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Abstract

The rapid rise in the popularity of large language models has highlighted the need for exten-
sive datasets, especially for training on code. However, this growth has also raised important
questions about the legal implications of using code in large language model training, particu-
larly regarding the potential infringement of code licenses. At the same time, the availability
of clean datasets for evaluating these models is becoming increasingly limited, due to a high
risk of contamination which restricts the capacity for reliable research. On top of that, this
requires researchers to repeatedly perform data curation steps in order to evaluate their mod-
els on downstream tasks, based on previously unseen data. This process is not only time- and
resource-intensive but also introduces potential inconsistencies across studies, which can impact
their reproducibility.

We address these challenges through a comprehensive licensing analysis and by developing
robust datasets to support accurate and reproducible large language model evaluations. We com-
piled a list of 53 large language models trained on file-level code and analyzed their datasets,
discovering pervasive license inconsistencies despite careful selection based on repository li-
censes. Our analysis, covering 514M code files, reveals 38M exact duplicates of strong copyleft
code, and 171M file-leading comments, 16M of which are under copyleft licenses and another
11M discouraging unauthorized copying. To further understand the depth of non-permissive
code in public training datasets, we developed StackLessV2, a strong copyleft Java dataset de-
contaminated against The Stack V2 to facilitate accurate model evaluations. Our results revealed
that non-permissive code is also present at the near-duplication level, although, this represents
a gray area in terms of legal interpretation, where the boundary between acceptable reuse and
license violation is still unclear, emphasizing the need for further legal clarification. Finally,
we extend on this and introduce The Heap, a large multilingual copyleft dataset covering 57
programming languages, specifically deduplicated to avoid contamination from existing open
training datasets. The Heap offers a solution for conducting fair, reproducible evaluations of
large language models without the significant overhead of the data curation process.
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Preface

This thesis marks the start of my research journey into AI for Software Engineering. My first real
exposure to this field came during my bachelor’s thesis, which piqued my interest and motivated
me to further explore it. I realized through this experience how essential high-quality data is for
large language models performance and discovered that there are still many unexplored areas.
My involvement in datasets and benchmarking for large language models provided me with
the opportunity to co-author two papers [1, 2], which serve as the foundation for this thesis.
Conducting this research has been both a challenging and rewarding experience, pushing me to
deepen my knowledge in this area, while working alongside incredibly talented and dedicated
people. I hope this work adds something meaningful to the field of AI for Software Engineering
and serves as a valuable foundation for future research.
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1 | Introduction

Large Language Models (LLMs) have recently taken center stage in research, revolutionizing
a wide range of fields with their versatility. Their groundbreaking capabilities have caused a
rift among industries, making their adoption essential to keep pace with innovation. The in-
troduction of the Transformer [3] architecture marked a turning point in the domain of Natural
Language Processing (NLP), surpassing traditional deep learning models in various natural lan-
guage understanding tasks. The self-attention mechanism, along with parameter scaling, exten-
sive training data, and higher computing power, played a crucial role in the shift from traditional
language models to large language models [4]. These models not only demonstrate improved
generalization across tasks, but also excel in transfer learning [5]. Their flexibility has driven
progress across new research paths, with LLMs being able to process the complex structure of
programming languages.

State-of-the-art models, such as StarCoder 2 [6], Qwen2.5-Coder [7], and CodeGemma [8],
have set new records in code generation, outperforming previous models on popular bench-
marks including HumanEval [9] and MBPP [10][11]. Furthermore, the growth in parameters
contributed to the development of emergent capabilities in LLMs, such as in-context learn-
ing, structured reasoning, and instruction following for better representation of human intent
[12, 13]. Such advancements have also been brought into industrial environments through tools
such as GitHub Copilot1 or Amazon CodeWhisperer2, automating code-related tasks and as-
sisting developers throughout the software development cycle [14, 15]. Lastly, the current AI
trend is moving towards agents with strong reasoning capabilities, such as GPT-4o [16] and
DeepSeek R1 [17], which are trained using reinforcement learning. These models combine
logic, decision-making, and adaptability to improve their problem-solving skills. They gen-
erate a detailed internal thought process before providing an answer, allowing them to excel in
complex tasks, such as coding.

The fuel that powers all these models lies in their datasets, which represent the primary
source of knowledge and context for model learning. However, the quality and integrity of these
datasets are often overlooked, leading to significant challenges in the development of LLMs,
including reduced model performance, compromised generalizability, and biased assessments.
The sudden expansion of LLMs also created the need for extensive amounts of data, which,
together with inconsistent curation practices, makes it increasingly difficult for researchers to
compare results, build upon existing work, or replicate findings with confidence. Many open

1GitHub Copilot
2Amazon CodeWhisperer

1
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https://docs.aws.amazon.com/codewhisperer/latest/userguide/what-is-cwspr.html


code datasets, ranging from method-level data to entire repositories, have been released to sup-
port public LLM development. Despite their immense potential, numerous data smells can be
found in these datasets, primarily due to the automated collection methods employed and the
lack of data pre-processing [18].

Although not typically referred to as a data smell, a significant yet often overlooked issue
arises from the legal aspects tied to LLMs, particularly concerning the data they are trained on.
As the size of these models has grown, there has been a notable shift towards adapting them for
end-user applications, increasing the interest of companies seeking to leverage them for com-
mercial purposes. However, most datasets these models are trained on are automatically sourced
from public repositories on GitHub, without thorough verification for licensing or copyright
status. This lack of legal oversight exposes model developers and organizations to potential lia-
bilities from license violations, especially when copyrighted or restricted code is unintentionally
included [19, 20, 21]. On top of that, the practice of reusing model weights can introduce further
risks for end-users. These challenges not only complicate the legal landscape of AI development
but also impact the trustworthiness of LLMs.

Furthermore, the extensive scraping of data led to the development of large-scale training
datasets that cover almost all publicly available code [22, 23, 24]. This makes it difficult to
evaluate models on downstream tasks using unseen data, due to the high risk of contamina-
tion. This also represents a widespread data smell, due to the tendency of developers to often
copy code snippets from different projects [25], which can have a major impact on model per-
formance. At the same time, this issue contributes significantly to potential license violations.
Additionally, file duplicates not only inflate dataset size and waste computational resources, but
can also obscure the validity of the evaluations [26], making it harder to analyze and explain
the factors driving model predictions. To fairly assess the performance of LLMs on downsteam
tasks, fresh data not seen during training is needed. Otherwise, contaminated data can rein-
force the memorization of certain patterns [27], causing overfitting and reducing the ability of
the model to generalize, leading to overly optimistic results. In fact, a recent study shows that
only 10% of LLM-related investigations deduplicate their data to prevent contamination with
the training data [18].

The dominance of public code datasets and the issues related to data contamination also
have a significant impact on the reproducibility of LLM evaluations. To assess models on new
data, researchers have to redundantly reproduce curation steps such as scraping, filtering, and
deduplication across large datasets, requiring substantial time and computational resources. This
process can introduce inconsistencies across different implementations, making it harder to en-
sure reproducibility and compare results between studies. Additionally, many public datasets
lack a clear and transparent datasheet [22, 28], further complicating implementation consistency
and limiting their usability in LLM studies.

The integrity of LLMs depends on the quality of their data, and issues at this level can disrupt
both academic and production environments. While untraining these models is an option, it
would require a significant investment of computational power and time. This work seeks to
address these issues through a comprehensive licensing analysis and the development of robust
datasets that support responsible data handling and facilitate reliable and reproducible LLM
evaluations.
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To guide this effort, we focus on the following research questions:

RQ1) What is the extent of code license infringements in the training data of contemporary
LLMs?

RQ1.1) How has the inclusion of source code in the training of both generic and specific
language models evolved over time?

RQ1.2) What is the minimum level of existing strong copyleft-licensed code in the training
data of LLMs?

RQ1.3) What types of sensitive information can be found in the datasets of LLMs?

RQ2) What is the duplication depth of non-permissive code in LLM training datasets?

RQ3) How can we construct a code dataset that facilitates reliable evaluations on unseen data,
supports reproducibility, and simplifies integration into LLM studies?

First, we conduct a licensing investigation on 53 foundation models trained on file-level
code from 6 widely-used public datasets. We evaluate the minimum level of strong copyleft
code in these datasets, finding at least 5% overlap across all of them. We also examine the
presence of comments indicating licenses or distribution disclaimers, with values reaching up
to 15% in some datasets. Building on this licensing analysis, we explore the depth of non-
permissive code in The Stack V2 [23], due to its recent release and open availability. To do
this, we create StackLessV2, a strong copyleft Java dataset, deduplicated against The Stack V2.
Our results reveal that non-permissive code presence in The Stack V2 is more extensive than
just exact duplicates, with near duplicates also being observed. Lastly, we expand on this by
developing The Heap, a large-scale, multilingual copyleft dataset covering 57 programming lan-
guages and decontaminated against various public training datasets, aimed at facilitating reliable
and reproducible model evaluations. By tackling the challenges associated with data quality, we
aim to strengthen the foundation of LLM development, creating a path for more transparent,
reproducible, and legally compliant AI models.

This work makes the following key contributions:

• We provide an in-depth examination of how source code is used as a data source in modern
LLMs.

• We compile a comprehensive overview of the code datasets currently used in training
LLMs.

• We investigate the potential risks related to copyright and licensing for LLMs, focusing
on publicly available code datasets.

• We release a dataset3 consisting of opening comments from 171 million code files, created
to help identify copyright and licensing issues in future studies.

3Leading Comments Dataset

3
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• We introduce StackLessV24, a strong copyleft Java companion dataset for The Stack V2,
designed to facilitate evaluations on unseen data.

• We develop The Heap5, a multilingual copyleft code dataset, deduplicated against popular
training datasets to support valid and reproducible LLM evaluations.

Finally, this paper is organized as follows: Chapter 2 provides an in-depth review of the
existing literature on data licensing and contamination, and also describes integrity issues en-
countered in existing training datasets. Chapters 3 and 4 present our proposed approach and the
results corresponding to each research question. Chapter 5 discusses the implications of our find-
ings, offering recommendations and addressing the limitations of the study. Finally, Chapter 6
concludes the paper and outlines directions for future work.

4StackLessV2
5The Heap
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2 | Related Work: Licensing, Contamination, and
Integrity Issues in LLM Datasets

The landscape of pre-training datasets has flourished since the introduction of LLMs. The up-
ward trend in LLM scaling not only created the need for more data, but also diversity of data
became of outmost importance due to the nature of their architecture capabilities. This led to
the emergence of datasets such as Massive Text [29] that surpassed one trillion tokens in size
across a wide variety of sources, from web pages to books, news articles, and code. Apart from
that, a plethora of exclusive file-level code-related datasets have been released, however, a lot of
them are either restricted to the public due to various reasons or can be found behind a paywall1.
On the other side, the community has been overpowerd by large-scale file-level code datasets,
such as The Stack family [22, 23]. These datasets have reached impressive sizes of over 3B
files across over 600 programming and markup languages [23], overshadowing smaller and less
diverse datasets such as CodeParrot [30].

