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A B S T R A C T

Cross-coupled iterative learning control (ILC) can improve the contour tracking performance of manufacturing
systems significantly. This paper aims to develop a framework for norm-optimal cross-coupled ILC that enables
intuitive tuning of time- and iteration-varying weights of the exact contour error and its tangential counterpart.
This leads to an iteration-varying ILC algorithm for which convergence conditions are developed. In addition,
a resource-efficient implementation is developed that reduces the computational load significantly and enables
the use of long reference signals. The approach is experimentally validated on an industrial flatbed printer.
. Introduction

Ever-increasing demands for accuracy and speed in manufacturing
equire improved and problem-specific control strategies that focus
n the actual performance requirement, such as cross-coupled control
or contour tracking. Following a contour accurately is essential for
he product quality in many multiple-input multiple-output (MIMO)
pplications such as printing, CNC machining and additive manufac-
uring. Standard control approaches that aim at following time-based
eferences are not suitable for these applications, especially for increas-
ngly complex parts. Complex structures such as curved surfaces and
harp curvature variations, manufactured at high feedrates, often lead
o high contour errors [1]. To avoid increased errors and retain high
roduct quality and efficiency, dedicated control strategies need to be
eveloped.

Control strategies aimed at minimizing contour errors range from
ffline to online methods, including trajectory generation and prec-
mpensation [2], improved control of the individual axes, and cross-
oupled feedback control [3–5]. These methods suffer from several
imitations. Offline trajectory generation and precompensation is fully
odel-based, and the performance depends completely on model accu-

acy. Improved control of the individual axes does not directly take into
ccount the contour error, and cross-coupled feedback control leads to
linear time-varying (LTV) system even if the original MIMO system

s linear time-invariant (LTI), thus increasing the complexity of the

✩ This work is part of the research programme VIDI with project number 15698, which is (partly) financed by the NWO.
✩ This paper was recommended for publication by Associate Editor Takenori Atsumi.
∗ Corresponding author.
E-mail address: l.i.m.aarnoudse@tue.nl (L. Aarnoudse).

feedback control significantly. In addition, online computation times
as well as stability requirements limit the accuracy of the contour error
approximation.

Instead of online cross-coupled feedback control, norm-optimal
cross-coupled iterative learning control is considered. Iterative learn-
ing control (ILC) is a control approach that uses measured data in
conjunction with model knowledge to iteratively design feedforward
or reference signals. This leads to high performance after only a small
number of experiments. In norm-optimal ILC [6,7], a cost function is
minimized that weights the error, i.e., the time-based deviation from
the reference for each individual axis, as well as the input signal. This
leads to high performance for the individual axes. However, standard
norm-optimal ILC has limitations for contour tracking applications,
especially if the input signals are restricted, for example due to actuator
saturation. ILC often leads to extremely large inputs in sharp corners,
where it may be preferable to reduce the speed instead, and to limited
velocities in straight parts due to the time-based reference. Using cross
coupling to include the contour error in norm-optimal ILC can lead to
a significant increase in performance.

The performance of cross-coupled ILC depends on three factors.
First, high accuracy of the contour error estimate is essential for ac-
curate tracking. For cross-coupled feedback control, several online ap-
proximation approaches exist that vary in accuracy and computational
load, ranging form linear and circular [3] to more complex parameter-
based approximations [8]. In ILC, the input signal is computed offline
vailable online 15 March 2024
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and therefore, the exact contour error can be used instead of this
type of approximations. The exact contour error can be constructed
from the individual axes errors through time- and iteration-varying
coupling gains. While time-varying components are easily incorporated
in norm-optimal ILC, this also requires an ILC framework that allows
for variation over iterations.

Second, the design of cross-coupled ILC should include a clear and
intuitive trade-off between accuracy and speed. Accuracy and speed
are represented by respectively the contour error and the tangential
error that is perpendicular to the contour error. Including a weight
on this second error enforces the system to move over the contour.
Since the relative importance of these errors often varies over the
reference, e.g., in corners the contour error is essential, whereas on
straight parts the speed can be increased to reduce the tangential error,
the framework should enable time-varying weighting.

Third, implementation aspects are a major requirement, in particu-
lar for MIMO systems. Existing cross-coupled ILC methods are limited
to references with a relatively small number of samples. This is be-
cause the ILC update law employs lifted system matrices, the size of
which depends on the reference length, and involves inversion of these
matrices. The computational load of these inversions scales badly with
the signal length [9]. For cross-coupled ILC, a low-order solution that
avoids inversion of large matrices and allows for long reference signals
is essential.

In [10], an approach to cross-coupled ILC is presented that combines
standard ILC and feedback control for the individual axes with PD-
based ILC for an approximation of the contour error. The method is
extended to norm-optimal cross-coupled ILC in [11], in which time-
varying weighting is used. Both approaches use linear contour error
estimates, which limits the achievable performance. In addition, while
the norm-optimal cross-coupled ILC approach weights both the indi-
vidual axes and the contour error, the tuning is not intuitive since
the trade-off between speed and accuracy, i.e., tangential and contour
errors, is not made explicit. The implementation in [11] is similar to
that of standard norm-optimal ILC and requires the inversion of large
matrices, thus limiting the approach to short reference signals. In [12],
a non-lifted cross-coupled ILC framework is presented that is derived
from the non-lifted norm-optimal ILC framework in [13]. This approach
uses linear contour error approximations in individual cost functions at
each error sample, leading to a PD-like ILC controller that does not
allow for a direct feedthrough term in the plant. The cross-coupled
ILC approach introduced in [14] uses an equivalent contour error that
approximates the actual contour error provided that it is small, and
does not enable tuning of the trade-off between contour and tangential
errors.

