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Summary

This thesis, divided into two parts, explores shock interaction phenomena occur-
ring in high-speed platforms. part one focuses on shock-shock interactions (ssis),
which manifest as a bi-stable system with either the regular interaction (ri) or the
Mach interaction (mi) as outcomes. Through numerical simulations, both interac-
tion types are examined in the presence of perturbations to provide insights into their
stability characteristics and the riÕmi transition process, which exhibits hysteresis
effects. Subsequently, attempts are made to replicate these hysteresis effects in the
transonic–supersonic blow-down wind tunnel (tst-27) at tu Delft by continuously
varying the free-stream Mach number during a run. The evolving shock system is
continually tracked using a systematic post-processing methodology that integrates
schlieren visualizations, synchronous pressure readings, and insights gained from a
variable focal plane study conducted with a focusing schlieren system.

In part two of the thesis, wall-resolved and long-integrated large-eddy simu-
lations (les) are employed to explore the physics of strong shock-wave/turbulent
boundary-layer interactions (stblis). A significant contribution of this work is the
comprehensive assessment of Reynolds number effects in the flow dynamics and or-
ganization. This assessment is facilitated by a new database of Mach 2.0 interactions
at multiple friction Reynolds numbers up to Reτ “ 5118, significantly broadening
the parameter range covered with high-fidelity simulations. Another key contribu-
tion involves exploring the dynamic coupling between a moderate-Reynolds stbli
flow and a compliant skin panel. This scenario, with potentially catastrophic im-
plications during vehicle operation, is investigated with coupled fluid-structure in-
teraction simulations involving wall-resolved les. To distinguish the distinct effects
of mean and dynamic panel displacements on the flow, the resulting mean panel
deflection is then employed as a rigid-wall geometry in a separate simulation.
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Roman symbols

a speed of sound or panel length
a Cholesky decomposition of Reynolds stress tensor
A area
A linear mapping
b test section width or filter coefficient
b vector of body forces
ck,r,l interpolation coefficient
cp specific heat at constant pressure
cv specific heat at constant volume
C intercept value (law of the wall) or shock wave identifier
C convective flux
d displacement vector
D flexural rigidity
D diffusive flux
e specific internal energy
E specific total energy or energy spectra or Young’s modulus
E Green-Lagrange strain tensor
f frequency
fs shock sensor
f force vector
F flatness
Fc compressible transformation function
F deformation gradient tensor
g distance above the wall
h panel thickness or wedge hypotenuse or grid spacing
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H shape factor or height
H pressure flux
i incident shock polar
I light intensity or target length scale
J Jacobian
k turbulence kinetic energy
K stiffness matrix
l viscous length scale
L length
M Mach number
Mτ friction Mach number
M mass matrix
n normal vector
N integer number
p pressure
p Piola traction
Pr molecular Prandtl number
Prt turbulent Prandtl number
P first Piola-Kirchhoff stress tensor
q heat flux vector
r recovery factor or transmitted shock polar
R correlation coefficient
R2 coefficient of determination
Rt correlation function in transversal direction
Re Reynolds number
Reδ0 δ0-based Reynolds number
Reθ momentum-thickness Reynolds number
Reτ friction Reynolds number
R dissipation matrix
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S surface or velocity transformation or skewness
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S second Piola-Kirchhoff stress tensor
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t time
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1
Introduction

In the present work, we shall be concerned with dynamic flow phenomena involving
shock waves. A shock wave is a strong disturbance in a medium over which the
properties of the medium undergo an abrupt and irreversible change. Such occur-
rence is not rare in nature and in fact is present in many flows of practical interest.
Examples include supernova explosions, which are powerful and luminous explo-
sions of stars that expel a fraction of the star’s mass and generate expanding shock
waves through the interstellar medium [1]. Solar wind gusts can also lead to the
formation of shock waves [2], when a fast-moving pulse plows into a slow-moving
one, and these events can be strong enough to disrupt Earth’s magnetic field and
trigger geomagnetic storms. Another phenomenon associated with shock waves is
atmospheric reentry of spacecraft, where detached shocks around blunt capsules, the
so-called bow shocks, are key in the deceleration process and the diversion of heat
[3]. The aerodynamic environment around high-speed aircraft is also dominated by
shock waves [4, 5]. Flow devices such as air intakes, control surfaces and propulsion
systems operate in the presence of shock waves, and the consequent challenges these
devices face is in fact what motivates the present study.

But before going into further detail, it is instructive to consider how shock waves
appear in high-speed vehicles and how they impact vehicle design. As a body moves
through a fluid (like air), its frontal surface is constantly exerting a force on the
fluid that accelerates and compresses it. Essentially, the body is pushing fluid
molecules away. But while this push is only applied to the molecules directly in
contact with the body, its effect extends much further outwards into the fluid. This
is a consequence of inter-molecular collisions, which grant fluids the capacity of
transmitting pressure and therefore of progressively adapting to the motion of an
object. The speed at which pressure disturbances propagate in fluids, as a result of
inter-molecular collisions, is called the speed of sound, and for air at standard sea
level conditions is a « 1230 km/h.

The fact that the speed of sound is finite immediately prompts the question of
what happens when a vehicle flies faster than the speed of sound. In this supersonic
flight regime, it is no longer possible for fluid molecules to feel the presence of an
approaching body, since pressure disturbances cannot ‘outrun’ the body itself. As
a result, the fluid upstream simply remains unaltered until colliding with the body,

3
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and only then it experiences a sudden acceleration and compression. The boundary
over which fluid properties undergo the abrupt change, which is also an interface
between fluid particles at rest and those disturbed by the vehicle motion, is what
constitutes a shock wave.

The ratio of the flow velocity to the local speed of sound, that is, the Mach num-
ber, is thus a fundamental parameter in the analysis and description of compressible
flow phenomena. A cruise Mach number below unity, for instance, indicates that
the cruise speed is below the speed of sound (i.e., subsonic) and that the upstream
propagation of pressure disturbances in the free-stream is physically possible. This
is the case of general and commercial aviation aircraft like the Cessna 172, the Air-
bus A320 and the Boeing 747, which operate at subsonic speeds1. A cruise Mach
number above 1, on the other hand, is synonym for operation in the presence of
shock waves, since the flight speed is greater than the local speed of sound. Ex-
amples of aircraft that cruise at supersonic velocities include the Lockheed sr-71
Blackbird, the Franco-British Concorde and the X-59 Low Boom Flight Demonstra-
tor [6]. If the flight speed surpasses about five times the speed of sound, i.e., the
cruise Mach number is above 5, the vehicle is then said to operate in the hyper-
sonic regime. This distinction is made because chemical effects (like the ionization
and dissociation of gas molecules) as well as the heating of vehicle surfaces due to
air friction can become important design concerns at such high speeds. Examples
of hypersonic vehicles include rocket-powered airplanes like the experimental X-15,
operated in the early 1960s, and space vehicles like the retired Space Shuttle and
the super heavy-lift Starship, currently under development by SpaceX.

While a comprehensive description of high-speed vehicle design approaches is
beyond the scope of this introduction, a few general design traits may be mentioned
for the sake of illustration. For instance, high-speed vehicles are characterized by a
sharp pointed nose2 followed by a long slender fuselage. This particular cross-section
distribution is employed to minimize the wave drag3 induced by the nose-generated
shock wave while preventing the formation of additional shocks [7]. Figure 1.1
illustrates the benefits of this design strategy on the flow around a test model of the
Concorde. As observed, only the nose-generated shock wave4 is present in the first
segment of the vehicle, while any other shock is only formed once the flow reaches
the wings.

Figure 1.1 also emphasizes the importance of the relative location of the wings
with respect to the nose of the aircraft. In a poorly designed aircraft, an unfavorable
interaction between the nose-induced shock wave and the flow over the wings can
1Even though passenger airliners cruise at speeds below the speed of sound, air can still reach
supersonic conditions in some parts of the aircraft (e.g., over the wings). When this happens, the
flight regime is said to be transonic.

2In the hypersonic regime, the pointed nose has to be blunted to ensure the formation of a detached
shock wave for heat dissipation purposes (the limit case being the blunt shape of a reentry capsule
mentioned earlier).

3The additional drag force due to the high-pressure fluid that appears behind shock waves, which
essentially acts against the motion of the vehicle.

4The nose-generated shock wave is actually a conical discontinuity that emerges at the nose and
extends around the entire vehicle. Only the flow inside has been accelerated and compressed,
while the flow outside of it is not yet disturbed.
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M0 ą 1

Wind tunnel side-wall

Wind tunnel side-wall

Nose-induced
conical shock wave Wing’s leading-edge

shock wave

Shock reflected
from side-wall

Test model Model support

Figure 1.1: Experimental schlieren visualization of a test model of the Concorde at cruise condi-
tions. Credit: the Royal Aeronautical Society (National Aerospace Library)/Mary Evans Picture
Library.

result in decreased aerodynamic efficiency and a significant increase in drag. This
has to be avoided for obvious reasons, and one effective solution involves positioning
the wings towards the rear end of the aircraft, as illustrated in figure 1.1, along with
high sweep angles. These design principles form the basis of delta wing planforms
in high-speed aircraft (i.e., wings with triangular shape), which effectively prevent
undesired shock interactions while maximizing wing area, and consequently, lifting
capacity compared to conventional swept-back configurations. The iconic Concorde
in figure 1.1 exemplifies this design strategy with its delta-wing configuration fea-
turing varying sweep angles.

Another important characteristic of high-speed aircraft are supersonic inlets of
air-breathing jet engines. These inlets, which are essentially ducts, generate a set
of shock waves that efficiently decelerate and compress the incoming supersonic
airflow prior to combustion [8]. In ramjet and scramjet5 engines, which operate at
supersonic and hypersonic velocities, the shock compression at the inlet is harnessed
to the point where a mechanical compressor is no longer needed, thus reducing the
complexity of the propulsion system and the corresponding weight requirements.

Since supersonic inlets are particularly helpful in establishing the motivation of
the present thesis, we shall consider them in a bit more detail. A schematic view of
a generic supersonic mixed-compression inlet6 is shown in figure 1.2. The nominal
shock pattern comprises external oblique shocks, internal shock reflections and a
terminal normal shock wave beyond which the flow is subsonic. Such shock system
is desirable for cruise Mach numbers M0 between „ 2 and 5 because it enables
a higher compression efficiency, i.e., total pressure recovery, than only one or few
external shock waves leading to the same terminal Mach number [11]. The sr-71
5Supersonic combustion ramjet
6Mixed-compression because the inlet comprises both external oblique shocks and internal shock
reflections. If only one or the other type are present, it is simply called internal or external
compression inlet. If only a normal shock appears, it is then called normal or Pitot inlet [10].
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Engine
face

Ternimal
normal shock

Cowl tip

compression ramps
External

reflections (isolator)
Internal shock

diffuser
Subsonic

M0 ą 1

Shock-wave/turbulent
boundary-layer interaction

Boundary
layer

Figure 1.2: Schematics of a mixed-compression inlet. Adapted from Das and Prasad [9].

Blackbird, which cruised at over M0 ě 3.2, employed mixed-compression inlets on
each engine unit [12]. The corresponding inlet geometry is schematically depicted
in figure 1.3 where the relative position between the internal contour of the cowl
and the outer surface of the translating axisymmetric spike determines the area
contraction. The translation of the spike was scheduled with flight Mach number
and vehicle altitude to maximize engine performance [13].

The benefits of allowing for internal shock reflections inside the inlet, however,
come at the expense of significant losses as a result of the interaction between shock
waves and the boundary layer at the walls. The boundary layer corresponds to
the thin layer of fluid in the immediate vicinity of the wall, where viscous effects
cause the flow to decelerate from the free-stream velocity to zero velocity right at
the surface. If a boundary layer is subject to a sudden compression, like the one
imposed by a shock wave, it can be disrupted to a point where the flow direction
is reversed near the wall. And this event, referred to as flow separation or flow
detachment, constitutes one of the key operational challenges that inlet systems
and other components of high-speed vehicles face.

1.1. Motivation
The pursuit for supersonic commercial aviation and recoverable space launch ve-
hicles has brought renewed attention to the operational challenges7 of high-speed
platforms [15, 16]. Some of these challenges include reducing the supersonic boom
signature, which is of paramount importance to enable supersonic flight over land
[17], minimizing stability and control development risk to ensure controllability at
high speeds [18], and developing efficient propulsion systems (with a broad operating
range) that meet emerging environmental goals [19, 20].

One of the major steps towards more fuel-efficient vehicles is to reduce the impact
of shock-wave/turbulent boundary-layer interactions (stblis). These interactions
develop when a turbulent boundary layer (tbl) encounters a shock wave, which

7Addressing these challenges is a complex interdisciplinary endeavor that will require advances in
aerodynamic research, heat management, material science, fuel efficiency, multidisciplinary system
design optimization, laboratory testing capabilities and high-fidelity computational simulations
among others areas [14].
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Figure 1.3: The sr-71 and its mixed-compression inlet geometry.

occurs in internal flow applications such as supersonic inlets and rocket nozzles as
well as external flow applications including primary flight control surfaces. stblis
are most concerning when the adverse pressure-gradient imposed by the shock is
large enough to cause substantial boundary-layer separation. Flow separation is
common in supersonic inlets and accounts for an important fraction of their oper-
ational losses [10, 21]. The reasons for that will become clear upon examination of
the instantaneous configuration of stbli, which is illustrated in figure 1.4.

As a primary characteristic, a bubble of reverse-flow is formed around the point
where the impinging shock and the tbl meet, and the bubble extends in both
the downstream direction but more considerably upstream. The latter seems to
contradict the previous discussion on pressure disturbance propagation in supersonic
flows, but it actually does not. Recalling the definition of a boundary layer, it is
the region where the flow progressively decelerates from free-stream conditions to
zero velocity right at the surface. If the free-stream is supersonic, the flow then
reaches sonic conditions (Mach 1) at some point within the boundary layer, and at
any point closer to the wall it is subsonic. A subsonic region means that pressure
can propagate upstream, thus allowing the reverse-flow region in figure 1.4 to start
ahead of the point where the impinging shock and the tbl meet. This effect is
called the upstream influence.

The outer supersonic stream, in turn, is deflected away from the wall by the
detached shear layer, which is now a free shear layer enclosing the reverse-flow
region. And since pressure disturbances cannot propagate upstream in the outer
region, a second shock forms at the leading edge of the interaction to adjust the
outer flow direction and pressure level. This shock wave is called the separation
shock, and it intersects the impinging shock typically before the latter reaches the
tbl, see figure 1.4. An intersection of this sort, between two distinct shock waves far
away from any surface, corresponds to another prevalent phenomenon in high-speed
flows: inviscid shock-shock interactions [22]. A section of this thesis is devoted
to this phenomenon, but this shall be appropriately introduced after the current
discussion on stblis.
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Figure 1.4: Schematics and instantaneous flow configuration (numerical schlieren visualization) of
an impinging shock-wave/turbulent boundary-layer interaction.

Referring back to the instantaneous stbli visualization in figure 1.4, the sepa-
ration shock foot is thus formed around the separation location (labeled as I in the
figure). Beyond this point, the free shear layer moves away from the wall until it
intersects the impinging shock at a certain height above the wall. This intersection
results in a progressive curvature of the impinging shock tip (as it penetrates into
the free shear layer, see II in figure 1.4) and a subsequent convex turning of the shear
layer towards the surface. The apex of the re-circulation region is thus established
with a local expansion (i.e., acceleration) of the flow. The shear layer then meets
the surface again downstream of the inviscid impingement point8, where the flow
is further compressed and the reattachment process takes place (see III in figure
1.4). This leads to the formation of the post-interaction tbl, which is substantially
thicker than in the upstream region. The thickness of the boundary layer before
and after the interaction region in figure 1.4 is respectively indicated with δ1

0 and
δ2
0 for ease of comparison.

The flow distortion due to stbli shown in figure 1.4 differs significantly from an
inviscid reflection, which is also indicated with dash-dotted lines in the figure. The
inviscid reflection would represent the ideal operating conditions for a supersonic

8The point where the impinging shock would bounce off the surface in the absence of the tbl
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Figure 1.5: Schematics of (a) the unstart phenomenon, and (b) possible occurrence of the buzz
instability.

inlet, where no tbls would develop, and hence, no energy would be dissipated due to
friction. So the mere presence of the tbl already incurs losses, but the consequent
stbli-induced separation leads to the formation of the separation shock upstream of
the inviscid impingement point. Together with the reattachment compression (which
in some instances can also coalesce into a shock wave, see e.g., References [23] and
[24]), the separation shock leads to the ‘reflected’ shock wave that propagates away
from the surface. In the framework of a supersonic inlet, it is this outgoing wave
that produces the next shock reflection on the opposite wall, see figure 1.2. So the
larger the recirculation region, the further upstream the reflected shock will move.
In an uncontrolled event, this can completely distort the internal shock structure of
a supersonic inlet. The implication of a major shock disruption can be severe as it
not only degrades the compression performance of the inlet (due to an off-design flow
pattern), but it can also make the inlet more susceptible to two critical operation
modes. These are catastrophic inlet unstart and the so-called buzz phenomenon,
both depicted in figure 1.5.

Figure 1.5(a) shows the unstart phenomenon, which corresponds to the terminal
normal shock being abruptly expelled outside of the inlet9. This results in a sudden
loss of engine thrust and an increase in drag due to the standoff distance between
the normal shock and the inlet. One of the pilots of the sr-71 allegedly cracked
his helmet when his head impacted the cockpit canopy after both engines suddenly
experienced unstart [21]. All supersonic inlets with an internal throat are suscep-
tible to the unstart instability, which has motivated the development of supersonic
flow-through engines like the scramjet where the normal shock is eliminated during
nominal operation [11]. The buzz instability is depicted in figure 1.5(b) and in this
case, the normal shock is still pushed outside of the inlet duct but does not reach
a standoff position. Instead, it remains oscillating over the external ramps, causing
substantial flow separation as well as high-amplitude variations of the inlet mass-
flow and static pressure. The mechanism sustaining these oscillations, the so-called
big buzz, is attributed to the detached shear layer partially blocking the inlet duct
[25]. Besides being detrimental for the engine operation, these shock oscillations
can also significantly jeopardize the structural integrity of the outer inlet ramps. So
9Since the flow at the entrance of the inlet is now subsonic, shocks can no longer form inside.
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Figure 1.6: Transition from regular interaction to Mach interaction in a supersonic inlet.

much so that the buzz phenomenon experienced during an early test flight of the
Concorde led to the collapse of a movable inlet ramp in front of its third engine [26].

The interactions between shock waves that occur within the inlet duct can also
significantly affect the operation of the inlet. It is well known that, for a range of
flow conditions, these shock interactions form a bi-stable system for which either the
regular interaction (ri) or the Mach interaction (mi) can materialize [22]. The former
is depicted in figure 1.6(a) and involves two incident shock waves, two reflected
shock waves and a slipline (the latter indicated with a dotted line in the figure).
This is the intuitive shock pattern resulting from two intersecting shock waves.
The mi, in turn, is more complex and involves an additional quasi-normal shock
segment beyond which the flow is subsonic, see figure 1.6(b). This subsonic region
is enclosed by sliplines emanating from each triple shock-intersection point, and
a necessary stability requirement is that these sliplines form a virtual convergent
duct to allow the subsonic flow to accelerate. Another stability conditions for the
mi is the presence of at least one external expansion fan that establishes a throat
and a divergent segment on this virtual slipline duct so that the enclosed flow can
actually reach supersonic conditions. If this condition is not met, the mi is unstable,
in contrast to the ri. In such cases, the quasi-normal shock can move upstream
and grow unrestricted, as illustrated in figure 1.6(c), which is highly undesirable
because of the severe loss of stagnation pressure, flow distortion and the high risk of
engine unstart. So in order to guarantee the nominal operation of supersonic inlets
throughout the complete flight profile, an in-depth understanding of the causes
leading to the transition between the ri and the mi is thus needed.

The irregular modes of inlet operation described above can thus be triggered by
uncontrolled stblis, which highlights the criticality of this occurrence. But even
during regular operation, the performance of supersonic inlets with internal com-
pression can be significantly degraded in the presence of substantial flow separation.
And this is not only due to the formation of a recirculation region and the upstream
motion of the reflected shock, both apparent in figure 1.4 as already discussed, but
also other effects such as the amplification of turbulence near the mean separation
and reattachment points, where the flow is abruptly compressed. This increases the
amount of energy dissipated by viscous effects [27, 28] and the corresponding viscous
heating may become severe at hypersonic velocities, to the point where structural
components may require additional insulation measures.
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Figure 1.7: Experimental wall-pressure signal underneath the separation shock foot in a Mach 3.0
stbli flow. Data from Daub et al. [29].

Furthermore, linked with the flow separation in stblis is the phenomenon of
low-frequency and large-scale unsteadiness [30]. While the extent of the reverse-flow
region may be in some instant like the one in figure 1.4, it can fluctuate substantially
in size. This breathing motion of the reverse-flow bubble, where it continuously
expands and contracts from both ends, is another salient feature of stbli that has
severe implications on the design of supersonic inlets and other components of high-
speed platforms. Since the motion of the bubble is correlated with longitudinal
excursion of the separation shock, which can be several δ0 long, the low-frequency
unsteadiness of stbli leads to an intermittent and high-amplitude thermomechanical
load on the surface. This is illustrated in figure 1.7, which shows the corresponding
surface pressure underneath the separation shock foot in a Mach 3.0 stbli [29].
As observed, the pressure alternates between the pre-shock value (denoted with
p8) to the post-shock pressure level almost instantaneously, and the latter is a
factor 2 larger than the former in this case. These characteristic pressure jumps
are clearly aperiodic and not tonal, resulting in a broadband low-frequency content.
The frequency around which the broadband activity is centered depends on the
extent of the reverse-flow region and the free-stream flow velocity, but it typically
falls below 1000 Hz. While this frequency may still seem rather high, it is two to
three orders of magnitude lower than the typical frequency of small-scale turbulent
fluctuations within the tbl, produced by the passage of turbulent eddies [31]. So
with respect to the convective scales in the flow, the large-scale pulsation of stbli
occurs at low frequencies.

Oscillating loads of this kind, with large amplitude variations at relatively low
frequencies, are of particular concern for the integrity of structural components,
which may resonate10 with the unsteady loading and potentially collapse by high-
cycle fatigue [32]. The natural frequency of oscillation of structural skin panels and
other components is also typically found below 1000 Hz so the dynamic coupling
between stbli and structure vibrations is not only possible but is in fact a common
occurrence during operation [33]. Despite the attention that stblis have received
in the past, however, there is still no consensus on the physical mechanisms driving

10Exhibit large amplitude and self-sustained oscillations due to the coupling among aerodynamic,
elastic and inertial forces, which have a reinforcing effect at particular frequencies. A textbook
example of dynamic aeroelastic phenomena is the wind-induced, large-scale structural oscillation
(and later collapse) of the Tacoma Narrows Bridge near the city of Tacoma (U.S.) in November
7, 1940.
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their characteristic low-frequency unsteadiness [30]. The lack of a definitive expla-
nation on this front, which highlights the complexity of the phenomenon, hinders
the development of flow control techniques that can efficiently mitigate the adverse
effects of stbli without incurring excessive performance or weight penalties.

While several theories have been proposed in the literature to explain the low-
frequency unsteadiness of stblis, see Clemens and Narayanaswamy [30] for a com-
prehensive review, none have been conclusively supported by evidence. Proposed
theories are broadly categorized into so-called upstream and downstream mecha-
nisms. The upstream theories assume that the low-frequency dynamics arise from
the passage of very large coherent structures present in the incoming tbl. These
structures must be two to three orders of magnitude longer than boundary layer
thickness to be compatible with observations for the shock-motion timescales. It
has been debated, however, whether such elongated structures really exist at low
Reynolds number or observations just show spurious artifacts formed upstream in
wind tunnel facilities, or similar artifacts introduced through inflow in numerical
simulations [34]. High-fidelity simulation results confirm that the low-frequency dy-
namics persists for boundary layers without large-scale structures [23, 35, 36], but
the most convincing experimental data is for higher Reynolds numbers than the
simulations and for nearly attached/incipient separations [37, 38]. For massively
separated stbli flows, on the other hand, theories of the second category are far
more compelling as they regard the low-frequency unsteadiness as an intrinsic prop-
erty of the reverse-flow bubble or the shock-bubble system [39]. Several models have
been derived based on this idea, and some of the widely acknowledged include the
possibility of an acoustic resonance mechanism in the recirculation region [40], a
hydrodynamic instability in the free shear layer similar to the wake-mode in cavity
flows [41], a depleting/recharge process based on fluid entrainment by the free shear
layer [42] and the presence of centrifugal instabilities at separation and/or reat-
tachment that continuously force the interaction [43]. Whether only one or several
of these mechanisms are responsible for the low-frequency unsteadiness, which may
also be modulated by upstream coherent structures depending on the shock strength
and Reynolds number, remains an open question and requires further research.

It is also important to bear in mind that the impinging configuration discussed
so far is only one type of stbli present in high-speed vehicles; there are other rel-
evant interaction configurations that exhibit very similar features [30, 44]. These
include the fin-generated interaction and the compression ramp interaction, both
schematically depicted in figure 1.8. The former is typically formed at body junc-
tions, e.g., where the vertical or the horizontal stabilizers meet the fuselage, and the
bow shock induced by the fin is what causes the incoming tbl to separate in this
case. Another characteristic of the fin-generated stbli is the fact that the inviscid
shock-shock interaction between the separation shock and the bow shock leads to the
formation of an additional shock that impinges on the fin, see figure 1.8. This shock
impingement is very detrimental for the integrity of the fin since it is now exposed to
similar fluctuating loads as those experienced underneath the separation-shock foot.
The compression ramp case, on the other hand, involves a sharp surface deflection
towards the flow as shown in figure 1.8. If this deflection is large enough, the re-
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Figure 1.8: Schematics of (center) the rear section of the rocket-powered X-15, (left) fin-induced
stbli, and (right) compression ramp stbli.

sulting adverse pressure gradient causes the incoming tbl to separate ahead of the
corner, thus leading to an unsteady stbli. Compression-ramp interactions appear
wherever any surface is deployed, like in the case of primary control surfaces and
speed-breaks, and can lead to a substantial loss of control authority if the resulting
re-circulation region grows uncontrolled.

Despite the differences in flow organization, both the fin-generated interaction
and the compression ramp interaction exhibit essentially the same features and
energetic low-frequency dynamics as the impinging shock interaction over a flat
wall. This means that various outer mold-line vehicle panels are also at risk of high-
cycle fatigue due to stbli, specially considering the minimum-weight requirements
of these components and the potentially severe thermal loading they may experience
at hypersonic velocities [45], which further degrades their mechanical properties.

At this point in the chapter, the reader has hopefully gained an overall, introduc-
tory picture of stblis. The main characteristics of these interactions are perhaps
clear by now, as well as their impact on flow devices and the need for trade-offs
between efficacy of damage mitigation measures and associated performance and
weight penalties. This is the price to pay for operating in the presence of shock
waves. But hopefully, there is still much room for improvement. And this im-
provement can be realized by studying stblis further, at high Reynolds number,
off-design conditions and in the presence of flexible components, so that the under-
lying physics can be fully understood as well as their role in relevant aeroelastic
interactions. It is only by doing so that we can fully optimize the aerodynamic and
structural design of high-speed platforms, and this thesis represents a step towards
this realization.

1.2. Contribution of this work
Most of the oblique shocks formed in supersonic inlets and other internal flows are
affected by stblis. This means that they exhibit a characteristic unsteady motion
that is constantly perturbing the ssis taking place away from the walls. Recent
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Figure 1.9: (a) Regular interaction, and (b) Mach interaction in stbli with substantial flow sepa-
ration.

numerical simulations performed by Matheis and Hickel [46] actually demonstrate
that such shock unsteadiness can cause premature ri Ñ mi transition and sustain
the mi pattern for mean flow conditions beyond its steady-state stability boundary,
see figure 1.9. This occurrence highlights the unpredictability of ssis in presence
of continuous perturbations and the need to better understand the transition pro-
cess under such conditions. Perturbed shock interactions have been studied in the
past [22]; however, fundamental research is still limited to the effect of impulsive
disturbances on symmetric shock systems11, mainly either in the form of incom-
ing velocity perturbations [47], shocks, expansion waves and contact discontinuities
in the free stream [48], laser pulses [49], dense particles [50], water vapour [51] or
impulsive wedge rotation [52–54]. The practically relevant case of an asymmetric
shock structure being continuously perturbed, on the other hand, remains to date
unexplored.

So the first objective of this thesis is thus to investigate the dynamics of unsteady
asymmetric shock interactions affected by a continuous excitation. A set of two-
dimensional simulations are performed for the purpose, where two wedges are used
to asymmetrically deflect the free stream flow and introduce oblique shock waves
and expansion fans in the computational domain. After a steady state is reached,
the shock system is excited according to three different excitation mechanisms: 1q
pitching of the lower wedge across the region where both the ri and mi coexist, the
so-called dual-solution domain (dsd); 2q a periodic (sinusoidal) oscillation of the
lower wedge deflection around a mean value both within and outside of the dsd,
and 3q a periodic (sinusoidal) streamwise oscillation of the lower wedge without
pitch. These excitation modes, specially the latter two, are aimed at emulating
the effect of the stbli unsteadiness on the lower incident shock. The response of
the shock interaction system to such perturbations is then carefully analyzed with
a strong focus on the bi-directional riÕmi transition process and the underlying
mechanism by which the mi is found to be more robust than the ri under such
conditions.

Thanks to the variable free-stream Mach number functionality of wind tunnel
facilities at tu Delft, we could also experimentally investigate the evolution and

11ssis where the upper shock wave angle is the same as the lower one.
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riÕmi transition process of various shock interaction systems subject to a quasi-
steady variation of the inflow Mach number. Providing accurate measurements
of this phenomenon is useful for the validation of analytical models and lower-
fidelity simulations, specially considering that only one experimental investigation
of this kind was previously available in literature [55]. Schlieren visualizations and
synchronous pressure readings are employed as the main flow-diagnostics tools in our
experiments, and the data processing is supported by a variable focal plane study
conducted with a focusing schlieren system. The latter provides insights into three-
dimensional side-wall effects and other features contaminating the regular schlieren
visualizations, which allows for a more accurate identification of the shock system
from the corresponding schlieren images. Since all parameters are quantified from
the observed state of the flow rather than the nominal one, our results are thus
free from manufacturing and mounting uncertainties as well as effects related to
the boundary layer growth on the wedge surface and potential deformations due to
aerodynamic loading. We demonstrate that this is in fact necessary to recover the
agreement with theoretical predictions based on steady gas dynamics theory.

The second part of this thesis is focused on improving the physical understand-
ing of stblis with substantial flow separation. In particular, we concentrate on
two different aspects. The first one is the effect of the Reynolds number on the
stbli dynamics and topology. This knowledge is of paramount importance for the
extrapolation of laboratory data to full-scale flight conditions. Past experimental
investigations of compression ramp and impinging-shock configurations have been
conducted for a wide variety of flow conditions [56] and have established a founda-
tion on the effect of this parameter along with Mach number and shock strength.
The knowledge base has been enriched in recent years with high-fidelity simula-
tion results, which overcome inherent experimental limitations and potentially offer
better insights into the interaction dynamics. However, despite the variety of config-
urations already investigated numerically [44], computational studies on stbli are
still mainly available at lower Reynolds numbers than complementary experiments
[57].

As previous research has shown, only turbulence-resolving strategies, that is,
direct numerical simulations (dns) and large-eddy simulations (les), are capable of
capturing all relevant stbli dynamics [36]. dns would require to resolve all relevant
scales of the problem, whereas les resolves all dynamically important scales and
incorporates the effect of the unresolved scales through a sub-grid scale (sgs) model.
Even though les is computationally less demanding than dns, les of multi-scale
turbulent flows are still only feasible for a narrow range of conditions. For this
reason, previously available numerical studies on stbli were limited to low and
moderate Reynolds numbers, mostly below Reτ « 103 and Reθ « 104 in terms
of friction and momentum-thickness Reynolds number respectively12. These values
are lower than those in high-Reynolds experiments, e.g., the impinging stbli case
of Humble et al. [38, 58] at Reθ « 5 ˆ 104 or the works of Settles et al. [59] and
Dolling and Murphy [60] on compression ramps at Reθ « 7 ˆ 104, and for an in-
depth understanding of the practically relevant high-Reynolds regime of stbli this
12These parameteres are defined in Chapter 6.
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gap needs to be closed.
With this aim in mind, we have developed a novel wall-resolved les database

of impinging stbli that enables an accurate characterization of Reynolds number
effects in the flow. The database covers more than a decade of Reτ (and Reθ) and
otherwise considers equal flow parameters and simulation setup. The investigated
cases are at free-stream Mach numberM0 “ 2.0 and comprise a low-Reynolds stbli
with Reτ “ 355 (Reθ “ 1.6 ˆ 103), a moderate-Reynolds stbli with Reτ “ 1226
(Reθ “ 5.7ˆ103) that is in line with previous numerical works, and a high-Reynolds
stbli with Reτ “ 5118 (Reθ “ 26.4 ˆ 103) that extends the current parameter
range of strong interaction. This high-Reynolds case represents a leap towards the
high-Reynolds conditions of experimental facilities. All cases exhibit substantial
flow reversal and have been integrated for a very long time to properly resolve
low-frequency dynamics. Moreover, simulations without the impinging shock have
also been performed to characterize the impact of the Reynolds number on the
undisturbed tbl. This is particularly instructive for the present analysis since
Reynolds number effects in stbli also stem from the differences in the tbl structure
at low and high Reynolds number.

Our analysis of the mean and instantaneous stbli organization is focused on
the differences in interaction scales, bubble topology and turbulent structures that
appear with increasing Reynolds number, and we also show that pressure transport
in the separation-shock excursion domain becomes an important source of stress
at high Reynolds number. Furthermore, the most energetic frequencies in the flow,
which are identified by means of temporal spectra of wall-pressure, separation-shock
location and separation-bubble volume signals, are related to global flow phenomena
via dynamic mode decomposition (dmd [61]) of the les data. Such modal analysis
technique has been commonly applied to two-dimensional datasets in previous im-
pinging stbli studies, often resulting from spanwise averaging [23, 35, 62]. Here,
we instead employ a full three-dimensional dataset that includes the instantaneous
streamwise velocity, pressure and streamwise vorticity fields.

The other fundamental aspect that we tackle in the second part of this thesis
concerns the aeroelastic coupling between stbli and a flexible thin-panel. Despite
being practically very relevant, studies involving stbli and elastic components are
very scarce due to the complexities in reproducing and characterizing the resulting
fluid-structure interaction (fsi) with experiments or numerical simulations [32, 63].
The few available studies confirm that stbli efficiently triggers low-order modes
of panel vibration [64–66]; however, questions related to the coupling mechanism,
the corresponding modulation of the stbli dynamics as a result of surface displace-
ments and the particular role of static and dynamic panel deformation remain still
open. The interplay between static surface deformation and stbli had been studied
experimentally [67, 68] and with low-fidelity models [69] but not with high-fidelity
simulations to the authors’ knowledge.

Motivated by the aforementioned, we thus performed wall-resolved les of a Mach
2.0 impinging stbli over a flexible thin-panel in order to investigate the resulting
dynamic coupling. A partitioned fsi approach with a finite element (fe) structural
solver has been employed together with an adaptive reduced-order model [70] to
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achieve long integration times after the initial transient response of the panel, which
is discarded from the statistical analysis. In order to distinguish effects that are
caused by the mean panel deformation from those that are caused by dynamic
panel motion, we have employed the mean panel deflection as a rigid-wall geometry
in a second wall-resolved les, which is integrated over the same time interval as the
coupled case. Results are also compared against the baseline configuration, a flat
and rigid-wall stbli at the same flow conditions that corresponds to the moderate-
Reynolds interaction employed in the analysis of Reynolds number effects.

1.3. Outline
In chapter 2, we provide details on the numerical and experimental methodology
employed in the present work. part one of the thesis then starts with chapter
3, which includes the numerical analysis of unsteady asymmetric ssis affected by a
continuous perturbation. The reader is also introduced in this chapter to the relevant
gas-dynamics theory required to calculate the boundaries of the steady-state dsd.
The experimental investigation of the ssi response to quasi-steady free-stream Mach
number variations is subsequently presented in chapter 4 together with the necessary
details of the proposed flow-based postprocessing of schlieren data and synchronous
pressure readings. This chapter also reports the variable focal plane study conducted
with a focusing schlieren system.

part two of the thesis starts with chapter 5, in which we analyze the differ-
ences in tbl structure at low and high Reynolds number. As previously explained,
these differences are quantified from les data generated with the numerical setup
of the corresponding stbli cases but without the shock generator. The impact of
the Reynolds number on the organization, dynamics and statistics of stbli is then
numerically investigated in chapter 6. Chapter 7 presents the corresponding com-
putational results of the considered stbli flow dynamically coupled with a flexible
thin-panel. The thesis work is finally concluded in chapter 8.





2
Methodology

This chapter describes the numerical and experimental methodology employed in
the present thesis. The former is detailed for two-way fsi simulations, where the
flow can dynamically couple with a compliant structure. Such is the case of the
simulations reported in chapter 7, which consider the dynamic interaction between
stbli and a flexible thin-panel. The remaining simulations discussed in the thesis,
on the other hand, do not involve a deforming solid geometry and were performed
with the fluid solver only.

2.1. Numerical method
A partitioned fsi framework with coupled domain-specific solvers is used to advance
the system in time. The computational domain thus consists of non-overlapping
fluid ΩF and solid ΩS domains with a conjoined interface Γ “ ΩF X ΩS where the
normal vector nΓ in spatial configuration points into the fluid domain. Subscripts
F and S are used as needed to differentiate between fluid and solid variables1, and
the Einstein summation convention for repeated indices is implied when using index
notation, unless otherwise stated.

2.1.1. Governing equations
Fluid

The fluid domain is governed by the three-dimensional compressible Navier-Stokes
equations, solved in conservative form

BtU `∇ ¨CpUq `∇ ¨HpUq ´∇ ¨DpUq “ 0 in ΩF , (2.1)

where the state vector U “ rρF , ρFu1, ρFu2, ρFu3, ρFEsT consists of the fluid den-
sity ρF , linear momentum ρFui for i “ 1, 2, 3 and total energy ρFE. The total
flux in equation (2.1) consists of advection, C, inviscid stresses, H, and viscous

1These subscripts, however, are omitted in the remainder chapters of the thesis, where we explicitly
differentiate between fluid and solid properties in the text.
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stresses, D,
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where ui is the velocity vector and pσijqi,j“1,2,3 the viscous stress tensor for a ho-
mogeneous and isotropic Newtonian fluid,

σij “ δijλF Bkuk ` µF pBjui ` Biujq, (2.3)

with µF being the dynamic viscosity and λF the second viscosity coefficient. The
total energy ρFE is defined as

ρFE “ ρF e` 1
2ρFukuk for k “ 1, 2, 3, (2.4)

and the heat flux qi is given by Fourier’s law

qi “ κBiT. (2.5)

We model air as a perfect gas with a specific heat ratio of γ “ cp{cv “ 1.4 and a
constant molecular Prandtl number of Pr “ 0.72. Static pressure p and temperature
T are determined by the ideal-gas equation of state

p “ pγ ´ 1qρF e “ RρFT, (2.6)

where the specific gas constant is taken as R “ 287.05 J(kg K)´1.
The dynamic viscosity µF is considered a function of the static temperature T

and modeled according to
µF “ µ8

a
T {T8, (2.7)

where µ8 is made case dependent to produce a desired Reynolds number. The
second viscosity coefficient λF in equation (2.3) is taken as λF “ ´2{3µF following
Stokes hypothesis, which establishes σij as purely deviatoric. Finally, the thermal
conductivity κ is modeled as

κ “ γR
pγ ´ 1qPrµF . (2.8)

Solid
The solid domain is governed by the local form of the linear momentum balance, also
known as Cauchy’s first equation of motion, which in the reference (i.e., undeformed)
configuration reads

ρS;0
Bd
Bt2 “ ∇0 ¨ P ` ρS;0b in ΩS , (2.9)
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where d represents the vector of unknown displacements, ρS;0 is the material density
of the solid, ∇0 ¨ pq is the divergence operator, P is the first Piola-Kirchhoff stress
tensor, and b denotes the external material body forces. The Cauchy stress tensor
T is related to P via

T “ 1
J
P ¨ F T , (2.10)

where F is the deformation gradient tensor, which maps a line element in the ref-
erence configuration to the current configuration, and J “ detpF q is the Jacobian
of the mapping. Furthermore, and for later reference, the second Piola-Kirchhoff
stress tensor S is defined as S “ F´1 ¨ P and is symmetric, as opposed to P .

The constitutive law used in this work is derived from the hyper-elastic Saint
Venant-Kirchhoff material model. Its strain energy function W is defined as

W pEq “ µSE : E ` 1
2λSptrpEqq

2, (2.11)

where λS and µS are the first and second Lamé parameters and E is the Green-
Lagrange strain tensor, i.e.,

E “ 1
2 pF

T ¨ F ´ Iq. (2.12)

The material response is then governed by

S “ BW
BE , (2.13)

which leads to the employed constitutive law

S “ λSptrpEqqI ` 2µSE. (2.14)

Note that equation (2.14) is analogous to the constitutive relation in linear elastic-
ity and does not reflect material non-linearities (i.e., stress is still linearly related
to strain). However, E includes geometrical non-linearities and is insensitive to
rotation, see equation (2.12).

The principle of virtual work is employed to re-write equation (2.9) in an integral
form. This involves multiplication of the balance equation by the virtual displace-
ment vector δd and integration over the structural subdomain, which upon some
manipulation yields

ż

ΩS;0

pρS;0 :d ¨ δd ` S : 9E ´ ρS;0b ¨ δdq dV0 ´
ż

BΩS;0

p ¨ δd dA0 ´ δWΓ
S “ 0, (2.15)

where the divergence theorem is also applied. Note that all integrals are taken over
the reference configuration, with dA0 and dV0 being the corresponding infinitesimal
surface and volume elements. Additionally, 9E indicates the variation of the Cauchy
stress tensor and p denotes the Piola traction.
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2.1.2. Numerical discretization
Fluid

The fluid domain is solved with the finite-volume solver inca2, which employs the
adaptive local deconvolution method (aldm) for implicit les of the governing equa-
tions [71]. aldm is a nonlinear solution-adaptive finite-volume method that exploits
the discretization of the hyperbolic flux C `H to introduce a physically consistent
sub-grid scale turbulence model. Since unresolved turbulence and shock waves re-
quire fundamentally different modeling, aldm relies on a shock sensor to control
model parameters. This guarantees the accurate propagation of smooth waves and
turbulence without excessive numerical dissipation while providing essentially non-
oscillatory solutions at strong discontinuities [71]. Gradients in the viscous flux
tensor D are approximated by linear second-order schemes and the third-order to-
tal variation diminishing Runge–Kutta scheme of Gottlieb and Shu [72] is employed
for time integration. The reader is referred to appendix A for an expanded overview
of the aldm framework and to Hickel et al. [71] for implementation details and
validation results.

The fluid solver operates on block structured, picewise Cartesian grids, and the
cut-cell immersed boundary method (ibm) of Örley et al. [73] and Pasquariello et al.
[74] is employed to accurately represent an arbitrary solid geometry in the Cartesian
fluid domain. The discrete surface of the solid comprises several structural interface
elements, see section 2.1.2. Each structural element is triangulated and the resulting
set of interface triangles Γtri serves as input to the ibm algorithm. Figure 2.1 shows
a Cartesian computational cell Ωi,j,k that is intersected by the triangulated moving
surface, which for illustration purposes includes four different interface triangles.
A fluid cell that is intersected by at least one interface triangle is referred to as a
cut-cell, whereas an interface triangle segment within the cut-cell is a cut-element
Γele “ ΓtriXΩi,j,k. For cut-cells, the integral form of equation (2.1) is then evaluated
over the fraction of the cell that belongs to the fluid domain ΩF ,

ż tn`1

tn

ż

Ωi,j,kXΩF
BtU dV dt`

ż tn`1

tn

ż

BpΩi,j,kXΩF q
FpUq ¨ n dS dt “ 0, (2.16)

and over the time step ∆t “ tn`1´tn. The total flux is here denoted FpUq, and dS,
dV indicate the infinitesimal surface and volume elements. The area integral, which
results from the application of the divergence theorem, is taken over the wetted
surface of the computational cell, i.e., BpΩi,j,kXΩF q. Applying a volume average of
the state vector U ,

U i,j,k “ 1
αi,j,kVi,j,k

ż

Ωi,j,kXΩF
Udxdydz, (2.17)

and considering a forward Euler time integration scheme (for demonstration pur-

2For additional details, visit https://www.inca-cfd.com

https://www.inca-cfd.com
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z

Figure 2.1: Schematics of a computational cell intersected by the triangulated moving surface (here
shown with four interface triangles).

poses) yield the following discrete form of equation (2.16)

αn`1
i,j,kU

n`1
i,j,k “ αni,j,kU

n

i,j,k

` ∆t
∆xi

rAni´ 1
2 ,j,k

F p1q
i´ 1

2 ,j,k
´Ani` 1

2 ,j,k
F p1q
i` 1

2 ,j,k
s

` ∆t
∆yj

rAni,j´ 1
2 ,k

F p2q
i,j´ 1

2 ,k
´Ani,j` 1

2 ,k
F p2q
i,j` 1

2 ,k
s

` ∆t
∆zk

rAni,j,k´ 1
2
F p3q
i,j,k´ 1

2
´Ani,j,k` 1

2
F p3q
i,j,k` 1

2
s

` ∆t
Vi,j,k

χi,j,k, (2.18)

where αi,j,k is the fluid volume fraction of the cut-cell, Vi,j,k “ ∆xi∆yj∆zk the
total cell volume, A the effective fluid wetted cell-face aperture (indicated in blue in
figure 2.1) and F piq the faced-averaged numerical fluxes across the regular cell faces.
The interface exchange term χi,j,k “

ř
ele χele is added to account for the moving

surface Γi,j,k “ ř
ele Γele within the cut-cell, where

ř
ele indicates the sum over all

cut-elements associated with Ωi,j,k. The cut-element based interface exchange term
χele accounts for pressure and viscous stresses, interface work and heat transfer
through an individual cut-element. The reader is referred to Örley et al. [73] and
Pasquariello et al. [74] for additional details on the method.

Solid
Equation (2.15) can be seen as the balance of virtual work, which also includes the
work at the fsi interface δWΓ

S . This equation forms the basis for the finite-element
method (fem) in solid mechanics, which is used for the spatial discretization . The
solid domain is composed of ne elements ΩeS with consistent basis functions for
representing the displacement field. By assembling the contribution of all elements,
the semi-discrete form of equation (2.15) is

M :d` fS;intpdq ´ fS;ext ´ fΓ
S “ 0, (2.19)
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where M is the mass matrix, d and :d the discrete vectors of displacements and
accelerations, and fS;int, fS;ext and fΓ

S the internal, external and interface force
vectors.

Equation (2.19) is solved with the finite-element solver CalculiX3 which uses
the Hilbert-Hugues-Taylor α-method [75] for time discretization. This method is
an extension of the Newmark method [76] and allows for some degree of numerical
dissipation without degrading accuracy. The parameter α, which controls the added
numerical dissipation, is here set to ´0.3, and the resulting implicit time stepping
is solved using a Newton-Raphson method.

The flexible panel in the coupled stbli simulation is discretized with 20-node
hexahedral elements with three degrees of freedom per node (corresponding to the
nodal translations in x, y and z). The displacement field within each element is
represented with quadratic shape functions. For additional details on the employed
solid mesh, see chapter 7.

In order to reduce the computational cost, the adaptive reduced-order model
(arom) of Thari et al. [70] is also employed in fsi simulations. The method relies
on the linearization of equation (2.19) around a deformed reference state, upon
which the number of unknowns is decreased using the mode superposition method
[77] with a reduced number of modes.