Consequently, the rapid expansion of data collection shifted the focus towards prioritizing
quantity over quality, and led to several shortcomings in the process. These problems can be
labeled as data smells, which typically emerge from violating best practices in data handling
and management, and can introduce significant technical debt [31]. Fixing such problematic in-
stances was showed to improve model effectiveness [32, 18], and more recent efforts are being
made to create higher quality data. Nevertheless, researchers still tend to overlook the signifi-
cance of thorough data curation, which is essential for tackling the growing prevalence of data
smells in datasets as software continues to evolve. This was showed by Vitale et al. who cre-
ated a catalog of data smells specifically targeting coding tasks, based on the datasets used in
pre-training and fine-tunining LLMs, comprising a total of 71 types of smells. Furthermore, the
proeminence of these smells was also shown in popular benchmarks, such as CodeSearchNet,
raising concerns about the validity of the evaluation techniques employed [18, 33]. In contrast,
mainstream pre-training datasets such as The Stack [22], The Stack V2 [23] or GitHub-Code
[34] have received little attention when it comes to comprehensively investigating the presence
of such data smells, leaving them susceptible to different quality issues [18]. Due to their large
scale, pre-training datasets are more likely to contain data smells compared to smaller bench-
marking datasets, which can significantly impact the performance of LLMs. As a result, when
the foundational understanding of language is compromised, the capacity of a model to handle
downstream tasks is severely limited.

1BigQuery

5
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2.1 Legal Dimensions of Data

2.1 Legal Dimensions of Data

The growing prominence of large language models for code (LLMs4Code) has captured the
attention of companies eager to leverage them for commercial end-user applications. This, how-
ever, raises questions about the legal implications of incorporating copyrighted data into large-
scale pre-training datasets. The importance of using permissive licenses in training LLMs has
been acknowledged by scientific initiatives such as The BigCode Project [22] and Together Com-
puter [24]. These organizations have released datasets, such as RedPajama, The Stack and The
Stack V2, which they claim consist of permissively licensed or license-free code. Additionally,
models such as SantaCoder [35], StarCoder [36] and StarCoder2 [23], trained on these datasets,
exemplify efforts to ensure compliance with licensing considerations in LLM development.

The root cause of legal concerns stems from the extensive data scraping carried out without
acknowledging ownership rights [37]. Due to that, many legal disputes have surfaced, focusing
on allegations of financial losses caused by the fraudulent use of copyrighted data in training or
fine-tuning LLMs, as well as the manipulation of copyright information to build a competing
business [19, 20, 21]. Moreover, companies have voiced concerns over reputational risks, par-
ticularly when their name is associated with misleading information. In some instances, such
organizations have demanded the deletion of model weights that were trained on their data,
which can lead to significant financial consequences for their creators [21].

On top of that, LLMs exhibit several vulnerabilities closely tied to the legal field, including
susceptibility to membership inference attacks (MIAs) and memorization [38, 39, 40, 41, 27].
These problems can lead to the detection of copyrighted data in pre-trained and fine-tuned mod-
els, while distributing these models might be seen as redistributing copyrighted content.

2.1.1 Membership Inference on Code

Membership inference attacks, a widely researched topic on traditional machine learning models
[41], is a type of attack through which we can determine whether a piece of data has been seen
during the training of a model. This represents a key step in identifying potential license infringe-
ments, especially for proprietary models that do not disclose their training data. Membership
inference attacks have been applied to various tasks, from text generation to image classifica-
tion and audio recognition, highlighting potential privacy risks [41]. Recently, researchers have
focused on using membership inference attacks to extract training data from LLMs. For code
models, membership inference can be classified into two distinct categories: representation-
generating models and output-generating models.

Under the first category, the BUZZER [42] framework was proposed. This approach is
tailored for the code membership inference (CMI) task and deploys several inference techniques,
including distilling the target code pre-trained language model, ensemble inference or unimodal
and bimodal calibration. The authors seek to detect unauthorized code in pre-training data of
models including CodeT5+ [43], UnixCoder [44], CodeBERT [45] and GraphCodeBERT [46],
which can cause potential intellectual property infringements. They apply three settings: white-
box, gray-box, and black-box. In the white-box setting, BUZZER has access to the internal
states of the model. In the gray-box setting, BUZZER can access the internal states of a shadow
model. In the black-box setting, BUZZER has no access to any internal states. The authors

6



2.1 Legal Dimensions of Data

showed that BUZZER achieved a 90% accuracy in detecting unauthorized code in pre-training
data in the white-box setting, around 80% accuracy in the gray-setting, and approximately 60%
accuracy in the black-box setting.

For the output-generating category, Gotcha [47], a novel code membership inference attack,
was proposed to analyze potential data leakage in CodeGPT [48]. This approach simultaneously
considers three factors, including model input, model output, and ground truth. In this study,
surrogate models were trained to replicate the behavior of CodeGPT. A classifier was then used
to identify whether specific data was included in CodeGPT’s training dataset. Various surrogate
model architectures were tested to assess the effectiveness of the attack based on the attacker’s
level of knowledge about the target model. CodeGPT was evaluated with full knowledge of both
its architecture and training data. GPT-2 was assessed with only the architecture known, while
the training data remained unknown. Lastly, the Transformer was tested with knowledge limited
to the general type of architecture, without specific details, while LSTM was evaluated without
any knowledge of either the architecture or the training data. When the model architecture was
known and 20% of the training data was available, Gotcha achieved exceptional results, with
an error rate of 10% and an AUC of 0.98%. These results highlight the susceptibility of code
models to membership inference attacks in code generation tasks. These findings are further
validated by BUZZER’s high accuracy, denoting the reliability of both approaches.

2.1.2 Memorization

While research on membership inference attacks for LLMs4Code is still emerging, the issue of
preventing models from generating memorized code has received significantly more attention.

Memorization is often defined in various ways; nonetheless, a common ground is the em-
phasis on finding overlaps between model outputs and substrings of the dataset. Some papers
focus solely on exact duplicates of outputs [40], while others search for close matches, and some
introduce constraints on the minimium length of a substring for it to be considered memorization
when produced by a model [27]. Furthermore, it has been demonstrated that, in code memoriza-
tion, the number of parameters in a model is correlated to the level of memorization [39, 40].
Carlini et al. also showed that memorization grows with the number of times an example has
been duplicated and the number of tokens of context used to prompt the model. Moreover,
as models continue to grow in size at a rapid pace, the memorization of training code data is
becoming an increasingly significant concern. Although the largest models are typically not
open-sourced, some studies investigate how quickly models memorize code when the training
dataset is accessible.

Yang et al. have found that 81% of the top-100 outputs generated by Incoder [49] are di-
rectly copied from GitHub, while 75% of the outputs from StarCoder [36] are also taken from
GitHub. Moreover, when evaluating the open-source CodeParrot2 model, they showed that the
repetition of code in the dataset, multiple queries to the model, and longer output sequences
increased the likelihood of returning memorized code. Additionally, they demonstrated that,
for the same architecture, larger models tend to exhibit higher memorization. This was evident
in CodeParrot, where approximately 57% of 20,000 outputs contained memorized information

2CodeParrot

7
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2.1 Legal Dimensions of Data

on average, compared to 43% for CodeParrot-small. The authors also created a taxonomy of
memorized outputs in code models, the most common type being license information. Although
detecting exact memorization might seem straightforward and could be addressed with filters,
Copilot, based on the Codex [50] model, manages to evade its own memorization filters [51],
giving a false sense of privacy. This creates the illusion that the model is generating original
content, even though it does not address the underlying issues with LLMs.

2.1.3 Intersection with Law

Under the fair use doctrine, copyrighted material can be utilized to train LLMs without legal con-
sequences. However, this protection may not apply if the model generates outputs that closely
resemble copyrighted data, particularly when such outputs could harm the market of the orig-
inal content [52]. Henderson et al. showed that widely used foundation models are capable of
producing content that closely resembles copyrighted material. The authors conducted an anal-
ysis to extract examples of code, under the General Public License (GPL), using Codex-based
models. They examined the average match rate of the code-cushman-001, code-davinci-001,
and code-davinci-002 models, which was approximately 50% when provided with Linux ker-
nel function signatures as prompts. They further explored problems with language models that
remove required copyright information when using code from a file.

To address the issue of copyright violations, the authors propose several technical solutions.
First, they recommend selecting training data based on the license assigned to each file, similar
to practices used in certain datasets [22]. They also emphasize the importance of focusing on
data quality, suggesting the removal of duplicate data, which has been shown to contribute to
increased memorization in models [27]. Finally, they propose adding filters to model outputs,
although this may lead to overconfidence in the model’s ability to generate original content, as
previous studies have shown [51].

2.1.4 Lawsuits

To explore the concerns data owners face regarding the use of their content in training datasets,
we provide a concise summary of major legal disputes. These include the controversies sur-
rounding the Books3 corpus, the lawsuits over Stable Diffusion models generating copyrighted
images, and the legal battle between the New York Times and OpenAI over the incorporation of
New York Times articles in model training.

Books3 Corpus Battle. Books3 was a dataset comprising approximately 200,000 books scraped
from online sources that distribute copyrighted content, hosted by a website called The Eye. The
dataset was initially designed to reduce the disparity in resources available to large AI corpo-
rations and independent researchers, offering individuals working on LLMs an opportunity to
compete on more equal footing. This was especially targeting companies such as OpenAI, that
trained their models on proprietary datasets called Books1 and Books2 [53]. Books3 was in-
cluded into a larger dataset that merged existing collections to form an extensive corpus, which
was then released as The Pile [54]. Several companies, including Bloomberg, EleutherAI, and
Microsoft, utilized this dataset to train commercial LLMs. In the United States of America, a

8



2.1 Legal Dimensions of Data

group of authors whose works were included in Books3 filed a lawsuit demanding that these
companies cease using their books permanently, together with compensation for the use of their
works [20]. The lawsuit centers on allegations that Bloomberg, Microsoft, and Meta:

• Developed LLMs aware that the training data was copyrighted.

• Failed to attain licenses for the copyrighted materials, knowing that the original works
were obtained illegally.

• Chose to use the stolen content to train models for commercial gain.

The Danish organization Rights Alliance has filled a DMCA takedown request for The Pile
dataset due to its inclusion of the Books3 corpus, resulting in the entire dataset being removed
from download [55].

StableAI vs. Getty Images. In another legal dispute currently unfolding in the United States of
America, Getty Images, a digital image provider, accuses StableAI of copyright infringement,
claiming that the company used 12 million of its curated images to train the Stable Diffussion
model [19]. The lawsuit highlights three key points:

• StableAI’s models occasionally produce images containing the distinct Getty Images wa-
termark, which would breach trademark protections.

• The images used for training were scraped from Getty Images’ website, violating the
website’s licensing terms.

• Getty Images was not contacted for permission to use their images, which the company
carefully curates, including adding captions, titles, keywords, and other metadata.

OpenAI vs. The New York Times Another significant ongoing lawsuit involves The New York
Times, OpenAI, and Microsoft, and focuses on the use of articles owned and copyrighted by
The New York Times in the training of LLMs distributed by the two software companies [21].
Similarly to earlier cases, the dispute revolves around the inclusion of copyrighted content in the
datasets used to train AI models. The main concerns raised by The New York Times in this case
can be summarized as follows:

• The training process for these models relies on copyrighted content produced by The New
York Times, which was used without obtaining a license.

• By generating articles on similar topics, the models potentially decrease the incentive for
individuals to subscribe to The New York Times.

• The models occasionally hallucinate ’facts’ and attribute them to The New York Times,
damaging the reputation of the publication.

• These models are capable of reproducing exact copies of New York Times articles, pro-
viding access to people without a subscription.