Although significant steps have been taken to improve contour
tracking through cross-coupled ILC, a framework that uses exact con-
tour errors, enables intuitive tuning for both speed and accuracy, and
which can be implemented efficiently for any length of reference signal
is lacking. This paper aims to address these aspects as follows.

• A cost function is introduced that enables using exact contour
errors with intuitive tuning of the time- and iteration-varying
weights.

• Conditions for monotonic convergence of the cross-coupled ILC
algorithm are developed.

• A resource-efficient implementation is presented that interprets
the ILC update law as a linear quadratic tracking problem, en-
abling fast computations for iteration-varying weighting or cou-
pling matrices and long reference signals.

• The approach is experimentally validated on an industrial flatbed
printer.

arly and preliminary theoretical results appeared in [15]. The present
aper extends these results with details on the implementation and the
esign, and by an extensive experimental case study on an industrial
latbed printer.
2

Fig. 1. Generic control scheme with system 𝐽 , input 𝑓 , disturbance 𝑟 and error 𝑒.

The paper is constructed as follows. In Section 2, the problem is
introduced. Cross-coupled ILC is introduced in 3, and convergence
conditions are developed in 4. In Section 5, a resource-efficient imple-
mentation is presented. The choice of design parameters is elaborated
upon in Section 6. Experimental results are presented in Section 7 and
finally, conclusions are given in Section 8.

2. Problem formulation

In this section, first the contour tracking problem is defined and
secondly, the norm-optimal ILC framework is introduced.

2.1. Contour tracking

Consider a discrete-time, linear time-varying (LTV) system 𝐽 with
𝑛𝑖 inputs and 𝑛𝑜 outputs, with error 𝑒 given by

𝑒 = 𝑦𝑑 − 𝑦 = 𝑟 − 𝐽𝑓 , (1)

where 𝑦𝑑 and 𝑦 denote respectively the reference and the system output,
𝑓 is an input signal and 𝑟 encompasses all exogenous disturbances. The
system 𝐽 and input 𝑓 are given in lifted form by

𝐽 =
⎡

⎢

⎢

⎣

𝐻0,0 … 0
⋮ ⋱ ⋮

𝐻𝑁−1,0 … 𝐻𝑁−1,𝑁−1

⎤

⎥

⎥

⎦

, 𝑓 =

⎡

⎢

⎢

⎢

⎢

⎣

𝑓 (0)
𝑓 (1)
⋮

𝑓 (𝑁 − 1)

⎤

⎥

⎥

⎥

⎥

⎦

,

with 𝐽 the convolution matrix of the LTV system, which is a lower
triangular matrix with a block Toeplitz structure and entries 𝐻 𝑖,𝑗 ∈
R𝑛𝑜×𝑛𝑖 . The exact configuration of 𝐽 depends on where 𝑓 is injected
in the open- or closed-loop system, as is elaborated upon in Section 6.
The error 𝑒 ∈ R𝑁𝑛𝑜 is written similar to input 𝑓 ∈ R𝑁𝑛𝑖 , and 𝑒(𝑘) ∈ R𝑛𝑜

and 𝑓 (𝑘) ∈ R𝑛𝑖 are of the form

𝑒(𝑘) =
[

𝑒1(𝑘) 𝑒2(𝑘) … 𝑒𝑛𝑜 (𝑘)
]𝖳

𝑓 (𝑘) =
[

𝑓 1(𝑘) 𝑓 2(𝑘) … 𝑓 𝑛𝑖 (𝑘)
]𝖳. (2)

The aim of the system is to track a contour described by the
reference 𝑦𝑑 (𝑘) ∈ R𝑛𝑜 . Consider a standard closed-loop system with
system 𝑃 (𝑞) and controller 𝐶(𝑞), where 𝑞 denotes the shift operator, and
no additional disturbances. Then the disturbance 𝑟(𝑘) at discrete-time
index 𝑘 is related to the reference 𝑦𝑑 (𝑘) through

𝑟(𝑘) = (𝐼 + 𝑃 (𝑞)𝐶(𝑞))−1𝑦𝑑 (𝑘). (3)

The reference 𝑦𝑑 (𝑘) and the resulting error 𝑒(𝑘) ∈ R𝑛𝑜 are a function of
time, yet the goal is to track the contour described by 𝑦𝑑 accurately in
space rather than in time. To that end, the contour error 𝜀𝑐 (𝑘) ∈ R is
defined as the distance between the position output 𝑦(𝑘) ∈ R𝑛𝑜 and the
closest point on the contour, as illustrated in Fig. 2.

The aim is to reduce the contour error, yet this error is not measured
directly. Instead, the contour error is reconstructed from the measured
individual axis errors through coupling gains. Each contour error sam-
ple 𝜀𝑐 (𝑘) ∈ R can be expressed as a function of 𝑒(𝑘) ∈ R𝑛𝑜 through a
vector of coupling gains 𝑐(𝑘) ∈ R𝑛𝑜 according to

𝜀𝑐 (𝑘) = 𝑐(𝑘)𝖳𝑒(𝑘). (4)

In addition, a tangential error 𝜀𝑡 that is perpendicular to the contour
error can be defined. This error is expressed similar to 𝜀𝑐 as a function
of 𝑒(𝑘) ∈ R𝑛𝑜 , with a different vector of coupling gains. The coupling
gains depend on whether the exact contour error 𝜀𝑐 (𝑘) or one of the

various approximations �̂�𝑐 is used, as is further explained in Section 3.
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Fig. 2. For a 2D-system with reference 𝑦𝑑 (𝑘), position output 𝑦(𝑘) and individual axes
rrors 𝑒𝑥(𝑘) and 𝑒𝑦(𝑘), the actual contour error 𝜀𝑐 (𝑘) based on the closest point on the
ontour 𝑦𝑐 (𝑘) differs from linear approximation �̂�𝑐 (𝑘).

