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Abstract v

Abstract
Interaction of particles in a viscous fluid with a wall and with other particles is
often observed in phenomena like sedimentation, erosion and filtration processes.
With the increasing computational power there is now the possibility of simulating
such particle-laden flows from a micro-scale perspective by direct application of
no-slip/no-penetration boundary conditions at the particles’ surface. To model the
collisions in a particle-laden flow in an realistic manner it is required to understand
the dynamics of individual collisions.

To investigate the relevant parameters describing particle-wall interactions, ex-
periments of a spherical particle colliding with an oblique wall have been performed
in both air and in water. The measurements were carried out with spherical steel
and delrin particles with a radius of 4 and 5 millimeter. The particle dynamics
has been investigated by video-capturing the particle’s motion (translation and
rotation) and the collision with an inclined plate.

Upon collision with a wall energy is dissipated due to the inelastic nature of
the contact. Furthermore the particle may stick or slip at the surface depending
on the tangential force during impact. Three parameters are used to describe
the macroscopic behavior of the collision. The normal coefficient of restitution
en quantifies the dissipated energy. The tangential coefficient of restitution et
quantifies the change in the tangential velocity at the point of the particle that
collides with the wall. Finally the Coulomb coefficient of sliding friction µf is a
measure how easily the particle sticks to or slips over the collision plate. These
three parameters are sufficient to describe the dynamics of a particle-wall collision
in air (dry collision). In a viscous fluid (wet collisions) these parameters are subject
to change due to lubrication, piezo-viscous and history-forces. Whether the particle
bounces in the fluid depends on the impact Stokes number (St = 2

9
ρsRU
µ

), the
ratio between particle inertia and viscous forces. The three parameters will be
determined using Walton’s collision model [Walton, 1993] and are compared to
the results found in literature [Gondret et al., 2002; Joseph and Hunt, 2004].

Furthermore, the difference between normal collisions and the normal compo-
nent of oblique collisions is investigated. The particle’s impact Stokes number,
has been plotted against the ratio of the normal wet and normal dry coefficient
of restitution and compared to the results found by Joseph et al. [2001] and the
empirical fit of Legendre et al. [2006]. In agreement with the results from literature
we found that the normal component of oblique collisions equals the the results of
normal collisions under similar conditions.

The results for oblique particle wall collisions in a viscous fluid presented in this
thesis, add to the few data present in literature, by using a different setup. Since
the results for both dry and wet collisions are in agreement with the data from
literature, this work may be used as validation for the modeling of particle laden
flows.
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Chapter 1

1 Introduction
This chapter gives the motivation for the research presented in this the-
sis. We start with a brief discussion of particle-particle and particle-wall
interactions in a flow. Subsequently, Section 1.2 gives a brief overview
of phenomena observed in nature and in industrial applications. Finally
Section 1.3 presents the research goal and outline of the thesis.

1.1 Particles in a Flow
In wall-bounded particle-laden flows, particles may interact with each other and
with a wall, as illustrated in Figure 1.1. Particles may roll (A) or slide (B) over
the surface but can also be suspended in the flow (D). In some cases, particles are
lifted from the bed and dragged along with the flow before returning to the ground,
thereby eventually ejecting other particles in the flow [Shields, 1936; Durán et al.,
2012]. This process is called saltation (C). These processes are highly dependent
on the particle properties such as size, shape, density, roughness and stiffness
and the local flow dynamics. The local flow dynamics is dependent on the fluid
properties like density and viscosity but also on the particle volume fraction which

Figure 1.1: Sediment transport in a river bed. For creeping motion in which the
particle remains at the surface, the particle may roll (A) or slide (B) over the
bed. Saltating behavior (C), particles may be lifted from the bed and dragged
along with the fluid before returning to the bed thereby eventually launching
other particles from the bed. Suspended particles (D) are carried along with
the bulk flow. Next to the particle and fluid properties, the dynamics of the
particle is dependent on the local flow dynamics. Figure by Karina Molfa (http:
//brasil.cel.agh.edu.pl/˜10skmolfa/galeria).
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2 Chapter 1. Introduction

may change the rheology of the flow [Morris, 2009].
The behavior of particles in a flow described above is often observed in ap-

plications like sedimentation, erosion and filtration processes. With increasing
computational power there is now the possibility of modeling such particle-laden
flows [Derksen, 2011; Kempe et al., 2014], for instance with an immersed boundary
method [Breugem, 2012; Costa et al., 2015]. To do this in a realistic manner it is
mandatory to understand the dynamics of individual collisions [Davis et al., 1986;
Barnocky and Davis, 1989; Joseph et al., 2001; Joseph and Hunt, 2004; Legendre
et al., 2006]. When a particle with a nonzero tangential velocity collides with a
wall, the particle may stick to or slip over the surface, dependent on the tangential
force during impact. In a viscous fluid, lubrication, piezo-viscous [Barnocky and
Davis, 1989] and history forces [Gondret et al., 2002] cannot be neglected. Next to
the understanding of individual collisions, there is a need for accurate experimen-
tal data for validation of the collision models. This thesis is therefore dedicated
to the experimental investigation of oblique particle-wall collisions.

1.2 Applications
Particle-laden flows appear in a wide range of natural and industrial contexts.
Examples are aeolian transport, i.e. transport in air, which is is observed in desert
areas, as shown in Figure 1.2. In this case the medium is such that short-range
hydrodynamic interactions such as lubrication forces are negligible. Among this
category are also drift-sands on the beach or drifting ice/snow particles during
winter.

There are also examples where the medium is a viscous liquid such as water.

Figure 1.2: Aeolian transport of sand from a crest in the Kelso Dunes of the Mojave
Desert, California. Photograph taken by Mark A. Wilson (Department of Geology,
The College of Wooster), en.wikipedia.org.



1.3. Research goal and outline 3

Figure 1.3: Coastal reinforcement near The Hague by application of rainbowing. In
this process the sand-water mixture is collected from the sea-floor and transported
to the coastal region. The rainbowing process allows deposition of the slurry in
shallow water areas. Figure taken from “Beeldbank Rijkswaterstaat”.

In water one usually speaks about sedimentation or sediment transport. In sedi-
mentation, the suspended particles move towards a wall where they come at rest.
This process is for instance used for the purification of drinking water and sewage
treatment.

Another example is the dredging industry, which deals with the transport of
sand-water mixtures, called slurry, through pipes. This is for instance done in
regions where coastal areas have to be reinforced or where new land has to be
claimed from the sea such as the Palm Islands near Dubai. Sand is usually col-
lected from the sea-floor. The fluid properties of the slurry, which is dependent on
the particle concentration, allows deposition by a technique called rainbowing, as
shown in Figure 1.3.

1.3 Research goal and outline
The objective of this thesis is to experimentally investigate the hydrodynamic
interaction of a spherical particle colliding obliquely onto a planar surface. Starting
from the equations of motion for both the fluid and dispersed phase, the equation
of motion for a single particle in a stagnant fluid is derived in Section 2.2. Upon
collision with a wall, the energy dissipation due to the inelastic nature of the
solid-solid contact has to be taken into account. Section 2.3.1 presents Walton’s
three-parameter model which has been used to describe the collision process. In
a viscous liquid these parameters are subject to change due to lubrication- and
piezo-viscous forces as will be outlined in Section 2.3.2.



4 Chapter 1. Introduction

Chapter 3 starts with a description of the physical parameters describing the
particles, fluids and the target plate, followed by the description of the experi-
mental setup. Appendix A gives an elaborate discussion on the procedures used
to measure the roughness of the particles and collision plate. Section 3.2 explains
the data analysis and is divided in two parts. First, the detection of the position
of the sphere and the markers, which are used to track the particle’s rotation, is
discussed in Section 3.2.1. Section 3.2.2 discusses how the rotation of the particle
is derived from the position of the markers. Furthermore this section discusses
the detection of the moment of collision and the procedure to find the normal-
and tangential velocity prior to and just after the collision. In close relation to
Chapter 3, Appendix B gives an elaborate discussion on the Kabsch algorithm,
which is used to find the rotation of the particle from the positions of the markers.
Besides the mathematical background, the influence of the uncertainties in the
positions of the markers on the rotation found, is investigated analytically and
and numerically.

The experimental results are presented in Chapter 4, following the theoretical
analysis of Chapter 2. The results of the dry collisions for the separate parame-
ters of Walton’s three-parameter model are plotted against the incidence angle in
Section 4.1. Section 4.2 shows the results for the wet collisions. Finally we con-
firm the self-similar dependency of the ratio between the normal wet coefficient of
restitution to the normal dry coefficient of restitution as function of Stokes number
based on the normal impact velocity.

Chapter 5 concludes the findings of the results chapter and presents recommen-
dations for further experiments.