Consider the Taylor expansion of equation (2.19) around a reference state dref ,
which can be either the initial condition or an instantaneous solution at the time of
the model re-calibration,

M :dref ` fS;intpdref q ´ fS;ext ´ fΓ
S `Mp :d´ :dref q `Kpd´ dref q “ 0, (2.20)

where Kpdref q “ BdfS;int|dref . The eigenmodes of the structure are obtained by
solving the following eigenvalue problem

Kpdref qΦ “MΦΩ2, (2.21)

where the columns of Φ “ rφ1, . . . ,φms are the orthonormalized (with respect to
M) eigenvectors, i.e., natural vibration modes, and Ω “ diagpω1, . . . , ωmq are the
corresponding eigenvalues, i.e., natural vibration frequencies in ascending order. For
reduced-order modeling, equation (2.20) is projected onto the modal space spanned
by the first Neig eigenmodes, where Neig is user-defined. This drastically reduces
the number of unknowns, as the system is now rank Neig in modal space. In order to
improve the representation of the load vector in modal space, the Modal Truncation
Augmentation (mta) method is additionally employed [78] which increases the rank
of the reduced system by 1. Time integration in modal space is then performed with
the Newmark method [76].

Note that constructing and updating the above-described arom is computation-
ally expensive, whereas applying it is cheap. Therefore, the model is re-calibrated
when the solution deviates significantly from the reference configuration, i.e., when
the maximum absolute deflection δdmax exceeds a user-defined threshold ε. This
3For additional details, visit http://www.calculix.de

http://www.calculix.de
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threshold thus provides a compromise between simplicity and accuracy of the solu-
tion. The limit case of ε “ 0 corresponds to the full non-linear fem solution, since
the projection onto the modal basis is lossless thanks to the mta (provided that the
same time integration scheme is used). For the present simulations, Neig is set to
10 modes and ε to 25% of the panel thickness.

Fluid-structure coupling
A loosely coupled serial staggered scheme is employed to advance the fsi system
from tn to tn`1 “ tn ` ∆t. The scheme follows the classical Dirichlet-Neumann
partitioning, where the fluid (Dirichlet partition) inherits displacements from the
structure and the structure (Neumann partition) is loaded by the fluid pressure and
viscous stresses:

1. At time tn, the immersed boundary in the fluid domain is updated with the
structural displacements dΓ;n and velocities 9d

Γ;n
.

2. The fluid domain is advanced in time, from tn to tn`1. Interface exchange
terms are computed from known structural quantities at time tn.

3. Fluid interface tractions σΓ;n`1
F ¨nΓ;n`1 are then transferred to the structural

interface elements. For details on the load an motion transfer between the
non-matching interface, the reader is referred to Thari et al. [70].

4. The solid domain is advanced in time, from tn to tn`1, with the new fluid
tractions as additional Neumann boundary condition.

5. Proceed to the next time step.

The time-step size ∆t is determined by the Courant-Friedrichs-Lewy (cfl) sta-
bility condition of the Runge-Kutta method used for the fluid solution. We use cfl
ď 1 everywhere, which guarantees stability and accuracy of the employed methods.

2.2. Experimental method
This section provides infromation about the experimental facility and main flow
diagnostics tools employed in the study of shock-shock interactions with variable
inflow Mach number reported in chapter 4.

2.2.1. Experimental facility
All experiments were conducted in the transonic-supersonic blow-down wind tunnel
(tst-27) of the high-speed aerodynamics laboratory at tu Delft. The facility has a
rectangular test section of 280ˆ272 mm and is equipped with a flexible convergent-
divergent nozzle that allows the Mach number to be continuously varied during
testing. For the current experiments, the total pressure in the settling chamber
ranged from 4 to 6 bar, depending on the start-up requirements for each model
geometry. The total temperature was approximately 280 K in all cases.
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Figure 2.2: Schematic of the focusing schlieren setup.

2.2.2. Flow measurement techniques
The time evolution of the free-stream Mach number was obtained from total and
static pressure measurements assuming an isentropic expansion. A pressure sensor
located in the settling chamber provided the total pressure readings, while two
sensors placed on the side walls of the test section, sufficiently upstream of the
model, ensured a precise static pressure measurement. All pressure sensor data was
recorded at a sampling rate of 5 kHz.

Schlieren visualization was used as the main flow visualization tool. A continuous
white light beam was collimated with a parabolic mirror (focal length f “ 4000 mm)
to create a parallel beam that traversed the test section. This beam was converged
using a second parabolic mirror on a vertical knife edge and then recorded with a
digital camera. Due to equipment availability, a LaVision High Speed 4M camera
at a rate of 125 Hz was used during testing of certain wedge arrangements (i.e.,
ϑ2n “ 10˝, 17˝ and 19˝, see chapter 4) whereas a LaVision Imager scmos at a frame
rate of 50 Hz was used for the remaining geometries. Both systems are essentially
similar in optical performance and provided a spatial resolution of approximately
0.04 mm. All schlieren recordings were synchronized with the pressure readings so
that a value of the free-stream Mach number could be assigned to every image.

Conventional schlieren visualizations have an infinite depth of focus and there-
fore show the integrated effect of all density gradients present along the optical path,
hence, in the spanwise direction of the test section. This results in undesirable fea-
tures such as three-dimensional edge effects near the side walls obscuring the target
flow features. In order to assess the impact of these effects and to facilitate the cor-
rect interpretation of the schlieren data, we additionally set up a focusing schlieren
system, which provides sharp images of its focal plane, and examined multiple planes
along the optical path. A schematic of the focusing schlieren setup is shown in figure
2.2 with all relevant parameters summarized in table 2.1. The reported values follow
from the parametric analysis conducted by Santiago Patterson [79] and the reader is
referred to Weinstein [80] for additional details on the particular focusing schlieren
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Table 2.1: Summary of relevant parameters of the focusing schlieren setup.

Symbol Dimension Definition
in figure 2.2 [mm]

´ 83 Lens aperture
´ 250 Focal length of focusing lens
L1 550 Distance from plane of focus to focusing lens
L2 323 Distance from focusing lens to cutoff grid
L3 1100 Distance from source grid to focusing lens
´ 1.6 Width of dark strips on the source grid
´ 250 Focal length of the relay lens
´ 26 Depth of focus (unsharp)

setup used. A relay lens was added to the setup in order to adapt the image size to
the camera sensor. The camera used to record the focusing schlieren images was a
LaVision Imager scmos operated at a frame rate of 50 Hz.
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3
Response to shock

perturbations

In this first part of the thesis, which comprises two chapters, we explore the re-
sponse of asymmetric shock interactions to external perturbations. The present
chapter initiates this exploration by examining different perturbation modes of the
lower incident shock with numerical simulations. The investigated perturbation
modes aim to emulate the dynamics of the separation shock in stbli flows, with
perturbation amplitudes sufficiently large to bring the starting shock interaction
(ri or mi) outside its steady-state stability boundary. The response of the shock
system to such perturbations is then characterized in detail, with a focus on the
bi-directional riÕmi transition and the underlying mechanism by which the mi is
found to be more robust than the ri. Gas dynamics concepts relevant to calculating
stability boundaries are also presented in this chapter.

3.1. Introduction
As already introduced in chapter 1, ssis between shock waves of opposite families
can be classified as ris or mis. The former, which is depicted again in figure 3.1(a),
involves five discontinuities: two incident shock waves C1 and C2, two reflected
shock waves C3 and C4, and a slipline s. Following the work of Edney [81], the ri
is classified as a type I interference. The compatibility condition for this interaction
pattern involves equal static pressure and flow direction in regions p3q and p4q, whilst
other flow properties differ (only in the particular case of a symmetric interaction
both states p3q and p4q are identical and no slipline exists). In the event of a
mi, in turn, incident shock waves C1 and C2 no longer intersect due to a quasi-
normal shock segment appearing in the flow. This wave pattern is classified as a
type II interference [81]. Schematics of the mi are also included in figure 3.1(b),
in which the quasi-normal shock segment, commonly known as the Mach stem, is

The content of this chapter has been published as: L. Laguarda, S. Hickel, F. F. J. Schrijer and B.
W. van Oudheusden. Dynamics of unsteady asymmetric shock interactions, J. Fluid Mech. 888,
2020.
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labelled as m. Its presence entails two sliplines s1 and s2 that enclose the non-
homogeneous region p5q of subsonic flow. A necessary stability requirement is that
the slipline pair forms a virtual convergent duct, which allows the subsonic flow in p5q
to accelerate. However, this requirement is not sufficient: the presence of (at least)
one Prandtl-Meyer expansion fan (pme) is paramount to establish a virtual throat
and a divergent duct segment between the slipline pair to enable the enclosed flow
to reach supersonic velocities. The resulting Mach stem height is such that all the
mass flow through it passes through the virtual slipline throat at sonic conditions.
As opposed to the ri, the Mach stem height as well as the spatial extent of the mi
are thus linked to a characteristic length scale that relates the incident shock foot
locations with the origin of the pme(s) [82–85].

It is common practice to use shock polar theory to establish steady-state stability
boundaries between the ri and the mi in the parameter space [86]. A typical shock
polar representation in the pressure-deflection plane is included in figure 3.1(c) for
free-stream Mach number M8 “ 3.0, specific heat ratio γ “ 1.4 and upper flow
deflection ϑ1 “ 25˝. Here, the detachment condition ϑd2 denotes the maximum flow
deflection imposed by C2 for which the polars r1 and r2 intersect (in this limit case,
they are tangent). Beyond this value, there is no longer a ri configuration capable of
providing compatible states p3q and p4q, and so the mi materializes. On the contrary,
the von Neumann criterion ϑn2 defines a lower flow deflection for which the three
polars, i, r1 and r2, intersect at one location. Further reducing ϑ2 prevents the
slipline pair s1-s2 from being convergent, which impedes the formation of a stable
mi and thus the ri solution prevails thereafter. It is interesting to note that at
von Neumann both ri and mi provide identical flow states p3q and p4q and therefore
they would be in mechanical equilibrium at this condition. Another feature in figure
3.1(c) is the occurrence of a dual solution domain (dsd), shaded in light gray and
spanning between ϑn2 ď ϑ2 ď ϑd2, for which the two solutions, ri and mi, are both
physically possible. As first hypothesized by Hornung et al. [87], this allows for
a potential flow hysteresis, that is, the solution that materializes and the riÕmi
transition conditions can depend on the flow history.

Asymmetric ssis are present in a wide range of high speed aerodynamics appli-
cations [4, 86]. Supersonic inlets are a clear example, comprising a set of oblique
shock waves that compress the flow to suitable pressures for combustion, see figure
1.2. Avoiding riÑmi transition is of paramount importance due to the associated
entropy rise, total pressure loss and high risk of engine unstart, see also figure 1.6.
Even though steady flow theory provides useful insight on the shock pattern devel-
oping inside the inlet, it fails at predicting the premature riÑmi transition observed
when disturbances are present in the free-stream flow [82, 88, 89] eventually pre-
venting the occurrence of any flow hysteresis. On these grounds, only low-noise
wind tunnel conditions [90] and disturbance-free numerical computations [91–94]
permitted the penetration of the ri inside the steady-state dsd in agreement with
theoretical predictions.

A specific class of flow phenomena involving asymmetric ssis is the stbli flow,
which dominates the aerodynamic environment of supersonic inlets and other high-
speed flow devices as discussed in chapter 1. If the adverse pressure gradient imposed
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Figure 3.1: Schematic of (a) the regular interaction, (b) the Mach interaction, and shock polar
representation (c) in the pressure-deflection plane for M8 “ 3. ϑr2 and ϑm2 indicate a general
solution outside the dual-solution domain for the regular and the Mach interaction, whilst flow
states within the dual-solution domain are highlighted in blue for the former and red for the latter.
Sonic conditions in (c) are labeled with ˆ.

by the shock is strong enough to cause boundary layer separation, the location and
strength of the separation shock becomes highly unsteady and so does its interaction
with the incident shock [4, 95]. The work of Matheis and Hickel [46], which was
already introduced in section 1.2, provides evidence of the potential implications
of such unsteadiness, which can actually cause premature riÑmi transition and
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Figure 3.2: Unsteady effects on the incident shock C2 for the lower wedge excitation mechanisms
considered: (a) pitch, (b) periodic deflection oscillation, and (c) periodic streamwise oscillation.

sustain the mi pattern for mean flow conditions beyond its steady-state stability
boundary. Previous fundamental research on disturbed shock systems, however,
has totally disregarded this practically relevant scenario and has mainly focused
on the effect of impulsive disturbances on symmetric ssis - see section 1.2. An
asymmetric shock structure being perturbed in a continuous manner, on the other
hand, is much more representative for unsteady internal flows and should therefore
be carefully examined.

Motivated by the aforementioned, we thus conduct a set of inviscid computa-
tions with the purpose of providing insight on the dynamics of unsteady asymmetric
shock interactions affected by a continuous excitation. Two wedges are used to asym-
metrically deflect the free-stream flow and introduce the incident shock waves and
centered pmes in the computational domain. After a steady state is reached, the
shock system is excited according to three different excitation scenarios depicted
respectively in figures 3.2(a–c): pitching of the lower wedge across the steady-state
dsd, a periodic (sinusoidal) oscillation of the lower wedge deflection around a mean
value both within and outside of the steady-state dsd, and a periodic (sinusoidal)
streamwise oscillation of the lower wedge without pitch. These excitation modes,
specially the latter two, are aimed at emulating the dynamics of the separation shock
in stbli flows. The response of the system under such forcing is analyzed with a
strong focus on the bi-directional riÕmi transition process and the underlying mech-
anism by which the mi is found to be more robust against periodic perturbations
than the ri is discussed. All numerical simulations presented in this chapter are
conducted at M8 “ 3 and ϑ1 “ 25˝, which are hereafter referred to as the baseline
conditions.

3.2. Computational setup
3.2.1. Problem definition
A sketch of the investigated computational domain is given in figure 3.3. We con-
sider two wedges of equal hypotenuse w asymmetrically deflecting the free-stream
flow at Mach M8 “ 3 and generating a pair of intersecting waves C1, C2 and cen-
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Figure 3.3: Schematic diagram of the computational domain.

tered pmes. The wedges are not included in the computational domain, however.
Instead, we account for their effect through time dependent boundary conditions
satisfying the Rankine-Hugoniot relations across the incident shocks C1 {p0q Ñ p1q}
and C2 {p0q Ñ p2q}, and Prandtl-Meyer expansion theory for the pmes in p3q and
p4q. Note that since each trailing edge, and thus the pme origins, is placed on top
of an horizontal domain boundary, states p3q and p4q relate to flow conditions along
horizontal expansion rays. Concerning shock generator geometry, one characteristic
length scale is the wedge hypotenuse w, which is set to w “ 1 for all computations.
However, the resulting wave system is most sensitive to the geometrical ratio of
vertical wedge separation distance (2g) to wedge hypotenuse, 2g{w. This parameter
determines whether or not reflected shocks C3 and C4 impinge on the wedges, and
thus potentially leading to domain unstart, but also imposes a relation between inci-
dent shock foot locations and the origin of the centered pmes. As already mentioned,
this influences the spatial extent and the steady-state Mach stem height of the mi
configuration. Unless otherwise stated, 2g{w is set to 0.84 as commonly used in lit-
erature [48, 94]. Rotation and oscillation of the lower wedge deflection occur around
point O as indicated in figures 3.2(a–c), and, except for the streamwise oscillation,
both wedge trailing edges are positioned at the same x location (xut “ xlt in figure
3.3). Lastly, the upstream length of the domain, L1 “ w, establishes free-stream
(0) conditions at the left boundary throughout the computations, and L2 “ 1.4w
ensures that the flow at the outlet (5) is always supersonic.

3.2.2. Numerical method
For the present analysis, we solve the two-dimensional unsteady Euler equations,
meaning that the viscous terms in equation 2.1 as well as those terms associated with
the third dimension are dropped. While the finite-volume solver inca is still em-
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ployed for the calculations, the aldm is no longer used. Instead, fluxes computed
at the cell centers are simply projected into the right eigenvector space where a
local Lax-Friedrichs flux vector splitting and a third-order weighted essentially non-
oscillatory (weno) reconstruction of the flux through the cell face is performed,
see Shu [96]. The resulting fluxes are then projected back to the conserved quan-
tities prior to the time integration step, which is still performed with a third-order
explicit Runge-Kutta scheme. We also note that the system of equations is non-
dimensionalized using the free-stream velocity u8 and the wedge hypotenuse w,
which combined define the characteristic time scale w{u8 of the problem.

3.2.3. Post-processing
For rapid excitations, unsteady effects manifest and the instantaneous lower wedge
deflection is no longer representative of the flow deflection ϑ2 across C2 near the
interaction point (i.e, C2 is curved, see figure 3.2). Thus, to properly characterize
transition it is imperative to measure quantities of interest, i.e, lower flow deflection
ϑ2ptq, static pressure rise p{p8ptq and entropy jump ∆sptq, at the interaction loca-
tion. A custom post-processing algorithm was developed for this purpose. Incident
shock waves C1 and C2 are tracked by searching for the local maximum of the den-
sity gradient magnitude

apBρ{Bxq2 ` pBρ{Byq2 along each row of the grid starting
from the left. Depending on whether the shock topology is a mi, the Mach stem is
formed. In that case, a marked entropy jump occurs, see figure 3.9(a), accompanied
by a clear formation of a minimum and a maximum of vorticity at the upper and
lower triple point locations, respectively. Sub-grid resolution for the location of vor-
ticity extrema is achieved by local parabolic reconstruction. The vertical distance
between the resulting points thus defines the instantaneous Mach stem height hms,
see figure 3.9(b). Other quantities of interest are determined in their vicinity, e.g,
instantaneous ϑ2 measurements are taken at a distance of 0.01w in the negative
y-direction from the lower triple point, whilst the pressure rise across the wave sys-
tem p{p8 is recorded 0.01w downstream of both triple points, respectively. The
instantaneous entropy jump ∆s is defined as si´ s8 where si is measured at 0.01w
downstream of the local Mach stem (over the fictional horizontal line that bisects
both triple points) and s8 is the free-stream value. Magnitudes are averaged with
neighboring cells to avoid oscillations. In the case of a ri, the entropy jump is small
and C1 and C2 intersect. This is considered to be the interaction location, and in-
stantaneous ϑ2, p{p8 and ∆s measurements follow in a similar fashion as explained
for the mi case.

3.2.4. Grid sensitivity
The flow is discretized on a uniform grid with spacing h in both spatial directions. In
order to assess the impact of the grid size on the shock dynamics and the correspond-
ing bi-directional transition process, a grid convergence analysis was performed. For
the baseline conditions, both an initial ri and mi were independently considered by
setting ϑ2,0 “ 12˝ and ϑ2,0 “ 19˝ respectively. After the steady state was reached,
transition to the opposite shock pattern was enforced by linearly changing the lower
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Figure 3.4: Results of the grid sensitivity study.

wedge deflection at a constant rate, i.e, increased to enforce riÑmi transition and
decreased in the opposite case. Similar as in Felthun and Skews [53], the rotational
velocity of the wedge is defined in terms of the Mach number of the wedge tip Mtip

divided by the free-stream value M8, which is equivalent to the ratio of the wedge
tip velocity to the free-stream velocity. For the grid convergence analysis, Mtip{M8
was set to 0.01. The instantaneous lower flow deflection in the vicinity of the interac-
tion was recorded at transition for four different grid spacings: w{h “ 200, 400, 800
and 1600, with the corresponding results shown in figure 3.4. As observed, a clear
flow deflection convergence is obtained for w{h “ 1600 regardless of the direction of
transition so this value was used for all further computations.

3.3. Results and discussion
3.3.1. Pitch of lower wedge
The first excitation mechanism corresponds to the pitching of the lower wedge across
the steady-state dsd. For the baseline conditions (M8 “ 3 and ϑ1 “ 25˝), the
steady-state dsd extends from the von Neumann condition ϑn2 “ 14.14˝ until de-
tachment at ϑd2 “ 17.43˝, see figure 3.1(c). Both ri and mi are considered as the
starting shock topology by setting the initial lower wedge deflection to ϑ2,0 “ 12˝
for the former and ϑ2,0 “ 19˝ for the latter. After reaching a converged steady state
solution, the lower wedge deflection is changed at a linear rate to enforce transition,
see section 3.2.4. Rotational velocities corresponding toMtip{M8 “ 0.1, 0.01, 0.001
and 0.0001 are considered. A summary of relevant parameters can be found in table
3.1.

The post-processing method explained in section 3.2.3 proved to be robust and
accurate at tracking the evolution of the quantities of interest over the integration
time. For every rotational velocity considered, ϑ2 at transition was recorded when
the Mach stem height became larger than zero for riÑmi transition, or became
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Figure 3.5: Lower flow deflection ϑ2 at transition as a function of the rotational velocity of the lower
wedge: (İ, O) numerical data for miÑri transition, (N) numerical data for riÑmi transition, (‚)
riÑmi transition predictions based on shock polar theory evaluated in the (moving) C2 frame of
reference, and (ϑn2 ) steady-state von Neumann and (ϑd2) detachment conditions with corresponding
dsd shaded in grey. Numerical data was obtained for 2g{w “ 0.84. The flow deflection for the
fastest miÑri transition is labelled with an empty triangle (O) because the Mach stem was still
present when the lower flow deflection at the interaction location was ϑ2 “ 0˝.

equal to zero for miÑri. Results are included in figure 3.5 as up-pointing and
down-pointing triangles respectively. As expected, unsteady effects become impor-
tant for large rotational velocities, meaning that ϑ2 at transition differs significantly
from predictions based on steady flow assumptions. Under these conditions, the mi
can penetrate far into the ri domain. As the magnitude of the rotational veloc-
ity decreases, however, unsteady effects progressively vanish and the value of ϑ2 at
transition approaches a constant. For riÑmi transition, see up-pointing triangles
in figure 3.5, this value is clearly the steady-state theoretical detachment boundary
ϑd2 associated to the baseline conditions. However, ϑ2 at transition does not ap-
proach the theoretical von Neumann deflection ϑn2 in the miÑri transition case, as
shown by the down-pointing triangles in the same figure. Instead, the data point
corresponding to the slowest case falls about 0.4˝ inside the dsd. We believe this
could be a geometry effect related to the selected value of 2g{w, which imposes a
limitation on the minimum ϑ2 for which a mi is stable. As mentioned, a necessary
stability requirement is that the mass flow through the Mach stem should also pass
through the virtual throat formed by both slip-lines (s1 and s2 in figure 3.1(b))
at sonic conditions. If for a particular wedge arrangement this is not possible, the
system response is either a constantly increasing Mach stem until unstart or con-
stantly decreasing until transition to ri. The impelling cause that drives towards
one or the other still remains an open question; in our computations the latter oc-
curs. In order to further explore the influence of the geometry parameter 2g{w,
two additional miÑri transitions at Mtip{M8 “ 0.0001 with 2g{w ratios of 1.05
and 0.63 were simulated (that is 0.84 ˘ 25%, see cases P09 and P10 in table 3.1).
The results show a shift in the measured ϑ2 at transition from 14.51˝ to 14.60˝ and
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Table 3.1: Summary of relevant parameters for the pitch analysis: ϑ2,0 corresponds to the wedge
deflection in the initial steady-state; 2g{w is the ratio of vertical trailing edge distance to wedge
hypotenuse (see figure 3.3); Mtip{M8 relates the wedge tip Mach number to the free-stream value;
ϑt2 and φt2 the measured lower flow deflection and C2 incidence at transition; pdhms{dtq{u8 the
Mach stem characteristic growth rate; and ϑd2,c is the corrected detachment condition given by the
shock polar analysis in the C2 (moving) frame of reference. All angles are expressed in degrees.

Case ϑ2,0 2g{w Mtip

M8
Direction ϑt2 φt2

1
u8

dhms
dt

ϑd2,c

P01 12.0 0.84 10´1 riÑmi 21.62 36.16 0.120 19.65
P02 12.0 0.84 10´2 riÑmi 18.07 35.28 0.046 17.65
P03 12.0 0.84 10´3 riÑmi 17.61 35.01 0.035 17.45
P04 12.0 0.84 10´4 riÑmi 17.49 34.90 0.035 17.43
P05 19.0 0.84 10´1 miÑri 0 - 0.126 -
P06 19.0 0.84 10´2 miÑri 10.72 28.11 0.066 -
P07 19.0 0.84 10´3 miÑri 13.91 31.14 0.031 -
P08 19.0 0.84 10´4 miÑri 14.51 31.74 0.030 -
P09 19.0 1.05 10´4 miÑri 14.60 31.83 0.025 -
P10 17.0 0.63 10´4 miÑri 14.45 31.67 0.023 -

14.45˝ respectively. In line with this finding, relevant geometry effects have been
also reported in the recent work of Grossman and Bruce [97] on stbli at M8 “ 2.0.

We define the characteristic velocity scale associated to the riÑmi transition
process as the maximum Mach stem growth rate, pdhms{dtq{u8, occurring when
the mi emerges from the interaction location. In a similar fashion as for the tran-
sitional ϑ2, the Mach stem growth becomes independent of the wedge motion as
Mt{M8 decreases, converging to a constant non-zero magnitude (see table 3.1).
This highlights once more the inherent transient character of the transition pro-
cess. The duration of such growth is also affected by the selected value of 2g{w as
this ratio influences the target steady-state Mach stem height. This is illustrated
in figure 3.6(a) where the evolution of the Mach stem height with respect to the
measured lower flow deflection ϑ2 for the slowest riÑmi case, represented by a
solid line and labelled as P04 in table 3.1, shows an abrupt change in trend in the
vicinity of point d. This occurrence segregates the transient process into a segment
mostly related to the riÑmi transition and a subsequent segment related to the
quasi-steady evolution of the mi due to the progressive wedge motion. For larger ro-
tational velocities, as the wedge-motion velocity scale (characterized by Mtip{M8)
becomes of the order of the characteristic Mach stem growth rate pdhms{dtq{u8,
this change in trend becomes less abrupt. Another characteristic feature associated
to the riÑmi transition is the fact that the free-stream Mach number felt by the
Mach stem temporarily increases due to its relative motion towards the free-stream
flow. This causes an instantaneous overshoot in the time evolution of the entropy
rise across the shock system, see figure 3.9(a), that accentuates for fast rotations.

To illustrate the overall flow topology in the riÑmi transition process, figures
3.7(a–d) include a sequence of flow visualizations corresponding to points a–d in
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Figure 3.6: Evolution of (a) the Mach stem height, and (b) the pressure jump across the wave
system with respect to the measured lower flow deflection ϑ2 in the vicinity of the interaction
location. indicate riÑmi transition; miÑri transition (see respectively cases P04 and
P08 in table 3.1); and in (b) colors blue and orange denote pressure measurements obtained
downstream of the upper and lower triple point, respectively (solid blue line is hardly visible as
it falls below the solid orange line). Theoretical pressure jumps predicted by steady-state shock
polar theory are additionally included in (b) as for the riÑmi transition, with indicating
the theoretical value at detachment, and and the theoretical miÑri pressure evolution
behind the upper and lower triple point, respectively. The red arrow in (b) points towards the
pressure peak observed when the Mach stem collapses at the interaction location.

figure 3.6(a). Upon first glance, some characteristic unsteady features such as the
increase in spatial extent of the subsonic pocket, embedded within the yellow line
denoting sonic conditions, and the associated Mach stem growth are clearly visible.
Of particular interest is the flow field depicted in figure 3.7(a), which shows a pres-
sure wave that emanates from the interaction location during the riÑmi transition,
similar to that reported by Felthun and Skews [53] for a symmetric interaction. This
emerging wave results in a kink in both reflected shocks (see the red arrows in figure
3.7(a)) that segregate, as indicated by the sonic contour, the ri strong-shock solu-
tion from the emerging mi weak-shock solution. Continuous pressure measurements
behind the shock system, included as solid blue and orange lines in figure 3.6(b),
confirm this occurrence and show approximately a 23% pressure drop across the
wave. This is in good agreement with the theoretical pressure drop between detach-
ment and von Neumann conditions given by the steady-state shock polar analysis in
figure 3.1(c). Note that the propagation velocity of the pressure wave differs above
and below the emerging slipline pair due to the distinct flow properties in these
regions. In the absence of both pmes, the Mach stem would monotonically grow
until unstarting the whole computational domain. However, the interaction with
the expansion rays results in a converging-diverging slipline configuration that per-
mits the acceleration beyond Mach unity of the enclosed flow (notice the clear sonic
throat in figures 3.7(c) and 3.7(d)). A sixth order polynomial fit to each slipline
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Figure 3.7: Sequence of instantaneous density gradient magnitude (non-dimensionalized with
w{ρ8) corresponding to points a–d in figure 3.6(a). Solid yellow lines denote the sonic condition
M “ 1; red arrows point at the kink in both reflected shocks as a consequence of the interaction
with the pressure wave generated during riÑmi transition.

allows an estimation of the instantaneous stream-duct inlet-to-throat ratio A{A˚
(based on the Mach stem height and the minimum distance between sliplines) and
reveals a shift from A{A˚ “ 1.65 to A{A˚ “ 1.43 between figures 3.7(c) and 3.7(d).
The latter value agrees well with the theoretical estimate A{A˚ “ 1.39 given by
steady one-dimensional isentropic nozzle flow theory at an inlet Mach number cor-
responding to that after a normal shock at M8 “ 3. Such agreement suggests once
more that the transient phase related to riÑmi transition is completed, in line with
the change in trend around point d of the Mach stem growth in figure 3.6(a). This
is further supported by other unsteady flow features vanishing as the mi develops.
For instance, a shift in the Mach stem curvature from a forward to a backward
bend is observed as predicted by steady-state shock polar theory. A consequence of
this process is the generation of weak acoustic waves that reach both sliplines and
promote the formation of Kelvin-Helmholtz instabilities. However, once the Mach
stem is fully established (figure 3.7(d)), these acoustic waves are no longer present
and so slipline instabilities clearly develop further downstream.

Regarding the slowest miÑri transition case at 2g{w “ 0.84, case P08 in ta-
ble 3.1, the corresponding Mach stem height and pressure jump evolution are also
included as dashed lines in figures 3.6(a) and 3.6(b). As expected from numerical
computations absent of free-stream disturbances, the interaction hysteresis first hy-
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Figure 3.8: Instantaneous density gradient magnitude illustrating the collapse of the Mach stem
during miÑri transition, see case P08 in table 3.1. Solid yellow lines denote the sonic condition
M “ 1.

pothesized by Hornung et al. [87] becomes apparent. We define the characteristic
velocity scale of the miÑri transition process as the largest Mach stem shrink rate
in absolute magnitude |dhms{dt|{u8. Values are included in table 3.1 for all rota-
tional velocities considered, again showing a convergence towards a non-zero value
as Mtip{M8 decreases. This is a direct consequence of the Mach stem being finite
at the precise instant the mi becomes unstable, which also explains the clear change
in trend in the Mach stem height evolution (dashed line in figure 3.6(a)) around
hms{w “ 0.05. Therefore, regardless of the wedge rotation rate, the Mach stem
collapse at the interaction location is inherently unsteady and leads to an instanta-
neous over-pressure at transition (indicated with a red arrow in figure 3.6(b)). Since
a mismatch with the pressure level associated to the equivalent ri solution appears,
this is accommodated by a weak pressure wave that emanates from the interaction
location in a similar fashion as in the riÑmi case. Instantaneous flow impressions
included in figures 3.8(a) and 3.8(b) illustrate the aforementioned. Similar as re-
ported by Felthun and Skews [53], we also observe a slight increase in the Mach stem
height (prior to the monotonic shrinking) due to a weak expansion wave generated
at the lower domain boundary when the shock foot motion is initiated.

Before concluding this section, we would like to highlight a particular feature re-
vealed when considering the spatial evolution of the interaction location over time.
As shown in figure 3.9(b) for the fastest rotational velocity Mtip{M8 “ 0.1, case
P01 in table 3.1, the interaction location moves along C1 with essentially constant
velocity before transition occurs, see the shaded area in the figure. Since this was
observed to be the case for all riÑmi transitions triggered by the lower wedge pitch,
we could incorporate the shock motion in current shock polar theory by conducting
a coordinate transformation to the (moving) frame of reference of the ri interaction
location. Its velocity in both x and y directions was taken as the slope of the lin-
ear least squares regression to each curve in figure 3.9(b) within the shaded area,
respectively. Corrected detachment conditions were recalculated and then trans-
formed back into the original frame of reference of the computational domain in
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Figure 3.9: Time evolution of (a) the maximum entropy jump ∆s across the wave system, and (b)
the x-coordinate ( ) and y-coordinate ( ) of the interaction location for case P01 in table
3.1. The quasi-inertial region is shaded in gray and the time instant at which riÑmi transition
occurs is indicated with a dashed line.

order to allow comparison with numerical data. Results for all rotational velocities
are included as red circles in figure 3.5 and under ϑd2,c in table 3.1. As observed,
the agreement with numerical data improves significantly. This highlights the im-
pact of rapid rotation on the shock system and the inability of steady shock polar
theory to properly predict transition in the absence of unsteady considerations. We
attribute the quantitative discrepancy for large rotational velocities to the complex
unsteady motion of C2, which also involves pitching due to the progressive change
in shock strength. Thus, although the interaction location moves along C1 with an
apparent constant velocity, flow unsteadiness is still present leading to an overall
under-predicted transitional ϑ2 as observed in figure 3.5. For the miÑri transition
cases, a similar analysis could not be conducted due to the substantial triple point
acceleration.

3.3.2. Oscillation of lower wedge deflection
The second excitation mechanism investigated is the sinusoidal oscillation of the
lower wedge deflection. We consider two values for the mean lower wedge deflection
ϑ2,i; one within the theoretical dsd and one outside it, in the ri domain. For the
former, ϑ2,i “ 15.78˝ is selected with an oscillation amplitude of 2˝ so that the
boundaries of the steady-state dsd in terms of flow deflection (ϑn2 “ 14.14˝ and
ϑd2 “ 17.43˝, see figure 3.1(c)) are crossed during every period. The influence of
initializing the solution with either a converged ri and mi is examined. For the
case outside the steady-state dsd in the ri domain, ϑ2,i “ 13.89˝ is set with an
oscillation amplitude of 4˝. Regarding the excitation frequency, we use the available
time scale of our setup, w{u8, scaled by a factor based on previous works on stbli.
In particular, we were inspired by the les computations of Matheis and Hickel [46]
at a free-stream Mach number M8 “ 3 for which the incoming turbulent boundary
layer thickness to shock generator hypotenuse ratio, δ{w, is 78.82. A base excitation
frequency of f1 “ 0.125u8{w is therefore chosen to obtain good agreement with the
low frequency dynamics of the separation shock in their computations. In order
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Table 3.2: Summary of relevant parameters for the oscillation of the lower wedge deflection: ϑ2,i
corresponds to the mean wedge deflection in degrees; A denotes the amplitude of oscillation in
degrees; f is the oscillation frequency; θ is the phase of the sinusoid in degrees; and subscripts `
and ´ denote respectively the maximum and minimum value recorded during the first period of
oscillation. See table 3.1 for additional remarks.

Case ϑ2,i
Mtip

M8
A f

w

u8
θ Initial Final 1

u8
d̂hms
dt

˙

`

1
u8

d̂hms
dt

˙

´
D01 15.78 0.027 2.0 0.125 0 ri mi 0.030 0.013
D02 15.78 0.055 2.0 0.250 0 ri Both 0.016 0.046
D03 15.78 0.110 2.0 0.500 0 ri Both 0.020 0.055
D04 15.78 0.027 2.0 0.125 180 mi mi 0.029 0.022
D05 15.78 0.055 2.0 0.250 180 mi mi 0.033 0.027
D06 15.78 0.110 2.0 0.500 180 mi mi 0.045 0.038
D07 13.89 0.055 4.0 0.125 0 ri Both 0.034 0.066
D08 13.89 0.110 4.0 0.250 0 ri Both 0.028 0.057
D09 13.89 0.219 4.0 0.500 0 ri Both 0.035 0.081

to assess the effect of increasing excitation frequency in the response of the wave
system, higher frequencies f2 “ 2f1 “ 0.25u8{w and f3 “ 4f1 “ 0.5u8{w are
additionally investigated.

For the oscillatory motion initiated within the steady-state dsd, the motion
direction is set such as to bring the wave pattern towards its stability boundary,
i.e, the wedge deflection initially increases for a starting ri and decreases for a
mi. In a similar fashion as in section 3.3.1, we define the characteristic velocity
scales associated to the riÑmi and miÑri transition as the maximum Mach stem
growth, pdhms{dtq`{u8, and maximum Mach stem shrink rate, pdhms{dtq´{u8 (i.e,
maximum absolute value of negative Mach stem growth). In this case, they are both
measured within the first period of oscillation of the lower flow deflection ϑ2 at the
interaction point. A summary of relevant parameters is given in table 3.2 including
the corresponding maximum wedge tip speed in terms of Mtip{M8.

Figures 3.10(a–d) show the time evolution of the Mach stem height, ϑ2, static
pressure and entropy rise across the shock system for ϑ2,i “ 15.78˝ and f1 “
0.125u8{w, labelled as case D01 in table 3.2. All quantities are measured in the
vicinity of the interaction location as discussed in section 3.2.3, and solid and dashed
lines refer to an initially converged ri and mi wave pattern, respectively. In the case
of a starting ri (solid line), the Mach stem appears during the first period of oscilla-
tion and never disappears thereafter. This observation can be explained as follows:
first, the lower wedge oscillation initially brings the ri configuration outside its sta-
bility boundary. Close to the peak deviation from the mean deflection ϑ2,i, the ri is
most unstable and riÑmi transition occurs. For the considered excitation frequency
f1, the resulting Mach stem growth is accentuated with pdhms{dtq` exceeding the
corresponding maximum wedge tip speed Mtip{M8, see table 3.2. The Mach stem
keeps growing until the mi is no longer stable, which, due to the existence of the
dsd, occurs exclusively when the lower flow deflection ϑ2 at the interaction location



Section 3.3 ‚ Results and discussion

3

45

0

0.1

0.2
h

m
s
{w

(a) (e)

14

16

18 pbq

ϑ
2

[d
eg

.]

(b)
peq

(f)

10
11
12
13

p
{p

8

(c) (g)

0 2 4 6 8 100.1

0.2

0.3

0.4

pt´ t0qf

∆
s{c

p

(d)

0 2 4 6 8 10
pt´ t0qf

(h)

Figure 3.10: Results for the lower wedge deflection oscillation around ϑ2,i “ 15.78˝ with an
amplitude of 2˝ and excitation frequencies of: (a–d) f1 “ 0.125u8{w, and (e–h) f2 “ 0.25u8{w.
Solid and dash-dotted lines refer to initial ri and mi respectively (the opacity of the latter is
additionally set to 50% for clarity). The start time of oscillation is denoted by t0, and the time axis
is non-dimensionalized with the excitation frequency f . Pressure measurements downstream of the
upper and lower triple points are included in blue and orange respectively. Dashed horizontal blue
lines highlight the values at steady-state detachment (upper) and von Neumann (lower) conditions
for M8 “ 3 and ϑ1 “ 25˝.

is close to its minimum. If such flow deflection prevails over a prolonged time, the
Mach interaction monotonically shrinks as observed in section 3.3.1. However, be-
cause of the periodic excitation, stable conditions for the mi are recovered before the
Mach stem collapses, which prevents miÑri transition and allows the Mach stem
to grow again. As a result, the mean Mach stem height increases progressively over
several periods until a mean steady state identical to that obtained for an initial
mi is reached (compare solid and dashed lines in figure 3.10(a)). Pressure and en-
tropy measurements included in figures 3.10(c) and 3.10(d) respectively confirm this
occurrence and illustrate the characteristic dissipative nature of a mi.
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A sequence of instantaneous impressions of the density gradient magnitude corre-
sponding to the first period of oscillation of case D01 is included in figures 3.11(a–d)
(see also the animation available as supplementary material to the online version of
our journal article [98]). Time instances are marked as red squares in figures 3.10(a–
d). As the oscillation progresses, an alternation between a convergent and divergent
slip-line orientation is observed in line with the characteristic streamwise (upstream
and downstream) motion of the Mach stem and the associated Mach stem growth.
In a similar fashion as discussed in section 3.3.1 for case P04, a kink in both reflected
shocks appears after riÑmi transition occurs due to the presence of a pressure wave
accommodating the pressure mismatch between the ri and the emerging mi, see
figure 3.11(a). It is interesting to note, however, that the steady-state pressure level
at detachment is not reached prior to the riÑmi transition (maximum pressure
excursion does not lead to the uppermost dashed blue line in figure 3.10(c)). As
emphasized in the previous section, this is a consequence of the inability of current
steady-state shock polar theory to characterize time-dependent interactions.

Our results thus demonstrate that, for mean flow conditions within the steady-
state dsd, periodic flow deflection perturbations across the C2 incident shock are
capable of (1) triggering riÑmi transition, and (2) sustain the mi thereafter. This
is a result of the Mach stem dynamics during a period of excitation, exhibiting
a large initial growth rate that prevents it from collapsing. A sensitivity study
on the excitation frequency reveals, however, a change in the shock interaction
response as the excitation frequency increases. For an excitation frequency twice as
large as the base frequency, f2 “ 2f1 “ 0.25u8{w (case D02 in table 3.2), riÑmi
transition still occurs but the collapse of the Mach stem at the interaction location
(and thus transition to ri) follows, see figures 3.10(e–h). In this case, a slower (less
impulsive) Mach stem growth than that for case D01 is measured. As documented in
table 3.2, the maximum growth pdhms{dtq`{u8 no longer exceeds the corresponding
maximum wedge tip speed Mtip{M8 nor the maximum shrink rate pdhms{dtq´{u8.
Thus, the fraction of the excitation period for which the Mach stem shrinks is
sufficient to permit its collapse. The resulting riÑmiÑri alternation observed
within the first period of oscillation becomes periodic with the mi manifesting about
46% of the excitation period. A sequence of instantaneous impressions of the density
gradient magnitude is included in figures 3.11(e–h) to illustrate the corresponding
flow topology. Time instances of the flow impressions are respectively indicated by
red squares in figures 3.10(e–h) during the first period of oscillation. In a similar
fashion as for cases P05-P10 considered in section 3.3.1, the maximum Mach stem
shrink rate pdhms{dtq´ is recorded right before miÑri transition occurs, which
leads to the formation of a similar pressure wave that accommodates the pressure
difference between both shock configurations (see figures 3.11(g) and 3.11(h)).

It is worth mentioning that in cases D04-D06 featuring an initial mi, transition
to ri never occurred within the simulated time. In fact, the Mach stem remains in
all cases far from collapsing at the interaction location, with the maximum deviation
from the mean decreasing with increasing excitation frequency. This clearly shows
that a much lower excitation frequency is required to enforce miÑri transition than
the opposite [48, 49], and thus suggests that any single-time event allowing the
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Figure 3.11: Sequence of instantaneous density gradient magnitude for the lower wedge deflection
oscillation of 2˝ amplitude around ϑ2,i “ 15.78˝ for an initially steady ri. Excitation frequencies
correspond to: (a–d) f1 “ 0.125u8{w; and (e–h) f2 “ 0.25u8{w. Time instances are marked
sequentially as red squares in figures 3.10(a–c) and (d–f) respectively for f1 and f2. The solid
yellow line denotes the sonic condition.

Mach stem to fully develop would lead to a sustained mi thereafter. Results for the
excitation frequency f3 are only included in table 3.2 for brevity, as they exhibit
qualitatively the same behaviour as those for f2.

In view of the above, it is furthermore investigated whether a similar periodic
disturbance can also sustain a mi for mean flow conditions that are below the steady-
state von Neumann boundary, as found in the simulations by Matheis and Hickel [46]
for a stbli atM8 “ 2. In order to investigate if a similar scenario can be supported
by unsteady inviscid simulations, additional computations were conducted for the
current baseline conditions together with a lower mean wedge deflection ϑ2,i “



3

48 Chapter 3 ‚ Response to shock perturbations

0 2 4 60

0.1

0.2

pt´ t0qf

h
m

s
{w

(a)

0 2 4 6
10
12
14
16
18

pt´ t0qf

ϑ
2

[d
eg

.]

(b)

Figure 3.12: Evolution of (a) the Mach stem height hms, and (b) lower flow deflection below the
C2-C4 intersection for the lower wedge deflection oscillation of 4˝ amplitude around ϑ2,i “ 13.89˝
outside the dsd. Line legend: ( ) results for the excitation frequency f1 “ 0.125u8{w; ( )
results for f2 “ 0.25u8{w; ( ) results for f3 “ 0.5u8{w. The start time of oscillation is t0,
and the time axis is non-dimensionalized with the excitation frequency f . Dashed blue lines in (b)
highlight the values at detachment (upper) and von Neumann (lower) conditions.

13.89˝ slightly below the steady-state von Neumann condition (ϑn2 “ 14.14˝, see
figure 3.1(c)). The excitation frequencies considered correspond to those defined
earlier in this section but combined with an amplitude of oscillation of 4˝ instead
of 2˝, such that the maximum instantaneous wedge deflection exceeds the steady-
state detachment boundary ϑd2 “ 17.43˝. Corresponding time-scales are listed in
table 3.2 for all the excitation frequencies, with the resulting Mach stem height and
ϑ2 evolution over time presented in figures 3.12(a) and 3.12(b) respectively. As
shown, none of the cases result in a sustained mi over the integrated time. Instead,
a periodic riÑmiÑri alternation develops similar to that obtained for cases D02
and D03.

3.3.3. Streamwise oscillation of lower wedge without pitch
Both excitation mechanisms considered above are based on the variation of the lower
wedge deflection around its trailing edge, point O in figure 3.3, which remained fixed
throughout the computations. We now consider the periodic oscillation of the lower
wedge location while its deflection remains unaltered. This excitation mechanism
may also be seen as a surrogate of the low-frequency motion of the separation shock
foot in stbli [95]. Baseline conditions together with ϑ2 “ 15.78˝ are considered in a
similar fashion as in section 3.3.2, with both the ri and mi as starting wave patterns.
A starting ri located outside the steady-state dsd with ϑ1 “ 13.89˝ is additionally
investigated. The motion of the lower wedge is governed by a sinusoidal oscillation of
its trailing edge along the lower boundary of the domain with the mean streamwise
location equal to the upper wedge trailing edge xut. The excitation frequencies used
to characterize the motion also correspond to those defined in section 3.3.2, and the
impact of two different amplitudes of oscillation, 0.05w and 0.10w, is assessed. The
former amplitude leads to a maximum streamwise Mach number ratio Mtip{M8 of
0.039, 0.079 and 0.157 for f1, f2 and f3 respectively, whilst those corresponding to
the largest oscillation amplitude 0.10w are twice as large, see table 3.3. Oscillation
time scales for this case are also defined as in section 3.3.2 but measured within
the first period of oscillation for which the entropy jump through the wave system
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Table 3.3: Summary of relevant parameters for the streamwise oscillation of the lower wedge
without pitch: ϑ2,i corresponds to the fixed wedge deflection in degrees; A denotes the amplitude
of oscillation in terms of the wedge hypotenuse w; and subscripts ` and ´ denote respectively the
maximum and minimum value recorded during the first period of oscillation for which the entropy
level characteristic of a mi is reached. See table 3.1 for additional remarks.