.2. Norm-optimal iterative learning control

In norm-optimal iterative learning control (ILC), the input signal 𝑓
f a system of the form (1) is updated iteratively, according to

𝑒𝑗 = 𝑟 − 𝐽𝑓𝑗 , (5)

𝑗+1 = 𝑄𝑓𝑗 + 𝐿𝑒𝑗 , (6)

here error 𝑒𝑗 and 𝑓𝑗 depend on iteration 𝑗. In norm-optimal ILC, the
pdate matrices 𝑄 and 𝐿 follow from minimizing the cost function

(𝑓𝑗+1) = ‖𝑒𝑗+1‖
2
𝑊𝑒

+ ‖𝑓𝑗+1‖
2
𝑊𝑓

+ ‖𝑓𝑗+1 − 𝑓𝑗‖
2
𝑊𝛥𝑓

, (7)

where the weighted 2-norm is given by ‖𝑒𝑗+1‖2𝑊𝑒
= 𝑒𝖳𝑗+1𝑊𝑒𝑒𝑗+1. The

cost function weights the error, as well as the input signal, leading to
a regularization term that provides robustness in case of model uncer-
tainty, and the change in input, in order to average over iterations and
reduce the influence of iteration-varying disturbances. The minimizer
of  (𝑓𝑗+1) is determined analytically and is given by

𝑓𝑗+1 = (𝐽𝖳𝑊𝑒𝐽 +𝑊𝑓 +𝑊𝛥𝑓 )−1(𝐽𝖳𝑊𝑒𝐽 +𝑊𝛥𝑓 )
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝑄

𝑓𝑗

+ (𝐽𝖳𝑊𝑒𝐽 +𝑊𝑓 +𝑊𝛥𝑓 )−1𝐽𝖳𝑊𝑒
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝐿

𝑒𝑗 , (8)

see, e.g., [6,16] for a derivation. If the convolution matrix 𝐽 is non-
singular, norm-optimal ILC with 𝑊𝑒 ≻ 0, 𝑊𝑓 ,𝑊𝛥𝑓 ⪰ 0 leads to
monotonic convergence of the sequence of input signals {𝑓𝑗} in the 2-
norm, as is further illustrated in the proof of Theorem 4. If 𝐽 is singular
then 𝑊𝑓 ≻ 0 ensures monotonic convergence.

2.3. Problem formulation

The aim of this paper is to develop a framework for norm-optimal
cross-coupled ILC that achieves high performance for contour tracking
applications. This requires a cost function that directly takes into ac-
count the exact contour error, and that enables intuitive, time-varying
tuning. The resulting framework should lead to monotonic convergence
of the ILC input signal 𝑓 , and a resource-efficient implementation that
is suitable for use with long references is required.

3. Cost function design for contour tracking

In this section, a cost function is introduced that allows for different
configurations of cross-coupled ILC. First, a cost function framework is
introduced that allows the use of exact contour errors with iteration-
varying coupling matrices. Then, it is illustrated that the framework
3

also enables intuitive time- and iteration-varying weighting.
3.1. Cost function framework

The cost function that is introduced for cross-coupled ILC is similar
to the standard norm-optimal ILC cost function in (7), including similar
weighted 2-norms of the predicted error 𝑒𝑗+1, the input signal 𝑓𝑗+1 and
the change in input 𝑓𝑗+1−𝑓𝑗 . In contrast to standard norm-optimal ILC,
the weighting matrices are now iteration-varying, and include coupling
matrices to compute the contour error based on the measured error of
the individual axes. The main reason for including iteration-varying
weighting matrices is that the contour error, an iteration-invariant
performance specification, depends on the measured individual axis
errors through coupling matrices that depend on the error and vary
over iterations. The cost function for cross-coupled ILC is given in
generic form by

 (𝑓𝑗+1) =‖𝑒𝑗+1‖2𝑊𝑒𝑐,𝑗
+ ‖𝑓𝑗+1‖

2
𝑊𝑓𝑐,𝑗

+ ‖𝑓𝑗+1 − 𝑓𝑗‖
2
𝑊𝛥𝑓𝑐,𝑗

. (9)

The weighting-coupling matrices 𝑊𝑒𝑐,𝑗 , 𝑊𝑓𝑐,𝑗 and 𝑊𝛥𝑓𝑐,𝑗 may be
iteration-varying, as indicated by the subscript 𝑗. These weighting-
coupling matrices can weight not only the errors and inputs of the
individual axes, but also combinations of these errors such as different
approximations of the contour error and the tangential error that is
perpendicular to the contour error. The matrices are designed as

𝑊𝑒𝑐,𝑗 = 𝐶𝖳
𝑒,𝑗𝑊𝑒,𝑗𝐶𝑒,𝑗 (10)

𝑊𝑓𝑐,𝑗 = 𝐶𝖳
𝑓,𝑗𝑊𝑓,𝑗𝐶𝑓,𝑗 (11)

𝑊𝛥𝑓𝑐,𝑗 = 𝐶𝖳
𝑓,𝑗𝑊𝛥𝑓,𝑗𝐶𝑓,𝑗 (12)

here different coupling matrices 𝐶𝑒,𝑗 and 𝐶𝑓,𝑗 are used the error and
nput. This allows for situations where one wants to minimize the
ontour error while also limiting the inputs to the individual axes. The
oupling matrices are block diagonal matrices that are constructed as

𝑒,𝑗 =

⎡

⎢

⎢

⎢

⎣

𝐶1
𝑒,𝑗 … 0
⋮ ⋱ ⋮
0 … 𝐶𝑁

𝑒,𝑗

⎤

⎥

⎥

⎥

⎦

. (13)

he blocks 𝐶𝑘
𝑒,𝑗 ∈ R𝑛𝑐𝑒×𝑛𝑜 , with 𝑛𝑐𝑒 the number of considered error

omponents, have full column rank and describe the coupling of the
xes at each sample. For a 2D system with 𝑒(𝑘) =