Chapter 2

2 Oblique Particle-Wall Collisions
The motion of particles in a fluid is governed by the coupling of the
equations of motion for the continuous and dispersed phase. The fluid
phase is described by the Navier-Stokes equations and the solid phase
by the Newton-Euler equations. This chapter starts with an overview
of these equations (Section 2.1). Subsequently, Section 2.2 gives the
equation of a single sphere sedimenting in a quiescent fluid. This chapter
concludes with the theory for oblique particle wall collisions, starting
with dry collisions in Section 2.3.1. In a viscous (wet) fluid, lubrication,
piezo-viscous and history-forces cannot be neglected as will be discussed
in Section 2.3.2.

2.1 Equation of Motion
The dynamics of a spherical particle in a viscous fluid are described by the coupling
of the equations of motion for the fluid phase and the dispersed phase. The fluid
phase, for an incompressible Newtonian fluid, is described by the continuity- and
Navier-Stokes equations

∇ · uf = 0, (2.1a)

ρf

(
∂uf
∂t

+ (uf · ∇)uf
)

= −∇p+ µf∇2uf . (2.1b)

The motion of a spherical particle is described by the Newton-Euler equations

dp
dt =

∮
Γ
σ · dΓ + F, (2.2a)

dL
dt =

∮
Γ
(x− xp)× (σ · dΓ) + M, (2.2b)

where p = mpup and L = Ipωp are the the particle’s linear and angular momentum,
respectively.

Two-way coupling can be done through the imposition of no-slip and
no-penetration boundary conditions at the surface of the sphere. For sufficiently
small particles in the Stokes regime the coupling results into the Maxey-Riley-
Gatignol equations [Maxey and Riley, 1983; Gatignol, 1983].1 Otherwise, velocity-
1The derivations of the equation of motion by Maxey & Riley and Gatignol were published almost
simultaneously. At present, the Maxey-Riley equation is the most cited theory of the two in
literature, but is restricted to linear momentum. The derivation by Gatignol also contains the
rotational motion and therefore is more complete [Warncke, 2014].
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Figure 2.1: Traveled distance and velocity as function of time for R = 5 mm steel
and delrin particles falling through air (dashed lines) and water (solid lines). The
results are obtained by numerical integration of Equation 2.3 using an Euler for-
ward scheme. Material properties of the particles and the fluids can be found in
Tables 3.1 and 3.3 respectively.

dependent correlations have to be used for the drag-, lift- and history-forces acting
on the particle [Crowe et al., 2011].

Interactions among particles (four-way coupling) or particles and walls are ac-
counted for by external forces, e.g. collision, lubrication and piezo-viscous forces,
appearing in F and M in the Newton-Euler equations (2.2).

2.2 Sedimentation of a Single Sphere in a Stagnant
Fluid

The equation of motion for a single sphere, sedimenting in a quiescent fluid, is
given by [Crowe et al., 2011]

ρpVp
du
dt︸ ︷︷ ︸

particle inertia

= − 1
2CD ρfπR

2|u|u︸ ︷︷ ︸
drag force

− ρfVp
2

du
dt︸ ︷︷ ︸

added mass

+ (ρp − ρf )Vp g︸ ︷︷ ︸
buoyancy

, (2.3)

where CD = CD(u) the drag coefficient dependent on the particle’s slip velocity
u [Subramanian, 2010]. Figure 2.1 shows the particle’s velocity and trajectory,
obtained by numerical integration of Equation 2.3, of a particle falling through air
and water. From this figure one observes that, due to the smaller particle-fluid
density ratio, the settling velocity in water is reached much earlier than in air.
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2.3 Oblique Collision

When a particle collides with a wall, energy is dissipated due to the inelastic
nature of the contact mechanics. This inelasticity can be quantified by a normal
coefficient of restitution,

en = un,out

un,in
, (2.4)

which is the ratio of the rebound to the impact velocity. If the impact angle ξin, as
shown in Figure 2.2 is nonzero, the collision is oblique. In this case the dynamics
of the particle after collision is dependent on the tangential force during impact,
which can be characterized by the Coulomb coefficient of sliding friction µc and
both the tangential and normal coefficient of restitution et and en.

2.3.1 Dry Collisions

Let us consider an oblique particle-wall collision in air, which we will refer to as a
dry collision, as shown in Figure 2.2. In this case all forces in Equation 2.3 except
gravity are negligible. For convenience we define the effective angles of incidence
and rebound as follows:

Ψin =
∣∣∣∣∣uin,t

uin,n

∣∣∣∣∣ = tan(ξin) and Ψout = uout,t

|uin,n|
= en,d tan(ξout). (2.5)

In these equations the subscripts n and t denote the normal and tangential com-
ponent of the velocity, respectively. The normal and tangential coefficient of resti-
tution are defined by

en,d ≡
∣∣∣∣∣uout,n

uin,n

∣∣∣∣∣ and et,d ≡ −
uout,t

|uin,t|
. (2.6)

Based on Hertzian contact theory, numerical simulations of Maw et al. [1976] show
that three different types of impact may occur. These depend on the value of the
normalized incidence angle

ψin = 2(1− ν)
µc(2− ν)Ψin

(
analogously ψout = 2(1− ν)

µc(2− ν)Ψout

)
, (2.7)

and a material- and geometry-dependent parameter,

χ = (1− ν)(1 + 1/K2)
2− ν . (2.8)

In these equations ν is the Poisson’s ratio and K is the radius of gyration normal-
ized by the particle radius; K2 = 2/5 for a homogeneous solid sphere. The different
regimes can be characterized by the three different regions of Figure 2.3:
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y

Figure 2.2: Schematic represen-
tation of an oblique particle-
wall collision. The forces Fn
and Ft respectively denote the
normal and tangential force
during the particle-wall colli-
sion.
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Figure 2.3: The collision models of Maw et al.
[1976] and Walton [1993]. The vertical lines de-
note the different collision regimes bounded by
ψin = 1 and ψin = 4χ − 1. The black dots indi-
cate the, rescaled with ν = 0.22 and µc = 0.092
by Costa et al. [2015], experimental results for
dry collisions between glass spheres from Foerster
et al. [1994].

I. ψin ≤ 1: Full stick
The normal component of the load is much larger than the tangential com-
ponent, consequently the particle sticks to the surface. Regions of micro-slip,
slip occurring at the boundary of the contact area, may occur upon decrease
of the contact area due to elastic recovery.

II. 1 < ψin ≤ 4χ− 1: Gross slip → Stick
The tangential component of the load initially dominates during impact but
decreases quickly due to frictional stresses. As a result the particle finally
sticks in the entire contact area.

III. ψin > 4χ− 1: Gross slip
The tangential component of the load is so large that gross slip occurs during
the entire contact time.

Walton [1993] proposes a simpler 3-parameter model which consists only of a full
stick and a gross slip regime. The model makes use of the normal and tangential
coefficient of restitution endry and etdry respectively, and the Coulomb coefficient
of sliding friction µc. From the latter coefficient the tangential component of the
contact force in the gross slip regime is found, i.e.

|Ft| = µc|Fn|, (2.9)
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where |Fn| is the normal component of the contact force. Walton’s model represents
oblique collisions by two lines in the Ψin, Ψout plane:

Ψout =
{
−et,dΨin Ψin ≤ Ψ∗in Stick
Ψin − µc(1 + 1/K2)(1 + en,d) Ψin > Ψ∗in Slip , (2.10)

where Ψ∗in = µd
7
2

1+en,d
1+et,d

⇒ ψ∗in = Ψ∗in
2(1−ν)
µc(2−ν) , based on the continuity of Ψout at Ψ∗in.

Although Walton’s model is less sophisticated than Maw’s model, both models are
in agreement with experimental results [Foerster et al., 1994; Joseph and Hunt,
2004] as shown in Figure 2.3. Since the micro-scale contact mechanics is not
resolved in our experiments, the macroscopic description of Walton will be used
to determine the three parameters describing the collision.

2.3.2 Wet Collisions
Lubrication effects become important when a particle moving in a viscous fluid
approaches another particle or wall closely. In the vicinity of the wall, if Reδ � 1
and δ � R, a lubrication force [Brenner, 1961] needs to be added to the right hand
side of the equation of motion (2.3):

FL = −6πµfR2un

δ
(2.11)

where δ is the minimum separation distance between the wall and the particle’s
surface and un the particle’s normal velocity. The addition of this force to the right
hand side of Equation 2.3 leads to the paradox that the particle can never have
physical contact with the wall during the collision. For a decreasing particle-wall
separation δ the lubrication force namely diverges. In such an elasto-hydrodynamic
(EHD) collision fluid always remains in the gap between the particle and the wall.
Where fluid is squeezed out of the gap between particle and wall upon incidence,
fluid has to be sucked in during rebound. Therefore the lubrication force needs to
be taken into account if the particle is in the vicinity of the wall.

