figure 3.6 the 95% and 99% coverage masks can be found for Sample 11. In the previous
subsection, it was alreadymentioned that this sample underwent a large shift. However, when changing
the coverage percentage of the mask, the mask barely seems to change regardless of the significant
change in coverage. So it seems that there are only a small number of images for which the sample
shifts greatly. In Appendix A.1.2 more coverage masks can be seen for other samples. For these
samples too it seems that the number of shifted images is minimal. In this thesis, the decision was
made to collect the data using a 95% coverage mask rather than constructing a separate mask for
each image. This was done as only a small number of images seem to be shifted, and also to keep
the observed area during the aging of the bloodstain consistent.

(a) 95% coverage (b) 99% coverage

Figure 3.6: Image of the masks of Sample 11 with 95% and 99% coverage
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3.3. Relevant Variables
As described in the previous section, each image is masked using a mask with a 95% coverage. Now
in this section, we can finally decide on which data should be collected (see Appendix C for the used
code), and used in the Bayesian networks. In Table 3.1 all collected data can be found, the abbreviation
used in the constructed data set and in the Bayesian network, and a description for each variable. The
data was collected using the Python code in Appendix C.

To construct a Bayesian network, data should be acquired for various variables. However, it is still
unknown in what way the colours within a bloodstain are related to the time of deposition. For this
reason, a large number of variables have been collected. For the RGB and GRAY colour channels the
following data is collected for each image: mean, min, max, variance, and the 5%, 20%, 50%, 80%
and 95% quantiles. (Note that these variables are collected for both the complete bloodstain and the
inner bloodstain.) Collecting the aforementioned variables for the colour values, and collecting the time
passed since deposition and also the volume of the bloodstain gives us a total of 74 variables.

Note that for the mean and variance, the value is divided by the number of pixels. For both cases
this would mean that the acquired value does not necessarily have to be an integer anymore. For the
variance, the acquired value is not even an RGB value anymore, i.e. it does not need to be between 0
and 255. As the mean and variance do not take on a finite number of values, the variables are continu-
ous random variables. For the quantiles, however, the acquired value will be a value obtained from the
bloodstain, and therefore this value will be a valid RGB value. There are only a finite number of RGB
values, thus the distributions of the quantiles will be discrete. Likewise, the minimum and maximum
will also be discrete random variables.

There is also some additional data that is collected or could be collected, but which will not be part of
the Bayesian networks. As mentioned before in 3.1 the temperature and humidity were kept constant
at 25∘𝐶 and 35%, respectively. However, in the future it could be possible that the temperature and
the humidity will vary throughout the experiment. In this case, the two factors would be represented by
continuous random variables.

The sample number samp_num is also collected for each observation. However, this shall only be
used for during the plotting or to filter on given samples. Note that it will not be included in the Bayesian
network.

Variable name Random variable type Description
time Continuous Time since deposition of the bloodstain in hours (ℎ).
volume Discrete Volume in microlitre (𝜇𝐿). (2, 4, or 8𝜇𝐿)
(in_)X_mean Continuous Mean of the X-values, where X is R, G, B or GRAY.
(in_)X_min Discrete Minimum of the X-values, where X is R, G, B or GRAY.
(in_)X_max Discrete Maximum of the X-values, where X is R, G, B or GRAY.
(in_)X_variance Continuous Variance of the X-values, where X is R, G, B or GRAY.
(in_)X_q𝑖 Discrete 𝑖% quantile of the X-values, where 𝑖 ∈ {5, 20, 50, 80, 95},

and X is R,G,B or GRAY.

Table 3.1: List of all collected data. (X can be swapped with R, G, B or GRAY.
And adding ”_in” refers to the inner bloodstain.)
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3.4. Exploratory Analysis
Now that it is known what information is collected from the images, the data can be visualised, and
a preliminary analysis can be performed. The visualisation of this data will be done through various
plots, and also by visualizing the colours themselves. The data can be split into two groups: the blood
samples and the control samples. These groups will be discussed separately in this section.

3.4.1. Blood Samples

Figure 3.7: Scatter plot of the mean R-values over time

Due to the large number of variables, not all variables
shall be discussed in depth, nor shall all colour chan-
nels. Showing a certain behaviour for a single colour
channel can often be extended to the other colour
channels, and can be confirmed using the additional
plots and images in Appendix A. For any variables
which have not been plotted, the provided code in Ap-
pendix D can be used. These remaining variables
have been checked to some extent, but shall not be
discussed extensively in this thesis due to the lack of
information provided by the variable.

Before analysing specific variables, some com-
monly shared peculiarities within the data will be
pointed out, and clarification shall be given on the
causes for these peculiarities. The scatter plot in Fig-
ure 3.7 only shows the behaviour for the 𝑅_𝑚𝑒𝑎𝑛 with respect to time, but this behaviour is shared
with most, if not all, variables. When looking at the plot, the observations from Subsection 3.2.1 seem
to have materialised visually. In that subsection it was pointed out that there were inconsistencies in
the lighting of the images and the location of the samples. When looking at the image, there seem to
be numerous outliers spread throughout. To determine whether these outliers result from the lighting,
a manual inspection was performed on Sample 1. In Figure 3.8, Sample 1 has been plotted and the
outliers have been separated. In this case, any points with 𝑅_𝑚𝑒𝑎𝑛 > 45 are considered outliers.
Upon manual inspection of the images for these outliers, it has been found that each of these outliers
resulted from images that were overexposed to light. It is therefore not unjustified to assume that most
of the outliers are caused by the inconsistent lighting. Especially as the majority of the data does follow
a clear trend. As the number of outliers are rather insignificant, when considering the large number
of images that we have, they shall not be removed from the data set. However, in the Discussion a
method shall be discussed to remove these outliers efficiently.

The influence of the location of the sample can also clearly be seen in the image. Let us consider
the plot of the 𝑅_𝑚𝑒𝑎𝑛 over the 𝑡𝑖𝑚𝑒 (Figure 3.7). Within the plot, each sample has been assigned a
different colour, and it can be seen that each sample follows its own trend. This is not only the case for
the 𝑅_𝑚𝑒𝑎𝑛, but also for (almost all) other variables. From these plots it can clearly be seen that here
is a rather large sample to sample variance in the variables. This can definitely influence the accuracy
of the constructed Bayesian network.

(a) Whole sample (b) Without outliers (c) With outliers

Figure 3.8: Scatter plots of Sample 1 for the mean R-value over the time
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Now the focus shall be on the examination of the mean values. For each colour channel the means
of both the complete and inner bloodstain have been plotted against the time, and these plots can be
seen in Figure 3.9, 3.10, 3.11 and 3.12. A few noteworthy things can be observed. First, it is clear
that each sample of a fixed colour channel shows a similar trend. But as mentioned earlier, a large
sample to sample variance is present. Whilst the 𝑅_𝑚𝑒𝑎𝑛 and the 𝐺𝑅𝐴𝑌_𝑚𝑒𝑎𝑛 show a decreasing
trend for each sample, the 𝐺_𝑚𝑒𝑎𝑛 and the 𝐵_𝑚𝑒𝑎𝑛 are constant or increasing slightly. When a mask
is applied a second time and the mean is once again determined, it can be seen that the trend of
the samples stays relatively the same, if not becoming slightly less steep. It is also notable that the
variance of the means over the different samples becomes smaller when applying a mask a second
time. This shows that the variance over the samples occurs mainly in the edges of the bloodstain. Two
things could follow from this observation. Firstly, it could mean that removing the irregularities from the
bloodstain will decrease the variance and therefore giving us more consistent RGB values regardless
of which sample is being analysed. Secondly, it could also have an opposite effect. If the changes in
the removed irregularities are related to the aging of the bloodstain, then removing these irregularities
could actually worsen any predictions. From the plots it will be difficult to determine whether these
irregularities contribute to the predictions or will impede them. This will be further investigated when
constructing the Bayesian networks in Chapter 5.

(a) Complete (b) Inner

Figure 3.9: Scatter plot of the time and mean R-values for the complete and inner bloodstain

(a) Complete (b) Inner

Figure 3.10: Scatter plot of the time and mean G-values for the complete and inner bloodstain
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(a) Complete (b) Inner

Figure 3.11: Scatter plot of the time and mean B-values for the complete and inner bloodstain

(a) Complete (b) Inner

Figure 3.12: Scatter plot of the time and mean GRAY-values for the complete and inner bloodstain

Figure 3.13: Scatter plot of the maximum R-values
over time

Another interesting variable is the maximum.
When plotting the maximum for the complete and in-
ner bloodstain, a clear linear trend can be seen for
each colour channel (see Figure 3.14). This linear be-
haviour indicates that the effect of masking an image a
second time does not affect the maximum significantly.
Masking an image twice was done with the intention
of removing irregularities from the bloodstain. As the
maximum is largely unaffected, even after removing
the irregularities, it seems that the maximum is influ-
enced less by time-dependent inconsistencies.

To further look into this, a scatter plot of the 𝑅_𝑚𝑎𝑥
has been plotted over time (see Figure 3.13). When
looking at the plot, a similar decreasing trend can be
observed as for the mean (in this case the 𝑅_𝑚𝑒𝑎𝑛,
see Figure 3.7). However, for the maxima the points
are spread out significantly more. The variance of the points within a single sample seems to be larger.
This is an understandable observation, as the maximum only looks at one pixel from the whole image.
A disruption in a single pixel will not necessarily be removed by a mask. In the case of the 𝑅_𝑚𝑒𝑎𝑛,
it can be said that a single disruption would be spread out over the whole image, as we average over
the number of pixels contained in the bloodstain. For the maximum, however, the full effect of such a
disruption can be carried by a single pixel. So if the maximum is affected, then the disruption is more
likely to be larger.
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(a) 𝑅_𝑚𝑎𝑥 (b) 𝐺_𝑚𝑎𝑥

(c) 𝐵_𝑚𝑎𝑥 (d) 𝐺𝑅𝐴𝑌_𝑚𝑎𝑥

Figure 3.14: Scatter plot of the maximum colour values of the complete and inner bloodstain

To counteract the volatility of the maximum, looking at the quantiles is also a possibility. To keep a
similar behaviour to themaximum, the quantile would need to be of a high percentage. For the variables
that have been collected, the highest quantile is 95%. When constructing similar plots for the 𝑅_𝑞95,
the behaviour of the data does seem to change slightly. First, from the scatter plots in Figure 3.15a and
3.15b, it is immediately clear that in comparison to the 𝑅_𝑚𝑎𝑥, there no longer seems to be a large
variance in the R-values. However, when creating a scatter plot which compares the complete and
inner bloodstains (see Figure 3.15c), it seems that more variance has been introduced as can be seen
from the scattering of the points. Choosing either the maximum or the 95% quantile shall be further
explored during the construction of the Bayesian network.

(a) Complete (b) Inner (c) Both

Figure 3.15
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Figure 3.16: Image of Sample 1
(May 9th 2023, 10:47)

Finally, some more general visualisations of the
data shall be discussed. Only having a number rep-
resent an RGB value does not give a clear perception
on the intensity of the colour associated to the num-
ber. In this part, the image of Sample 1 in Figure 3.16
shall be used. In Figures 3.17 and 3.18, all R vari-
ables which take on actual colour values, i.e. the dis-
crete random variables, have been plotted for both the
complete and inner bloodstain of Sample 1. The same
has been done for the G and B colour variables (see
Appendix A.1.3).

When looking at these figures, it can be seen that
the value for almost each variable increases when
comparing the complete and the inner bloodstain. It
is also notable that the increase is the largest for the
variables that take on a low value, e.g. the minimum
and the 5% quantile. Whereas, for the variables that
take on high values, e.g. the maximum and the 95%, this increase seems to weaken significantly. For
high colour values there is almost no change when masking the image a second time. These observa-
tions of the colours also seem to correspond to previously obtained information, i.e. the unaffectedness
of the maximum when applying a mask a second time.

(a) Minimum (b) Mean (c) 50% quantile (d) Maximum

(e) 5% Quantile (f) 20% Quantile (g) 80% Quantile (h) 95% Quantile

Figure 3.17: Visual representation of the data from the R values.
(Sample 1, 2023 May 9th, 10:47)
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(a) Minimum (b) Mean (c) 50% quantile (d) Maximum

(e) 5% Quantile (f) 20% Quantile (g) 80% Quantile (h) 95% Quantile

Figure 3.18: Visual representation of the inner bloodstain data from the R values.
(Sample 1, 2023 May 9th, 10:47)

3.4.2. Control Samples

Figure 3.19: Image of Sample 7
(control sample)

The images of the control samples are all images of
only the background paper (see Figure 3.19). It is
expected that the background colour should therefore
be constant, i.e. the RGB values of the background
should be staying constant, for both time and also for
different variables.

Expecting that the background colour stays con-
stant over the time, is not uncalled for. Changes in
the background colour, when the environmental fac-
tors should be unchanged, indicate that there is some
underlying cause which can still influence the results
within the climate control chamber. When plotting the
mean values of the RGB colour channels, it seems that
such an unknown influence is present. In Figure 3.20, a slight increasing trend can be detected in the
mean for each colour channels. The cause for this increase is still unknown, but it is hypothesised that
this is caused by changes in the lighting settings. Throughout the experiment the mean value increases
with approximately a value of 2 to 4, which is relatively small. This increase shall therefore not be taken
into consideration for this thesis. However, in the Discussion more will be said on the significance of
this increase, and how to deal with it.

A less obvious expectation is that the RGB values should be constant over the different variables
of a colour channel, this is referring to the mean, min, max and the quantiles of the image. This should
be the case, as the background should be uniform in colour, so each colour channel of the RGB array
should have the same value for each pixel, or at least similar values when taking slight equipment errors
into consideration. Taking the mean, min, max, etc. from this array should then also give points which
should all be relatively close together. In Figure 3.21, it can be seen that the spread of the R-values
for Sample 7 (control sample) is still quite broad. The same can be said for the G- and B-values (see
Figure A.10 and A.11). For all three channels it seems that the maximum and any quantile above 50%
seems to attain the maximum possible values for RGB values within our setting, i.e. 255. Whereas
the remaining variables do seem to be more spread out over the spectrum of 0 to 255. The very low
minima could be attributed to some of the small black specks on the control paper, but the rather low
values for the 5% and 20% quantile indicate that quite a few pixels seem to have low RGB values. This
could possibly be due to the lighting of the sample itself not being completely uniform. Of course, if the
lighting is not uniform for the control samples, then this could also affect the images of the bloodstains.
Fixing this non-uniform illumination of the image would most likely require changes during the data
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collection process, or it would require extensive coding. These methods shall be further discussed in
the Discussion.

(a) 𝑅_𝑚𝑒𝑎𝑛 (b) 𝐺_𝑚𝑒𝑎𝑛 (c) 𝐵_𝑚𝑒𝑎𝑛

Figure 3.20: Scatter plots for the means of the control samples

(a) Minimum (b) Mean (c) 50% quantile (d) Maximum

(e) 5% Quantile (f) 20% Quantile (g) 80% Quantile (h) 95% Quantile

Figure 3.21: Visual representation of the data from the R values (Sample 7)



4
Theory: Bayesian Networks

Now that the data has been acquired, a Bayesian network can be constructed. Before actually explain-
ing what Bayesian networks are, some prior knowledge on probability and graphs should be touched
upon. After that, it will be possible to formally define a Bayesian network, and its properties and usage
can be discussed. Afterwards, clarification shall be given on the different types of BNs and how they
can be constructed. The theory on Bayesian networks in this chapter is heavily based on the book
”Bayesian networks: with examples in R” (Scutari and Denis [9]). The information on the learning of a
Bayesian network is also further supported by the articles from Scanagatta et al. [8] and Ji et al. [6].

4.1. Prerequisite Knowledge
Before a formal definition can be given for BNs and the methodology behind the usage of the BN, it is
important to introduce some terms and theorems from both graph theory and probability theory. A BN
gives a visual representation of a joint distribution through the use of graphs. More specifically, a BN
has the requirement that it should be represented by a directed acyclic graph (DAG), and using this
BN various probabilities can be determined through e.g. inference, i.e. distributions of nodes can be
updated given observations. To use inference some definitions and theorems from probability should
be introduced.