[

𝑒𝑦(𝑘) 𝑒𝑥(𝑘)
]𝖳, the

oupling matrices 𝐶𝑘
𝑒,𝑗 that give the exact contour and tangential errors

re given by

𝑘
𝑒,𝑗 =

[

cos(𝜙(𝑘, 𝑗)) − sin(𝜙(𝑘, 𝑗))
sin(𝜙(𝑘, 𝑗)) cos(𝜙(𝑘, 𝑗))

]

, (14)

here 𝜙(𝑘, 𝑗) is the angle between the 𝑥-axis and the vector perpendic-
lar to the contour error vector. The contour error vector is the vector
rom the position 𝑦𝑗 (𝑘) to the closest point on the contour 𝑦𝑐,𝑗 (𝑘), found
hrough evaluation of the distance from 𝑦𝑗 (𝑘) to each point on contour
𝑑 according to Algorithm 1, see also Fig. 2.

Algorithm 1 Computing the contour error
1: for 𝑘 = 1 ∶ 𝑁
2: for 𝑙 = 1 ∶ 𝑁
3: Compute 𝑑(𝑙) = ‖𝑦𝑑 (𝑙) − 𝑦𝑗 (𝑘)‖2.
4: end
5: Find index 𝑙∗ = argmin 𝑑(𝑙).
6: The point closest to 𝑦𝑗 (𝑘) is 𝑦𝑐,𝑗 (𝑘) = 𝑦𝑑 (𝑙∗).
7: The contour error is 𝜀𝑐,𝑗 (𝑘) = 𝑦𝑐,𝑗 (𝑘) − 𝑦𝑗 (𝑘).
8: end

Using (14) ensures that

𝐶𝑘
𝑒,𝑗

[

𝑒𝑦(𝑘)
]

=
[

𝜀𝑐 (𝑘)
]

. (15)

𝑒𝑥(𝑘) 𝜀𝑡(𝑘)
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Note that using the exact contour error in (9) may lead to coupling
gains in 𝐶𝑘

𝑒,𝑗 that vary over iterations. As a result, the weighting
matrices and the cost function are iteration-varying as well.

The matrix 𝐶𝑓,𝑗 is designed similar to 𝐶𝑒,𝑗 and consists of blocks
𝐶𝑘
𝑓 ,𝑗 ∈ R𝑛𝑐𝑓×𝑛𝑜 . Since the MIMO system is not necessarily square,
nd different couplings for the input and error might be desired, the
atrices 𝐶𝑓,𝑗 and 𝐶𝑒,𝑗 are not necessarily identical.

.2. Time- and iteration-varying weighting

The structure of cost function (9) leaves a lot of freedom in the
esign of the weighting matrices 𝑊𝑒,𝑗 , 𝑊𝑓,𝑗 and 𝑊𝛥𝑓,𝑗 . The matrices

have the following block-diagonal structure:

𝑊𝑒,𝑗 =

⎡

⎢

⎢

⎢

⎣

𝑊 1
𝑒,𝑗 … 0
⋮ ⋱ ⋮
0 … 𝑊 𝑁

𝑒,𝑗

⎤

⎥

⎥

⎥

⎦

, (16)

where the size of 𝑊 𝑘
𝑒,𝑗 ∈ R𝑛𝑐𝑒×𝑛𝑐𝑒 depends on that of the corresponding

block 𝐶𝑘
𝑒,𝑗 of the coupling matrix. Each block 𝑊 𝑘

𝑒,𝑗 is diagonal and
applies weights to each element of the coupled error. For example, if

𝐶𝑘
𝑒,𝑗 =

[

cos(𝜙(𝑘, 𝑗)) − sin(𝜙(𝑘, 𝑗))
sin(𝜙(𝑘, 𝑗)) cos(𝜙(𝑘, 𝑗))

]

, (17)

such that

𝐶𝑘
𝑒,𝑗

[

𝑒𝑦(𝑘)
𝑒𝑥(𝑘)

]

=
[

𝜀𝑐 (𝑘)
𝜀𝑡(𝑘)

]

, (18)

the first element on the diagonal of 𝑊 𝑘
𝑒,𝑗 puts a weight on the contour

error 𝜀𝑐 (𝑘), and the second diagonal element puts a weight on the
tangential error 𝜀𝑡(𝑘). The design of 𝑊𝑒,𝑗 leaves room for time-varying
weighting within one iteration, as well as iteration-varying weights,
i.e., the blocks 𝑊 𝑘

𝑒,𝑗 need not be identical for all 𝑘 or 𝑗. This is further
illustrated in Section 6.

4. Convergence of iteration-varying ILC

The cost function with exact contour errors introduced in Section 3
leads to an iteration-varying ILC update due to the iteration-varying
coupling matrices that are needed to compute 𝜀𝑐 exactly. In this section,
conditions are developed for the monotonic convergence towards a
closed 2-norm ball of cross-coupled ILC. In particular, it is shown that
under mild conditions the use of iteration-varying weighting matrices
as in (9) does not render the ILC system unstable, and convergence can
still be shown. The iteration-varying ILC update based on cost function
(9) is given by

𝑓𝑗+1 =𝑄𝑗𝑓𝑗 + 𝐿𝑗𝑒𝑗 , with (19)

𝑄𝑗 =(𝐽𝖳𝑊𝑒𝑐,𝑗𝐽 +𝑊𝑒𝑓 ,𝑗 +𝑊𝛥𝑓𝑐,𝑗 )−1(𝐽𝖳𝑊𝑒𝑐,𝑗𝐽 +𝑊𝛥𝑓𝑐,𝑗 ), (20)

𝐿𝑗 =(𝐽𝖳𝑊𝑒𝑐,𝑗𝐽 +𝑊𝑒𝑓 ,𝑗 +𝑊𝛥𝑓𝑐,𝑗 )−1𝐽𝖳𝑊𝑒𝑐,𝑗 . (21)

To show convergence, define the sets containing all possible filters 𝑄𝑗
and 𝐿𝑗 as  and , respectively. The reference and position are sampled
with finite resolution, and it is assumed that the set of iteration-varying
weights is also finite. As a result, the sets  and  are finite. Next,
monotonic convergence towards a closed 2-norm ball is defined.