Upon rebound the particle enters its own wake. Gondret et al. [Gondret et al.,
2002] showed that, for normal collisions in a viscous fluid, a history force therefore
cannot be neglected during the collision process.

As discussed by Davis et al. [1986] a decreasing particle-particle separation dur-
ing an EHD-collision leads to a pressure increase in the gap between the particles.
This pressure increase causes the particles’ surface to deform till the particle’s ki-
netic energy is converted into elastic strain energy. Their analysis shows that the
maximum particle deformation and rebound velocity is dependent on the particle’s
Stokes impact number

St = 2
9
ρpRun

µf
= ReD

9
ρp
ρf
, (2.12)

which can be interpreted as the ratio between particle inertia and viscous forces.
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For small Stokes numbers viscous effects dominate during the approach of the
particle to the wall and the particle does not deform. At large Stokes numbers the
collision is governed by the elastic deformation of the particle.

Experimental results, e.g. [Gondret et al., 1999; Joseph et al., 2001; Gondret
et al., 2002; Legendre et al., 2006], show that for St . 10 no rebound occurs.
For higher Stokes impact the coefficient of restitution asymptotically increases to
the dry coefficient of restitution. Legendre et al. [2005] found that the following
equation describes well the relation between the effective coefficient of restitution
and the particle Stokes number for droplet collisions:

en,w

en,d
= exp

(
− βSt

)
, (2.13)

where β depends on the Capillary number and the Weber number. For solid
spheres, β = 35 proves to be a good estimate [Legendre et al., 2006].

Although in an ideal EHD-collision smooth spheres never touch the wall, physical
contact may take place through the asperities of the particles. For EHD-collisions
the closest distance of approach between particle and plate is given by [Davis et al.,
1986]:

heh =
(
4µfθunR

3/2
)2/5

, with θ = 1− ν2
1

πE1
+ 1− ν2

2
πE2

, (2.14)

where ν1,2 and E1,2 are the Poisson’s ratios and Young’s moduli of the particle
and the wall, respectively. This results in an increasing gap-with for higher nor-
mal impact velocity. However, for higher impact velocities piezo-viscous effects
(the increase of the fluid-viscosity in the gap between particle and wall upon the
increasing pressure and density) become important. Barnocky and Davis [1989]
derived a piezo-viscous length scale

hpv =
√
η̂fµfunR (2.15)

where η̂ ≈ 10−9 Pa−1 is a pressure-viscosity coefficient and µf the viscosity at the
reference pressure. If hpv > heh piezo-viscous effects have to be taken into account.

If the size of the asperities is larger than the gap-with between the particle and
the wall, collision occurs through the roughness elements [Barnocky and Davis,
1988; Joseph et al., 2001; Joseph and Hunt, 2004]. As outlined by Joseph and Hunt
[2004] this results in solidification of the fluid trapped in the asperities between
the particle and the wall. As a result the coefficient of sliding friction increases to
a level slightly above the coefficient of sliding friction for dry collisions. If particles
are smooth, i.e. σ < heh, the lubrication layer causes the coefficient of sliding
friction to be an order of magnitude lower than for the dry collisions.



Chapter 3

3 Methodology
This chapter is dedicated to the experimental setup, materials used
and the analysis of the data. The experiment concerns particles falling
under the influence of gravity through a (viscous) fluid bouncing on
an inclined plate. Details of the setup, particles, impact surface and
fluids used for the experiment will be discussed in section 3.1. Section
3.2 treats the analysis of the recorded images to describe the particle
motion.

3.1 Experimental Setup
Collision experiments were performed in a glass aquarium, with dimensions l×w×h
= 25×25×50 cm, using steel and delrin spheres2 impacting on an inclined glass
plate. The experimental setup and particles used are shown in Figure 3.2 and
3.3, respectively. The particles were released with negligible initial rotation from
a vacuum tube by turning off the vacuum pump. The impact surface is placed at
an angle using perspex wedges of several lengths. Experiments have been carried
out both in air (dry collisions) and in water (wet collisions). Tables 3.1, 3.2 and
3.3 give an overview of the specifications of the particles, impact surface and fluids
used.

To find the rotation of the particles after impact, markers were applied manually
using a permanent marker. A Tencor stylus profilometer was used to measure the
particle’s surface roughness σ and the local enhancement of the roughness due
to addition of the markers. An optical investigation gave similar results for the
roughness of the particles. These results are shown in Figure 3.1. A more elaborate
discussion on the particle surface roughness including the results from the stylus
profilometry is given in Appendix A. The roughness of the particles is shown in
Table 3.1. For delrin spheres no influence of the markers on the surface topology
was observed. The thickness of the markers on the steel sphere, applied with a
different (white) pencil, was measured to be approximately 20µm. Hence, markers
were only applied to the frontal area of the particle, with respect to the viewpoint
of the camera, to avoid anomalous results due to collisions on the markers. The
roughness of the glass collision plate, shown in Table 3.2, was was only measured
using the stylus profilometer.
2Collision experiments with glass spheres were also performed. Due to a large shadow which
changed position during the dry measurements it was not possible to track the rotation of the
particle. For the wet case the shadow was nearly absent, so the particle nearly vanished in
the background. As a result, stable tracking of the particle motion was not possible. As a
consequence the post-processing glass dataset is omitted from this report.

11
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(a) Delrin.

Steel particle

Air gap

Marker

Synthetic resin

(b) Steel, with marker. (c) Steel, without marker.

Figure 3.1: Optical investigation of the edge of a half-sphere embedded in a syn-
thetic resin. The lines visible on the particles are due to the polishing process after
cutting the particles in halves and have a separation of at least one micrometer.
The delrin particle (a) has a surface roughness of micrometer size, and influence of
the markers is not visible. In the middle figure (b) the marker is visible and sepa-
rated from the steel particle (bright area), leaving an air-gap between particle and
marker/resin. Below the bubble structure of the resin is visible. The right figure
(c) shows a steel particle without marker and has a very small surface roughness.

The elasto-hydrodynamic and piezo-viscous length scale were determined using
Equations 2.14 and 2.15 and the particle and fluid properties of Tables 3.1 and
3.3 for R = 5 mm particles. As impact velocity, the settling velocity from Figure
2.1b is used. The data are listed in Table 3.1. Since hpv < heh piezo-viscous
effects can be neglected. The roughness of steel particles approximately equals the
elasto-hydrodynamic length scale, therefore steel particles might considered to be
smooth. This is not the case for delrin particles of which the size of the asperities
is larger than the elasto-hydrodynamic length scale. Hence, delrin particles are
considered to be rough.

A LaVision APX-RX 1 Mpx high-speed camera was used to record the motion
of the falling particles. A frame-rate of 3000 frames per second was used to record
the motion, except for the wet collisions with delrin spheres and an impact angle of
30.2 and 40.8 degrees for which a frame-rate of 1500 frames per second was used.
Particles were illuminated from the back by a diffuse LED-panel to distinguish
them from the background. To visualize the markers on the sphere, the opaque
steel and delrin particles were illuminated from the front using a halogen light-
source.

An alcohol thermometer, calibrated using a Julabo heat bath at several tem-
peratures, was used to measure the temperature of the air/liquid inside the mea-
surement tank before each measurement. Temperature differences from 19 to 23
degrees Celsius have been observed during the measurements, although at most
times the temperature was around 21 degrees. The viscosity for water and air are
therefore determined on the basis of a temperature of 21◦C. The influence of the
halogen light-source on the air/water temperature was observed to be negligible.
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Figure 3.2: The experimental setup.
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Figure 3.3: Delrin and stainless steel
spheres with different diameters used
within the experiment. Markers were
manually applied using a permanent
marker. More properties are listed in
Table 3.1.

50mm

Figure 3.4: Calibration pattern made
out of 5×5 mm squares. Green dots
(•) and red crosses (+) depict the ori-
gin and extent of horizontal and vertical
axes before and after the correction for
the rotation of the camera, respectively.

Material ρ [kg/m3] σ [µm] D [±0.01 mm] E [GPa] ν heh [µm] hpv [µm]
Stainless Steel 7200 0.7 8.00 & 10.00 189 0.30 0.6 0.12
Delrin (POM) 1420 3 8.00 & 10.00 3 0.35 1.1 0.06

Table 3.1: Specifications of the particles used in the experiment.

Material l×w×h [mm] ρ [kg/m3] σ [µm] E [GPa] ν

Glass 250×250×10 2800 0.1 70 0.20

Table 3.2: Specifications of bouncing plate.