Case ϑ2,i
Mtip

M8

` A

w
f
w

u8
Initial Final 1

u8
d̂hms
dt

˙

`

1
u8

d̂hms
dt

˙

´
S01 15.78 0.039 0.05 0.125 ri ri 0.0 0.0
S02 15.78 0.079 0.05 0.250 ri mi 0.026 0.010
S03 15.78 0.157 0.05 0.500 ri mi 0.040 0.040
S04 15.78 0.039 0.05 0.125 mi mi 0.014 0.016
S05 15.78 0.079 0.05 0.250 mi mi 0.035 0.032
S06 15.78 0.157 0.05 0.500 mi mi 0.072 0.076
S07 15.78 0.079 0.10 0.125 ri mi 0.032 0.010
S08 15.78 0.157 0.10 0.250 ri mi 0.042 0.043
S09 15.78 0.314 0.10 0.500 ri Both 0.046 0.073
S10 15.78 0.079 0.10 0.125 mi mi 0.029 0.029
S11 15.78 0.157 0.10 0.250 mi mi 0.071 0.063
S12 15.78 0.314 0.10 0.500 mi mi 0.015 0.015
S13 13.89 0.079 0.05 0.125 ri ri 0.0 0.0
S14 13.89 0.157 0.05 0.250 ri ri 0.0 0.0
S15 13.89 0.314 0.05 0.500 ri ri 0.0 0.0
S16 13.89 0.079 0.10 0.125 ri ri 0.0 0.0
S17 13.89 0.157 0.10 0.250 ri Both 0.007 0.003
S18 13.89 0.314 0.10 0.500 ri Both 0.010 0.020

reaches characteristic values of a mi at M8 “ 3.0.
Results for the 0.05w oscillation amplitude are shown in figures 3.13(a–h) for

all excitation frequencies. When the initial shock pattern corresponds to a ri, see
figures 3.13(a–d), all except the lowest excitation frequency trigger transition to a
mi. It is interesting to note the particular Mach stem dynamics exhibited in case S03
(dash-dotted lines in figures 3.13(a–d)). As shown, a mi configuration is eventually
sustained but only after 7 periods of oscillation in which the riÑmiÑri alternation
occurs. Such alternation, however, is not periodic (the time interval for which the
mi is present increases monotonically over consecutive oscillations) which indicates
the presence of hysteresis in the flow (an animation for this particular case is also
available online). The evident asymmetry in the evolution of ϑ2 at the interaction
location (figure 3.13(b)) further suggests that the streamwise oscillation of the shock
generator results in much more complex C2 shock dynamics than the corresponding
oscillation of its incidence. This is additionally supported by the larger deviations
in flow deflection and static pressure from the theoretical estimates based on a
steady-state shock polar analysis. Under these circumstances, transition appears
to be governed by the instantaneous M8 ´ ϑ1 ´ ϑ2 combination in the (moving)
interaction frame of reference no longer able to accommodate a ri configuration. If
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Figure 3.13: Results for the streamwise oscillation of the lower wedge at an amplitude of 0.05w and:
(a–d) an initial ri pattern, and (e–h) an initial mi pattern; both starting within the steady-state
dsd (ϑ2 “ 15.78˝). Line legend: ( ) results for the excitation frequency f1 “ 0.125u8{w; ( )
results for f2 “ 0.25u8{w; ( ) results for f3 “ 0.5u8{w. Figures (c) and (f) show the average
pressure between measurements taken downstream of both triple points. See caption of figures
3.10 and 3.12 for additional remarks.

such conditions are met, and the Mach stem growth rate is sufficiently large, the mi
solution materializes and prevails thereafter. Our results thus demonstrate that low
amplitude longitudinal oscillations are also capable of triggering riÑmi transition,
and that they are more effective at retaining the mi pattern for large excitation
frequencies than deflection oscillations.

Additional computations with a 0.10w oscillation amplitude were conducted for
the same excitations frequencies, with the resulting time evolution of the Mach stem
height shown in figure 3.14 for all cases. Numerical data in figure 3.14(a) involves
an initial ri embedded within the steady-state dsd, for the same initial conditions
as in the 0.05w case, whereas that in figure 3.14(b) corresponds to an initial mi. As
it can be observed, the mi was unambiguously sustained for all perturbations except
for the highest frequency of oscillation in figures 3.14(a). Such a rapid change of
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Figure 3.14: Non-dimensional Mach stem height (hms{w) evolution for an amplitude of oscillation
of 0.10w and (a) an initial ri pattern, and (b) an initial mi pattern, both embedded within the
theoretical dsd (ϑ2 “ 15.78˝). Line legend: ( ) results for the excitation frequency f1 “
0.125u8{w; ( ) results for f2 “ 0.25u8{w; ( ) results for f3 “ 0.5u8{w.

boundary conditions prevents the mi from establishing which leads to a continuous
riÑmiÑri alternation during every period. This same alternation manifests for
all amplitudes and excitation frequencies considered when the initial wave pattern
corresponds to a ri outside the steady-state dsd (ϑ2,0 “ 13.89˝).

3.4. Summary
Unsteady asymmetric shock interactions were numerically investigated on a double
wedge configuration. Transition between the ri and the mi was triggered by three
excitation mechanisms: the pitching of the lower wedge traversing the theoretical
dsd, the sinusoidal oscillation of the lower wedge deflection with a mean value both
within and outside the dsd, and the streamwise oscillation of the lower wedge loca-
tion with fixed wedge deflection. Characteristic unsteady flow features such as the
Mach stem growth, pressure evolution across the shock system and corresponding
flow deflections and entropy rise, were investigated with a focus on the bi-directional
riÕmi transition process. For periodic excitations, the influence of initializing the
solution with either a converged ri and mi was additionally examined.

Regarding pitching of the lower wedge, our results showed the impact of im-
pulsive rotations on the transition limits and revealed, as the rotational velocity
was decreased, a mismatch in the miÑri transition limit with respect to theoretical
predictions. This occurrence was probably associated to the particular geometrical
wedge arrangement (2g{w) imposing a limitation on the minimum Mach stem height
for which the mi pattern can be sustained. Furthermore, in an attempt to exploit
the prediction capabilities of shock polar theory applied to unsteady problems, a
shock polar analysis in the (moving) frame of reference of the ri interaction location
was conducted for all riÑmi transition cases, improving the agreement with respect
to fast pitching numerical data significantly.

Furthermore, our simulations confirmed that periodic excitations can trigger
riÑmi transition and potentially sustain the mi for mean flow conditions within the
steady-state dsd. This is a consequence of the impulsive Mach stem growth right af-
ter transition, which prevents the remaining oscillatory motion of the lower incident
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shock from inducing transition back to the ri pattern. A transient growth of the
mean Mach stem height was observed over several periods of oscillation until a mean
steady state identical to that obtained for an initial mi was reached. A sensitivity
study on the excitation frequency revealed, however, a change in the shock interac-
tion response as the excitation frequency increases. Under these circumstances, such
an impulsive Mach stem growth was not permitted, which allowed miÑri transition
to occur. Instead of a mi sustained, we then observed a characteristic riÑmiÑri
alternation that appeared to become periodic as the oscillation progressed. It should
be noted that such alternation occurred at much higher excitation frequencies for the
periodic oscillation of the lower incident shock foot than for the periodic oscillation
of the lower flow deflection, indicating that the former mechanism was more effective
at sustaining the mi pattern. Regarding the excitations imposed on an initial mi,
it was clear that much lower frequencies were required to trigger miÑri than the
opposite since no transition to the ri was observed for the excitation frequencies
considered.

In view of all the above, we thus concluded that the mi configuration is more
robust against periodic perturbations than the corresponding ri configuration for
mean flow conditions within the steady-state dsd. Our computations did not con-
firm, however, the possibility of a periodic oscillation sustaining the mi for mean
flow conditions outside the steady-state dsd on the ri domain.



4
Response to quasi-steady
free-stream Mach number

variations

The previous chapter dealt with the response of asymmetric shock interaction sys-
tems to unsteady perturbations of the lower incident shock. These perturbations
corresponded to variations in shock deflection or shock location, while the free-
stream flow remained disturbance free. In the present chapter, which is the second
and last chapter of part one of the thesis, we investigate the complimentary case,
that is, the influence of free-stream Mach number variations on ssis with nominally
fixed shock generator geometry. An experimental campaign was carried out for this
purpose, in a wind-tunnel facility that enables a continuous variation of the free-
stream Mach number during a run. As the time rate of change of the Mach number
was significantly smaller than the characteristic flow time scale, the varying free-
stream conditions in the experiments represent a quasi-steady perturbation of the
ssi system. This implies that the theoretical framework presented in chapter 3 can
be directly used to validate the applied measurements methods. Indeed, a direct
comparison between raw data and theoretical predictions reveals the need to correct
for off-design effects that contaminate schlieren visualizations of the flow. This is
here accomplished with a systematic flow-based post-processing methodology that
enables an accurate and reproducible tracking of the evolving shock system. The
present chapter also reports a variable focal plane study conducted with a focus-
ing schlieren system that supported the data processing by providing insights into
three-dimensional side-wall effects.

The content of this chapter has been published as: L. Laguarda, J. Santiago Patterson, S. Hickel,
F. F. J. Schrijer and B. W. van Oudheusden. Experimental investigation of shock–shock inter-
actions with variable inflow Mach number, Shock Waves 31 (5), 2021. The author would like
to acknowledge the important contribution to the work made by Jaime Santiago Patterson, who
realized the experimental setup and generated the experimental results.
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4.1. Introduction
As we already saw in chapter 3, gas dynamics theory characterizes ssis in terms of
the free stream Mach M0, the flow deflections ϑ1 and ϑ2 imposed by the incident
shocks, and the gas thermodynamic properties. This is often visualized graphically
in the form of so-called shock polars [22], like the one in figure 3.1(c). Assuming
constant gas properties, stability boundaries for the different interaction types can
be calculated in terms of M0 for fixed flow deflections, or in terms of one of the flow
deflections while keeping the other and the free-stream flow properties unchanged
[86]. The stability boundary of the mi, as we have already discussed, originates
from the necessity of the slip line pair to be convergent so that the subsonic flow
after the Mach stem can accelerate. The limit, referred to as the von Neumann
criterion, defines an upper bound of flow deflection in the ϑ1 ´ ϑ2 plane (in the
case of fixed M0) and generally a lower M0 bound in the M0 ´ ϑ1|2 plane (for
fixed ϑ2|1). The stability condition of the ri, in turn, is purely geometrical, based
on whether the shock system is capable of satisfying all flow deflection boundary
conditions. The limit, referred to as the detachment condition, defines a lower bound
of flow deflection or an upper M0 bound. Of particular interest is the fact that von
Neumann and detachment conditions do not necessarily coincide and so a region
exists in the M0 ´ ϑ1 ´ ϑ2 parameter space, the dual-solution domain (dsd), in
which the regular and Mach interactions are both realizable - see figure 4.1.

Based on the existence of such a dual-solution domain, Hornung et al. [87] spec-
ulated about the possibility of hysteresis in the riÑmiÑri cycle. For steady flows,
they anticipated the occurrence of riÑmi transition according to the detachment
condition, whilst the miÑri transition should abide the von Neumann criterion.
This hypothesized hysteresis phenomenon turned out to be much easier to be repro-
duced numerically than experimentally. While numerical works provided unambigu-
ous evidence [47, 99], different experimental investigations [82, 88, 89] yielded dif-
ferent riÑmi transition conditions, all scattered across the theoretical dsd. Ivanov
et al. [100] attributed the wide spread of experimental results to the different level
of free-stream disturbances in each flow facility, which seemed to trigger premature
riÑmi transition and thus partially or totally prevent the hysteresis. The same
research group later confirmed this hypothesis by successfully observing hysteresis
in a low-noise wind tunnel facility [90]. The following works on shock interactions
performed by other groups [46, 48, 50–52, 54], which culminate with our investiga-
tion presented in chapter 3, made even more evident the sensitivity of the riÑmi
transition to flow disturbances and unambiguously identify the mi as more robust
under these conditions.

But despite the physical phenomenon being well understood, there is a critical
need for improvement in the measurement techniques and post-processing strategies
adopted in the experimental investigations of shock interaction transition, as well
as in assessing the agreement with theoretical stability boundaries. As means to
control the shock generator pitch, electric motors are often used together with pre-
calibrated digital transducers to measure the relative position of the model geometry
with respect to the free-stream flow. These measurements, generally assumed to be
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Figure 4.1: M0 ´ ϑ2 plane for ϑ1 “ 17˝. The theoretical dsd is shaded in grey. The dotted line
corresponds to the von Neumann criterion, the dashed line to the detachment condition, and the
attached shock boundaries for ϑ1 and ϑ2 are shown as dash-dotted lines. The free-stream Mach
number ranges used in the experiments are also included as solid horizontal lines.

representative of the flow direction, are taken at the location where the device is
fixed, which is often at the model supports or at the sting (far away from the shock
generators) and disregard potential model deformation induced by the aerodynamic
loading. The same holds true for the influence of the boundary layer growth along
the shock generator geometry, which is also commonly disregarded. If such effects
are not properly accounted for, either with a suitable feedback compensation tech-
nique or during post-processing, a non-negligible mismatch between nominal shock
generator angle and effective flow deflection appears. Although this mismatch may
not alter the main conclusions of the experiment in a qualitative sense, it certainly
has an impact on the quantitative results, particularly on the effective flow deflec-
tions at transition and the Mach stem height evolution. The importance of providing
high-fidelity experimental datasets of such quantities should not be taken lightly,
as the validation of low-fidelity simulation as well as reduced order models and
analytical descriptions of the phenomenon rely on them.

Motivated by the above considerations, we have developed a flow-based post-
processing approach of the experimental data that accounts for off-design effects. Pa-
rameters such as flow deflections and Mach stem height are quantified from schlieren
visualizations of the shock system, in combination with associated free-stream pres-
sure measurements from which the instantaneous value of the free stream Mach
number is determined. The analysis is complemented with the calculation of the
stability boundaries consistent with the actual interaction conditions to properly
assess hysteresis effects. While most experimental investigations on shock inter-
actions have targeted the flow-deflection-induced hysteresis, that is, homogeneous
free-stream conditions and varying shock generator deflections, we perform our anal-
ysis for the complimentary case, i.e. the Mach-number-induced hysteresis. Here, the
shock generators remain fixed while the free-stream Mach number varies. To our
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ϑ 1n
ϑ 2n

2g “ 75

w “ 42

b “ 272

Figure 4.2: Schematic representation of the assembled model with its characteristic dimensions.
The wedge hypotenuse w and span b are equal for all wedges. All dimensions are in mm.

knowledge, there is only one reported experimental work using a similar approach
[55]. Schlieren visualization is used as the main flow diagnostics tool in our ex-
periments, and a focusing schlieren system is additionally employed to investigate
three-dimensional side-wall effects. The combination of these techniques enable the
accurate measurement of transition conditions, which is found crucial to achieve
agreement with theoretical predictions. We show that riÕmi transition, while ap-
parently occurring outside the stability boundaries when their evaluation is based
on nominal conditions, either occurs within the dsd or satisfies the von Neumann
criterion corresponding to the measured flow deflections, which are found to differ
noticeably, up to 1.2˝, from nominal wedge angles.

4.2. Methodology
Information about the experimental facilities and the flow measurement techniques
employed in this study was already provided in section 2.2 of chapter 2. In the
following, we describe the investigated test model and the proposed flow-based post-
processing methodology.

4.2.1. Setup
A schematic representation of the test model assembly is shown in figure 4.2. It
consists of two opposing wedges with equal hypotenuse w that span the complete
width of the test section (b “ 272 mm) in order to minimize the influence of cor-
ner effects on the interaction region [101, 102]. Trailing edges of both wedges are
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located at the same streamwise location and separated vertically by a distance 2g.
Each wedge is rigidly connected to the side walls by means of a pair of horizontal
supports. All wedges used in this study were manufactured out of stainless steel and
mechanically polished. To distinguish between nominal wedge angles and measured
flow deflections, subscripts n and m are used, respectively. Thus, we refer to the
nominal upper wedge angle as ϑ1n and the nominal lower wedge angle as ϑ2n.

A parametric study based on gas dynamics theory was conducted to select the
values of w, 2g, ϑ1n, ϑ2n and the ranges of M0, such as to maximize the width
of the dsd while preventing wind tunnel start-up issues and the expansion fans
from intersecting the incident shocks. Based on this analysis, w was chosen to
be 42 mm, 2g was set to 1.79w “ 75 mm and ϑ1,n to 17˝. The selection of ϑ1n
unambiguously determines the shape of the von Neumann and detachment criteria in
theM0´ϑ2n plane and thus the associated dsd, see figure 4.1. The selected values of
ϑ2n, namely 10˝, 17˝, 19˝ and 21˝, include the nominally symmetric interaction and
three different asymmetric cases. The chosenM0 ranges, ensuring riÕmi transition
within the capabilities of the experimental facility, are indicated in figure 4.1 by the
solid horizontal lines.

Tests were conducted as follows. First, the wind tunnel was started at the highest
M0 value within the range associated to a specific wedge arrangement. As observed
in figure 4.1, this unambiguously results in a ri. After steady flow conditions were
established,M0 was continuously reduced towards the lowest value of the considered
range. This enforced transition towards the mi. Once the lowest value had been
reached,M0 was then again increased towards its starting value to enforce transition
back to the ri. The ratio of the time rate of change of the Mach number dM0{dt,
to the characteristic flow time scale u8{w was in the order of 10´5 in all cases, thus
confirming the quasi-steady nature of the interactions [98]. Each wedge arrangement
was tested five times in order to increase the statistical significance of the results.

4.2.2. Data processing
We developed a flow-based post-processing approach where accurate instantaneous
flow deflection values are extracted from the flow measurement data instead of using
the nominal shock generator geometry. This is followed by a consistent calculation
of the stability boundaries to properly assess hysteresis effects. The main steps of
the proposed methodology are detailed below.

Pre-processing

A pre-processing routine is applied to the raw schlieren images, consisting of crop-
ping and background subtraction. Cropping is performed in order to reduce the
image size and zoom into the region of interest, while subtracting the background
reduces noise and removes unwanted artifacts, such as dust particles on the camera
sensor or imperfections in the windows, from the images. A background image is
defined as the average of a series of wind-off images of the test section recorded prior
to every experimental run. An example of a pre-processed image compared to the
raw counterpart is shown in figure 4.3. Notice that both wedges do not completely
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(a) (b)

Figure 4.3: Comparison of a mi (a) before pre-processing (raw image), and (b) after pre-processing
(ϑ1n “ 17˝ and ϑ2n “ 21˝ at M0 “ 2.3).

disappear after pre-processing, which highlights the non-negligible deformation of
the model due to the aerodynamic loads.

Incident shock angle computation

Next, incident shock angles are computed from the pre-processed images. For this, a
search area is defined for each incident shock. We use search windows containing 100
horizontal pixel lines and located such that the closest distance to the corresponding
wedge tip (as seen in the background image) is 0.3w in the direction perpendicular
to the free-stream flow. The horizontal positioning of each window depends on the
corresponding incident shock line fit defined in the previous frame; each horizontal
pixel row includes 120 pixels towards the free-stream flow from the shock line fit
and 30 pixels towards the post-shock region.

For every window, the evolution of the light intensity is examined along each
horizontal pixel line in search of the shock wave. A typical light intensity profile is
shown in figure 4.4(a). Even though the sudden decrease in light intensity is clearly
related to the incident shock, the dark appears too wide to infer with sufficient
accuracy the exact shock location at the mid-plane of the test section (where the
shock interaction is two-dimensional). Examination of the focusing schlieren data,
which is discussed in detail in section 4.3.1, revealed that the trailing edge of the
dark region is representative of the true shock location, while most of the remaining
thickness can be associated with shock-wave/boundary-layer interactions at the side
windows. Therefore, we identify the incident shock by searching for the trailing edge
of the dark region. This is done by first computing the gradient of the measured
light intensity profile and then searching for the maximum value. In view of the
noticeable oscillations, a median filter is applied prior to the gradient computation
(dashed red line in figure 4.4(a)). As shown in figure 4.4(b), the trailing edge location
of the shock wave on the search line appears now as a sharp peak. We further seek
for sub-pixel resolution of the location of extrema by performing a local parabolic
reconstruction of the intensity gradient distribution.
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Figure 4.4: (a) Light intensity I along the search line, and (b) corresponding gradient dI{dx
normalized with the maximum value. The profile after filtering is included in (a) as a dashed red
line, whereas search window limits and the detected shock location are indicated in both figures
with dash-dotted lines and red squares respectively.

φ1m

Figure 4.5: Main features of the shock detection and shock angle φ1m calculation process. Dash
and dash-dotted lines indicate respectively the search window limits and the longitudinal direction
of the wind tunnel, the orange ˆ markers depict the detected shock location on each horizontal
pixel line, and the green solid line illustrates the resulting shock line fit.

Applying the above-mentioned procedure to all horizontal pixel lines within the
search window results in a set of shock location points. An iterative least-square line
fitting routine is employed on this set to reduce the number of outliers and optimize
the coefficient of determination. We discard all points located beyond three times
the rms of the euclidean point-to-line distance and recalculate the fit iteratively until
convergence. The true incident shock angles φ1m and φ2m are finally determined
by computing the angle between the corresponding line fit and the longitudinal
direction of the wind tunnel. Figure 4.5 illustrates the key elements of the above-
mentioned procedure applied to the upper incident shock and superimposed on the
pre-processed schlieren image.
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Table 4.1: Estimated uncertainties.

ϑ1n ϑ2n ∆M0 ∆φ1m ∆φ2m ∆ϑ1m ∆ϑ2m

17.0˝ 21.0˝ 0.0010 0.14˝ 0.14˝ 0.13˝ 0.11˝
17.0˝ 19.0˝ 0.0017 0.15˝ 0.22˝ 0.14˝ 0.19˝
17.0˝ 17.0˝ 0.0014 0.15˝ 0.20˝ 0.14˝ 0.18˝
17.0˝ 10.0˝ 0.0010 0.20˝ 0.17˝ 0.17˝ 0.17˝

Flow deflection computation
Once the incident shock angles have been determined, the associated flow deflections
follow in a straightforward manner. Due to the synchronous pressure measurements,
each schlieren image has an associated free-stream Mach number value. Considering
the i-th image in a sequence with a corresponding M i

0 value, if φikm corresponds to
a particular incident shock angle measured with the procedure outlined in section
4.2.2 (with k “ 1 denoting the upper incident shock and k “ 2 the lower one), then
the corresponding flow deflection ϑikm follows from the oblique shock relation

ϑikm “ fpM0, φ, γq “ tan´1

˜
2

tanφikm
pM i

0 sinφikmq2 ´ 1
M i

0
2pγ ` cos 2φikmq ` 2

¸
, (4.1)

with the specific heat ratio taken as γ “ 1.4.
We consider the propagation of errors inM0 and φkm on equation (4.1) as means

to assess the uncertainty associated with the resulting flow deflections ϑkm. For each
test run, flow data over a short initial interval corresponding to nominally constant
free-stream flow conditions was available (more than 100 visualizations and corre-
sponding pressure measurements). From this data, we estimate the uncertainties
on M0 and φkm, namely ∆M0 and ∆φkm, as twice the average rms of the resulting
M0 and φkm values (95.4% statistical confidence limit). Since these are indepen-
dent measurements, i.e. instantaneous errors in M0 and φkm are uncorrelated, we
approximate the uncertainty in ϑkm, namely ∆ϑkm, as the norm

∆ϑkm «
dˆ Bf

BM0

ˇ̌
ˇ̌
max

∆M0

˙2
`
ˆ Bf
Bφkm

ˇ̌
ˇ̌
max

∆φkm
˙2
, (4.2)

where the magnitude of the partial derivatives is taken as the maximum recorded
in the run. Resulting uncertainties are reported in table 4.1 per geometry.

Recall that, in order to avoid confusion with nominal conditions, measured quan-
tities are referred with the subscript m, e.g., ϑ1n and ϑ2n denote nominal wedge
angles whilst ϑ1m and ϑ2m indicate measured flow deflections.

Intersection point determination
The intersection point is defined as the point where the linear fits for the upper and
lower incident shocks intersect, which should coincide with the interaction point in
case of a ri (the point where the incident shock meet in figure 3.1(a)). In order
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Figure 4.6: Intersection point location Ip and true shock location R for (a) a ri, and (b) a mi.
Incident shock line fits are included as solid green lines.
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Figure 4.7: Relevant auxiliary parameters for the Mach stem height determination: (a) straight
line approach, (b) parabolic approach.

to determine whether or not the current shock configuration agrees with a regular
interaction pattern, a horizontal line segment is defined, that extends from a dis-
tance 0.1w downstream of the intersection point in the upstream direction towards
the free-stream flow. The light intensity along this line is examined as explained in
section 4.2.2, and the true shock location is determined accordingly. The current
shock configuration corresponds to a ri when the shock location R along the hori-
zontal line is located at the intersection point Ip, see figure 4.6(a). Conversely, as
depicted in figure 4.6(b), if R is sufficiently far upstream of Ip, the shock system
unambiguously corresponds to a mi. The exact occurrence of transition that seg-
regates the ri from the mi, however, is determined according to Mach stem height
considerations. This is explained in detail in section 4.2.2, while the procedure to
calculate the actual height of the Mach stem is described below.

Mach stem height determination
We define the Mach stem height hms as the distance between the triple points of
the mi, i.e., the points where the incident shocks meet the Mach stem (see figure
3.1(b)), in the direction perpendicular to the free-stream flow. Recalling figure
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4.6(b), it can be seen that the true shock location R along the horizontal search line
lies on the Mach stem. For shock configurations where the Mach stem is essentially
a normal shock wave, see figure 4.7(a), a good approximation of its height is given
by the length of the line segment P1P2, where P1 and P2 result from intersecting the
incident shock fits with the line perpendicular to the free-stream passing through
point R.

However, if the Mach stem has non-negligible curvature, as in figure 4.7(b),
the straight line approach becomes inaccurate. For this reason, the Mach stem is
instead approximated with a quadratic function, requiring two additional points
laying on it besides R. These points, labeled as R2 and R3 in figure 4.7(b), are
obtained by applying the gradient-based method outlined in section 4.2.2 to the
light intensity profile over the horizontal lines passing through the midpoints of the
line segments RP1 and RP2, respectively. The unique parabola resulting from the
set of points {R, R2, R3} thus approximates the Mach stem curvature, and the
distance in the direction perpendicular to the free-stream between points Q1 and
Q2, the intersections of the parabola with each incident shock-fitted line, defines the
Mach stem height.

For the investigated interactions, we measured deviations between the linear
and the parabolic approach of up to 10% in the large Mach stem height range
(hms ą 0.3w). Therefore, and for the sake of consistency, we use the parabolic
approach to approximate the Mach stem height in all cases.

Transition detection

Although very close to each other, in view of measurement uncertainty, points Ip
and R will never perfectly coincide in case of a ri, see figure 4.6(a). This leads to a
finite non-zero value of the Mach stem height being determined also for these shock
patterns. The resulting hms signal, however, is observed to have a close to zero mean
value, which suggests that the measuring procedure, although affected by measure-
ment uncertainty (noise), is not introducing any bias. The computed rms variation
of the hms signal, of the order of 10´2w, is used to define the threshold value to de-
termine the occurrence of riÕmi transition. That is, transition is detected when the
hms signal of an image sequence exceeds or falls below hms{w “ 2ˆ 10´2, and the
corresponding ϑ1m, ϑ2m andM0 values are thus recorded. In case hms{w “ 2ˆ10´2

is crossed multiple times due to a local small oscillation, an average value of the
aforementioned quantities over the extent of the oscillation is considered instead. It
was verified that the transition detection did not critically depend on the threshold
value used: the magnitude of the recorded quantities varies by less than one percent
when the hms threshold value is doubled.

Consistent stability boundary calculation

In order to properly assess hysteresis effects, the remaining step is to calculate the
actual ri and mi stability boundaries, based on the recorded ϑ1m at transition, to
allow for a consistent comparison between measurements and theory.
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(a) (b)

(c) (d)

Figure 4.8: Focusing schlieren visualizations of a mi during a variable focal plane study. Focus plane
locations: (a) center of the test section; (d) wind tunnel window; (b–c) intermediate locations. The
corresponding geometry setup is ϑ1n “ 17˝ and ϑ2n “ 21˝ at constant M0 “ 2.26.

4.3. Results and discussion
4.3.1. Focusing schlieren diagnostics
As means to investigate the potential impact of three-dimensional effects in our
setup, we used the focusing schlieren system presented in section 2.2.2. Visualiza-
tions for different focal plane locations were achieved by mounting the camera on a
rail allowing it to be moved forward or backwards along the optical path. The plane
of focus was initially located at the center of the test section, and after a stable
shock interaction was generated, the camera was gradually moved such as to shift
the image plane towards one of the wind tunnel windows.

An example of the resulting focusing schlieren visualizations is shown in figures
4.8(a–d) for a mi corresponding to ϑ1n “ 17˝ and ϑ2n “ 22˝ at M0 “ 2.26. Even
though traces from out-of-focus features are still present in the image, it is clear
that the mi appears the sharpest when the focal plane is located at the center of
the test section, see figure 4.8(a). All characteristic elements, including the concave
Mach stem, the expansion fans and the curved slip lines, can be unambiguously
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(a) (b)

(c) (d)

Figure 4.9: Comparison between focusing schlieren and regular schlieren visualizations of (a–b) a
ri, and (c–d) a mi, resulting from the wedge arrangement ϑ1n “ 17˝ and ϑ2n “ 21˝ at M0 “ 3.0
and M0 “ 2.41 respectively.

recognized while the shock waves appear considerably thinner than in the regular
schlieren visualizations. As the image plane is moved away from the center, the
aforementioned features become progressively blurred, see figures 4.8(b) and 4.8(c).
At the same time, a considerable thickening of the shock regions is observed, which
is attributed to shock-wave/boundary-layer interactions on the side-wall windows.
The adverse pressure gradient imposed by the shock wave induces a boundary layer
thickening that affects the flow upstream of the impingement point through the
subsonic layer [4]. This results in a series of compression waves generated upstream
of the impinging shock that contribute to the apparent shock thickening in the
visualizations. Such three-dimensional effects appear most predominant when the
focal plane is located nearest to the side window, see figure 4.8(d). Notice also the
considerable upstream motion of the quasi-normal shock associated with the Mach
stem and the disappearance of the slip lines. An animation corresponding to figure
4.8 is available in our data repository [103] (https://doi.org/10.4121/13160954).

When examining mi configurations, we never found a trace of a ri at any position
along the span-wise direction; Mach stem and the slip-line pair were present in all
planes of the optical path except very near the windows. The same holds true

https://doi.org/10.4121/13160954
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Figure 4.10: Quantitative results obtained with the presented post-processing methodology for all
five experimental runs conducted with the wedge arrangement ϑ1n “ 17˝ and ϑ2n “ 19˝: (a–b)
upper shock angle φ1m and flow deflection ϑ1m signals, (c–d) lower shock angle φ2m and flow
deflection ϑ2m signals, and (e) normalized Mach stem height hms{w dependency on M0. Four of
the five signals (semi-transparent lines) have been offset `1˝ vertically from each other in (a–d)
and `0.05 horizontally in (e) for illustration purposes. Theoretical evolution of shock and flow
deflection based on nominal conditions are also included as dashed red lines.

in the opposite case; traces of a mi were never found during examination of the
span-wise variation of a ri. In addition, the sharp incident shocks recognized with
the image plane at the test section center, figure 4.8(a), appear in all remaining
visualizations of the variable focal plane test, figures 4.8(b–d). This confirms that
the shock interactions generated with our setup are two-dimensional along most of
the wind tunnel width.

It is relevant to note that the incident shocks in the focusing schlieren visualiza-
tions, where they appear as dark lines, are always located close to the rear of the
blurred regions surrounding them. This observation agrees with the proposed effect
of the shock-wave/boundary layer interactions at the side walls, suggesting that
most of the thickening of the incident shocks in schlieren visualizations results from
the upstream influence effect. Figure 4.9 includes a direct comparison between fo-
cusing schlieren and regular schlieren visualizations of a ri and mi. As observed, the
trailing edges associated to the shock regions appear as sharp discontinuities in the
regular schlieren visualization whilst the leading edges clearly fade out. These find-
ings justify the approach described in section 4.2.2 of searching for the trailing edge
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of the incident shock wave footprint during post-processing, as being representative
of the actual shock location.

4.3.2. Post-processing results
A total set of 20 schlieren visualization experiments with synchronous pressure
readings were conducted as described in section 2.2.2. The resulting sequence of
images were analyzed according to the procedure presented in section 4.2.2. Figures
4.10(a–e) show the results for shock angles, flow deflections and corresponding Mach
stem height dependency on M0 for the nominal wedge arrangement ϑ1n “ 17˝ and
ϑ2n “ 19˝. They contain data from all five runs corresponding to this arrangement,
with four of the five signals on each figure accordingly offset for illustration pur-
poses (see the caption for details). The evident similarities between the different
recordings highlights the robustness of the processing methodology. The spreading
of each signal over the whole M0 range is also found to be in close agreement with
the estimated uncertainties reported in table 4.1.

The theoretical evolution of shock angle and flow deflection based on nominal
conditions is also included in figures 4.10(a–d) (red dashed lines), revealing the
mismatch between nominal and effective wedge angles. The largest shock angle de-
viation from nominal conditions in figures 4.10(a) is 1.36˝ degrees, which translates
into a 1.2˝ flow deflection mismatch with the nominal wedge angle ϑ1n “ 17˝, the
maximum recorded in this work. This mismatch originates from the additional flow
displacement through the viscous boundary layers over the wedge surfaces, manu-
facturing and mounting uncertainties, as well as deformations under high pressure
load. Interestingly, the aerodynamic loading on a two-dimensional wedge geometry
reaches its maximum at the lowest M0 value. For a constant total pressure, the
free-stream static pressure monotonically increases with decreasing M0 and this ef-
fect dominates over the corresponding decrease in pressure gradient across the shock
waves. However, the largest deviations from nominal conditions in our experiments
do not agree with the aforementioned. This evidences the complexity of the off-
design interaction geometry, and justifies the proposed flow-based post-processing
methodology.

4.3.3. Mach stem height dependence on M0

The evolution of the Mach stem height in figure 4.10(e) appears insensitive to the
increase or decrease of M0 in all five runs, which already indicates the absence of
hysteresis for this wedge arrangement. The average normalized Mach stem height
hms{w dependence on M0 for all geometries is included in figure 4.11. A distinction
has been made for the data corresponding to a decreasingM0 and that for an increas-
ing M0, but the almost perfect overlap between the two confirms the repeatability,
as well as the absence of any measurable hysteresis effects in our experiments. The
latter is consistent with past experimental works in noisy facilities [55, 82, 88, 89].
Data shown in figure 4.11 together with the corresponding shock angles and flow
deflections is also available in our data repository [103].

The observed growth of the Mach stem height is clearly non-linear in M0 with a
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Figure 4.11: Average normalized Mach stem height hms{w dependence on the free-stream Mach
number M0 for all wedge arrangements.

sharp growth rate increase when approaching the riÔmi transition, for all geome-
tries besides ϑ2n “ 10˝. We consider this effect to be related to the fact that a
particular inlet-to-throat ratio in the convergent-divergent slip-line duct behind the
Mach stem needs to form for the mi to be stable [98]. After riÑmi transition, this
requirement results in a rapid growth of the Mach stem until the mass flow through
it can be swallowed at sonic conditions at the throat. In the opposite case, right
before miÑri transition, this translates into a sudden collapse of the finite Mach
stem. Whether this abrupt increase in the Mach stem growth rate can be observed
or not, i.e. whether hms is finite in the vicinity of the riÔmi transition, depends on
the geometrical ratio 2g{w. As first suggested by Hornung and Robinson [82] for the
symmetric mi, hms{w “ f`pM0, γ, ϑ1, ϑ2, 2g{wq where f` is probably a universal
non-dimensional function and 2g{w the only scaling parameter.

4.3.4. Remarks on the RIÔMI transition
The final step in the analysis is to determine to what extent the riÕmi transition
observed in our experiments corresponds to the stability boundaries that enclose the
dsd. The quantities (flow deflections and Mach number) at transition follow from
the Mach stem height evolution as explained in section 4.2.2 and the results are
summarized in table 4.2 and visualized in figures 4.12(a–h) in the M0 ´ ϑ2 plane.
The dsd based on the nominal shock generator angles is indicated in the figure
(grey) together with the dsd based on the average measured upper flow deflection
ϑ1m (blue) which accounts for the off-design interaction geometry.

It becomes evident that transition in our experiments would appear inconsistent
with the theoretical dsd based on the nominal deflections ϑ1n and ϑ2n. However,
consistency between experiments and theory is recovered by considering instead the
measured deflections ϑ1m and ϑ2m together with the corresponding dsd, which also
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Figure 4.12: Theoretical dsd and resulting riÑmi transition (C) and miÑri transition (B) data
based on nominal deflections (grey) and based on measured deflections (blue). Figures (a–b)
correspond to ϑ2n “ 21˝, (c–d) to ϑ2n “ 19˝, (e–f) to ϑ2n “ 17˝, and (g–h) to ϑ2n “ 10˝. Dotted
and dashed lines indicate the corresponding von Neumann and detachment criteria, respectively.
The average of the measured upper flow deflection ϑ1m used to recalculate the dsd is indicated at
the top of each figure.

confirms that transition in our facilities occurs at (or close to) the von Neumann
criterion. A very good overlap of the measured transition conditions was found
within the expected uncertainty (which is about 0.1˝- 0.2˝, see table 4.1). The
wedge arrangement involving ϑ2n “ 19˝ is the only geometry for which the detected
riÕmi transition seems to occur beyond the von Neumann criterion but still close
to this boundary and within the corresponding dsd.
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Table 4.2: Average transition data for all geometries.

geometry miÐri miÑri

ϑ1n ϑ2n M0 ϑ1m ϑ2m M0 ϑ1m ϑ2m

17.0˝ 21.0˝ 2.90 17.12˝ 21.67˝ 2.88 17.02˝ 21.60˝
17.0˝ 19.0˝ 2.67 17.90˝ 19.58˝ 2.66 17.80˝ 19.52˝
17.0˝ 17.0˝ 2.48 17.71˝ 17.37˝ 2.48 17.65˝ 17.30˝
17.0˝ 10.0˝ 2.11 17.70˝ 10.31˝ 2.10 17.68˝ 10.27˝

4.4. Summary
Experiments on shock-shock interactions were conducted in a transonic-supersonic
wind tunnel with variable free-stream Mach number functionality. Transition be-
tween the ri and the mi was induced by variation of the free-stream Mach number.
In order to account for possible deformations of the model geometry and other off-
design effects, we applied a systematic flow-based post-processing methodology of
schlieren visualizations and synchronous pressure readings that enabled accurate
tracking of the evolving shock system and precise detection of riÕmi transition
with high reproducibility. In line with previous works dealing with noisy experi-
mental environments, no transition hysteresis was observed. Due to the measured
deviations of the flow deflections from the nominal shock generator angles (of up to
1.2˝), calculation of the theoretical dsd consistent with the actual flow conditions
was required to confirm that the measured transition data satisfies the von Neu-
mann criterion in our experiments. Furthermore, different planes along the optical
path were investigated using a focusing schlieren system to assess three-dimensional
side-wall effects in the experimental setup. The analysis confirmed that the con-
siderable shock thickening observed in regular schlieren visualizations is caused by
shock-wave/boundary-layer interactions at the side-walls, and that the trailing edge
of the incident shock footprint is a reliable indicator of the two-dimensional incident
shock locations at the mid-plane of the test section.
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5
Characterization of the
undisturbed turbulent

boundary layer

The second part of the present thesis is focused on the physics of stblis. But before
delving into that, we first take a step back and carefully analyze the undisturbed tbl
at different Reynolds numbers. This is particularly instructive for the discussion in
chapter 6, which is concerned with Reynolds number effects in stblis, since these
effects also stem from the differences in the tbl structure at low and high Reynolds
number. The analysis of the tbl data, in fact, is not only limited to the aspects
that are relevant in the context of stblis (e.g., log-layer structures) or that serve to
assess the adequacy of the employed numerical setup - it is much more exhaustive
than that. The reason for it is the limited availability of high-fidelity tbl datasets
in literature, which calls for additional studies in the moderately-high Reynolds
number regime. So instead of providing a brief and stbli-oriented discussion, we
decided to expand the content of this chapter and present it as a standalone study on
compressible tbls. In doing so, the resulting discussion will also be of interest to the
reader solely concerned with compressible wall-bounded turbulence, since the text
makes no explicit reference to the stbli flow that it is intended to complement. For a
discussion of the present tbl data in the context of stblis, the reader is then referred
to section 6.3.1 of chapter 6, which should be considered after reading the present
chapter (section 5.3.3 in particular). Details on the numerical setup employed in
the stbli simulations are also provided in the present chapter, since they only differ
from the corresponding tbl setup in the treatment of the top boundary condition.

The content of this chapter has been published as: L. Laguarda, S. Hickel, F. F. J. Schrijer and
B. W. van Oudheusden. Assessment of Reynolds number effects in supersonic turbulent boundary
layers, Int J Heat Fluid Flow 105, 2024.
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5.1. Introduction
In the compressible regime, tbls are characterized by large mean-property varia-
tions, dilatational fluctuations and other phenomena such as localized shocklets [57].
These features emerge as a consequence of the strong non-linear coupling between
vorticity, entropy and acoustic fields, which increases the complexity of the flow
physics compared to the incompressible case.

Statistical models for the description of tbls were typically first developed for
incompressible flows and later adapted to account for compressibility effects. While
some of these effects are still under investigation [104], many models simply revert to
the classic hypothesis by Morkovin [105] for the treatment of compressible tbl data
at relatively low Mach number. Within this paradigm, compressibility effects are
approximated with suitable scalings that account for the mean gradients of tempera-
ture, density and viscosity in the boundary layer. The validity of this hypothesis has
been assessed in multiple works [106–108] along with the strong Reynolds analogy
(sra), which further assumes negligible total temperature fluctuations and a perfect
anti-correlation between the streamwise velocity and temperature fields [105]. Even
though their applicability has been shown to be questionable [109–111], these as-
sumptions and related extensions are commonly employed for turbulence modelling
due to the lack of better alternatives.

In addition, an important fraction of the available turbulence data has been
obtained at relatively low Reynolds numbers. This is specially the case for direct
numerical simulations (dns) of compressible tbl flows, where the Reynolds number
dictates the (often prohibitive) grid resolution requirements [112]. The work of
Pirozzoli and Bernardini [113] constituted the first dns investigation that considered
a compressible tbl at a moderate viscous Reynolds number of Reτ « 1100, where
inner and outer scale separation is emerging. By comparing the corresponding
results with low-Reynolds simulations, the authors discuss Reynolds number trends
on a wide variety of statistics and further highlight the experimentally observed
influence of emerging outer-layer structures on the near-wall turbulence. A follow-
up work by the same authors included an additional simulation at Reτ « 4000 [114],
where scale separation is much more pronounced. Up to date, this is the highest
Reynolds number attained for a supersonic tbl with high-fidelity simulations, which
the authors used to complement their previous discussion on Reynold number effects.
The analysis of their high-Reynolds data, however, was not as extensive as in the
previous study at lower Reτ . More recently, dns data at Reτ « 1200 and Reτ «
2000 has also been reported by Huang et al. [115] and Cogo et al. [116] for tbls at
both supersonic and hypersonic conditions, where the effects of Mach number and
strong wall-cooling were also explored.

Clearly, the amount of high-fidelity numerical datasets is nowadays still very
limited, which calls for additional studies in the moderately-high Reynolds number
regime. While the current parameter range for compressible tbls can be more eas-
ily expanded with experimental investigations [117–119], these alone cannot provide
full non-intrusive access to all flow variables and regions of interest. For high-fidelity
model development, complementary numerical investigations need to fill in the gaps.
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This constitutes a unique opportunity for large-eddy simulations (les), where a
time-accurate prediction of the unsteady flow is obtained at a reduced computa-
tional costs compared to dns [112]. In conventional les, only the integral scales are
resolved by the computational grid and the effect of the unresolved subgrid-scales
(sgs) is accounted for with a sgs model. This implies a compromise between accu-
racy and computational costs; however, under-resolving (and therefore completely
modelling) the near-wall structures would put into question the reliability of the re-
sulting dataset for fundamental research. Considering the relevance of the near-wall
turbulence cycle and the fact that this region is often inaccessible in experiments,
a much more significant approach is to perform wall-resolved les of the tbl flow.
In this case, the local grid resolution close to the wall is typical of dns rather than
conventional les. While being computationally more expensive, wall-resolved les is
still less demanding than full dns and the quality of the resulting data, if conducted
properly, are essentially the same [120].

In this chapter, we present wall-resolved les of compressible zero-pressure-
gradient tbls at Mach 2.0 to address the need for additional data as well as to
investigate and characterize Reynolds number effects. The resulting database cov-
ers more than a decade of Reτ , from 242 to 5554, which considerably extends the
parameter range of current high-fidelity numerical studies. Reynolds number trends
are identified on a variety of statistics for skin-friction, velocity, and thermodynamic
variables. We further assess the efficacy of recent scaling laws and compressibility
effects in the parameter range considered. Particular attention is also placed on the
turbulent structures that populate the tbl, with an emphasis on the outer-layer
motions at high Reynolds number, which are accurately characterized. In addition,
we use the database to investigate uniform momentum regions in the flow [121]. For
incompressible wall-bounded turbulence, the average number of uniform regions ex-
hibits a characteristic Reynolds number dependency that could be linked to the
meandering motions of the outer-layer structures [122, 123]. Since no such study
is available in literature for compressible wall-bounded turbulence, the present les
data is exploited to characterize for the first time the Reτ -sensitivity of uniform
regions in supersonic tbls. Finally, the distribution of thermodynamic fluctuations
as well as their mutual interaction with the velocity field is also analyzed in detail,
since these play important roles in compressible turbulence.

5.2. Computational setup
We present wall-resolved les data for spatially developing zero-pressure-gradient
turbulent boundary layers at Mach 2.0 and different Reynolds numbers, from Reτ «
250 to Reτ « 5550. The database comprises three independent simulations, T1, T2
and T3, for which the range of Reynolds number from inflow to outflow plane is
provided in table 5.1. As observed, the present study covers more than a decade of
Reτ which allows for a detailed characterization of Reynolds number effects. The
line legend is also included in table 5.1 for later reference.

In all cases, the considered fluid is air and details concerning the modelling of its
properties are provided in section 2.1.1. The stagnation temperature and pressure
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Table 5.1: Details of the tbl simulations. The reported grid spacing is measured at the wall, and
Reτ “ ρwuτ δ0{µw is the friction Reynolds number, Reθ “ ρ8u8θ{µ8 the momentum-thickness
based Reynolds number, and Reδ0 “ ρ8u8δ0{µ8 the velocity-based boundary layer thickness
Reynolds number.

Case Reτ Reθ Reδ0 rˆ10´3s ∆x` ˆ∆y` ˆ∆z` Legend
T1 242´ 402 1093´ 1786 12.1´ 19.6 21.8ˆ 0.93ˆ 7.7
T2 949´ 1338 4167´ 6381 50.2´ 74.1 39.0ˆ 0.94ˆ 9.8
T3 3897´ 5554 20846´ 28892 243.4´ 360.3 38.5ˆ 0.94ˆ 10.2
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Figure 5.1: Block distribution of the numerical grid for the high-Reynolds case T3.

are respectively set to T0 “ 288 K and p0 “ 356 kPa, and the free-stream flow
velocity is u8 “ 507 m/s. At the inflow plane, the 99% velocity-based boundary
layer thickness δ0, in is 5.2 mm, and a case dependent Reynolds number is achieved by
modifying the free-stream dynamic viscosity µ8 so as to produce the corresponding
values of Reτ , Reθ and Reδ0 reported in table 5.1.

The computational domain is rectangular with dimensions Lx ˆ Ly ˆ Lz “
45.5δ0, in ˆ 16.5δ0, in ˆ 4.0δ0, in. Details about the grid spacing in viscous units are
also provided in table 5.1. Note that the spatial resolution at the wall is sufficiently
large in all cases to properly resolve the wall shear stress τw “ µwBu{By|w and the
dynamically relevant turbulent structures. Away from the wall plane, a block-wise
coarsening is applied in streamwise and spanwise direction as shown in figure 5.1
for the computational domain of the high-Reynolds case T3. Only one direction
is coarsened from one row of blocks to the one above, and always with an expan-
sion ratio of 2. In addition, a grid stretching with constant stretching factor is
applied in wall-normal direction. Figure 5.1 also indicates the origin of coordinates,
which is placed at the inflow plane, on the wall and half way between the spanwise
boundaries.

A non-reflecting boundary condition based on Riemann invariants is used at
the top and outflow boundaries of the computational domain [124], and periodic-
ity is imposed in the spanwise direction. The wall is modeled as isothermal at the
free-stream stagnation temperature, i.e., Tw “ T0. Based on the nominal adiabatic
wall-temperature, i.e., Taw “ T8r1`rpγ´1qM28{2s with a recovery factor r “ Pr1{3,
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the ratio of wall-temperature to adiabatic wall-temperature is Tw{Taw “ 1.05. Fur-
thermore, the digital filter technique of Xie and Castro [125] is used at the inflow
plane to prescribe adequate turbulent boundary conditions with well-defined space
and time correlations. Details about the implementation of the filtering procedure
are provided in appendix B and the employed digital filter settings in the present
simulations correspond to those of case A2 described in the same appendix. These
settings include a custom correlation function for tangential directions (equation
B.7) which allows for negative values of the correlation and therefore achieves bet-
ter agreement with dns data of wall-bounded turbulence [113]. Additionally, three
zones with different target length scales are specified at the inflow plane to realis-
tically account for the variation of the tbl structure with wall-distance [126, 127].
The employed scales are specified in table B.2 of appendix B per velocity compo-
nent, spatial direction and considered zone. Note that only zones 1 and 3 were
used in the low-Reynolds case T1 due to the absence of a fully established quasi-
logarithmic layer. The prescribed first and second-order statistical moments at the
inflow plane are derived from the dns database of Pirozzoli and Bernardini [113, 114]
for supersonic tbls at Mach 2.0.