Definition 2 (Closed 2-Norm Ball). The closed 2-norm ball 𝐵2(𝑐, 𝑑) with
center 𝑐 ∈ R and radius 𝑑 ∈ R≥0 is defined as 𝐵2(𝑐, 𝑑) ∶= {𝑥 ∈
R|‖𝑥 − 𝑐‖2 ≤ 𝑑}.

Definition 3 (Monotonic Convergence Towards a Closed 2-Norm Ball).
The sequence {𝑦𝑖}, 𝑦𝑖 ∈ R is said to converge monotonically in the
2-norm to the 2-norm ball 𝐵2(𝑐, 𝑑) if there exists 𝜅 ∈ [0, 1) such that for
all 𝑖 ∈ Z≥0,

‖𝑦𝑖+1 − 𝑐‖2 ≤ 𝜅‖𝑦𝑖 − 𝑐‖2 if 𝑦𝑖 ∉ 𝐵2(𝑐, 𝑑), (22)
4

𝑦𝑗+1 ∈ 𝐵2(𝑐, 𝑑) if 𝑦𝑖 ∈ 𝐵2(𝑐, 𝑑). (23)
These definitions are employed in the following convergence theorem
for cross-coupled ILC.

Theorem 4. The sequence of inputs {𝑓𝑗} that follows from update law
(19), with iteration-varying filters 𝑄𝑗 ∈  and 𝐿𝑗 ∈  that minimize
criterion (9) according to (21), is monotonically convergent towards a closed
2-norm ball if the coupling matrix 𝐶𝑒,𝑗 has full column rank, 𝑊𝑒,𝑗 ≻ 0 ∀𝑗
and either,

• if 𝐽 is non-singular, 𝑊𝑓,𝑗 ,𝑊𝛥𝑓,𝑗 ⪰ 0 ∀𝑗, or,
• if 𝐽 is singular, 𝐶𝑓,𝑗 has full column rank and𝑊𝑓,𝑗 ≻ 0,𝑊𝛥𝑓,𝑗 ⪰ 0∀𝑗.

The proof is based on the following auxiliary result.

Lemma 5. For iteration (19), the following two statements are equivalent:

1. The sequence of inputs {𝑓𝑗} with fixed 𝑄𝑗 = �̄� ∈  and 𝐿𝑗 = �̄� ∈ 
for all 𝑗 is monotonically convergent in the 2-norm to a fixed point.

2. The sequence of inputs {𝑓𝑗} with iteration-varying 𝑄𝑗 ∈  and
𝐿𝑗 ∈  is monotonically convergent in the 2-norm towards a closed
2-norm ball.

The complete proofs of both Theorem 4 and Lemma 5 are given
in Appendix. If the weighting-coupling matrices are iteration-invariant,
for example because an approximation of the contour error based on
iteration-invariant coupling gains is used, Theorem 4 ensures mono-
tonic convergence in the 2-norm to a fixed point instead. Theorem 4
reduces the design of cross-coupled ILC for monotonic convergence to
choosing suitable weights and couplings, enabling intuitive design as
illustrated in Section 6.

5. Resource-efficient implementation

The iteration-varying ILC update law (19) that follows from cost
function (9) with exact contour errors involves the matrices 𝑄𝑗 ∈
R𝑁𝑛𝑖×𝑁𝑛𝑖 and 𝐿𝑗 ∈ R𝑁𝑛𝑖×𝑁𝑛𝑜 . Computing these matrices involves the
inversion of the matrix (𝐽𝖳𝑊𝑒𝑐,𝑗𝐽+𝑊𝑒𝑓 ,𝑗+𝑊𝛥𝑓𝑐,𝑗 ), which is ∈ R𝑁𝑛𝑖×𝑁𝑛𝑖 ,
at each iteration. This operation is computationally expensive and may
not even be feasible for increasing reference lengths 𝑁 [9]. Therefore,
in this section the cross-coupled ILC update law (19) is rewritten as a
linear quadratic tracking (LQT) problem, for which a resource-efficient
solution is given that reduces the computational load significantly. In
this approach the matrices 𝑄𝑗 and 𝐿𝑗 are not calculated explicitly,
avoiding the inversion that would otherwise limit the size of the
matrices of the lifted system and thus also the length of the reference
signals.

5.1. Norm-optimal ILC as an LQT problem

The closed-loop system 𝐽 that is written in lifted form in the
revious sections, is now rewritten to a state–space description with
ime-varying system matrices 𝐴𝑘, 𝐵𝑘, 𝐶𝑘 and 𝐷𝑘. Due to the block-
iagonal structure of 𝑊𝑒𝑐,𝑗 , 𝑊𝑓𝑐,𝑗 and 𝑊𝛥𝑓𝑐,𝑗 the cost function (9) can
e written as