9
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While similar to concerns raised in the Getty Images and Books3 cases, the New York Times
lawsuit takes a deeper look at the technical flaws of modern LLMs and their repercussion for
those supplying training data.

One of the primary issues highlighted is the tendency of AI models to hallucinate ’facts’.
The lawsuit includes screenshots as evidence, showing that Bing Chat often generates responses
unrelated to actual New York Times articles when asked for specific content. It also demonstrates
how the model falsely attributes quotes or citations to individuals, implying they were mentioned
in the publication when they were not. Additionally, Bing Chat has been shown to reference
articles that do not exist, claiming they were published by The New York Times.

Furthermore, the lawsuit demonstrates how AI models replicate content from their training
data by providing examples of GPT-4 outputs that closely match text published by The New
York Times. It also includes instances where GPT-4 generated almost identical copies of articles
after being prompted with statements about paywall restrictions.

Unlike the earlier lawsuits, there were attempts at negotiations between The New York Times
and OpenAI over licensing the use of their articles, but no agreement was reached. OpenAI’s
defense against the copyright infringement is based on the argument that using articles to train
models is transformative and falls under fair use. They also assert that The New York Times
violated OpenAI’s terms of service by using unauthorized methods to retrieve their articles from
the GPT-4 model. Lastly, The New York Times is not only seeking compensation for the harm
they claim to have suffered due to Microsoft and OpenAI, but is also demanding the deletion of
all model weights trained on datasets containing their articles, along with the destruction of the
datasets themselves.

2.1.5 Code Licensing

The code used in pre-training and fine-tuning LLMs is governed by an extensive range of li-
censes that impose different constraints on the use and distribution of software. These licenses
can be classified into two main categories, namely free licenses and non-free licenses. Since
this study focuses on free licenses, we will not delve into the specifics of non-free ones. Free
licenses can be further categorized into public domain licenses, permissive licenses, and copyleft
licenses3. Given the broad scope of these licenses, our focus is mainly on permissive licenses,
as well as weak copyleft, strong copyleft, and network copyleft licenses within the copyleft
family [56].

Permissive Licenses. Permissive licenses, such as Apache, BSD, and MIT, are commonly used
in software projects due to their flexibility. This type of license grants users significant freedom
to use, modify, and redistribute the software with minimal restrictions. This adaptability makes
them suitable for integration into both proprietary and open-source projects. Modifications and
derivative works can be made without the obligation to release them under the same license
[57, 56]. Permissive licenses accommodate projects with diverse license requirements, enabling
users to apply a different license to the modified code or even keep it proprietary. Unlike copyleft

3License Types
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licenses, permissive licenses primarily require a copyright notice and disclaim liability for the
original author.

Weak Copyleft Licenses. As their name suggests, weak copyleft licenses, such as MPL, LGPL
or CECILL, permit the inclusion of code in proprietary projects without necessitating the entire
derived work to be open-source [56, 58]. In essence, only the changes made to the original
code must be released under the same weak copyleft license. These licenses strike a balance
between proprietary software and open-source collaboration. In addition to requiring the sharing
of modified code, weak copyleft licenses often require giving credit to the original authors and
may include a liability disclaimer.

Strong Copyleft Licenses. Strong copyleft licenses, including GPL or QPL, differ from weak
copyleft in that they require any derivative work that modifies or incorporates the original code
to be distributed under the same strong copyleft license. This ’share-alike’ condition guar-
antees that the open-source rights remain intact in all future versions and derivatives of the
software [56, 58]. Moreover, these licenses typically require attribution of the original authors
and include a liability disclaimer to protect creators from responsibility for issues arising from
the use of the software.

Network Copyleft Licenses. Network copyleft licenses, such as AGPL, APSL or OSL, extend
the requirements of strong copyleft licenses, having a larger applicability. This type of license
not only requires the distribution of entire derived work under the same license, but also requires
compliance when the software is operated for others to access over a network [56, 58]. They
often require attribution of the original author and the inclusion of a liability disclaimer.

2.2 Data Contamination and Its Remedies

Data duplication occurs when identical or nearly identical pieces of information occur repeat-
edly within a dataset [26]. Data duplication can be divided into two categories: intra-dataset
duplication, where similar or identical data exist within the same dataset, and inter-dataset du-
plication, where similar or identical data is present across different datasets [59]. The latter
scenario represents the foundation of data contamination, also known as data leakage. In the
context of LLMs4Code, data contamination mainly involves code overlap across the training,
validation, or testing datasets, violating their intended isolation. This overlap has been shown to
cause inflated evaluation metrics and biased outcomes [18, 26]. Yet, data contamination contin-
ues to be a persistent challenge. This is largely due to the constantly evolving nature of software
and the common practice among programmers of reusing code snippets [25], which makes it in-
creasingly difficult to gather data free from contamination. Although its consequences are well
known, many LLM studies fail to deduplicate the data used in pre-training and fine-tuning their
models, which compromises the construct and external validity of their evaluations and limits
the ability of the models to generalize effectively on downstream tasks [18].
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2.2.1 Code Duplicate Types

In the literature, code duplicates are often used interchangeably with code clones, a widely-
researched topic in software engineering [60, 61]. Although closely related to code clones, code
duplicates are generally viewed as a subset of them [26]. However, the distinction between
the two is not well-defined, as it largely depends on the specific implementation and similarity
function employed. Code duplicates can be classified as follows:

• Exact Duplicates: Refer to code snippets that are syntactically identical.

• Near Duplicates: Include code snippets that are syntactically identical or partially identical.

• Semantic Duplicates: Describe code snippets that are semantically identical or partially
identical.

Exact duplicates most closely align with Type-1 clones, while near duplicates correspond to
Type-2 clones and may even extend to Type-3 clones [60]. Semantic duplicates, on the other
hand, are more comparable to Type-4 clones. However, the definition of ”partially identical”
is highly subjective, and depending on the chosen implementation, the scope of duplicates can
either broaden to cover multiple clone types or be refined to a more specific subset. Additionally,
code duplicates can occur at different levels of granularity, which can be classified into different
categories [62]:

• Chunk-Level: This refers to duplicates that appear within smaller code fragments, such as
lines, blocks, or even functions.

• File-Level: This occurs when duplicates are found across entire code files.

• Repository-Level: This involves duplicates that exist between entire code repositories,
covering all the code files within them.

2.2.2 Code Copies in the Wild

As the reliance on extensive collections of open-source projects grows, the effects of code dupli-
cation are becoming more and more noticeable [26]. Lopes et al. performed an analysis of 4.5M
non-fork GitHub-hosted projects, including over 428M files written in Java, JavaScript, Python,
and C++. Their findings revealed that only 85M of these files were unique, indicating that 70%
of GitHub’s code base consists of file-level exact and near duplicates. Furthermore, duplication
rates varied significantly across programming languages. JavaScript exhibited the highest level
of file duplication, with only 6% of files being unique, whereas Java had the lowest, with 60%
of files being distinct. Additionally, their study found that between 9% and 31% of the projects
had at least 80% of their files duplicated elsewhere.

In another study, Golubev and Bryksin analyzed over 23,000 open-source Java projects from
GitHub, examining clones at both method- and file-level. Their investigation covered exact and
near-miss clones while also assessing the size and age of duplicated code fragments. Their
findings indicate that code copying has persisted throughout the history of Java development.
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Additionally, method-level cloning was found to be significantly more common than file-level
cloning, with only 35.4% of methods remaining unique and free from clones.

Similarly, Ossher et al. investigated the prevalence of developers copying entire files or
groups of files into their applications. Analyzing over 13,000 Java projects from various open-
source repositories, their method identified more than 10% of files as clones and found that
over 15% of all projects contained at least one cloned file. Through manual inspection of re-
ported clones, they observed that most duplication involved Java extension classes and widely
used third-party libraries. Projects appearing across multiple repositories were often the result
of forking or being split into smaller sub-projects. Along the same lines, Gharehyazie et al.
examined cross-project cloning by analyzing over 5,000 Java projects scraped from GitHub.
Their findings align with Ossher’s study, showing that cross-project clones account for 10% to
30% of all code clones within projects. Additionally, they observed that code cloning follows
an onion-like pattern: most clones originate within the same project, followed by projects in the
same application domain, and finally from projects in entirely different domains.

Lastly, Yang et al. explored the overlap between code snippets shared on Stack Overflow
and those found in GitHub projects. They examined 909,000 non-fork Python repositories
on GitHub, containing 290M function definitions, alongside 1.9M Python snippets from Stack
Overflow. While their qualitative analysis indicated that exact duplicates between the two plat-
forms accounted for less than 1%, they identified a significant number of near duplicates. Specif-
ically, 405,000 distinct GitHub code blocks closely resembled snippets from Stack Overflow,
and 35,000 unique Stack Overflow code blocks had counterparts within GitHub.

Regardless of the level of granularity at which clones or duplicates are examined, these stud-
ies share a common aspect: the presence of copied code within open-source repositories, primar-
ily from GitHub. Collectively, they raise concerns about projects and research relying on such
data, as duplication can negatively impact their results. In the context of LLMs, GitHub serves
as a primary source of code for training and fine-tuning models, introducing several challenges,
including potential license violations, privacy risks, and biases that can alter evaluation results
and ultimately compromise their validity. Finally, the high occurrence of duplicates, driven by
efforts to collect more data, makes the evaluation reproducibility increasingly demanding, due
to the constant need of data deduplication.

2.2.3 Data Duplication Impact on LLMs

The widespread impact of code duplication has also been observed in machine learning (ML)
models. One of the pioneering studies by Allamanis examined how the overlap between training
and test splits in code datasets affects model performance. The results indicated that the reported
performance metrics were occasionally inflated by up to 100% when tested on duplicated code
corpora, in comparison to the performance on deduplicated corpora.

Similar effects have been noted in LLMs, raising concerns about the models’ true capabili-
ties and their generalizability. Hernandez et al. explored the implications of training transformer
models on data which is mostly unique, however, a small fraction of it is highly repeated. The au-
thors observed a strong double descent phenomenon, where repeated data led to a significant in-
crease in test loss midway through training, causing a severe degradation in model performance.
They demonstrated that by repeating just 0.1% of the data 100 times, while keeping the rest of
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the training tokens unique, the performance of an 800M model could degrade to that of a model
half its size. This data repetition disproportionately harmed structures related to generalization,
such as induction heads, which may explain the shift from generalization to memorization.

In addition, many recent studies have showed that various LLMs are contaminated with
data from popular code benchmarks, which affects the validity of their evaluations [69, 70].
The findings of LiveCodeBench [71] indicate that, models such as DS-INS-1.3B, DS-INS-6.7B,
CodeQwen, and MC-6.7B achieved higher results on HumanEval+, due to possible contamina-
tion, compared to Gemini-Pro, Mistral-L or Claude-2. Consistent with these findings, Riddell
et al. showed that 3.6% to 20.8% of HumanEval and MBPP solutions can be found in popular
pre-training datasets including The Pile and The Stack, by looking at both surface and semantic
level similarity. This was showed to inflate the results of models trained on this data, including
StarCoder-15.5B, Pythia-12B or CodeGen-NL-16B. These results are also supported by Yang
et al. who discovered that 8-18% of the HumanEval benchmark overlaps with RedPajama and
The Stack, by looking at rephrased entries. Similarly, StarCoder was found to be contaminated
with code from the Defects4J benchmark. Specifically, 35% of test cases and 39% of buggy
methods from the benchmark were included in the model’s training data, along with code from
the 2.0 version of the benchmark [74].