In this section, directed acyclic graphs will be explained, and some terminology will be elaborated
on. Afterwards, various definitions and theorems from probability will be listed. These shall be used in
later sections to show how certain probabilities can be calculated within a BN.

4.1.1. Graphs
A Bayesian network is able to give a visual representation of a joint distribution through the use of
graphs. However, not any graph can be used. Before defining what a DAG is, it is good to first touch
upon graphs themselves.

A graph 𝐺 is an ordered pair (𝑉, 𝐴), where the elements of 𝑉 are called nodes (or vertices, or
points), and the elements of 𝐴 are called edges (or lines). The set of edges 𝐴 is a subset of {{𝑎, 𝑏} ∶
𝑎, 𝑏 ∈ 𝑉} (unordered pairs of elements from 𝑉). The edges between nodes, can be illustrated by
drawing lines between the nodes. An example of a graph with node set 𝑉 = {1, 2, 3, 4, 5} and edge set
𝐴 = {{1, 5}, {2, 4}, {3, 5}, {4, 5}} can be seen in Figure 4.1.

Figure 4.1: A graph with 𝑉 = {1, 2, 3, 4, 5} and 𝐸 = {{1, 5}, {2, 4}, {3, 5}, {4, 5}}

18
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Now that we know what a graph is, we can took a look at DAGs.

Definition 1. A graph 𝐺 = (𝑉, 𝐴) is a directed acyclic graph (DAG) if it is both a directed and an
acyclic graph.

• A graph is directed if all the edges in 𝐴 are directed, i.e. instead of unordered pairs, we have
ordered pairs. So 𝐴 is a subset of 𝑉𝑥𝑉. Elements in 𝐴 will be called arcs, and are depicted
by arrows, rather than lines. When considering an element (𝑎, 𝑏) from 𝐴, the arrow is drawn
from node 𝑎 to node 𝑏.

• A graph is acyclic if the graph does not contain any cycles, i.e. for any node in the graph
there is no path back to the node itself.

Example 2. In Figure 4.2a a directed graph can be seen with node set 𝑉 = {1, 2, 3, 4} and arc set
𝐴 = {(1, 2), (2, 3), (3, 4), (4, 1)}. This graph is not a DAG, however, as the graph contains a cycle for
each node in 𝑉. Let us start at node 1 for example, then by following arcs (1, 2), (2, 3), (3, 4) and (4, 1)
it is possible to arrive back at node 1. So node 1 has a cycle, which means that the graph is not acyclic.

In this case, the graph can be made acyclic by removing an arc, or changing the direction of an
arc. In Figure 4.2b, arc (4, 1) has been removed, and in Figure 4.2c arc (4, 1) has been replaced by
(1, 4). In both cases, it is clear that none of the nodes in 𝑉 have a path to themselves, so therefore
both graphs are acyclic. Which means that both graphs are DAGs.

(a) Not acyclic (b) Acyclic (c) Acyclic

Figure 4.2: Example of a directed graph which is not acyclic, and two similar graphs which are acyclic

For a node within a graph, two more terms should also be introduced: the parents and children of a
node. These terms will be used when using the conditional independence within the Bayesian network.
We will further elaborate on what the conditional independence is in Subsection 4.1.2.

Definition 2. Consider a directed graph 𝐺 = (𝑉, 𝐴), and take a node 𝑥 ∈ 𝑉.

• The parents of node 𝑥, 𝒫(𝑥), are the direct predecessors of node 𝑥, i.e. the nodes for which
there are outgoing arcs going to node 𝑥. This can also be written as following:

𝒫(𝑥)} = {{(𝑏, 𝑥) ∶ ∃𝑏 ∈ 𝑉 ∶ (𝑏, 𝑥) ∈ 𝐴}

• The children of node 𝑥, 𝒞(𝑥), are the direct successors of node 𝑥, i.e. the nodes for which
there are incoming arcs coming from node 𝑥. This can also be written as following:

𝒞(𝑥) = {(𝑥, 𝑎) ∶ ∃𝑎 ∈ 𝑉 ∶ (𝑥, 𝑎) ∈ 𝐴}
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Example 3. Consider the graph in Figure 4.2c. Then in Table 4.1 the parents and children for each
node can be found.

Node 1 2 3 4
Parents - 1 2 and 4 1
Children 2 and 4 3 - 3

Table 4.1: Table of the parents and children of the nodes in Figure 4.2c

4.1.2. Probability
Before listing the various properties and theorems that are used when determining probabilities within
the Bayesian network, first we shall recall some basic definitions.

Definition 3. Let 𝐴 and 𝐵 be two events with 𝔹 > 0.

• The conditional probability of 𝐴 given 𝐵 is given by

ℙ(𝐴|𝐵) = ℙ(𝐴 ∩ 𝐵)
ℙ(𝐵)

• A and B are independent, i.e. 𝐴⊥𝐵, if

ℙ(𝐴|𝐵) = ℙ(𝐴)

• A and B are conditionally independent if there is some event 𝐶 such that

ℙ((𝐴 ∩ 𝐵)|𝐶)) = ℙ(𝐴|𝐶)ℙ(𝐵|𝐶)

In this case, we write 𝐴⊥𝐵|𝐶.

The following theorems are useful when making calculations in the BNs. The below terms can often
be simplified to a certain extent due to the conditional independence within the BN. Further elaboration
on when we have conditional independence in a BN will be given in Section 4.2.

Theorem 1. (Law of total probability) For any two events 𝐴 and 𝐵 we have the following:

ℙ(𝐴) = ℙ(𝐴 ∩ 𝐵) + ℙ(𝐴 ∩ 𝐵𝐶)

Theorem 2. (Bayes’ theorem) Consider two events 𝐴 and 𝐵 such that ℙ ≠ 0. Then we have the
following:

ℙ(𝐴|𝐵) = ℙ(𝐵|𝐴)ℙ(𝐴)
ℙ(𝐵)
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Theorem 3. (Chain Rule for probability) Consider two events 𝐴 and 𝐵. Then we have the following:

ℙ(𝐴 ∩ 𝐵) = ℙ(𝐵|𝐴)ℙ(𝐴)

Note that this immediately follows from rewriting the definition of the conditional probability.

• Expanding this to any finite number of events 𝐴1,...,𝐴𝑛 would give us:

ℙ(
𝑛

⋂
𝑖=1
𝐴𝑖) =

𝑛

∏
𝑘=1

ℙ(𝐴𝑘|
𝑘−1

⋂
𝑗=1

𝐴𝑗)

4.2. Bayesian Networks Basics
In the previous section, some important terms and theorems were discussed. Now, it is possible to
formally define Bayesian networks

Definition 4. Consider a graph 𝐺 for which 𝑉 = {𝑋1, ..., 𝑋𝑛}. Assume that the nodes 𝑋𝑖 are all
random variables. Then 𝐺 is a Bayesian network (BN) if it satisfies the following requirements:

• 𝐺 is a directed acyclic graph (DAG).

• And for a density or mass function 𝑝 the following holds:

𝑝(𝑥1, ..., 𝑥𝑛) =
𝑛

∏
𝑖=1

𝑝(𝑥𝑖|𝒫(𝑥𝑖))

– Note that 𝒫(𝑥𝑖) refers to the parent nodes of 𝑥𝑖.
– If 𝒫(𝑥𝑖) = ∅, then 𝑝(𝑥𝑖|𝒫(𝑥𝑖)) = 𝑝(𝑥𝑖)

In the case of a BN, the nodes are defined by random variables, and the arcs between these
nodes represent the conditional dependencies between these random variables. A BN can be
said to consist of two parts:

• The qualitative part, i.e. the DAG 𝐺 which depicts the dependencies between the various
nodes. We shall refer to the graph as the structure of the BN.

• The quantitative part, i.e., the (conditional) probability functions for each random variable
within the BN.

The second requirement of the Bayesian network is very important, and follows from the chain rule
for probability (see Theorem 3) by using the conditional independence within BNs.

Within a BN many conditional independencies are present. For each node, the Local Markov Prop-
erty is able to give one such conditional independence relation (see Definition 5).

Definition 5. (Local Markov Property) Each node 𝑋𝑖 within a BN is conditionally independent of its
non-descendants given its parents. The non-descendants of 𝑋𝑖 are the nodes 𝑋𝑗 for which there
is no path from 𝑋𝑖 to 𝑋𝑗.

However, there can also be many other conditional independence relations between the nodes.
Using the d-separation criterion, all independencies within a BN can be determined. To explain the
d-separation criterion, we will first need to define the various types of connections between nodes.
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Definition 6. Consider a graph 𝐺. When considering three nodes 1, 2 and 3 we can categorise
three types of elementary connections: a serial, diverging and a converging connection.

• Serial connection: One incoming arc and one outgoing arc

• Diverging connection: Two outgoing arcs

• Converging connection: Two incoming arrows

An example of what each of these connections look like can be found in Figure 4.3.

(a) Serial (b) Diverging (c) Converging

Figure 4.3: Types of connections in a Bayesian network

Now using the below definition for d-separation, and Theorem 4 any conditional dependency within
a BN can be determined.

Definition 7. Let us consider a DAG 𝐺. Consider three disjoint subsets of 𝐺: 𝐴, 𝐵 and 𝐶.
𝐶 d-separates 𝐴 from 𝐵 if for any path between a node in 𝐴 and a node in 𝐵 there exists a node
𝑣 satisfying one of the following two conditions:

• 𝑣 has converging arcs and neither 𝑣 nor any of its descendants are in 𝐶.

• v is in 𝐶 and does not have converging arcs.

In more intuitive terms, it can be said that 𝐶 blocks of any undirected path from 𝐴 to 𝐵. So there is
no way to go from one set to the other and then back to itself.

Theorem 4. (Conditional independence and d-separation) Consider a Bayesian network, and let
𝑋, 𝑌 and 𝑍 be three disjoint sets of nodes. If 𝑍 d-separates X and Y, then

𝑋⊥𝑌|𝑍

Figure 4.4: Example Bayesian network for a blood stain
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Example 4. Let us consider the Bayesian network in Figure 4.4 and assume that the nodes within the
graph are discrete random variables. In Table 4.2 each node is described.

Node name Description Notation
ℎ𝑢𝑚 Humidity of the air (low or high) ℎ𝑢𝑚− = low and ℎ𝑢𝑚+ = high
𝑡𝑖𝑚𝑒 Time since deposition (short or long) 𝑡𝑖𝑚𝑒− = short and 𝑡𝑖𝑚𝑒+ = long
𝑤𝑒𝑡 Wetness of the stain (yes or no) 𝑤𝑒𝑡− = no and 𝑤𝑒𝑡+ = yes
𝑠ℎ𝑎𝑑𝑒 Shade of the stain (dark or light) 𝑠ℎ𝑎𝑑𝑒− = light and 𝑠ℎ𝑎𝑑𝑒+ = dark

Table 4.2: Description of the nodes of the Bayesian network in Figure 4.4

For each node, the conditional probability can be found in Table 4.3. (The chosen values are not
representative, and were chosen arbitrarily for the sake of the example.) In this example, the following
probabilities will be determined using varying methods: ℙ(ℎ𝑢𝑚 = 𝑥1, 𝑡𝑖𝑚𝑒 = 𝑥2, 𝑤𝑒𝑡 = 𝑥3, 𝑠ℎ𝑎𝑑𝑒 =
𝑥4) = ℙ(𝑥1, 𝑥2, 𝑥3, 𝑥4) and ℙ(𝑤𝑒𝑡+),

• For convenience, we shall write

ℙ(ℎ𝑢𝑚 = 𝑥1, 𝑡𝑖𝑚𝑒 = 𝑥2, 𝑤𝑒𝑡 = 𝑥3, 𝑠ℎ𝑎𝑑𝑒 = 𝑥4) = ℙ(𝑥1, 𝑥2, 𝑥3, 𝑥4)

. Then we can use the chain rule for probability (Theorem 3), and the conditional independence
to simplify the expression:

ℙ(𝑥1, 𝑥2, 𝑥3, 𝑥4) = ℙ(𝑥4|𝑥1, 𝑥2, 𝑥3) ⋅ ℙ(𝑥3|𝑥1, 𝑥2) ⋅ ℙ(𝑥2|𝑥1) ⋅ ℙ(𝑥1)
= ℙ(𝑥4|𝑥3) ⋅ ℙ(𝑥3|𝑥1, 𝑥2) ⋅ ℙ(𝑥2) ⋅ ℙ(𝑥1)

For any combination (𝑥1, 𝑥2, 𝑥3, 𝑥4), the above expression can be filled in using provided tables
with the conditional probabilities. For example:

ℙ(ℎ𝑢𝑚+, 𝑡𝑖𝑚𝑒+, 𝑤𝑒𝑡+, 𝑠ℎ𝑎𝑑𝑒+) = ℙ(𝑠ℎ𝑎𝑑𝑒+|𝑤𝑒𝑡+) ⋅ ℙ(𝑤𝑒𝑡+|ℎ𝑢𝑚+, 𝑡𝑖𝑚𝑒+) ⋅ ℙ(𝑡𝑖𝑚𝑒+) ⋅ ℙ(ℎ𝑢𝑚+)
= 0.4 ⋅ 0.4 ⋅ 0.6 ⋅ 0.8 = 0.0768

• ℙ(𝑤𝑒𝑡+) can be calculated by using the law of total probability on the parents of the 𝑤𝑒𝑡 node
(Theorem 1), and using the chain rule for probability (Theorem 3). Also note that ℎ𝑢𝑚 and 𝑡𝑖𝑚𝑒
are independent. Then we can calculate the following:

ℙ(𝑤𝑒𝑡+) =ℙ(𝑤𝑒𝑡+, ℎ𝑢𝑚+, 𝑡𝑖𝑚𝑒+) + ℙ(𝑤𝑒𝑡+, ℎ𝑢𝑚+, 𝑡𝑖𝑚𝑒−)
+ ℙ(𝑤𝑒𝑡+, ℎ𝑢𝑚−, 𝑡𝑖𝑚𝑒+) + ℙ(𝑤𝑒𝑡+, ℎ𝑢𝑚−, 𝑡𝑖𝑚𝑒−)

=ℙ(𝑤𝑒𝑡+|ℎ𝑢𝑚+, 𝑡𝑖𝑚𝑒+)ℙ(ℎ𝑢𝑚+, 𝑡𝑖𝑚𝑒+) + ℙ(𝑤𝑒𝑡+|ℎ𝑢𝑚+, 𝑡𝑖𝑚𝑒−)ℙ(ℎ𝑢𝑚+, 𝑡𝑖𝑚𝑒−)
+ ℙ(𝑤𝑒𝑡+|ℎ𝑢𝑚−, 𝑡𝑖𝑚𝑒+)ℙ(ℎ𝑢𝑚−, 𝑡𝑖𝑚𝑒+) + ℙ(𝑤𝑒𝑡+|ℎ𝑢𝑚−, 𝑡𝑖𝑚𝑒−)ℙ(ℎ𝑢𝑚−, 𝑡𝑖𝑚𝑒−)

=ℙ(𝑤𝑒𝑡+|ℎ𝑢𝑚+, 𝑡𝑖𝑚𝑒+)ℙ(ℎ𝑢𝑚+)ℙ(𝑡𝑖𝑚𝑒+) + ℙ(𝑤𝑒𝑡+|ℎ𝑢𝑚+, 𝑡𝑖𝑚𝑒−)ℙ(ℎ𝑢𝑚+)ℙ(𝑡𝑖𝑚𝑒−)
+ ℙ(𝑤𝑒𝑡+|ℎ𝑢𝑚−, 𝑡𝑖𝑚𝑒+)ℙ(ℎ𝑢𝑚−)ℙ(𝑡𝑖𝑚𝑒+) + ℙ(𝑤𝑒𝑡+|ℎ𝑢𝑚−, 𝑡𝑖𝑚𝑒−)ℙ(ℎ𝑢𝑚−)ℙ(𝑡𝑖𝑚𝑒−)

=0.4 ⋅ 0.8 ⋅ 0.6 + 0.8 ⋅ 0.8 ⋅ 0.4 + 0.1 ⋅ 0.2 ⋅ 0.6 + 0.5 ⋅ 0.2 ⋅ 0.4
=0.5
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hum low high
0.2 0.8

(a) Humidity

time short long
0.4 0.6

(b) Time

wet hum time yes no
low short 0.5 0.5
high short 0.8 0.2
low long 0.1 0.9
high long 0.4 0.6

(c) Wetness

shade wet light dark
yes 0.6 0.4
no 0.2 0.8
(d) Shade

Table 4.3: (Conditional) Probabilities for all the nodes from Figure 4.4

4.3. Types of Bayesian Networks
The type of a Bayesian network depends on the type of random variables within the graph. Bayesian
networks can be categorised into three groups:

• Discrete Bayesian networks: All the nodes in the BN are discrete random variables, and the
Bayesian network is accompanied by a conditional probability table. As was seen in Example 4,
other probabilities can be calculated using various definitions and theorems from probability (see
Subsection 4.1.2).