(𝑓𝑗+1) =
𝑁
∑

𝑘=1
‖𝑒𝑗+1(𝑘)‖2𝑊 𝑘

𝑒𝑐,𝑗
+ ‖𝑓𝑗+1(𝑘)‖2𝑊 𝑁

𝑓𝑐,𝑗

+ ‖𝑓𝑗+1(𝑘) − 𝑓𝑗 (𝑘)‖2𝑊 𝑘
𝛥𝑓𝑐,𝑗

, (24)

here, consistent with the previous notation, 𝑊 𝑘
𝑒𝑐,𝑗 = (𝐶𝑘

𝑒,𝑗 )
𝖳𝑊 𝑘

𝑒,𝑗𝐶
𝑘
𝑒,𝑗

tc. From (5) it follows that 𝑒𝑗+1 = 𝑒𝑗 − 𝐽 (𝑓𝑗+1 − 𝑓𝑗 ). In addition,
𝑓𝑗+1(𝑘) = 𝑓𝑗+1(𝑘) − 𝑓𝑗 (𝑘) and 𝛥𝑒𝑗+1(𝑘) = 𝑒𝑗+1(𝑘) − 𝑒𝑗 (𝑘) are defined.
his leads to the following theorem that relates the optimal input 𝑓𝑗+1

n (9) to the solution of a linear quadratic tracking problem.
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Theorem 6. The optimal ILC input that minimizes (9) with 𝑊𝛥𝑓𝑐,𝑗 ≻ 0 is
the solution to the linear quadratic tracking problem with cost function

 (𝛥𝑓𝑗+1) =
𝑁
∑

𝑘=1
𝛥𝑓𝖳

𝑗+1(𝑘)𝑊
𝑘
𝛥𝑓𝑐,𝑗

⏟⏟⏟
𝑅𝑘
𝑗

𝛥𝑓𝑗+1(𝑘)+ (25)

[

𝑒𝑗 (𝑘) + 𝛥𝑒𝑗+1(𝑘)
𝑓𝑗 (𝑘) + 𝛥𝑓𝑗+1(𝑘)

]𝖳
[

𝑊 𝑘
𝑒𝑐,𝑗 0
0 𝑊 𝑘

𝑓𝑐,𝑗

]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑆𝑘
𝑗

[

𝑒𝑗 (𝑘) + 𝛥𝑒𝑗+1(𝑘)
𝑓𝑗 (𝑘) + 𝛥𝑓𝑗+1(𝑘)

]

,

subject to the dynamics

𝛥𝑥𝑗+1(𝑘 + 1) = 𝐴𝑘𝛥𝑥𝑗+1(𝑘) + 𝐵𝑘𝛥𝑓𝑗+1(𝑘) (26)

𝛥𝑦𝑗+1(𝑘) =
[

𝛥𝑒𝑗+1(𝑘)
𝛥𝑓𝑗+1(𝑘)

]

=
[

𝐶𝑘

0

]

𝛥𝑥𝑗+1(𝑘) +
[

𝐷𝑘

𝐼

]

𝛥𝑓𝑗+1(𝑘).

Proof. The proof follows from substituting 𝑒𝑗+1 = 𝑒𝑗 − 𝐽 (𝑓𝑗+1 − 𝑓𝑗 ) and
𝛥𝑒𝑗+1 = −𝐽 (𝑓𝑗+1 − 𝑓𝑗 ) = −𝐽𝛥𝑓𝑗+1 in (24), which is equivalent to (9).
Adding 𝛥𝑓𝑗+1 as additional output allows for reframing of the problem
as an LQT problem with a direct feedthrough term. Taking 𝑊𝛥𝑓𝑐,𝑗 ≻ 0
ensures that 𝑆𝑘

𝑗 ⪰ 0, 𝑅𝑘
𝑗 ≻ 0 and concludes the proof. □

The solution in Theorem 6 is identical to that of the lifted ILC
update law (19), in contrast to the non-lifted approach in [12] which
minimizes an individual cost function at each sample and as such
is fundamentally different. Note that compared to the convergence
Theorems 4, 6 also requires 𝑊𝛥𝑓𝑐,𝑗 ≻ 0. This is typically not a limitation,
since in practical applications it is usually desired to take 𝑊𝛥𝑓𝑐,𝑗 ≻ 0 to
limit the amplification of iteration-varying disturbances [17].

5.2. Solving the LQT problem for cross-coupled ILC

The approach to solving discrete-time LQT problems with 𝑆𝑘
𝑗 ⪰

0, 𝑅𝑘
𝑗 ≻ 0 is well-known and described in, e.g., [18, Section 4.4] or [19]

for the general situation with direct feedthrough and noise terms. The
approach consists of defining a Hamiltonian system, leading to a two-
point boundary value problem, to which a sweep method is applied that
involves solving part of the equations backwards in time. For the cross-
coupled ILC problem this leads to the following solution. The exact
implementation is further explained in Section 5.3. Define

�̄�𝑘 =
[

𝐶𝑘

0

]

, �̄�𝑘 =
[

𝐷𝑘

𝐼

]

𝑟𝑗 (𝑘) =
[

−𝑒𝑗 (𝑘)
−𝑓𝑗 (𝑘)

]

.

The optimal input is given by 𝑓𝑗+1(𝑘) = 𝑓𝑗 (𝑘) + 𝛥𝑓𝑗+1(𝑘) and

𝛥𝑓𝑗+1(𝑘) = −�̄�−1
𝑗 (𝑘)�̄�𝑗 (𝑘 + 1)𝛥𝑥𝑗+1(𝑘) (27)

+ �̄�−1
𝑗 (𝑘)(�̄�𝑘)𝖳𝑆𝑘

𝑗 𝑟𝑗 (𝑘) + �̄�−1
𝑗 (𝑘)(𝐵𝑘)𝖳𝑣(𝑘 + 1),

with

�̄�𝑗 (𝑘) = 𝑅𝑘
𝑗 + (�̄�𝑘)𝖳𝑆𝑘

𝑗 �̄�
𝑘 + (𝐵𝑘)𝖳𝐺𝑗 (𝑘 + 1)𝐵𝑘 (28)

�̄�𝑗 (𝑘 + 1) = (𝐵𝑘)𝖳𝐺𝑗 (𝑘 + 1)𝐴𝑘 + (�̄�𝑘)𝖳(𝑆𝑘
𝑗 )

𝖳�̄�𝑘. (29)