Finally, Singh et al. pointed out the contamination between The Pile, and HumanEval,
MBPP, and BigBench benchmarks, using metrics such as token-match, n-gram match or longest-
match. They also showed that these benchmarks can also be found in the LLama 1 corpus, with
an average contamination rate of over 50%. As a result, models trained on leaked benchmark
data risk overfitting to its patterns, which can degrade performance when evaluated on different
tasks [76].

2.2.4 Deduplication Techniques

Deduplication is a crucial step in any data pre-processing pipeline, which ensures that duplicate
entries are removed from the corpus. This process can be categorized into three types: exact
deduplication, near deduplication, and semantic deduplication. In this study we focus on the
first two.

For exact deduplication, computing hash fingerprints of file contents is a widely used ap-
proach due to its efficiency, scalability, and deterministic nature [22, 23, 35]. It enables fast,
memory-efficient comparisons, making it well-suited for large datasets. Since identical inputs
produce the same hash, duplicates can be easily identified and removed. However, the perfor-
mance of this method is highly dependent on the hash function employed.

Furthermore, MinHash Locality Sensitive Hashing (LSH) has proven to be an efficient
method for detecting near duplicates [22, 23, 35]. The process begins by decomposing the
input into a set of n-grams, also known as shingles. These shingles are then transformed into
MinHash signatures, which serve as compact representations of the input that minimize memory
usage [77]. To create a signature, each shingle is hashed using a hash function. This process
is repeated for a set number of permutations. For each permutation, the minimum hash value
is selected from the shuffled shingles, ultimately resulting in a fixed-length vector that forms
the MinHash signature. The number of matching values between two signatures approximates
the Jaccard Similarity of the sets from which the signatures were derived. Then, LSH groups
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similar items by splitting MinHashes into bands, hashing them, and placing items with matching
hash values into the same bucket. MinHash and LSH improve efficiency and scalability for large
datasets by limiting comparisons to items within the same bucket [78]. Nonetheless, it is impor-
tant to note that the effectiveness of this method is strongly influenced by the chosen parameters,
emphasizing the trade-off between efficiency and accuracy.

2.3 Reliable Data for Reproducible and Valid LLM Evaluations

Despite efforts of popular pre-training datasets to promote open data and accelerate progress
[22, 23], their dominance over GitHub-sourced code raises concerns about the reproducibility
and accuracy of LLM evaluations. Since many LLMs are pre-trained on these datasets, assessing
their performance on new unseen data for downstream tasks becomes challenging due to the
high risk of contamination. On top of that, data integrity issues in these pre-training datasets,
together with insufficient dataset documentation, can also negatively impact the reproducibility
and validity of LLM research [79].

1 {
2 text: "<!DOCTYPE html > <!--[if IE 8]><html class="no-js

lt-ie9" lang="en" > <![endif]--> <!--[if gt IE
8]><!--> <html class="no-js" lang="en" > <!--<![
endif]--> <head > <meta charset="utf -8"> ...",

3 meta: {
4 repo_name: "metpy/MetPy",
5 path: "v0.7/api/generated/metpy.calc.

relative_humidity_from_mixing_ratio.html",
6 language: [{"name": "Jupyter Notebook", "bytes": "

989941"}, {"name": "Python", "bytes": "551868"}]
7 }
8

9 }

Figure 2.1: Example of language misalignment in RedPajama

For example, RedPajama4 provides access to URLs for downloading the dataset, which is
not pre-filtered or split by programming language. This means researchers must filter the data
themselves. While the metadata lists all languages present in each repository, it does not specify
the language of each file. As a result, researchers must parse the file paths from the metadata
and filter based on file extensions. This can introduce variability in the reproducibility of studies,
depending on the extensions selected and the fact that the same extension can be shared across
different languages. We give an example of such a case in Figure 2.1, where HTML is not even
included in the list of languages.

Similarly, CodeClippy5 contains incorrect file names, which can cause mismatches between
its content language and the file extensions. Moreover, there are a lot of instances where the

4RedPajama Structure
5CodeClippy File Issue
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1 {
2 text: ".ol-translation -container {\n padding: 20px;\n}\

n\n.ol-translation -group {\n display: block;\n
position: relative;\n margin: 0 auto;\n margin -
bottom: 30px;\n background -color: #ddd; ...",

3 meta: {
4 file_name:"app.js",
5 repo_name:"openl10n\/openl10n -app",
6 repo_language:"",
7 stars:12,
8 mime_type:"text\/plain"
9 }

10

11 }

Figure 2.2: Example of a missing language and wrong file name and extension in CodeClippy

repository language provided is empty. Figure 2.2 demonstrates how the repository language
field is missing, and although the file extension suggests this is a JavaScript file, the content
is in fact CSS. We also noticed that the same filename and repository metadata are incorrectly
repeated across many entries, even though the content of the files is completely different. Figure
2.3 illustrates one such example. These deviations can skew model training and affect the valid-
ity and reproducibility of evaluations, even when external tools are used to identify the correct
language type, due to their limited accuracy. This is also the case for The Pile6, which has been
removed and re-uploaded, losing information about the programming language of a file.

These issues not only affect the accuracy of results and reproducibility of studies but also
highlight the lack of effective data curation techniques employed in existing datasets.

6The Pile

16

https://pile.eleuther.ai/


2.3 Reliable Data for Reproducible and Valid LLM Evaluations

1 {
2 text: "<!DOCTYPE html >\n<html >\n<head >\n\t<title >Server

Dashboard <\/title >\n <meta name=\"robots\"content=\"
all\">\n<meta http -equiv=\"Content -Type\" ...",

3 meta: {
4 file_name:"script.js",
5 repo_name:"patschi\/serverdashboard",
6 repo_language:"PHP,HTML ,JavaScript ,CSS",
7 stars:14,
8 mime_type:"text\/plain"
9 }

10

11 text: "@font -face {\n font -family: 'Droid Sans';\n
font -style: normal;\n font -weight: 400;\n src:
local('Droid Sans'), local('DroidSans'), url(fonts\/
droidsans_v3_400.woff) format('woff') ...",

12 meta: {
13 file_name:"script.js",
14 repo_name:"patschi\/serverdashboard",
15 repo_language:"PHP,HTML ,JavaScript ,CSS",
16 stars:14,
17 mime_type:"text\/plain"
18 }
19

20 }

Figure 2.3: Example of repeated metadata in CodeClippy entries, with different file content
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3 | Proposed Approach: A Licensing Analysis
and Robust Code Datasets

In this chapter, we outline the methods we used to address each research question. We detail
the steps taken to evaluate the extent of license infringements in open code datasets, which is
the central focus of our study. Building on this analysis, we develop a Java dataset to highlight
the depth of non-permissive code presence in mainstream code datasets and to support more
accurate LLM evaluations. Finally, we expand upon this by creating a large-scale multilingual
dataset designed to facilitate reproducible and reliable LLM evaluations.

3.1 Addressing the Legal Pitfalls of Dataset Sourcing

We begin by conducting a tertiary study of recent surveys on LLMs. We then analyze papers,
repositories, and blog posts to identify datasets used in pre-training them. After gathering the
data, we analyze these datasets to check if they contain any copies of code that are also released
under a strong copyleft license. Additionally, we inspect the first comment in each file to identify
any other potential sources of confidential information that are being embedded into the weights
of the models. A visual overview of our approach is provided in Figure 3.1.

Figure 3.1: Graphical overview of the licensing analysis approach
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3.1.1 Study Collection

To understand the scale of licensed code in datasets, it is crucial to first identify the models
trained on code. To achieve this, we gather surveys of LLMs from scientific databases, providing
a comprehensive view of the datasets frequently used in the literature and the specific models
trained on them. We limit our survey search space to only those published in 2023.

After compiling a list of LLMs from the surveys, we gather relevant papers, or blog post-
s/repositories when papers are unavailable, related to each model. We then filter these sources to
identify models trained exclusively on permissively licensed code. First, we remove papers for
models not trained on code, and then we remove those not trained on file-level code. We choose
file-level code as this refers to code extracted directly from repositories without being altered.
Therefore, we prioritize file-level datasets as they are more suitable for identifying duplicate
code. We avoid extracting methods or classes as that may lead to false positives, primarily from
common components such as getters, setters or common algorithms. Additionally, we exclude
models trained exclusively on data from sources such as Stack Overflow or competition plat-
forms. Once the models are filtered, we first evaluate the availability of their training datasets.
We then gather all datasets that are publicly accessible and extract details from the correspond-
ing papers or documentation, including the dataset’s source and whether it has a specified name.
We also include a category for ”custom datasets”, which are created by the authors but are nei-
ther named nor publicly released. These datasets are often scraped from online repositories, but
insufficient information is provided to fully replicate them.

3.1.2 Licensing Analysis

Based on our analysis of the data collected, we identify a set of publicly available datasets that
include code extracted directly from code bases. To assess whether a code file might be licensed,
we examine two key aspects of the dataset.

We begin by generating SHA-256 hashes for all code files, as this method has demonstrated
robust performance in identifying exact duplicates within a dataset [22]. We focus solely on
exact duplicates because including near duplicates can generate debates over whether a piece of
code is truly a duplicate or a slightly variant of a common structure or algorithm [80]. Since the
main objective of this paper is to assess concerns about licensed code in datasets, we address
this by defining a lower bound on duplication, focusing on exact copies.

Second, we extract the first comment from each file, if there is any. We define this as any
comment block that starts within the first 20 characters and may extend beyond that point. This
enables us to search for licensing information, copyright notices, and disclaimers regarding con-
tent ownership and distribution.

3.1.3 Strong Copyleft Code Collection

A lot of datasets scraped from GitHub focus on including only permissively licensed code. In an
ideal scenario, there would be no overlap between code from permissively licensed repositories
and those under strong copyleft licenses. To assess the real-world extent of this overlap and
whether it varies between datasets that check for code licenses and those that do not, we scrape
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our own dataset from GitHub. As discussed, strong copyleft licenses require any derivative work
incorporating or modifying the original code to be released under the same license. This is why
we focus on these licenses because of their strong commitment to preserving the open-source
nature of the code base across all iterations and contributions.

We gather a list of GitHub repositories licensed under GPL-2.0, GPL-3.0, or AGPL-3.0,
and created until August 2023, inclusive. We scrape up to 10,000 repositories per language,
selecting those where the primary language matches one of the languages included in our study.
We exclude any files written in languages that are secondary within a repository. Lastly, we ex-
tracted code files from the repositories based on their extensions without applying any additional
filtering by length or content variety.

3.1.4 Investigation Breakdown

To showcase how we detect the extent of code license infringements in open datasets, we present
a step-by-step breakdown of our approach across sub-questions.

RQ1.1 - Interest in Licensed Code. To evaluate the extent of licensed code in datasets used for
training LLMs, we analyze the data collected during the tertiary study. This includes examining
the publication dates, verifying whether the models are trained on code, and checking if they
claim the inclusion of permissively licensed code. From this, we can identify trends on an
annual basis.