Material ρ [kg/m3] µf [Pa·s] η̂f [Pa−1]
Air 1000 1.83× 10−5 -
Water 998 0.98× 10−3 10−9

Table 3.3: Fluid specifications. The dynamic viscosity is determined for a fluid
temperature of 21◦C.
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3.1.1 Calibration
The setup was calibrated using a checkerboard pattern, which was placed in the
field of view of the camera covering the particle’s plane-of-motion. Translation
from pixel values to metric distances, as well as the correction for the rotation of
the camera, was done by investigating the pixel values of the visible corners of the
calibration grid as shown in Figure 3.4. Determination of the pixel values at origin
and corners was done ten times and the average result was used to find the metric
distances and rotation of the camera.

3.2 Data Analysis
The recorded video-frames were analyzed with the aid of Matlab and Python.
Image processing, i.e. calibration and finding the position of both sphere and
markers, was done using Matlab [MATLAB, 2014]. The data management and
analysis was done with the Python [Van Rossum and de Boer, 1991; Oliphant,
2007; Millman and Aivazis, 2011] Scipy stack [Jones et al., 2001] and Numpy
library [Van Der Walt et al., 2011]. Plotting was performed with the matplotlib
library [Hunter, 2007]. Data transfer from Matlab to Python was done using
intermediate data-files.

3.2.1 Position of Sphere & Markers
To find the position of the sphere and the markers placed thereon, the following
procedure, as illustrated in Figure 3.5, was used:

1. Find particle outline, defined by its center position and radius, using Circular
Hough Transform [Ballard, 1981] with imfindcircles.

2. Mask surroundings and in case of delrin spheres invert colors.
3. Mask pixels which have a value below the threshold value (thresholding).
4. Remove small (noise) and too large (reflections) areas.
5. Place marker at the centroid of each area.

The centroid position and radius found on the basis of the particle outline (1)
are given with sub-pixel accuracy, and the radius was found to be in agreement

1 2 3 4 5

Figure 3.5: Procedure to find the outline (−) and markers (+) on a R = 5 mm
delrin sphere.
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with the measured size of the particle. Both threshold value (3) and criteria for
the area size (4) are dependent on the particle type. Although the position of
the markers (5) is given with sub-pixel accuracy, the error in the position of the
markers proved to be of the order of one pixel due to changes in the shape of the
markers between different frames. The procedure described above is applied to
every recorded image/frame of each measurement.

3.2.2 Tracking the Particle Motion
The translational motion of the particle was obtained from the series of the sphere’s
center position in each frame. To find the rotation of the markers relative to
the center of the sphere, Kabsch’ algorithm [Kabsch, 1976, 1978] is used. This
algorithm finds the optimal rotation matrix U , which transforms the marker-
coordinates from the initial (xn) to the rotated (yn) configuration. This is done
by minimizing the following least-square error:

E =

√√√√ 1
N

N∑
n=1

wn(Uxn − yn)2, (3.1)

where xn and yn, n ∈ {1, . . . , N} are the coordinates of the correlated markers
on the sphere, wn = 1 the weight corresponding to each pair xn, yn and E the
residual quantity which has to be minimized.

From the rotation matrix, the Euler-Cardan angles θ, ψ and ϕ around respec-
tively x, y and z axis are extracted, where U = Uz(ϕ) ·Uy(ψ) ·Ux(θ).3 Appendix
B gives an elaborate discussion about the Kabsch algorithm and its sensitivity to
measurement uncertainties in the position of the markers.

The correlation between the markers, mandatory for Kabsch’ algorithm, is done
using nearest-neighbor interpolation between the points in the reference and ro-
tated frame. A restriction of the correlation distance by a maximum absolute
displacement of Rπ/16 and radial displacement of R/8 was found to be appropri-
ate.4 Injective mapping of points satisfying the constraints is ensured by choosing
the nearest neighbor if two points in the initial frame are mapped to the same one
in the rotated frame. To reduce the signal to noise ratio in the resulting angles
both the correlation and kabsch algorithm were applied to frame n and n+ nskip,
with nskip = 5. For nskip < 3 and nskip > 8 deviations in some of the resulting
angles were observed. With the uncertainty of 1 pixel (∼ 0.18 mm) in the position
of the marker the resulting uncertainty of the angles was in agreement with the
results from Appendix B.

Figure 3.6a shows the trajectory followed by a R = 5 mm delrin sphere colliding
on a surface with an incidence angle of ξin = 14.7 degrees. The instant of contact
3The non-commutative nature of the rotation matrix requires a definition of order in which the
rotations are performed. As convention we take the rotations subsequently around x, y and z
axis.

4These values are chosen by investigating the erroneous correlated markers, and looking for
restrictions removing the wrongly correlated markers without influencing the markers which
were properly correlated.
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was found from the minimum normal distance of the particle to the plate. To
track the particle’s motion prior to and just after the collision the data was fitted
using piecewise continuous polynomial functions. The translational motion was
determined using a piecewise second-order polynomial function from 50 points
before to 50 points after the collision point, with the discontinuity at the collision
point. The velocity and acceleration were obtained from its temporal derivatives.
This procedure is illustrated in Figures 3.6c and 3.6d. The angular velocity of
particles is found using by piecewise smoothening of the signal from the Kabsch
algorithm and then fitting a horizontal line to the points before the collision and
the points after the collision. This procedure is illustrated in Figure 3.6b.
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(c) Vertical position.
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(d) Vertical velocity.

Figure 3.6: Linear motion and rotation of a R = 5 mm delrin particle falling on
a plane with incidence angle ξin = 14.7 degrees. Figure (a) shows the particle
position. Figure (b) shows the rotation obtained by application of the Kabsch
algorithm. The large erroneous results in the original output are the result of mis-
correlation between markers or the detection of markers which in reality do not
exist. Since the number of these errors is small they vanish during the smoothening
process. In figure (c) the vertical position of the particle in time is shown. From the
2nd order piecewise polynomial fit near the bouncing point the velocity component
w in the z-direction, shown in figure (d) is found just before and after impact. The
raw velocity data are obtained by taking the temporal derivative of the raw vertical
position using second order accurate central differences. The polynomial fit in the
vertical velocity is the temporal derivative of the polynomial fit from figure (c). A
similar procedure is followed for the motion in the horizontal (y) direction.
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4 Results
This chapter is dedicated to the experimental results and compares
them with the presented model and other datasets from literature. The
results will be presented in a manner following the order of the theoret-
ical analysis of Chapter 2. The results for the separate parameters of
Walton’s three parameter model are plotted against the incidence angle
in Section 4.1. These data are combined in a master-curve in which the
normalized incidence angle is set out against the normalized rebound
angle. Section 4.2 shows the results for the wet collision. Finally, it is
shown that the effective normal coefficient of restitution is dependent
on the Stokes impact number based on the normal impact velocity.

4.1 Dry collisions
Measurements were obtained for collisions of steel and delrin spheres with a radius
of 5mm at 8 different impact angles ξin. For each material two particles were used
to take 5 measurements at the different impact angles. Particles were released
from approximately 10 cm above the surface, resulting in an impact velocity of
1 ms−1 as shown in Figure 2.1b. The effective angles of incidence and rebound are
computed using Equation 2.5 and plotted against each other in Figure 4.1. From
this figure it is observed that the results corresponding to the 5 lowest incidence
angels belong to the stick regime, whereas the 3 highest incidence angles are in
the slip regime of Walton’s model.

The three parameters describing the collision, according to Walton’s model
(2.10), are plotted in Figure 4.2. The Coulomb coefficient of sliding friction is
obtained by fitting a horizontal line to the results belonging to the slip regime.
The resulting coefficient of sliding friction is given by µf = 0.099± 0.003 for steel
and µf = 0.114 ± 0.007 for delrin particles. The value for the collision of the
steel particle is in line with the result of Joseph and Hunt [2004], who obtained
µc = 0.11± 0.003 for steel spheres impacting on a zerodur surface.

The tangential coefficient of restitution is obtained by fitting a horizontal line
to the results corresponding to the stick regime. This results in et = 0.18 ± 0.16
for steel and et = 0.40 ± 0.05 for delrin particles. The large uncertainty in the
tangential coefficient of restitution for steel particles is due to the large spread in
the data for the different incident angles. The value for the collision of the steel
particle is lower than the et,d = 0.34 ± 0.07 found by Joseph and Hunt [2004] for
steel spheres impacting on a zerodur surface.