• Continuous Bayesian networks: There are two types of continuous Bayesian networks. For the
Gaussian Bayesian network, the conditional probability distribution of the node is normal / Gaus-
sian and the influence of a parent node on its child is regressed over the arcs.
For a non-parametric Bayesian network the distribution of the data is given by arbitrary, continuous
and invertible distributions. In this case, the influence of a parent node is passed onto its child
through normal copulas.

• Hybrid Bayesian networks: In this case, there are both discrete and continuous random variables.
The probability distribution of the continuous random variables is not restricted to the normal
distribution. The combination of both discrete and continuous random variables makes it possible
for the BN to cover far more diverse situations, but this comes at the cost of a more complicated
BN.

4.4. Structure Learning
In previous sections, the structure of the BN was already given. However, when only data has been
provided, the structure of the BN is still unknown. A structure could be determined using two different
methods: expert judgement or structure learning algorithms. In this thesis, the structure will be deter-
mined through structure learning algorithms. The structure learning algorithms can be categorised into
three different groups: score-based, constraint-based and hybrid structure learning.

Let us start with the most used approach, i.e. score-based structure learning. These algorithms
search for a DAG which maximizes a certain score function, e.g. the Bayesian Information Criterion
(BIC). This score functions shows the goodness-of-fit of the DAG to the data, and is usually rather
simple to calculate. The simplicity of these algorithms make the run time relatively shorter than for the
other two groups. However, this method does also have weaknesses. Score-based structure learning
focuses only on the maximization of the score function. So it does not take the logical aspect of the
nodes into consideration. This could lead to a BN for which the dependencies unnatural or even incor-
rect. Some examples of score-based algorithms are hill-climbing and tabu search.

On the other hand, constraint-based structure learning focuses on analysing the conditional inde-
pendence of the various variables. These algorithms use conditional independence tests to determine
the structure of the BN. This evaluation of arcs between nodes can be done in various ways. One
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possible option is to start with a graph for which all possible arcs are present, and then continuously
remove arcs based on statistical tests for conditional independence. This method is called a backward
selection procedure, and an example of an algorithm which makes use of this is the PC algorithm. Con-
versely, it is also possible to use a forward selection procedure, i.e. you start with a graph with no arcs,
and continuously add arcs between nodes which are not conditionally independent. Algorithms like the
Grow-Shrink algorithm make use of forward selection, but there also various other procedures used
when constructing the graph with constraint-based structure learning, for example two step procedures
where both forward and backward selections are made. Constraint-based structure learning algorithms
are exceptional at creating accurate BNs, but due to the more complicated nature of the algorithm it is
often a significantly slower algorithm. Especially when compared to the simple score-based algorithms.

And finally there are also hybrid structure learning algorithms which combine constraint-based and
score-based algorithms. This makes it possible to balance out the weaknesses for both groups of al-
gorithms. The most well-known algorithms from this type are the Sparse Candidate algorithm (SC) and
the Max-Min Hill-Climbing algorithm (MMHC). Both algorithms are based on two steps: restrict and
maximise. The restrict phase implements a constraint-based algorithm to reduce the space of possible
DAGS, and the maximise phase implements a score-based algorithm which finishes the optimal DAG
within the restricted space.

In this thesis, the score-based algorithm hill-climbing was used as the main structure learning
method. This was due to the fact that the sheer size of the data made it very inefficient to run the
other structure learning methods and also prone to running errors.

The algorithm for Hill-Climbing is as following ([9]):

1. Choose an arbitrary network structure 𝐺 over 𝑉. Often chosen empty.

2. Compute the score of G, using the notation 𝑆𝑐𝑜𝑟𝑒𝐺 = 𝑆𝑐𝑜𝑟𝑒(𝐺) and set it as the maximum score,
i.e. 𝑚𝑎𝑥𝑠𝑐𝑜𝑟𝑒 = 𝑆𝑐𝑜𝑟𝑒𝐺. In our case, BIC is used as the score function.

3. Repeat the following steps as long as 𝑚𝑎𝑥𝑠𝑐𝑜𝑟𝑒 increases:

(a) For every possible arc addition, deletion or reversal for which 𝐺 stays a DAG:
i. Compute the score of the modified graph 𝐺∗, 𝑆𝑐𝑜𝑟𝑒𝐺∗ = 𝑆𝑐𝑜𝑟𝑒(𝐺∗).
ii. If 𝑆𝑐𝑜𝑟𝑒𝐺∗ > 𝑆𝑐𝑜𝑟𝑒𝐺, set 𝐺 = 𝐺∗ and 𝑆𝑐𝑜𝑟𝑒𝐺 = 𝑆𝑐𝑜𝑟𝑒𝐺∗

(b) Update 𝑚𝑎𝑥𝑠𝑐𝑜𝑟𝑒 with the new value of 𝑆𝑐𝑜𝑟𝑒𝐺
4. Return the DAG 𝐺
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Results

In this chapter, various Bayesian networks will be constructed, cross-validated and analysed. This
whole process was carried out in RStudio and made use of the bnlearn package. The various func-
tions used during the process shall also be described. After having constructed numerous Bayesian
networks, the most optimal Bayesian network shall be determined, and shall be discussed in-depth.

5.1. Bayesian Network: Structure and Cross-validation
First, the whole process of determining a Bayesian network, cross-validating it and various parts of the
BN shall be analysed. This process will be showcased when all the variables mentioned in 3.3 are
used. Afterwards, subsets of the data will be taken to observe the changes in the structure and the
predictive quality of the Bayesian network. These Bayesian networks will be compared based on the
Mean Squared Error (MSE), and also based on plots of the predictions.

5.1.1. General Process
In this subsection the general process for creating and evaluating the BN shall be described. The pro-
cess shall be showcased when using the whole data frame that has been provided by LION. In the
R-code this data frame is referred to as data.

Now that the data has been prepared, the structure of the BN can be determined. As mentioned in
Chapter 4, hill-climbing (HC) shall be the chosen structure learning algorithm in this thesis due to the
HC algorithm having a significantly better run time for our data frame. The used function in RStudio is
hc, for which the Bayesian Information Criterion (BIC) is used as the default score function to evaluate
the BN. Using the function hc gives us the BN in Figure 5.2. Seeing that the determined structure has
this many arcs could both be seen as a positive and a negative. Positive, as it indicates that there are
dependencies between the variables, so it does show that the time since deposition and the colour
of a bloodstain are somewhat related. But it can also have negative effects, as there could be more
arcs between factors which should be conditionally independent, for example the time and volume, or
arcs that are not logical, for example arcs mapping from 𝑅_𝑚𝑒𝑎𝑛 to 𝑡𝑖𝑚𝑒. For a small BN seeing a
irregularity can be solved easily, but with the large number of arcs in Figure 5.2 it cannot be seen easily,
nor is there an efficient way to check all the arcs.

Figure 5.1: Children nodes of the time node in
Figure 5.2

Checking all the arcs between nodes would be ineffi-
cient, and additionally not all dependencies between nodes
are known or easy to spot. However, there is one node
which should be checked to some extent, and that node is
the time node. A simple check for the time node would be
to look at both the parents and the children of the node.

In this case, the time node does not have any parent
nodes. This sounds quite reasonable, because the change
in colour happens because time passes and not the other
way around. The children nodes, on the other hand, are

26
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less obvious. A large number of the variables are children
of the time node, but the ones that are not a child do not
necessarily seem to follow a certain pattern. For one colour channel the minimum is missing, for an-
other the maximum, some quantiles are retained and others are discarded. This is also one of the cons
of hill-climbing which were mentioned in Chapter 4, the fact that the algorithm maximizes the score
function blindly, paying no heed to the conditions independence or logic. Once again, due to the large
number of arcs it will be difficult to argue which arcs should be retained or not. But it will be good to
keep this phenomena in mind.

Figure 5.2: Bayesian network constructed using hill-climbing on the complete data frame

The structure of the BN has now been determined and the most important node, the time node, has
been examined to some extent. Now it will be tested whether the structure actually fits the data or not.
This shall be done using k-fold cross-validation. K-fold cross-validation is a method to determine the
accuracy of a model. The method goes as following:

1. The data is split into a total of 𝑘 subsets of equal size.

2. The model is fitted using 𝑘 − 1 of the sets, these 𝑘 − 1 sets are called the training data.

3. The fitted model is then used on the remaining subset, which is called the testing data, and the
loss function is calculated.

4. Step 2 and 3 are performed a total of 𝑘 times until each subset has been used as the testing set
once. Afterwards the average is taken over the calculated losses.

K-fold cross-validation can also be used with multiple runs. In that case, the overall loss is the average
of the loss estimates from the different runs. Additionally, the standard deviation of the loss can also
be calculated.

In bnlearn, k-fold cross validation can be performed using the bn.cv function. Now, we can cross
validate the Bayesian network for the full data set (Figure 5.2. For the cross-validation the following
parameters were chosen:

• k = 5, so the training and testing sets are 80% and 20% of the data respectively.
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• loss function: Mean Squared Error (MSE)

• target node forecasts: time

• number of runs = 5

Using 5-fold cross-validation on the Bayesian network in Figure 5.2 gives us the following values:

MSE = 19303.45 ⟹ RMSE = 138.94

Standard deviation = 1.46
In Figure 5.3, the reason for the high MSE can immediately be seen. It seems that the prediction

for the time is constant, regardless of the provided data. The reason for the prediction being constant,
can be found when investigating the coefficients determined during the fitting process. On inspection
of the children nodes of the time node, it can be seen that the coefficient corresponding to the time is
very small. In Table 5.1, some of these coefficients can be found. Seeing how small these coefficients
are, it is likely that the effects from any node on the time are minimal. And as the signs are also varying,
the effects can also neutralize each other. From the MSE and also from the plot it seems that the BN,
constructed using all the variables, is not a good fit for our data. In the following section, the process
of constructing and evaluating BNs shall be repeated. However, this time for other subsets of the data.

Figure 5.3: Plot of the observed and predicted values for one of the cross-validation runs.

Node Coefficient
volume 0.0045

GRAY_mean 0.0013
R_mean - 0.0009
R_max -0.0186
G_mean 0.0002
B_mean -0.0001

Table 5.1: Coefficient corresponding to the 𝑡𝑖𝑚𝑒 for a given node

5.1.2. Other Bayesian Networks
Now that we have seen how a Bayesian network is constructed and evaluated, the same steps can
be repeated for subsets of the data. However, in this section the order of the analysis will be slightly
different. First, BNs will be constructed and immediately cross-validated. Based on the MSE, the BNs
can be compared and a decision is made on whether further analysis of the BN will be interesting.

In Table 5.2, the MSE can be seen for the different colour channels. When looking at the MSE,
it seems that the variables by itself, the variables for the colour channels for the red variables seem
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to give us the best results. It seems that the combination the variables of the red and blue variables
further improves the MSE. However, when combining the red and green variables, the MSE becomes
significantly worse. This behaviour is quite peculiar as the MSE for the green and blue variables sep-
arately seem to be somewhat similar. When comparing the figures in Appendix A.1.3, we do note that
the spread of the blue values within each individual image is larger. If a larger spread is attained, then
the data possibly provides us with more information which could improve a prediction.

On comparison of the BN constructed with only the red variables, and both the red and green
variables, the latter does seem to be slightly better. It is noteworthy to mention that the difference is
rather small. Especially when converting the MSE to the Root Mean Squared Error (RMSE) and also
when comparing the difference to the MSE itself.

Variables Mean Squared Error (MSE) Standard deviation of MSE
Gray variables 19303.48 1.99
Red variables 15149.81 1.99
Green variables 17335.29 11.16
Blue variables 17758.62 8.86

Red and green variables 18087.33 1.43
Red and blue variables 14866.17 2.16

Table 5.2: Table of the MSE and the standard deviation of the MSE obtained from the cross validation of the BNs constructed
for each colour channel

In Figure 5.5, the BNs constructed for the red, blue, and red and blue variables can be found.
Although there are significantly less arcs, it is still difficult to actually analyse all of them. So as before
the parents and children of the time node shall be investigated. In Figure 5.4, the parent and children
nodes of the time node in the BNs can be found. For all three BNs, an aforementioned problem is
immediately visible. In our newly constructed BNs, the time node has parent nodes. In reality, this
should not be possible as there is no clear link from how the colour of a bloodstain can affect time itself.

(a) Red (b) Blue

(c) Red and blue

Figure 5.4: Parent and children nodes of the time node in the BNs of Figure 5.5

Another anomaly can be found when looking at the predictions made by the model. In Figure 5.6a,
5.6c and 5.6e, the predictions have been plotted for the colour channels. One thing which stands out
for each of those Figures is the y-axis. More specifically, the values in the plot take negative y-values,
which means that there are negative time predictions. In reality, this is obviously not possible, so these
points should not be taken into consideration. Cropping the images, so that only the positive points
remain would give use the plots in Figure 5.6b, 5.6d and 5.6f. These plots are already a clear improve-
ment from the constant line that we observed in Figure 5.3. However, there are still problems within
these plots. Although the data has more of a trend now, the data seems to follow more of a logarithmic
trend, rather than the desired linear trend. And also, the predicted points seem to have a large vari-
ance. The data seems to be becoming more spread out, as more time passes.

Also when combining the red and blue variables in the BN, the scatter plot of the predictions (Figure
5.6e) starts to take on properties of the predictions of both the red and blue variables. In the earlier time
predictions the increasing trend of the red variables can be seen, which does improve the accuracy of
the predictions for the beginning. However, for the latter part of the predictions, the constant behaviour
from the blue variables seems to be appearing, which worsens the accuracy.
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(a) Red

(b) Blue

(c) Red and blue

Figure 5.5: Bayesian networks for various colour channels
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(a) Red (b) Cropped red

(c) Blue (d) Cropped blue

(e) Red and blue (f) Cropped red and blue

Figure 5.6: Plots of the observed and predicted values for various colour channels
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Cross validation was also performed to compare the variables for the complete bloodstain and the
inner bloodstain. In Appendix B this has been performed for all variables from the complete bloodstain
and all from the inner bloodstain, but due to the high MSE this shall not be discussed in this section.
Below in Figure 5.3, however, more of an effect can be seen when the complete and inner bloodstain
are observed separately for the red colour channel. In this case, only taking the red colour data of the
complete bloodstain, significantly worsens the MSE of the BN. Whereas, only taking the data from the
inner bloodstain worsens the MSE only slightly. However, in both cases the MSE of the BNs are worse
than the BN for the complete red colour data set. This could indicate that there are arcs between the
variables from the complete and inner bloodstain, that have a significant influence on the predictions.