Simulations were performed with the numerical method described in section
2.1.2, and they were carried on as follows. First, an initial transient of 10 flow-
through times (ftt) of the full domain length was simulated to ensure a fully devel-
oped turbulent flow in statistical equilibrium. This solution interval was discarded
from the present analysis. After this transient, simulations were integrated for an-
other 12 ftt of the full domain length. During this second interval, approximately
40000 statistics samples were collected at a sampling interval of ∆tu8{δ0,in « 0.013
and averaged in the homogeneous spanwise direction and in time. In addition,
three-dimensional snapshots of the full domain were stored at regular intervals of
∆tu8{δ0,in « 2, leading to an ensemble of approximately 250 snapshots stored per
case.

5.3. Results and discussion
The resulting les database is exploited to characterize the effect of Reynolds number
on the flow. Unless otherwise stated, data is extracted at x{δ0, in “ 40, which
corresponds to Reτ « 382, 1291 and 5371 for the three cases.

5.3.1. Skin-friction
The evolution of the skin-friction coefficient starting from x{δ0, in “ 5 is shown in
figure 5.2. The van Driest II transformation [128] is employed to remove Mach
number effects and enable comparison with well established correlations for incom-
pressible boundary layers. That is, skin-friction and Reynolds number are reduced
to their equivalent incompressible values by means of the following transformation

xCf,incy “ FcxCf y, Reθ, inc “ µ8
µw

Reθ. (5.1)
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Figure 5.2: Incompressible skin-friction distribution as a function of Reθ,i. Line legend: ( )
present les, ( ) Kármán-Schoenherr [131], ( ) Smits et al. [132]. Symbol legend: (l) Simens
et al. [133], (♦) Sillero et al. [134], ( ) Pirozzoli and Bernardini [113], (ˆ) Pasquariello et al. [23],
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Figure 5.3: Fluctuation magnitude of the wall-shear stress τ`w,rms for the investigated cases. The
dash-dotted line indicates the incompressible relation of Schlatter and Örlü [130].

where Fc is a function of the wall temperature Tw and nominal adiabatic wall tem-
perature Taw, see, e.g., Shahab et al. [107] or Hadjadj et al. [129]. Incompressible
correlations as well as numerical and experimental data at different conditions are
also included in figure 5.2 for reference (see caption). As observed, our present les
results are in very good agreement with the reference data, most notably with the
Kármán-Schoenherr correlation and the high-Reynolds experimental data of [119]
at Ma “ 2.0 and Reτ “ 4680.

The fluctuation magnitude of the wall-shear stress τẁ,rms over the second half
of the les domain is shown in figure 5.3. A value in the range of 0.41 to 0.46 is
obtained for the considered tbls, indicating that the fluctuating component of the
wall-shear stress amounts to almost half of the corresponding mean value. Figure
5.3 also reveals a clear τẁ,rms dependency on the Reynolds number, with fluctuation
magnitudes increasing with Reτ . The resulting trend closely follows the linear rela-
tion of Schlatter and Örlü [130] derived from incompressible data (dash-dotted line),
which confirms the fully developed state of the near-wall turbulence in all cases.



Section 5.3 ‚ Results and discussion

5

79

5.3.2. Velocity statistics
In line with previous works at moderate Mach numbers [113, 135], the maximum
magnitude of the fluctuating Mach number measured is

?
M 12 « 0.2. Therefore, gen-

uine compressibility effects are typically expected to be small [57] and the Morkovin’s
hypothesis to hold. That is, deviations from incompressible data are mainly associ-
ated with the variation of mean thermodynamic quantities across the boundary layer
(rather than their fluctuations) and do not fundamentally alter turbulence charac-
teristics [105]. Under this assumption, incompressible velocity statistics should be
recovered by simply accounting for mean-property variations.

Figure 5.4(a) shows the van Driest-transformed mean velocity profile u`vD for
each case, where du`vD “ a

ρ{ρwdu` accounts for mean density variations. As
observed, the transformed profiles exhibit the typical incompressible behavior, with
a near-wall viscous sub-layer (where linear scaling u`vD “ y` holds until y` « 5)
and a quasi-logarithmic layer (with close u`vD “ p1{κq log y` ` C behavior). The
latter is not fully established for case T1, which is expected at low Reynolds number.
For case T3, on the other hand, the quasi-logarithmic layer extends for more than
a decade of inner-scaled wall-distance, from y` « 40 until y` « 700, and conforms
to a log-law with a von Kármán constant of κ “ 0.4 and an intercept value of
C “ 4.7. Despite the visually well established logarithmic behavior, however, the
diagnostic function Ξ “ y`du`vD{dy` for this case (not shown here) is not constant
but rather increases in this region, crossing the theoretical 1{κ value required for
pure logarithmic behavior. As for the wake region, we measure a wake parameter
of Π “ 0.48 for case T1, Π “ 0.58 for case T2 and Π “ 0.63 for case T3. These values
are consistent with the expected wake parameter dependence on the momentum-
thickness Reynolds number and agree well with previous simulations of compressible
tbls [136].

Density-scaled Reynolds stresses are reported in figure 5.4(b) and exemplary
illustrate Reynolds number effects in the tbl topology. Most notably, the viscous-
scaled fluctuation intensity for the wall-parallel components increases with Reτ .
This is a direct effect of the emergent large-scale coherent motions in the near-
logarithmic region, whose contributions to the wall-parallel velocity variances is in-
creasingly significant with Reynolds number [137]. The observed increase in stream-
wise stress near the wall also reveals the modulating influence that such outer-layer
motions have on the near-wall cycle [138]. Despite the fact that the viscous-scaled
near-wall turbulence is a self-sustaining process [139, 140], large-scale variations in
the velocity fluctuations away from the wall are known to modulate near-wall fluc-
tuations [138] which overall increase with Reynolds number [141]. The formation of
a distinct plateau for the shear stress, which is clearly visible for case T3 in figure
5.4(b), is also a direct Reynolds number effect. This plateau corresponds to the for-
mation of a quasi-equilibrium layer where production of turbulence kinetic energy
(tke) approximately balances dissipation [142]. Other visible Reynolds number
effects on the velocity variances concern the wall-normal component, whereby its
peak location moves from the inner part to the outer part of the boundary layer at
sufficiently high Reτ .

For reference purposes, dns data of Pirozzoli and Bernardini [113, 114] for su-
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Figure 5.4: First and second order velocity statistics: (a–b) van Driest transformed mean velocity
and density-scaled Reynolds stresses over the inner-scaled wall-distance y`, and (c–d) total-stress-
based transformed mean velocity and density-scaled Reynolds stresses over the semi-local wall-
distance y˚ (see equations (5.2) and (5.3)). For reference, dns data of Pirozzoli and Bernardini
[113, 114] at Mach 2.0 and Reτ « r250, 1100, 4000s is respectively indicated in panels (a) and (b)
with orange, gray and blue markings. The indices i, j for the Reynolds stresses are indicated in
panel (b), while red circles in both panels (b) and (d) highlight the peak value of the streamwise
stress.

personic tbls at Mach 2.0 and various Reynolds numbers is also included in figures
5.4(a) and 5.4(b) (indicated with markers). Overall, the present les data agrees
very well with the dns data, with minor differences attributed to different friction
Reynolds numbers (particularly visible at the boundary layer edge). We also note
that the peak value for the streamwise stress is very well captured in the present
simulations, and closely follows the logarithmic fit to the reference dns data [114],
see figure 5.5.

We recall that the wall-temperature in the present simulations is very close to
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Figure 5.5: Distribution of the peak value for the density-scaled streamwise Reynolds stress. Line
legend: (solid) present les data, (dotted) logarithmic fit to the dns data of Pirozzoli and Bernardini
[113, 114] at Mach 2.0.

its nominal adiabatic value, i.e., Tw{Taw “ 1.05. However, the employed wall condi-
tion is strictly non-adiabatic, and the accuracy of the van Driest transformation is
known to deteriorate with (increasing) non-adiabatic conditions [115, 143]. There-
fore, alternative transformations to that of van Driest are also considered here to
assess whether the collapse of the mean velocity profiles can improve to any extent.
Particularly, we consider the transformation proposed by Trettel and Larsson [143],
which is identical to that of Patel et al. [144], as well as the transformation proposed
by Griffin et al. [145]. The former is grounded on the premise that a transformed
logarithmic law shall preserve the momentum balance in the transformed state. This
gives rise to a transformation kernel for both the mean velocity profile as well as the
wall-distance coordinate, the later coinciding with the semi-local scaling y˚ “ y{l˚
of Huang et al. [110], where

l˚ “ l`
µ

µw

c
ρw
ρ
, (5.2)

is the semi-local viscous length scale [143]. We also note that the earlier work of
Patel et al. [144] provides a different foundation for the applicability of the same
transformation. By re-scaling the Navier-Stokes equations with local quantities, the
authors demonstrate that the van Driest transformed velocity as well as second order
turbulent statistics depend on the semi-local viscous Reynolds number Reτ “ δ{l˚.

The transformation proposed by Patel et al. [144] and Trettel and Larsson [143]
was tested on the present les data and led to an increased scatter along the buffer
and quasi-logarithmic layers. Other authors have reported similar effects [115, 116,
145] and for the sake of brevity, the resulting transformed profiles are not shown here.
As indicated by Griffin et al. [145], the increased scatter is attributed to the over-
prediction of the mean shear in the beginning of the logarithmic layer, which directly
stems from the resulting viscous stress invariance of this transformation throughout
the whole boundary layer (instead of only within the viscous sub-layer). In view
of this issue, Griffin et al. [145] proposed a modified transformation that treats
viscous and Reynolds stresses independently and only in their respective domains
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of applicability. That is, the semi-local scaling proposed by Patel et al. [144] and
Trettel and Larsson [143] is recovered for the viscous stresses near the wall while the
Reynolds shear stress away from the wall is scaled assuming an approximate balance
between turbulence production and dissipation [145]. The resulting transformation
is referred to as the total-stress-based transformation utry˚s “

ş
S`t dy˚, where

S`t «
Sèq

1` Sèq ` Sv̀ , (5.3)

and Sèq “ pµw{µqpBu`{By˚q and Sv̀ “ pµ{µwqpBu`{By`q.
Careful inspection of the total-stress-based transformed mean velocity profiles

against the semi-local wall-distance coordinate y˚, which are shown in figure 5.4(c),
reveals some improvements in the data collapse along the linear and particularly the
buffer layer compared to the van Driest transformed profiles of figure 5.4(a). Addi-
tionally, it does not increase the scatter in the quasi-logarithmic layer, overcoming
the shortcomings of the transformation proposed by Patel et al. [144] and Trettel
and Larsson [143]. This shows the enhanced capabilities of the total-stress-based
scaling, even for tbls with quasi-adiabatic wall conditions. As for the boundary
layer wake, the data scatter still remains albeit with a slightly reduced deviation
from the quasi-logarithmic behavior compared to figure 5.4(a).

Regarding second-order statistics, Patel et al. [144] argue that data for variable
property flows should also reduce to their constant property counterparts by simply
employing the semi-local inner co-ordinate y˚. In order to assess the validity of this
scaling for the Reynolds stresses, they are shown in figure 5.4(d) against y˚. Overall,
improvements in the data collapse are not apparent when compared to figure 5.4(b).
However, the semi-local scaling does improve the overlap of the wall-normal stress
profiles in the linear and buffer layer, and leads to a better alignment of the near-wall
streamwise stress peak (indicated with red circles).

The effect of Reynolds number on the streamwise velocity statistics is now as-
sessed by inspecting the corresponding skewness Spuq “ u13{u123{2 and flatness
F puq “ u14{u122. These distributions are respectively shown in figures 5.6(a) and
5.6(b) where clear differences can be observed. Most notably, both skewness and
flatness increase near the wall at high Reynolds number. This could be attributed to
the stronger footprint of the log-layer structures on the near-wall turbulence, which
becomes more intermittent. The skewness profiles exhibit a qualitatively similar
behavior, that is, positive values very close to the wall and a relaxation towards a
nearly Gaussian behavior (Spuq « 0) above the viscous sub-layer. However, Spuq is
clearly negative for case T1 beyond y` « 10, while the profile for the high-Reynolds
case T3 is much closer to zero, i.e., closer to a purely Gaussian behavior. This
could be attributed to the presence of a well-established quasi-logarithmic layer in
the latter case. The corresponding flatness distributions in this region approach a
value of 3 in all cases, see figure 5.6(b), which confirms the nearly Gaussian be-
havior observed in the skewness profiles. However, F puq also exhibits an apparent
Reynolds number dependency beyond y` « 30, since increasingly lower values than
3 are observed at higher Reynolds number. This implies that the tailedness of the
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Figure 5.6: Higher-order moments of the streamwise velocity: (a) skewness, (b) flatness, (c) density-
scaled third order central moment ρ3{2u13i {τ

3{2
w (black) and ρ3{2u23

i {τ
3{2
w (orange), and (d) density-

scaled fourth order central moment ρ
´
u14i

¯1{2
{τw (black) and ρ

´
u24
i

¯1{2
{τw (orange).

corresponding probability distribution decreases with increasing Reynolds number.
Moreover, all cases exhibit very similar intermittent behavior towards the edge of
the boundary layer, i.e., negative skewness and large flatness, which is caused by
outward excursions of low-speed flow into the free-stream. Wall-normal distribu-
tions of the intermittency coefficient, defined as the fraction of time that the flow
is turbulent, were also computed for the investigated tbls (not shown here) and do
not exhibit any apparent Reynolds number dependency.

Before concluding this section, the influence of density fluctuations, and there-
fore the validity of Morkovin’s hypothesis, on high-order statistics is assessed. As
already mentioned, Morkovin’s hypothesis implies that any statistical moment is
independent of the averaging procedure, i.e., Reynolds or Favre averaging. If that
is the case, the following relation would hold for the third order central moment of
a velocity component [144]

ρ3{2u13i {τ3{2
w

?“ ρ3{2u23i {τ3{2
w . (5.4)
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A single prime denotes a fluctuation from the Reynolds-averaged mean (indicated
with an over-bar), while a double prime is used for fluctuations from Favre-averaged
quantities. A similar relation would also apply for the fourth order central moment,
i.e.,

ρ

b
u14i {τw ?“ ρ

b
u24i {τw. (5.5)

In order to assess whether these relations indeed hold in the present les data,
both averaging procedures are compared in figures 5.6(c) and 5.6(d) for the third-
order and fourth-order central moments of the streamwise velocity, respectively. As
observed, a clear disagreement is found for the third-order moment, see figure 5.6(c),
where the Reynolds-averaged (black) and Favre-averaged (orange) profiles do not
collapse for the cases considered. Patel et al. [144] reported a similar disagreement
for their dns data of variable-property turbulent channel flows at low Mach number.
Our simulations confirm that Morkovin’s hypothesis does not hold for third-order
statistics of wall-bounded turbulence also in the compressible flow regime. In terms
of the fourth order central moments, see figure 5.6(d), good collapse is found between
the Reynolds and Favre averaged profiles in all cases, also in agreement with the
findings of Patel et al. [144]. Note that this also applies for the other velocity
components, but for the sake of brevity the corresponding statistical moments are
not included in this paper.

5.3.3. Turbulence structure
The effect of Reynolds numbers on the statistical properties of turbulent structures is
analyzed next. As a starting point, we consider the pre-multiplied streamwise energy
spectra of streamwise velocity fluctuations, which are shown in figure 5.7. Only the
last third of the les domain has been considered for the spectra, which have been
calculated at selected wall-normal locations that coincide with the computational
grid (no interpolation used) and appear approximately equispaced in logarithmic
scale. The spectra have been estimated using Welch’s algorithm with Hamming
windows and 3 segments with 75% overlap, in addition to the averaging in spanwise
direction and in time.

As observed, all spectral distributions bear clear similarities very close to the
wall, where a peak corresponding to the signature of energetic near-wall streaks is
found at y` « 15 in all cases. The wavelength associated with these high- and
low-speed regions is approximately constant in viscous units and equal to λx̀ « 700,
which is in good agreement with previous studies [115, 138]. Further away from the
wall, however, figure 5.7(c) reveals the emergence of energy at high wavelengths for
the high-Reynolds case T3 that is absent in the spectrum for the other cases. This
energy increase is already noticeable close to the wall and reaches a local maximum
in the quasi-logarithmic region, at about y{δ0 « 0.1. The wavelength associated with
this local peak is about λx{δ0 « 6, which is much larger than the one associated to
the near-wall streaks. Clearly, this outer peak is the signature of the emergent large-
scale motions in this region. Such bimodal configuration of the streamwise spectra in
figure 5.7(c), with two competing energetic peaks at different wavelengths, evidences
inner/outer scale separation and the genuinely high-Reynolds nature of case T3 [138].
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Figure 5.7: Streamwise spectra of streamwise velocity fluctuations for (a) case T1, (b) case T2, and
(c) case T3.
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Figure 5.8: Two-point autocorrelation map of streamwise velocity fluctuations Ru,u for (a) case
T1, (b) case T2, and (c) case T3. The reference wall-normal location is yref {δ0 “ 0.2 and the solid
black lines indicate contour levels from 0.1 to 0.9 in increments of 0.1. In all figures, a blue line
with an inclination of 14˝ intersecting the maximum correlation point is included for reference.

The streamwise-wall-normal organization of the large-scale turbulent structures
is further characterized in figure 5.8 by the two-point autocorrelation map of stream-
wise velocity fluctuations

Ruup∆x, yq “ xu1px, y, z, tqu1px`∆x, yref , z, tqy
σupyqσupyref q , (5.6)

where the reference wall-normal location yref is set at 0.2δ0 following Bross et al.
[119]. The angle brackets are employed to denote time-, spanwise-, and also streamwise-
averaging, over a domain 4δ0 long and centered at x{δ0, in “ 40.

The extent of the correlation noticeably increases with increasing Reynolds num-
ber, see figure 5.8(c), which evidences the corresponding enlargement of the emer-
gent outer-layer motions. The scale interaction between these structures and the
near-wall turbulence is also reflected by the increased correlation magnitudes at the
wall. This wall-coherence is established at an oblique angle with respect to the
free-stream flow, which implies a forward inclination of the log-layer structures. De-
spite the scatter of the reported inclination angles in literature [146], recent studies
reveal a typical eddy orientation between 12˝ and 20˝ [113, 119, 147, 148]. The
correlation maps in figures 5.8(a) and 5.8(b) for the low- and moderate-Reynolds
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Figure 5.9: Two-point autocorrelation functions of the velocity components in the spanwise direc-
tion at (left) y` « 15, and (right) y{δ0 « 0.1. Panels (a) and (b) correspond to case T1, panels
(c) and (d) to case T2, and panels (e) and (f) to case T3. Line styles legend: streamwise velocity
( ), wall-normal velocity ( ), and spanwise velocity ( ).

cases conform well with an inclination of 14˝ in the outer part of the boundary layer,
which corresponds to the value reported by Marusic and Heuer [147] over a wide
range of Reynolds numbers. This inclination is indicated in the figures with a solid
blue line. The high-Reynolds case T3, in turn, exhibits a slightly smaller inclination
above yref of approximately 10˝, see figure 5.8(c). We also note that all correlation
maps conform to more shallow angles between 8˝ and 11˝ near the wall (in the
region below the reference height). In view of this, a line fit of the peak points in
wall-normal direction is considered to be a poor representation of the inclination of
the correlation map, and would certainly lead to a smaller inclination angle than
14˝ in all cases.

The average spanwise spacing of the dominant turbulent structures is assessed
from spanwise autocorrelation functions and related spectra to better understand
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their three-dimensional arrangement. Correlation functions of the velocity com-
ponents at two different wall-normal locations, i.e., y` « 15 and y{δ0 « 0.1, are
shown in figure 5.9. Correlations have been obtained by first applying the Fourier
transform to the instantaneous fluctuation distribution in the spanwise direction,
then computing the power spectrum and averaging (in Fourier space) over all in-
stances, and finally transforming back to physical space. Note that all variables
(also thermodynamic variables, which are not shown) fully de-correlate for a spac-
ing corresponding to δ0, see the rights panels of figure 5.9, which is smaller than
the domain half-width Lz{2. This confirms that turbulence dynamics in the present
simulations do not suffer from limited-span effects.

In all cases, the streamwise velocity correlation calculated at y` « 15 has a
local minimum at ∆z` « 50. This provides an indication of the spanwise spacing
between adjacent near-wall streaks, which are characterized by velocity fluctuations
of opposite sign. In reference investigations of compressible tbls at lower Reynolds
numbers [135, 149], such local minimum is actually global and associated with neg-
ative correlation values. As shown in the left panels of figure 5.9, this is true for the
low-Reynolds case but no longer holds for the moderate and high-Reynolds tbls,
where the local minimum near the axis is found at Ruu « 0 and Ruu « 0.15 respec-
tively. While the alternating streak pattern of low- and high-momentum regions
near the wall is still present in these cases, the increasingly positive value of the lo-
cal minimum highlights the organizing influence of the emergent outer-layer motions
on the small-scale fluctuations near the wall. This influence is better illustrated in
figure 5.10 which directly compares the streamwise velocity correlation at y` « 15
with the one obtained at y{δ0 « 0.1. For the high-Reynolds case, see figure 5.10(b),
the global minimum of the near-wall correlation (black line) clearly coincides with
the global minimum of the correlation at y{δ0 « 0.1 (orange line). This further evi-
dences the imprint of the log-layer on the near-wall region at high Reynolds number.
Inspired by the analysis of Hutchins and Marusic [138], we also show correlations
computed from spatially high-pass filtered and spatially low-pass filtered instanta-
neous data at y` « 15 to highlight the separate contribution of small scales and
large scales to the total correlation, see figure 5.10(b). Filtering is performed in
spanwise direction with a finite impulse response (fir) filter and cutoff wavelengths
λz̀ “ 300 for the high-pass and λz{δ0 “ 0.2 for the low-pass filtering operation.
The correlation obtained from the spatially low-pass filtered flowfield (dash-dotted
line) closely follows the correlation calculated at y{δ0 « 0.1 for large spacing, which
shows that the large-scale contribution at y` « 15 can be associated with the im-
print of log-layer structures. The correlation computed from the spatially high-pass
filtered flow field, on the other hand, recovers the negative peak near the axis (see
the dotted line) thus regaining qualitative agreement with low-Reynolds tbl data
in absence of scale separation.

Besides the alternating streaks of high- and low-speed fluid, the near-wall region
is also populated with vortical structures [146]. Together, these two types of coherent
motions are responsible for the near-wall turbulence regeneration cycle [140, 150].
The presence of such vortices, mostly oriented in the streamwise direction, explains
the observed near-wall distribution of the wall-normal velocity correlation functions
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Figure 5.10: Spanwise autocorrelation function of streamwise velocity fluctuations for (a) the low-
Reynolds case T1, and (b) the high-Reynolds case T3 at y` « 15 (black solid line) and y{δ0 « 0.1
(orange line). Panel (b) additionally includes the correlation computed from the spatially high-
pass filtered flowfield (dotted line) and the spatially low-pass filtered flowfield (dash-dotted line)
at y` « 15.

in figure 5.9. The global minimum, located at ∆z` « 35, provides an indication of
the average vortex spacing in spanwise direction. In agreement with previous works
[135, 146], profiles of streamwise vorticity fluctuations in the wall-normal direction
(not shown here) have a local maximum at y` « 15 and a local minimum at y` « 5
in all cases. These heights provide additional insights into the average vortex core
location and radial extent [135, 140] and appear insensitive to the Reynolds number
in the present simulations.

The spanwise spectra associated with the spanwise velocity correlation functions
in figure 5.9 is included in figure 5.11. At y` « 15, see figure 5.11(a), the inner-
scaled spectra excellently collapse at low wavelengths up to the local peak at λz̀ «
100, which is a global peak for case T1. This confirms the characteristic spanwise
spacing of the near-wall streaks inferred from the spatial correlations, which is in
good agreement with previous works [114, 135]. The location of the spectral peak
for the higher-Reynolds cases, however, is found at much higher wavelengths than
λz̀ « 100, and is associated with increasing energy levels. This trend is attributed
to the imprint of the emergent outer-layer motions, which appear spaced much
further apart in spanwise direction [113]. Their approximate spacing is deduced
from the spectra at y{δ0 « 0.1, which is shown in figure 5.11(b) in outer scaling.
As observed, all spectra exhibit a peak at λz « 0.7δ0 that reveals the average
spacing of outer-layer structures. While the peak energy is higher for case T3, the
fact that the corresponding wavelength remains unaffected by Reynolds number
indicates its negligible impact on the width of turbulent structures away from the
wall. This observation is in agreement with the experimental results of Hutchins
and Marusic [137] and Bross et al. [119]. Figure 5.11(b) also highlights the collapse
of the spectral distributions for cases T2 and T3 along the inertial sub-range, which
extends for over a decade with close κ´5{3

z “ p2π{λzq´5{3 behavior characteristic of
local isotropy (indicated with a dotted line).

The characteristic size of turbulent structures is further established by means of
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Figure 5.11: Spanwise spectra of streamwise velocity fluctuations at (a) y` « 15 in inner scaling,
and (b) y{δ0 « 0.1 in outer scaling. The dotted line in (b) indicates κ´5{3

z “ p2π{λzq´5{3 behavior.

the corresponding streamwise and spanwise integral length scales, which are reported
in figure 5.12 for all cases. Length scales are here defined as the area between the
corresponding correlation function and the isoline Rαα{Rααp0q “ 0.05 [113]. The
largest streamwise length scales, as shown in figures 5.12(a–c), are clearly associated
with the streamwise velocity component (indicated with upward pointing triangles).
For the low-Reynolds case T1, the maximum value of the corresponding scale distri-
bution for this variable is found at y` « 15 and is related to the near-wall streaks.
For the other cases, however, there is a scale increase from the wall towards the quasi-
log layer, where the peak value is found at y{δ0 « 0.1 ´ 0.2. This scale increase is
related to the emergent coherent structures in this region, whose mean streamwise
elongation is also Reynolds number dependent. As observed, the largest length-
scales are found for the high-Reynolds case T3 which evidences the enlargement of
the outer-layer motions with increasing Reynolds number. The corresponding val-
ues, which exceed 1.3δ0 at y{δ0 « 0.1, are slightly lower than those experimentally
measured by Ganapathisubramani [151] on a Mach 2.0 tbl at Reτ “ 5800, where
the peak value was attained at y{δ0 « 0.4. This could be attributed to the lower
Reynolds number of case T3 compared to the experiments. In figure 5.12(c), an
emerging local peak is visible at approximately half the boundary layer thickness,
and this peak could eventually become global at higher Reynolds numbers. Re-
garding the streamwise scales associated with the temperature field, indicated with
circles in figures 5.12(a–c), they follow the same trend as those for the streamwise
velocity, albeit with approximately half the magnitude. This is in very good agree-
ment with the observations of Pirozzoli and Bernardini [113]. The cross-stream
velocity components, in turn, exhibit much smaller streamwise length scales, with
comparable values ranging from 0.1δ0 to 0.3δ0. In addition, they appear weakly
dependent on the Reynolds number, with slightly lower values measured for the
high-Reynolds case T3.

Spanwise length scales for the considered variables are included in figures 5.12(d–
f). In all cases, the streamwise velocity, spanwise velocity and temperature scale
distributions exhibit a steep rise near the wall, and they progressively relax towards
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Figure 5.12: Integral length scale distributions measured in the streamwise direction (Lx, top
panels) and spanwise direction (Lz , bottom panels) for: (a,d) case T1; (b,e) case T2; (c,f) case
T3. Marker legend: streamwise velocity (N), wall-normal velocity (İ), spanwise velocity (�) and
temperature (‚).

values between 0.2δ0 to 0.3δ0 within half the boundary layer thickness. Interestingly,
the aforementioned scale distributions appear to overlap at high Reynolds number,
see figure 5.12(f) for case T3. At low Reynolds number, where these structures are
absent, the reported scale distributions are visibly different, see figure 5.12(d) for
case T1, and the largest scales are associated with the spanwise velocity. In terms of
the wall-normal velocity, its corresponding scales present a different behavior than
the rest. As observed, they first exhibit a moderate increase near the wall in all
cases, which becomes steeper in the outer part of the boundary layer where the
scales become the largest.

Another aspect connected to the turbulence structure in tbl flows involves the
presence of confined zones with relatively uniform streamwise momentum, the so-
called uniform momentum regions (umzs). Adrian et al. [121] attributed umzs to
coherent hairpin vortices in the flow, which tend to align in streamwise direction and
form packets with similar convection speeds. Within this paradigm, thin regions of
high Bu{By appear due to the continuous passage of hairpin heads, which translates
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into wall-normal step-like jumps in the instantaneous streamwise momentum rather
than a smooth variation [122]. More recently, the experimental work of Laskari
et al. [123] linked the existence of umzs to different large-scale events in the quasi-
logarithmic layer, which meander in spanwise direction and generate instantaneous
low- and high-momentum regions across the measurement plane.

The presence of umzs and their dependence on the Reynolds number is well
documented for incompressible tbls [121–123] but very few studies are available for
compressible tbls. The experimental works of Williams et al. [152] and Bross et al.
[119] are among the few studies that provide evidence for the presence of umzs in
high-speed tbls, which appear to be similar to their incompressible counterparts.
More recently, Cogo et al. [116] also observed a zonal distribution for the static
temperature in their dns data of high-speed tbls with heat transfer. The present
les database offers a unique opportunity to further support these claims as well as
effectively quantify Reynolds number effects on the resulting number of umzs, which
has not been yet documented for compressible tbls.

The streamwise velocity u{u8 as well as the static temperature T {T8 are there-
fore considered for the detection of uniform zones (uzs), which proceeds as follows.
First, the quantity of interest is sampled within a streamwise-wall-normal slice to
generate its corresponding (instantaneous) probability density function (pdf). The
required bins for the construction of the pdf are defined in steps of 0.5uτ for
u{u8 P r0, 1.05s. The associated bin size for T {T8 P r0.95, Tw{T8s, in turn, is
selected so as to match the number of bins employed for u{u8. Once the target
pdfs are assembled, a peak detection algorithm identifies the location of the various
peaks within each pdf as well as the least probable value between peaks. The re-
sulting number of peaks thus corresponds to the number of uzs for the quantity of
interest in the considered slice, while the least probable values between the detected
peaks define the boundaries of the uzs. The parameter set for the peak detection
algorithm is adopted from Laskari et al. [123] and corresponds to a minimum peak
height of 0.3, a minimum prominence (i.e., distance from neighboring values) of
0.05, and at least two bins between adjacent peaks.

For an optimum evaluation of uzs, the flow above the turbulent/non-turbulent
interface (tnti) is excluded from the analysis. This is required to prevent the free-
stream velocity from creating a dominant peak in the corresponding pdf that would
inhibit the detection of other peaks in its vicinity [122]. The employed definition
for the tnti is adopted from Cogo et al. [116] and is based on the square of the
momentum defect ∆p induced by the tbl, i.e,

∆p “ pρu´ ρ8u8q2 ` pρv ´ ρ8v8q2
pρ8u8q2 ` pρ8v8q2 “ 0.001. (5.7)

In addition, the region below y` “ 100 is also excluded for consistency with ex-
perimental datasets, since this region is often unavailable in experiments [122]. In
streamwise direction, the considered domain is also finite to prevent the result-
ing pdf from being smoothed out [122]. Following Laskari et al. [123], we con-
sider a length of approximately 2600l` in streamwise direction and centered around
x{δ0, in “ 40.
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Figure 5.13: (a) Instantaneous impression of the streamwise velocity field, and (b) corresponding
pdf of the streamwise velocity magnitude. In (a), the tnti and the edge of the identified uzs are
respectively indicated with black and gray lines, while the region considered for the analysis of uzs
is outlined in blue. In (b), peak values identified with the peak search algorithm are indicated with
blue circles.

Figure 5.13(a) includes an example of an instantaneous streamwise velocity field
for case T3 where the region considered for the detection of uzs is outlined in blue.
The boundaries of the detected uzs are indicated in gray, and the tnti is shown
in black. As observed, the identified boundaries of the uzs are in very good qual-
itative agreement with the instantaneous flow organization, which conforms to a
zonal structure. The corresponding instantaneous pdf of the sampling region of
figure 5.13(a) is included in figure 5.13(b) and shows the three distinct peaks that
correspond to the modal velocities of the identified uzs [121].

To accurately assess Reynolds number effects on the number of uzs, we consider
two slices per instantaneous snapshot, which leads to an ensemble of „500 slices
per case. The extracted slices within one snapshot are separated over a distance
1.3δ0 in spanwise direction to ensure proper data decorrelation. The corresponding
number of uzs is then identified for each slice, and the pdf of the number of uzs
is assembled per variable and for each of the investigated tbls. The resulting pdfs
are shown in figure 5.14(a) and confirm the observation of de Silva et al. [122] for
incompressible wall-bounded flows that the corresponding number of uzs increases
with the Reynolds number. This is not only valid for the streamwise velocity (shown
in black) but also for the temperature field (shown in red), which exhibits an average
factor of 1.4 more zones than the streamwise velocity. This value is close to the „1.6
factor reported by Cogo et al. [116]. We also note that the pdf for the streamwise
velocity field of T2 is in very good agreement with the corresponding pdf for the
lowest Reynolds case of de Silva et al. [122] (Reτ « 1200) which suggests that the
uzs are not strongly affected by compressibility.

Figure 5.14(b) shows the variation of the average number of uzs (Nuz) with
Reτ for the cases considered, with black and red markers distinguishing between
streamwise velocity and temperature data. As observed, both distributions exhibit
an increase with Reynolds number that conforms with the logarithmic trend de-
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Figure 5.14: (a) pdf of uzs for the investigated tbls, and (b) evolution of the average number of
uzs with Reτ . Color legend: streamwise velocity (black) and static temperature (red).

rived by de Silva et al. [122] from incompressible streamwise velocity data, which is
indicated with a dashed line. This further supports the intrinsic relation between
uzs and outer-layer motions, and confirms the negligible influence of compressibility
effects on the uz characteristics. Note that the actual value of Nuz for the stream-
wise velocity appears slightly under-predicted compared to the incompressible data;
however, the analysis should only concern trends rather than absolute values, and
these appear insensitive to the employed parameter set in the peak search algorithm
(confirmed with a separate parametric study). As previously stated, the employed
parameters were adopted from previous works and modifications to deliberately
match Nuz with reported values in literature were not attempted.

Before concluding this section, we consider the instantaneous flow organization to
provide a visual impression of the above-described turbulent structures. Streamwise
velocity fluctuations are shown in figure 5.15 at two wall-parallel planes, y` « 15
and y{δ0 « 0.1, to illustrate the emerging scale separation and associated scale
interaction with increasing Reynolds number. At y` « 15, see the left panels of
figure 5.15, the characteristic streaky pattern of low- and high-momentum flow is
present in all cases. However, since these structures become progressively finer with
Reynolds number, they are hardly visible in figure 5.15(e) for case T3. At y{δ0 « 0.1,
in contrast, the corresponding velocity structures for this case are much larger and
recognizable, see figure 5.15(f). In addition, they leave a very distinct signature near
the wall, since the large-scale fluctuations in figure 5.15(e) conform closely to the
large-scale structures in figure 5.15(f). This illustrates the correspondence between
the log-layer and the near-wall region, which is not so apparent for the moderate
Reynolds case T2 when comparing figures 5.15(c) and 5.15(d). For the low-Reynolds
case T1, the observed structures at y{δ0 « 0.1 exhibit similar sizes to those in the
viscous sub-layer, see figures 5.15(a) and 5.15(b), which is expected in the absence
of scale separation.

A three-dimensional view of velocity structures is included in figure 5.16 for each
case, the Reynolds number increasing from top to bottom. In addition, the swirling
strength criterion λci is employed to reveal the corresponding vortical structures
[153]. As observed, velocity streaks with similar spanwise spacing are present in
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Figure 5.15: Instantaneous streamwise velocity field at y` « 15 (left panels) and y{δ0 « 0.1 (right
panels): (a,b) case T1; (c,d) case T2; (e,f) case T3. Contour levels from u1{u8 “ ´0.25 (dark
shade) to u1{u8 “ 0.25 (light shade).

all cases. For the low-Reynolds case T1, see figure 5.16(a), the corresponding vor-
tical structures are of considerable size and resemble hairpin vortices. The higher
Reynolds cases T2 and T3, in contrast, exhibit vortical structures of much smaller
size, see figures 5.16(b) and 5.16(c), which have not been filtered out by the em-
ployed computational grid. In agreement with the observations of Pirozzoli and
Bernardini [113], these small-scale structures exhibit a tubular shape that does not
conform to the classical hairpin eddy (see the close-up view on the right panels).

5.3.4. Thermodynamic statistics
The transport of internal energy, the transfer between kinetic and internal energy,
and the corresponding fluctuations of the thermodynamic state properties play im-
portant roles in compressible turbulence. As a consequence, an accurate characteri-
zation of thermodynamic fluctuations and their mutual interaction with the velocity
field is necessary for model development.

Figure 5.17 reports fluctuation profiles of thermodynamic variables in both inner
scaling (left panels) and semi-local scaling (right panels). As observed, the isother-
mal boundary condition inhibits temperature fluctuations at the wall, which leads
to density and pressure fluctuations of similar normalized magnitudes in the linear
sub-layer. Additionally, their fluctuation intensity at the wall is observed to progres-
sively increase with Reynolds number, see figures 5.17(a,c). This is a consequence
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of the modulating influence of the outer layer motions [113]. Experimental evidence
suggest a logarithmic increase of the inner-scaled wall-pressure fluctuations with
Reτ . While the corresponding values for cases T1 and T2 conform well with the
empirical correlation of Farabee and Casarella [154], within 2% and 7% error from
the respective predicted values, inner-scaled wall-pressure fluctuations for T3 exceed
the predicted values by a slightly larger margin. This is attributed to the spurious
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Figure 5.17: Wall-normal distribution of the inner-scaled (left panels) and semi-locally scaled
(right panels) thermodynamic fluctuations: (a,b) density; (c,d) temperature; (e,f) pressure. The
distribution of total temperature fluctuations is additionally included in panels (e) and (f) (orange
lines), and Mτ “ uτ pγRTwq´1{2.

noise generated by the digital filter, which increases in magnitude with the inflow
Reynolds number and requires long distances to relax [116].

Away from the wall, inner-scaled temperature fluctuations attain their peak value
in the buffer layer, see figure 5.17(e), while the inner-scaled density fluctuations in
figure 5.17(a) clearly peak at the boundary layer edge. This is a consequence of
the mean temperature and density distributions in wall-normal direction, which
stimulate their corresponding fluctuations in opposite ways [116]. If mean-property
variation effects are taken into account, for instance, by considering the semi-local
scaling shown on figures 5.17(b,f), temperature and density fluctuations exhibit very
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Figure 5.18: Wall-normal distribution of the correlation coefficients between (a) density and tem-
perature, (b) density and pressure, and (c) pressure and temperature.

similar behavior across the boundary layer (except for the near-wall region). This
highlights the close relation between these two variables in compressible tbls. The
resulting fluctuation profiles are almost flat from the upper end of the buffer layer
until the boundary layer edge, where a peak seems to emerge at high Reynolds
number. In addition, the intensity of the fluctuations across the boundary layer is
also dependent on the Reynolds number.

The fluctuating pressure, on the other hand, is not modulated by mean-property
variation effects because the mean-pressure is approximately constant. At the same
time, the corresponding fluctuations across the layer do not resemble those asso-
ciated with the temperature and density in any of the considered scalings, which
indicates a lower degree of correlation, i.e., higher decoupling, between them (see
next paragraph). As observed in figures 5.17(c,d), pressure fluctuations are largest
in the near-wall region, where the strongest vorticity fluctuations are found, and pro-
gressively decrease along the quasi-logarithmic region and towards the free-stream
flow. While their behavior is qualitatively similar for the different tbls considered,
the intensity of the pressure fluctuations is clearly sensitive to the Reynolds number
across the whole layer, being highest for case T3.

The correlation coefficients between thermodynamic variables are shown in fig-
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ure 5.18, where no systematic Reynolds number effects are observed. The density-
temperature correlation of figure 5.18(a) confirms the close relation between these
two variables, with RρT being approximately ´0.9 in the buffer layer and continuing
to approach ´1 with increasing wall-distance. The fact that they are anti-correlated
clearly depicts the non-isentropic behavior of the thermodynamic fluctuations in-
side the boundary layer. Beyond the boundary layer edge, in turn, the correlation
changes drastically and approaches unity within half a boundary layer thickness.
This is a consequence of the acoustic disturbances dominating the free-stream flow,
which are of isentropic nature. The density-pressure correlation, see figure 5.18(b), is
unity at the wall due to the isothermal boundary condition, which inhibits tempera-
ture fluctuations. The correlation then drops to a value of about 0.2 within the buffer
layer and increases slightly towards the intermittent boundary layer edge, where it
levels off and starts to decrease again. Similar as for the density-temperature corre-
lation, the density-pressure correlation changes trend outside the tbl and reaches
unity within 1.5δ0 from the wall. This is also the case for the pressure-temperature
correlation in figure 5.18(c). Interestingly, this correlation is positive near the wall
but changes sign inside the boundary layer. As observed, a local maximum of
approximately 0.4 is first attained in the viscous sub-layer and is followed by a pro-
gressive decrease that crosses RpT “ 0 at y{δ0 « 0.3. The correlation then levels off
to a value of about ´0.3 to ´0.4 near the edge of the boundary layer.

The turbulent pressure diffusion is analyzed in figures 5.19(a) and 5.19(b), where
the coefficients for the pressure-streamwise velocity and pressure-wall-normal veloc-
ity correlations are respectively shown. In agreement with the dns data of Geroly-
mos and Vallet [155] for compressible channel flows, both correlations are very weak
within the boundary layer except for Rvp in the near-wall region y` À 10. This local
increase is associated with considerable transport of tke away from the wall, since
the corresponding pressure-diffusion term in the tke transport equation is ´Byrp1v2s
[111]. Furthermore, Rup also becomes increasingly negative at the boundary layer
edge, see figure 5.19(a), which is attributed to outward excursions of low-speed ro-
tational fluid towards the free-stream. The pressure-velocity correlations do not
exhibit any strong or consistent Reynolds number dependence.

The relationship between the streamwise velocity and the temperature fields is
considered next. Under the assumption of constant mean total temperature and neg-
ligible total temperature fluctuations, Morkovin [105] proposed a series of relations
for a equilibrium zero-pressure gradient tbl over an adiabatic wall, the so-called
strong Reynolds analogies (sra). Three of these relations are

a
ĄT 22{ rT

pγ ´ 1qM2
a

Ău22{ru
« 1, (5.8)

RuT “
Ću2T 2a
Ău22

a
ĄT 22

« ´1, (5.9)

Prt “ r´ρu2v2spB rT {Byq
r´ρv2T 2spBru{Byq « 1, (5.10)
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Figure 5.19: Wall-normal distribution of the correlation coefficients between the pressure and (a)
the streamwise velocity, and (b) the wall-normal velocity.

with M2 “ ru2{γR rT .
These relations have been extensively employed for modeling purposes despite

their rather questionable agreement with experimental or numerical data [106, 111,
113, 115]. For instance, the assumption of constant total temperature is a fair ap-
proximation for the present quasi-adiabatic les data (variations do not exceed 1.5%
of T0,8 “ Tw), while negligible total temperature fluctuations is not. The distri-
bution of total temperature fluctuations in wall-normal direction is also included
in figures 5.17(e) and 5.17(f) for the investigated tbls, where it is clear that ĄT 220
exhibits comparable magnitudes as ĄT 22.

Evaluation of equations (5.8)–(5.10) reflects the aforementioned deviation from
the sra assumptions. For instance, the streamwise velocity-temperature correlations
and the turbulent Prandtl number shown in figures 5.20(a) and 5.20(b) are clearly
not unity throughout the boundary layer. The distribution for ´RuT exhibits a
peak value of approximately 0.9 in the buffer layer. In agreement with the dns
data of Pirozzoli and Bernardini [113], the correlation appears weakly dependent
on the Reynolds number near the wall. However, no apparent Reynolds number
dependence can be identified above y{δ0 « 0.3, where all correlations exhibit a
value between 0.5 and 0.6 before dropping again at the boundary layer edge. The
turbulent Prandtl number in figure 5.20(b) exhibits a somewhat similar trend as
´RuT throughout most of the boundary layer, with values slightly closer to unity
(between 0.6 and 0.8). At the edge of the boundary layer, however, its magnitude
starts to increase rather than decrease.

The sra relation (5.8) is evaluated in figure 5.21(a). Interestingly, all cases
exhibit a nearly-constant value close to unity within the first half of the boundary
layer. However, this is no longer true in the outer region, where all distributions
largely overshoot the expected unity value of the sra paradigm. In view of these
deviations, Huang et al. [110] proposed a so-called modified sra, in an attempt
to improve the agreement with non-adiabatic tbl data. The resulting expression,
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Figure 5.20: Wall-normal distribution of (a) the correlation coefficient between streamwise ve-
locity and temperature, and (b) the turbulent Prandtl number. Orange lines in (a) indicate the
corresponding distributions obtained with equation (5.13).
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Figure 5.21: Evaluation of (a) the sra relation (equation (5.8)), and (b) the modified version by
Huang et al. [110] (equation (5.11)).

which takes into account heat fluxes at the wall, is
a

ĄT 22{ rT
pγ ´ 1qM2

a
Ău22{ru

« 1
Prtr1´ pBĂT0{B rT qs

. (5.11)

We multiply the left-hand side by the denominator on the right-hand side, which
leads to a modified-sra indicator that also predicts unity. This indicator is evaluated
in figure 5.21(b) and shows clear improvements in the outer layer with respect
to the sra, in very good agreement with previous findings [106, 111, 113, 115].
Interestingly, the modified-sra also reveals a weak Reynolds number dependence
that is consistent throughout the boundary layer.

As shown by Guarini et al. [111], an improved expression for the streamwise
velocity-temperature correlation can be derived by considering the modified-sra
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version of Huang et al. [110] in the presence of non-negligible total temperature
fluctuations. By retaining only those terms that are linear in the fluctuations, total
temperature fluctuations can be expressed as

T 220 « T 22 ` ru2

c2p
u22 ` 2 ru

cp

?
T 22

?
u22RuT . (5.12)

Substituting equation (5.11) into equation (5.12) and solving for RuT yields

RuT « rT 220 {T 22 ´ 1s
r2Prtp1´ BĂT0{B rT qs

´ Prt
2

˜
1´ B

ĂT0

B rT

¸
. (5.13)

This expression is evaluated for the considered tbls, and the corresponding distri-
butions are included in figure 5.20(a) for comparison (orange lines). As observed,
they are in excellent agreement with the present les data. This further confirms
the relevance of total temperature fluctuations in compressible tbls as well as the
enhanced performance of the modified-sra relation by Huang et al. [110], even for
quasi-adiabatic wall conditions.

5.4. Summary
In this chapter, we have presented and discussed a database of compressible tbls
that covers more than a decade of friction Reynolds number Reτ , from 242 to 5554.
Effects of Reynolds number have been quantified on a variety of statistics, with spe-
cial attention on the size and topology of the turbulent structures populating the
tbl at high Reynolds number. Streamwise spectra of streamwise velocity fluctua-
tions show a clear separation between inner and outer scales in the high Reynolds
case, where energetic peaks are found at wavelengths of λx̀ « 700 and λx{δ0 « 5-6.
The latter peak corresponds to the signature of large-scale coherent structures in
the outer region, which exert a modulating influence on the near-wall turbulence
that is clearly visible in many of the metrics discussed. The spanwise spacing of
outer-layer motions, on the other hand, is found to be insensitive to the Reynolds
number and equal to „0.7δ0. Moreover, the Reτ -sensitivity of uniform momentum
regions (umzs) in the flow, which have been recently associated with outer-layer
motions, has also been assessed in this chapter. The resulting probability density
function of the umzs as well as the observed logarithmic increase in umz count with
Reτ is found to agree well with incompressible data, indicating that outer-layer dy-
namics are not strongly influenced by compressibility at Mach 2.0. And last but not
least, the remaining part of the chapter is devoted to the analysis of thermodynamic
fluctuations, which are clearly sensitive to the Reynolds number across the whole
boundary layer. When mean-property variation effects are taken into account, tem-
perature and density fluctuations are found to exhibit very similar behavior (except
for the near-wall region). The fluctuating pressure, in turn, is not modulated by
mean-property variation effects and does not resemble the fluctuating temperature
or density.