The normal coefficient of restitution for steel particles is given by en = 0.885±
0.007 and en = 0.951 ± 0.008 for delrin particles. The value for the collision of
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Figure 4.1: Dry collision results fitted with Walton’s collision model. Results are
shown for R = 5mm delrin and steel particles.
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Figure 4.2: Parameters involved in Walton’s collision model as function of the inci-
dence angle for dry collisions. Each marker corresponds to a single measurement.
Similar marker types indicate that the measurement is carried out with the same
particle. The horizontal fit of the data for µc and et,d was performed on the results
belonging to the slip and stick regime, respectively.

the steel particle is in line with the result of Joseph et al. [2001], who obtained
en,d = 0.88± 0.07 for steel spheres colliding on a glass surface, but low compared
to the en,d = 0.97± 0.01 found by Gondret et al. [2002] and the en,d = 0.97± 0.01
of Joseph and Hunt [2004] . Energy dissipation due to inelastic deformation of
the wedge setup might be responsible for this lower value for steel particles. The
normal coefficient of restitution for the delrin spheres is in line with the en,d =
0.95 ± 0.02 found by Gondret et al. [2002]. The lower impact force on the plane
may for this case not lead to deformations in the wedge setup.

Based on the collision parameters found from Figure 4.2 the lines corresponding
to Walton’s collision model (2.10) are plotted in Figure 4.1. Although the results
for steel particles are qualitatively well in agreement with the data from Joseph and
Hunt [2004], the lower value for the normal and tangential coefficient of restitution
restitution result in a different line in Walton’s model.
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Figure 4.3: Wet collision results compared to the collision model of Walton. Results
are shown for R = 5mm delrin and steel particles. The absence of a stick regime
in combination with a very small value for the coefficient of sliding friction implies
that both the steel and delrin particles can considered to be smooth.
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Figure 4.4: Parameters involved in Walton’s collision model as function of the inci-
dence angle for wet collisions. Each marker corresponds to a single measurement.
Similar marker types indicate that the measurement is carried out with the same
particle. The horizontal fit of the data for µc belonging to the slip regime. Due
to the absence of results belonging to the stick regime a fit to the data of et,w was
omitted.

4.2 Wet collisions

Measurements were obtained for collisions of steel en delrin spheres with a radius
of 5mm at 8 different impact angles ξin. For each material two particles were used
to take 5 measurements at the different impact angles. Particles were released
from the top of the aquarium and (almost) reached their terminal settling velocity
before impact. From Figure 2.1 one observes that the impact velocity of the
steel particles is approximately 1.4 ms−1 and 0.3 ms−1 for the delrin spheres. The
effective angles of incidence and rebound are computed using Equation 2.5 and
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plotted against each other in Figure 4.3. From this figure it is observed that the
results corresponding all incidence angels belong to the slip regime of Walton’s
collision model.

The three parameters describing the collision, according to Walton’s model
(2.10), are plotted in Figure 4.4. The Coulomb coefficient of sliding friction is
obtained by fitting a horizontal line to the results belonging to the slip regime,
in this case all results. The resulting coefficient of sliding friction is given by
µf = 0.018 ± 0.003 for steel and µf = 0.018 ± 0.012 for delrin particles, and
thereby both an order of magnitude lower than the coefficient of sliding friction of
the dry case.

The results for the tangential coefficient of restitution decrease to a value of -1,
which indicates a full sliding collision. The spread in the data increases for lower
incidence angles. Both observations are in line with Joseph and Hunt [2004].

The normal coefficient of restitution for steel particles is given by en = 0.87±0.01
and en = 0.86±0.03 for delrin particles. The value for the steel particles is, just as
in the dry case, lower than result of Gondret et al. [2002], whereas the results for
the delrin particles agree. Energy losses due to inelastic deformation in the wedge
setup might be responsible for this lower value, since the impact velocity is of the
same order as for the dry collisions.

Based on the results from Figure 4.4, the lines corresponding to Walton’s colli-
sion model (2.10) are plotted in Figure 4.3. Since the stick regime is not present
in the dataset, due to the small coefficient of sliding friction, only the function
corresponding to the slip regime is shown. Therefore the particle does not inter-
act with the wall through the roughness elements. Hence, both steel and delrin
particles may considered to be smooth. This is not in line with the result from in
Section 3.1, in which was found that the delrin particles were rough, since the sur-
face roughness was larger than the elasto-hydrodynamic length scale, i.e. σ > heh.
The smooth behavior might be caused by the deformation of the roughness el-
ements upon impact on the very smooth collision plate. For steel spheres, for
which σ ≈ heh the smooth behavior confirms the cautious conclusion of Section
3.1 stating that the steel spheres might considered to be smooth.

4.2.1 Coefficient of restitution
Figure 4.5 shows the effective normal coefficient of restitution, i.e. the ratio be-
tween the normal wet and the normal dry coefficient of restitution, as function
of the Stokes number based on the normal impact velocity. Each data-point re-
sembles the average of 5 measurements with corresponding standard deviation.
Measurements were obtained for collisions of steel and delrin spheres with a radius
of 4 and 5 mm. The results from collisions following after the first impact are con-
nected to the data-point corresponding to the previous impact. Since the impact
Stokes number decreases with the number of collisions, due to the inelasticity of
the collision, the most right point correspond to the first impact.

The results for both steel and delrin particles falls within the scatter of the data
from Joseph and Hunt [2004] and the empirical fit (2.13) from Legendre et al.
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[2006], which lies is within the uncertainty region of nearly each measurement.
Hence, our results are in line with previous experiments stating that the normal
coefficient of restitution as function of the normal Stokes impact is similar to a
normal collision with the same velocity.
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Figure 4.5: Effective normal coefficient of restitution for steel and delrin spheres
with diameters R = 4mm and R = 5mm. The line indicates empirical fit (2.13)
from Legendre. et al. [Legendre et al., 2006]. If present, data from the second
bounce are connected with a line to the result of the initial collision, and the data
from the third to the second. . . and so forth. Insets show enlarged the results of
the present work.
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5 Conclusions
This chapter concludes the findings of the previous chapters and presents
recommendations for further research.

The objective of the present study was to investigate the hydrodynamic interac-
tion of a spherical particle colliding obliquely onto a planar surface. We presented
an experimental dataset with results of steel and delrin particles colliding onto an
inclined glass plate. The macroscopic collision model of Walton [1993] was used
to describe the results. This model depends on three parameters: the coefficient
of sliding friction µf , the tangential coefficient of restitution et and the normal
coefficient of restitution en.

In order to find both the translation and the rotation of a spherical particle,
markers were applied particle’s surface. The particle was released with negligible
initial rotation from a vacuum tube, and the motion of the particle colliding with
the plate was recorded using a high speed camera. The tracking of both sphere
and markers was very sensitive to the illumination of both sphere and marker.
With the aid of Kabsch’ algorithm and the positions of the markers on the sphere
the rotation of the particle was found. The rotational results and their uncertainty
were in agreement with the uncertainty arising from the Kabsch algorithm which
was investigated both analytically and numerically.

From the wet collisions it became clear that both the steel and delrin spheres
could considered to be smooth. As a consequence, and in agreement with earlier
studies, the coefficient of sliding friction dropped almost one order of magnitude
compared to the dry collisions. Finally we observed, in agreement with Joseph
and Hunt [2004], that the normal coefficient of restitution is independent to the
obliqueness of the collision surface when only the normal component of the colli-
sion is taken into account.

The agreement of the data with the results from literature indicates that the
presented setup is suitable to investigate oblique particle-wall collisions. However
the detection of the particles and marker proved to be a challenge, with the result
that the collisions of glass particles could not be measured. Due to the difficult
detection of the markers and the correlation of the markers between frames, no in-
formation about the rotation of the R = 4 mm spheres was obtained. It is therefore
recommended that for further experiments the simple marker detection algorithm,
based on thresholding, is replaced by a more stable detection method.

The results presented in this thesis, add to the few data present in literature by
using a different setup. Since the results for both wet and dry collisions were in
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agreement with the data from literature, this work may be used as validation for
the modeling of particle laden flows.

With the measurement technique presented in this thesis simple particle-particle
interactions can be studied. An example is the drafting-kissing-tumbling phe-
nomenon in which a particle is accelerated in the wake of another particle and
finally collides with this particle. Another possibility is to study the motion of a
particle over a surface. Although the normal contact force, and thereby the tan-
gential contact force, will in general be lower, still a coefficient of sliding friction is
required to estimate whether the particle will roll or slide over the surface. A fur-
ther study could investigate the drafting-kissing-tumbling of particles moving over
a surface. Since both particle-particle and particle-wall interactions are present,
such an experiment will provide a valuable dataset to validate the four-way cou-
pling of numerical simulations.



Appendix A

A Particle Surface Roughness
This chapter adds the detailed information about the determination
of the surface roughness of the particles collision surface. In the case
of the particles both an optical and scanning technique has been used
to investigate the surface roughness and the influence of the added
markers thereon. The surface roughness of the plate is only investigated
using the scanning technique. Section A.1 discusses the measurement
techniques. The results are presented in Section A.2.