Variables Mean Squared Error (MSE) Standard deviation of MSE
Red complete variables 18031.04 2.27
Red inner variables 15353.98 11.67

Table 5.3: Table of the MSE and the standard deviation of the MSE obtained from the cross validation of the BNs constructed
for each colour channel

In Appendix B, the MSE can be found for other sets of variables. These BNs shall not be elaborated
on in this Section, due to high value of the MSE.

5.2. Optimal Bayesian Network
When taking a look at the MSE of all the BNs in Appendix B, it seems that both the BN consisting of
only the red variables and the BN consisting of the red and the blue variables are closely matched. As
stated in the previous section both the BNs share the following flaws: the unrealistic arcs within the BN
and the negative predictions. The BNs differ on two things, i.e., the complexity of the BN itself and also
on the trend that the predictions have. The complexity of the model is related to the number of nodes
and arcs. The red variable BN has significantly less arcs, than the other BN and is therefore simpler
to use, analyse, explain etc. However, the run time for these BNs is rather short so based on that the
complexity should not be too much of a hindrance. The predictions can be compared via the plots. On
comparison of the scatter plots in Figure 5.3 it seems that there is a trade-off between the accuracy in
the early predictions and the later predictions. For early predictions there are still other methods that
could be used, so we choose for accuracy in the later predictions.

Therefore the BN constructed using the red variables shall be taken as the optimal BN. In Appendix
D.2.1 the code can be found, which constructs the BN for the red variables, and also fits it using the
whole data set.
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Conclusion

This thesis has the goal of analysing the aging of bloodstains through colour analysis, and constructing
a Bayesian network which is be able to accurately make predictions on a bloodstain’s age. The most
optimal Bayesian network in this thesis is created using the following variables of the R colour chan-
nel for both the complete and inner bloodstain: mean, min, max, variance, and the 5%, 20%, 50%,
80% and 95% quantiles (see Section 5.2). However, the BNs produced within this thesis, including
the optimal BN, are not able to make accurate predictions and have very high Mean Squared Errors
(see Table B.1), the lowest Mean Squared Error being 14866.17. Regardless, throughout the process
various observations have been made and explained, which could justify the poor results. The model
constructed using the red variables has been chosen as the optimal BN. This BN has a slightly higher
MSE, but this difference is rather small and this model seems to have slightly better predictions when
making predictions over longer periods of time.

In Chapter 3 many observations have been made on the images and the data acquired from these
images. First, for the images themselves inconsistencies have been detected. Within the plots there
are numerous cases of outliers. The vast majority of these outliers are caused by overexposure or
underexposure of the blood traces to light. Additionally, it can also be seen that the blood samples are
not consistently centered within the images. This discrepancy in observed area of the blood sample is
also reflected in the collected data. This can clearly be seen in the exploratory analysis, as for (almost)
all variables, the values get split over the separate samples. Which leads to a large variance of the
variable values between the samples.

In Chapter 5 the BNs are constructed and evaluated using the bnlearn package in R. The used
method for the structure learning is the hill-climbing algorithm. After having constructed many BNs, the
number of arcs can be confirmed to be rather large for each one of them. On inspection of the BNs
with the highest MSE, it can even be seen that the predictions were almost constant. Apparently, even
though the number of arcs is high, the influence of each arc on the time node is very small. However,
even when the number of variables is decreased, the predictions are still rather poor and the MSE will
still remain quite high.
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7
Discussion

Although this research has not been able to produce a Bayesian network which can accurately deter-
mine the age of a blood trace, the steps that have been performed to obtain an end result are clear.
The process could be split into two sections: image processing and Bayesian networks. For both parts,
recommendations shall be given on how the results can be improved.

7.1. Image Processing
The process of converting an image to data consists of numerous steps and many decisions have been
made based on personal preference. The most important observation from Chapter 3 is the importance
of the observed area of a blood sample. The inconsistency of the observed area introduces very large
variances to the data, which could (partially) be the cause for the BN’s poor predictions. This prob-
lem would most likely need to be resolved when the images are being taken during the experiment.
However, there are also other methods to mediate this problem. One possibility is to find an area of
the bloodstain which overlaps for all samples and cropping the image. In this case, methods like edge
detection or the convolution could be used. Finding the overlapping areas of the bloodstains could be
rather time intensive, and as mentioned in Subsection 3.2.1 a considerable amount of data could be
lost using this method.

The easiest, but also one of the most effective, methods of improving the predictions would be to
analyse other variables or more variables. There are still many other colour systems which could be
used to convert an image to some numeric value. It is definitely a possibility that a colour channel from
a different system is more closely related to the time since deposition. Another possibility would be to
further expand on the masking. In this thesis, the complete bloodstain and the inner bloodstain have
been analysed, but the rim of the bloodstain could also contain information which could be relevant
in the BN. It should also be noted that the inner bloodstain is very inconsistent in shape. It contains
many holes, cracks and other irregularly shaped spaces. If possible, looking for a method to more con-
sistently mask the inner area of the bloodstain could be interesting, and will most likely also be useful
when masking the rim of the bloodstain.

There are also some other minor changes that could bemade, however, I believe that these changes
will give very little improvement. First, would be the removal of the outliers. In Section 3.4, it was already
mentioned that the number of outliers is relatively small compared to the total number of images and
that therefore the influence of these outliers should be minimal. However, improvement is improvement
nonetheless, and there are many methods that could be used to remove these outliers efficiently. The
easiest method would be to make use of the fact that the RGB value for the background is known.
An implementation could be made in the Python code, so that the background is masked and the
RGB value of the masked background can be compared to the known RGB value. Afterwards, any
observations with a large deviation from the known background value can be removed immediately.
Another minor change that could be made is the removal of the trend in the background which has also
been observed in Section 3.4. This could be accomplished by fitting a line to the data of the control
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group, and subtracting it from the blood sample data.

7.2. Bayesian Network
In Chapter 5, the Bayesian networks mainly focused on the nodes used in the BN. However, due to the
large number of variables in each BN, the number of arcs is also by no means small. Determining the
strengths of the arcs using bootstrapping, and further refining the BN could be an interesting topic for
further research.

Alternatively, it is also a possibility to fit the BN with less and other variables. If less variables are
used, perhaps a different structure learning method could be used to obtain a better BN. In this thesis,
hill-climbing was used due to the time-intensity, but if the number of variables is less, then that should
also decrease the run time. It is also worth constructing BNs for other variables which could perhaps
have more rapid time-dependent behaviour.

And finally, the distributions of the variables themselves could be changed. bnlearn is limited to only
discrete and Gaussian random variables, so perhaps switching to non-parametric BNs could improve
the predictions.



A
Images and Plots

A.1. Images
A.1.1. Set-up
Below an image can be found on the used set-up for the experiment at LION. Further detail can be
found in Beugelink [2].

Figure A.1: Experiment set-up at LION [2]
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A.1.2. Coverage Masks
Below the 95% and 99% coverage masks can be found for a few of the samples. As in Subsection
3.2.2, the changes in the masks are minimal and therefore the number of greatly shifted bloodstains
seem to be small. The code to determine the coverage mask can be found in Appendix C, and can be
used to construct the masks for other samples and other coverage percentages.

(a) 95% coverage (b) 99% coverage

Figure A.2: Image of the masks of Sample 1 with 95% and 99% coverage

(a) 95% coverage (b) 99% coverage

Figure A.3: Image of the masks of Sample 2 with 95% and 99% coverage
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(a) 95% coverage (b) 99% coverage

Figure A.4: Image of the masks of Sample 3 with 95% and 99% coverage

(a) 95% coverage (b) 99% coverage

Figure A.5: Image of the masks of Sample 4 with 95% and 99% coverage
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A.1.3. Collected Data: Visual Representation
Below a visual representation is given of the various G- and B-values collected for both the complete
and inner bloodstain of a single image.

(a) Minimum (b) Mean (c) 50% quantile (d) Maximum

(e) 5% Quantile (f) 20% Quantile (g) 80% Quantile (h) 95% Quantile

Figure A.6: Visual representation of the data from the G values.
(Sample 1, 2023 May 9th, 10:47)

(a) Minimum (b) Mean (c) 50% quantile (d) Maximum

(e) 5% Quantile (f) 20% Quantile (g) 80% Quantile (h) 95% Quantile

Figure A.7: Visual representation of the inner bloodstain data from the G values.
(Sample 1, 2023 May 9th, 10:47)
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(a) Minimum (b) Mean (c) 50% quantile (d) Maximum

(e) 5% Quantile (f) 20% Quantile (g) 80% Quantile (h) 95% Quantile

Figure A.8: Visual representation of the data from the B values. (Sample 1, 2023 May 9th, 10:47)

(a) Minimum (b) Mean (c) 50% quantile (d) Maximum

(e) 5% Quantile (f) 20% Quantile (g) 80% Quantile (h) 95% Quantile

Figure A.9: Visual representation of the inner bloodstain data from the B values.
(Sample 1, 2023 May 9th, 10:47)
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Below a visual representation is given of the G- and B-values collected for one of the control sam-
ples, i.e. Sample 7.

(a) Minimum (b) Mean (c) 50% quantile (d) Maximum

(e) 5% Quantile (f) 20% Quantile (g) 80% Quantile (h) 95% Quantile

Figure A.10: Visual representation of the data from the G values.
(Sample 7)

(a) Minimum (b) Mean (c) 50% quantile (d) Maximum

(e) 5% Quantile (f) 20% Quantile (g) 80% Quantile (h) 95% Quantile

Figure A.11: Visual representation of the data from the B values. (Sample 7)
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A.2. Plots

(a) Complete (b) Inner

Figure A.12: Scatter plot of the time and max G-values for the complete and inner bloodstain

(a) Complete (b) Inner

Figure A.13: Scatter plot of the time and max B-values for the complete and inner bloodstain



B
Bayesian Networks

In the table below, the MSE can be found for all the Bayesian networks constructed in the code. Not
all these Bayesian networks were discussed in the main text, due to the poor results.

Variables Mean Squared Error (MSE) Standard deviation of MSE
All variables 19303.45 1.46
Gray variables 19303.48 1.99
Red variables 15149.81 1.99
Green variables 17335.29 11.16
Blue variables 17758.62 8.86

Red and blue variables 14866.17 2.16
RGB variables 19302.56 0.69

Complete bloodstain 19302.97 0.72
Inner bloodstain 19303.21 1.55

Means 19303.48 1.98
Maxima 19303.31 1.49
q95 19302.56 0.69

Means, maxima, q95 19303.89 1.36
Red complete variables 18031.04 2.27
Red inner variables 15353.98 11.67

Table B.1: Table of the various subsets of the data for which a Bayesian network has been constructed, the corresponding Mean
Squared Error (MSE) and also the standard deviation of the MSE.
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Python Code

In this chapter, the used Python code can be found. Python was used for the data collection process,
and the illustration of the images, the corresponding masks, colours etc.

C.1. Functions
1 import os
2 import cv2
3 import numpy as np
4 from tkinter import filedialog
5 from datetime import datetime
6 from natsort import natsorted
7 import pandas as pd
8 import time
9 import matplotlib.pyplot as plt
10

11

12 def getdir():
13 ”””
14 Opens a dialog box to ask for the folder where data is stored.
15 This allows the script to be ran multiple times if necessary.
16 :return: Directory chosen by the user
17 ”””
18 directory = filedialog.askdirectory()
19 return directory
20

21

22 def read(filename):
23 ”””
24 Reads an image file and converts it to arrays.
25 :param filename: Filename of an image with the following format ’name.png’
26 (jpg and other image formats also work)
27 :return: Three arrays representing the RSV, RGB and grayscale images
28 ”””
29 img = cv2.imread(filename) # 3 channels, RSV image
30 RGB_img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) # 3 channels, RGB image
31 GRAY_img = cv2.cvtColor(RGB_img, cv2.COLOR_RGB2GRAY) # 1 channel, grayscale image
32 return img, RGB_img, GRAY_img
33

34

35 def get_mask(GRAY_img, th):
36 ”””
37 Determines a mask for the grayscale image using binary thresholding and Otsu’s

binarization.
38 :param GRAY_img: Array of the grayscale image
39 :param th: Used threshold value.
40 :return: Array representing the mask of the grayscale image (taking values 0 or 1)
41 ”””
42 ret, mask = cv2.threshold(GRAY_img, th, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU)
43 return mask / 255.0
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44

45

46 def parse_filename(filename):
47 ”””
48 Splits the filename into the sample number and the timestamp of the image
49 :param filename: Filename of an image with the following format
50 ”samp...-YYYYMMDDHHMM.png” (or .jpg)
51 :return: The sample number and the timestamp
52 ”””
53 # This function is written with the assumption that samp_num < 99
54 if filename[5] == ”-”:
55 samp_num = int(filename[4])
56 dt = filename[6:-4]
57 elif filename[6] == ”-”:
58 samp_num = int(filename[4:6])
59 dt = filename[7:-4]
60 else:
61 print(”An image with incorrect formatting has been found \n Filename:”, filename)
62 return ””, ””
63 date = datetime.strptime(dt, ”%Y%m%d%H%M”)
64 return samp_num, date
65

66

67 def final_mask(directory, percentage):
68 ”””
69 Determines an overlapping mask for all images of each sample.
70 :param directory: Name of the directory in which the images are contained
71 :param percentage: Percentage of which an pixel should be present, to be included in the

final mask,
72 i.e. a pixel should be contained in ...% of the images.
73 :return: Two dictionaries. In the first dictionary the overlapping mask is stored for

each separate sample, in the
74 second the mask is stored for the ”inner ring” of the sample. I.e. excluding the

irregularities in the edges
75 ”””
76 # masks keeps track of how often a pixel is present over all the masks
77 masks = {}
78 inner_masks = {}
79 # count keeps track of how many images there are for each sample.
80 count = {}
81 n = 1
82 # This loop counts how often a pixel is within a mask
83 for file in natsorted(os.listdir(directory)):
84 filename = os.fsdecode(file)
85 if filename.endswith(’jpg’) or filename.endswith(’png’):
86 # Collect the sample number, the time at which the picture was taken, and the

image information
87 samp_num, date = parse_filename(filename)
88 img, RGB_img, GRAY_img = read(filename)
89

90 # Determine the mask for the given image
91 mask = get_mask(GRAY_img, 0)
92

93 mask_RGB = masked_image(RGB_img, mask)
94

95 # Construct the masked grayscale imager
96 GRAY_masked = (GRAY_img*mask).clip(0, 255).astype(np.uint8)
97

98 # Determine the mask of the masked image, to get rid of further irregular edges.
99 # So only the ”inner ring” remains
100 inter_step1 = (get_mask(GRAY_masked, 0) * mask).clip(0, 1)
101 inter_step2 = ((np.ones(np.shape(GRAY_masked)) - get_mask(GRAY_masked, 0)) * mask

).clip(0, 1)
102 if np.sum(inter_step1) <= np.sum(inter_step2):
103 inner_mask = inter_step2
104 # plot_mask(inter_step2, f”Intermediate mask 2 (complement) of sample {

samp_num}”)
105 else:
106 inner_mask = inter_step1
107 # plot_mask(inter_step1, f”Intermediate mask 1 of sample {samp_num}”)
108
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109 # if n <= 3:
110 # plot_mask(mask, f”Complete mask of sample {samp_num}”)
111 # plot_mask(inner_mask, f”Inner mask of sample {samp_num}”)
112 # mask_RGB = masked_image(RGB_img, mask)
113 # inner_RGB = masked_image(RGB_img, inner_mask)
114 # plot_image(mask_RGB, ””)
115 # plot_image(inner_RGB, ””)
116 # n += 1
117

118 # If this sample is already in the masks dictionary, then add the masks together,
and store the

119 # resulting mask.
120 # Otherwise create a new item in the masks dictionary
121 if samp_num in masks:
122 masks[samp_num] = masks[samp_num] + mask
123 inner_masks[samp_num] = inner_masks[samp_num] + inner_mask
124 count[samp_num] += 1
125 else:
126 masks[samp_num] = mask
127 inner_masks[samp_num] = inner_mask
128 count[samp_num] = 1
129