The terms 𝑣𝑗 (𝑘 + 1) and 𝐺𝑗 (𝑘 + 1) follow from solving the following
equations backwards in time:

𝐺𝑗 (𝑘) = (𝐴𝑘)𝖳𝐺𝑗 (𝑘 + 1)𝐴𝑘 + (�̄�𝑘)𝖳𝑆𝑘
𝑗 �̄�

𝑘− (30)

((𝐴𝑘)𝖳𝐺𝑗 (𝑘 + 1)𝐵𝑘 + (�̄�𝑘)𝖳𝑆𝑘
𝑗 �̄�

𝑘)�̄�−1
𝑗 (𝑘)�̄�𝑗 (𝑘 + 1)

𝑣𝑗 (𝑘) = −
(

�̄�𝖳
𝑗 (𝑘 + 1)�̄�−1

𝑗 (𝑘)(�̄�𝑘)𝖳 − (�̄�𝑘)𝖳
)

𝑆𝑘
𝑗 𝑟𝑗 (𝑘)

−
(

�̄�𝖳(𝑘 + 1)�̄�−1(𝑘)(𝐵𝑘)𝖳 − (𝐴𝑘)𝖳
)

𝑣𝑗 (𝑘 + 1), (31)
5

𝑗 𝑗 a
with 𝑥(0) = 0 and boundary conditions

𝐺𝑗 (𝑁) = (�̄�𝑁 )𝖳𝑆𝑁
𝑗 �̄�𝑁 (32)

𝑣𝑗 (𝑁) = (�̄�𝑁 )𝖳𝑆𝑁
𝑗 (�̄�𝑁𝛥𝑓𝑗+1 − 𝑟𝑗 (𝑁)). (33)

A similar low-order solution to ILC, which omits the explicit formu-
lation of the ILC update law as an LQT problem, is also applied to the
specific cases of ILC for intersample behavior in [20] and norm-optimal
ILC in [9].

5.3. Solving the LQT problem for cross-coupled ILC: implementation

The implementation for solving the LQT problem for cross-coupled
ILC is summarized in the following algorithm. All computations in-
volve only small matrices for each time step, resulting in much faster
calculations compared to the full lifted matrices used in (19).

Algorithm 7 Resource-efficient ILC update

1: Given the time-varying system matrices 𝐴𝑘, 𝐵𝑘, 𝐶𝑘, 𝐷𝑘 and the
weighting matrices 𝑅𝑘

𝑗 and 𝑆𝑘
𝑗 ∀𝑘, compute 𝐺𝑗 (𝑘) backwards in time

according to (30), starting from the boundary condition 𝐺𝑗 (𝑁) in
(32).

2: Using 𝐺𝑗 (𝑘), compute 𝑣𝑗 (𝑘) backwards in time according to (31),
starting from the boundary condition 𝑣𝑗 (𝑁) in (33).

3: Compute �̄�𝑗 (𝑘) and �̄�𝑗 (𝑘) using 𝐺𝑗 (𝑘) according to (28) and (29).
4: Compute the change in input signal 𝛥𝑓𝑗+1(𝑘) using �̄�𝑗 (𝑘), �̄�𝑗 (𝑘),

𝑣𝑗 (𝑘) and the system dynamics (26) according to (27).
5: The optimal input for iteration 𝑗 + 1 is given by 𝑓𝑗+1(𝑘) = 𝑓𝑗 (𝑘) +

𝛥𝑓𝑗+1(𝑘).

6. Design and recovering existing methods

In this section, two design aspects, i.e., the choice between parallel
and serial ILC configuration and the selection of weights, are elaborated
upon. In addition, it is shown how several pre-existing approaches are
encompassed by the framework presented in this paper.

6.1. Design: parallel or serial ILC configurations

The system 𝐽 in Fig. 1 can represent both parallel and serial ILC
configurations. In parallel ILC, 𝐽par results from the process sensitivity
(𝐼 + 𝑃 (𝑞)𝐶(𝑞))−1𝑃 (𝑞) of the closed-loop system, and 𝑓 is a feedforward
ignal that is injected between the controller and the plant as illustrated
n Fig. 3. In serial ILC, the input 𝑓 is added to the reference signal and
ser results from the closed loop (𝐼 +𝑃 (𝑞)𝐶(𝑞))−1𝑃 (𝑞)𝐶(𝑞), as illustrated
n Fig. 4.

In cross-coupled ILC, the performance variables for the offline ILC
omputations, i.e., contour and tangential errors, differ from the online
eedback variables, i.e., the individual axes errors. This leads to an in-
erential ILC situation which in some cases can lead to internal stability
roblems, see [9]. Since the presented framework computes the contour
rrors from the individual axes errors and the coupling matrices have
ull column rank, it is not possible for one of the individual axes
o become unstable if the ILC system is monotonically convergent.
owever, it is possible that the control actions of the feedback and

eedforward controllers oppose each other, because they are based on
espectively the individual axes errors w.r.t. the original reference and
he contour error. To avoid this, a serial ILC configuration may be
sed. In this configuration, the ILC input signal is used to adapt the
eference, which is then tracked using the feedback controller, such
hat no feedforward term is included that could oppose the feedback
ction.



Mechatronics 99 (2024) 103170L. Aarnoudse et al.
Fig. 3. Parallel ILC configuration where 𝐽par follows from the transfer between 𝑓𝑗 and
𝑒𝑗 , given by (1 + 𝑃𝐶)−1𝑃 .

Fig. 4. Serial ILC configuration, where 𝐽ser follows from the transfer between 𝑓𝑗 and
𝑒𝑗 , given by (𝐼 + 𝑃𝐶)−1𝑃𝐶.

Fig. 5. Photograph (top) and schematic overview (bottom) of the Arizona flatbed
printer.