RQ1.2 - Strong Copyleft Infringements. To analyze the presence of strong copyleft-licensed
code files in datasets, we generate SHA-256 hashes for all code files in the collected datasets and
for code files scraped from GitHub, sourced exclusively from repositories with strong copyleft
licenses. This allows us to compare the licensed set of hashes with those in each dataset and
measure the overlap based on the number of matching files. Additionally, we extract the first
comment from each code file in the collected datasets and search for references to license names,
specifically checking for mentions of GPL or AGPL licenses.

RQ1.3 - Distribution Disclaimers. To assess whether the authors of a code file might object to
its further distribution, we follow the same approach used for detecting strong copyleft licenses
in the first comment. However, we modify the search criteria by excluding the GPL and AGPL
boilerplate license declarations and instead focus on language related to ownership and restric-
tions on sharing. This includes phrases like confidential, please do not share, and following
conditions are met.

3.2 Mitigating Data Contamination for Accurate LLM Evaluations

To get a better understanding of the depth of non-permissive code in open datasets, we build
upon our licensing analysis and introduce StackLessV2, a strong copyleft file-level Java dataset
designed to complement The Stack V2. We take a more detailed approach by also looking for
near duplicates between our dataset and The Stack V2. This additional filtering step should
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reduce the risk of any additional contamination, making this dataset also a valuable source of
fresh data for reliable LLM evaluations on downstream tasks. We choose The Stack V2 as
the target dataset due to its recent release and because it is the largest open dataset containing
permissive and unlicensed code, on which multiple models have been trained.

3.2.1 Data Collection

We use the same collection process as in the licensing analysis, which is explained in greater
detail here. We scrape 10,500 public repositories using the GitHub /search API, with a search
query based on license type, repository star count, and repository creation date. We aim to
include 10,000 repositories in the dataset and select an extra 500 to account for repositories
potentially being removed between collection and downloading. We only target repositories
licensed under strict copyleft licenses including GPL-2.0, GPL-3.0, and AGPL-3.0, where the
main language of the repository is Java. Moreover, we select repositories created until April
2024, inclusive, in descending order by star count, as this has been used as a loose quality metric
before [35]. Furthermore, for the /search API, GitHub permits up to 30 authenticated requests
per minute for personal accounts. Additionally, due to the resource-intensive nature of search
queries, each query is limited to retrieving a maximum of 1,000 results (including pagination).
These constraints make extracting a large number of repositories challenging.

Figure 3.2: Distribution of Java repositories by star count

To prevent hitting request limits, we query the /rate limit API to monitor the remaining
requests and determine the reset time as we approach the limit. We then apply timeouts, with a
small buffer, until the request limit resets. Additionally, we utilize pagination, requesting up to

21



3.2 Mitigating Data Contamination for Accurate LLM Evaluations

100 repositories per call, and apply filters based on repository license, star count, and creation
date. Instead of retrieving all results in a single response, pagination divides large data into
smaller, more manageable chunks, also known as pages. Combined with filtering, this approach
not only minimizes the number of requests but also allows us to bypass the 1,000-repository
limit per query when more results are available. We perform the filtering as follows.

We retrieve repositories within a specific star range for the entire time frame mentioned
above. If there are less than 1,000 repositories for that star range, then we store them and re-
duce the range. Otherwise, we restart the iteration with the same star range, but this time, we
process the time frame month by month using a tumbling window. Then we store the collected
repositories and reduce the star range. This enables us to iterate over the time frame in increas-
ingly granular segments, thereby capturing more repositories and avoiding the limit. Since we
scrape repositories in descending order by star count, we first retrieve those with more than 900
stars. For repositories between 900 and 100 stars, we divide the range into intervals of 50 stars;
between 100 and 10 stars, we use 10-star intervals; and for those with fewer than 10 stars, we
treat each star count individually. Given that most repositories fall within the 0–100 star range,
as shown in Figure 3.2, filtering by repository creation date and star count helps narrow the
search space, allowing us to capture more data in an incremental way. We also eliminate any
duplicate repositories that may arise from the pagination process. Finally, we extract the code
files according to the the programming language extension list1 from The Stack.

3.2.2 Data Cleaning

After collecting the data from GitHub, we perform some cleaning steps. Building on the ap-
proaches used for The Stack datasets [22, 23], we exclude low-quality training data, including
files larger than 50 MB and those with fewer than 10 words, as they may introduce noise and
negatively impact model performance. Similarly, we filter out auto-generated files by searching
for specific keywords in the first 5 lines of each file. This list of keywords is based on the Stack
V2 approach and the manual file inspection we performed: generated by, autogenerated, auto-
generated, this file was generated, this file is generated, generated automatically, automatically
generated.

3.2.3 Data Deduplication

To further reduce the risk of contamination and assess the presence of strong copyleft code in
The Stack V2, we implement near deduplication on top of exact deduplication. First, we remove
exact duplicates within our dataset, followed by applying exact deduplication against the Java
subset of The Stack V2. We use the SHA-256 hash function because it ensures a low probability
of collisions and provides a uniform distribution of hash values.

Then, we perform near deduplication between our dataset and the Java subset of The Stack
V2 using the MinHashLSH approach from the datasketch2 library. We apply the same hash
function, together with 128 permutations and a precision-recall weight distribution of 40%–60%.

1Programming language extension list from The Stack
2MinHashLSH
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3.3 Supporting Reproducible LLM Evaluations

These design choices help reduce hash collisions while maintaining a balanced trade-off, prior-
itizing higher recall with a controlled increase in false positives. Before splitting the files into
shingles, we lowercase their content and remove any whitespace. This helps in reducing token
variability and formatting differences, which improves recall. Then, we use a shingle size of 7
characters, considering that code files generally contain a smaller set of characters compared to
large research articles, where k = 9 [78]. This choice helps minimize the occurrence of overly
common shingles, which could otherwise artificially increase similarity scores, especially when
using a smaller k value. Files with a Jaccard similarity greater than 0.7 are marked as near
duplicates, a threshold proven to be effective for detecting duplicates [26].

3.3 Supporting Reproducible LLM Evaluations

We extend on StackLessV2 by creating The Heap, a large-scale multilingual file-level dataset
covering 57 programming languages, and multiple variants of copyleft licenses. We deduplicate
The Heap against a wide range of open-source training datasets to provide clean data for LLM
evaluations and support ongoing research efforts.

3.3.1 Data Scraping

We use the same collection process as with StackLessV2 because it mirrors the data distribu-
tion of other large-scale datasets [22, 23]. This approach minimizes the likelihood of including
confounding factors [81], such as drifts in data representation. We now scrape up to 50,000
repositories or as many as are available per language, and we extend our search space until Au-
gust 2024, inclusive. Since existing datasets already include nearly all open-source code under
permissive or unlicensed terms, we use a broader set of copyleft licenses as our initial filter for
repositories. Focusing on copyleft licenses for our datasets enables us to gather more unseen
data that can be used for evaluating models on downstream tasks.

Moreover, the exclusion of non-permissively licensed code in other datasets is driven by
community concerns that models’ inferred outputs could potentially violate license terms [22,
82]. Our datasets are designed solely for research purposes and are not meant for pre-training
models intended for end users. The use of exclusively non-permissively licensed code also
serves as a deterrent for developers from training LLMs on our datasets, helping to preserve
their relevance for downstream tasks. Training on such code is unappealing, as it could require
the end user to publicly release all code in their code base.

3.3.2 Data Curation

As previously stated, the selection of only copyleft licenses is intended to prevent contamination
with other open training datasets. However, since code borrowing is a common practice among
developers [66], the boundaries of a license can become blurred, potentially leading to license
violations. By also employing exact and near deduplication when building our datasets, we aim
to minimize the level of contamination and reduce any concerns about data integrity.

We follow the same cleaning and deduplication process as before, but this time we filter out
files larger than 10 MB. Additionally, we remove all comments and whitespace according to the
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3.3 Supporting Reproducible LLM Evaluations

programming language before performing exact and near deduplication. By focusing on code
modifications, this approach ensures that minor edits, such as removing a license comment or
adjusting whitespace, still allow duplicates to be identified. The final files included in The Heap
are the original, unmodified versions scraped directly from GitHub. Lastly, rather than removing
all exact duplicates from our dataset, we only eliminate the ones coming from our own files.
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4 | Results & Applications: Accelerating LLM
Research with Clean Data

This chapter presents the results of our licensing analysis and our findings on the depth of non-
permissive code duplicates in open training datasets. Additionally, we outline the structure of
our code datasets and the rationale behind our design choices.

4.1 RQ1 - License Infringements in LLM Training Data

We begin by describing the results of our tertiary study, as well as the distribution of strong copy-
left repositories collected by programming language. Based on the collected data, we showcase
the extent of license infringements in open datasets by addressing each of the sub-questions.

4.1.1 Tertiary Study

We collected 6 literature surveys on LLMs conducted in 2023, which are summarized in Table 4.1.
Based on these surveys, we identified 106 LLMs, which we classified into the following cat-
egories: 31 models trained exclusively on natural language and 75 models trained on code.
Among the code-trained models, 22 were trained on method-level code, 23 on permissively li-
censed file-level code, and 30 on non-permissively licensed file-level code. The distribution of
these models is shown in Table 4.2. Superscripts for the file-level code models correspond to the
datasets they were trained on, as indicated by the reference numbers in Table 4.3.

Table 4.1: Literature surveys used to identify LLMs

Title Reference
Software Testing with Large Language Model: Survey, Landscape, and Vision [83]
A bibliometric review of large language models research from 2017 to 2023 [84]
A survey of large language models [13]
Large Language Models for Software Engineering: A Systematic Literature
Review

[85]

Large Language Models Meet NL2Code: A Survey [86]
A Survey on Large Language Models for Software Engineering [87]
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4.1 RQ1 - License Infringements in LLM Training Data

We also identified a total of 14 datasets. Among them, 6 were not released by the authors, 5
were fully open, 1 was selectively released to practitioners who applied, 1 was behind a paywall,
and another 1 was taken down due to a DMCA request but later re-uploaded by a third party with
the problematic content removed. In addition to these datasets, some models were trained on
datasets scraped from GitHub by the authors themselves. In many cases, there was insufficient
information to fully replicate the datasets as described, and these cases were excluded from
this study.