130 # Determine which pixels are present in ...% of the masks
131 for samp_num, mask in masks.items():
132 masks[samp_num] = (mask > (count[samp_num]*percentage)) * np.ones(RGB_img.shape[:2])
133 inner_masks[samp_num] = (inner_masks[samp_num] > (count[samp_num]*percentage)) * np.

ones(RGB_img.shape[:2])
134 # UNCOMMENT THE BELOW BLOCK TO SHOW THE OVERLAPPING MASK FOR EACH SAMPLE
135 # plot_mask(masks[samp_num], f”Combined mask for sample {samp_num}”)
136 # plot_mask(inner_masks[samp_num], f”Combined mask of the inner ring for sample {

samp_num}”)
137 return masks, inner_masks
138

139

140 def masked_image(RGB_img, mask):
141 ”””
142 Constructs the array of a masked RGB image
143 :param RGB_img: Array of the RGB image
144 :param mask: Binary array which masks the image
145 :return: Array of masked RGB image
146 ”””
147 mask3D = np.zeros((RGB_img.shape[0], RGB_img.shape[1], 3))
148 mask3D[:, :, 0] = mask
149 mask3D[:, :, 1] = mask
150 mask3D[:, :, 2] = mask
151 masked = (RGB_img*mask3D).clip(0, 255).astype(np.uint8)
152 for i in range(np.shape(RGB_img)[0]):
153 for j in range(np.shape(masked)[1]):
154 if (masked[i, j, ] == np.array([0, 0, 0])).all():
155 masked[i, j, ] = np.array([255, 255, 255])
156 return masked
157

158

159 def data_call(col_channel, num):
160 ”””
161 A function which determines whether the mean, minimum, maximum, variance or 5 quantiles

of a colour channel
162 are calculated (Values of the quantiles can be changed within the function. You need

to take exactly 5
163 quantiles)
164 :param col_channel: Array of any colour channel
165 :param num: A number from the set {1, 2, 3, 4, 5}, which determines what is calculated
166 :return: Mean, minimum, maximum, variance or 5 quantiles
167 ”””
168 # We only consider the non-zero values in the colour channel
169 array = col_channel[np.nonzero(col_channel)]
170 if num == 0:
171 return np.mean(array)
172 elif num == 1:
173 return np.amin(array)
174 elif num == 2:
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175 return np.amax(array)
176 elif num == 3:
177 return np.var(array)
178 elif num == 4:
179 # Change to the desired quantiles (Give exactly 5 quantiles)
180 quantiles = (0.05, 0.25, 0.5, 0.75, 0.95)
181 return np.quantile(array, quantiles)
182 else:
183 print(”Wrong input given to data_call”)
184 return
185

186

187 def channel_data(col_channel):
188 ”””
189 Constructs an array with the mean, minimum, maximum, variance and 5 quantiles for a

single colour channel
190 :param col_channel: Array of any colour channel
191 :return: An array with the mean, minimum, maximum, variance and 5 quantiles
192 ”””
193 data = np.zeros(9)
194 for i in range(5):
195 if i in range(4):
196 data[i] = data_call(col_channel, i)
197 elif i == 4:
198 data[4:9] = data_call(col_channel, i)
199 return data
200

201

202 def image_data(RGB_image, GRAY_image):
203 ”””
204 Collects the mean, minimum, maximum, variance and 5 quantiles of the gray and RGB colour

channels
205 :param RGB_image: Array of the RGB image
206 :param GRAY_image: Array of the grayscale image
207 :return: An array with the mean, minimum, maximum, variance and 5 quantiles of the

grayscale image, and the
208 RGB image
209 ”””
210 GRAY = channel_data(GRAY_image)
211 R = channel_data(RGB_image[:, :, 0])
212 G = channel_data(RGB_image[:, :, 1])
213 B = channel_data(RGB_image[:, :, 2])
214 return np.array([np.concatenate((GRAY, R, G, B))])
215

216

217 def other_data(TOD, date, samp_num):
218 ”””
219 Collects the remaining data
220 :param TOD: Time of deposition
221 :param date: Time at which the image was taken
222 :param samp_num: Sample number of the image
223 :return: An array with the time since deposition, sample number, volume, temperature and

humidity
224 ”””
225 # Determines the time since deposition in hours
226 TSD = (date - TOD).total_seconds() / 3600
227

228 # Determines volume, temperature and humidity
229 volume = samp_volume(samp_num)
230 temperature, humidity = read_temp_hum()
231 return np.array([[TSD, samp_num, volume, temperature, humidity]])
232

233

234 def samp_volume(samp_num):
235 ”””
236 Determines the volume of a sample. If an unknown sample number is given, then we assume

that the volume is 0
237 :param samp_num: Sample number
238 :return: The volume in micro litre corresponding to the given sample
239 ”””
240 if samp_num in [1, 2, 3]:
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241 return 8
242 elif samp_num in [4, 5, 6]:
243 return 4
244 elif samp_num in [9, 10, 11, 12]:
245 return 2
246 else:
247 return 0
248

249

250 def read_temp_hum():
251 ”””
252 CURRENTLY HARD CODED TO RETURN THE TEMPERATURE AND PERCENTAGE. WOULD NEED FURTHER CODING,

TO READ THE DATA
253 FROM THE pid.log FILE
254 :return: The temperature in degrees Celsius and the percentage of humidity
255 ”””
256 return 25, 35
257

258

259 def batch_process(directory, time_dep):
260 ”””
261 Constructs an array containing the mean, minimum, maximum, variance and 5 quantiles for

each channel and
262 for each image in the directory.
263 :param directory: Directory in which the to-be-processed images are contained
264 :param time_dep: Time of deposition
265 :return: An array containing the mean, minimum, maximum, variance and 5 quantiles
266 ”””
267 TOD = datetime.strptime(time_dep, ”%Y-%m-%d %H:%M”)
268

269 # Construct the headers for the data array
270 ot_data = np.array([[”time”, ”samp_num”, ”volume”, ”temperature”, ”humidity”]])
271 data = np.array([[”GRAY_mean”, ”GRAY_min”, ”GRAY_max”, ”GRAY_variance”, ”GRAY_q5”, ”

GRAY_q20”, ”GRAY_q50”,
272 ”GRAY_q80”, ”GRAY_q95”,
273 ”R_mean”, ”R_min”, ”R_max”, ”R_variance”, ”R_q5”, ”R_q20”, ”R_q50”, ”

R_q80”, ”R_q95”,
274 ”G_mean”, ”G_min”, ”G_max”, ”G_variance”, ”G_q5”, ”G_q20”, ”G_q50”, ”

G_q80”, ”G_q95”,
275 ”B_mean”, ”B_min”, ”B_max”, ”B_variance”, ”B_q5”, ”B_q20”, ”B_q50”, ”

B_q80”, ”B_q95”]])
276 inner_data = np.array([[”in_GRAY_mean”, ”in_GRAY_min”, ”in_GRAY_max”, ”in_GRAY_variance”,

”in_GRAY_q5”,
277 ”in_GRAY_q20”, ”in_GRAY_q50”, ”in_GRAY_q80”, ”in_GRAY_q95”,
278 ”in_R_mean”, ”in_R_min”, ”in_R_max”, ”in_R_variance”, ”in_R_q5”,

”in_R_q20”, ”in_R_q50”,
279 ”in_R_q80”, ”in_R_q95”,
280 ”in_G_mean”, ”in_G_min”, ”in_G_max”, ”in_G_variance”, ”in_G_q5”,

”in_G_q20”, ”in_G_q50”,
281 ”in_G_q80”, ”in_G_q95”,
282 ”in_B_mean”, ”in_B_min”, ”in_B_max”, ”in_B_variance”, ”in_B_q5”,

”in_B_q20”, ”in_B_q50”,
283 ”in_B_q80”, ”in_B_q95”]])
284 # Get the overlapping masks
285 masks, inner_masks = final_mask(directory, 0.95)
286 mask_path = directory + ”/mask_images”
287

288 for samp_num in masks:
289 save_mask(mask_path, masks[samp_num], samp_num, 95)
290

291 # n is used so that we only plot a limited number of images
292 n = 1
293 for file in natsorted(os.listdir(directory)):
294 filename = os.fsdecode(file)
295 # print(f”Filename: {filename}”)
296 if filename.endswith(’jpg’) or filename.endswith(’png’):
297 # Read the image, sample number and time at which the image was taken
298 samp_num, date = parse_filename(filename)
299 img, RGB_img, GRAY_img = read(filename)
300

301 # Determine corresponding mask for the image
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302 mask = masks[samp_num]
303 inner_mask = inner_masks[samp_num]
304

305 # Construct the masked images
306 GRAY_masked = (GRAY_img*mask).clip(0, 255).astype(np.uint8)
307 RGB_masked = masked_image(RGB_img, mask)
308

309 inner_GRAY_masked = (GRAY_img*inner_mask).clip(0, 255).astype(np.uint8)
310 inner_RGB_masked = masked_image(RGB_img, inner_mask)
311

312 # UNCOMMENT BELOW TO PLOT THE FIRST ... IMAGES. UNMASKED, MASKED AND DOUBLE
MASKED

313 # if n <= 3:
314 # plot_mask(mask, f”Mask for sample {samp_num}”)
315 # plot_image(RGB_img, f”Unmasked image of sample {samp_num}, timestamp {date

}”)
316 # plot_image(RGB_masked, f”Masked image of sample {samp_num}, timestamp {date

}”)
317 # plot_image(inner_RGB_masked, f”Double masked image of sample {samp_num},

timestamp {date}”)
318 # n += 1
319

320 # Construct the image data and other data, and append it to their respective
arrays

321 other = other_data(TOD, date, samp_num)
322 ot_data = np.concatenate((ot_data, other))
323 image = image_data(RGB_masked, GRAY_masked)
324 inner = image_data(inner_RGB_masked, inner_GRAY_masked)
325 data = np.concatenate((data, image))
326 inner_data = np.concatenate((inner_data, inner))
327 return np.concatenate((ot_data, data, inner_data), axis=1)
328

329

330 def save_array_as_csv(path, filename, array):
331 ”””
332 Converts an array to a Pandas dataframe, and saves it as a CSV file
333 :param path: Path to folder in which the dataframe is saved
334 :param filename: Chosen name for the CSV file
335 :param array: Numpy array that will be saved
336 :return: Pandas dataframe
337 ”””
338 # Determine current working directory for later
339 og_path = os.getcwd()
340

341 # If the desired map does not exist, then it is created
342 if not os.path.exists(path):
343 os.mkdir(path)
344

345 os.chdir(path)
346

347 # Convert the array to a pandas data frame and proceed to store it in a csv file
348 DF = pd.DataFrame(data=array[1:, ], columns=array[0, ])
349 DF.to_csv(filename, index=False)
350

351 # Return to original working directory
352 os.chdir(og_path)
353 return DF
354

355

356 def plot_mask(mask, title):
357 ”””
358 Plots the mask
359 :param mask: Binary array of the mask
360 :param title: Title of the plot
361 :return: -
362 ”””
363 mask3D = np.zeros((mask.shape[0], mask.shape[1], 3))
364 mask3D[:, :, 0] = mask * 255.0
365 mask3D[:, :, 1] = mask * 255.0
366 mask3D[:, :, 2] = mask * 255.0
367 m = mask3D.clip(0, 255).astype(np.uint8)
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368 plt.imshow(m)
369 plt.title(title)
370 plt.show()
371 return
372

373

374 def plot_image(RGB_img, title):
375 ”””
376 Plots an RGB image
377 :param RGB_img: Array of the RGB image
378 :param title: Title of the plot
379 :return: -
380 ”””
381 plt.imshow(RGB_img)
382 plt.title(title)
383 plt.show()
384 return
385

386

387 def save_mask(path, mask, samp_num, percentage):
388 ”””
389 Saves a mask as an image
390 :param path: Location at which the image will be stored
391 :param mask: Binary array of a mask
392 :param samp_num: Sample number
393 :param percentage: Coverage percentage of the mask
394 :return: -
395 ”””
396 # Determine current working directory for later
397 og_path = os.getcwd()
398

399 # If the desired map does not exist, then it is created
400 if not os.path.exists(path):
401 os.mkdir(path)
402

403 os.chdir(path)
404

405 mask3D = np.zeros((mask.shape[0], mask.shape[1], 3))
406 mask3D[:, :, 0] = mask * 255.0
407 mask3D[:, :, 1] = mask * 255.0
408 mask3D[:, :, 2] = mask * 255.0
409 m = mask3D.clip(0, 255).astype(np.uint8)
410

411 cv2.imwrite(f”mask_samp{samp_num}_perc{percentage}.png”, m)
412 os.chdir(og_path)
413 return
414

415

416 def plot_and_save_colour(array, save_name):
417 ”””
418 Plots and saves a given colour value
419 :param array: Array of shape (1,1,3), i.e. an array containing only 1 pixel,
420 :param save_name: Name that the image should be saves as
421 :return: -
422 ”””
423 img = np.zeros((369, 369, 3), np.uint8)
424 for i in range(3):
425 if array[0, 0, i] == 0:
426 continue
427 else:
428 col = array[0, 0, i]
429 img[:, :, i] = img[:, :, i] + col
430 break
431 ### Setup so that the colour value is printed
432 # General setup
433 font = cv2.FONT_HERSHEY_SIMPLEX
434 fontScale = 5
435 text_col = (255, 255, 255)
436 thickness = 3
437

438 # Getting the boundary of the text
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439 textsize = cv2.getTextSize(str(col), font, fontScale, thickness)[0]
440 # Get coordinates based on boundary
441 textX = int((img.shape[1] - textsize[0]) / 2)
442 textY = int((img.shape[0] + textsize[1]) / 2)
443

444 img = cv2.putText(img, str(col), (textX, textY), font, fontScale, text_col, thickness)
445

446 plt.imshow(img)
447 plt.axis(’off’)
448 plt.savefig(save_name, transparent=True, bbox_inches=’tight’, pad_inches=0)
449 plt.show()
450 return
451

452

453 def plot_and_save_mask(mask, save_name):
454 mask3D = np.zeros((mask.shape[0], mask.shape[1], 3))
455 mask3D[:, :, 0] = mask * 255.0
456 mask3D[:, :, 1] = mask * 255.0
457 mask3D[:, :, 2] = mask * 255.0
458 m = mask3D.clip(0, 255).astype(np.uint8)
459 plt.imshow(m)
460 plt.axis(’off’)
461 plt.savefig(save_name, transparent=True, bbox_inches=’tight’, pad_inches=0)
462 plt.show()
463 return
464

465

466 def plot_and_save_image(RGB_img, save_name):
467 plt.imshow(RGB_img)
468 plt.axis(’off’)
469 plt.savefig(save_name, transparent=True, bbox_inches=’tight’, pad_inches=0)
470 plt.show()
471 return
472

473

474 def colour_parser(directory, path, masks, inner_masks):
475 ”””
476

477 :param directory: Directory in which the to-be-processed images are contained
478 :param path: Path to directory in which the produced images are saved
479 :param masks:
480 :return:
481 ”””
482 colours = [”R”, ”G”, ”B”]
483 types = [”_mean”, ”_min”, ”_max”, ”_q5”, ”_q20”, ”_q50”, ”_q80”, ”_q95”]
484

485 for file in natsorted(os.listdir(directory)):
486 filename = os.fsdecode(file)
487 # print(f”Filename: {filename}”)
488 if filename.endswith(’jpg’) or filename.endswith(’png’):
489 # Read the image, sample number and time at which the image was taken
490 samp_num, date = parse_filename(filename)
491 img, RGB_img, GRAY_img = read(filename)
492

493 # Determine corresponding mask for the image
494 mask = masks[samp_num]
495 inner_mask = inner_masks[samp_num]
496

497 # Construct the masked images
498 GRAY_masked = (GRAY_img*mask).clip(0, 255).astype(np.uint8)
499 RGB_masked = masked_image(RGB_img, mask)
500