6
Reynolds number effects in
the baseline interaction

Having characterized the incoming tbl in detail (chapter 5), our attention is now
focused on the stbli flow of interest. The scope of this chapter is thus to 1q present
the essential features of strong stbli over flat-rigid walls, which complements our
discussion in the introduction chapter, and 2q to systematically asses the effect of
Reynolds number on multiple aspects of the interaction. Reynolds number effects
are quantified from a new wall-resolved les database that covers more than a decade
of Reτ (until Reτ “ 5118) and otherwise considers the same flow parameters and
simulation setup. The moderate-Reynolds stbli case presented in this chapter
(Reτ “ 1226) is then further investigated in chapter 7 in presence of a compliant
thin-panel located underneath the interaction.

6.1. Introduction
A relevant aspect concerning the physics of stbli is the effect of Reynolds number
on the interaction dynamics [156]. This knowledge is of paramount importance for
the extrapolation of laboratory data to full-scale flight conditions. Experimental
investigations of compression ramp and impinging-shock configurations have been
conducted for a wide variety of flow conditions [56] and have established a founda-
tion on the effect of this parameter along with Mach number and shock strength. For
instance, at high Reynolds number the separation shock emerges from deep within
the boundary layer which results in a highly intermittent wall-pressure signal [60].
For low-Reynolds interactions, in contrast, the compression at separation is more
diffused and the shock is located further away from the wall, which attenuates the
intermittency of the wall-pressure [157]. The low-frequency unsteadiness of the sep-
aration shock, however, appears rather unaffected by Reynolds number outside of
the boundary layer [158]. In a compression ramp flow at Mach 2.9, Settles et al. [59]

The content of this chapter has been accepted for publication in J. Fluid Mech. as: L. La-
guarda, S. Hickel, F. F. J. Schrijer and B. W. van Oudheusden. Reynolds number effects in
shock-wave/turbulent boundary-layer interactions, 2024.
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additionally found that the upstream influence length, that is, the distance between
the onset of separation and the corner location, consistently decreased with increas-
ing Reynolds number. The required shock strength for incipient separation, in turn,
was not so much affected in their experiments. Furthermore, three-dimensional ef-
fects become more important at high Reynolds number; Muck et al. [159] found that
the separation shock front becomes spanwise nonuniform, exhibiting a rippling ap-
pearance. This has been attributed to the incoming turbulent structures [160, 161],
more specifically to the passage of streamwise-elongated regions of relatively low-
and high-speed fluid that emerge in the approaching tbl at high Reynolds number
[38]. While an increasing body of work disproves the hypothesis by Ganapathisubra-
mani et al. [37, 162] that these very-long structures (often termed superstructures)
drive the low-frequency unsteadiness of strong stblis, they still exert an important
modulating influence.

High-fidelity numerical simulations are an attractive choice for the analysis of
complex flow phenomena in stblis [56]. Thanks to the ever-increasing spatio-
temporal resolution combined with non-intrusive access to all flow variables, simula-
tions overcome inherent experimental limitations and potentially offer better insights
into the interaction dynamics. A wide variety of configurations, shock strengths, and
Mach numbers have been numerically investigated. These studies have significantly
contributed to the fundamental understanding of stbli, see for example the recent
review paper of Gaitonde and Adler [192].

However, it is important to acknowledge that numerical works on stbli are gen-
erally available at lower Reynolds number than complementary experiments. This is
illustrated in table 6.1 which shows a compilation of relevant numerical and experi-
mental studies on canonical impinging stblis conducted over the past two decades.
Only high-fidelity simulations, i.e., dns and les, have been reported in the table
since these are the only numerical frameworks capable of capturing all relevant stbli
dynamics [36]. The very often prohibitive resolution requirements of dns are some-
what alleviated by les, but even les simulations of multi-scale turbulent flows are
still only feasible for a narrow range of conditions. For this reason, available numer-
ical studies on stbli are limited to low and moderate Reynolds numbers, mostly
below Reτ « 103 and Reθ « 104 in terms of friction and momentum-thickness
Reynolds number respectively, see table 6.1. These values are lower than those in
high-Reynolds experiments, e.g., Humble et al. [38, 58] or the works of Settles et al.
[59] and Dolling and Murphy [60] on compression ramps at Reθ « 7ˆ 104. For an
in-depth understanding of the practically relevant high-Reynolds regime of stbli,
this gap needs to be closed.

With this aim in mind, we numerically investigate the effect of Reynolds number
on impinging stbli with strong mean flow separation. The various Reynolds number
effects are quantified from a new wall-resolved les database that covers more than
a decade of Reτ (and Reθ) and otherwise considers the same flow parameters and
simulation setup. Specifically, the database is at free-stream Mach number M8 “
2.0 and includes a low-Reynolds interaction, with Reτ “ 355 (Reθ “ 1.6 ˆ 103), a
moderate-Reynolds interaction, with Reτ “ 1226 (Reθ “ 5.7 ˆ 103), in line with
previous numerical works as shown in table 6.1, and a high-Reynolds interaction,
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Table 6.1: Summary of turbulence-resolving numerical simulations and experimental studies on
canonical impinging stblis conducted over the past two decades (for adiabatic or quasi-adiabatic
wall conditions and up to M8 “ 3.0). The flow deflection induced by the impinging shock is
indicated as ϑ, and Reτ values with an asterix have been estimated from velocity profiles reported
in the corresponding work. Reθ “ ρ8u8θ{µ8; Reτ “ ρwuτ δ0{µw.

Authors M8 ϑ [deg.] Reθ Reτ notes

Pirozzoli and Grasso [40] 2.25 8 3725 800˚ dns
Priebe et al. [163] 2.9 12 2300 300˚ dns
Touber and Sandham [34, 164] 1.7-2.4 6-8 3000-5300 600˚ les
Morgan et al. [165] 2.05 8 2194 500˚ les
Pirozzoli et al. [166] 2.28 8 2280 - les
Pirozzoli and Bernardini [167] 2.28 8 2344 466 dns
Agostini et al. [168] 2.3 6.3-9.5 5100 800˚ les
Hadjadj [169] 2.28 8 5350 1000˚ les
Aubard et al. [170] 2.25 8 3725 600˚ les
Morgan et al. [36] 2.28 8 4800 500˚ les
Mullenix and Gaitonde [171] 2.33 9 3048 1000˚ les
Pasquariello et al. [172] 2.3 8.8 - 900 les
Agostini et al. [39] 2.0 9.5 5100 - les
Matheis and Hickel [46] 2.0, 3.0 11-24.5 - 671 les
Wang et al. [173] 2.7 9 4300 500˚ les
Jiang et al. [174] 2.0 8.5 4850 1000˚ les
Nichols et al. [62] 2.28 8, 9.5 2300 500˚ les
Pasquariello et al. [23] 3.0 19.6 14000 1523 les
Vyas et al. [175] 2.29 8 4640 800˚ les
Fang et al. [176] 2.25 8 3700 590 dns
Gao et al. [177] 2.0 7-10 1628 500˚ les
Gross et al. [178] 2.3 12.5 1100, 4300 - les
Bernardini et al. [179] 2.28 8 6882 1100 dns
Present low-Re case (B1) 2.0 10.66 1600 355 les
Present mid-Re case (B2) 2.0 10.66 5700 1226 les
Present high-Re case (B3) 2.0 10.66 26400 5118 les

Bookey et al. [180] 2.9 12 2400 300˚ Exp.
Dupont et al. [181] 2.3 8 6900 - Exp.
Humble et al. [38, 58] 2.05 8, 10 49200 8600 Exp.
Piponniau et al. [42] 2.28 8 5100 1100 Exp.
Souverein et al. [182] 1.7 6 50000 - Exp.
Van Oudheusden et al. [183] 2.05 8 49200 8600 Exp.
Webb et al. [184, 185] 2.33 7-10 24800 - Exp.
Giepman et al. [186] 2.0 12 - 3765 Exp.
Schreyer et al. [187] 2.0 8.5 5000 - Exp.
Daub et al. [29] 3.0 17.5, 20 14000 - Exp.
Threadgill and Bruce [188] 2.0 7-10 7700-8800 - Exp.
Rabey and Bruce [189] 2.0 10 7900 - Exp.
Grossman and Bruce [97] 2.0 12 10000 - Exp.
Dupont et al. [190] 2.3 8, 9.5 5100 800˚ Exp.
Rabey et al. [191] 2.0 12 10000 - Exp.
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Figure 6.1: Schematics of the computational domain.

with Reτ “ 5118 (Reθ “ 26.4ˆ 103). Notably, the latter significantly broadens the
parameter range of strong stblis covered with high-fidelity simulations, extending
towards the high-Reynolds conditions of experimental facilities. All cases exhibit
substantial flow reversal and have been integrated for a very long time, i.e., over 90
fft of the full domain length, to properly resolve low-frequency dynamics.

6.2. Computational setup
We consider an oblique shock impinging on a flat-plate tbl as illustrated in figure
6.1. Three les simulations have been performed for the investigated geometry,
with different Reynolds numbers but otherwise equal flow parameters. Table 6.2
summarizes common flow parameters. The free-stream Mach number is M8 “ 2.0
and stagnation temperature and pressure are T0 “ 288 K and p0 “ 356 kPa. The
99% velocity-based boundary layer thickness at the inflow plane δ0,in is set to 5.2
mm in all cases. The virtual shock generator is located outside of the computational
domain at a distance g “ 18.46δ0,i above the wall-plane, see figure 6.1, and induces a
free-stream flow deflection of ϑ “ 10.66˝. This value is 2˝ smaller than the maximum
theoretical value for a regular shock reflection at the investigated Mach number and
corresponds to an incident shock wave angle of φ “ 40.04˝. The channel height to
wedge hypotenuse ratio is g{w “ 1.16.

The considered fluid is air and details concerning the modelling of its properties
are provided in section 2.1.1. A case dependent Reynolds number is achieved by
modifying the free-stream dynamic viscosity µ8, see table 6.3, which also states the
corresponding velocity-based boundary layer thickness Reynolds number Reδ0,i and
friction Reynolds number Reτ,i at the inflow plane for each case. We hereafter refer
to the low-Reynolds stbli as case B1, to the moderate-Reynolds stbli as case B2,
and to the high-Reynolds stbli as case B3.

The computational domain is exactly the same as the one employed for the
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Table 6.2: Common flow parameters of all simulations.

M8 T0 p0 u8 δ0,in φ ϑ

2.0 288.2 K 355.6 kPa 507 m{s 5.2 mm 40.04˝ 10.66˝

Table 6.3: Case dependent flow parameters. Subscript in refers to the inflow plane.

Case µ8 [kg (m s)´1] Reδ0,in Reτ,in

B1 22.5ˆ 10´5 11.6ˆ 103 250
B2 5.34ˆ 10´5 50.1ˆ 103 935
B3 1.10ˆ 10´5 238ˆ 103 3725

analysis of the undisturbed tbl, see section 5.2 of the previous chapter. The only
difference is that here, in order to generate the stbli flow of interest, we also in-
troduce an incident shock and a trailing-edge expansion fan at the non-reflecting
top boundary, see figure 6.1. This is achieved by prescribing boundary conditions
according to the Rankine-Hugoniot relations and Prandtl-Meyer theory. The vir-
tual impingement point on the wall, referred to as ximp, is located far downstream
of the inflow plane, at a distance Limp “ 32δ0,in, to ensure proper boundary layer
relaxation to an equilibrium state before it interacts with the incident shock.

The adequacy of the selected grid resolution and domain size for the simulation
of stbli flows was verified through a preliminary grid- and domain-sensitivity study
conducted for case B2. This study involved four distinct grid resolutions and domain
dimensions, and the findings, presented in appendix C, confirm the convergence of
the stbli statistics at the selected inner-scaled grid resolution and outer-scaled
domain size, which are common to all cases.

Computations were performed with the numerical method described in section
2.1.2 and carried out as follows. First, the computational domain was initialized
with the inviscid shock reflection solution. An initial transient of 15 ftt of the
full domain length was next considered to allow the stbli flow to fully develop.
This initial transient was discarded from the statistical analysis. After that, the
fully developed stbli was then integrated for over 90 ftt to properly resolve low-
frequency dynamics. Flow statistics, obtained by averaging the instantaneous three-
dimensional solution in time and spanwise direction, were collected at a sampling
rate of ∆tu8{δ0,in « 0.013. Additionally, instantaneous three-dimensional snap-
shots of the interaction region were stored every ∆t « 0.5δ0,in{u8 for processing
purposes, yielding an ensemble size of 8192 snapshots per case.

6.3. Results and discussion
6.3.1. Incoming turbulence
Characterizing the undisturbed tbl is particularly instructive for the present anal-
ysis since Reynolds number effects in stbli also stem from the differences in the
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Table 6.4: Undisturbed tbl parameters at the virtual impingement point ximp without the shock
(computed from the wall-resolved les data presented in chapter 5). Reδ0 and Reθ are defined in
terms of free-stream quantities, see tables 6.3 and 6.2.

Case δ0 H uτ ρw Reδ0 Reθ Reτ

stbli tbla [mm] [ - ] [m s´1] [kg m´3] [ˆ10´3] [ˆ10´3] [ - ]

B1 T1 7.66 3.15 25.1 0.56 17.1 1.6 355
B2 T2 7.15 3.19 21.6 0.56 67.1 5.7 1226
B3 T3 7.23 3.12 18.8 0.55 331 26.4 5118

a Corresponding undisturbed tbl case in chapter 5.

tbl structure at low and high Reynolds number. As the reader may recall, these
differences were quantified on a wide variety of statistics in chapter 5, with special
attention on the size and topology of the turbulent structures populating the tbl.
The analysis on that chapter revealed that the structures located at y{δ0 « 0.1 are
5-6 boundary layer thicknesses long for the high-Reynolds case T3, the corresponding
undisturbed tbl of case B3, and approximately « 0.7δ0 wide for all cases.

To asses the potential modulating influence that these structures can exert on the
stbli dynamics, figure 6.2 presents two-dimensional power spectral density (psd)
maps of streamwise velocity fluctuations in the spanwise direction and in time at
various wall-normal locations. The corresponding fluctuation signals have been ex-
tracted from the stbli simulations upstream of the interaction, with a 90 ftt time
history that allows for the resolution of potential low-frequency tones that could
influence the interaction dynamics. The Strouhal number St “ fL{u8 is calcu-
lated using L “ δ0 on the right y-axis and L “ Lsep on the left y-axis, where Lsep
corresponds to the separation length, which is the distance between the mean sep-
aration and reattachment points in impinging stblis. For the estimation of the
two-dimensional spectra, signals have been divided into 10 overlapping segments
along the time axis (with a 65% overlap) and windowed with the Hann window
function.

Spectral distributions in figure 6.2 highlight the decrease in length and time scales
of near-wall turbulence as the Reynolds number increases. The left panel of figure
6.2(c) additionally shows the emergence of an energetic branch at high-wavelengths
(λz{δ0 ą 0.1) for the high-Reynolds at y` « 15, indicating the presence of energetic
outer-layer structures influencing the near-wall cycle. Further away from the wall,
at y « 0.1δ0, spectra exhibit the broadest widening for the high-Reynolds case, with
spectral energy shifting towards lower frequencies. The most energetic Strouhal
numbers, however, are still only measured down to StLsep « 0.1 (see the left y-
axis), which is higher than the typical 0.03 ´ 0.06 range reported in literature for
the low-frequency unsteadiness of stblis [30]. This observation suggests that, in
line with many other works in the literature, the dynamics of strong interactions
at StLsep ă 0.1 are primarily induced by a mechanism other than the passage of
incoming long-wavelength structures in our simulations.

Furthermore, figure 6.2 reveals the modulating influence of outer-layer struc-
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Figure 6.2: Two-dimensional power spectral density maps of streamwise velocity fluctuations in the
homogeneous spanwise direction and in time at three wall-normal locations upstream of the inves-
tigated stblis. Spectral maps are presented in pre-multiplied form and normalized by the variance,
with blue-filled contours depicting 4 isocontours from 0.075 to 0.3. Data has been extracted at
Reτ “ 310 for case B1, Reτ “ 1150 for case B2 and Reτ “ 4800 for case B3.

tures and bulges on the stbli flow. These structures, characterized by energetic
spanwise scales of order 0.1 to 1δ0 in all cases, can contribute to both moderate-
frequency (StLsep „ 0.1–1) and high-frequency (StLsep „ 10) spanwise wrinkling of
the separation-shock foot [159, 178].

A summary of relevant undisturbed tbl parameters evaluated at ximp is pro-
vided in table 6.4 for reference, where δ0 is used for scaling purposes in the following
unless otherwise stated.

6.3.2. Instantaneous STBLI configuration
We now turn our attention to the interaction between the above discussed tbls
and an oblique shock wave deflecting the free-stream flow by 10.66˝, see figure 6.1.
These interactions lead to the formation of the strong stblis of interest.

Instantaneous impressions of the temperature fields are provided in figure 6.3 to
illustrate the resulting stbli topology. Solid lines indicate instantaneous (yellow)
and mean (white) contours of zero streamwise velocity, and they show that the
adverse pressure gradient imposed by the incident shock is strong enough to cause
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Figure 6.3: Instantaneous temperature fields: (a) case B1, (b) case B2, and (c) case B3. Solid lines
indicate instantaneous (yellow) and mean (white) isocontours of zero streamwise velocity, and N
indicate mean separation and reattachment locations.

substantial flow separation in all cases. For the higher-Reynolds cases, that is, cases
B2 and B3, the separation shock emanates from deep within the tbl; for the low-
Reynolds case B1, the compression fan generated at the leading edge of the separated
flow region is only coalescing into a shock wave well outside the tbl. This is directly
linked to the height and curvature of the sonic line (from which compression waves
emanate), which is Reynolds number dependent and dictates the intensity of the
separation shock footprint on the surface [60].

At the separation shock foot, the flow is strongly decelerated and starts to detach.
Turbulent structures from the upstream tbl are seeded into the free shear layer,
and grow in size as they move away from the wall. The upper limit of the separation
bubble is eventually established as a result of the interaction between the detached
shear layer and the incident-transmitted shock, which turns the flow back towards
the surface and initiates the reattachment process. All stbli cases exhibit a very
mild concave streamline curvature near reattachment, which translates into a weak
compression fan instead of a coalesced reattachment shock. We also note that the
intersection between the incident and the separation shock occurs approximately
2.5δ0 above the wall in all cases.
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The organization of the investigated stbli flows is further examined by employ-
ing the swirling strength criterion λci to visualize instantaneous turbulent struc-
tures. This criterion is based on local spiraling motion, which in the vicinity of
vortex cores translates into a real eigenvalue λr plus a pair of complex conjugate
eigenvalues λcr ˘ iλci of the velocity gradient tensor [153]. In figure 6.4, coherent
vortical structures in the investigated stbli flows are visualized by plotting an iso-
surface of the magnitude of the imaginary part of the complex conjugate eigenvalue
λci. In this figure, turbulent structures are also colored by the local streamwise
velocity, and a numerical schlieren visualization is included in the background of
each rendering for reference. The Reynolds number increases from top to bottom.

Figure 6.4 reveals clear differences in terms of size and organization of turbulent
structures at low and high Reynolds number. Starting from the upstream tbl,
structures resembling hairpin vortices can be observed for the low-Reynolds case
B1, see figure 6.4(a). The higher Reynolds cases B2 and B3, in contrast, exhibit
structures of much smaller size that do not conform to the canonical hairpin vortex.
This is in agreement with the observations made by Pirozzoli and Bernardini [113]
on a M8 “ 2.0 tbl flow at Reτ « 1100.

At the leading edge of the interaction, where incoming turbulence is compressed
and the shear layer detaches from the wall, spanwise variations become more pro-
nounced at high Reynolds number, see figures 6.4(b) and 6.4(c). Based on the color
of the structures in the detaching shear layer, which indicates the magnitude of
the local streamwise velocity, such variations are associated with alternating regions
of low- and high-momentum fluid. Furthermore, within and above the high-speed
streaks, larger vortical structures emerge in the detached shear layer as it moves
away from the wall. These structures then break at the bubble apex, where the
overall turbulence intensity is reduced. Past the interaction region, the boundary
layer has clearly thickened and all cases exhibit more turbulent structures in the
outer region compared to the upstream (undisturbed) tbl.

The background schlieren visualizations emphasize the origin of the separation
shock deep within the tbl at high-Reynolds number, as seen when comparing figures
6.4(a) and 6.4(c). Furthermore, the schlieren visualization in figure 6.4(b) captures
the precise instant when the separation-shock front for the moderate-Reynolds case
B2 is instantaneously deformed by the passage of outer-layer bulges. These struc-
tures, of order δ0 in span, contribute to the wrinkling of the separation-shock foot
at both moderate and high frequencies, as discussed in section 6.3.1.

We have emphasized above that, despite the shift towards lower energetic fre-
quencies, the energetic frequency scales of the incoming turbulence for case B3 re-
main too high to significantly impact the low-frequency dynamics of stbli. However,
these structures, associated with larger streamwise wavelengths, still play a crucial
role in modulating the flow organization. This is illustrated in figure 6.5, which
shows instantaneous streamwise velocity fluctuations for case B3 at the same time
instance as in figure 6.4(c).

Three-dimensional isosurfaces of positive (red) and negative (blue) streamwise
velocity fluctuations are shown in figure 6.5(a), while figures 6.5(b–g) depict two-
dimensional contours on yz slices at px ´ ximpq{δ0 “ t´8.4, ´5.6, ´4.2, ´2, 1, 5u.
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Figure 6.4: Instantaneous vortical structures visualized with the λci criterion and coloured by the
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case B3 (|λci|δ0{u8 “ 5.6). A numerical schlieren is shown in the background slice for each case,
and the streamwise velocity colorbar applies to all renders.
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Figure 6.5: Instantaneous streamwise velocity fluctuations for case B3 at the same time in-
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0.12 (red), and panels (b–g) illustrate streamwise-normal cuts of (a) at px ´ ximpq{δ0 “

t´8.4, ´5.6, ´4.2, ´2, 1, 5u respectively. A numerical schlieren visualization is shown in the back-
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These visualizations reveal clear correlations between spanwise variations of the sep-
aration shock (gray lines) and the edge of the reverse-flow bubble (yellow lines) with
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Figure 6.6: (a) Time- and spanwise-averaged skin-friction evolution, and (b) probability of reverse
flow: ( ) case B1, ( ) case B2, ( ) case B3. Separated regions in (a) are shaded in red
and the gray lines denote the corresponding skin friction distribution for the undisturbed tbl.
Distributions in (b) denote the probability of reverse flow at the wall (black) and its maximum
value in wall-normal direction (blue).

alternating regions of low- and high-momentum fluid in the incoming tbl. At the
leading edge of the interaction, they strongly modulate the separation-shock foot,
see figure 6.5(c), where the passage of high-speed fluid brings the shock foot closer to
the wall and also delays separation right at the surface. Moreover, as these velocity
structures traverse the interaction, they reorganize and progressively exhibit much
stronger spatial coherence. This is evident when comparing figures 6.5(b), represent-
ing the upstream tbl, with figure 6.5(g), corresponding to a location downstream of
the interaction region. Spanwise autocorrelation functions at this two locations (not
shown here) clearly highlight this increase in coherence, which is observed across all
investigated Reynolds numbers.

Previous works have identified the resulting large-scale velocity structures be-
yond reattachment as the imprint of Görtler-like vortices in the interaction region
[23, 43, 193]. While these studies also argue that such structures could play a piv-
otal role in driving the low-frequency unsteadiness of stblis, their actual relevance
remains unclear. We attempted to extract any large-scale vortex from the turbulent
background by filtering the three-dimensional snapshot data, following the approach
by Pasquariello et al. [23]. However, the large-scale circulation is so weak compared
to the small-scale turbulence in the present interactions that it was not possible to
discern Görtler-like vortices in the filtered instantaneous snapshots. Their visualiza-
tion is, however, possible with modal decomposition techniques applied to the full
time series, as will be discussed in section 6.3.7.

6.3.3. Characteristics of the reverse-flow region
The spatial distributions of the average skin-friction coefficient, see figure 6.6(a),
exhibit a large and connected separation region characteristic of strong interactions.
The figure also shows that the location of the global minimum in xCf y is not af-
fected by Reynolds number and occurs approximately 1δ0 upstream of the inviscid
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Table 6.5: Topological properties of the interaction region.

Case Lsep
δ0

Lχ
δ0

∆xui
δ0

ϑsep φsep
Hsep

Lsep

Asep
1
2HsepLsep

Lu
Lsep

Au
Asep

B1 6.65 10.62 7.57 12.15˝ 41.75˝ 0.044 0.78 0.66 0.54
B2 6.74 11.16 7.19 12.24˝ 41.86˝ 0.056 1.04 0.56 0.53
B3 6.24 10.64 6.62 12.05˝ 41.63˝ 0.053 1.08 0.59 0.57

impingement point ximp. The overall skin-friction distribution within the reverse-
flow region, on the other hand, is noticeably different at low and high Reynolds
number. The low-Reynolds case B1, indicated with a dash-dotted line in figure
6.6(a), exhibits a W -shaped distribution characteristic of low-Reynolds interactions
[163, 170, 172], with a second negative peak right after separation. The higher
Reynolds cases have a skin-friction plateau in the first half of the separation bubble
that precedes the global minimum on the second half. Despite the aforementioned
differences, the separation length Lsep, i.e., the distance between mean separation
and reattachment points, does not appear to change noticeably in the investigated
Reynolds number range, see also table 6.5. This finding is in agreement with the
experimental work of Souverein et al. [182] and the comparative numerical study
of Morgan et al. [36] over the range Reθ “ 1500-–4800, where Lsep was also found
insensitive to the Reynolds number. Interestingly, though, the largest Lsep value
in our les database is found for case B2 (Lsep “ 6.74δ0), which indicates that the
effect of Reynolds number on the interaction topology is non-monotonic.

Figure 6.6(a) also includes the skin-friction distribution of the corresponding
undisturbed tbls (dash-dotted lines) in order to better appreciate the upstream
influence of the stbli. Inspired by Settles et al. [59], we define the upstream influence
parameter ∆xui “ ximp ´ xui for impinging stbli as the distance between the
inviscid impingement point ximp and the streamwise location where the skin-friction
falls by 1% with respect to the undisturbed tbl distribution, denoted by xui. The
resulting values for this parameter are also reported in table 6.5. They confirm the
Reynolds number dependency of the upstream influence effect that was previously
observed in compression ramp flows, that is, a reduced upstream influence with
increasing Reτ . We find that the logarithmic fit ∆xui{δ0 “ ´0.357 lnReτ ` 9.689
approximates the present data with an R2 value of 0.995.

A final remark on figure 6.6(a) concerns the skin-friction distribution downstream
of the interaction. As observed, all curves overshoot the corresponding values of the
undisturbed tbls beyond the reattachment point. This is due to the presence of the
expansion fan that originates at the trailing edge of the (virtual) shock generator.

The probability of reverse flow χ is shown in figure 6.6(b) to further illustrate
Reynolds number effects in the shock-induced flow separation. Solid lines indicate
the probability at the wall, i.e., the fraction of the total time when Cf ă 0, and
dashed lines consider the maximum value in wall-normal direction, i.e., the fraction
of the total time when u ă 0 at any point above the wall.

Initially, both probability distributions initially overlap for the lower Reynolds
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Figure 6.7: (a) Relevant definitions concerning the interaction topology, and (b) close-up view of
the recirculation region. Dividing streamlines are marked with solid black lines in (b), and blue
lines are streamlines passing through y{δ0 “ t0.05, 0.3u at x ´ ximp “ ´7δ0. Dotted gray lines
indicate isocontours of reverse-flow probability (χ “ 0.01 and 0.8), and dashed magenta lines show
the free-stream flow deflection.

cases B1 and B2, see the corresponding blue and black lines in figure 6.6(b), until
χ « 0.60 and 0.45 respectively. This overlap ends with a local peak in χ at the
wall that reveals the occurrence of partial flow reattachment near the leading edge
of the interaction. Interestingly, the location of the local peak for case B1, found
at px ´ ximpq{δ0 « ´5.6, coincides with the local minimum in skin-friction near
separation in figure 6.6(a). This correspondence suggests that the characteristic W -
shaped distribution of xCf y in low-Reynolds interactions is a result of partial flow
reattachment right after separation.

For the high-Reynolds case B3, both probability distributions in figure 6.6(b)
only overlap until χ « 0.25. Moreover, all cases exhibit a maximum in reversed-flow
probability at x ´ ximp “ ´δ0, where χ is almost unity for cases B2 and B3 when
considering the maximum value in wall-normal direction (see the corresponding blue
lines). The location of this peak is also associated with a negative peak in xCf y, see
figure 6.6(a), in this case the global minimum.

The effect of Reynolds number on the recirculation bubble topology is further
quantified with a set of topology parameters that we define in figure 6.7(a) and
report in table 6.5. They include the aspect ratio of the bubble, i.e., its height
Hsep normalized by Lsep, and the bubble area Asep, i.e., its volume per unit span.
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The latter is normalized by the area of the triangle formed by the separation point,
bubble apex and reattachment point locations to highlight the degree of compliance
with a perfect triangular shape (with area HsepLsep{2).

For the higher-Reynolds cases B2 and B3, the normalized Asep is very close
to unity, see table 6.5, which indicates that the corresponding bubbles are closely
triangular. The recirculation bubble for the low-Reynolds case B1, in contrast, is
characterized by a smaller normalized Asep of 0.78. A close-up view of the differ-
ent recirculation regions in figure 6.7(b) shows that the reversed flow is initially
restricted to the wall for this case, over a distance of approximately 2δ0, before the
shear layer moves away from the wall. This condition is consistent with the pres-
ence of a compression fan instead of a coalesced separation shock at the leading edge
of the interaction, and explains the larger degree of non-compliance of the bubble
shape with a perfect triangle.

Additionally, the corresponding dividing streamline (black line) and two other
streamlines above the separation region (blue lines) are also included in figure 6.7(b).
For the low-Reynolds case B1, they clearly exhibit a much larger curvature ra-
dius around the leading edge of the separation bubble. The post-shock flow deflec-
tion ϑsep is slightly larger than 12˝ in all cases and essentially independent of the
Reynolds number. This deflection is also indicated in figure 6.7(b) and reported in
table 6.5 along with the corresponding theoretical shock angle φsep.

Furthermore, table 6.5 provides additional parameters that quantify the degree
of symmetry between the leading and trailing portions of the bubble. These include
the corresponding distance between the separation point and the streamwise location
of the bubble apex, which is denoted Lu following the nomenclature employed by
Giepman [194] for laminar and transitional interactions; see also figure 6.7(a). The
associated bubble volume above this segment, Au, is also reported and indicated with
a red shade in figure 6.7. Interestingly, both symmetry parameters reveal that the
separation bubble for case B2 is the most symmetric in shape, with Lu “ 0.56Lsep
and Au “ 0.53Asep. This can also be recognized by visual inspection of figure 6.7(b).
The reverse-flow probability within the bubble, however, is clearly asymmetric in
all cases, see the χ “ 0.8 isocontour.

The isocontour of χ “ 0.01 is included in figure 6.7(b) to illustrate the extent
of the instantaneous reverse flow. Following Simpson’s terminology for turbulent
boundary layer separation, χ “ 0.01 is the condition for incipient separation [195].
This isocontour is an essentially straight line at the leading edge of the bubble in all
cases, see figure 6.7(b), and closely follows the post-shock deflection of the outer flow.
The maximum height above the wall of the χ “ 0.01 isocontour is approximately
0.9δ0, which is two to three times higher than the mean bubble height Hsep. At the
trailing edge of the bubble, the contour line is curved and eventually meets the wall
approximately 2δ0 downstream of the reattachment point. We use the streamwise
distance over which the reversed-flow probability is higher than χ “ 0.01 to define
the reverse-flow based length scale Lχ. This parameter could be an alternative
to Lsep in the case of weakly separated STBLIs with partitioned bubbles. For the
present strong interactions, Lχ is approximately 11δ0 and insensitive to the Reynolds
number, see table 6.5.
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Figure 6.8: Time- and spanwise-averaged (a) wall-pressure, and (b) wall-pressure fluctuation in-
tensity. For the line legend, see caption of figure 6.6. Mean separation and reattachment points
are indicated with a marker (‚), and the plateau pressure computed according to the empirical
formula by Zukoski [196] is also shown in (a).

6.3.4. Mean and fluctuating wall-pressure
After discussing the corresponding differences in recirculation-bubble topology, we
now consider the impact of Reynolds number on wall-pressure characteristics of
stbli. Figure 6.8(a) shows the mean wall-pressure distribution for the investigated
interactions, which all exhibit the typical features of strong stbli with substantial
flow separation [23, 46]. Characteristic inflection points associated with separation,
the onset of reattachment and the reattachment compression can be identified on
each curve [197]. The low-Reynolds case B1, however, shows a more gradual pressure
rise at the leading edge of the interaction as a result of the diffuse separation-shock
foot, while the higher Reynolds cases B2 and B3 exhibit a more abrupt pressure
increase. The pressure plateau is not fully established in any of the cases, and
its magnitude, in close agreement with the predictions by Zukoski [196], appears
insensitive to the Reynolds number.

The corresponding wall-pressure fluctuation intensities are presented in figure
6.8(b). The low-Reynolds case B1 does not exhibit any discernible peak at the
leading edge of the interaction, which is indicative of attenuated wall-pressure in-
termittency [163]. A distinct peak, in contrast, is clearly visible for the higher
Reynolds interactions as a result of the sharper separation-shock footprint on the
surface, where the peak intensity is almost twice as large for case B3 as compared to
that of case B2. Furthermore, case B3 exhibits the largest wall-pressure fluctuation
intensities throughout the interaction, while the lowest values are found for case B2.
This observation further evidences the non-monotonic effect of Reynolds number on
the interaction dynamics. Despite the difference in magnitude, however, curves in
figure 6.8(b) exhibit common features that are in good qualitative agreement with
previous works on impinging stbli [23, 181]. In particular, all distributions show
an increased level of fluctuation intensity after separation (corresponding to a global
maximum for case B1 and a local maximum for case B3) which is attributed to the
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Figure 6.9: Time- and spanwise-averaged streamwise Reynolds stress τ11 “
Ču2u2 for (a) case B1,

(b) case B2, and (c) case B3. Solid line color legend: (yellow) xuy “ 0; (gray) dividing streamline;
(purple) xMy “ 1; (black) 95% of maxpτ11q. Green dashed lines mark selected streamlines, and ˝

and 4 indicate the locations of maxpτ11q and maxpP11q, respectively.

flapping motion of the shear layer [181]. This is followed by a small drop in pressure
fluctuation intensity within the separated region before increasing again as a result
of the reattaching shear layer vortices.

Moreover, the wall-pressure statistics in figure 6.8 indicate that mean separation
occurs downstream of the excursion domain of the separation shock (i.e., beyond
the pressure fluctuation intensity peak in figure 6.8(b)) for the interactions at higher
Reynolds number. We attribute this to the moderate incident-shock strength in the
investigated stblis, which results in a deeper penetration of the high-momentum
flow into the interaction before the formation of the separation bubble.

6.3.5. Reynolds stresses
The effect of Reynolds number on second-order velocity statistics is analyzed next.
Figure 6.9 shows contours of the Favre-averaged streamwise Reynolds stress τ11 “
Ću2u2 . Qualitatively, all cases bear similarities in terms of the location of increased
fluctuation intensity, which is mainly confined to the shear layer at the leading edge
of the separated region. This is in good agreement with previous works [23, 166, 198].
Additionally, τ11 is highly damped by the strong convex curvature at the bubble apex
in all cases. As pointed out by Sandham [199], such curvature effects are strongest
for this stress component.

One notable observation concerns the disparity in the location of maximum τ11
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across the different cases, as indicated by the ˝ symbols in figure 6.9. It is evident
that in figures 6.9(a,b), for the lower-Reynolds cases B1 and B2, this point is found
near the separation-shock foot, where the production of τ11, i.e., P11, is highest.
This point is indicated with a 4 symbol. Conversely, for the high-Reynolds case
B3 in figure 6.9(c), the streamwise stress distinctly peaks within the detached shear
layer, which is no longer correlated with maxpP11q (see also the isocontours of 95%
of maxpτ11q shown as black solid lines).

Previous numerical studies, such as Fang et al. [176] and the recent work of
Kang and Lee [200], which have examined turbulence amplification across canonical
stblis, consistently identified peak locations of τ11 and turbulence kinetic energy
(tke) beneath the separation-shock foot and near the point of maximum stress
production. While these findings are consistent with our observations in the lower-
Reynolds cases, the observed disparity in stress peak locations for case B3 suggests
that the widely accepted τ11 amplification mechanism proposed in literature, which
is associated with the deceleration of the mean-flow, may not be the primary source
of stress at high Reynolds number.

To clarify this, we analyze the corresponding transport budgets along two mean-
flow streamlines crossing the interaction. The first streamline, labeled sa in figure
6.9, intersects the point of maxpP11q in all cases, which is consistently located in the
near-wall region beneath the separation-shock foot. As shown in the inset panels of
figures 6.9(a,b), this point is indeed in close proximity to the point of maximum τ11
for the lower-Reynolds cases B1 and B2. The second selected streamline, labeled as
sb, cuts through the shear layer as shown in figure 6.9. Notably, this intersection
highlights the misalignment between the mean-flow and the track of maximum stress
in the detached shear layer. For the high-Reynolds case B3, sb is selected such that
it intersects the location of maximum τ11 over the interaction (i.e., the ˝ symbol in
figure 6.9(c)).

The transport equation for the Favre-averaged Reynolds stress τij “ Ću2i u
2
j in

convective form is

Bτij
Bt ` ruk

Bτij
Bxk “ Pij `Dij `Πij `Mij ´ εij , (6.1)

where the mass averaged form of the continuity equation is used to simplify the left-
hand side. Terms on the right-hand side represent the contributions due to produc-
tion Pij “ ´τikBxkruj´ τjkBxkrui, transport processes Dij “ pDνij`Dtij`Dpijq{ρ that
comprise viscous diffusion Dνij “ Bxk rσ1iku1j ` σ1jku1is, turbulent convection Dtij “
´Bxk rρu2i u2ju2ks, and pressure transport Dpij “ ´Bxk rp1u1iδjk` p1u1jδiks, the pressure-
strain correlation ρΠij “ p1pBxiu1j ` Bxju1iq, dissipation ρεij “ σ1ikBxku1j ` σ1jkBxku1i,
and turbulent mass flux ρMij “ u2i pBxkσjk ´ Bxjpq ` u2j pBxkσik ´ Bxipq. Over-bars
and tildes indicate Reynolds and Favre averages, respectively.

Resulting distributions of the τ11 transport budgets along the previously defined
streamlines are shown in figure 6.10. The convective term of the material derivative
is evaluated as it appears on the left-hand side of equation (6.1) (with the sign
unchanged) so that it serve as an indication of net τ11 gain. Additionally, for clarity,
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Figure 6.10: Transport budgets for τ11 along streamlines sa (left panels) and sb (right panels):
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8) is also indicated with a solid red line.

two-dimensional contours of the most relevant terms are also shown in figure 6.11,
and they should be considered alongside the discussion of figure 6.10.

We consider first the corresponding budget distributions along sa, which are
depicted on the left panels of figure 6.10. It is clear that the magnitude of the
production term at the separation-shock foot is largest for the high-Reynolds case
B3 in figure 6.10(e). However, the amplification of P11 with respect to that of the
undisturbed tbl is only 1.06 , which indicates a minor impact of the mean-flow
deceleration in the near-wall production at high Reynolds number. For the other
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cases, the amplification of this term is much larger; 1.58 for case B2 in figure 6.10(c),
and 2.44 for case B1 in figure 6.10(a). In addition, the fact that P11 for case B3
exhibits a progressive increase in the upstream boundary layer is simply a result of
the selected streamline deviating away from the wall, from y` « 6 on the left of
figure 6.10(e) to y` « 10 at the peak production. This deviation naturally alters
the value of the production term as well as other terms like turbulent transport Dt11,
which changes from a positive to a negative value. Thus, an indication of the stbli
onset is where previously inactive terms in the undisturbed tbl, like convection or
pressure transport, become active.

Figures 6.10(c,e) reveal that the convection term, which indicates net τ11 gain,
is correlated with the initial amplification of the pressure transport term for the
higher Reynolds cases B2 and B3. This is caused by the stronger footprint of the
separation-shock dynamics at the wall, which leads to large negative values of the
pressure´streamwise-velocity correlation for these cases and consequently a sharp
rate of change in streamwise direction. The streamwise extent of increased pres-
sure transport Dp11, including both positive and negative values, thus reflects the
streamwise excursion range of the separation shock. For the low-Reynolds case
B1, in contrast, the more gradual compression and thus weaker footprint of the
separation-shock dynamics at the wall result in negligible pressure transport con-
tributions. Here, the increase in τ11 is solely attributed to the amplification of P11
driven by the deceleration of the mean flow, see figure 6.10(a). This corresponds to
the amplification mechanism previously reported in literature [176], which this anal-
ysis demonstrates to be predominant only at low Reynolds numbers. Furthermore,
the increase in pressure-strain correlation Π11 eventually brings the amplification of
τ11 to an end in all cases. The pressure-strain correlation is responsible for the redis-
tribution of energy from the longitudinal stress τ11 towards the transverse stresses
τ22 and τ33 (and indirectly to the shear stress τ12) which exhibit large positive values
of Πij at the separation shock foot (not shown here).

The role of pressure transport on the amplification of τ11 at high Reynolds
number is further highlighted in the budget distributions along the streamline sb,
which are shown on the right panels of figure 6.10 for all cases. The level of P11
in the upstream tbl is much lower along this streamline, as expected away from
the wall. For case B1, the progressive amplification of the production term together
with increased turbulent convection Dt11 lead to a net gain in streamwise stress, see
figure 6.10(b). A similar scenario is observed for case B2 in figure 6.10(d), with an
additional contribution of pressure transport, albeit very moderate, at the leading
edge of the interaction. The role of pressure transport, however, is much more
significant for case B3 in figure 6.10(f). As shown, the evolution of the convection
term at the leading edge of the interaction is highly correlated with the pressure
transport budget, specially its initial steep rise and peak value (occurring at y` «
350). This results in the largest rate of change of τ11, which also contributes to the
rapid amplification of P11. Even though the magnitude of the production term is
much lower than the global production peak observed in the near-wall region (see
figure 6.10(e)), it undergoes a much larger amplification from the free-stream value
along this streamline. Once the pressure-transport contribution becomes negative,
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Figure 6.11: Contours of selected τ11 transport budgets: (a–c) production P11, (d–f) pressure-
strain correlation Π11, (g–i) pressure transport Dp
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column of panels corresponds to a different case, as indicated at top of the figure. Contour levels
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8{δ0 (dark blue) to 0.05u3
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the increased production (also affected by the mean flow deceleration) and turbulent
diffusion terms still enable a net gain in τ11 for over half a boundary layer thickness in
streamwise direction, eventually leading to the global peak stress along the detached
shear layer.

The present analysis thus demonstrates that the maximum amplification of τ11
at high Reynolds number no longer correlates with the peak in streamwise-stress
production near the wall. This peak is influenced by both the near-wall cycle of the
approaching tbl and the mean-flow deceleration at the leading edge of the interac-
tion. Instead, we demonstrate that the maximum τ11 amplification correlates with
increased pressure transport in the separation-shock excursion domain, further away
from the wall. This increase is attributed to the unsteadiness of the sharp separation
shock at high Reynolds number, originating deep within the tbl. The contours of
τ11 production, pressure-strain, pressure-transport and turbulent convection shown
at the leading edge of the interaction in figure 6.11 further illustrate the effect of
Reynolds number on the budget terms. In particular, figures 6.11(g–i) show the
τ11 pressure-transport budget Dp11, where visible differences in the separation-shock
foot region are observed.

Moving on to the cross-stream and shear stress components, they do not exhibit
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Figure 6.12: Time- and spanwise-averaged Reynolds stresses (other than τ11) for case B3: (a)
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Ćv2v2 , (b) τ12 “
Ću2v2 , (c) τ33 “

Čw2w2 . Locations of maximum stress are indicated with ˝.
For line legend, see caption of figure 6.9.

any strong Reynolds number dependency over the investigated Reynolds number
range. For the sake of conciseness, we only show them for the high-Reynolds case
B3 in figure 6.12. The location of the corresponding stress peaks are also indicated
with ˝. The wall-normal stress τ22 “ Ćv2v2 shows increased fluctuation levels in
the excursion range of the separation shock and along the shear layer, see figure
6.12(a). The global maximum is located around the reattachment location but
away from the wall, where shear layer vortices are compressed as a result of the
concave streamline curvature. This is in very good agreement with the les data of
[23], where slightly larger values of τ22 were found due to the stronger reattachment
compression (a reattachment shock is clearly visible in their stbli). The distribution
of the Reynolds shear stress τ12 “ Ću2v2 , see figure 6.12(b), is very much in line with
τ22, including the (negative) peak location. The flapping motion of the incident-
transmitted shock results in a region of positive shear stress, which is most intense for
the high-Reynolds case B3. The low-Reynolds case B1, on the other hand, presents
slightly larger (negative) stress values at the separation-shock foot. Neither τ22
nor τ12 appear significantly damped at the bubble apex, in agreement with the
observations of Sandham [199].

The spanwise Reynolds stress τ33 “ Čw2w2 bears clear similarities with both τ11
and τ22. These include a significant intensity decrease at the bubble apex. However,
the location of peak stress is found further away from the wall within the detached
shear layer at the leading edge of the separation bubble in all cases. Interestingly,
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this is not in line with the les data of Pasquariello et al. [23] where the τ33 peak was
found approximately 3δ0 downstream of the reattachment location and very close to
the wall. Inspection of figure 6.12 also reveals a moderate τ33 increase at the same
location in our les data, but the intensity is substantially lower than in the majority
of the shear layer. Pasquariello et al. [23] attribute the increased intensity to the
presence of Görtler-like vortices resulting from the concave streamline curvature at
reattachment. Although above the critical Görtler number, this curvature is rather
mild in the present stblis, which involve a weaker incident shock than that of
Pasquariello et al. [23]. We observe a reorganization of velocity fluctuations across
the interaction that is consistent with the presence of streamwise-aligned vortices,
see section 6.3.2. Their apparenlty limited impact on τ33 is consistent with the
observed lower vortex strength and suggests a less pivotal role in the low-frequency
dynamics in our cases.

6.3.6. Spectral analysis
In order to assess Reynolds number effects in the dynamics of the investigated
stblis, we analyze temporal spectra of wall-pressure data, separation-shock location
and bubble-volume variations. The most energetic frequencies are then linked to
global flow phenomena via dynamic mode decomposition (dmd [61]) of the les data.
In previous impinging stbli, such modal analysis technique has been commonly
applied to two-dimensional datasets, often resulting from spanwise averaging [23,
35, 62]. Here, we instead employ a full three-dimensional dataset that includes
the instantaneous streamwise velocity, pressure and streamwise vorticity fields. In
addition, the sparsity-promoting variant of the dmd algorithm (known as spdmd
[201]) is employed to seek a low-rank representation of the most relevant dynamics
for each of the investigated Reynolds numbers.

Wall-pressure
Figure 6.13 shows the pre-multiplied psd map of the wall-pressure for each of the in-
vestigated interactions. The corresponding signals were obtained from wall-pressure
taps equispaced in the streamwise direction along the domain centerline and sam-
pled at a frequency fs « 37u8{δ0 (∼2.5 MHz). Spectra have been estimated using
Welch’s algorithm, with Hamming windows and 10 segments with 65% overlap. The
segment length is longer than 100Lsep{u8 in all cases.