Table 4.2: Division of LLMs based on training data

Only Natural
Language

Method-Level
Code

Permissive
File-Level Code

Non-permissive
File-Level Code

GPT-3 PLBART CodeGen1,2,9 Codex15

T5 Tk-Instruct InCoder15 CodeT51

BART ERNIE-Code FLAN-T53 BLOOM1,7

mT5 PyMT5 LLaMa1 Galactica15

CPM-2 LaMDA CodeGen 22,3,9 Baichuan 215

PanGu-α InstructGPT StarCoder3 QWEN15

T0 CodeBERT Gopher10 Skywork8

UL2 CodeRetriever CodeT5Mix11 Pythia2

OPT TraceBERT CodeRL11 Jurassic-12

NLLB GraphCodeBERT AlphaCode15 JuPyT515

GLM BERT Overflow PaLM6 MT-NLG2

FLM CoText LLaMa 21 PyCodeGPT15

GShard PanGu-Coder WizardLM1 U-PaLM6

HyperClova CodeGPT CodeT5+11 PanGu-Σ15

Yuan 1.0 CodeGPT-adapted WizardCoder3 PaLM 215

GLaM CoditT5 SantaCoder3 Mistral15

AlexaTM SPT-Code PaLM-Coder6,13 GPT-C15

WeLM FLAN Vicuna1 PolyCoder15

BERT UnixCoder Stable Code3 GPT-3.515

mBART PanGu-Coder-FT StableLM2,3,4 Code LLaMa1,14

GPT-1 PanGu-Coder 2 StableLM Zephyr2,3,4 GPT-NeoX2

XLNet T5-Learning Japanese StableLM4 CodeGeeX2,5,15

Sparrow Stable Beluga1 CodeParrot5

PRCBERT GPT-CC12

seBERT Chinchilla15

ALBERT GPT-J2

RoBERTa FIM15

OPT-IML GPT-Neo2

ERNIE 3.0 Falcon2

GPT-2 CuBERT1

WebGPT
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4.1 RQ1 - License Infringements in LLM Training Data

Table 4.3: File-level code datasets used for training LLMs

Ref Dataset Available Count
1 Big Query Pay-wall 10
2 The Pile DMCA-takedown 12
3 The Stack Open 8
4 RedPajama Open 3
5 CodeParrot Open 2
6 PaLM Dataset Not Released 3
7 Roots Not Open to All 1
8 SkyPile Not Released 1
9 BigPython Not Released 2
10 MassiveText Not Released 1
11 GitHub-Code Dataset Open 3
12 CodeClippy Dataset Open 1
13 ExtraPythonData Not Released 1
14 Code LLaMa Dataset Not Released 1
15 Custom Dataset Not Released 17

The datasets selected for further investigation are: The Stack1, The Pile2, RedPajama3, Code-
Parrot4, Github Code5, and CodeClippy6. Among these datasets, The Stack, RedPajama, GitHub
Code, and CodeParrot include a license field within their data structure. Additionally, permis-
sive code is specifically mentioned for The Stack and RedPajama, while CodeParrot and GitHub
Code feature both permissive and copyleft licenses in their code. For CodeClippy and The Pile,
which lack a license field or explicit mention of permissive code, an analysis of their data reveals
a mix of both permissive and copyleft licenses.

Finally, Table 4.4 presents an overview of the number of strong copyleft repositories ex-
tracted per language, covering a total of 32 programming languages. Our focus on these partic-
ular languages is based on their widespread use in the file-level code datasets we had access to.
After the extraction process, we obtained approximately 35M code files.

4.1.2 RQ1.1 - Interest in Licensed Code

To assess the level of interest in the presence of licensed code in training data, we examine both
its inclusion in training setups and how code licenses are referenced in research papers. The
findings of this analysis are presented in Figures 4.1 and 4.2.

1The Stack
2The Pile
3RedPajama
4CodeParrot
5GitHub-Code
6CodeClippy
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4.1 RQ1 - License Infringements in LLM Training Data

Table 4.4: Breakdown of strong copyleft repositories by programming language

Programming Languages Repositories
C, C#, C++, Go, JavaScript, Java, Kotlin, Lua, Matlab, Perl, PHP,
Python, R, Ruby, Rust, Shell, Swift, TypeScript 10000

Assembly, Dart, Haskell 5000–9999
DM, Elixir, Fortran, Julia, Lisp, OCaml, Pascal, Scala 1000–4999
Agda, Erlang, SQL < 1000

Figure 4.1: Annual percentage of LLMs trained on code

Since 2020, the use of code in training setups has gradually increased. We attribute this trend
to the growing popularity of tools such as ChatGPT and Copilot, as well as the advantages of
using code data when training models for natural language reasoning [43].

We further evaluate the focus on permissively licensed code in model training and observe
a significant rise in datasets that exclusively contain such code. As shown in Figure 4.2, there
is a noticeable spike in papers referencing permissively licensed datasets. We attribute this
trend to the growing legal concerns surrounding generative models such as Stable Diffusion [88]
and datasets such as The Pile [54]. Additionally, this surge in interest aligns with the release
of The Stack, one of the datasets under investigation, which emphasizes the inclusion of only
permissively licensed code.
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4.1 RQ1 - License Infringements in LLM Training Data

Figure 4.2: Annual percentage of LLMs trained on permissive file-level code

4.1.3 RQ1.2 - Strong Copyleft Inconsistencies

As mentioned earlier, we address this question by first compiling a dataset from repositories
that exclusively use strong copyleft licenses, as shown in Table 4.4. Next, we identify exact
duplicates of these files within publicly available datasets. Additionally, we extract the first
comment from each file and search for substrings matching the standard license disclaimers
commonly found in strong copyleft licenses.

In Table 4.5 we show the number of exact duplicates and occurrences of comments indicating
strong copyleft licenses across all datasets. The dotted line distinguishes datasets that claim
exclusive use of permissive licenses (listed at the top) from the rest. Our analysis reveals a
significant overlap of exact duplicates between the dataset composed solely of strong copyleft
licensed code and other datasets. Compared to other datasets such as The Pile, CodeParrot, and
CodeClippy, which do not apply license filtering, The Stack and RedPajama exhibit a lower
percentage of overlapping files. However, even among datasets that do license checks, overlap
remains higher than in GitHub-Code, which did not check for licenses.

When examining comments that include the license of the file, we find that datasets that ver-
ify repository licenses show a significantly lower match percentage with strong copyleft licenses
compared to those that do not.
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4.1 RQ1 - License Infringements in LLM Training Data

Table 4.5: Number of code files identified with a strong copyleft license

Dataset Files Exact Duplicates License Comments
Count Percentage Count Percentage

The Stack 262,678,972 16,122,976 6.14% 2,067,830 0.78%
RedPajama 28,793,312 1,579,521 5.49% 15,544 0.05%
The Pile 18,044,000 4,113,263 22.80% 823,546 4.56%
CodeParrot 18,695,559 2,681,590 14.34% 2,844,150 15.21%
GitHub-Code 115,086,922 5,537,734 4.81% 7,548,615 6.56%
CodeClippy 71,140,482 7,993,768 11.24% 2,823,923 3.97%

4.1.4 RQ1.3 - Distribution Disclaimers

Lastly, we examine the occurrence of any language in the opening comments of all files. Our
goal is to identify whether any comments indicate that the author of the file intended to restrict
distribution. Table 4.6 summarizes the findings, showing the number of copyright disclaimers
detected in the first comments together with the total count of first comments across datasets.
Figure 4.3 provides an example to further highlight the nature of these comments.

When analyzing the proportion of first comments that include distribution disclaimers, we
find that their occurance ranges from 5% to 7.5% across all datasets, except for RedPajama,
which has only 1.3%. This indicates that many code files impose some restrictions on redistri-
bution but do not rely on a standard disclaimer or an explicit license.

Table 4.6: Number of code files containing an ownership or copyright disclaimer

Dataset Copyright First CommentsCount Percentage
The Stack 5,073,823 6.54% 77,595,559
RedPajama 30,500 1.34% 2,281,378
ThePile 501,877 7.39% 6,794,995
CodeParrot 773,062 5.38% 14,372,397
GitHub-Code 2,669,845 5.89% 45,301,797
CodeClippy 1,695,556 6.72% 25,223,157

1 <Company> all rights reserved.
2 this software contains proprietary and confidential
3 information of <Company> and its contributors.
4 use, disclosure and reproduction is prohibited without
5 prior consent.

Figure 4.3: Restrictions on sharing and distributing code found in a file from the RedPajama
dataset
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4.2 RQ2 - Non-Permissive Contamination in Open Datasets

This section begins with a brief overview of the structure of StackLessV2, followed by an anal-
ysis of strong copyleft code leakage in The Stack V2. Finally, we discuss how our dataset has
been used in other research.

4.2.1 Dataset Structure

In Figure 4.4, we illustrate the features we scrape for each repository. This layout is consis-
tent across all research questions. We include temporal indicators, such as the repository cre-
ation date, last push date, and retrieval date, to facilitate reproducibility and provide a basis for
tracking the relevance of the data. Furthermore, we present the structure of StackLessV2 in
Figure 4.5. Since we focus on near duplicates, instead of removing them as we do with exact-
duplicates, we flag them, allowing for a more flexible evaluation approach. Each file in our
dataset is linked to a list of file IDs, if applicable, that represent the near duplicates identified in
The Stack V2.

1 {
2 id: 126178683,
3 full_name: "halo -dev/halo",
4 html_url: "https://github.com/halo -dev/halo",
5 stargazers_count: 29961,
6 forks_count: 9142,
7 watchers_count: 29961,
8 open_issues_count: 330,
9 language: "Java",

10 created_at: "2018-03-21T12:56:52Z",
11 pushed_at: "2023-12-24T14:40:08Z",
12 license: {
13 key: "gpl -3.0",
14 name: "GNU General Public License v3.0",
15 spdx_id: "GPL -3.0",
16 url: "https://api.github.com/licenses/gpl -3.0",
17 node_id: "MDc6TGljZW5zZTk="
18 },
19 retrieval_date: "12/24/2023, 6:57:14 PM (Europe/

Amsterdam)"
20 }

Figure 4.4: Example of features extracted for each repository

4.2.2 Contamination Assessment

A summary of the number of files removed from StackLessV2 after each pre-processing step,
as well as the final dataset size, can be seen in Table 4.7. Approximately 5.63M files out of the
total 7.8M are exact duplicates. Of these exact duplicates, around 4.73M were found within our
dataset, while 900,000 originated from the Java subset of The Stack V2. On top of that, we
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1 {
2 file_name: "HeadTest.java",
3 file_path: "jbossas_httpserver/src/test/java/HeadTest.

java",
4 content: "public class HeadTest { @org.junit.Test public

void testThis()..."
5 file_size: 4,668,
6 language: "Java",
7 extension: ".java",
8 repo_name: "jbossas/httpserver",
9 repo_stars: 41,

10 repo_forks: 38,
11 repo_open_issues: 1,
12 repo_created_at: 2011-05-09T19:29:49Z,
13 repo_pushed_at: 2020-10-12T18:36:29Z,
14 near_dups_stkv2_idx: [125903722, 167385005]
15 }

Figure 4.5: Example of one entry structure from StackLessV2

identified another approximately 800,000 near duplicates coming from the Java subset of The
Stack V2. We observe a significant amount of near duplicates, particularly of strong copyleft
code, suggesting that the contamination is more pervasive and subtle than anticipated, which
can impact the reliability of evaluations. Moreover, the presence of strong copyleft code could
extend to other programming languages in The Stack V2, potentially affecting the integrity of
the dataset and leading to licensing issues. Finally, as previously mentioned, we flag these near
duplicates instead of removing them, resulting in a final dataset size of 2.13M files.

Step #Files

Raw data 7.80 M
Auto-generated 0.04 M
Exact deduplication 5.63 M
Near deduplication 0.80 M
Final 1.33 M

Table 4.7: Files removed at each step and final StackLessV2 size after filtering out near dupli-
cates

4.2.3 Uncovering Attention Patterns at Scale in LLMs

We illustrate the application of our dataset in Katzy et al.’s study, which is currently under re-
view. While LLMs continue to evolve at a rapid pace, the development of methods for effectively
interpreting and understanding their outputs has not kept up with this growth. The authors pro-
pose a novel approach to analyze LLM behavior at model-level, enabling scalable comparisons
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across different inferences and scenarios. They argue that current methods, which focus on in-
dividual components, are complex and hard to scale. To provide high-level explanations, they
track attention patterns across predictions and introduce AP-MAE, a vision transformer-based
masked auto-encoder trained to encode the attention patterns generated in LLMs.