A.1 Method

A.1.1 Optical
In order to optically study the particle’s surface roughness, the particles were
embedded in a clear acrylic cold mounting resin ClaroCit and sawn into halves.
For ease only a large marker was placed in the cutting line. The sawn surface was
polished in five consecutive steps, starting with coarse grinding paper and finishing
with a polishing fluid, till a roughness of less than 2.5µm was achieved. Figure
A.1 shows the embedded, sawn and polished particles. This procedure was applied
to two R = 5 mm steel particles and two R = 6 mm delrin particles.5

Subsequently the particles were placed under an optical microscope and the edge
profile of the embedded particle was visually investigated.

A.1.2 Stylus
Stylus measurements have been performed using a Tencor 500 profiler on both par-
ticles and collision plate. The sample was placed on a moving table and scanned by
a needle with a radius of 12.5µm over a length of 4 mm with a speed of 0.02 mm/s
and a stylus force of 10µg. The maximal vertical resolution of the profiler was
given to be 0.1 nm.

The raw scan data of the needle height and scan-length were exported in a
datafile. To remove macroscopic movement of the needle due to the curvature
of the particles and a non-horizontal mounting of the table, the data were fitted
with and subtracted by a moving average. The particle surface roughness σ is
determined from the 95% confidence level of the size of the asperities.

5Since the low amount of delrin particles present for the experiment it was decided to cut the
particles of the size that was not used in the experiment. The surface properties of all delrin
particles were assumed to be equal.
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Figure A.1: Side and top view of steel (upper figures) and delrin (lower figures)
particles embedded in a synthetic resin. The side view clearly shows the white and
black marker present on the steel and delrin sphere, respectively. In the top view
of the delrin particle a cutting line from a previous unsuccessful cut is visible. The
clear visibility of the black marker is due to the dissolution of the marker in the
resin. For delrin particles the splitting of the particles revealed the presence of a
small air bubble within each particle.

(a) Without marker.

Steel particle

Air gap
Marker

Synthetic resin

(b) With marker.

Figure A.2: Edge of R = 5 mm steel particles visualized using a microscope. The
left figure (a) shows region without marker. The scratches on the particle originate
from the polishing process and have a separation of at least 2.5µm. The right figure
(b) shows a region with a marker. The marker is separated from the particle by
the resin leaving an air-gap between particle and marker.
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A.2 Results
A.2.1 Steel Particles
Figures A.2a and A.3 show the surface profile of a R = 5 mm steel particle without
marker. From the stylus measurement the surface roughness is estimated to be
0.7µm. Figures A.2b and A.4 show the surface profile of a similar particle with
marker. In both the optical as stylus measurement the marker is clearly visible.
The thickness of the marker is estimated to be approximately 20µm. A collision
on the marker may therefore result in anomalous results. As explained in Chapter
3 the markers are therefore only applied to the fronal area of the sphere.
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(a) Stylus profile.
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Figure A.3: Stylus line-scan of the surface of a steel particle without scanning
over a marker. Figure (a) shows the surface profile and the corresponding moving
average. In figure (b) the surface profile is subtracted by the moving average. The
surface roughness is estimated to be 0.7µm.
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(a) Stylus profile.
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Figure A.4: Stylus line-scan of the surface of a R = 5 mm steel particle over
a marker. Figure (a) shows the surface profile and the corresponding moving
average. The marker is clearly visible on top of the particle and has a size of
approximatley 20µm. In figure (b) the surface profile is subtracted by the moving
average, thereby losing the information of the marker’s size.
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Figure A.5: Edge of R = 6 mm delrin particle visualized using a microscope. The
scratches on the particle originate from the polishing process and have a separation
of at least 2.5µm. The marker on the particle which was clearly visible in Figure
A.1 was not observed under the microscope.

A.2.2 Delrin Particles
Figure A.5 shows the edge of a R = 6 mm delrin particle. On the particle’s surface
some roughness elements are visible with a size of approximately 10µm. The
results of the stylus measurements, shown in Figure A.6 also shows an asperity
with a size of 10µm, although this is an indentation instead of roughness element
raised from the surface. Like in the optical figure, the marker is also not observed
in the stylus profile as shown in Figure A.7. The surface roughness of 2.3µm is
significantly smaller than the 4.03µm found from Figure A.6 due to the absence of
large roughness elements. This leads to the conclusion that the particle’s roughness
is approximately 3µm, and some sparse larger roughness elements are present on
the particle’s surface. Furthermore it is observed the markers do not enhance the
surface roughness of the delrin particles.
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(a) Stylus profile.
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Figure A.6: Stylus line-scan of the surface of a R = 5 mm delrin particle without
scanning a marker. Figure (a) shows the surface profile and the corresponding
moving average. The surface has a small dimple at 1.1 mm with a size of approxi-
mately 10µm. The surface roughness is esitmated to be 4.0µm.
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(a) Stylus profile.
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Figure A.7: Stylus line-scan of the surface of a R = 5 mm delrin particle over
a marker. Figure (a) shows the surface profile and the corresponding moving
average. The marker does not enhance the particle’s surface profile. In figure (b)
the surface profile is subtracted by the moving average. The surface roughness is
esitmated to be 2.3µm.
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A.2.3 Glass Surface
Figure A.8 shows the stylus profile of the glass collision surface, which proves to
be very smooth with a roughness of 0.09µm. The enhancement of the surface
topology due to the few scratches visible on the plate is shown in Figure A.9. The
depth of the scratch is observed to be 1µm.
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(a) Stylus profile.
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Figure A.8: Stylus line-scan of the surface of the glass collision plate. Figure (a)
shows the surface profile and the corresponding moving average. In figure (b)
the surface profile is subtracted by the moving average. The surface roughness is
esitmated to be 0.09µm.
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(a) Stylus profile.
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Figure A.9: Stylus line-scan crossing a visible scratch on the surface of the glass
collision plate. Figure (a) shows the surface profile and the corresponding moving
average. Although the scratch was visible to the naked eye the depth is approxi-
mately 1µm. In figure (b) the surface profile is subtracted by the moving average,
thereby losing the information of the exact depth of the scratch.
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B Kabsch Algorithm

Abstract
The Kabsch-algorithm [Kabsch, 1976, 1978] has been designed to find the optimal
rotation matrix between two sets of points by minimization of the root mean square
of the separation between the points. The algorithm was originally intended to
compare molecular configurations in chemistry, but can also be used to find the
rotation of a particle [Klein et al., 2013]. However this method is found to be very
sensitive to the measurement uncertainties in the position of the markers applied
to the sphere, resulting in an inaccurate result for the rotation of the particle.

In this appendix we will investigate, both analytically and numerically, the in-
fluence of the measurement uncertainty of the position of the markers on the
measured angles. An analytical estimate of the error in the measured angle is
obtained from linearizion of the rotation matrix. To check the analytical estimate,
the error was also computed numerically in which the measurement uncertainties
were represented by random perturbations to the points on the sphere.

Subsequently the effect of averaging over multiple experiments, which is assumed
to reduce the measurement error, is investigated. The influence of the angle of
rotation is also investigated, since small deviations in the position of the sphere
may have more influence on small rotations than on large ones. Furthermore the
influence of the radius of the sphere and the amount of markers applied to the
sphere is treated.

Graphical Abstract
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Figure B.1: Schematic representing the use of the Kabsch algorithm. An optimal
rotation matrix U has to be found which maps the markers (black) of the reference
configuration (xn stored in X) the best to those in the rotated configuration (yn
stored in Y ).

B.1 Theory and Propagation of Uncertainties

The Kabsch algorithm [Kabsch, 1976, 1978] was developed to find molecular ro-
tations in chemistry, however this method can also be used to study the rotation
of rigid objects and especially spheres [Klein et al., 2013]. When N markers are
applied on a sphere, all points will have the same center of rotation, namely the
center of the sphere. The Kabsch algorithm finds the optimal rotation matrix
which transforms the markers from the initial to the rotated configuration. From
this matrix the Euler-Cardan angles describing the rotation of the sphere can be
found.