The wall-pressure psd maps in figure 6.13 illustrate one of the most prominent
features of stbli: the shifting of the frequency of the most energetic fluctuations
in the incoming tbl to much lower frequencies. Consistent with previous works,
the separation shock exhibits broadband low-frequency dynamics at a separation-
length based Strouhal number 0.01 À StLsep À 0.1. The spatial extent associated
with such low-frequency dynamics, indicative of the streamwise excursion domain of
the separation shock, is approximately δ0 for the higher-Reynolds number cases B2
and B3, see figures 6.13(b,c). The low-frequency content of the low-Reynolds case
B1 extends for almost 2δ0 in streamwise direction but appears much less energetic,
as seen in figure 6.13(a). This lower energy level is expected considering the diffused
character of the separation-shock foot. Moreover, the separation point for this case
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Figure 6.13: Frequency-weighted and normalized power spectral density map of wall-pressure at
the center line: (a) case B1, (b) case B2, and (c) case B3. Dashed lines indicate mean separation S
and reattachment R locations for each case. Contour levels range from zero (white) to 0.3 (black).

(labeled S) occurs within the low-frequency region, while it is found downstream
of the separation-shock excursion domain for cases B2 and B3. This observation is
consistent with the analysis of wall-pressure fluctuations in figure 6.8(b).

Beyond the region of low-frequency unsteadiness, energetic frequencies of turbu-
lent fluctuations notably decrease, and this trend is preserved well into the reverse-
flow bubble in all cases. This observation confirms the formation of larger turbulent
structures in the detached shear layer, associated with lower frequencies. Within the
recirculation region, a spectral peak around StLsep À 0.1 is also visible in all cases at
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Gaussian distribution.

px´ximpq{δ0 « ´1, which corresponds to the point where the skin-friction exhibits
a global minimum in figure 6.6(a). Beyond this point, and near the reattachment lo-
cation (labeled R), energetic frequencies are highly broadband in all cases, spanning
over two decades of StLsep . These frequencies include: (1) StLsep larger than unity,
characteristic of small-scale turbulence (but larger than in the upstream tbl); (2)
intermediate frequencies centered around StLsep « 0.5, related to the reattaching
shear layer vortices [181]; and 3q StLsep « 0.1, possibly associated with shear-layer
dynamics, akin to the behavior observed in step flows where this frequency is linked
to the flapping motion of the shear layer [193]. Finally, far downstream of the inter-
action, the spectra relax towards a state characteristic of canonical wall-turbulence
in all cases.

The intermittent character of the wall-pressure at the separation-shock foot is
illustrated in figure 6.14. In figure 6.14(a), the wall-pressure signal of a tap embedded
within the separation-shock excursion domain is shown for each stbli, while figure
6.14(b) includes the corresponding normalized pdf of the signal.

These data clearly illustrate the accentuated intermittency of the wall-pressure
at high Reynolds number; notably, the signal for the high-Reynolds case B3 in the
bottom panel of figure 6.14(a) exhibits a strongly bi-modal behavior, alternating be-
tween p8 and the post-shock pressure level [202]. Moreover, the signal is also clearly



6

128 Chapter 6 ‚ Reynolds number effects in the baseline interaction

aperiodic, consistent with the broadband nature of the low-frequency unsteadiness.
These observations are in very good agreement with previous high-Reynolds exper-
iments on the impinging shock configuration [60, 181, 189].

Furthermore, the corresponding p.d.f of the high-Reynolds wall-pressure signal,
shown in the bottom panel of figure 6.14(b), exhibits high right-skewness (skewness
coefficient of α3 “ 0.56), with the major apex at ´σpw and the minor apex at
`0.6σpw . As noted by Dolling and Or [202], the former peak reflects the high
likelihood of encountering a value in a narrow range around p8, while the latter
indicates the probability of observing a broader range of post-shock pressure levels.

For the low-Reynolds case B1, in contrast, wall-pressure fluctuations at the
separation-shock foot exhibit an almost perfectly Gaussian distribution, see the top
panel of figure 6.14(b), which is characteristic of low-Reynolds interactions with a
diffused separation-shock foot, where intermittency is attenuated [158]. Case B2 lies
midway between cases B1 and B3 in terms of intermittent behavior. Although the
wall-pressure signal beneath the separation shock exhibits moderate intermittency,
deviations from the free-stream pressure level are not as pronounced or distinct as
those observed at high Reynolds number.

Separation shock and reverse-flow bubble
The effect of Reynolds number on the stbli unsteadiness is further examined in
figures 6.15 and 6.16, which respectively show the time variation of the spanwise-
averaged separation-shock location and bubble-volume signals for all cases, along-
side their respective spectral content. The instantaneous separation-shock location
is extracted from three-dimensional snapshots by searching for peak values of the
pressure gradient field |∇p| in a wall-normal slice outside the tbl (at 1.5δ0 from
the wall, before intersecting the incident shock), and then averaging the resulting
shock front in the spanwise direction. The instantaneous volume of the separation
bubble, on the other hand, is estimated as the volume of reverse flow (i.e., u ă 0)
in the corresponding three-dimensional snapshot.

Starting with the separation-shock location signals in figure 6.15, it is evident
that all signals exhibit noticeable low-frequency unsteadiness, with deviations from
the mean location of up to 0.4δ0 for the high-Reynolds interaction. The spectra of
the signals, which are shown in pre-multiplied form, highlight that frequencies in
the range 0.01 ă StLsep ă 0.1 make the largest contributions to the signal variance.
This observation indicates that there are mechanisms driving the low-frequency
dynamics of stblis that are fundamentally independent of Reynolds number.

Despite the spanwise averaging, higher frequencies are found relatively energetic
in the shock-location signal for case B1, in contrast to the higher Reynolds number
cases. This is again attributed to the diffused character of the separation shock
at low Reynolds number, which is much more sensitive to turbulent fluctuations.
Instantaneous visualizations of the flow for this case (not shown here) show that
incoming turbulent structures induce variations in the separation-shock front that
are comparable to the range of motion of the shock at low frequencies.

Figure 6.16 shows the time evolution of the reverse-bubble volume and the cor-
responding spectral energy for the investigated interactions. Several similarities and
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Figure 6.16: (a) Time variation of the separation-bubble volume, and (b) corresponding pre-
multiplied and normalized psd of the signal: (top) case B1; (middle) case B2; (bottom) case B3.

differences can be discerned when comparing this data to that of figure 6.15. All
bubble-volume signals exhibit noticeable low-frequency unsteadiness at StLsep ă 0.1,
which can be associated with expansions and contraction of the re-circulation region
from both ends. However, these low-frequency dynamics are not the dominant con-
tributors to the signal variance; instead, all psd peak at a distinct higher frequency
oscillation centered around StLsep « 0.1–0.2, see figure 6.15(b).

This observation is in agreement with the numerical works of Morgan et al.
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Figure 6.17: Cross-correlation between the separation-bubble volume and the spanwise-averaged
separation-shock location signals, with the time lag normalized by (a) δ0{u8, and (b) Lsep over
the sound speed at the wall, aw. Line legend: ( ) case B1, ( ) case B2, ( ) case B3.

[36] and Adler and Gaitonde [203] on impinging stblis, where the most significant
bubble oscillations were found around StLsep « 0.1. As previously pointed out, such
frequency is prominent in subsonic detached shear layers [204, 205] and supersonic
backward-facing step flows [193], where it is linked to the flapping motion of the
shear layer. A similar phenomenon may occur in the investigated stblis, for which
animations show visible oscillations in shear layer deflection. These oscillations have
the potential to influence the entrainment process and re-injection of fluid into the
bubble [41, 42], which could explain the observed spectral peak at StLsep « 0.1.

Furthermore, the fact that the spectra in figure 6.16(b) for the low-Reynolds case
B1 peak at a higher frequency, around StLsep « 0.2, while for the high Reynolds
case B3 the peak is found at StLsep « 0.1, suggests a possible correlation between
these dynamics and the characteristic scales of the incoming turbulence, although
this correlation is not yet clear.

A final remark concerns the relationship between the reverse-flow bubble volume
and the location of the separation shock. In line with previous studies [36, 41, 203],
we also find a significant correlation between both signals for a small negative lag,
see figure 6.17(a), which indicates that separation-shock excursions are preceded by
bubble-volume variations. In fact, we find that the time lag between both signals is
approximately the acoustic propagation time from reattachment to separation; the
cross-correlation peak is found at τ‹ “ ∆t aw{Lsep « 1.0 in all cases, as shown in
figure 6.17(b), with aw denoting the speed of sound at the wall. This remarkable
consistency in the normalized time lag provides compelling evidence for a down-
stream mechanism being responsible for the motion of the separation shock.

We also note that the reverse-flow region and the separation-shock location are
expected to exhibit correlations at various other time scales associated with multi-
scale turbulent fluctuations. However, the use of the separation-shock location in
spanwise-averaged form effectively removes such correlations and only preserves the
observed acoustic connection.
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6.3.7. Modal analysis
In this section, we aim to establish connections between the most energetic frequen-
cies identified in the already discussed temporal spectra and global flow phenomena
through spdmd [201]. This decomposition method is a variant of the standard dmd
algorithm described by Schmid [61], which seeks to decompose a data sequence
into a set of modes that optimally represent its evolution. In the spdmd frame-
work, the standard dmd solution is additionally sparsified to produce a low-rank
representation of the system dynamics. The sparsity-promoting step is controlled
by a user-defined regularization parameter that determines the trades-off between
accuracy and sparsity. For algorithmic details, the reader is referred to appendix D.

The database for the spdmd analysis consists of 8192 three-dimensional snap-
shots per case, recorded at a sampling interval of 0.5δ0,i{u8. Each snapshot includes
the instantaneous streamwise velocity, pressure and streamwise vorticity fields to es-
tablish coherent links among these variables. All fields are stored in single precision
to alleviate memory requirements, and the decomposition algorithm is parallelized
following the approach described by Sayadi and Schmid [206].

The regularization parameter of the spdmd algorithm is selected to yield a sparse
representation comprising 41 modes per case. Since the resulting convex optimiza-
tion problem in the spdmd method involves regularizing the least-squares deviation
between the snapshot matrix and the linear combination of standard dmd modes
(see equation D.9 in D), each field in the snapshot matrix (velocity, pressure, vortic-
ity) is appropriately re-scaled to ensure that it contributes approximately a third of
the `2-norm. To guarantee the statistical significance of the sparse representation,
dynamic modes with oscillation periods exceeding one-third of the total simulation
time are excluded from selection by the spdmd algorithm.

Figure 6.18 shows the resulting modal amplitudes and frequencies of the stan-
dard dmd solution (gray circles) and spdmd solution (red crosses) for each case. The
spdmd solution exhibits a consistent structure characterized by a dominant mean
mode and 20 complex conjugate pairs primarily concentrated in the low-frequency
range (StLsep ă 0.1) and extending into the moderate-frequency range (StLsep « 0.1
to 0.6). Notably, as the Reynolds number increases, there is a higher concentration
of the retained modes at low frequencies, where modes generally exhibit the largest
amplitudes. For instance, in case B1, the highest frequency in the sparse represen-
tation is StLsep “ 0.712, while for case B3, it is StLsep “ 0.375.

We also note that the spdmd algorithm has excluded dynamic modes with fre-
quencies above StLsep « 0.7 from all sparse solutions, for this reason the high-
frequency range StLsep ą 1.0 is omitted in figure 6.18. However, the maximum
modal frequency in each standard dmd solution is StLsep « 10.

The performance loss of the spdmd solution, i.e., the fraction of energy that
is not captured by the retained dynamic modes (see equation (D.10) in appendix
D), is less than 14% in all cases. We also find that the spdmd solution requires
a factor 10 more modes to reduce the performance loss by another 1-2%, which is
consistent with the broadband nature of the flow. This observation aligns with the
findings of Priebe et al. [43], who noted the necessity of including all dmd modes
within a particular frequency range to accurately reconstruct the variance of the
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Figure 6.18: Modal amplitude |αi| and frequency distribution of the standard dmd solution (˝,
gray) and spdmd solution (ˆ, red) for (a) case B1, (b) case B2, and (c) case B3. Modal amplitudes
are normalized with respect to the amplitude of the mean mode in the corresponding spdmd
solution.

corresponding dynamics.
Despite these considerations, our focus remains on the corresponding flow struc-

tures contained in the retained modes, which can provide valuable insights into the
physical mechanisms driving the energetic stbli dynamics.

A representative low-frequency mode from the spdmd solution of cases B1 and
B3 are depicted in figures 6.19 and 6.20. The corresponding modal frequencies are
StLsep “ 0.076 and StLsep “ 0.039, and the associated modal amplitudes represent
the largest and second largest amplitudes after that of the mean mode. Isosurfaces
of modal pressure (top panels), streamwise velocity (center panels) and streamwise
vorticity fluctuations (bottom panels) are shown in the figures at two phases. These
phases correspond to the instant when the separation shock is most upstream (left
panels) and a quarter of a cycle afterwards when it moves fastest downstream (right
panels). For visualization purposes, a top-hat filter with a constant filer width of
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Figure 6.19: Isosurfaces of positive (red) and negative (blue) fluctuation from a representative low-
frequency mode (StLsep “ 0.076) in the spdmd solution of case B1: (a,b) pressure, (c,d) streamwise
velocity, and (e,f) streamwise vorticity. There is a phase shift of ∆θm “ π{4 between left and right
panels.

∆ “ 0.1δ0 in all directions has been applied to the vorticity field, since the vorticity
includes more small-scale noise than the other variables. In addition, animations of
the dynamic modes described are available in our data repository [207] and should
be considered in conjunction with the discussion.

The low-frequency modes in figures 6.19 and 6.20 reveal that the characteristic
large-amplitude excursion of the separation shock accounts for most of the energy
in the pressure field, see the top panels. Its upstream motion is linked to nega-
tive pressure fluctuations of the reattachment compression, and vice-versa, which is
consistent with expansions and contractions of the recirculation bubble from both
ends. The incident-transmitted shock, on the other hand, exhibits considerable
pitching motion that is not consistent with a pure translation of the shock-shock
interaction point. This suggest a non-negligible change in separation-shock deflec-
tion at low-frequencies. An asynchronous motion between the separation shock and
the incident-transmitted shock is also observed, characterized by a phase shift of
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Figure 6.20: Isosurfaces of positive (red) and negative (blue) fluctuation from a representative low-
frequency mode (StLsep “ 0.039) in the spdmd solution of case B3: (a,b) pressure, (c,d) streamwise
velocity, and (e,f) streamwise vorticity. There is a phase shift of ∆θm “ π{4 between left and right
panels.

approximately ∆θm “ π{2. Furthermore, the fluctuating streamwise velocity field
in the center panels shows the presence of large-scale streaky structures statisti-
cally linked to the low-frequency dynamics of the separation shock. These streaks
emerge at the separation-shock foot and convect downstream. Their strength is
reduced at the bubble apex, as a result of the resulting expansion, and increases
again throughout the reattachment compression.

Priebe et al. [43] identified very similar streaks in their dns data of a compres-
sion ramp flow at Mach 2.9 by performing dmd of the three-dimensional streamwise
mass-flux field. The authors argue that the observed elongated structures emerge as
a result of Görtler-like vortices that play a key role in the low-frequency unsteadiness
of the interaction, see also [23]. Inspection of streamwise vorticity fluctuations in
panels (e,f) of figures 6.19 and 6.20 indeed reveals the emergence of counter-rotating,
large-scale streamwise vortices near separation and, more prominently, around the
reattachment location. This observation confirms, at the very least, a correlation
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Figure 6.21: Contours of (a) modal streamwise velocity, and (b) modal streamwise vorticity from
the selected low-frequency mode of case B3 (StLsep “ 0.039) at px ´ ximpq{δ0 “ 4. Isosurfaces
of positive and negative fluctuation in figure 6.20 are here indicated with solid and dashed lines,
respectively.
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Figure 6.22: Contours of modal streamwise vorticity from the selected low-frequency mode of case
B3 (StLsep “ 0.039) at z{δ0 “ 1.1. Mean zero streamwise velocity and mean sonic lines are
indicated with yellow and purple lines, respectively. For additional details, see caption of figure
6.21.

between the vortical activity throughout the interaction and the characteristic lon-
gitudinal excursions of the separation shock at the front.

The observed large-scale vortices, successfully isolated from the turbulent back-
ground with the employed modal decomposition technique (unlike with traditional
averaging methods), exhibit varying strength throughout an oscillation cycle. This
variation is accompanied by a translation of the vortex core primarily along the
spanwise direction. Moreover, the streamwise vorticity is clearly in phase with the
streamwise velocity field at reattachment, where both large-scale streaks and vor-
tices appear and disappear at the same time instants within the oscillation cycle (see
also the animation available online). The separation shock is moving fastest when
these structures are established, and it reaches either end of its excursion domain
when both streaks and vortices weaken and recombine. This observation provides
further support for a direct coupling between the separation-shock motion and the
flow dynamics at reattachment.

The specific arrangement of velocity streaks and streamwise vortices for the
selected low-frequency mode of case B3 is depicted in more detail in figure 6.21,
which shows contours of streamwise velocity and streamwise vorticity fluctuations
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on a streamwise-normal slice at px ´ ximpq{δ0 “ 4, downstream of the interaction.
The phase depicted corresponds to that of the right panels in figure 6.20, and the
isosurfaces of positive and negative fluctuation employed in the three-dimensional
renderings are here indicated with solid and dashed lines, respectively.

Large-scale structures are clearly visible in both the streamwise velocity and
vorticity fields in figure 6.21. Specifically, two counter-rotating vortex pairs are
visible, arranged in a staggered pattern relative to the velocity streaks, which is
consistent with a vortex-induced upwash or downwash. Additionally, the streak and
vortex spacing is approximately 0.7δ0 in span, and their corresponding cores are
found at a distance 0.3–0.5δ0 from the wall.

Figure 6.22 includes a spanwise-normal slice of the modal vorticity field at
z{δ0 “ 1.1 that further highlights the topology of an individual large-scale, counter-
clockwise rotating streamwise vortex at the trailing edge of the interaction. The
figure clearly shows that the vortex does not extend to the surface but is accompa-
nied by a region of clockwise vorticity fluctuation (opposite to that of the vortex)
close to the wall, beyond px´ximpq{δ0 « 3. These observations align with the find-
ings of Pasquariello et al. [23] regarding the presence of streamwise-aligned vortices
in impinging stbli and the associated τ33 increase in the near-wall region beyond
reattachment. However, as noted in section 6.3.5, the increased stress magnitude
in this region does not lead to a global peak in the investigated interactions. This
discrepancy is likely a consequence of the selected aerodynamic parameters, which
result in a milder reattachment compression, thereby reducing the impact of the
observed large-scale vortices on the spanwise velocity variance relative to other tur-
bulent fluctuations.

Our data thus confirms the statistical link among velocity streaks, vortical struc-
tures and large-scale oscillations of the separation shock at low-frequencies, which
was previously postulated by Priebe et al. [43] and Pasquariello et al. [23] but only
supported by single-field analyses. The general characteristics of the modal shapes
discussed above are consistent across the low-frequency range StLsep ă 0.1 in the
various sparse representations considered. The main differences in fact lie in the
number of low-frequency modes selected by the spdmd algorithm (3 for case B1, 5
for case B2 and 9 for case B3). Flow structures are very similar for all cases, which
is why data for case B2 is omitted here. An animation of a representative low-
frequency mode for case B2 is also available in our data repository (the associated
StLsep is 0.047).

A final note on the low-frequency modes pertains to the dynamics of the bubble.
While the separation shock shows spanwise-coherent behavior, see figures 6.19 and
6.20, the characteristic quasi-two-dimensional breathing motion of the reverse-flow
bubble becomes apparent only when the corresponding spanwise-averaged modal
shape is superimposed on the mean-flow. Such animations are also available in
our data repository. However, when considering three-dimensional modal shapes,
the observed streaks appear to obscure the expected behavior of the bubble. This
observation challenges the traditional conceptualization of the bubble motion at low
frequencies and highlights the complexity of the actual dynamics involved.

Given the importance of StLsep « 0.1–0.2 in the spectra of the reverse-flow bub-
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Figure 6.23: Pressure fluctuations associated with a high-frequency mode (StLsep “ 0.375) in the
spdmd solution of case B3. There is a phase shift of ∆θm “ π{4 between the left and right panel.

ble, we also examined spdmd modes at these frequencies. These modes exhibit qual-
itative similarities to the low-frequency modes previously discussed. Consequently,
they have been omitted from the paper for brevity (animations are still available on-
line). Overall, a significant fraction of the modal pressure variance at this frequency
is still concentrated around the separation shock, which exhibits a shorter excursion
domain and slightly more pronounced spanwise variations. Streaky structures are
also observed in the corresponding modal streamwise velocity fields, correlated with
the separation-shock motion in a similar fashion as in the low-frequency modes. The
same remark applies to the modal streamwise vorticity, where large-scale structures
persist throughout and beyond the interaction region. These findings, along with
further analysis of these modal shapes, suggest that the potential flapping motion
of the shear layer at StLsep « 0.1, manifests as a highly three-dimensional phe-
nomenon. Furthermore, the presence of large-scale streaks and vortical structures
is not limited to low-frequency modes; instead, they appear over a broad frequency
range, which raises questions about their role in the low-frequency dynamics of
stblis.

For completeness, contours of modal pressure for a high-frequency spdmd mode
of case B3 (StLsep “ 0.375) are shown in figure 6.23 to illustrate the complete spdmd
reduced-order representation (an animation is also available in our data repository).
At this frequency, shock oscillations are clearly associated with shear layer vortices
that convect downstream, potentially inducing eddy Mach waves in the supersonic
region of the flow [62]. This particular modal shape is consistent across all high-
frequency modes of the spdmd representations and is correlated with small-scale
velocity and vorticity fluctuations (not shown here).

6.4. Summary
In this chapter, we have discussed the effect of Reynolds number on a Mach 2.0
impinging stbli flow with strong mean flow separation. Reynolds number effects
have been analyzed based on a new wall-resolved and long-integrated les database
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that involves three different simulations at friction Reynolds number Reτ “ 355,
1226 and 5118, and otherwise equal flow parameters. The high-Reynolds case, at
Reτ “ 5118, significantly extends the available parameter range of strong stbli
covered with high-fidelity simulations.

A detailed characterization of the instantaneous and mean stbli organization
has been presented, focusing on differences in interaction scales, bubble topology
and turbulent structures. For the high-Reynolds interaction, it is found that the
maximum amplification of the streamwise stress is no longer correlated with the
production peak at the separation-shock foot, but rather, with increased pres-
sure transport in the separation-shock excursion domain. The wall-pressure un-
derneath the separation shock also becomes progressively intermittent as Reτ in-
creases, exhibiting broadband and energetic low-frequency content. When tracked
above the shear layer, however, the separation-shock motion shows broadband en-
ergetic low-frequency content in all cases, at a separation-length-based Strouhal
number StLsep ă 0.1. This observation confirms that the mechanisms driving the
low-frequency dynamics of stblis are fundamentally independent of Reynolds num-
ber.

Spectra of the separation-bubble volume additionally exhibit a peak at StLsep «
0.1–0.2. This particular frequency is similarly found energetic in subsonic detached
shear layers as well as supersonic backward-facing steps, where it is linked to the
flapping motion of the shear layer. Furthermore, variations in bubble size are found
to precede the separation shock motion in all the investigated cases, with a time lag
corresponding to the acoustic propagation time from reattachment to separation.
This finding is consistent with a downstream mechanism being responsible for the
separation-shock motion.

Lastly, we have performed sparsity-promoting dynamic mode decomposition of
the three-dimensional pressure, streamwise velocity and streamwise vorticity fields
to relate energetic frequencies in the temporal spectra with global flow phenom-
ena. We found that the subset of dynamically relevant modes exhibits an increased
concentration at low-frequencies with increasing Reynolds number. Inspection of
the corresponding low-frequency modes confirms a consistent statistical link among
large-amplitude excursions of the separation shock, large-scale velocity streaks and
streamwise-aligned vortices across all cases.



7
Fluid-structure coupling with

a compliant thin-panel

In preceding chapters, we discussed the fundamental characteristics of strong stblis
and investigated the effect of Reynolds number on both the interaction as well as the
upstream tbl. In this chapter, which corresponds to the final chapter of part two
of this thesis, we take the analysis one step further and explore the dynamic coupling
between stbli and a compliant thin-panel. Coupled fsi simulations involving wall-
resolved les are conducted for this purpose, at the same flow conditions as the
moderate-Reynolds interaction discussed in the previous chapter (Reτ “ 1226). We
show that the flexible panel exhibits self-sustained oscillatory behavior under these
conditions, confirming the strong and complex dynamic coupling with the flow.
The resulting mean panel deflection is also employed as a rigid-wall geometry in a
separate simulation to discern between effects caused by the mean panel deformation
and those caused by the panel motion.

7.1. Introduction
A central aspect in the structural design of high-speed systems is long-duration
exposure to stbli. As we have already discussed multiple times throughout this
thesis, such complex multi-scale flow phenomena exhibit energetic low-frequency
motions that impose intermittent and high-amplitude loads on nearby components
[4, 30, 181]. Lightweight skin panels may resonate under these conditions and poten-
tially collapse due to vibrational fatigue [33, 208]. At hypersonic speeds, stbli addi-
tionally lead to severe localized heating since local heat transfer rates greatly exceed
those associated with attached tbls [45]. These thermal effects may further degrade
the mechanical properties of aircraft components, thereby becoming more prone to
failure. The accurate characterization of dynamic fsi is therefore paramount for
the design of next-generation high-speed flight vehicles with expanded operational

The content of this chapter has been published as: L. Laguarda, S. Hickel, F. F. J. Schrijer and
B. W. van Oudheusden. Shock-wave/turbulent boundary-layer interaction with a flexible panel,
Phys. Fluids 36 (1), 2024.
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envelopes [63, 156].
Due to their practical relevance, stbli have been extensively investigated since

the late 1940s [56]. The wide range of Mach number, Reynolds number and shock
strength covered through experimentation, and more recently, with high-fidelity nu-
merical simulations, has helped shape our fundamental understanding of the relevant
flow physics [44]. In the presence of substantial flow separation, the interaction is
known to exhibit a very broad range of energetic frequencies as we have seen in chap-
ter 6. The high-frequency content is associated with small-scale turbulence, while
shear layer dynamics are a major source of unsteadiness at moderate frequencies
that promote the mass exchange with the reverse-flow region [42, 190]. The lower
end of the energetic spectrum, in turn, is related to pulsating motions of the separa-
tion bubble and the associated longitudinal excursions of the separation shock [23].
The fact that the corresponding mechanisms driving these low-frequency motions
remain still unclear, despite the large volume of work, highlights the complexity of
the phenomenon and the need for further fundamental research.

In addition, the extensive literature on stbli mostly considers rigid geometries,
which are often canonical like flat plates, compression ramps and steps [56]. Studies
involving elastic components, on the other hand, are far more scarce due to the
additional complexities in reproducing and characterizing the resulting fsi system
with experiments or numerical simulations [32, 63]. From the experimental side,
recording simultaneous field measurements of the flow and structural displacements
is a challenging task [208]. Spottswood et al. [64] were among the first to concur-
rently employ surface pressure measurements and digital image correlation (dic)
to characterize the response of a clamped elastic panel subject to stbli at Mach
2.0. They observed a strong dynamic coupling between the flow and the panel, with
the panel response exhibiting low-frequency content and being highly sensitive to
small changes in shock impingement location. A strong dynamic coupling was also
observed by Ahn et al. [209] and Musta et al. [210] in a Mach 2.0 compression-ramp
stbli over a fully clamped elastic panel. Proper-orthogonal decomposition (pod) of
dic and surface pressure measurements revealed a dominant low-frequency coupling
associated with the first bending mode of panel oscillation [210]. More recently,
D’Aguanno et al. [66] performed simultaneous dic and particle-image velocimetry
(piv) measurements to investigate the response of a compliant panel subject to im-
pinging stbli at Mach 2.0, with the panel clamped on the front and rear edges and
free on the sides. Their time-record extends for over 400 cycles of the first bending
mode, which together with the third bending mode account for over 90% of the
variance of the structural displacement field. These two discrete frequencies appear
also energetic in the spectra of the separation shock location, which the authors ex-
tracted from the piv data. Other experimental works on stbli over flexible panels
include Spottswood et al. [33], Brouwer et al. [211], Tripathi et al. [212, 213], and
Eitner et al. [214] and they further confirm the aforementioned observations.

The numerical simulation of aeroelastic problems involving stbli has also its
challenges [32]. Turbulence-resolving strategies are required to properly capture
the stbli dynamics, which determine the unsteady loads on the compliant struc-
ture [36], and fluid and solid domains need to be coupled within a monolithic or
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partitioned fsi framework [215]. The time-varying solid geometry requires explicit
representation within the fluid domain, either with dynamic mesh deformation or
via ibms, and motion and load transfer at the interface is non-trivial when fluid
and solid discretizations do not match [216]. As a result, numerical simulations
of complex fsi systems are computationally very expensive, which contributes to
the limited range of flow conditions and panel response time-records available in
literature.

The first high-fidelity simulation of a tbl over an elastic panel subject to fast-
moving shock impingement was performed by Pasquariello et al. [217] with a par-
titioned fsi solver combining wall-resolved les of the flow with a fe solver for the
structure. The work aimed to replicate the experimental results of Daub et al.
[218] at Mach 3.0. An overall good agreement between numerical and experimental
data was found in terms of flow configuration and static panel deflection, but not
in terms of dynamic behavior. While self-sustained panel motion was obtained in
the numerical investigation, experimental results showed a different oscillatory fre-
quency and a clear damping. This highlights how challenging it can be to properly
model and resolve these complex fsi systems. Hoy and Bermejo-Moreno [219] fur-
ther attempted to replicate the experimental results of Daub et al. [218] at Mach 3.0
combining wall-modeled les and a fe solver with structural damping. The com-
putational savings attained with the wall-model enabled longer integration times
and the resulting dynamic deflection of the panel was in better agreement with the
experimental signal than the results of Pasquariello et al. [217]. The volume of the
reverse-flow region was found to increase considerably in the presence of the flexible
panel, and the spectral analysis of wall-pressure additionally revealed enlarged ex-
cursions of the separation shock. Very recently, Shinde et al. [65] explored the effect
of one-way versus two-way coupling between impinging stbli and a fully clamped
flexible panel at Mach 4.0. One-way coupling results were obtained by transfer-
ring wall-pressure fields from a rigid-wall stbli simulation to the structural solver
to compute the instantaneous panel response. Despite the quantitative discrepan-
cies, an overall qualitative agreement was observed in the panel response for both
approaches. Namely, a dominant first bending mode of panel oscillation.

The few available studies thus confirm that stbli efficiently triggers low-order
modes of panel vibration; however, questions related to the coupling mechanism,
the corresponding modulation of the stbli dynamics as a result of surface displace-
ments and the particular role of static and dynamic panel deformation remain still
open. The interplay between static surface deformation and stbli has been studied
experimentally [67, 68] and with low-fidelity models [69] but not with high-fidelity
simulations to the authors’ knowledge.

In the present study, we perform wall-resolved les of a Mach 2.0 impinging stbli
over a flexible thin-panel. As discussed in chapter 2, a partitioned fsi approach
comprising our in-house fluid solver and a fe structural solver is employed for the
calculations together with the arom of Thari et al. [70] to achieve long integration
times, that is, more than 90 ffts of the full domain length after the initial transient
response of the panel. In order to distinguish effects that are caused by the mean
panel deformation from those that are caused by dynamic panel motion, we employ
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Figure 7.1: Schematics of the computational domain.

the mean panel deflection as a rigid-wall geometry in a second simulation, which is
integrated over the same time interval as the coupled case. Results are compared
against the baseline configuration, a flat and rigid-wall stbli at the same flow
conditions.

7.2. Computational setup
The investigated flow geometry is outlined in figure 7.1. It involves an oblique
shock wave impinging on a tbl over a compliant panel (the latter shown in red).
The selected flow conditions correspond to those of the moderate-Reynolds case B2
discussed in the previous chapter, which are repeated here for clarity. The incoming
flow of air is at Mach number M8 “ 2.0 and has a stagnation temperature and
pressure of T0 “ 288 K and p0 “ 356 kPa respectively. The 99% velocity-based
boundary layer thickness at the inflow plane δ0,in is 5.2 mm, and the corresponding
Reynolds number based on free-stream quantities, Re8 “ ρ8u8δ0,in{µ8, is 50.1ˆ
103. The flow deflection induced by the virtual shock generator is ϑ “ 10.66˝
which results in an oblique shock wave with wave angle φ “ 40.04˝ and pressure
ratio p2{p8 “ 1.76. The shock generator is placed at a height g “ 96 mm above
the surface, while its streamwise position is set such that the theoretical inviscid
shock impingement point ximp occurs at 60% of the panel length and is located
Limp “ 32δ0,in downstream of the inflow plane. The considered channel height to
wedge hypotenuse ratio is g{w “ 1.16.

The elastic panel has a thickness h “ 0.25 mm and consists of Aluminum 7075-
T6 with a Young’s modulus of E “ 71.1 GPa, a Poisson ratio of ν “ 0.33 and a
density of 2800 kg m´3. The length of the panel is a “ 100 mm and the panel is
clamped at the front and the rear with free side edges. The corresponding non-
dimensional dynamic pressure parameter, commonly used in panel flutter studies,
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Figure 7.2: Block distribution of the employed computational grid.

is λdp “ ρ8u28a3D´1 “ 2440, where D “ Eh3{p12p1 ´ ν2qq is the flexural rigidity
of the panel. Moreover, a constant pressure of 1.87p8 is prescribed in the cavity,
where p8 is the free-stream static pressure of the flow. This value corresponds to
the mean wall-pressure of the flat rigid-wall stbli over the panel.

Chapter 2 of this thesis provides the necessary details concerning the numerical
strategy employed for the coupled simulations, which are performed using a parti-
tioned fsi that combines wall-resolved les for the fluid with a fe structural solver
combined with the arom of Thari et al. [70]. The employed block distribution for
the present simulations is shown in figure 7.2 and corresponds to that of case B2
discussed in the previous chapter. The only difference is that here we add a small
cavity underneath the panel (Lcav “ δ0,in, see figure 7.1) to allow for negative dis-
placements of the moving boundary. The grid distribution within the cavity has
been generated by mirroring the grid distribution above the cavity around y “ 0,
see figure 7.2. In terms of the solid mesh employed for the panel, it consists of 196
elements in streamwise direction and two elements along its thickness; the panel is
restricted to purely two-dimensional motion (no torsion) so only one element is used
across the span.

7.3. Results and discussion
Selected results for the baseline stbli, the coupled stbli with the flexible panel
and the stbli over a rigid panel with the mean deformation of the coupled case
are presented and discussed. When necessary, the different configurations will be
referred with acronyms that follow from the corresponding panel characteristics.
That is, the baseline flat wall, which is equivalent to an undeformed and rigid
panel, is referred to as ur, the deformed and rigid wall shaped with the mean panel
displacements is dr, and the flexible panel dynamically coupled with the flow is
denoted as fc.

All simulations have been integrated for over 90 ffts of the full domain length
after the corresponding initial transients. The last instantaneous solution of the
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baseline case served as initial condition for the coupled simulation, in which the flat
panel was allowed to deform. Quantities of interest have been extracted from three-
dimensional snapshots, that were recorded at a sampling interval of 0.5δ0,in{u8
leading to an ensemble of 8200 snapshots per case.

7.3.1. Undisturbed turbulent boundary layer
Details concerning the undisturbed tbl over a flat-rigid wall are provided in chapter
5 of this thesis (case T2). The boundary layer thickness at the inviscid impingement
point without the shock is δ0 “ 7.15 mm (see table 6.4), and this parameter will be
used for scaling purposes unless otherwise stated.

7.3.2. Panel response
The time evolution of vertical panel displacements is shown in figure 7.3 for the
quarter point, mid point and three-quarter point locations along the panel length.
The largest displacements are found within the first ∼15 ffts after the flexible
panel is released, which corresponds to the initial transient period required to reach
the mean deformation state. This initial transient (indicated in red in figure 7.3)
is excluded from the statistical analysis. For the remaining simulation time, a self-
sustained oscillatory behavior with varying oscillation amplitude is observed, which
confirms the strong and complex dynamic coupling between the panel and the flow.

Figure 7.4(a) shows the mean panel deformation along with the envelope of all
instantaneous deflection states after the initial transient. The observed mean shape
is consistent with the pressure difference, resulting from the pressure distribution
caused by the stbli on top and the constant imposed cavity pressure at the bot-
tom, and has a maximum downward deflection that exceeds 3h around 70% of the
panel length. The corresponding psd map of panel displacements is included in
figure 7.4(b) and provides an indication of the dominant vibration modes and their
respective frequencies. In this work, all psds have been estimated using Welch’s
algorithm, with Hamming windows and 10 segments with 65% overlap (segment
length of approximately 650δ0{u8).

As shown in figure 7.4(b), the first three bending modes account for most of
the variance of the displacement signals while higher-order modes contribute only
marginally. This is in good agreement with previous works [64–66, 210]. Interest-
ingly, the first bending mode is not symmetric; rather, its largest contribution is
found in the second quarter of the panel, see figure 7.4(b). The second bending
mode is also highly asymmetric and has energetic contributions predominantly in
the second half of the panel. Its frequency is very close to that of the third bending
mode, which as opposed to the previous two has a symmetric effect with respect to
the panel half-length.

Note that large static displacements increase the effective stiffness of the panel,
thereby requiring higher driving frequencies to resonate. Table 7.1 reports the first
three natural oscillation frequencies for the unloaded flat panel and the pre-stressed
deformed panel, which confirm the effective stiffening. These values were obtained
with a free-vibration analysis performed with the structural solver, which in the
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Table 7.1: Panel oscillation frequencies.

Natural Measured

Flat Pre-stressed

Hz StLsep Hz StLsep Hz StLsep

134 0.013 538 0.051 593 0.056
375 0.036 1351 0.128 1338 0.127
739 0.070 1554 0.148 1625 0.154

pre-stressed case involved pre-loading the panel with the mean wall-pressure of the
coupled simulation. For comparison, table 7.1 also includes the energetic frequen-
cies identified in the displacement signal of the three-quarter point along the panel
length (shown in figure 7.3(c) with its corresponding psd). These frequencies are
in close agreement with natural frequencies of the pre-stressed panel, rather than
those for the flat panel, which highlights the importance of mean displacements
in the dynamic response of the panel when exposed to stbli. We also note that
the frequency of the first bending mode of the pre-stressed panel lays within the
characteristic low-frequency range of stbli, i.e., a separation-length-based Strouhal
number StLsep below 0.1.

7.3.3. Instantaneous and mean-flow organization
An instantaneous impression of the temperature field is provided in figure 7.5 for
the coupled interaction to illustrate the investigated stbli topology. Contours of
instantaneous (black) and mean (yellow) zero streamwise velocity show the massive
flow separation, which is characteristic of strong interactions. Beyond the separation
point, upstream tbl disturbances grow into larger vortical structures as the shear
layer moves away from the wall, and they eventually interact with the incident-
transmitted shock tip at the bubble apex. Such shock-vortex interaction and the
strong flow deceleration near separation correspond to visible peaks in the tke
production [172]. Immediately after the bubble apex, the flow is turned towards the
wall and the reattachment process is initiated. All simulations exhibit a very mild
concave streamline curvature at reattachment, which results in a weak compression
fan instead of a coalesced reattachment shock.

Relevant wall-properties are shown in figure 7.6 to highlight the impact of static
and dynamic surface displacements on the flow. Skin-friction distributions in figure
7.6(a) show an increase of 15.6% in the streamwise extent of the reverse-flow bubble
for the coupled interaction, shown in blue, with respect to the baseline case, which is
indicated in gray. The corresponding separation length Lsep, defined as the stream-
wise distance between mean separation and reattachment points, increases from
6.62δ0 to 7.64δ0 (the separation point moves 0.42δ0 upstream and the reattachment
point moves 0.61δ0 downstream). The initial skin-friction drop and partial recovery
at the leading edge of the panel are consistent with the upward mean panel deflection
at this location, see figure 7.4(a). The following decrease in xCf y, on the other hand,
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Figure 7.5: Instantaneous flow organization of stbli over the flexible panel. Solid lines indicate
instantaneous (white) and mean (yellow) iso-contours of zero streamwise velocity. The wall region
is colored in gray with stripe patterns highlighting the rigid segments.

is attributed to the stbli and reveals the upstream shift of the separation shock in
the presence of the moving panel, see figure 7.6(a). Interestingly, the skin-friction
profile for the stbli over the rigid mean deformed panel geometry, that is, the dr
configuration, is almost identical to that of the coupled interaction, including the
magnitude of Lsep, which is 7.49δ0. This case is indicated in figure 7.6(a) with a
red line. The strong skin-friction similarity between the dr and fc configurations
suggests a dominant role of mean surface deformation on the resulting stbli organi-
zation over a moving panel. This is also confirmed by the probability of reverse-flow
in figure 7.6(b), where these two configurations exhibit a very similar increase in
reverse-flow probability compared to the baseline.

The corresponding mean and rms wall-pressure evolution for each configuration
are shown in figures 7.6(c) and 7.6(d). Interestingly, the incipient pressure plateau
in the separated region appears more established for the dr and fc configurations
in figure 7.6(c), without noticeable differences between the two. A more distinct
pressure plateau is generally associated with a stronger interaction [197], which
highlights the impact of the mean surface deformation on stbli. The dynamic com-
ponent of panel displacements, in turn, plays an important role in the corresponding
wall-pressure fluctuation intensities, which are shown in figure 7.6(d) for all cases.
It can be clearly observed that only the fc configuration exhibits a higher peak at
the separation-shock foot than the baseline, being approximately 30% larger. This
shows the non-negligible modulation of the separation-shock dynamics due to the
moving panel, which leads to a stronger separation-shock footprint on the surface.
We will further elaborate on the separation-shock dynamics in the next section. The
mean separation-shock location, on the other hand, is still mostly determined by
the mean deformation of the panel, since wall-pressure fluctuation peaks for the dr
and fc configurations are aligned. These configurations also exhibit very similar
fluctuation intensities beyond the reattachment location in figure 7.6(d), which are
noticeably larger than those for the baseline (ur) interaction.

To better characterize the size of the mean recirculation bubble, different quanti-
ties such as its length, height and volume are reported in table 7.2 for the investigated
configurations. In agreement with the above-discussed results, the presented bubble
metrics are very similar for the dr and fc configurations, which confirms the strong
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wall-pressure and (d) wall-pressure rms. Line legend: stbli over a (gray) flat-rigid panel - ur
configuration, (red) deformed-rigid panel - dr configuration, and (blue) flexible panel - fc config-
uration. Pentagon markers denote the corresponding mean separation and reattachment points,
while solid and dashed lines in (b) indicate the reverse-flow probability at the wall and the maxi-
mum wall-normal value, respectively. In addition, the rigid-wall segment for the fc configuration
is shaded in gray in all panels.

sensitivity of the separated flow to mean surface deformations. Furthermore, the
resulting height and reverse-flow bubble volume for these cases are much closer to
the baseline values when considering only y ě 0. This suggests that the expansion
of the reverse-flow region is primarily a consequence of the mean panel deflection
being predominantly downward, see figure 7.4(a). The two-dimensional probability
of reverse-flow is presented in figure 7.7 and shows that the recirculation region is
mostly located above a segment of the panel with negative deflection and where
the surface curvature is concave. This condition further compresses the flow and
contributes to the observed longitudinal expansion of the bubble from both ends.

The influence of static and dynamic panel displacements on the turbulence in-
tensity is analyzed next. Figure 7.8 shows contours of tke for the investigated
configurations, and all cases exhibit the typical distribution associated with imping-
ing stblis [40]. That is, turbulence is first amplified in the detached shear layer,
then undergoes a noticeable damping at the bubble apex and finally re-amplifies
again at reattachment. The most noticeable differences are found near and past the
reattachment location, where the dr and fc configurations exhibit higher levels of
tke compared to the baseline. This stems from the effective increase in streamline
curvature as a result of the mean downward deflection of the panel, and does not
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Table 7.2: Mean-flow quantities of the recirculation region for the investigated cases.

Flow parameters ur dr fc

Separation length Lsep{δ0 6.72 7.49 7.64
Bubble height Hsep{δ0
‚ from wall 0.37 0.47 0.47
‚ from y “ 0 0.37 0.39 0.39

Bubble volume Vsep{δ2
0Lz

‚ integral 1.63 2.43 2.35
‚ above y “ 0 1.63 1.81 1.75
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Figure 7.7: Two-dimensional probability of reverse-flow for the investigated configurations. Black
lines indicate contour levels from 10% to 90% reverse-flow probability in steps of 20%, while the
blue line indicates the 1% contour. For the selected colormap, transition from white to red starts
at 75%.

appear to be meaningfully altered by the unsteady panel motion.
Table 7.3 reports amplification factors for the tke and the individual Reynolds

stresses. Amplification factors are here defined as the ratio between the maximum
value within the interaction region and the maximum value in the undisturbed tbl
measured at the inviscid impingement point. For the baseline interaction, that is,
the ur configuration, the corresponding factors are in good agreement with previ-
ous high-fidelity numerical simulations [172, 176]. A comparison of these factors
with those associated with the dr and fc configurations then prompts the follow-
ing observations. First, the maximum tke amplification does not appear to be
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Table 7.3: Turbulence amplification factors.

Case Stress amplification factor

0.5Ću2i u2i Ću2u2 Ćv2v2 Čw2w2 Ću2v2

ur 2.60 1.97 4.35 3.57 3.97
dr 2.65 2.05 4.75 3.59 4.39
fc 2.63 2.39 4.72 3.62 4.37

meaningfully altered by the resulting mean or dynamic panel displacements. As
observed in figure 7.8, this amplification occurs in the detaching shear layer where
all cases exhibit a very similar behavior. The same can be said for the amplification
of the spanwise Reynolds stress, which also remains effectively unaltered. The wall-
normal and shear stress components, on the other hand, undergo approximately
10% higher amplification in the dr and fc configurations. This amplification is
related to the shear layer dynamics close to the reattachment point, which are more
intense for these cases. The maximum amplification of the streamwise Reynolds
stress is substantially higher in the presence of the moving panel, about 20% larger
than in the ur or dr configurations. Inspection of the corresponding transport
budgets for this stress reveals enhanced pressure transport at the separation shock
foot (not shown here) which contributes to the additional amplification. As already
highlighted in the wall-pressure rms of figure 7.6(d), the dynamic coupling between
the flow and the panel accentuates the separation-shock unsteadiness, which yields
a stronger footprint in the pressure fluctuation intensity map of figure 7.9, where
the separation shock exhibits increased fluctuation levels as well as a slightly larger
longitudinal excursion range in the fc configuration. Figure 7.9 also highlights the
increased shear layer activity near reattachment in the presence of mean surface dis-
placements, with the panel motion having a marginal influence as already discussed.

7.3.4. Flow dynamics
In order to identify dominant frequencies contributing to the modulation of the
stbli dynamics as a result of mean and dynamic panel displacements, temporal
spectra of wall-pressure, separation-shock location and bubble-volume variations
have been analyzed for the different configurations. For consistency, the separation
length Lsep from the baseline interaction is employed in the definition of StLsep in
all cases.

The pre-multiplied and normalized psd map of wall-pressure in figure 7.10 is
considered first. Dashed lines denote the corresponding mean separation and reat-
tachment points for each case while the leading and trailing edges of the panel are
indicated with dotted lines. The excursion range of the separation shock, which is
of order δ0, is located in front of the reverse-flow region in all cases, and exhibits a
distinct low-frequency signature compared to the incoming tbl. In the separated
region, high-frequency content characteristic of small-scale turbulence coexists with
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investigated configurations. Dashed lines indicate the mean separation and reattachment locations,
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moderate frequencies, extending from StLsep « 1 to 0.1 and below. The energetic
content is centered around StLsep « 0.5 near the reattachment location in all cases,
and then progressively relaxes towards the post-interaction tbl state.