501 inner_GRAY_masked = (GRAY_img*inner_mask).clip(0, 255).astype(np.uint8)
502 inner_RGB_masked = masked_image(RGB_img, inner_mask)
503

504 # Get the colour data from the image (mean, min, max, quantiles) (also variance,
but we don’t need it)

505 # Get the colour data, and remove the GRAY, and variance of each colour channels
506 image = image_data(RGB_masked, GRAY_masked)[0]
507 image = np.delete(image, (range(9)))
508 image = np.delete(image, (3, 12, 21))
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509

510 inner = image_data(inner_RGB_masked, inner_GRAY_masked)[0]
511 inner = np.delete(inner, (range(9)))
512 inner = np.delete(inner, (3, 12, 21))
513

514 if not os.path.exists(path):
515 os.mkdir(path)
516 os.chdir(path)
517

518 # Now we plot each value, and save it
519 for i in range(len(colours)):
520 for j in range(len(types)):
521 # Save the images of the colours for the full bloodstain
522 filename = f”{colours[i]}{types[j]}_samp{samp_num}.png”
523 col = np.zeros([1, 1, 3]).astype(np.uint8)
524 col[0, 0, i] = int(round(image[i*8 + j]))
525 plot_and_save_colour(col, filename)
526

527 # Save the images of the colours for the inner bloodstain
528 filename_inner = ”in_” + filename
529 col_inner = np.zeros([1, 1, 3]).astype(np.uint8)
530 col_inner[0, 0, i] = int(round(inner[i*8 + j]))
531 # # Save the colours that were obtained from the processing
532 plot_and_save_colour(col_inner, filename_inner)
533 os.chdir(directory)
534 return
535

536

537 def mask_image_parser(directory, path, masks, inner_masks):
538 for file in natsorted(os.listdir(directory)):
539 filename = os.fsdecode(file)
540 # print(f”Filename: {filename}”)
541 if filename.endswith(’jpg’) or filename.endswith(’png’):
542 # Read the image, sample number and time at which the image was taken
543 samp_num, date = parse_filename(filename)
544 img, RGB_img, GRAY_img = read(filename)
545

546 # Determine corresponding mask for the image
547 mask = masks[samp_num]
548 inner_mask = inner_masks[samp_num]
549

550 # Construct the masked images
551 RGB_masked = masked_image(RGB_img, mask)
552 inner_RGB_masked = masked_image(RGB_img, inner_mask)
553

554 if not os.path.exists(path):
555 os.mkdir(path)
556 os.chdir(path)
557

558 for tp in [”RGB”, ”mask”]:
559 filename_complete = f”{tp}_full_samp{samp_num}.png”
560 filename_masked = f”{tp}_mask_samp{samp_num}.png”
561 filename_inner = f”{tp}_in_samp{samp_num}.png”
562 if tp == ”RGB”:
563 plot_and_save_image(RGB_img, filename_complete)
564 plot_and_save_image(RGB_masked, filename_masked)
565 plot_and_save_image(inner_RGB_masked, filename_inner)
566 elif tp == ”mask”:
567 plot_and_save_mask(mask, filename_masked)
568 plot_and_save_mask(inner_mask, filename_inner)
569 os.chdir(directory)
570 return

Listing C.1: ”functions.py” file
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C.2. Data Collection
1 from functions import *
2

3

4 # Manually enter TOD, YYYY-MM-DD HH-MM
5 # Time of Deposition
6 TOD = ’2023-05-02 10:36’ # Second donor measurement
7

8 directory = getdir()
9 data_path = directory + ”/datafiles”
10

11 os.chdir(directory)
12 directory = os.getcwd()
13 print(f”Directory: {directory}”)
14

15 # Collect all the data for each image
16 data_array = batch_process(directory, TOD)
17 dataframe = save_array_as_csv(data_path, ”data2.csv”, data_array)

C.3. Images
1 from functions import *
2

3 # Manually enter TOD, YYYY-MM-DD HH-MM
4 # Time of Deposition
5 TOD = ’2023-05-02 10:36’ # Second donor measurement
6

7 directory = getdir()
8

9 os.chdir(directory)
10 directory = os.getcwd()
11 print(f”Directory: {directory}”)
12

13 masks, inner_masks = final_mask(directory, 0.95)
14

15 colour_path = directory + ”/colours”
16 colour_parser(directory, colour_path, masks, inner_masks)
17

18 image_mask_path = directory + ”/masks_images”
19 mask_image_parser(directory, image_mask_path, masks, inner_masks)



D
R Code

Throughout this report, the plotting of the data, and the construction of the Bayesian networks was
performed in RStudio. In this chapter, all the used R-code can be found. Whenever running any of the
code, first run the code in Appendix D.1. Afterwards, the code in Appendix D.2 and D.2.1 can be run.
Do keep in mind that the path in the code should be set to the desired directory.

D.1. Functions
1 ##### Defining functions #####
2 histogram_plot <- function(df, var, num_bins, labs, save, filename) {
3 # Plot a histogram
4 # df: data frame
5 # var: variable that will be plotted
6 # num_bins: number of bin values for the histogram
7 # labs: vector containing the name for the x-axis and the title of
8 # the histogram
9 # save: save the image (TRUE or FALSE)
10 # filename: name that the image should be saved as
11 name <- as.character(substitute(var))
12 v_hist_inf <- c(width = (max(df[name])-min(df[name]))/num_bins,
13 bound = min(df[name]))
14 p <- ggplot(df, aes({{var}})) +
15 geom_histogram(binwidth = v_hist_inf[[’width’]],
16 boundary = v_hist_inf[[’bound’]],
17 color=”royalblue4”, fill=”royalblue”) +
18 ggtitle(labs[2]) + xlab(labs[1]) +
19 theme(plot.title = element_text(size = 15))
20 if (save == TRUE) {
21 ggsave(filename, plot = p, width = 6, height = 4, units = ”in”)
22 }
23 p
24 }
25

26 scatter_plot <- function(df, var1, var2, labs, save, filename){
27 # Create a scatter plot
28 # df: data frame
29 # var1: first variable that will be plotted
30 # var2: second variable that will be plotted
31 # labs: vector containing the name for the x-axis and the y-axis
32 # and the title of the plot
33 # save: save the image (TRUE or FALSE)
34 # filename: name that the image should be saved as
35 p = ggplot(df, aes({{var1}}, {{var2}})) +
36 geom_point(size=2, color=”royalblue”, shape = 1) +
37 ggtitle(labs[3]) + xlab(labs[1]) + ylab(labs[2]) +
38 theme(plot.title = element_text(size = 15, face=”bold”, hjust=0.5))
39 if (save == TRUE) {
40 ggsave(filename, plot = p, width = 6, height = 4, units = ”in”)
41 }

54
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42 p
43 }
44

45 grouped_scatter_plot <- function(df, var1, var2, var3, title, save, filename){
46 # Create a scatter plot grouped over a certain variable
47 # df: data frame
48 # var1: first variable that will be plotted
49 # var2: second variable that will be plotted
50 # var3: third variable over which we group
51 # labs: vector containing the name for the x-axis and the y-axis
52 # and the title of the plot
53 # save: save the image (TRUE or FALSE)
54 # filename: name that the image should be saved as
55 p = ggplot(df, aes({{var1}}, {{var2}}, color={{var3}})) +
56 geom_point(size = 0.5, shape = 1) +
57 ggtitle(labs[3]) + xlab(labs[1]) + ylab(labs[2]) +
58 theme(plot.title = element_text(size = 15, face=”bold”, hjust=0.5))
59 if (save == TRUE) {
60 ggsave(filename, plot = p, width = 6, height = 4, units = ”in”)
61 }
62 p
63 }
64

65 obs_pred_plot <- function(obs, pred, title, save, filename){
66 # Create a scatter plot with the observed values on the x-axis and
67 # the predicted values on the y-axis.
68 # obs: vector of the observed values
69 # pred: vector of the predicted values
70 # title: title of the plot
71 # save: save the image (TRUE or FALSE)
72 # filename: name that the image should be saved as
73 p = ggplot() + geom_point(aes(obs, pred), size=2, color=”royalblue”,
74 shape=1 ) + ggtitle(title) +
75 xlab(”Observed”) + ylab(”Predicted”) +
76 theme(plot.title = element_text(size = 15, face=”bold”, hjust=0.5))
77 if (save == TRUE) {
78 ggsave(filename, plot = p, width = 6, height = 4, units = ”in”)
79 }
80 p
81 }

D.2. Bayesian Networks
1 ##### Set your working directory with all files, and import packages #####
2 path = ”~/TU Delft/Bachelor Project/R code”
3 setwd(path)
4 set.seed(12345)
5 library(bnlearn)
6 library(ggplot2)
7 library(dplyr)
8

9 ##### Importing and Tidying Data #####
10 data = read.csv(”datafiles/data.csv”, header = TRUE)
11 # Remove control samples
12 data = data[which(data$samp_num != 7 & data$samp_num != 8),]
13 # Remove irrelevant columns from data set. I.e. temperature and humidity
14 # and sample number
15 data = select(data, -c(temperature, humidity, samp_num))
16

17 # Determining the structure may take long, you can also load the
18 # provided .RData file
19 load(”bn_structure_data.RData”)
20

21 ##### Bayesian Networks #####
22 ##### Whole data set
23 # Determine the structure of the Bayesian network using hill-climbing
24 # bn.hc_data = hc(data)
25

26 # Cross-validate the structure of the BN. This is done through k-fold cross-
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27 # validation using hte MSE as the loss function
28 # The cross-validation is done 5 times
29 cv_data = bn.cv(data, bn.hc_data, method = ”k-fold”, k=5, loss = ”mse”,
30 loss.args = list(target = ”time”), runs = 5)
31 cv_data
32

33 # Plot the structure of the Bayesian network
34 plot(bn.hc_data)
35

36 # Print the children and parent nodes of the time node
37 bn.hc_data$nodes$time$children
38 bn.hc_data$nodes$time$parents
39

40 # Plot the observed and predicted time values obtained using the BN
41 obs_pred_plot(cv_data[[1]][[1]]$observed, cv_data[[1]][[1]]$predicted,
42 ”Scatter plot of the observed and predicted time”, FALSE,
43 ”obs_pred_all_data.png”)
44

45 ##### Gray variables
46 gray = data[, c(1:2, 3:11, 39:47)]
47 # bn.hc_gray = hc(gray)
48 cv_gray = bn.cv(gray, bn.hc_gray, method = ”k-fold”, k=5, loss = ”mse”,
49 loss.args = list(target = ”time”), runs = 5)
50 cv_gray
51 plot(bn.hc_gray)
52 bn.hc_gray$nodes$time$children
53 bn.hc_gray$nodes$time$parents
54 obs_pred_plot(cv_gray[[1]][[1]]$observed, cv_gray[[1]][[1]]$predicted,
55 ”Scatter plot of the observed and predicted time”, FALSE,
56 ”obs_pred_gray.png”)
57

58 ##### Red variables
59 red = data[, c(1:2, 12:20, 48:56)]
60 # bn.hc_red = hc(red)
61 cv_red = bn.cv(red, bn.hc_red, method = ”k-fold”, k=5, loss = ”mse”,
62 loss.args = list(target = ”time”), runs = 5)
63 cv_red
64 plot(bn.hc_red)
65 bn.hc_red$nodes$time$children
66 bn.hc_red$nodes$time$parents
67 obs_pred_plot(cv_red[[1]][[1]]$observed, cv_red[[1]][[1]]$predicted,
68 ”Scatter plot of the observed and predicted time”, FALSE,
69 ”obs_pred_red.png”)
70

71 ##### Green variables
72 green = data[, c(1:2, 21:29, 57:65)]
73 # bn.hc_green = hc(green)
74 cv_green = bn.cv(green, bn.hc_green, method = ”k-fold”, k=5, loss = ”mse”,
75 loss.args = list(target = ”time”), runs = 5)
76 cv_green
77 plot(bn.hc_green)
78 bn.hc_green$nodes$time$children
79 bn.hc_green$nodes$time$parents
80 obs_pred_plot(cv_green[[1]][[1]]$observed, cv_green[[1]][[1]]$predicted,
81 ”Scatter plot of the observed and predicted time”, FALSE,
82 ”obs_pred_green.png”)
83

84 ##### Blue variables
85 blue = data[, c(1:2, 30:38, 66:74)]
86 # bn.hc_blue = hc(blue)
87 cv_blue = bn.cv(blue, bn.hc_blue, method = ”k-fold”, k=5, loss = ”mse”,
88 loss.args = list(target = ”time”), runs = 5)
89 cv_blue
90 plot(bn.hc_blue)
91 bn.hc_blue$nodes$time$children
92 bn.hc_blue$nodes$time$parents
93 p = obs_pred_plot(cv_blue[[1]][[1]]$observed, cv_blue[[1]][[1]]$predicted,
94 ”Scatter plot of the observed and predicted time”, FALSE,
95 ”obs_pred_blue.png”) + ylim(0,500)
96 ggsave(”zoom_obs_pred_blue.png”, plot = p, width = 6, height = 4, units = ”in”)
97
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98

99

100 ##### Red and blue variables
101 red_and_blue = data[, c(1:2, 12:20, 30:38, 48:56, 66:74)]
102 # bn.hc_red_and_blue = hc(red_and_blue)
103 cv_red_and_blue = bn.cv(red_and_blue, bn.hc_red_and_blue, method = ”k-fold”,
104 k=5, loss = ”mse”, loss.args = list(target = ”time”),
105 runs = 5)
106 cv_red_and_blue
107 plot(bn.hc_red_and_blue)
108 bn.hc_red_and_blue$nodes$time$children
109 bn.hc_red_and_blue$nodes$time$parents
110 obs_pred_plot(cv_red_and_blue[[1]][[1]]$observed,
111 cv_red_and_blue[[1]][[1]]$predicted,
112 ”Scatter plot of the observed and predicted time”, FALSE,
113 ”obs_pred_red_and_blue.png”)
114

115 ##### Red and green variables
116 red_and_green = data[, c(1:2, 12:29, 48:65)]
117 # bn.hc_red_and_green = hc(red_and_green)
118 cv_red_and_green = bn.cv(red_and_green, bn.hc_red_and_green, method = ”k-fold”,
119 k=5, loss = ”mse”, loss.args = list(target = ”time”),
120 runs = 5)
121 cv_red_and_green
122 plot(bn.hc_red_and_green)
123 bn.hc_red_and_green$nodes$time$children
124 bn.hc_red_and_green$nodes$time$parents
125 obs_pred_plot(cv_red_and_green[[1]][[1]]$observed,
126 cv_red_and_green[[1]][[1]]$predicted,
127 ”Scatter plot of the observed and predicted time”, FALSE,
128 ”obs_pred_red_and_green.png”) + ylim(0,500)
129

130 ##### Red, green and blue variables
131 RGB = data[, c(1:2, 12:38, 48:74)]
132 # bn.hc_RGB = hc(RGB)
133 cv_RGB = bn.cv(RGB, bn.hc_RGB, method = ”k-fold”,
134 k=5, loss = ”mse”, loss.args = list(target = ”time”),
135 runs = 5)
136 cv_RGB
137 plot(bn.hc_RGB)
138 bn.hc_RGB$nodes$time$children
139 bn.hc_RGB$nodes$time$parents
140 obs_pred_plot(cv_RGB[[1]][[1]]$observed,
141 cv_RGB[[1]][[1]]$predicted,
142 ”Scatter plot of the observed and predicted time”, FALSE,
143 ”obs_pred_red_and_blue.png”) + ylim(0,500)
144

145 ##### Complete bloodstain
146 complete = data[, c(1:2, 3:38)]
147 # bn.hc_complete = hc(complete)
148 cv_complete = bn.cv(complete, bn.hc_complete, method = ”k-fold”, k=5,
149 loss = ”mse”, loss.args = list(target = ”time”), runs = 5)
150 cv_complete
151