B.1.1 Theory

Consider two coordinate sets X and Y of N paired points, as shown in Figure B.1,
for which we have to find the unitary matrix U which maps X the best to Y . This
leads to the following minimization problem

E =

√√√√ 1
N

N∑
n=1

wn(Uxn − yn)2, (B.1)

in which xn and yn, n ∈ {1, . . . , N} are the coordinates of the corresponding
markers on the sphere6, wn the weight corresponding to each pair xn, yn and E
the residual quantity which has to be minimized. This problem can be rewritten

6Since all coordinates xn, yn are lying on a sphere all coordinates have the same length R.
Therefore points lying closer/further from the origin do not give a lower/higher contribution to
E. Therefore the resulting angles are not almost entirely determined by the displacements of
the points located far from the origin.
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as

NE2 =
N∑
n=1

wn[(Uxn)2 + y2
n − 2Uxnyn]. (B.2)

Minimizing the left-hand side is equivalent to maximizing the last and negative
term on the right hand side. If the N markers xn and yn are stored as 3 × N
matrices in X respectively Y , the following quantity has to be maximized

N∑
n=1

wnUXnYn = Tr(Y TUX̂) = Tr((X̂Y T )U), (B.3)

with X̂mn = wnXmn, m ∈ {1, 2, 3}, n ∈ {1, . . . , N}. Rewriting X̂Y T using its
singular value decomposition (SVD) as X̂Y T = V SW T , in which V and W T are
orthogonal matrices of the right eigenvectors of X̂Y T and S a diagonal matrix
containing its eigenvalues (s1 ≥ s2 ≥ s3), this equation can be rewritten as

Tr((X̂Y T )U) = Tr(V SW TU) = Tr(SW TUV ) =
3∑
i=1

siTii, (B.4)

where we made use of the commutative properties of the trace operator. The 3×3
orthogonal matrix T is given by T = W TUV . Orthogonality of T implies all its
elements are smaller than 1, so in order to maximize equation B.4, T has to be
the identity matrix I.

Assuming a right handed coordinate system, we must have det(U) = 1. This
holds for det(X̂Y T ) > 0 but when det(X̂Y T ) < 0 we have det(U) = −1. In
the latter case, the second largest value of equation B.4 has to be used. Since
s1 ≥ s2 ≥ s3 this value is found when T33 = −1. The optimal rotation matrix is
therefore given by

U = W

1 0 0
0 1 0
0 0 d

V T d = sign(det(X̂Y T )). (B.5)

Assuming that the rotation matrix U is build up as follows from the rotation
matrices Ux(θ), Uy(ψ) and Uz(ϕ)

U = Uz(ϕ) ·Uy(ψ) ·Ux(θ), (B.6)

the Euler-Cardan angles of rotation around respectively x-, y- and z-axis θ, ψ and
ϕ are given by

θ = tan−1
(
U32
U33

)
, (B.7a)

ψ = tan−1
(

U31√
U2

32+U2
33

)
, (B.7b)

ϕ = tan−1
(
U21
U11

)
. (B.7c)
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The right quadrant of each angle is found by looking at the sign of the numerator
and denominator.

B.1.2 Analytical Analysis of Error Propagation

In experiments the exact position of xn and yn cannot be determined exactly due
to measurement uncertainties. Suppose that the measurement uncertainties in xn
and yn are given by δxn and δyn, so that the best mapping from X+δX to Y +δY
has to be found. The minimization problem (Equation B.1) changes to

E =

√√√√ 1
N

N∑
n=1

wn(U [xn + δxn]− [yn + δyn])2, (B.8)

Since this equation is difficult to solve analytically and to compare with rotations
found from Equation B.1 we simplify the problem by looking at the uncertainty
in angular position of a single marker as shown in Figure B.2, e.g. we search for
the unitary matrix U which maps x to x + δx

U(θ, ψ, ϕ) = Uz(ϕ) ·Uy(ψ) ·Ux(θ) (B.9)

=

cosϕ cosψ cosϕ sinψ sin θ − sinϕ cos θ cosϕ sinψ cos θ + sinϕ sin θ
sinϕ cosψ sinϕ sinψ sin θ + cosϕ cos θ sinϕ sinψ cos θ − cosϕ sin θ
− sinψ cosψ sin θ cosψ cos θ

 .

y

z

x

δx

θ

δθ

Figure B.2: Schematic representation of the angular uncertainty for a single marker.
The region of uncertainty around the exact marker position, located at x, is given
by the red circle. The resulting uncertainty in angular position, in this case only
shown for a rotation δθ around the x-axis, is found by using the linearized Kabsch
algorithm to find the optimal rotation from x to x + δx.
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Assuming the rotations are small (θ = δθ, ψ = δψ, ϕ = δϕ), a Taylor analysis and
removal of higher order terms simplifies this matrix to

U =

 1 −δϕ δψ
δϕ 1 −δθ
−δψ δθ 1

 . (B.10)

Solving the system of equationsUx = x+δx, with x = (x, y, z) and δx = (x′, y′, z′)
for the different angles yields 0 z −y

−z 0 x
y −x 0


δθδψ
δϕ

 =

x
′

y′

z′

 (B.11)

This system is degenerate since we solve for points on a surface. For given δθ this
solutions for δψ and δφ are

δψ = δθy − z′

x
, (B.12a)

δϕ = δθz + y′

x
. (B.12b)

From this equation it becomes clear that the measurement uncertainty in ψ and ϕ is
proportional to the uncertainty in θ and inversely proportional to the x-coordinate.
The variation in θ is determined by evaluation of

√
y′2 + z′2 with δψ = δφ = 0,

leading to

δθ =
√
y′2 + z′2√
y2 + z2 . (B.13)

This equation states that the measurement uncertainty in θ is proportional to the
size of the perturbation and inversely proportional to the distance to the axis of
rotation. On the surface of a sphere the x coordinate is dependent on the y and z
coordinate and a given radius R via

x(y, z) =
√
R2 − y2 − z2. (B.14)

Therefore the error in ψ and φ is large for small and large values of x, ie. points
which are respectively close to the boundary and center in the projection of the
sphere to the yz-plane. Please note that all uncertainties in angular position are
dependent on the decomposition of U in rotations around x-, y- and z-axis. Since
the rotation around the x-axis θ is dominant over the rotations around the y- and
z-axis in our experiment it is natural to express δψ and δφ in terms of δθ.

To investigate the order of magnitude of the uncertainty in angles we assume
x, y, z = O(R) and x′, y′, z′ = O(e)7. Substitution in Equations B.12 and B.13

7Since
√

(x+ x′)2 + (y + y′)2 + (z + z′)2 = R ⇒ xx′ + yy′ + zz′ = 0 when neglecting higher
order perturbations.
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gives the scaling with respect to e and R

δθ = O
(
e

R

)
, (B.15a)

δψ = O
(
e

R

)
, (B.15b)

δϕ = O
(
e

R

)
. (B.15c)

Substituting R = 5 mm and e = 0.2 mm, typical values in our experiment gives
the following uncertainty in the measured angles, δθ = δψ = δφ = O(0.04).

Since θ is the dominant rotation we will restrict our analysis to the rotation
around x-axis. Looking at the error made between a point in the initial configura-
tion with angular position θi+ δθi and rotated configuration with angular position
θr + δθr we find, assuming O(δθi) = O(δθr) = O(δθ) ∝ e

R
, that the error in the

rotation of a single marker δθ̇1 is given by

δθ̇1 =
√

2δθ2 =
√

2 δθ ∝ e

R
. (B.16)

Addition of multiple points N on the sphere decreases the standard deviation with
N−0.5. A similar scaling holds for the averaging of multiple measurements M over
which the final result is averaged. Therefore the uncertainty in the rotation as
function of θ̇1, N and M becomes

δθ̇ = δθ̇1√
NM

. (B.17)

Division of this result by the absolute rotation θ̇ gives the relative error

ε = δθ̇

θ̇
= δθ̇1

θ̇
√
NM

∝ e

Rθ̇
√
NM

. (B.18)

Please note that in this result the weighting function in the Kabsch algorithm is
neglected. As observed from Equation B.12, points lying nearby origin in the yz-
plane contribute more to the uncertainty. The use of a proper weighting function,
for instance wi =

√
y2 + z2, will reduce the uncertainty.

B.1.3 Numerical Analysis of Error Propagation
To get an idea whether the results obtained in Section B.1.2 are in agreement with
reality, a numerical analysis is performed, comparing the angular rotations from
Equation B.1 and B.8.

Numerical Setup

Consider a sphere with radius R as shown in Figure B.3. A camera views the
particle in the y-z plane of a right-handed coordinate system. N markers are
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Figure B.3: Quantities involved
in the simulation.

θ̇ 0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1.0
e[mm] 0.1, 0.2, 0.3, 0.4, 0.5
R[mm] 5.0 N 2, 4, 6, 8, 10, 12, 14, 16
R[mm] 4.5 N 2, 4, 6, 8, 10, 12, 14
R[mm] 4.0 N 2, 4, 6, 8, 10, 12
R[mm] 3.5 N 2, 4, 6, 8, 10
R[mm] 3.0 N 2, 4, 6, 8
R[mm] 2.5 N 2, 4, 6
R[mm] 2.0 N 2, 4

Table B.1: Parameters used in the numerical
analysis.

randomly initialized on the sphere using random numbers for both radial (0 ≤
r ≤ R − Rb) and angular coordinate (0 ≤ θ < 2π), satisfying a separation of
at least Rb = 0.5 mm with the boundary and 1 mm with the other markers. A
different perturbation is added to each marker using random numbers for the
radial (0 ≤ r′ ≤ e) as well the angular coordinates (0 ≤ θ′ < 2π). Knowing that
all markers are on a sphere with radius R the mapping from 2D to 3D coordinates
is given by

(y, z) 7→ (
√
R2 − y2 − z2, y, z). (B.19)

The numerical analysis is performed using Python [Van Rossum and de Boer,
1991] and Python Scipy [Jones et al., 2001]. Processing of the data is done using
Python Matplotlib [Hunter, 2007]. The script has the following approach

Exact solution (e = 0)
1. Initialize markers on 2D surface.
2. Perform mapping from 2D to 3D co-

ordinates.
3. Rotate coordinates subsequently 100

times over an angle θ̇ using a rota-
tion matrix Ux.