In the presence of both static and dynamic panel displacements, that is, for
the dr and fc configurations, the energy density of the low-frequency content is
noticeably different compared to the baseline configuration. For instance, the psd
map for the dr configuration exhibits significant higher harmonic content at the
separation-shock foot. This illustrates the non-negligible modulating influence of
the deformed surface geometry on the shock unsteadiness. The spectra for the fc
configuration, in turn, show that the separation-shock motion resonates with the
panel oscillation. The most energetic peaks in the low-frequency range for this
configuration correspond to the first and second bending modes of the panel, which
are also found energetic upstream of the separation shock range, throughout the
reverse-flow region and beyond reattachment. Energetic content associated with
the panel motion, particularly at the first bending frequency (StLsep « 0.056), is
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Figure 7.11: Time evolution of (a) spanwise-averaged shock position, and (b) separation bubble
volume. Color legend: (gray) baseline ur configuration, (red) dr configuration, and (blue) fc
configuration. The shock position is referenced with respect to the mean shock location of the
baseline, i.e., xxbswy, and the bubble volume signal is normalized with the mean bubble volume of
the baseline, i.e., V bsep. Arrows and vertical bars indicate the corresponding mean value and its
standard deviation, and right panels include the pre-multiplied psd of the signals.

also visible downstream of the trailing edge of the panel. This suggests that the
dynamic fluid-structure coupling results in pressure disturbances that propagate
into the downstream flow.

Further insights on the separation shock dynamics are obtained by inspecting
the time evolution of the separation-shock location signal and its pre-multiplied
psd, which are shown in figure 7.11(a) for the different configurations. Instan-
taneous shock locations were extracted from the corresponding three-dimensional
snapshot sequence, by searching for peak values of the pressure gradient field |∇p|
in a wall-normal slice outside the boundary layer (at y “ 1.5δ0, before intersecting
the incident shock) and then averaging the resulting shock front in span. Note that
the shock location in figure 7.11(a) is referenced with respect to the mean separation
shock location of the baseline case xxbswy for ease of comparison.

In agreement with the analysis in the previous section, the separation shock is
clearly located more upstream in the presence of mean surface displacements, see
the left panel of figure 7.11(a). The arrows on the side, which indicate the mean
value of each signal, also make clear that the effect of the panel motion on the mean
separation-shock location is secondary to the effect of the mean panel deformation.
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As observed, the corresponding signals for the dr and fc configurations, which are
indicated in red and blue respectively, have an almost identical mean value. The
fc configuration, however, is characterized by noticeably larger excursions of the
separation shock from its mean location, which translates into a larger standard
deviation of the signal. This is indicated by the vertical bars on the left panel of
figure 7.11(a). The present results thus confirm that the excursion domain of the
separation shock is effectively increased in the presence of the moving panel, while its
mean location is determined by mean (rather than dynamic) surface displacements.

The dominant peak in the corresponding psd of the separation-shock location
signal, shown in the right panel of figure 7.11(a), also confirms that the dynamic
fsi coupling is mainly established through the first bending mode of the panel
oscillation. The dominant peak of the signal is located at StLsep « 0.058, which is
very close to the spectral peak of panel displacements found at StLsep « 0.056, see
table 7.1. A secondary peak is also visible in the spectra for the coupled case, see
figure 7.11(a), at a frequency StLsep « 0.130. This is very close to that of the second
bending mode of the panel oscillation, which is found at StLsep « 0.127. Frequencies
below the first bending frequency of the panel oscillation are also energetic in the
shock location signal of the coupled interaction, and their level is comparable to the
low-frequency content of the other configurations (psds are not normalized in this
figure). This suggests that the low-frequency dynamics characteristic of flat and
rigid-wall stblis coexist with those emerging from the dynamic coupling with the
moving panel, rather than being replaced by them.

We also note that the broadband low-frequency range below the first bending
frequency of the panel is centered around StLsep « 0.03 for the fc configuration.
This peak is aligned with the global spectral peak of the dr configuration, see figure
7.11(a), which further supports the coexistence of fsi and non-fsi low-frequency
dynamics in the coupled interaction. Interestingly, the corresponding low-frequency
peak for the baseline case is found at StLsep « 0.04. This difference in peak location
cannot be accounted by employing the particular Lsep of each configuration, rather
than the baseline Lsep, in the definition of its corresponding Strouhal number. As
deduced from table 7.2, Lsep is only about 11-13% larger in the dr and fc configura-
tions compared to the baseline, which does not account for the observed discrepancy.
Our results thus indicate that StLsep is ineffective in collapsing low-frequency dy-
namics of flat-wall and deformed-wall stblis at the same flow conditions.

The time evolution of the reverse-flow bubble volume is shown in figure 7.11(b),
and most of the observed changes in the presence of the flexible panel are in close
qualitative agreement with those discussed for the separation shock location. For
ease of comparison, volume signals have also been normalized with the correspond-
ing mean value for the baseline case V bsep. As observed, the mean bubble volume
increases by approximately 50% in the presence of mean surface displacements, see
also table 7.2, and is not substantially altered by the panel oscillation (if only the
fluid domain above y “ 0 is considered, the increase in bubble volume is 15%). The
standard deviation of the bubble-volume signal for the dr configuration, however, is
much closer to that of the fc configuration rather than the baseline. This suggests
that bubble dynamics are also largely affected by mean surface displacements. From
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the corresponding psds, shown on the right panel of figure 7.11(b), it is clear that
the dominant frequency in the signal for the coupled interaction is also associated
with the first bending mode of panel oscillation. Higher frequencies appear also en-
ergetic, but a direct connection with a dominant frequency of the panel oscillation
cannot be established. We also note that all cases exhibit a peak at StLsep « 0.1,
which is global for the ur and dr configurations. In agreement with the observa-
tions made in the analysis of the separation shock unsteadiness, the presence of this
common peak indicates that some of the energetic bubble motions are not altered
by the surface geometry and coexist with those induced by the considered surface
displacements.

7.3.5. Modal analysis
For the coupled interaction, our results have so far shown that the stbli flow
strongly resonates with the first bending mode of panel oscillation. This emerging
narrow-banded behavior in an otherwise broadband spectrum makes the investi-
gated fsi particularly suitable for the dimensionality reduction that a data-driven
decomposition technique like spdmd can grant [201]. So in order to relate global
flow phenomena to the first and other bending frequencies of the panel, we perform
spdmd of the les data. The reader is referred to appendix D for algorithmic details.

In the present modal analysis, we use a total of Ns “ 8200 snapshots per case to
produce a modal decomposition with high statistical significance. The considered
snapshots, which were recorded at a sampling interval of 0.68δ0{u8, include the
instantaneous three-dimensional streamwise velocity and pressure fields. For the
coupled interaction, panel displacements are also appended to the instantaneous
snapshot data so that a statistical link between flow dynamics and panel motion
can be established. Moreover, the regularization parameter of the spdmd algorithm
is chosen such that the number of retained dmd modes is 41 per case, and the
statistical significance of the lowest frequencies is guaranteed in a similar fashion
as in chapter 6. That is, by preventing dmd modes with a period of oscillation
larger than a third of the total simulation time from being selected by the spdmd
algorithm as dynamically relevant.

Figure 7.12 shows the corresponding modal amplitudes and frequencies of the
resulting dmd modes for each case as well as those retained by the spdmd algorithm,
referred to as spdmd modes. All modes with non-zero frequencies arise as complex
conjugate pairs because the original snapshot data is real-valued. The spdmd mode
set highlights those modes that are dynamically relevant in the dmd solution and
that are therefore worth inspecting. These modes are indicated with red crosses in
each panel of figure 7.12. The amplitudes of the spdmd modes are slightly different
from the dmd amplitudes because the algorithm recomputes them for an optimal
representation of the original data sequence with the retained sparse structure. For
the sake of clarity, the spectrum of figure 7.12 only shows Strouhal numbers up
to StLsep “ 0.25 because this low-frequency range already encompasses the spdmd
mode set of the dr and fc configurations. The corresponding spdmd solution for
the baseline case, on the other hand, contains a few modes with higher oscillation
frequencies, up to StLsep « 0.65, which suggests that the lower end of the energetic
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Figure 7.12: Dynamic-mode amplitude distribution for (a) the baseline ur configuration, (b) the
dr configuration, and (c) the fc configuration. Symbol legend: (circles) standard dmd solution;
(crosses) spdmd solution containing 41 modes. Solid blue lines in (c) indicate the first measured
bending mode of the panel oscillation, see table 7.1, while dashed blue lines denote the high-order
ones (second and third).

spectrum of stbli is more dynamically relevant in the presence of the investigated
surface deformations than in the case of a flat wall. We also note that low-frequency
modes below StLsep “ 0.1 exhibit the largest amplitudes in all cases.

The spdmd solution of the coupled interaction, see figure 7.12(c), excellently
captures the first bending mode of panel oscillation. The corresponding Strouhal
number as measured from the psd of panel displacements is indicated with a solid
blue line in the figure, and it intersects the largest spdmd modal amplitude with
non-zero frequency almost perfectly. This confirms the excellent capabilities of the
spdmd method in detecting and isolating the main system dynamics. In addition
to this tone, the spdmd solution of the coupled interaction also includes dynamic
low-frequency modes below the first bending frequency of the panel oscillation, and
their amplitudes are very much in line with the corresponding spdmd modes of the
ur and dr configurations, see figures 7.12(a) and 7.12(b). This further confirms
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the observations made in the previous section regarding the emerging fsi dynamics,
which coexist with rather than replace the characteristic non-fsi low-frequency dy-
namics of stbli. Concerning the higher-order modes of panel oscillation, indicated
with dashed lines in figure 7.12(c), the second bending mode also appears to be
captured by the spdmd algorithm in the coupled case. However, it does not emerge
as a distinct tone like the first bending mode. The third bending mode of the panel,
in turn, cannot be directly associated with a particular spdmd mode, indicating
that the stbli flow does not resonate at this frequency.

Based on the above considerations, three spdmd modes of the coupled interaction
are selected and described in the following. These include a representative low-
frequency mode below the first bending frequency of the panel oscillation, as well as
the dynamic modes closest to the first and second bending frequencies of the panel.
Animations of the depicted modal shapes are available as in our data repository
[220] and should be considered in conjunction with the following discussion.

The selected low-frequency mode below the first bending frequency of panel os-
cillation, at StLsep « 0.015, is depicted in figures 7.13(a) and 7.13(b) at two discrete
phase angles, ωit “ 0 and ωit “ π{2. The associated modal pressure, modal stream-
wise velocity and modal displacement fields are shown in the top, center and bottom
panels of the figures. The modal pressure clearly highlights the connection between
the low-frequency unsteadiness of stbli and longitudinal excursions of the separa-
tion shock, in agreement with the observations made in chapter 6. These excursions
are associated with pressure fluctuations of opposite sign near reattachment, which
is consistent with expansions and contractions of the reverse-flow bubble from both
ends. The modal streamwise velocity field additionally reveals the statistical link
between the low-frequency unsteadiness of the separation shock and streamwise
velocity streaks that originate near the separation point. The strongest velocity
fluctuations are found at the leading edge of the bubble and in the downstream
flow, whereas the streak strength is highly damped at the bubble apex due to the
interaction with the incident-transmitted shock. These observations are also in ex-
cellent agreement with the spdmd results for the rigid-wall interaction discussed in
the previous chapter. In fact, we find that both the dr and fc configurations exhibit
low-frequency modes with very similar modal shapes as those obtained for the base-
line ur configuration. This provides strong evidence of the coexistence of non-fsi
low-frequency dynamics of stbli with those emerging from the dynamic coupling
with the moving panel. The corresponding modal displacement field for the fc con-
figuration further supports this conclusion, since it shows that the panel passively
adapts to the pressure variations induced by the oscillating flow (see bottom panels
of figure 7.13).

Figures 7.14(a) and 7.14(b) show two discrete phases of the dynamic mode associ-
ated with the first bending frequency of the panel oscillation, with a modal frequency
of StLsep « 0.056. The phase difference between both figures is again ωi∆t “ π{2.
This mode differs in many aspects from the low-frequency mode shown in figure
7.13. Most notably, it presents an increased spanwise coherence that is consistent
with the two-dimensional motion of the panel. The modal pressure, see the top
panels of figure 7.14, exhibits strong fluctuations at the front end of the panel due
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Figure 7.13: Representative dynamic low-frequency mode of the coupled interaction (StLsep «
0.015) at two different phase angles: (a) ωit “ 0, and (b) ωit “ π{2. The different panels include
the modal pressure (top), the modal streamwise velocity (center), and the modal displacements
(bottom). Front and rear edges of the flexible panel are indicated with black circles. Iso-contours
in the top and center panels indicate strong positive (red) and negative (blue) fluctuations, and the
corresponding surface geometry is indicated in gray. In the bottom panels, the surface geometry
is colored by the modal displacements.

to the unsteady motion of the upward-deflected leading edge (both edges of the
panel are indicated with black circles in the figures). A similar observation can be
made for the fluctuations at the trailing edge of the panel, behind the interaction
region, where the unsteady bending motion induces pressure disturbances that prop-
agate into the downstream flow. The signature of these structures is also visible in
the wall-pressure psd of figure 7.10. The spanwise coherence of this mode is par-
ticularly evident in the modal streamwise velocity field, which exhibits large-scale
fluctuations of the entire shear layer instead of a distinct three-dimensional streak
structure. The accompanying modal displacements, which are shown on the bot-
tom panels of figure 7.14, are clearly asymmetric in streamwise direction around the
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Figure 7.14: Dynamic mode associated with the first bending mode of the panel oscillation
(StLsep « 0.056). The phases portrayed in (a) and (b) respectively correspond to phases θ1
and θ2 in figure 7.16, respectively. For additional details, see figure 7.13.

panel half-length. This is in agreement with the psd map of panel displacements
shown in figure 7.4(b).

In order to better understand the dynamic coupling at the first bending frequency
of the panel, we reconstruct the fsi dynamics by superposing the corresponding
spdmd mode of figure 7.14, hereby referred to as φ1, on the mean mode. Due to
the noticeable spanwise coherence of φ1, we consider the spanwise-averaged modal
fields and reconstruct the corresponding purely two-dimensional dynamics. When
doing so, the amplitude of φ1 is also amplified by a factor 2 to better appreciate
its effect on the mean flow. The resulting reconstructed velocity field is shown on
the left panels of figure 7.15 at four equally spaced phase angles, such that figures
7.15(a) and 7.15(c) correspond to the maximum and minimum deflection of the
centerpoint of the panel, while figures 7.15(b) and 7.15(d) depict the intermediate
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Figure 7.15: Reconstructed streamwise velocity field based on the mean flow plus the spanwise-
averaged dynamic mode corresponding to the first bending frequency of t he panel oscillation. The
selected phases within one cycle, which are labeled on the left corner of each contour map, are
indicated in figure 7.16. The instantaneous separation shock front is delineated with a black line,
and a white line delimits the reverse-flow region (which is also shaded in white). Black and red
arrows indicate the direction of separation shock and panel motion, respectively. The corresponding
reconstructed instantaneous wall-pressure (blue) together with its mean distribution (black) are
shown on the right panels, where markers indicate separation and reattachment points.

phases. For clarity, the separation shock and the reverse-flow region are indicated
with solid lines, and arrows are used to mark the direction of the separation shock
and panel bending motion. The right panels of figure 7.15 include the corresponding
variation of the reconstructed wall-pressure (blue line) together with the mean wall-
pressure (black line) for reference. The discussion of figure 7.15 should be considered
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Figure 7.16: Fluctuations of different quantities for the pure oscillation based on the spanwise-
averaged dynamic mode associated with the first bending frequency of the panel oscillation: (a)
evolution of the mid point displacement (solid red), the separation shock location (dashed blue)
and the reverse-flow bubble volume (dotted black); (b) evolution of the the integrated load over
the full panel (solid black) and contributions over the first half (dashed gray) and over the second
half of the panel (dotted gray). Four different phases within one cycle are indicated at the top,
and they correspond to the reconstructed fields shown in figure 7.15.

in conjunction with figure 7.16, which shows the corresponding evolution of the
midpoint displacement of the panel, the separation-shock location, the volume of
the reverse-flow bubble and the integral panel load. Note that the equally spaced
phases shown in figure 7.15(a–d) are labeled as θ1-θ4 in figure 7.16.

The reconstructed velocity field in figure 7.15 reveals that the reverse-flow bub-
ble volume lags behind the bending motion of the panel by approximately π{2. In
a hypothetical very slow oscillation (i.e., quasi-steady), one would expect that the
most downward deflection of the panel would lead to the largest reverse-flow bubble
volume, since the mean-flow of the coupled case shows an enlarged bubble in the
presence of mostly-downward mean surface displacements compared to the base-
line interaction, see section 7.3.3. The unsteady nature of the coupling, however,
introduces a phase offset between both signals that is particularly evident in fig-
ure 7.16(a) (compare solid and dotted lines). As indicated by the dashed blue line
of figure 7.16(a), the separation shock motion is also characterized by asymmetric
excursions around its mean location, with larger upstream excursions that persist
for less than half of the period. Figure 7.16(a) also indicates that the separation
shock location signal is approximately anti-correlated with the reverse-flow bubble
volume, which is expected considering that the first bending frequency of panel
oscillation is found within the broadband low-frequency range of stbli [31, 221].
The cross-correlation between the bubble volume and the separation shock location
signals, however, reveals a small negative time lag between the two. This time lag
is visible in 7.16(a) and indicates that the shock motion is preceded by variations in
the extent of the recirculation region. Interestingly, we find that the observed time
lag corresponds precisely to the time required by a pressure disturbance generated
at the mean reattachment location to reach the separation line, i.e., ∆t « Lsep{aw
where aw is the speed of sound at the wall. This finding could support the hy-
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Figure 7.17: Dynamic mode associated with the second bending mode of the panel oscillation
(StLsep « 0.124). For additional details, see figure 7.13.

pothesis that a downstream instability is the main driver of the separation-shock
unsteadiness [30].

Another relevant element in the considered fluid-structure coupling is the panel
load. Together with the resulting elastic forces and the considered cavity pres-
sure, the panel load ultimately drives the panel motion. Figure 7.16(b) shows the
evolution of the integral panel load within the cycle (black solid line), which also
presents an asymmetric behavior around its mean value. The panel load on the first
and second half of the panel, which together constitute the integral panel load, are
also indicated in figure 7.16(b) as dashed and dotted gray lines, respectively. By
comparing figures 7.16(a) and 7.16(b), it is clear that the separation-shock location
determines the load on the first half, while the trailing edge of the bubble, that is,
the reattachment process, influences the load on the second half. The particular
evolution of these signals, as well as their relative offset, leads to an integral panel
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load that essentially increases during the upward bending and decreases during the
downward bending, see figure 7.16(b). This is characteristic of a restoring load.

Figure 7.17 shows a dynamic mode with a characteristic frequency of StLsep «
0.124, which is very close to the second bending frequency of the panel oscillation,
see table 7.1. Qualitatively, the flow characteristics of this mode appear similar
as those of the low-frequency mode included in figure 7.13. Differences are mainly
found in the modal pressure at the separation shock, which is characterized by nar-
rower longitudinal excursions, noticeable variations in shock deflection and increased
spanwise shock wrinkling. The corresponding modal displacements have an asym-
metric effect around the panel half-length with larger fluctuations in the second half
of the panel. This behavior is consistent with the psd map of panel displacements
in figure 7.4(b). Since the first and second half of the panel also oscillate with a
different phase within the mode, the observed asymmetry makes the oscillation at
times reminiscent of a third bending mode. We also note that the other configura-
tions exhibit similar modal shapes for the flow variables around this frequency (not
shown here), which suggests that the stbli flow is only weakly coupled with this
bending mode.

7.4. Summary
In this chapter, we discussed the dynamic coupling between a Mach 2.0 tbl flow, an
oblique impinging shock wave, and a flexible panel. This phenomenon was captured
with a coupled fsi simulation that combined wall-resolved les for the fluid with a fe
structural solver for the panel. To assess the different effects of mean and dynamic
panel displacements on the stbli dynamics, the resulting mean panel deflection was
also employed as a rigid-wall geometry in a second simulation, integrated over the
same time interval as the coupled case. Results were compared with a flat rigid-wall
stbli at the same flow conditions, corresponding to the moderate-Reynolds case B2
discussed in chapter 6.

Our results showed that the flexible panel exhibited self-sustained oscillatory
behavior over a broad frequency range, confirming the strong and complex fsi. The
first three bending modes of the panel oscillation were found to contribute most to
the unsteady panel response, at frequencies in close agreement with natural frequen-
cies of the pre-stressed panel rather than those for the flat (unloaded) panel, which
differed significantly. Moreover, the mean panel deflection was found to enlarge
the reverse-flow region, whereas the dynamic panel motion around the mean deflec-
tion had a negligible influence on the mean-bubble volume. The separation-shock
unsteadiness, however, was enhanced by the panel motion, leading to higher wall-
pressure fluctuations at its foot. Spectral analysis of the separation-shock location
and bubble-volume signals revealed that the fluid-structure coupling was predomi-
nantly established via the first bending mode of the panel oscillation. Modal analysis
of the flow and displacement data further supported this coupling and helped iden-
tify the mechanism sustaining it.
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8
Conclusions

The aim of the present work was to improve our understanding of the underlying
physics of shock-shock interactions (ssis) and shock-wave/turbulent boundary-layer
interactions (stblis). Both phenomena are omnipresent in high-speed aerodynamics
and can severely affect the efficiency and structural integrity of multiple aircraft
components when uncontrolled.

8.1. Shock-shock interactions
Response to periodic excitations

The first part of the thesis was focused on the response of asymmetric ssis to different
excitation mechanisms that mimic the disturbance environment of supersonic inlets
and other internal flows. In chapter 3, we considered perturbation modes of the lower
incident shock, which included pitching across the dual-solution domain, a periodic
(sinusoidal) oscillation of the imposed deflection around a mean value (both within
and outside of the dsd), and a periodic (sinusoidal) streamwise oscillation without
pitch. These excitation modes, specially the latter two, were aimed at emulating
the dynamics of the separation shock in stbli flows.

Our simulations unambiguously confirmed that excitations of this kind can trig-
ger riÑmi transition and potentially sustain the mi for mean flow conditions within
the steady-state dsd. This is a consequence of the impulsive Mach stem growth
right after transition, which prevented the remaining oscillatory motion of the lower
incident shock from inducing transition back to a stable ri pattern. A transient
growth of the mean Mach stem height was in fact observed over several periods of
oscillation until a mean steady state identical to that obtained for an initial mi was
reached. In relation to the excitation applied to an initial mi, significantly lower fre-
quencies were required to induce the collapse of the Mach stem and trigger miÑri
transition, compared to the opposite case. No transition to the ri was observed
for the excitation frequencies considered. This suggests that any single-time event
encountered in real life conditions for which a stable Mach stem can develop could
lead to a sustained mi thereafter.
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In view of the aforementioned, we thus conclude that the mi configuration is
more robust against periodic perturbations than the corresponding ri configuration
for mean flow conditions within the steady-state dsd. This is in agreement with
previous experiments in wind tunnel facilities with a high level of free-stream dis-
turbances, for which the mi configuration was observed to prevail within most of
the extent of the dsd with hardly any visible hysteresis. Our computations did not
confirm, however, the possibility of a periodic oscillation sustaining the mi for mean
flow conditions outside the steady-state dsd on the ri domain. This is consistent
with case swbli6 of Matheis and Hickel [46] in which, for the same free-stream Mach
number and similar mean flow deflections outside the dsd, riÑmi transition due to
the dynamics of the separation shock was not observed. Computations for which
they did observe such phenomenon were conducted at M0 “ 2.0 and mean flow
deflections for which no steady-state dsd exists, and for which additional acoustic
perturbations emitted by the tbl may play a decisive role.

Effect of variable inflow Mach number

In the second and last chapter of part one, which corresponds to chapter 4, we in-
vestigated the complimentary excitation mechanism to those described above, that
is, the influence of free-stream Mach number variations on ssis with nominally fixed
shock generator geometry. An experimental campaign was carried out for this pur-
pose in the transonic-supersonic blow-down wind tunnel (tst-27) of the high-speed
aerodynamics laboratory at TU Delft, which enabled a continuous variation of the
free-stream Mach number during a run. Since the time rate of change of the Mach
number was much smaller than the characteristic flow time scale, the varying free-
stream conditions represented a quasi-steady perturbation of the ssi system.

In line with previous works dealing with noisy experimental environments, no
transition hysteresis was observed in our experiments and the mi was found to
persist throughout most of the steady-state dsd. However, achieving experimental
agreement with the von Neumann criterion required very accurate measurements
of flow deflection alongside the Mach number. This was accomplished through a
systematic flow-based post-processing methodology that extracted the correct state
of the flow from schlieren visualizations and synchronous pressure readings. The
maximum observed deviation between flow deflection measurements and nominal
wedge angles was 1.2˝.

Furthermore, different planes along the optical path were investigated with a
focusing schlieren system to assess three-dimensional side-wall effects in the ex-
perimental setup. The analysis confirmed that the considerable shock thickening
observed in regular schlieren visualizations was caused by stblis at the side-walls,
and that the trailing edge of the incident-shock footprint was a reliable indicator of
the two-dimensional incident-shock locations at the mid-plane of the test section.
To the authors’ knowledge, this was the first time that the focusing schlieren tech-
nique was successfully applied to ssis. It was also the first time that such technique
was employed in our facilities, and it certainly proved to be robust at blurring out-
of-focus elements for practical purposes. We thus envision the use of the focusing
schlieren technique in future experiments where the spanwise organization of the



Section 8.2 ‚ Shock-wave/turbulent boundary-layer interactions

8

169

flow is of interest, such as in the case of stblis in presence of flexible components
or shock-control elements.

8.2. Shock-wave/turbulent boundary-layer interac-
tions

The second part of the thesis was fully focused on the physics of stblis with substan-
tial flow separation. Understanding the mechanisms that drive the most energetic
dynamics of stblis at high Reynolds numbers (chapters 5 and 6) and in presence of
elastic structures (chapter 7) is essential for the development of effective flow control
strategies that can effectively mitigate the risk of damage to the vehicle.

Reynolds number effects were quantified from a new wall-resolved les database
of a Mach 2.0 stbli flow with strong boundary-layer separation at three different
friction Reynolds numbers Reτ “ 355, 1226 and 5118, and otherwise equal flow
parameters. The high-Reynolds case significantly extends the available parameter
range of strong stbli covered with high-fidelity simulations and represents a leap
towards the high-Reynolds conditions of experimental facilities. The les database
also includes simulations of the tbl flow in absence of the impinging shock, so as
to properly characterize the undisturbed tbl, and of the moderate-Reynolds stbli
flow over a compliant thin-panel to investigate the resulting dynamic coupling. All
stbli cases exhibit substantial flow reversal and were integrated for a very long time
to properly resolve low-frequency dynamics.

Effect of Reynolds number on the turbulent boundary layer

The discussion of Reynolds number effects was first centered around the undisturbed
tbl, i.e., in absence of the incident shock, and was presented in a separate chapter
(chapter 5). Considerable attention was dedicated to quantifying the size of the
turbulent structures populating the tbl, with a specific focus on the outer layer at
high Reynolds number.

Separation of the inner and outer scales in the high-Reynolds case was verified
through examination of the pre-multiplied streamwise energy spectra of streamwise
velocity fluctuations, which exhibited a bimodal configuration with an inner peak
at y` « 15 and λx̀ « 700 and an outer peak at y{δ0 « 0.1 and λx{δ0 « 6. The
significant elongation of the outer-layer structures at high Reynolds number was also
highlighted via two-point autocorrelation maps of streamwise velocity fluctuations
with the reference location at y{δ0 « 0.2. This data further revealed that outer-layer
structures interact with the near-wall turbulence in all cases, at an oblique angle
with respect to the free-stream flow. For the low- and moderate-Reynolds cases,
the observed inclination angle closely matched the 14˝ angle reported by Marusic
and Heuer [147] for incompressible tbls, while the high-Reynolds case exhibited a
slightly smaller inclination in the outer layer. All correlation maps were also found
to conform to more shallow angles near the wall, between 8˝ and 11˝, which suggests
that a line fit of peak points in wall-normal direction is a poor representation of the
structure inclination angle.
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The average spanwise spacing of the dominant turbulent structures was also
assessed from spanwise autocorrelation functions and related spectra. In all cases,
the streamwise velocity correlation calculated at y` « 15 revealed a local minimum
at ∆z` « 50, thus providing an indication of the spanwise spacing between adjacent
near-wall streaks. This minimum, however, was found at a positive correlation
value for the high-Reynolds case, which highlights the organizing effect of the log-
layer on the near-wall region. The global correlation minimum at ∆z` « 50 could
be recovered by removing the large-scale imprint with a high-pass filter, whereas
correlations computed from low-pass filtered data at y` « 15 resembled the typical
correlation function of the log-layer structures. These findings have very promising
implications for flow control applications as well as for wall modelling in les.

The inner-scaled spanwise spectra of the unfiltered data at y` « 15 also showed
the imprint of log-layer structures for the high-Reynolds case, for which the location
of the spectral peak was found at a much higher wavelengths than λz̀ « 100. The
approximate spacing of the outer-layer motions was deduced from the outer-scaled
spectra at y{δ0 « 0.1 where a peak is found at λz « 0.7δ0 in all cases. While the
peak kinetic energy was found to increase with increasing Reynolds number, the
fact that the corresponding wavelength remains unaltered indicates that the width
of turbulent structures away from the wall is essentially independent of the Reynolds
number. This observation is in very good agreement with the experimental results
of Hutchins and Marusic [137] and Bross et al. [119].

Based on the aforementioned results, log-layer structures may (and do) con-
tribute to the rippling appearance of the separation-shock foot in the corresponding
stblis [159] but they are still too short in longitudinal direction to considerably mod-
ulate the low-frequency unsteadiness of the interaction in the considered Reynolds
number range. As indicated by Ganapathisubramani et al. [37], only structures of
order λx “ 50δ0 can induce low-frequency scales of order Op0.01u8{δ0q on the stbli
flow, which are the values typically reported for the most energetic motions of the
separation shock [30]. The observation that the largest structures in the present les
data were found to be one order of magnitude smaller in length is then compelling
evidence to consider the low-frequency unsteadiness observed in the investigated
stblis to be primarily induced by some other mechanism.

Effect of Reynolds number on the STBLI flow

After providing a detailed characterization of the undisturbed tbl in chapter 5, the
ensuing dynamics and organization of the corresponding stbli flow were discussed
in chapter 6. The separation-shock foot appeared highly diffused at low Reynolds
number, where flow separation at the leading edge of the interaction was found to be
initially restricted to the wall. Conversely, at high Reynolds number, the detached
shear layer was immediately lifted away from the wall, and the separation shock
originated deep within the tbl, resulting in a distinct peak in wall-pressure fluctu-
ation intensity. Furthermore, analysis of the instantaneous flow revealed noticeable
spanwise variations of the separation-shock foot and local separation line at high-
Reynolds number, associated with alternating regions of low- and high-momentum
fluid in the incoming tbl. These fluctuations appeared to re-organize into larger



Section 8.2 ‚ Shock-wave/turbulent boundary-layer interactions

8

171

structures across the interaction, a phenomenon consistently observed across all
cases.

In terms of the mean-flow, differences in upstream influence were assessed using a
custom parameter defined for the impinging stbli case, which revealed a decreasing
upstream effect with increasing friction Reynolds number. Notably, the separation
length Lsep and the post-shock flow deflection above the shear layer appeared largely
unaffected by the Reynolds number, as did the incipient pressure plateau in the
mean wall-pressure. However, the shape of the reverse-flow bubble showed more
pronounced deviations from a triangular shape at low Reynolds number, alongside
a curved leading edge with a large curvature radius.

Furthermore, inspection of velocity statistics showed that the peak value of
the streamwise Reynolds stress τ11 moves from the separation-shock foot at low
Reynolds number to the core of the shear layer at high Reynolds number. This find-
ing motivated the analysis of τ11 transport budgets along mean-flow streamlines,
as previous (low-Reynolds) studies have only identified the peak location at the
separation-shock foot and attributed the maximum amplification to the influence of
both the near-wall cycle of the tbl and the deceleration of the mean-flow. However,
our results demonstrate a departure from this dominant amplification mechanisms
at high Reynolds numbers. Instead, the emergence of the global stress peak is cor-
related with increased pressure transport in the separation-shock excursion domain,
further away from the wall. This increase was attributed to the unsteadiness of the
sharp separation shock at high Reynolds number, originating deep within the tbl.

The effect of Reynolds number on the stbli dynamics was also quantified by
means of temporal spectra of wall-pressure, separation-shock location and separation-
bubble volume. While the wall-pressure spectra for the low-Reynolds case only ex-
hibited moderate low-frequency content around the diffused separation-shock foot,
broadband and very energetic low-frequency content was well-established in the
other cases. Particularly at high Reynolds number, the wall-pressure signal under-
neath the separation-shock foot exhibited strong intermittency, characterized by a
bimodal and highly right-skewed probability density function. The spectra of the
separation-shock location, tracked above the shear layer, revealed broadband ener-
getic low-frequency content in all cases at a separation-length-based Strouhal num-
ber StLsep ă 0.1, thus confirming that the mechanisms driving the low-frequency
dynamics of stblis are fundamentally independent of Reynolds number.

Notably, the low-frequency range also exhibited energy in the spectra for the
reverse-flow bubble volume, but the dominant contributions to the signal variance
were found at StLsep « 0.1–0.2 in all cases. This moderate frequency is similarly
energetic in subsonic detached shear layers and supersonic backward-facing steps,
where it is linked to the flapping motion of the shear layer. We hypothesized whether
a comparable mechanism manifests in the investigated impinging stbli flow.

The relationship between the reverse-flow bubble volume and the spanwise-
averaged separation-shock was also examined by cross-correlating both signals, re-
vealing that the separation-shock motion consistently lags behind bubble-volume
variations in all cases. Interestingly, we found that the time lag between both sig-
nals is approximately the acoustic propagation time from reattachment to separation
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in all cases. This provides compelling evidence for a downstream mechanism driving
the motion of the separation shock.

Lastly, we performed sparsity-promoting dynamic mode decomposition (spdmd)
of the three-dimensional pressure, streamwise velocity and streamwise vorticity fields
to relate energetic frequencies in the temporal spectra with global flow phenomena.
We found that the subset of dynamically relevant modes exhibits an increased con-
centration at low-frequencies with increasing Reynolds number. Inspection of the
corresponding low-frequency modes confirmed a consistent statistical link among
large-amplitude excursions of the separation shock, large-scale velocity streaks and
streamwise-aligned vortices across all cases.

While these findings seem to align with hypotheses in the literature suggesting
that Görtler-like vortices drive the low-frequency unsteadiness of stblis, causality
cannot be established with the present results. In fact, the relevance of the identified
large-scale vortices is called into question by their presence also extending to higher
frequencies, above StLsep “ 0.1, and not being exclusively associated with low-
frequency dynamics.

Reconsideration of the source of low-frequency unsteadiness

While a primary mechanism for mass exchange between the reversed-flow region and
the free-shear layer appears around StLsep « 0.1 in both subsonic and supersonic
detached shear layers, we note that only those configurations with unconstrained
separation and reattachment points additionally exhibit energetic content at lower
frequencies, i.e., at StLsep ă 0.1. This is the case for impinging and compression-
ramp stblis, where boundary-layer separation is induced by an adverse pressure
gradient and is bound by two strong and unconstrained compressions. Forward-
facing and backward-facing step flows, in contrast, do not exhibit such energetic
low-frequency dynamics [193, 205], in our opinion, because either the separation or
the reattachment points are geometrically constrained in streamwise direction by
the step.

The significance of this observation should not be understated because most of
the potential mechanisms hypothesized in literature as drivers of the low-frequency
unsteadiness are present in step-induced stblis, yet their dynamic characteristics
are evidently different. Our hypothesis is that the interaction does not require a
particular low-frequency forcing, but rather energetic low frequencies simply emerge
as a result of a dynamic feedback between the separation and reattachment points
(very much like hysteresis) that appears in the higher-frequency oscillations of the
recirculation bubble, i.e., at StLsep Á 0.1. This can only occur when both separa-
tion and reattachment points are unconstrained and can dynamically couple, which
is not the case in step flows. If this hypothesis holds, it would imply that sup-
pressing the undesirable low-frequency content of the interaction is achievable by
breaking the dynamic coupling between separation and reattachment, without the
need for reducing the size of the recirculation bubble and with most of the mech-
anisms considered as potential drivers of the low-frequency unsteadiness remaining
active. Future efforts will be directed towards providing further insights into these
observations.
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A remark on the employed modal decomposition
The dmd algorithm and its sparsity-promoting variant were found to be effective at
isolating tonal behavior (chapter 7). However, care must be taken with the physical
interpretation of dmd modes when the system dynamics are broadband. The fact
that the resulting modal basis is not energy-ranked (relative to the variance of the
data sequence) is a disadvantage in this regard, specially when one is concerned
with building a reduced-order model of the flow system. An alternative to dmd
worth exploring is spectral pod or spod [222]. This method not only identifies
frequency-ranked coherent structures but also optimally ranks them by energy. We
are currently exploring the capabilities of this method in the context of stbli flows,
as well as the benefits of performing a Fourier decomposition in the homogeneous
spanwise direction (prior to the modal analysis) to reduce memory requirements of
the decomposition algorithm and better pinpoint the spanwise spacing of elongated
structures statistically linked to the low-frequency unsteadiness of stblis.

Effect of static and dynamic surface deformations
In the last chapter of part two of the thesis, which corresponds to chapter 7,
the dynamic coupling between stbli and a compliant thin-panel was investigated.
Coupled fsi simulations involving wall-resolved les were conducted in order to
capture this phenomenon at the same flow conditions as the moderate-Reynolds
interaction discussed in chapter 6 (Reτ “ 1226). The different effects of mean and
dynamic panel displacements on the stbli dynamics were also assessed by employing
the mean panel deflection as a rigid-wall geometry in a separate simulation, which
was integrated for the same time interval as the coupled case.

Our simulation results showed that the flexible panel exhibited self-sustained
oscillatory behavior with varying oscillation amplitude, confirming the strong and
complex dynamic coupling with the flow over a broad frequency range. The first
three bending modes of the panel oscillation were found to make up most of the
unsteady panel response. The corresponding modal frequencies were in close agree-
ment with natural oscillation frequencies of the pre-stressed panel, which were sig-
nificantly higher than those for the flat (unloaded) configuration. This highlighted
the importance of mean surface displacements and the corresponding stiffening of
the structure in the investigated fsi, which need to be accurately captured for a
reliable prediction of the panel dynamics.

Furthermore, we found that the mean panel deflection enlarged the reverse-flow
region, while dynamic panel motion around the mean deflection had a negligible
influence on the mean bubble volume. The separation-shock unsteadiness, however,
was enhanced by the panel motion, leading to higher wall-pressure fluctuations at its
foot. Spectral analysis of the separation-shock location and bubble volume showed
that the fsi coupling was mainly established through the first bending mode of the
panel oscillation. This was further confirmed by spdmd of the flow and displacement
data.

The analysis of the low-order modal reconstruction of the fsi revealed that vari-
ations in the reverse-flow region followed the panel bending motion and drove the
separation-shock unsteadiness. Subsequently, the response of the stbli flow to sur-
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face displacements was found to alter the panel load, thereby affecting the panel
motion and sustaining the dynamic coupling. Low-frequency modes that were not
associated with the fluid-structure coupling, in turn, were very similar to those
obtained for the rigid-wall interactions. This evidenced that the stbli dynamics
emerging from the unsteady fsi coexist with, rather than replace, the characteristic
low-frequency (non-fsi) content of the interaction.

Based on the present results, it is clear that dynamic fsis involving stblis and
flexible panels can accentuate the undesirable features of stblis. Even though
results may vary depending on impingement location, interaction strength or cavity
pressure, the use of flexible structural components as passive flow control devices
(as hypothesized in literature) is not supported by the present findings.
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A
ALDM for compressible

turbulence

The adaptive local deconvolution method (aldm) is a non-linear discretization
scheme designed for implicit les of turbulent flows. Within this framework, the
truncation error of the discretization of the convective terms serves as a subgrid-scale
(sgs) model, which renders explicit computation of model terms (as in explicit les)
unnecessary. Initially developed by Hickel et al. [223] for incompressible turbulence,
aldm was subsequently extended in Hickel et al. [71] to compressible turbulence
with shock waves.

Below is an outline of the key concepts behind the aldm framework for com-
pressible flows; for further details and validation results, the reader is referred to
the original publications.

Finite-volume discretization
In essence, aldm relies on conventional finite-volume discretization methods, but
with modifications that convert the resulting truncation error into an implicit sgs
model. The foundational elements of finite-volume methods involve reconstructing
solutions at cell faces and approximating the physical flux function with a numerical
counterpart that operates on the reconstructed solution; these same components
form the core of aldm.

The finite-volume discretization of the governing equations corresponds to con-
volving the integral form of (2.1) with a top-hat filter G, where the latter is associ-
ated with the numerical grid xN “ txju onto which the filtered continuous variables
are projected. For a scalar quantity φ, this results in

φN “ tφpxjqu, j P Z, (A.1)

where φ “ G ‹ φ. The filter kernel is

Gpx, Vjq “
"

1{Vj x P Ωj
0, else , (A.2)

where the volume of the computational cell Ωj is denoted as Vj .
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Reconstruction

With aldm, reconstruction of the unfiltered solution at the cell faces (i.e., simulta-
neous deconvolution and interpolation) is performed using a non-linear combination
of Lagrange interpolation polynomials [96]. This step is as follows.

First, given a generic k´point stencil ranging from xi´r to xi´r`k´1, the result-
ing 1D ansatz at cell faces (denoted by half integers) is

qg¯k,rpxj˘1{2q “
k´1ÿ

l“0
c¯k,r,lpxN qφN pxi´r`lq, with r P t0, . . . , ku, (A.3)

where the check indicates the polynomial approximation of the solution. The co-
efficients c¯k,r,lpxN q encapsulate the grid-dependent deconvolution and interpolation
operator, which is independent of φ and can be computed as described in Shu [96].

Next, and drawing inspiration from the weighted essentially non-oscillatory
(weno) scheme of Shu [96], aldm considers a non-linear combination of the above-
described interpolation polynomials for the reconstruction of the solution at the cell
faces. Instead of maximizing accuracy, however, the deconvolution is regularized by
limiting the degree k of the local approximation polynomials to k ď K “ 3 and
allowing all polynomials of degree 1 ď k ď K to contribute to the reconstructed
solution. That is,

qφ¯k pxj˘1{2q “
Kÿ

k“1

k´1ÿ

r“0
ω¯k,rpγk,r, φN qqg¯k,rpxj˘1{2q, (A.4)

where each contribution is dynamically weighted by ω¯k,rpγk,r, φN q. Weights are
defined as

ω¯k,rpγk,r, φN q “
γk,rβk,rpφN qřk´1
s“0 γk,sβk,spφN q

, (A.5)

with γk,r representing free-model parameters that are exploited to control error
cancellations. The functional βk,r is defined as

βk,rpφN q “
˜
εβ `

k´r´2ÿ

l“´r

`
φi`m`l ´ φi`m

˘2
¸´2

, (A.6)

where εβ “ 10´151 and the summation term measures the smoothness of the grid
function within the respective stencil. This provides a non-linear adaptation of the
deconvolution [223].

The procedure outline above results in a hierarchy of reconstructions with in-
creasing order of accuracy, see (A.4). These reconstructions are then combined to
form the final reconstruction:

qφ¯pxj˘1{2q “
Kÿ

k“1
αk qφ¯k pxj˘1{2q , with K “ 3. (A.7)
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Note that the weights αk introduce additional degrees of freedom for sgs modeling,
a feature not exploited in the original aldm formulation for incompressible flows
[71].

For an efficient implementation of the described reconstruction step, which is here
applied to the cell-averaged density ρ, velocity u, pressure p and internal energy ρe,
the reader is referred to Hickel and Adams [224].

Numerical flux function

The hyperbolic flux C `H is considered for implicit sgs modeling in the aldm
framework, see (2.1), while the diffusive flux D is not exploited for modeling pur-
poses [71]. The employed numerical flux function for the hyperbolic fluxes has the
general form

qFj˘1{2 “ F

ˆ
1
2

´
qφ` ` qφ´

¯˙
´R ¨

´
qφ` ´ qφ´

¯
. (A.8)

The first term corresponds to the physical Navier-Stokes flux. For maximum order
of consistency it is computed from the mean of both reconstructions of the unfil-
tered solution at the considered cell face, which differs from classic numerical flux
functions, such as the Lax-Friedrichs scheme where the flux is averaged [225]. The
difference between both interpolants is then exploited in the second term as an es-
timate of the local truncation error. Non-linear numerical dissipation is controlled
by R, which can take the form of any non-negative, shift-invariant functional of φN
and qφN , with appropriate units. For physical sgs modeling, the dissipation function
R needs to be defined specifically for each individual differential equation.

The approximation of the numerical convective flux for the continuity, momen-
tum and energy equations employed in aldm is, respectively

qCρi “ qui̊
qρ` ` qρ´

2 ´Rρi pqρ` ´ qρ´q, (A.9)

qCρuki “ qCρi
qu`k ` qu´k

2 ´Rρui
qρ` ` qρ`

2 pqu`k ´ qu´k q, (A.10)

qCρei “ qui̊
rρe` ´ rρe´

2 ` qu`k ` qu´k
2

ˆ
qCρuki ´ qu`k ` qu´k

4
qCρi
˙
´Rρei p qρe` ´ qρe´q, (A.11)

where the transport velocity qui̊ is defined as

qui̊ “
qu`k ` qu´k

2 ´ α3
qc

qp`3 ´ qp´3
qρ`3 ` qρ´3

(A.12)

to ensure pressure-velocity coupling, see appendix B in Hickel et al. [71]. The
subscript 3 in (A.12) refers to the third order reconstruction polynomial, and qc is
the maximum speed of sound in the adjacent cells.
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Additionally, the pressure flux is straightforwardly defined as

|Hi “

»
————–

0
δi1pqp` ` qp´q{2
δi2pqp` ` qp´q{2
δi3pqp` ` qp´q{2
qui̊ pqp` ` qp´q{2

fi
ffiffiffiffifl
. (A.13)

The only remaining item is then the definition of the dissipation matrix, which
in aldm takes the form

Ri “

»
————–

Rρi
Rρui
Rρui
Rρui
Rρei

fi
ffiffiffiffifl
“

»
————–

σρ | ǔ`i ´ ǔ´i |
σρu | ǔ`1 ´ ǔ´1 |
σρu | ǔ`2 ´ ǔ´2 |
σρu | ǔ`3 ´ ǔ´3 |
σρe | ǔ`i ´ ǔ´i |

fi
ffiffiffiffifl
, (A.14)

where the σ coefficients are case-independent model parameters of order 1. As
discussed in Hickel et al. [226], this definition of the dissipation matrix ensures con-
sistency of the numerical flux with aldm for incompressible turbulence and passive
scalar mixing in the limit of M Ñ 0.

The free parameters tα, γ, σu contained in the reconstruction scheme and the em-
ployed numerical flux function are therefore utilized for modeling purposes, to ensure
that the spatial truncation error of the discretization acts as a physically consistent
model for sgs turbulence and discontinuities. As discussed in Hickel et al. [71], the
values of α and γ are directly adopted from the incompressible aldm framework on
the grounds of Morkovin’s hypothesis. These values were systematically obtained
by Hickel et al. [223] using reinforcement learning with an evolutionary optimization
algorithm that minimized the difference between the spectral numerical viscosity of
aldm and the eddy viscosity from eddy-damped quasi-normal Markovian theory for
isotropic turbulence. The σ parameters in (A.14), on the other hand, are identical
to those obtained for passive scalars [226], with the exception of σρu, which is re-
calibrated using a procedure outlined in Hickel and Larsson [227] to account for the
difference between the incompressible and compressible flux functions. All model
parameters are given in table I of Hickel et al. [71].

Finally, the present method is made shock-capturing by introducing an addi-
tional term into the dissipation matrix,

Ri “

»
————–

σρ | qu`i ´ qu´i |
σρu | qu`1 ´ qu´1 |
σρu | qu`2 ´ qu´2 |
σρu | qu`3 ´ qu´3 |
σρe | qu`i ´ qu´i |

fi
ffiffiffiffifl
` fs | qui̊ | ` | qu

`
i ´ qu´i |

2

»
————–

1
1
1
1
1

fi
ffiffiffiffifl
, (A.15)

which is only activated at strong discontinuities, providing additional dissipation.
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Its activation is controlled by fs, which corresponds to the following shock sensor1

fs “
$
&
%

1, |∇ ¨ u|
0.01}∇ˆ u}1 ` }Id∇u}1 ` 10´15 ě 0.98 and ∇ ¨ u ă 0

0, else
. (A.16)

As outlined in Hickel et al. [71], the resulting aldm flux maintains low Mach
number consistency and yields essentially non-oscillatory solutions at strong discon-
tinuities. The physical amplification of disturbances passing through shock waves is
also addressed by incorporating fs in the α parameters, as shown in their publica-
tion.