152 ##### Inner bloodstain
153 inner = data[, c(1:2, 39:74)]
154 bn.hc_inner = hc(inner)
155 cv_inner = bn.cv(inner, bn.hc_inner, method = ”k-fold”, k=5, loss = ”mse”,
156 loss.args = list(target = ”time”), runs = 5)
157 cv_inner
158

159 # Red colour channel of the complete bloodstain
160 red_complete = data[, c(1:2, 12:20)]
161 bn.hc_red_complete = hc(red_complete)
162 cv_red_complete = bn.cv(red_complete, bn.hc_red_complete, method = ”k-fold”,
163 k=5, loss = ”mse”,
164 loss.args = list(target = ”time”), runs = 5)
165 cv_red_complete
166

167

168
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169 # Red colour channel of the inner bloodstain
170 red_inner = data[, c(1:2, 48:56)]
171 bn.hc_red_inner = hc(red_inner)
172 cv_red_inner = bn.cv(red_inner, bn.hc_red_inner, method = ”k-fold”, k=5,
173 loss = ”mse”, loss.args = list(target = ”time”), runs = 5)
174 cv_red_inner
175

176

177

178 means = data[, c(1:2, 3, 12, 21, 30, 39, 48, 57, 66)]
179 maxs = data[, c(1:2, 5, 14, 23, 32, 41, 50, 59, 68)]
180 q95s = data[, c(1:2, 11, 20, 29, 38, 47, 56, 65, 74)]
181

182

183 ##### Mean variables
184 means = data[, c(1:2, 3, 12, 21, 30, 39, 48, 57, 66)]
185 bn.hc_means = hc(means)
186 cv_means = bn.cv(means, bn.hc_means, method = ”k-fold”, k=5, loss = ”mse”,
187 loss.args = list(target = ”time”), runs = 5)
188 cv_means
189

190 ##### Max variables
191 maxs = data[, c(1:2, 5, 14, 23, 32, 41, 50, 59, 68)]
192 bn.hc_maxs = hc(maxs)
193 cv_maxs = bn.cv(maxs, bn.hc_maxs, method = ”k-fold”, k=5, loss = ”mse”,
194 loss.args = list(target = ”time”), runs = 5)
195 cv_maxs
196

197 ##### q95s variables
198 q95s = data[, c(1:2, 11, 20, 29, 38, 47, 56, 65, 74)]
199 bn.hc_q95s = hc(q95s)
200 cv_q95s = bn.cv(q95s, bn.hc_q95s, method = ”k-fold”, k=5, loss = ”mse”,
201 loss.args = list(target = ”time”), runs = 5)
202 cv_q95s
203

204 ##### Means, maxs and q95s variables
205 mmq = data[c(1:2, 3, 12, 21, 30, 39, 48, 57, 66,
206 5, 14, 23, 32, 41, 50, 59, 68,
207 11, 20, 29, 38, 47, 56, 65, 74)]
208 bn.hc_mmq = hc(mmq)
209 cv_mmq = bn.cv(mmq, bn.hc_mmq, method = ”k-fold”, k=5, loss = ”mse”,
210 loss.args = list(target = ”time”), runs = 5)
211 cv_mmq
212

213 # Uncomment the below to save certain constructed BN structures
214 # save(bn.hc_data, bn.hc_gray, bn.hc_red, bn.hc_green, bn.hc_blue, bn.hc_gray,
215 # bn.hc_complete, bn.hc_inner, bn.hc_group, bn.hc_red_and_blue,
216 # bn.hc_red_and_green, bn.hc_RGB,
217 # file = ”bn_structure_data.RData”))

D.2.1. Optimal Bayesian Network
1 ##### Set your working directory with all files, and import packages #####
2 path = ”~/TU Delft/Bachelor Project/R code”
3 setwd(path)
4 set.seed(12345)
5 library(bnlearn)
6 library(ggplot2)
7 library(dplyr)
8

9 ##### Importing and Tidying Data #####
10 data = read.csv(”datafiles/data.csv”, header = TRUE)
11 # Remove control samples
12 data = data[which(data$samp_num != 7 & data$samp_num != 8),]
13 # Remove irrelevant columns from data set. I.e. temperature and humidity
14 # and sample number
15 data = select(data, -c(temperature, humidity, samp_num))
16

17 # Determining the structure may take long, you can also load the
18 # provided .RData file
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19 load(”bn_structure_data.RData”)
20

21 ##### Red variables
22 red = data[, c(1:2, 12:20, 48:56)]
23 # bn.hc_red = hc(red)
24

25 # Fit the Bayesian network with the all the observations
26 fit = bn.fit(bn.hc_red, red)

D.3. Plots
1 ##### Set your working directory with all files, and import packages #####
2 path = ”~/TU Delft/Bachelor Project/R code”
3 setwd(path)
4 library(bnlearn)
5 library(ggplot2)
6 library(dplyr)
7

8 ##### Importing Data #####
9 plot_data <- read.csv(”datafiles/data.csv”, header = TRUE)
10 # Remove irrelevant columns from data set. I.e. temperature and humidity
11 plot_data = select(plot_data, -c(temperature, humidity))
12 # Turns the sample numbers into categorical variables
13 plot_data$samp_num <- sapply(plot_data$samp_num, as.factor)
14 plot_data$volume <- sapply(plot_data$volume, as.factor)
15 control_data = plot_data[which(plot_data$samp_num == 7 |
16 plot_data$samp_num == 8), ]
17 plot_data = plot_data[which(plot_data$samp_num != 7 &
18 plot_data$samp_num != 8), ]
19

20

21 ##### Outliers Sample 1 #####
22 sample_1 = plot_data[plot_data$samp_num==1, ]
23 without_outliers_1 = sample_1[sample_1$R_mean<= 45, ]
24 outliers_1 = sample_1[sample_1$R_mean>45, ]
25

26 scatter_plot(sample_1, time, R_q95,
27 c(”Time (hours)”, ”Mean R-value”,
28 ” Scatter plot of the mean R-values over time”),
29 FALSE, ”samp_1.png”)
30

31 scatter_plot(without_outliers_1, time, B_mean,
32 c(”Time (hours)”, ”Mean R-value”,
33 ” Scatter plot of the mean R-values over time
34 (without outliers)”), FALSE, ”samp_1_without_outliers.png”)
35

36 scatter_plot(outliers_1, time, R_mean,
37 c(”Time (hours)”, ”Mean R-value”,
38 ” Scatter plot of the mean R-values over time
39 (only outliers)”), FALSE, ”samp_1_outliers.png”)
40

41 ##### Histograms #####
42 ### R-values
43 # Complete bloodstain
44 histogram_plot(plot_data, R_mean, 30,
45 c(”Mean R-values”, ”Histogram of the mean R-values”), FALSE,
46 ”hist_R_mean.png”)
47 histogram_plot(plot_data, R_min, 30,
48 c(”Minimum R-values”, ”Histogram of the minimum R-values”),
49 FALSE, ”hist_R_min.png”)
50 histogram_plot(plot_data, R_max, 60,
51 c(”Maximum R-values”, ”Histogram of the maximum R-values”),
52 FALSE, ”hist_R_max.png”)
53 histogram_plot(plot_data, R_variance, 30,
54 c(”Variance R-values”,
55 ”Histogram of the variance of the R-values”), FALSE,
56 ”hist_R_var.png”)
57 histogram_plot(plot_data, R_q5, 30,
58 c(”5% quantile of the R-values”,
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59 ”Histogram of the 5% quantile of the R-values”), FALSE,
60 ”hist_R_q5.png”)
61 histogram_plot(plot_data, R_q20, 30,
62 c(”20% quantile of the R-values”,
63 ”Histogram of the 20% quantile of the R-values”), FALSE,
64 ”hist_R_q20.png”)
65 histogram_plot(plot_data, R_q50, 30,
66 c(”50% quantile of the R-values”,
67 ”Histogram of the 50% quantile of the R-values”), FALSE,
68 ”hist_R_q50.png”)
69 histogram_plot(plot_data, R_q80, 30,
70 c(”80% quantile of the R-values”,
71 ”Histogram of the 80% quantile of the R-values”), FALSE,
72 ”hist_R_q80.png”)
73 histogram_plot(plot_data, R_q95, 50,
74 c(”95% quantile of the R-values”,
75 ”Histogram of the 95% quantile of the R-values”), FALSE,
76 ”hist_R_q95.png”)
77 # Inner bloodstain
78 histogram_plot(plot_data, in_R_mean, 70,
79 c(”Mean R-values of the inner bloodstain”,
80 ”Histogram of the mean R-values
81 of the inner bloodstain”), FALSE, ”hist_in_R_mean.png”)
82 histogram_plot(plot_data, in_R_min, 40,
83 c(”Minimum R-values of the inner bloodstain”,
84 ”Histogram of the minimum R-values
85 of the inner bloodstain”), FALSE, ”hist_in_R_min.png”)
86 histogram_plot(plot_data, in_R_max, 60,
87 c(”Maximum R-values of the inner bloodstain”,
88 ”Histogram of the maximum R-values
89 of the inner bloodstain”), FALSE, ”hist_in_R_max.png”)
90 histogram_plot(plot_data, in_R_variance, 60,
91 c(”Variance R-values of the inner bloodstain”,
92 ”Histogram of the variance of the R-values
93 of the inner bloodstain”), FALSE, ”hist_in_R_var.png”)
94 histogram_plot(plot_data, in_R_q5, 50,
95 c(”5% quantile of the R-values of the inner bloodstain”,
96 ”Histogram of the 5% quantile of the R-values
97 of the inner bloodstain”), FALSE, ”hist_in_R_q5.png”)
98 histogram_plot(plot_data, in_R_q20, 50,
99 c(”20% quantile of the R-values of the inner bloodstain”,
100 ”Histogram of the 20% quantile of the R-values of the inner bloodstain”),
101 FALSE, ”hist_in_R_q20.png”)
102 histogram_plot(plot_data, in_R_q50, 50,
103 c(”50% quantile of the R-values of the inner bloodstain”,
104 ”Histogram of the 50% quantile of the R-values
105 of the inner bloodstain”), FALSE, ”hist_in_R_q50.png”)
106 histogram_plot(plot_data, in_R_q80, 50,
107 c(”80% quantile of the R-values of the inner bloodstain”,
108 ”Histogram of the 80% quantile of the R-values
109 of the inner bloodstain”), FALSE, ”hist_in_R_q80.png”)
110 histogram_plot(plot_data, in_R_q95, 50,
111 c(”95% quantile of the R-values of the inner bloodstain”,
112 ”Histogram of the 95% quantile of the R-values
113 of the inner bloodstain”), FALSE, ”hist_in_R_q95.png”)
114

115 ### G-values
116 # Complete bloodstain
117 histogram_plot(plot_data, G_mean, 30,
118 c(”Mean G-values”, ”Histogram of the mean G-values”),
119 FALSE, ””)
120 histogram_plot(plot_data, G_min, 30,
121 c(”Minimum G-values”, ”Histogram of the minimum G-values”),
122 FALSE, ””)
123 histogram_plot(plot_data, G_max, 80,
124 c(”Maximum G-values”, ”Histogram of the maximum G-values”),
125 FALSE, ”hist_G_max.png”)
126 histogram_plot(plot_data, G_variance, 30,
127 c(”Variance G-values”,
128 ”Histogram of the variance of the G-values”), FALSE, ””)
129 histogram_plot(plot_data, G_q5, 30,
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130 c(”5% quantile of the G-values”,
131 ”Histogram of the 5% quantile of the G-values”), FALSE, ””)
132 histogram_plot(plot_data, G_q20, 30,
133 c(”20% quantile of the G-values”,
134 ”Histogram of the 20% quantile of the G-values”), FALSE, ””)
135 histogram_plot(plot_data, G_q50, 30,
136 c(”50% quantile of the G-values”,
137 ”Histogram of the 50% quantile of the G-values”), FALSE, ””)
138 histogram_plot(plot_data, G_q80, 30,
139 c(”80% quantile of the G-values”,
140 ”Histogram of the 80% quantile of the G-values”), FALSE, ””)
141 histogram_plot(plot_data, G_q95, 30,
142 c(”95% quantile of the G-values”,
143 ”Histogram of the 95% quantile of the G-values”), FALSE, ””)
144 # Inner bloodstain
145 histogram_plot(plot_data, in_G_mean, 30,
146 c(”Mean G-values of the inner bloodstain”,
147 ”Histogram of the mean G-values
148 of the inner bloodstain”), FALSE, ””)
149 histogram_plot(plot_data, in_G_min, 30,
150 c(”Minimum G-values of the inner bloodstain”,
151 ”Histogram of the minimum G-values
152 of the inner bloodstain”), FALSE, ””)
153 histogram_plot(plot_data, in_G_max, 60,
154 c(”Maximum G-values of the inner bloodstain”,
155 ”Histogram of the maximum G-values
156 of the inner bloodstain”), FALSE, ”hist_in_G_max.png”)
157 histogram_plot(plot_data, in_G_variance, 30,
158 c(”Variance G-values of the inner bloodstain”,
159 ”Histogram of the variance of the G-values
160 of the inner bloodstain”), FALSE, ””)
161 histogram_plot(plot_data, in_G_q5, 30,
162 c(”5% quantile of the G-values of the inner bloodstain”,
163 ”Histogram of the 5% quantile of the G-values
164 of the inner bloodstain”), FALSE, ””)
165 histogram_plot(plot_data, in_G_q20, 30,
166 c(”20% quantile of the G-values of the inner bloodstain”,
167 ”Histogram of the 20% quantile of the G-values
168 of the inner bloodstain”), FALSE, ””)
169 histogram_plot(plot_data, in_G_q50, 30,
170 c(”50% quantile of the G-values of the inner bloodstain”,
171 ”Histogram of the 50% quantile of the G-values
172 of the inner bloodstain”), FALSE, ””)
173 histogram_plot(plot_data, in_G_q80, 30,
174 c(”80% quantile of the G-values of the inner bloodstain”,
175 ”Histogram of the 80% quantile of the G-values
176 of the inner bloodstain”), FALSE, ””)
177 histogram_plot(plot_data, in_G_q95, 30,
178 c(”95% quantile of the G-values of the inner bloodstain”,
179 ”Histogram of the 95% quantile of the G-values
180 of the inner bloodstain”), FALSE, ””)
181