4. Apply Kabsch-algorithm and return
Euler-Cardan angles.

Perturbed solution (e > 0)
1. Initialize markers on 2D surface.
2. Perform mapping from 2D to 3D co-

ordinates.
3. Rotate coordinates subsequently 100

times over an angle θ̇ using a rota-
tion matrix Ux.

4. Convert coordinates to 2D space.
5. Add a different perturbation to each

marker at each time.
6. Convert perturbed 2D coordinates

to 3D space.
7. Apply Kabsch-algorithm and return

Euler-Cardan angles.

To avoid problems with markers ending up at the back of the sphere (x < 0)
only rotations θ̇ around the x-axis are considered. Perturbations are added after
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rotation since measurement uncertainties occur at the moment of observation and
are not part of the physical behavior of the particle. This is also the reason why the
random displacements of the markers have to be added to the 2D configuration.

The program is run for different radii R, rotations θ̇, measurement uncertainties
e and number of markers on the sphere N . All configurations are listed in Table
B.1. For every perturbation, the procedure shown above is repeated 10,000 times.
Runs for e = 0 are performed once since this gives the exact solution to the
minimization problem (B.1).

Error investigation

With the procedure described in the previous section, series containing Nf = 99
frames are obtained. For each frame the absolute value of the relative difference
with the exact solution |∆θ

θ
| is determined and then averaged over the frames.

This is done Nerr = 100 times to obtain a smooth solution. The error ε therefore
becomes

ε(R, e, θ̇, N,M) =
Nerr=100∑
j=1

Nf=99∑
i=1

∣∣∣∣ δθ̇ij(R,e,θ̇,N,M)
θ̇ij

∣∣∣∣
NerrNf

, (B.20)

where M denotes the amount of simulations over which δθ̇ is averaged.
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B.2 Results
This chapter is devoted to the results of the numerical analysis discussed in Section
B.1.3. First the influence of measurement uncertainties on the measured rotation
is discussed. Subsequently attention is paid to the reduction of the error defined
by Equation B.20. At the end an overview of the separate results is given.

B.2.1 Influence of perturbations
Figure B.4 shows the influence of measurement uncertainties e on the measured
angle of rotation θ̇. The black line corresponds to the exact solution and thereby
proves that our implementation of the Kabsch Algorithm is correct.

For e > 0 however the exact solution is not obtained but the result moves
around the exact solution. Figure B.4b, in which for each e > 0 1000 lines are
drawn, suggests that these fluctuations can be averaged out. This effect will be
investigated in Section B.2.1. From both figures it becomes clear that the larger
e, the larger the fluctuations around the exact value. This will treated in more
detail in Section B.2.1. The influence of angle of rotation θ̇, the size of the sphere
R and the number of markers N , is is not visible in Figure B.4, but is respectively
discussed in Sections B.2.1, B.2.1 and B.2.1. Unless stated otherwise the results
apply to a sphere with R = 5 mm to which N = 8 markers are applied.
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(a) Influence of perturbations on the mea-
sured rotation θ̇. The black line indicates
the exact solution. The larger the mea-
surement uncertainty e, the bigger the de-
viation from the theoretical result.
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(b) Influence of perturbations on the mea-
sured rotation θ̇. The black line indicates
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Averaging multiple results will reduce the
measurement error.

Figure B.4: Influence of perturbations on the measured rotation for single (a) and
multiple results (b). Parameters used R = 5 mm, N = 8, θ̇ = 0.10.
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Averaging individual results M

As discussed in Section B.1.2 it is likely that taking the average of multiple mea-
surement will reduce the error. In Figures B.5 and B.6 the results are shown for
several values of e and θ̇. All lines have a slope of -0.5. This is in line with the
result (B.18) of our analytical analysis stating

ε ∝M−0.5 (B.21)
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Influence of averaging for θ̇ = 0.010 rad/frame, σ indicated
e = 0.5 mm
e = 0.1 mm

Figure B.5: Influence of averaging over multiple data series, with an indication of
the standard-deviation σ in the modeled error. For each value of e, the line has a
slope of -0.5. The standard-deviation in the error is of the same order as the error
itself.
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Figure B.6: Influence of averaging over multiple data series, with an indication of
the standard-deviation σ in the modeled error ε. For each value of θ̇, the line has
a slope of -0.5. The standard-deviation in the error is of the same order as the
error itself.
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Magnitude of error e

Equation B.18 states that the error in the measured angle is linearly proportional
to the measurement uncertainty. Figure B.7 is in line with this conclusion and
states that this relation holds also for large rotations. Therefore we have

ε ∝ e (B.22)
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Figure B.7: Influence of the measurement uncertainty in the markers e, with an
indication of the standard-deviation σ in the modeled error ε. Even for large values
of θ̇ the line has a slope of 1. The standard-deviation in the error is of the same
order as the error itself.
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Figure B.8: Influence of the angle of rotation θ̇, with an indication of the standard-
deviation σ on the modeled error ε. For all e and also for large values of θ̇ the line
has a slope of -1. The standard-deviation in the error appears to be of the same
order as the error itself.
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Magnitude of rotation θ̇

From Figure B.8 it is observed that

ε ∝ θ̇−1. (B.23)

This result is valid for every modelled value of e and holds even for large rotations.
This is in line with the result (B.18) from our analytical linearized analysis.
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Figure B.9: Influence of the radius of the sphere R, with an indication of the
standard-deviation σ on the modeled error ε. The slope of the line is dependent
on the amount of markers applied to the sphere.
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Figure B.10: Influence of the number of markers N applied to the sphere, with an
indication of the standard-deviation σ on the modeled error ε. The slope of the
line is dependent on the radius of the sphere.
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N 4 6 8 10 12
Slope -0.83 -0.85 -0.89 -0.88 -0.95

Table B.2: Values for the average slope of the results from Figure B.9.
R 2.0 3.0 3.5 4.0 5.0

Slope − -0.75 -0.72 -0.71 -0.69
Table B.3: Values for the average slope of the results from Figure B.10.

Radius of sphere R

From Figure B.9 one observes that the lines run not parallel to each other and
that Kabsch Algorithm does not apply to a sphere with 2 markers on it. The
slopes of the different lines are listed in Table B.2. The result from our analytical
approximation, in which the error is inversely proportional to the radius, seems
only to be valid if many markers are applied to the sphere.

Number of markers N

In Figure B.9 the influence of the number of markers N on the relative error ε is
shown for different radii of the sphere. In this case the lines are run not parallel
to each other but have a slightly different slope as listed in Table B.3. The value
for N = 2 is erroneous and is therefore not taken into account. The values of the
slope are higher than expected from the theoretical analysis in which ε ∝ N−0.5.
This may be due the effect that markers lying close to the origin in the yz-plane
contribute more to the error. Since the space around origin in the yz-plane is small,
the relative influence of markers near the yz-plane origin reduces upon increasing
the total number of markers.

B.2.2 Summary
In Table B.4 the results for the scaling of ε, as function of M, e, θ̇, R and N are
given for both the analytical and numerical solution methods. For M, e and θ̇ the
analytical solution equals the numerical solution. For R a discrepancy is observed,
although this seems to disappear if many markers are applied to the sphere. The
results for the number of markers shows a discrepancy between the two methods
of calculation.

Analytical Result Numerical Result
ε ∝M−0.5 ε ∝M−0.5

ε ∝ e ε ∝ e

ε ∝ θ̇−1 ε ∝ θ̇−1

ε ∝ R−1 ε ∝∼ R−0.9

ε ∝ N−0.5 ε ∝∼ N−0.7

Table B.4: Comparison of analytical and numerical estimates for the scaling of
the relative error. For the most parameters involved the results comply with each
other. Only for the number of markers applied to the sphere a discrepancy is
observed.
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B.3 Conclusion
We found that the Kabsch Algorithm is sensitive to uncertanties in the position of
the markers applied to a sphere. Although the standard-deviation in the observed
errors was in all cases of the same order of the error itself, the scaling analysis
proved to be similar to the analytical solution in which the rotation matrix was
linearized. Therefore this analysis can be used to make a decent estimate of the
error in the measured rotations of a sphere.
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