1S. Hickel, personal communication.





B
Analyisis of digital filter
inflow generation methods

Several improvements of the accuracy and performance of the digital filter turbulent
inflow generation technique are discussed in this chapter and evaluated for wall-
resolved les of a compressible turbulent boundary layer. This part of the PhD
work is presented here in order to maintain the concise form of the main thesis.

B.1. The digital filter technique
Turbulence-resolving simulations provide the highest accuracy for the study of com-
plex phenomena in wall-bounded turbulence and associated flow-control applica-
tions. However, quality and reliability of the resulting data strongly depends on
the accuracy of the employed boundary conditions. Of particular relevance is the
inflow boundary condition, which dictates the downstream flow evolution. Inappro-
priate inflow data can lead to excessively long spatial transients until the turbulent
flow is fully developed. This naturally increases the computational domain size re-
quired for a given flow problem, which, in the worst case, can become intractable in
combination with high spatio-temporal resolution requirements of les and dns.

For these reasons, a vast variety of turbulence generation methodologies have
emerged in the past decades [228, 229]. Besides data-driven approaches, where the
inflow condition stems from a detailed data base, a reduced-order model of the same
flow [230] or, more recently, from deep learning models [231], turbulence generation
techniques are classified into recycling methods and synthetic methods. Recycling
methods extract the required inflow state from an auxiliary simulation or directly
from a downstream plane with appropriate re-scaling [232, 233]. Synthetic inflow
methods, on the other hand, are based on constraining random fluctuations to satisfy
prescribed statistics and recover a target coherence or energy spectrum [234–236].
Comprehensive reviews of the available techniques within these two categories are
provided by Tabor and Baba-Ahmadi [237], Wu [228] and Dhamankar et al. [229].

The content of this appendix chapter has been published as: L. Laguarda and S. Hickel. Assessment
of Reynolds number effects in supersonic turbulent boundary layers, Comput Fluids 268, 2024.
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The digital filter technique used in the present work falls within the latter
category [125, 235]. As already introduced in chapter 2, this technique is es-
sentially based on imposing target spatial and temporal correlations on random
fields via explicit filtering. The appropriately correlated and scaled random fields
are then added to a given target mean fields to generate the instantaneous in-
flow data. The required knowledge of the target flow is therefore limited to mean
flow quantities, auto and cross correlations of their fluctuations, and approximate
integral spatio-temporal scales for a given autocorrelation function. Contrary to
recycling/re-scaling methods, digital-filter techniques do not introduce any unde-
sired low-frequency or long-wavelength structures. This is an attractive feature of
the digital filter that combined with its straightforward integration in numerical
solvers have made the technique a common choice for the simulation of several flows
of practical interest [23, 34, 108, 238, 239].

Despite being widely adopted, the digital filter is far from being the ideal turbu-
lence generator [229]. An important drawback is the lack of proper phase informa-
tion of realistic turbulent eddies, which inevitably leads to a finite spatial transient
during which physical flow structures develop [240]. The resulting adaptation or
induction length, that is, the distance required for turbulence to recover from the
modelling errors, depends also on the metric of interest, i.e., whether one is primar-
ily interested in realistic mean profiles, or also in pressure fluctuations, Reynolds
stresses, etc. [241]. In wall-bounded turbulence, this transient typically manifests
as a significant dip in the skin-friction distribution [239], which extends over ap-
proximately 5 boundary layer thicknesses and is followed by a spatial transient of
approximately 10-20 boundary layer thicknesses until agreement with most refer-
ence correlations is attained. As indicated by Wenzel et al. [108] and confirmed by
Huang et al. [115], the induction length can be even longer when defined based on
the compliance with the von Kármán integral equation. In compressible flows, the
spatial transient additionally results in strong pressure disturbances that substan-
tially contaminate the downstream acoustic field [239, 242].

In an attempt to mitigate some of the aforementioned deficiencies, different im-
provements of the digital filter technique have been considered [229]. For instance,
Di Mare et al. [243] and Veloudis et al. [126] investigated the effect of spatially vary-
ing scales at the inflow plane, instead of constant scales throughout, which led to a
better prediction of downstream turbulence profiles. Other strategies involve sponge
zones located after the digital filter boundary as means to damp spurious acoustic
noise from the non-equilibrium flow [239] or directly forcing the solution towards
the expected developed state [244]. More recently, Ceci et al. [241] investigated the
effect of suppressing streamwise velocity fluctuations at the inflow plane, which led
to a faster relaxation of pressure fluctuations. Interestingly, this counter-intuitive
approach did not incur additional penalties in the development of the Reynolds
stresses, at least in the low supersonic regime.

Therefore, much potential exists for improving the capabilities of the digital
filter method. However, proposed improvements have not been investigated sys-
tematically and they appear scattered over different studies (which involve different
applications, flow conditions and numerical strategies). This makes it hard for re-
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searchers to assess, based on an acceptable level of accuracy, whether any additional
modifications of the digital filter technique are worth the extra effort. At the same
time, few studies attempt to explain the observed deficiencies from a flow physics
perspective, which, in our opinion, is key for further refinement of the method.

The purpose of this chapter is thus to systematically assess the efficacy of several
methods that can improve the accuracy and performance of the digital filter tech-
nique based on a compressible turbulent boundary layer benchmark and to explain
the observed differences upon inspection of the dominant terms in the transport
equations for the Reynolds stresses. Improvements of accuracy motivated by flow
physics include a novel filter kernel function for the transversal directions and vary-
ing target length scales with wall-distance. Following a recent suggestion of Ceci
et al. [241], we also consider suppressing streamwise velocity fluctuations at the in-
flow plane. To further improve the latter method, we asses the potential benefits of
preserving the inflow turbulence kinetic energy by amplifying one of the cross-stream
Reynolds stresses. In addition, we present selected details of our implementation for
massively parallel simulations that reduce the computational cost of the method.

B.1.1. Baseline method
The baseline digital filter method considered in this paper is based on the method
proposed by Xie and Castro [125] for incompressible flows, which is an extension of
the original work of Klein et al. [235] and proceeds as follows:

1. At every time step, three slices of uncorrelated Gaussian random numbers Si,
with i “ t1, 2, 3u, are generated. Each slice has zero mean and unit variance,
and is uncorrelated from the others.

2. A two-dimensional spatial filter is then applied to each random slice in order
to impose spatial coherence. The two-dimensional filter kernel is defined as the
tensor product of two one-dimensional kernels that are based on the following
exponential correlation function

Rprq “ exp
ˆ
´ πr

2IL

˙
, (B.1)

where IL is the target integral length scale, which can have different values
for each random field, direction, and wall distance. In discrete form, and for
a constant grid spacing h with IL “ nh and r “ kh, equation (B.1) becomes

Rpkhq “ exp
ˆ
´π|k|2n

˙
. (B.2)

To approximate the discrete filter coefficients, namely bk, Xie and Castro [125]
propose the following relations

bk “ rbk
˜

Nÿ

j“´N
rb2j

¸´1{2
, and rbk « exp

ˆ
´π|k|

n

˙
, (B.3)
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where N is the filter support, taken as N ě 2n. The filtered fields are denoted
as S̃i.

3. Temporal coherence is also assumed of exponential form, and is achieved via

Giptq “ Gipt´∆tq exp
ˆ´π∆t

2IT

˙
` rSiptq

„
1´ exp

ˆ´π∆t
IT

˙1{2
, (B.4)

where IT is the target time scale and Gi are the space-time correlated random
fields.

4. The inflow data ruiptq “ rUi ` u2i ptq is composed from target mean velocity
rUi and instantaneous fluctuations u2i ptq “ aijGjptq, where aij is the Cholesky
decomposition of the target Reynolds stress tensor. This transformation, orig-
inally proposed by Lund et al. [232], scales the slice variance (originally unity)
to provide the target second-order statistics.

We refer the reader to the original publications [125, 235] for additional details.

B.1.2. Implementation for compressible flows
For compressible simulations, thermodynamic fluctuations are also required at the
inflow boundary. As commonly done in previous works [34], we use the strong
Reynolds analogy (sra) to relate velocity and temperature fluctuations of a perfect
gas

T 2 “ ´pγ ´ 1qM2 T

rU1
u21, (B.5)

where u21 is the streamwise velocity fluctuation given by the digital filter. The
mean streamwise velocity rU1 and temperature T are inputs, and M “ ĂU1{

a
γRT

is the local Mach number, γ the specific heat capacity ratio, and R the specific gas
constant. Density and temperature fluctuations are related through the perfect gas
law at constant pressure

ρ1 “ ´ ρ
T
T 2 . (B.6)

The mean density ρ is also provided as input. Note that this method approximates
an inflow state with zero pressure fluctuations.

All inflow conditions generated by the digital filter are then prescribed at the
inflow plane via a characteristic-based method in order to minimize spurious noise
[124].

B.1.3. Improvements of accuracy
Xie and Castro [125] propose the exponential form (B.1) for the velocity correlation
function. However, an exponential function is a very poor approximation for the
transversal velocity correlation functions [113], even when optimized length scales
are employed. For this reason, we consider a correlation function of the form

Rprq “
ˆ

1´ r

IL

˙
exp

ˆ
´ r

IL

˙
, (B.7)
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Figure B.1: (a) Exponential correlation suggested by Xie and Castro [125], and (b) proposed cor-
relation function for transversal directions. Legend: (black line) target correlation; (blue line)
correlation provided by the approximated digital filter kernel; (red markers) spanwise u1 autocor-
relation function computed from DNS data of a supersonic tbl at Mach 2.0 and y{δ “ 0.5 (from
Pirozzoli and Bernardini [113]).

which includes negative values and thus much better resembles transversal correla-
tion functions. We propose the following relation

rbk «
˜

1´
ˆ |k|
n

˙0.3
¸

exp
ˆ
´|k|
n

˙
, (B.8)

for the calculation of the discrete filter coefficients in the transversal directions
(e.g. for the spanwise coherence of u2), which approximates the target correlation
function (B.7) well. In normal directions (e.g., for the spanwise coherence of w2), the
exponential correlation function proposed by Xie and Castro [125] is still employed
since it is a good approximation of the target spatial coherence, see Pirozzoli and
Bernardini [113].

Figure B.1 compares the exponential correlation suggested by Xie and Castro
[125], in figure B.1(a), with the correlation function that we propose for the transver-
sal directions, see figure B.1(b). Black lines denote the corresponding target corre-
lation functions whereas the actual correlations provided by the digital filter with
approximated filter coefficients is indicated with a blue line. The length scale is
set to Iz “ 0.25δ, which is the value reported by Pirozzoli and Bernardini [113]
for the autocorrelation of u1 in spanwise direction at y{δ “ 0.5 (see figure 26pbq in
their publication). The autocorrelation function that Pirozzoli and Bernardini [113]
obtain is also included for reference. Figure B.1 shows that our model correlation
(B.7) for tangential directions as well as the actual correlation provided by digital
filter with the approximated filter kernels (B.8) are in much better agreement with
the reference DNS data than the purely exponential relations suggested by Xie and
Castro [125].

As means to further increase the accuracy of the inflow data, we employ the zonal
approach proposed by Veloudis et al. [126] whereby the digital filter inflow plane is
divided in multiple regions with different target scales. The considered regions and
their corresponding scales are presented in section B.2.
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In addition to modifications that are directly motivated by improving the phys-
ical realism of the imposed velocity fluctuations, we also analyse a modification re-
cently proposed by Ceci et al. [241], who found that suppressing streamwise velocity
fluctuations at the inflow plane effectively reduces spurious pressure perturbations.
Since the inflow turbulence kinetic energy kin “ Ću2i u2i {2 would be highly reduced
by setting u21 “ 0, the potential benefits of preserving kin by amplifying one of the
cross-stream Reynolds stresses is also assessed; that is, we prescribe for the wall-
normal stress Ău222 pyq “ 2kinpyq ´ Ău223 pyq while the spanwise stress Ău223 pyq remains
unaltered, and vice-versa.

Lastly, since pressure fluctuations are an important element in turbulent flows
[245, 246], we also considered generating both pressure and density fluctuations from
the temperature field under the assumption of isentropic flow. For a calorically
perfect gas, the isentropic condition implies that ρ9T 1{pγ´1q which leads to

ρ1

ρ
“
ˆ

1` T 2

T

˙ 1
γ ´ 1 ´ 1, (B.9)

and the corresponding pressure fluctuation then follows from the ideal gas law.
Results for this approach, however, are not reported in this paper since no significant
changes of the results were observed compared to the sra-based method, where
pressure fluctuations are neglected.

B.1.4. Improvements of performance

The generation of high-quality random fields can be a major contribution to the
computational cost. We have therefore implemented a highly optimized, parallel
version of the Mersenne Twister MT19937 of Matsumoto and Nishimura [247] for
the generation of single-precision Gaussian random numbers. The compute load is
equally distributed over all processes, and each process initializes its random stream
at a different positions along the sequence. The very long period of the stream avoids
unwanted correlations for all practical purposes. Particular attention was put on
optimizing memory alignment and vectorization. All operations on the random
fields and velocity fluctuations are performed in single precision and only the final
inflow data is stored in double precision.

In order to further reduce the computational costs incurred by the method, we
consider updating the inflow data at a prescribed time interval instead of every
time step. We propose to choose the update interval as 1{20th of the smallest time
scale of the input dataset, which for the considered benchmark case corresponds to
approximately 25 time-steps. At the intermediate time-steps, linear interpolation is
used between the corresponding digital filter solutions. With these measures, the
computational cost of the digital filter boundary condition amounts to about 1% of
the total.



Section B.2 ‚ Benchmark case and numerical setup

B

193

Table B.1: Details of the investigated digital filter modifications

Case Zones Rt
update
interval

u2in
supressed

kin
preserved Legend

R0 3 exp p´πr{p2ILqq 1 step No Yes
A1 3 p1´ r{ILq exp p´r{ILq 1 step No Yes
A2 3 p1´ r{ILq exp p´r{ILq 25 steps No Yes
A3 1 p1´ r{ILq exp p´r{ILq 1 step No Yes
B1 3 p1´ r{ILq exp p´r{ILq 1 step Yes Yes, via v22
B2 3 p1´ r{ILq exp p´r{ILq 1 step Yes Yes, via w22
B3 3 p1´ r{ILq exp p´r{ILq 1 step Yes No

Table B.2: Target length scales per region, velocity component and spatial direction.

Zone Range Lref Ix{Lref Iy{Lref Iz{Lref
u v w u v w u v w

1 0 to y` “ 100 l`in 400 100 60 75 100 50 100 50 100
2 y` “ 100 to 0.2δ0,in δ0,in 1.2 0.2 0.3 0.2 0.2 0.15 0.2 0.15 0.3
3 above 0.2δ0,in δ0,in 0.9 0.3 0.3 0.3 0.3 0.25 0.35 0.25 0.35

B.2. Benchmark case and numerical setup
The benchmark case considered is a spatially developing turbulent boundary layer
at Mach 2.0, and corresponds to case T2 in chapter 5 - for a complete description of
the study case, see section 5.2. The employed computational domain is also the same
as case T2; the only difference lies in the treatment of the digital filter boundary.
Table B.1 includes a summary of the performed simulations with their corresponding
digital filter settings. The reference case R0, which involves the standard digital
filter implementation for compressible flows, considers exponential correlations in
all directions. All cases except for A3 consider three different zones at the inflow
plane, corresponding to the inner region, the overlap region, and the outer region of
the boundary layer. The target length scales, which differ for each zone, are given
in table B.2. Case A3, on the other hand, only includes one zone with target length
scales corresponding to the largest values in table B.2 per direction and velocity
component. Table B.1 also states the employed correlation function in tangential
directions (Rt) and the time-step interval at which new inflow data is generated. For
cases B1 to B3 streamwise velocity fluctuations are suppressed at the inflow plane,
and additional information is provided regarding the treatment of the turbulence
kinetic energy at the inflow kin. For later reference, the employed line legend in the
upcoming figures is also included in table B.1.

All simulations were performed with the numerical method described in section
2.1.2 and proceeded as follows. First, an initial transient of 10 ftt of the full
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domain length was simulated to ensure a fully developed turbulent flow in statistical
equilibrium. This solution interval was discarded from the analysis. After this
transient, simulations were integrated for another 12 ftt of the full domain length.
During this second interval, statistics samples were collected at a sampling interval
of ∆tu8{δ0,in « 0.013 and averaged in spanwise direction and in time.

B.3. Results and discussion
In wall-bounded flows, a primary metric to assess the performance of inflow tur-
bulence generators is the evolution of the skin-friction coefficient. This is shown in
figure B.2(a) against the streamwise coordinate px´ xinq{δ0,in, where xin is the lo-
cation of the inflow plane. As observed, all cases exhibit a characteristic dip in xCf y
right after the inflow that is recovered within approximately 5δ0,in. The strength of
the dip clearly depends on the digital filter settings; for instance case B1 addition-
ally exhibits an initial overshoot. See table B.1 for details on the employed digital
filter settings per simulation as well as the line legend.

While an apparent equilibrium behavior is observed after the transient region
of 5δ0,in, differences between the skin-friction distributions remain visible for the
investigated cases. For instance, the xCf y distributions for cases A1 and A2 are
very similar to that for the baseline case R0, while case A3 shows discrepancies that
include larger skin-friction magnitudes. This suggests a non-negligible effect of the
excessively large scales at the wall, which is retained throughout the computational
domain. Suppressing streamwise velocity fluctuations at the inflow also influences
the solution noticeably, with case B3 exhibiting the lowest xCf y values. Note that
kin is not preserved for case B3.

The van Driest II transformation [128] is employed to remove Mach number
effects and enable comparison with reference incompressible correlations. That is,
skin-friction and momentum thickness Reynolds number Reθ are reduced to their
incompressible counterparts, Cf,inc and Reθ,inc, by applying the compressible trans-
formation outlined in equation (5.1). Resulting distributions are shown in figure
B.2(b) together with the empirical correlation functions of Kármán-Schoenherr (de-
noted by ks) and of Smits et al. [132] (denoted by s). Combined, these correlations
indicate a range of plausible solutions, which appears shaded in gray in the figure.
In agreement with the previous discussion, cases A3 and B3 noticeably deviate from
the expected behavior. The same can be said for case B2, which only recovers the
expected skin-friction distribution at high values of Reθ,i, i.e., in the vicinity of the
outflow plane. On the other hand, cases R0, A1, A2 and B1 seem to recover the
modelling errors faster and exhibit quasi-equilibrium behavior from Reθ,i « 3400
onward. The fact that case B1 is in very good agreement with the reference correla-
tions, while cases B2 and particularly B3 deviate substantially from them, highlights
the beneficial effect of preserving the target kin by amplifying Ăv22. This is expected
since the wall-normal stress, as opposed to Ąw22, plays a key role in the turbulence
generation cycle [248]. We also note that the marginal differences between cases A1
and A2 suggest that spurious interpolation errors do not seem to meaningfully alter
the near-wall turbulence development.
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Figure B.2: (a) Streamwise evolution of the time- and spanwise-averaged skin-friction, and (b)
equivalent incompressible skin-friction as a function of the transformed momentum-thickness
Reynolds number. The grey area in (a) is bounded by the correlation of Kármán-Schoenherr
(ks) and the correlation of Smits et al. [132] (s). See table B.1 for details on the employed digital
filter settings per simulation as well as the line legend.

In order to better identify the fraction of the computational domain where tur-
bulence is fully established, we also inspect the compliance with the von Kármán
integral equation [108, 249], i.e.,

xCf y “ 2 dθ
dx

(B.10)

which relates the growth of the momentum thickness to the local skin-friction co-
efficient. Note that the above formulation neglects the integral contribution of the
Reynolds stresses, as their streamwise derivatives are supposed to contribute negligi-
bly in a fully developed equilibrium boundary layer. This approximation naturally
does not hold in the initial transient region, where turbulence is rapidly recov-
ering from modelling errors. An effective compliance evaluator is thus the ratio
xCf y{p2dθ{dxq, which should approach unity as the boundary layer returns to an
equilibrium state.

The streamwise evolution of this parameter is shown for all cases in figure B.3



B

196 Appendix B ‚ Analyisis of digital filter inflow generation methods

0 10 20 30 400.6

0.8

1

px´ xinq{δ0,in

xC
f
y{p

2d
θ{
d
x
q

Figure B.3: Compliance with the von Kármán integral equation. Dotted lines indicate ˘5%
deviation.

together with a ˘5% tolerance band. Despite the residual noise, two clear trends
can be observed. On the one hand, the baseline case R0 and cases A1 to A3
satisfy equation (B.10) within 5% accuracy after a transient of about 5δ0,in from
the inflow plane. On the other hand, cases B1 to B3 (in which u2 is suppressed at
the inflow) reach the same level of accuracy only „10δ0,in from the inflow plane,
which is effectively double the distance. Therefore, based on the compliance with the
von Kármán integral equation, the nonphysical suppression of streamwise velocity
fluctuations at the inflow plane results in a longer adaptation length.

Next, we assess the effect of the considered digital filter modifications on the
wall-pressure fluctuations. As these fluctuations are influenced by inner and outer
layer eddies [250], they provide a good indication of the overall boundary layer
development. The spanwise evolution of the wall-pressure fluctuations is shown in
figure B.4(a). It is evident that all cases systematically over-predict the pressure
fluctuations near the inflow. Suppressing streamwise velocity fluctuations has a
clear benefit according to this metric. Cases B1 to B3 exhibit the fastest relaxation
of the wall-pressure fluctuations. The method proposed by Ceci et al. [241], case
B3, predicts the lowest fluctuation intensities. The baseline case R0 and cases A1
to A3, on the other hand, show a slower recovery from the increased wall-pressure
fluctuations at the inflow plane. Also note that case A3, the only case that considers
exponential correlation functions in all directions and velocity components, results
in the largest fluctuation intensities throughout the computational domain.

Empirical evidence suggests a logarithmic Reτ -dependence of the wall-pressure
fluctuations when normalized using inner variables, i.e., the wall shear stress τw
[246, 250]. To verify whether that is also the case in our les data, we compare the
corresponding inner-scaled wall-pressure fluctuations against the empirical correla-
tion of Farabee and Casarella [154]. This comparison is shown in figure B.4(b). In
agreement with previous observations, cases B1 and B3 closely follow the expected
behavior after the initial transient. This is not the case for the baseline case R0 and
cases A1 to A3, which seem to asymptotically approach the reference correlation
but exhibit larger fluctuations intensities throughout the computational domain.
Nevertheless, cases A1 and A2 with our custom transversal correlation function
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Figure B.4: (a) Streamwise evolution of the time- and spanwise-averaged wall-pressure fluctuations,
and (b) inner-scaled wall-pressure fluctuations as a function of the friction Reynolds number.
Dotted lines indicate the semi-empirical correlation of Farabee and Casarella [154]

perform better than the baseline case R0 and case A3. The very close agreement of
the results for A1 and A2 further justifies updating inflow data at prescribed time
intervals to reduce computational costs.

We now turn our attention to the evaluation of the Reynolds stresses. First, the
evolution of the peak values for the streamwise and shear stresses are considered.
The former is indicative of the near wall streaks, which make up the stress-producing
cycle that sustains turbulence [248]. The peak shear stress, on the other hand, is
associated with quasi-logarithmic behavior of the mean velocity profile and reflects
a multi-scale momentum transfer [251, 252]. The streamwise evolution of the inner-
scaled streamwise stress peak is shown in figure B.5(a) for all cases. As observed, the
corresponding distributions for the baseline case R0 as well as cases A1, A2, B1 and
B2 effectively yield identical values after 10δ0,in from the inflow plane. Furthermore,
these distributions closely follow the empirical relation of Ceci et al. [241] derived
from their dns data, which relates the peak streamwise stress magnitude with the
friction Reynolds number (not shown here). The peak streamwise stress for case
B3, in turn, shows a much slower recovery as indicated by the dashed orange line in
figure B.5(a). This further highlights the importance of preserving the turbulence
kinetic energy at the inflow plane, which did not happen for this case. Therefore,
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Figure B.5: Streamwise evolution of normalized Reynolds stresses: (a) streamwise stress, and (b)
shear stress.

our results indicate that suppressing u2 can meaningfully hamper the near-wall tur-
bulence development when the inflow turbulence is energy deficient. Figure B.5(b)
shows that the evolution of its inner-scaled peak magnitude of the Reynolds shear
stress is less affected by the inflow conditions than the streamwise component. As
observed, all cases exhibit a constant peak value close to unity after approximately
10-15δ0,in from the inflow plane. However, cases A1, A2 and B1 exhibit a faster de-
velopment than the other cases, with an adaptation length of approximately 7δ0,in
for this metric.

To this end, conclusions can be drawn about the analysis of the results so far. By
comparing the data for cases A1 and A2, it is clear that updating the inflow data at a
prescribed time interval does not incur additional penalties, and is therefore desired
performance-wise. The addition of multiple inflow regions with varying length scales
per region, as done for all cases except for case A3, is also recommended as it leads
to a faster relaxation of the local skin-friction and peak magnitudes of the inner-
scales Reynolds stresses, see figure B.2 and figure B.5 respectively. The alternative
correlation function for the transversal directions defined in equation (B.7) leads
to a substantial reduction of the spurious acoustic radiation of the non-equilibrium
boundary layer and small improvements for the other metrics. However, if the
downstream acoustic field is a priority, suppressing streamwise velocity fluctuations
at the inflow plane becomes appealing as it leads to the fastest relaxation of the
wall-pressure fluctuation intensity, see figure B.4. Provided that sufficient energy
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and (right) case B1. Stresses are shown normalized with 0.001u2

8.

is supplied by amplifying the wall-normal Reynolds stress Ăv22, our results indicate
that the only deficiency of this approach, at least in a qualitative sense, is the poor
compliance with the von Kármán integral equation within the first 10δ0,in from the
inflow plane.

The question now remains as to what physical mechanisms contribute to a longer
adaptation length, and why suppressing streamwise velocity fluctuations at the in-
flow plane leads to a rapid turbulence development and a quieter downstream flow.
To shed some light on these matters, the two-dimensional distributions of the pri-
mary Reynolds stresses (i.e., streamwise, wall-normal and shear) and their transport
budgets are examined. The former are shown in figure B.6 for cases A1 and B1 near
the digital filter boundary to highlight the near-inflow behavior. The streamwise
stress fields shown in figures B.6(a) and B.6(b) exhibit the expected differences, i.e.,
the stress is mostly convected downstream from the inflow plane for case A1 while
it is rapidly generated for case B1. As indicated in figure B.5(a), both distributions
converge to the same peak Ău22 magnitude within „10δ0,in from the digital filter
boundary. With respect to the other stresses, ´Ću2v2 and Ăv22, interesting obser-
vations can be made for case A1. As observed in figures B.6(c) and B.6(e), both
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stresses initially fall noticeably below the target magnitude for this case, and they
progressively recover within „3δ0,in from the inflow plane. The baseline case R0 as
well as cases A2 and A3 also exhibit the exact same behavior near the inflow (not
shown here), indicating that this is a characteristic drawback associated with the
baseline digital filter implementation for compressible flows. The wall-normal stress
for case B1, on the other hand, initially decays but does not significantly undershoot
the target value, see figure B.6(f). Therefore, the deliberate amplification of this
stress at the digital filter boundary gives superior results during the initial transient.
In addition, and similarly to the streamwise stress, the shear stress for this case is
also rapidly generated, see figure B.6(d).

The observed behavior near the inflow can be explained by inspecting the dom-
inant terms in the transport equations for the Ću2v2 and Ăv22 Reynolds stresses. The
reader is referred to section 6.3.5 of chapter 6 (equation (6.1) in particular) for
the definition of such equations and the expressions of the various budget terms
mentioned in the following. For the sake of brevity, these are not repeated here.

Starting with the wall-normal stress, we find that the terms that contribute most
to its initial decay are those involving the pressure, that is, the pressure transport
and pressure-strain correlation terms. For the sake of simplicity, we consider their
aggregate effect via the pressure-gradient/velocity correlation term Φij “ Dpij `
Πij . The corresponding contribution to the balance of Ăv22, i.e., Φ22, is thus shown
for cases A1 and B1 in figures B.7(a) and B.7(b), respectively. As observed, Φ22
constitutes a sink near the inflow plane in both cases, whereas this term is supposed
to be the major source of energy for Ăv22 in an equilibrium boundary layer (there
is no direct contribution from production, [253]). This could be expected for case
B1, since the pressure-strain correlation may be redistributing the energy from the
deliberately amplified Ăv22 to the other stresses. However, Φ22 becoming a sink for
case A1 represents an important weakness of the digital filter technique; it fails to
realistically account for this term.

Since the production term for ´Ću2v2, namely P12, is directly proportional to
Ăv22, variations in the latter directly impact the shear stress balance. The production
term for the shear stress is shown in figures B.7(c) and B.7(d) for cases A1 and B1,
and confirms this correspondence. For case A1, a decay in ´P12 near the inflow
is clearly visible. For case B1, on the other hand, the amplification of Ăv22 leads to
a large ´P12 close to the digital filter boundary that promotes the generation of
´Ću2v2 instead, see figure B.7(d). Since the main energy sink for the shear stress is
´Φ12, we also show the contributions of this term in figures B.7(e) and B.7(f) for
the two cases considered. As observed, ´Φ12 is very strong in magnitude near the
inflow in both cases, and this negative contribution extends throughout most of the
boundary layer thickness for case A1. Since ´Φ12 exceeds ´P12 at the digital filter
boundary for this case, ´Ću2v2 is effectively damped as shown in figure B.6(b). The
same cannot be said for case B1, which exhibits a net production of shear stress
near the wall.

It is also important to note that, while the production term for the streamwise
stress is directly proportional to ´Ću2v2, this stress does not exhibit an initial decay
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Figure B.7: Pressure-gradient/velocity correlation terms, Φ22 and ´Φ12, and shear stress produc-
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8{δ0,in

at the inflow plane for case A1. In fact, as shown in figure B.5(a), it is initially
amplified and then decays towards the expected value. The reason is that the
dissipation and pressure-gradient/velocity correlation terms, which are important in
balancing production in the buffer and quasi-logarithmic region [175], also exhibit
reduced values near the inflow. For instance, Φ11, which is not shown here, is
positive near the wall.

Therefore, it is clear that the inability of the digital filter to realistically ac-
count for different terms in the Reynolds-stress transport, and in particular those
involving the pressure, contributes greatly to the spatial transient. By consider-
ing zero pressure fluctuations and the sra in the digital filter implementation for
compressible flows, nonphysical pressure fluctuations are only generated inside the
computational domain, and fluctuations observed directly at the inflow are due to
the non-reflecting nature of the boundary scheme. These spurious fluctuations dis-
rupt the pressure-related mechanisms in the Reynolds stress transport equation, and
consequently, the turbulence regeneration cycle. A further confirmation of this is the
fact that employing the above mentioned isentropic assumption to impose non-zero
p1 at the inflow does not improve the results, since the fluctuations are still non-
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Figure B.8: Normalized pressure-velocity correlation u1p1 for (a) case A1, and (b) case B3.

physical. Additionally, we find that the pressure fluctuations that develop near the
inflow are directly correlated with u2, which generally exhibits very large integral
scales in streamwise direction. As a consequence, increased fluctuation intensities
are retained for a long distance within the computational domain as illustrated in
figure B.4(a) for the baseline case R0 and cases A1-A3. The suppression of the
streamwise velocity fluctuations, in turn, effectively eliminates the correlation be-
tween u2 and the thermodynamic fluctuations, which leads to a faster relaxation of
the latter. The pressure velocity correlation u1p1 is shown in figure B.8 for cases A1
and B3 to illustrate the above-mentioned.

B.4. Final remarks
The digital filter implementation employed in all simulations presented in part two
of this thesis, i.e., that of case A1, has proven effective at introducing appropriate
turbulent boundary conditions in a cost-effective fashion. Combined with the fact
that the technique does not introduce any spurious low-frequency tone in the com-
putational domain, we find it particularly suitable for the simulation of stbli flows.
However, like any other synthetic turbulence generator, the method is certainly not
perfect and still has room for improvement. For instance, we have shown the inabil-
ity of the current digital filter implementation to realistically account for different
terms in the Reynolds-stress transport, and in particular those involving the pres-
sure, which contributes to the spatial transient. A potential improvement in this
regard would be to generate additional random slices for the thermodynamic vari-
ables and introduce physical auto- and cross-correlations of their fluctuations, since
these play a key role in compressible turbulence. Cross-correlations between ther-
modynamic variables and velocity components can also be controlled with this ap-
proach, which could effectively eliminate the spurious p´u correlation that emerges
with the standard digital filter methodology without the need to artificially sup-
press streamwise velocity fluctuations. The additional computational costs incurred
by the aforementioned improvements would still be negligible considering that the
update of the inflow data at a prescribed time interval rather than every time step
does not incur additional penalties in accuracy (as we have shown). The correlation
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data reported in chapter 5 can thus be used as a starting point to produce more
realistic turbulence in future implementations of the method, which we are currently
exploring.

Another aspect that cannot be properly modeled with the current implemen-
tation of the digital filter method is the influence of outer-layer motions on the
near-wall turbulence (see chapter 5). While the target Reynolds stresses may be
physical, the prescribed two-point correlations near the wall still disregard such in-
fluence, which should be accounted for in order to increase the accuracy of synthetic
turbulence generation methods. Consider again figure 5.10 which shows spanwise
autocorrelation functions of streamwise velocity fluctuations at Reτ “ 382 and
Reτ “ 5371. In the former case, the corresponding velocity streaks at a given
distance from the wall are characterized by a single spanwise length scale, that is,
their spanwise spacing, which results in a correlation function that goes to negative
values near the axis, see figure 5.10(a). This correlation is well represented by the
transversal correlation function that we propose (see equation (B.7)), which only
requires one target length scale. Figure 5.10(b), on the other hand, shows that a
single spanwise length scale is not sufficient to properly model the coherence of the
near-wall turbulence at high Reynolds number. By spatially low-pass and high-pass
filtering the flowfield, we have shown the separate and important contribution of
both the small scales and the large scales to the total correlation. The observed
correspondence between the log-layer region and the near-wall turbulence at high
Reynolds number thus highlights the need for a second set of target scales near the
wall that correctly accounts for inter-scale interactions at the digital filter boundary.

In the context of the zonal approach employed, instead of attempting to model
the influence of outer-layer motions on the near-wall turbulence with a complex
filter kernel, one could simply re-filter the zone corresponding to the inner-layer of
the tbl (where adequate correlations according to the near-wall turbulence have
already been prescribed) with the filter kernel applied in the log-layer region. This
strategy would effectively incorporate the corresponding large-scale effects on the
small-scale behavior and thus result in more realistic inflow turbulence.





C
Sensitivity of LES results

to grid resolution
and domain size

Tables C.1 and C.2 provide a summary of the grid and domain sensitivity study
conducted for case B2, which is inspired by a similar investigation conducted by
Pasquariello et al. [23]. In the present study, four different grid resolutions and
domain sizes are considered. The former include the coarsest grid level G1, charac-
terized by ∆x`min “ 78 and ∆z`min “ 19.6. The second grid G1

x doubles the number
of grid cells in the streamwise direction compared to G1. The reference grid level G2

then doubles the number of cells in spanwise direction, and finally, the finest grid G2
x

doubles the number of cells of G2 in streamwise direction. The domain size study
considers the narrow domain D1, extending 2δ0,i in span, the reference domain D2,
which spans 4δ0,i, and the wide domain D3, with a width of 8δ0,i. The impact of
the domain length on the results is also assessed by considering the long domain
D4, which has the same width as D2 but is 50% longer in the streamwise direction,
i.e., 67.5δ0,i compared to 45δ0,i.

All cases were integrated for a time period of 2050δ0,i{u8, which corresponds
to 45 ftt of the reference domain length. However, the reference configuration
involving G2 and D2 was integrated for an additional 2050δ0,i{u8 (totaling 90 ftt)
to produce the results presented in the paper. Statistical samples were collected at
a sampling interval of ∆t « 0.02δ0,i{u8 in all simulations.

Figures C.1 show the distinct impact of the grid resolution and domain size on
selected wall-properties. Starting with the effect of grid resolution in the left panels,
it becomes evident that the under-resolved grid G1 delays separation and under-
predicts the extent of the recirculation bubble compared to the other grid levels.
The peak in xCf y within the recirculation bubble is also slightly under-predicted
on this coarse grid, see figure C.1(a), while the plateau level is well captured in all
cases. Moreover, figures C.1(b,c) indicate that the interaction region predicted by
G1 exhibits increased wall-pressure levels at reattachment and lower wall-pressure
fluctuation intensities throughout the interaction. The fluctuating wall-pressure
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Table C.1: Numerical parameters of the grid-sensitivity study for case B2. Percentage deviations
from the reference grid resolution G2 are reported in brackets, and tbl statistics are measured at
Reτ “ 1100 in all cases.

Grid G1 G1
x G2 G2

x

Line legend

Domain size
Lx{δ0,in 45 45 45 45
Ly{δ0,in 16.5 16.5 16.5 16.5
Lz{δ0,in 4 4 4 4

Grid resolution
∆x`min 78 39 39 19.5
∆y`min 0.94 0.94 0.94 0.94
∆z`min 19.6 19.6 9.8 9.8

Runtime
∆tu8{δ0,in 2050 2050 4100 2050

tbl statistics
maxypτ`11q 11.44 (`33.6%) 9.94 (`16.2%) 8.56 8.35 (´2.5%)
maxyp´τ`12q 0.99 (`3.1%) 0.96 (`0.0%) 0.96 0.96 (`0.0%)

stbli statistics
Lsep{δ0,in 8.42 (´9.1%) 8.59 (´7.3%) 9.26 9.44 (`2.0%)
Hsep{δ0,in 0.38 (´26.0%) 0.48 (´6.8%) 0.52 0.53 (`2.0%)

distribution in the first half of the interaction is also qualitatively different compared
to the higher grid resolutions.

Table C.1 reports selected upstream tbl and stbli statistics to highlight the
convergence of the solution as the grid is refined. Percentage deviations from the
reference grid resolution G2 are provided in brackets for clarity. In the upstream tbl
flow, the coarser grid levels G1 and G1

x over-predict the peak value of the streamwise
stress by 33.6% and 16.2%, respectively, whereas the difference between the finest
grids G2 and G2

x is only 2.5%. The peak shear stress, in turn, shows minimal sen-
sitivity to the grid resolution. In terms of stbli statistics, G1 under-predicts the
bubble extent as mentioned earlier, specifically by 9.1% in length and 26% in height
compared to the reference. As the grid resolution increases, however, the percentage
difference reduces to about „ 7% for both metrics at G1

x and to only 2% at the finest
grid resolution G2

x, see table C.1. This confirms the convergence of the results at
the reference grid level G2 for practical purposes.

The effect of domain size is shown in the right panels of figure C.1. It is ev-
ident that both skin-friction and wall-pressure distributions show little sensitivity
to the investigated domain dimensions. Statistics reported in table C.2 confirm
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Table C.2: Numerical parameters of the domain-sensitivity study for case B2. Percentage devia-
tions from the reference domain size D2 are reported in brackets, and tbl statistics are measured
at Reτ “ 1100 in all cases.

Domain D1 D2 D3 D4

Line legend

Domain size
Lx{δ0,in 45 45 45 67.5
Ly{δ0,in 16.5 16.5 16.5 16.5
Lz{δ0,in 2 4 8 4

Grid resolution
∆x`min 39 39 39 39
∆y`min 0.94 0.94 0.94 0.94
∆z`min 9.8 9.8 9.8 9.8

Runtime
∆tu8{δ0,in 2050 4100 2050 2050

tbl statistics
maxypτ`11q 8.60 (`0.4%) 8.56 8.59 (`0.4%) 8.55 (´0.1%)
maxyp´τ`12q 0.96 (`0.0%) 0.96 0.96 (`0.0%) 0.96 (`0.0%)

stbli statistics
Lsep{δ0,in 9.87 (`6.6%) 9.26 9.10 (´1.7%) 9.28 (`0.2%)
Hsep{δ0,in 0.56 (`7.0%) 0.52 0.51 (´2.0%) 0.52 (`0.0%)

that incoming turbulence does not exhibit small-span effects in any domain config-
uration, while the extent of the recirculation region is only slightly over-predicted
by D1 (around „ 7% in both length and height). Moreover, figure C.1(c) shows
that the stbli dynamics, as opposed to the mean-flow, are notably influenced by
a narrow domain width of 2δ0,i, leading to much higher wall-pressure fluctuations
beneath the separation-shock foot and around the reattachment location. However,
such confinement effects are only observed for D1; the other domain configurations
lead to almost identical wall-pressure fluctuations throughout the interaction, which
confirms the adequacy of the selected domain configuration D2 for the simulation
of stbli flows.
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Figure C.1: Sensitivity of time- and spanwise-averaged wall-properties for case B2 to grid resolution
and domain size: (a) skin-friction, (b) wall-pressure, (c) wall-pressure fluctuations. For the line
legend, see tables C.1 and C.2.



D
DMD formulation and its
sparsity-promoting variant

Dynamic mode decomposition (dmd [61]) is a purely data-driven technique that
seeks to extract coherent spatio-temporal structures from a snapshot sequence. The
snapshot matrixXn

1 “ txpt1q, xpt2q, . . . , xptnqu P Rmˆn is built from instantaneous
snapshots xptkq arranged as column vectors and sampled at a constant time interval,
i.e., tk “ k∆t (irregular sampling is also possible, [254]). For fluid flows, as in
the present work, the snapshot matrix Xn

1 tends to be very tall and skinny, i.e.,
m ąą n. The (presumably non-linear) physical process described by the snapshot
matrix is then assumed to be a linear, time-invariant dynamical system obeying
Btxptq “ Axptq. In discrete form, the snapshot xptkq is connected with xptk`1q via
the linear mapping A

xptk`1q « Axptkq, (D.1)
which remains constant over the sampling interval r0, pn´ 1q∆ts. Often, this map-
ping is also interpreted as the Koopman operator evolving linear measurements of
the state [255]. Taking the full snapshot sequence, (D.1) can be equivalently written
as

Xn
2 « AXn´1

1 , (D.2)
where Xn´1

1 “ txpt1q, xpt2q, . . . , xptn´1qu and Xn
2 “ txpt2q, xpt3q, . . . , xptnqu.

The advantage of this approximation is that the spectral decomposition of A pro-
vides a basis that can be used to expand each snapshot xptkq, i.e.,

xptkq «
nÿ

j“1
φjµ

k´1
j αj , (D.3)

where φj are the eigenvectors of A (dmd modes), µj are the corresponding eigen-
values (time dynamics) and αj the modal amplitudes. Valuable insights into the
underlying physical process can then be gained by close examination of the dominant
modes and their time evolution (growth/decay rate and frequency of oscillation).

If the snapshot matrices Xn´1
1 and Xn´1

1 are not too large, the best-fit oper-
ator A is obtained from the pseudo-inverse of Xn´1

1 , i.e., A “ Xn
2 X

n´1
1

: [254].
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However, representing the full matrix A P Rpm´1qˆpm´1q, let alone finding its spec-
tral decomposition, is very often intractable. An alternative to this approach is to
realize that, for a constant mapping between snapshots, the columns of Xn

1 can
be rewritten as a Krylov sequence generated by the propagator A and xpt1q, i.e.,
Xn

1 « txpt1q, Axpt1q, A2xpt1q, . . . , AN´1xpt1qu. In this case, the Xn´1
1 and Xn

2
may be related via Xn

2 « Xn´1
1 S, where S P Rpn´1qˆpn´1q is of companion type

and reflects the fact that the snapshots in Xn´1
1 appear shifted one column to the

left inXn
2 . The only unknowns in S are thus the elements of the last column, which

can be obtained as a best-fit combination of the n´ 1 columns of Xn´1
1 . Note that

S is a lower-dimensional representation of A so it may be used to extract modal
structures [255].

Computations based on S, however, are often numerically unstable and noise-
sensitive. To overcome these issues, [61] proposed a different and more robust ap-
proach by which the dmd modes are approximated from the "full" matrix Ã, which
is related to A via a similarity transformation. That is, Ã results from the projec-
tion of A onto the subspace spanned by the singular vectors, i.e., pod modes, of
the snapshot matrix Xn´1

1 . A pre-processing step is then required to compute the
economy-size singular-value decomposition (svd) of Xn´1

1 , i.e., Xn´1
1 « UΣV H

where U P Cpm´1qˆr, V P Crˆr and Σ P Cpm´1qˆr (r ď pn ´ 1q indicates optional
truncation). Rearranging the resulting expression yields

UHAU “ UHXn
2V Σ´1 ” Ã. (D.4)

Modal structures may now be extracted from Ã, i.e., Ãφ̃j “ µjφ̃j where φ̃j and µj
are the corresponding eigenvectors and eigenvalues of Ã, the latter corresponding to
eigenvalues of the full matrix A. The following transformation can finally be used
to map the eigenvectors in the subspace back into physical space

φj “Xn
2V Σ´1φ̃j . (D.5)

Alternatively, the matrix of pod modes U can also be used to recover the high-
dimensional dmd modes, i.e., φj “ Uφ̃j . However, these are known as projected
modes and they are not guaranteed to be exact eigenvectors of A [254]. The growth
rate βj and angular frequency ωj of each individual mode can be directly extracted
from the corresponding eigenvalue µj , e.g.,

µj “ |µj |eiθ ” epβj`iωjq∆t, (D.6)

where θ “ argpµjq. Thus, βj “ ln |µj |{∆t and ωj “ θ∆t.
With the above procedure, it is therefore possible to approximate snapshots

using a linear combination of dmd modes, see (D.3). As indicated by [201], this can
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be equivalently written in matrix form as

Xn´1
1 « “

φ1 φ2 ... φn´1
‰

loooooooooooomoooooooooooon
Φ

»
———–

α1
α2

. . .
αn´1

fi
ffiffiffifl

loooooooooooooomoooooooooooooon
Dα:“diagtαu

»
———–

1 µ1 . . . µ1

1 µ2 . . . µ2

...
... . . . ...

1 µn´1 . . . µn´1
n´1

fi
ffiffiffifl

looooooooooooooomooooooooooooooon
V and

,

(D.7)
where the temporal evolution of the dynamic modes is governed by the Vandermonde
matrix V and P Cpn´1qˆpn´1q. The vector of unknown amplitudes α :“ rα1 . . . αn´1s,
on the other hand, results from the following optimization problem

minimize
α

}Xn´1
1 ´ΦDαV and}2F , (D.8)

which leads to the optimal representation of the entire data sequence. Note that
} ¨ }F denotes the Frobenius norm.

In many situations, it is of interest to seek further dimensionality reduction and
identify the subset of dmd modes that have the strongest influence on the data
sequence. Using the modal amplitudes for this purpose, however, is sometimes
misleading since the largest amplitudes may correspond to spurious modes that
are strongly damped. A more robust approach, that focuses on identifying the
strongest influence over the entire time history of available snapshots, was proposed
by [201], the so-called sparsity-promoting dmd (spdmd). This approach is based
on regularizing the least-squares deviation in (D.8) with an additional term that
penalizes the `1-norm of the vector of amplitudes α P Cn´1, i.e.,

minimize
α

}Xn´1
1 ´ΦDαV and}2F ` γr

n´1ÿ

j“0
|αj |, (D.9)

where γr is a positive regularization parameter that reflects the emphasis on sparsity:
large values of γr enforce a sparse α while γr “ 0 recovers the original optimization
problem (D.8). To solve the resulting convex optimization problem (D.9), we use the
method employed in [201] which is the alternating direction method of multipliers.
For algorithmic details, we refer the reader to their publication.

Finally, the performance loss of a given sparse structure is defined as

%Πloss :“ 100}X
n´1
1 ´ΦDαV and}2F
}Xn´1

1 }2F
, (D.10)

with the (now known) vector of amplitudes Dα provided by the solution of the
convex optimization problem in equation D.9.
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