182 ### B-values
183 histogram_plot(plot_data, B_mean, 30,
184 c(”Mean B-values”, ”Histogram of the mean B-values”),
185 FALSE, ””)
186 histogram_plot(plot_data, B_min, 30,
187 c(”Minimum B-values”, ”Histogram of the minimum B-values”),
188 FALSE, ””)
189 histogram_plot(plot_data, B_max, 60,
190 c(”Maximum B-values”, ”Histogram of the maximum B-values”),
191 FALSE, ”hist_B_max.png”)
192 histogram_plot(plot_data, B_variance, 30,
193 c(”Variance B-values”,
194 ”Histogram of the variance of the B-values”), FALSE, ””)
195 histogram_plot(plot_data, B_q5, 50,
196 c(”5% quantile of the B-values”,
197 ”Histogram of the 5% quantile of the B-values”), FALSE, ””)
198 histogram_plot(plot_data, B_q20, 30,
199 c(”20% quantile of the B-values”,
200 ”Histogram of the 20% quantile of the B-values”), FALSE, ””)
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201 histogram_plot(plot_data, B_q50, 30,
202 c(”50% quantile of the B-values”,
203 ”Histogram of the 50% quantile of the B-values”), FALSE, ””)
204 histogram_plot(plot_data, B_q80, 30,
205 c(”80% quantile of the B-values”,
206 ”Histogram of the 80% quantile of the B-values”), FALSE, ””)
207 histogram_plot(plot_data, B_q95, 30,
208 c(”95% quantile of the B-values”,
209 ”Histogram of the 95% quantile of the B-values”), FALSE, ””)
210 # Inner bloodstain
211 histogram_plot(plot_data, in_B_mean, 30,
212 c(”Mean B-values of the inner bloodstain”,
213 ”Histogram of the mean B-values
214 of the inner bloodstain”), FALSE, ””)
215 histogram_plot(plot_data, in_B_min, 30,
216 c(”Minimum B-values of the inner bloodstain”,
217 ”Histogram of the minimum B-values
218 of the inner bloodstain”), FALSE, ””)
219 histogram_plot(plot_data, in_B_max, 60,
220 c(”Maximum B-values of the inner bloodstain”,
221 ”Histogram of the maximum B-values
222 of the inner bloodstain”), FALSE, ”hist_in_B_max.png”)
223 histogram_plot(plot_data, in_B_variance, 30,
224 c(”Variance B-values of the inner bloodstain”,
225 ”Histogram of the variance of the B-values
226 of the inner bloodstain”), FALSE, ””)
227 histogram_plot(plot_data, in_B_q5, 30,
228 c(”5% quantile of the B-values of the inner bloodstain”,
229 ”Histogram of the 5% quantile of the B-values
230 of the inner bloodstain”), FALSE, ””)
231 histogram_plot(plot_data, in_B_q20, 30,
232 c(”20% quantile of the B-values of the inner bloodstain”,
233 ”Histogram of the 20% quantile of the B-values
234 of the inner bloodstain”), FALSE, ””)
235 histogram_plot(plot_data, in_B_q50, 30,
236 c(”50% quantile of the B-values of the inner bloodstain”,
237 ”Histogram of the 50% quantile of the B-values
238 of the inner bloodstain”), FALSE, ””)
239 histogram_plot(plot_data, in_B_q80, 30,
240 c(”80% quantile of the B-values of the inner bloodstain”,
241 ”Histogram of the 80% quantile of the B-values
242 of the inner bloodstain”), FALSE, ””)
243 histogram_plot(plot_data, in_B_q95, 30,
244 c(”95% quantile of the B-values of the inner bloodstain”,
245 ”Histogram of the 95% quantile of the B-values
246 of the inner bloodstain”), FALSE, ””)
247

248

249 ### GRAY-values
250 histogram_plot(plot_data, GRAY_mean, 30,
251 c(”Mean GRAY-values”, ”Histogram of the mean GRAY-values”),
252 FALSE, ””)
253 histogram_plot(plot_data, GRAY_min, 30,
254 c(”Minimum GRAY-values”, ”Histogram of the minimum GRAY-values”),
255 FALSE, ””)
256 histogram_plot(plot_data, GRAY_max, 50,
257 c(”Maximum GRAY-values”, ”Histogram of the maximum GRAY-values”),
258 FALSE, ””)
259 histogram_plot(plot_data, GRAY_variance, 30,
260 c(”Variance GRAY-values”,
261 ”Histogram of the variance of the GRAY-values”),
262 FALSE, ””)
263 histogram_plot(plot_data, GRAY_q5, 30,
264 c(”5% quantile of the GRAY-values”,
265 ”Histogram of the 5% quantile of the GRAY-values”),
266 FALSE, ””)
267 histogram_plot(plot_data, GRAY_q20, 30,
268 c(”20% quantile of the GRAY-values”,
269 ”Histogram of the 20% quantile of the GRAY-values”),
270 FALSE, ””)
271 histogram_plot(plot_data, GRAY_q50, 30,
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272 c(”50% quantile of the GRAY-values”,
273 ”Histogram of the 50% quantile of the GRAY-values”),
274 FALSE, ””)
275 histogram_plot(plot_data, GRAY_q80, 30,
276 c(”80% quantile of the GRAY-values”,
277 ”Histogram of the 80% quantile of the GRAY-values”),
278 FALSE, ””)
279 histogram_plot(plot_data, GRAY_q95, 30,
280 c(”95% quantile of the GRAY-values”,
281 ”Histogram of the 95% quantile of the GRAY-values”),
282 FALSE, ””)
283 # Inner bloodstain
284 histogram_plot(plot_data, in_GRAY_mean, 30,
285 c(”Mean GRAY-values of the inner bloodstain”,
286 ”Histogram of the mean GRAY-values
287 of the inner bloodstain”), FALSE, ””)
288 histogram_plot(plot_data, in_GRAY_min, 30,
289 c(”Minimum GRAY-values of the inner bloodstain”,
290 ”Histogram of the minimum GRAY-values
291 of the inner bloodstain”), FALSE, ””)
292 histogram_plot(plot_data, in_GRAY_max, 60,
293 c(”Maximum GRAY-values of the inner bloodstain”,
294 ”Histogram of the maximum GRAY-values
295 of the inner bloodstain”), FALSE, ””)
296 histogram_plot(plot_data, in_GRAY_variance, 30,
297 c(”Variance GRAY-values of the inner bloodstain”,
298 ”Histogram of the variance of the GRAY-values
299 of the inner bloodstain”), FALSE, ””)
300 histogram_plot(plot_data, in_GRAY_q5, 30,
301 c(”5% quantile of the GRAY-values of the inner bloodstain”,
302 ”Histogram of 5% quantile of the GRAY-values
303 of the inner bloodstain”), FALSE, ””)
304 histogram_plot(plot_data, in_GRAY_q20, 30,
305 c(”20% quantile of the GRAY-values of the inner bloodstain”,
306 ”Histogram of 20% quantile of the GRAY-values
307 of the inner bloodstain”), FALSE, ””)
308 histogram_plot(plot_data, in_GRAY_q50, 30,
309 c(”50% quantile of the GRAY-values of the inner bloodstain”,
310 ”Histogram of 50% quantile of the GRAY-values
311 of the inner bloodstain”), FALSE, ””)
312 histogram_plot(plot_data, in_GRAY_q80, 30,
313 c(”80% quantile of the GRAY-values of the inner bloodstain”,
314 ”Histogram of 80% quantile of the GRAY-values
315 of the inner bloodstain”), FALSE, ””)
316 histogram_plot(plot_data, in_GRAY_q95, 30,
317 c(”95% quantile of the GRAY-values of the inner bloodstain”,
318 ”Histogram of 95% quantile of the GRAY-values
319 of the inner bloodstain”), FALSE, ””)
320

321

322

323 ##### Scatter plots #####
324 ### Scatter plot with time and colour value
325 # Means
326 grouped_scatter_plot(plot_data, time, R_mean, samp_num,
327 c(”Time (hours)”, ”Mean R-value”,
328 ”Scatter plot of the mean R-values over time”), FALSE,
329 ”scatter_R_mean.png”)
330 grouped_scatter_plot(plot_data, time, in_R_mean, samp_num,
331 c(”Time (hours)”, ”Mean R-value”,
332 ”Scatter plot of the mean R-values over time”), FALSE,
333 ”scatter_in_R_mean.png”)
334 grouped_scatter_plot(plot_data, time, G_mean, samp_num,
335 c(”Time (hours)”, ”Mean G-value”,
336 ”Scatter plot of the mean G-values over time”), FALSE,
337 ”scatter_G_mean.png”)
338 grouped_scatter_plot(plot_data, time, in_G_mean, samp_num,
339 c(”Time (hours)”, ”Mean G-value”,
340 ”Scatter plot of the mean G-values over time”), FALSE,
341 ”scatter_in_G_mean.png”)
342 grouped_scatter_plot(plot_data, time, B_mean, samp_num,



D.3. Plots 64

343 c(”Time (hours)”, ”Mean B-value”,
344 ”Scatter plot of the mean B-values over time”), FALSE,
345 ”scatter_B_mean.png”)
346 grouped_scatter_plot(plot_data, time, in_B_mean, samp_num,
347 c(”Time (hours)”, ”Mean B-value”,
348 ”Scatter plot of the mean B-values over time”), FALSE,
349 ”scatter_in_B_mean.png”)
350 grouped_scatter_plot(plot_data, time, GRAY_mean, samp_num,
351 c(”Time (hours)”, ”Mean GRAY-value”,
352 ”Scatter plot of the mean GRAY-values over time”),FALSE,
353 ”scatter_GRAY_mean.png”)
354 grouped_scatter_plot(plot_data, time, in_GRAY_mean, samp_num,
355 c(”Time (hours)”, ”Mean GRAY-value”,
356 ”Scatter plot of the mean GRAY-values over time”),FALSE,
357 ”scatter_in_GRAY_mean.png”)
358

359 # Max
360 grouped_scatter_plot(plot_data, time, R_max, samp_num,
361 c(”Time (hours)”, ”Maximum R-value”,
362 ”Scatter plot of the max R-values over time”), FALSE,
363 ”scatter_R_max.png”)
364 grouped_scatter_plot(plot_data, time, in_R_max, samp_num,
365 c(”Time (hours)”, ”Maximum R-value”,
366 ”Scatter plot of the max R-values over time”), FALSE,
367 ”scatter_in_R_max.png”)
368 grouped_scatter_plot(plot_data, time, G_max, samp_num,
369 c(”Time (hours)”, ”Maximum G-value”,
370 ”Scatter plot of the max G-values over time”), FALSE,
371 ”scatter_G_max.png”)
372 grouped_scatter_plot(plot_data, time, in_G_max, samp_num,
373 c(”Time (hours)”, ”Maximum G-value”,
374 ”Scatter plot of the max G-values over time”), FALSE,
375 ”scatter_in_G_max.png”)
376 grouped_scatter_plot(plot_data, time, B_max, samp_num,
377 c(”Time (hours)”, ”Maximum B-value”,
378 ”Scatter plot of the max B-values over time”), FALSE,
379 ”scatter_B_max.png”)
380 grouped_scatter_plot(plot_data, time, in_B_max, samp_num,
381 c(”Time (hours)”, ”Maximum B-value”,
382 ”Scatter plot of the max B-values over time”), FALSE,
383 ”scatter_in_B_max.png”)
384

385

386 ### Scatter plot with colour values for complete and inner bloodstain
387 # Mean
388 grouped_scatter_plot(plot_data, R_mean, in_R_mean, samp_num,
389 c(”Mean R-value (complete)”, ”Mean R-value (inner)”,
390 ”Scatter plot of the mean R-values
391 for the complete and inner bloodstain”), FALSE,
392 ”scatter_R_mean_complete_inner.png”)
393

394 grouped_scatter_plot(plot_data, G_mean, in_G_mean, samp_num,
395 c(”Mean G-value (complete)”, ”Mean G-value (inner)”,
396 ”Scatter plot of the mean G-values
397 for the complete and inner bloodstain”), FALSE,
398 ”scatter_G_mean_complete_inner.png”)
399

400 grouped_scatter_plot(plot_data, B_mean, in_B_mean, samp_num,
401 c(”Mean B-value (complete)”, ”Mean B-value (inner)”,
402 ”Scatter plot of the mean B-values
403 for the complete and inner bloodstain”), FALSE,
404 ”scatter_B_mean_complete_inner.png”)
405

406 ### Complete and inner bloodstain
407 grouped_scatter_plot(plot_data, R_max, in_R_max, samp_num,
408 c(”Max R-value (complete)”, ”Max R-value (inner)”,
409 ”Scatter plot of the maximum R-values
410 for the complete and inner bloodstain”), FALSE,
411 ”scatter_R_max_complete_inner.png”)
412

413 grouped_scatter_plot(plot_data, G_max, in_G_max, samp_num,
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414 c(”Max G-value (complete)”, ”Max G-value (inner)”,
415 ”Scatter plot of the maximum G-values
416 for the complete and inner bloodstain”), FALSE,
417 ”scatter_G_max_complete_inner.png”)
418

419 grouped_scatter_plot(plot_data, B_max, in_B_max, samp_num,
420 c(”Max B-value (complete)”, ”Max B-value (inner)”,
421 ”Scatter plot of the maximum B-values
422 for the complete and inner bloodstain”), FALSE,
423 ”scatter_B_max_complete_inner.png”)
424 grouped_scatter_plot(plot_data, GRAY_max, in_GRAY_max, samp_num,
425 c(”Max GRAY-value (complete)”, ”Max GRAY-value (inner)”,
426 ”Scatter plot of the maximum GRAY-values
427 for the complete and inner bloodstain”), FALSE,
428 ”scatter_GRAY_max_complete_inner.png”)
429

430 grouped_scatter_plot(plot_data, R_q95, in_R_q95, samp_num,
431 c(”95% quantile of R-value (complete)”,
432 ”95% quantile of R-value (inner)”,
433 ”Scatter plot of the 95% quantile of the R-values
434 for the complete and inner bloodstain”), FALSE,
435 ”scatter_R_q95_complete_inner.png”)
436 grouped_scatter_plot(plot_data, G_q95, in_G_q95, samp_num,
437 c(”95% quantile of G-value (complete)”,
438 ”95% quantile of G-value (inner)”,
439 ”Scatter plot of the 95% quantile of the G-values
440 for the complete and inner bloodstain”), FALSE,
441 ”scatter_G_q95_complete_inner.png”)
442 grouped_scatter_plot(plot_data, B_q95, in_B_q95, samp_num,
443 c(”95% quantile of B-value (complete)”,
444 ”95% quantile of B-value (inner)”,
445 ”Scatter plot of the 95% quantile of the B-values
446 for the complete and inner bloodstain”), FALSE,
447 ”scatter_B_q95_complete_inner.png”)
448 grouped_scatter_plot(plot_data, GRAY_q95, in_GRAY_q95, samp_num,
449 c(”95% quantile of GRAY-value (complete)”,
450 ”95% quantile of GRAY-value (inner)”,
451 ”Scatter plot of the 95% quantile of the GRAY-values
452 for the complete and inner bloodstain”), FALSE,
453 ”scatter_GRAY_q95_complete_inner.png”)
454

455 ### Scatter plots for control samples
456 grouped_scatter_plot(control_data, time, R_mean, samp_num,
457 c(”Time (hours)”, ”Mean R-value”,
458 ”Scatter plot of the mean R-values over time”), FALSE,
459 ”scatter_control_R_mean.png”)
460 grouped_scatter_plot(control_data, time, G_mean, samp_num,
461 c(”Time (hours)”, ”Mean G-value”,
462 ”Scatter plot of the mean G-values over time”), FALSE,
463 ”scatter_control_G_mean.png”)
464 grouped_scatter_plot(control_data, time, B_mean, samp_num,
465 c(”Time (hours)”, ”Mean B-value”,
466 ”Scatter plot of the mean B-values over time”), FALSE,
467 ”scatter_control_B_mean.png”)
468

469 ### Other scatter plots
470 grouped_scatter_plot(plot_data, time, R_q50, samp_num,
471 c(”Time (hours)”, ”50% quantile of the R-values”,
472 ”Scatter plot of the 50% quantile
473 of the R-values over time”), FALSE,
474 ”scatter_R_q50.png”)
475 grouped_scatter_plot(plot_data, time, in_R_q50, samp_num,
476 c(”Time (hours)”, ”50% quantile of the R-values”,
477 ”Scatter plot of the 50% quantile
478 of the R-values over time”), FALSE,
479 ”scatter_R_min.png”)
480 grouped_scatter_plot(plot_data, time, R_q95, samp_num,
481 c(”Time (hours)”,
482 ”95% quantile of R-value”,
483 ”Scatter plot of the 95% quantile
484 of the R-values over time”), FALSE,
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485 ”scatter_R_q95.png”)
486 grouped_scatter_plot(plot_data, time, in_R_q95, samp_num,
487 c(”Time (hours)”,
488 ”95% quantile of R-value”,
489 ”Scatter plot of the 95% quantile
490 of the R-values over time”), FALSE,
491 ”scatter_in_R_q95.png”)
492 grouped_scatter_plot(plot_data, time, R_min, samp_num,
493 c(”Time (hours)”, ”Minimum R-value”,
494 ”Scatter plot of the minimum R-values over time”), FALSE,
495 ”scatter_R_min.png”)
496 grouped_scatter_plot(plot_data, time, R_variance, samp_num,
497 c(”Time (hours)”, ”Variance of the R-value”,
498 ”Scatter plot of variance of the R-values over time”),
499 FALSE, ”scatter_R_var.png”)
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