The StarCoder2 models with 3B, 7B, and 15B parameters are selected as target models due
to their accessibility and transparent training process. They perform fill-in-the-middle (FiM)
inference at random locations with these models to generate attention patterns, which are used
to train an AP-MAE model for each. Then, they focus on code related to specific tasks, such as
closing brackets, identifiers, and boolean operators, running 11,000 FiM inferences. The result-
ing attention patterns are encoded and clustered to analyze their distribution across heads and
to assess whether LLMs produce consistent patterns when prompted with actual code versus
noise, and if these patterns vary between correct and incorrect predictions. The attention pat-
terns for training each AP-MAE model are generated by prompting the StarCoder2 models with
StackLessV2 data, because it is already deduplicated from their training set. Near duplicates are
filtered out to minimize interference from behaviors such as memorization, which could affect
the accuracy of the results. Additionally, they chose a Java dataset for its structured nature, en-
abling the extraction of specific tasks from real-world data to identify consistent LLM behavior.

Their results show that vision transformers trained in a masked auto-encoder setting can
encode attention patterns and generalize to unseen attention heads. They observed various pat-
terns across clusters, such as diagonal, vertical, and square. Additionally, models used at most
8.6% of possible pattern locations, indicating behavior is localized by task, with smaller models
reusing more pattern locations than larger ones. Finally, they found that models generate distinct
patterns when making incorrect predictions.

4.3 RQ3 - Dataset for Reliable and Reproducible LLM Evaluations

In this section, we present the composition of The Heap and discuss its layout, highlighting
features designed to improve usability and facilitate integration into other research.

4.3.1 Dataset Composition

The Heap is designed to support diverse research needs, so we select programming languages
based on specific criteria to ensure broad coverage. Our collection includes languages with var-
ied syntactic structures, such as Assembly, C, Haskell, Lisp and Python. We also cover multiple
programming paradigms: procedural languages such as Cobol, C, and Pascal; object-oriented
languages such as C#, Java, and Python; and functional languages like Clojure and Erlang. To
address specialized needs, we include domain-specific languages such as Coq, Emacs-Lisp, and
Mathematica. The complete list of 57 languages is shown in Table 4.8. The third column shows
the number of files obtained after filtering based on file size and word count, while the last
column indicates the number of files remaining after we removed exact duplicates within our
dataset. Additionally, we present an overview of the licenses used for The Heap in Table 4.9.
We select a broader range of copyleft licenses to collect more unseen data, supporting accurate
model evaluations on downstream tasks.
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Table 4.8: Languages included in The Heap

Language Repositories Raw Files Unique Files
Ada 676 41,367 34,068
Agda 142 5,483 3,021
ANTLR 101 564 538
Apex 253 17,833 7,561
Assembly 7,100 208,896 101,093
C 50,000 16,585,280 3,076,470
C# 50,000 5,906,716 3,257,456
C++ 50,000 14,891,856 4,469,823
Clojure 27,107 380,567 269,118
Cobol 341 2,242 1,172
Common Lisp 796 45,083 13,922
Coq 477 54,137 22,549
Crystal 368 11,606 6,818
Cuda 1,191 26,948 12,418
D 1,185 185,630 54,034
Dart 11,907 484,935 412,675
EJS 1,475 15,513 12,832
Elixir 2,371 643,856 102,874
Emacs Lisp 377 8,260 7,312
Erlang 1,240 55,932 27,322
F# 876 22,152 13,282
Forth 222 28,287 5,129
Go 50,000 7,506,379 2,328,529
Groovy 2,198 60,299 47,366
Hack 1,379 84,916 37,189
Haskell 8,023 122,788 106,583
Java 50,000 9,989,601 5,168,193
JavaScript 50,000 8,289,901 1,907,803
Julia 2,859 46,284 36,830
Kotlin 21,665 1,467,343 1,042,136
Less 433 17,276 7,308
Lua 42,241 4,605,230 905,120
Mathematica 1,528 164,498 21,208
MATLAB 20,828 1,051,354 599,085
NetLogo 332 900 855
NewLisp 35 5,819 5,123
Nix 1,892 75,093 70,407
Objective-C 7,700 1,899,714 520,332
OCaml 1,961 121,890 60,863
Pascal 5,218 330,832 180,652
Perl 14,673 1,798,520 224,753
PHP 50,000 12,707,727 3,310,243
Processing 2,950 24,723 20,304
Prolog 1,071 38,995 17,570
Python 50,000 2,290,182 1,595,919
R 44,993 589,139 11,679
Raku 158 1,384 689
Ruby 13,378 1,579,655 662,915
Rust 42,847 2,496,177 802,707
Scala 5,893 749,370 210,630
Scheme 1,878 106,620 50,222
Scilab 199 4,531 3,896
SQL 130 47,185 40,800
Starlark 146 524 487
Swift 13,924 633,819 434,849
Vue 14,858 457,605 321,502
WebAssembly 68 834 544
Total 733,663 98,945,943 32,666,778 34
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Table 4.9: Copyleft licenses included in The Heap

License Family
CECILL-1.0, CECILL-1.1, CECILL-2.0, CECILL-2.1, CECILL-C,
EPL-1.0, EPL-2.0, LGPL-2.1, LGPL-3.0, MS-RL, MPL-2.0

Weak Copyleft

GPL-2.0, GPL-3.0 Strong Copyleft
AGPL-3.0, EUPL-1.1, EUPL-1.2, OSL-3.0 Network Copyleft

The datasets selected for deduplication are drawn from the list we curated during the license
analysis, with the addition of The Stack V2, as shown in Table 4.10. Since comment removal
depends on the programming language, we cannot accurately determine the correct language for
The Pile and CodeClippy, as detailed in Section 2.3. While we could predict the languages in
these datasets, the tools available for this task often return incorrect predictions, which could lead
to undetected duplicates. To ensure our dataset remains free from contamination, we exclude
these two datasets from consideration.

Table 4.10: List of publicly-available datasets used for deduplication against The Heap

Dataset Source
The Stack V2 [23] All files with permissive licenses, as well as unlicensed

ones, gathered from the Software Heritage [90] archive.
The Stack [22] All permissively licensed repositories collected in the

GHArchive [91] and scraped from GitHub.
Red Pajama [24] Repositories licensed under MIT, BSD, or Apache from

the GitHub dataset hosted by Google BigQuery [92].
GitHub-Code [34] Repositories from the GitHub dataset hosted by Google

BigQuery [92].
CodeParrot [30] All Python files from the GitHub dataset hosted by

Google BigQuery [92].

4.3.2 Dataset Layout

The Heap is divided into multiple subsets, with each representing a specific programming lan-
guage. Within each subset, the dataset entries fall into three categories: file content and meta-
data, quality indicators, and duplicates. This layout promotes ease of use by organizing the data
in a structured and accessible manner. An example of the structure can be seen in Figure 4.6.

File Content and Metadata. This category includes the actual content of the file, together with
details about the filename and path, as these have been part of the pre-training process for some
LLMs [8, 23, 36].
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1 {
2 id: 200,
3 file_name: "kernel.lisp",
4 file_path: "whily_yalo/cc/kernel.lisp",
5 content: "REPL: loop (jmp short read -start) ;; ...",
6 size: 4,099,
7 language: "Common Lisp",
8 extension: ".lisp",
9 total_lines: 125,

10 avg_line_length: 27.52,
11 max_line_length: 104,
12 alphanum_fraction: 0.59,
13 repo_name: "whily/yalo",
14 repo_stars: 571,
15 repo_forks: 32,
16 repo_open_issues:1,
17 repo_license: "GPL -2.0",
18 repo_extraction_date: "9/19/2024, 11:24:32 AM",
19 exact_duplicates_stackv1: False ,
20 exact_duplicates_stackv2: True ,
21 near_duplicates_stackv1: False ,
22 near_duplicates_stackv2: True ,
23 ...
24 }

Figure 4.6: Example of one entry structure from The Heap

Quality Indicators. To support the selection of files for downstream tasks, we incorporated
several quality indicators previously used in related works [22, 23], making it easier to filter
and choose relevant files. These indicators include file-specific metrics such as the number
of total lines, average line length, maximum line length, and alphanumeric fraction, as well
as repository-wide statistics including repository stars, repository forks, open issues, and the
repository extraction date.

Duplicates. Since we deduplicate The Heap against several publicly available datasets, we
add two columns for each dataset. One column indicates whether an exact duplicate of the file
exists, while the other shows if a near duplicate is present. Instead of removing files, we use a
Boolean mask to preserve as much data as possible from each dataset. This approach helps us
retain a larger portion of the available data. Moreover, this reduces both time and computational
overhead by eliminating the need for researchers to handle duplicate detection, enabling reliable
and reproducible evaluations. They can easily filter the data by language or by files that are
either exact or near duplicates, allowing them to adjust the dataset according to their needs.

4.3.3 Data Extraction Attacks Before and After Fine-Tuning

The Heap was also used in a study by Salerno et al., which investigates the extent to which
LLMs4Code leak data from their pre-training and fine-tuning corpora through data extraction
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attacks. The authors state that fine-tuning LLMs on downstream tasks is becoming more domi-
nant than pre-training the models, as it requires fewer resources. Although fine-tuning requires
smaller amounts of data, this can still raise concerns about memorizing proprietary or sensitive
information, which can be extracted from the fine-tuned models.

The authors create a custom benchmark to assess the vulnerability of both pre-training and
fine-tuning samples to extraction attacks. They also introduce a framework based on a data
extraction security game, where extractability serves as a proxy for measuring memorization.
Experiments are conducted on the StarCoder2 models with 3B, 7B, and 15B parameters, due
to their recent release, strong performance, and open availability. They fine-tune these models
for code completion, and compare the extractability of pre-training data before and after fine-
tuning, as well as the extractability of fine-tuning data. Finally, they examine whether certain
data categories become more or less extractable post-fine-tuning. For fine-tuning, the authors
use a Java subset from The Heap, filtering out duplicates to ensure no overlap with the original
training data of the model, which could affect the results. They also choose a Java dataset as
prior studies have focused primarily on Python.

Their results indicate that fine-tuning decreases the extractability of pre-training data. How-
ever, fine-tuning smaller models increases their susceptibility to data extraction attacks on fine-
tuning data. They showed that approximately 55% of extractable pre-training data could be
retrieved from StarCoder2-15B, but this number decreased to 23.5% after fine-tuning. Smaller
models were more vulnerable to fine-tuning data extraction, with around 63% of samples ex-
tracted from StarCoder2-3B. Lastly, most memorized data belonged to categories such as data
carriers and license information.
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5 | Discussion

Our findings underscore the difficulties in maintaining clean, legally compliant data that supports
reliable and reproducible LLM research. We have seen a significant shift towards permissively
licensed datasets, reflected in the rising number of papers referencing such sources. This trend
mirrors the growing legal interest in generative models, particularly those trained using large
amounts of web-scraped data. Despite the efforts of creating permissive datasets that promote
openness, we identified a substantial overlap between these datasets and non-permissive data,
which leads to license infringements. Even datasets that verify licenses can contain code with
conflicting legal obligations, suggesting that automated filtering alone may be insufficient. We
have observed a similar case with The Stack V2, where despite its recent release, we found that
it contains non-permissive code. This can be attributed to the way licensing detection is per-
formed in The Stack V2. The authors rely on external tools for detecting the file-level license
type, as GHArchive does not provide repo-level license information for 96.93% of the reposi-
tories [23]. This raises concerns about the accuracy of the detection tools employed, as some
licenses may be missed or misclassified as ’no license’, particularly those in non-standard for-
mats. While GitHub repositories can also be unlicensed, this implies that default copyright laws
apply, meaning explicit permission is required to modify or distribute their code.

Furthermore, we have seen that legal concerns can arise from more subtle forms of restric-
tion, such as disclaimers at the file-level. Such instances further complicate the detection of
licenses, and emphasize the need for a more fine-grained approach to identifying and managing
licensed code. In addition, we found an overlap between open datasets and non-permissive code
at a deeper level, in the form of near duplicates. These duplicates create a legal and ethical gray
area, as they blur the line between original and derivative works, making it difficult to determine
whether licensing terms are being violated or circumvented.

Our analysis reveals that relying only on the legal and ethical constraints of specific license
types, particularly at the repository level, is insufficient to prevent contamination from public
datasets, even if they claim to not include those licenses. This highlights both the shortcomings
in the licensing detection methods employed, and the tendency of developers to copy code across
projects without considering the associated licenses. To minimize any contamination risk, we in-
corporate both exact and near deduplication in the creation process of our datasets, alongside the
selection of copyleft code, providing an additional layer of protection. These design decisions
facilitate the creation of datasets with fresh data, contributing to more reliable LLM evaluations.
Moreover, using a diverse set of programming languages and decontaminating data against mul-
tiple public pre-training datasets improves flexibility and facilitates study reproducibility. The
Heap serves as a stable reference point across studies, minimizing variability in configurations.
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As shown, researchers can seamlessly integrate it into their work without the redundancy of re-
peatedly scraping or deduplicating new data, processes that can introduce inconsistencies due to
implementation mismatches or data drift. Its structured format also facilitates usability, enabling
researchers to filter data based on specific features, according to their needs.

5.0.1 Implications

The real-world implications of our study impact various stakeholders. For dataset maintainers
and curators, we have highlighted that code comments contain more information about code
distribution than just the license. We also found significant overlap in repositories with different
licenses, making it difficult to track the origin of the code and determine the correct license to
apply. This also impacts practitioners who train LLMs, as they face the risk of their models
being targeted if trained on licensed code. Lastly, end users of LLMs must be cautious about
unintentionally incorporating licensed code into their code bases, as doing so with strong copy-
left code could potentially require them to open-source their own code. The key question these
implications raise for the field of LLMs4Code is: who is responsible for the training data and
the output of the final models?

5.0.2 Recommendations

To address the issues identified during our investigation, we propose several recommendations
for developers involved in training LLMs. First, our findings show that no LLM has been trained
on a dataset entirely free from licensing issues. Since fine-tuning a model retains the information
embedded in its weights, it is essential to be aware of this when selecting a model for the fine-
tuning process.

Our investigation also uncovered that even when providers of permissively licensed source
code datasets have good intentions, straightforward searches often lead to multiple inconsisten-
cies. Therefore, we recommend conducting a comprehensive analysis of the datasets to detect
and resolve any licensing issues before fine-tuning or training a model from scratch. This step
is crucial, since removing information from the model’s weights has not been proven to be a
reliable solution [94].

Finally, we suggest adapting and scaling up current license detection methods to handle
large code datasets, helping to minimize license inconsistencies in datasets scraped from online
repositories.

5.0.3 Limitations

This subsection outlines the key limitations of this study. In the context of the licensing anal-
ysis, the primary limitations stem from two factors. First, the dynamic nature of code means
that copied snippets can evolve over time. Second, many entities lack transparency about their
training methodologies.

Regarding the dataset limitations, there are two additional concerns. First, other parties may
choose to train their models on this data, thereby compromising its intended benefits. Second,
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developers may object to their code being included in this dataset. These limitations affect both
StackLessV2 and The Heap, however, we will only refer to the latter for simplicity.

Data Drift. As code bases are constantly evolving, we established a fixed point in time for
collecting code. Nevertheless, obtaining exact copies of our strong copyleft-licensed dataset
proves to be challenging. Since the creation of our dataset, some repositories may have been
deleted or switched to private, while new repositories have been added. As a result, our datasets
may slightly differ in composition. Nevertheless, it is important to emphasize any discrepancies
in dataset composition do not affect the conclusions of the licensing analysis.

Non-Reproducible Papers. A key limitation we encountered while gathering information on
the training of proprietary models and analyzing their datasets was the lack of transparency from
some companies regarding their training processes. In many cases, essential details for replicat-
ing the dataset were unavailable, such as the scraping date, the specific repositories involved,
or any filtering criteria applied to the code files. Additionally, when companies discussed their
models in blog posts or papers, the descriptions were often vague, making it difficult to deter-
mine the precise data used for training. Unfortunately, given the competitive nature of LLMs
and the costs associated with data curation and model training, this trend is likely to persist.

Model Training. To ensure a fair evaluation of an LLM using The Heap, researchers must
confirm that the target model has not been trained on The Heap. Our deduplication process
guarantees this for current LLMs, while our data collection method adds an additional layer of
protection against the inclusion of The Heap in training datasets. As the trend in LLM training
has moved towards using only permissively licensed data, this would exclude The Heap from
this scope. Additionally, restricting The Heap to research purposes helps mitigate issues with
author attribution in LLM outputs, as trained models are not intended for end-user use [95].
Moreover, the development of membership inference attacks, now extended to entire datasets
[96], will soon allow for retroactive testing to identify whether The Heap was included in the
training data of a model.

Ethics. As public repositories have increasingly been used to train LLMs4Code, many authors
of older repositories were unaware that their code could be included for such purposes, leaving
them without the option to opt out. Furthermore, there is currently no standard method for
developers to choose whether their code is included in datasets. We recognize these ethical
concerns surrounding the use of code for AI purposes, and provide repository owners with the
option to opt out of having their code included in our dataset. While this solution is not perfect,
as it places the responsibility on the authors, it is in line with current best practices [23].
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6 | Conclusion

In this study, we analyzed the extent of license infringements in LLM training data. Then, we
investigated the duplication depth of non-permissive code within The Stack V2 by creating a
new code dataset, which serves as a valuable resource for reliable LLM evaluations. Finally,
extending on this, we developed another multilingual code dataset that not only addresses con-
tamination concerns but also supports the reproducibility of LLM evaluations.

We collected data from 6 literature surveys, extracting 106 foundation models, of which 53
were trained on file-level code, and 23 specifically mentioned using only permissively licensed
code. We extracted 30 datasets that worked with file-level code, out of which 16 were cus-
tom GitHub scrapes. Additionally, we could access only 6 datasets that were publicly available
without restrictions. Of these, 4 did not filter code based on licenses, while 2 did. We col-
lected a total of 514 million code files, across all 6 datasets, to evaluate the presence of strong
copyleft licenses.

To assess the presence of strong copyleft-licensed code, we scraped GitHub for repositories
released under GPL or AGPL licenses, covering 32 programming languages, and resulting in a
dataset of 35M code files. We computed the SHA-256 hashes for all collected datasets, including
the strong copyleft dataset we created. Using these hashes, we analyzed the overlap of exact
duplicates. All datasets showed significant overlap with the strong copyleft dataset. While those
that focused on permissively licensed code exhibited less overlap, they still shared at least 5% of
the strong copyleft dataset. We also extracted comments from the datasets to identify file-level
licenses. Datasets that claimed to include only permissively licensed code performed better, with
0.05% and 0.8% of files having a license comment. Nonetheless, this still results in over 2M
files with a strong copyleft license in the case of The Stack.

In addition, we found a higher prevalence of distribution-related comments within the datasets,
in comparison to license-related comments. To support future research on detecting and re-
moving licensed code from public datasets, we are releasing a dataset containing 171 M code
comments with all personally identifiable information removed.

Furthermore, to study the depth of non-permissive code in The Stack V2, we developed
StackLessV2, a companion strong copyleft Java dataset designed to facilitate valid LLM evalua-
tions on unseen data. Our findings align with the licensing analysis results, revealing an overlap
between our strong copyleft dataset and the Java subset of The Stack V2. Among the 7.8M
scraped files, we identified approximately 900,000 exact duplicates from The Stack V2, along
with an additional 800,000 near duplicates.

Finally, we introduced The Heap, a multilingual copyleft code dataset that has been dedupli-
cated against commonly used LLM pre-training datasets. Covering 57 programming languages
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and a wide range of copyleft licenses, The Heap was designed to facilitate the extraction of
unseen data while minimizing contamination. It enables researchers to study the behavior and
performance of code LLMs without the need for extensive deduplication across other datasets.
This addresses the limitation of 90% of LLM studies not testing for data leakage [18], result-
ing in more reliable conclusions and supporting reproducible evaluations. Lastly, its structured
format facilitates usability, making model evaluations easier, more flexible, and accessible to
researchers, as illustrated by the applications provided.

6.0.1 Future Work

Based on the results gathered, we have identified several opportunities for future work. Future
efforts could focus on extracting licenses and intent from file comments, as well as determin-
ing the exact licenses associated with code. In terms of dataset development, there are various
improvements to explore, such as refining the deduplication process, releasing new training
datasets, providing more detailed information about the natural languages included, and incor-
porating topic modeling.

Code Comment Intent. We have observed that, in addition to the legal concerns regarding
potential license violations, there is also the issue of whether authors have consented to having
their code included in training data. While some curators offer an opt-out system to remove
code from the dataset [22], it should be possible to infer an author’s intent from the comments,
if available.

License Infringement Detection. A key limitation of detecting only duplicates is that we can-
not fully determine whether a license violation has occurred when code is included in a non-
permissive dataset versus a permissive one, as we can only identify duplication. An intriguing
area for future research could involve analyzing code repository networks, such as GitHub, to
automatically detect whether a file has been copied in a manner that violates licensing terms.
This could involve a simple analysis of license changes in forks or a more detailed investiga-
tion tracking code modifications and version histories across different repositories over time. It
should be noted that this problem is not unique to LLM datasets [97, 98].

New Datasets. The primary objective of The Heap is to reduce the effort of deduplicating
datasets used for downstream tasks in future research. This goal can only be achieved if the
dataset is deduplicated against all available datasets. As new datasets are released, we plan on
putting them through the same deduplication process.

Deduplication. We tackled dataset deduplication using two common techniques, exact dedu-
plication through hashing and near deduplication using locality-sensitive hashing. However,
there is a lack of comprehensive research on what defines an optimal deduplication approach.
Potential problems could arise from duplicates at a finer granularity than file-based deduplica-
tion. Once research on the effects of different deduplication methods is conducted, we plan to
incorporate these insights as an additional feature in the dataset.
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Topic Modeling. Programming languages can help define the focus of an analysis, such as
using Mathematica for mathematics or JavaScript for web development, but many languages are
versatile and can be applied across various domains. Adopting a topic modeling approach similar
to FineWeb for code datasets would offer useful annotations for the code files and highlight any
imbalances based on different topics within the dataset.

Natural Language. One area of research that has not been explored much involves the presence
of multiple natural languages within code. Since natural languages are often mixed within a
single file [99], we aim to adopt a Parts of Speech-like tagging [100] system to identify the
different languages present in each file. This approach will provide insights into how code
models perform when the code is not in English. It will benefit the development of non-English
code LLMs, and also help evaluate English-based models by focusing only on English content.
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