Fig. 6. Reference ( ) and output without feedforward ( ) and with cross-coupled
ILC ( ).
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6.2. Design: selecting the weights

The weighting matrices in the cost function (9) can be time- and
iteration-varying or invariant. The standard choice in norm-optimal
ILC is to use invariant weighting matrices, often with scaled identity
matrices 𝑊𝑒 = 𝐼 , 𝑊𝑓 = 𝑤𝑓 𝐼 and 𝑊𝛥𝑓 = 𝑤𝛥𝑓 𝐼 . In this case 𝑤𝑓 is often
chosen as small as possible while still providing robustness against
model uncertainty, and 𝑤𝛥𝑓 is chosen non-zero to reduce the influence
of iteration-varying disturbances.

In case of cross-coupled ILC, it is possible and often desirable to
weight the contour error 𝜀𝑐 heavier than the tangential error 𝜀𝑡. In addi-
tion, the ratio between these weights might vary over the trajectory, for
example, in corners one might want to increase the weight on the con-
tour error to increase accuracy, whereas on straight parts the weight on
the tangential error could be increased to increase the speed and make
up for lost time in the corners. To this end, time-varying weighting
matrices can be used. An extensive case study of time-varying weight
matrices for cross-coupled ILC with approximated contour errors is
conducted in [11], the results of which can be applied directly to the
cross-coupled ILC framework introduced here. Weighting approaches
developed specifically for coupled systems with dissimilar dynamics,
such as 3D printing systems [21], can also be incorporated directly. In
addition to time-varying weights, (9) and Theorem 4 enable the use of
iteration-varying weighting matrices. Iteration-varying weights can be
used, for example, to initially choose 𝑊𝛥𝑓 large to ensure fast reduction
of the error, and reduce it later to average over iterations and reduce
the influence of iteration-varying disturbances.

6.3. Recovering standard norm-optimal ILC and contour error approxima-
tions

The framework based on minimizing the cost function (9) encom-
passes existing approaches, such as standard norm-optimal ILC and
cross-coupled ILC with linear approximations as used in [10]. These
approaches are recovered through specific choices of the coupling
matrices 𝐶𝑘

𝑒,𝑗 in (13):

• Standard norm-optimal ILC:

𝐶𝑘
𝑒,𝑗 = 𝐼2×2 ∀𝑘, 𝑗. (34)

• Cross-coupled ILC with linear approximations of the contour error
�̂�𝑐 and individual axes errors:

𝐶𝑘
𝑒,𝑗 =

⎡

⎢

⎢

⎣

1 0
0 1

cos(𝜃(𝑘)) − sin(𝜃(𝑘))

⎤

⎥

⎥

⎦

∀𝑗, (35)

where 𝜃(𝑘) is the angle between the reference 𝑦𝑑 (𝑘) at sample 𝑘
and the 𝑥-axis.

• Cross-coupled ILC with linear approximations of the contour and
tangential errors:

𝐶𝑘
𝑒,𝑗 =

[

cos(𝜃(𝑘)) − sin(𝜃(𝑘))
sin(𝜃(𝑘)) cos(𝜃(𝑘))

]

∀𝑗. (36)

These approaches all lead to iteration-invariant weighting matrices.
However, as illustrated in Fig. 2, the linear approximations are likely to
differ from the exact contour error, leading to inaccuracies and reduced
performance of cross-coupled ILC.

7. Experimental results

In this section, cross-coupled ILC is applied to an industrial flatbed
printer and compared to standard norm-optimal ILC. First, the setup is
introduced and second, experimental results are presented.
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Fig. 7. Experimental results for the Arizona flatbed printer. Cross-coupled ILC leads to a significant reduction of the contour error 2-norm, even if the errors of the individual
axes are higher compared to standard norm-optimal ILC. Comparison of the contour error and the 𝑦-axis error show that at the time instances (e.g., between 0 and 1.5 s) where
cross-coupled ILC leads to higher 𝑦-axis errors, the contour error is actually smaller compared to standard ILC.
i
w
f
a
u
c
t

𝑊

w

𝑊

a
a

𝐶

7.1. Setup

The industrial flatbed printer is shown in Fig. 5 and consists of a
gantry that can translate in 𝑥-direction and rotate in 𝜑-direction, on top
of which is a carriage that can translate in 𝑦-direction. The system is
decoupled such that the input consists of the forces in three directions,
𝐹𝑥, 𝐹𝑦 and 𝐹𝜑, and the output consists of the position in 𝑥, 𝑦 and 𝜑.
In these experiments, the aim is to draw a contour in the 𝑦, 𝑥-plane
while keeping the rotation 𝜑 at 0. ILC is only applied in the 𝑦- and
𝑥-directions, and since the system is fully decoupled, the system for
ILC has as input

[

𝐹𝑦 𝐹𝑥
]𝖳 and as output

[

𝑦 𝑥
]𝖳. The contour to be

racked is shown in Fig. 6.

.2. ILC configurations

When comparing norm-optimal ILC configurations, the choice of
eights is important because these strongly influence the experimental

esults. In this section cross-coupled ILC and standard norm-optimal ILC
re compared. In both cases, parallel ILC according to Fig. 3 is used. The
ost function used for standard norm-optimal ILC is referred to as 𝑁𝑂
nd is given by

𝑁𝑂(𝑓𝑗+1) =‖𝑒𝑗+1‖2𝑊𝑒
+ ‖𝑓𝑗+1‖

2
𝑊𝑓

+ ‖𝑓𝑗+1 − 𝑓𝑗‖
2
𝑊𝛥𝑓

, (37)

i.e., the weights are iteration-invariant and do not include any coupling
7

of the axes. The weighting matrices 𝑊𝑒, 𝑊𝑓 and 𝑊𝛥𝑓 are time-invariant
and are given by 𝑊𝑒 = 𝑤𝑒𝐼 , 𝑊𝑓 = 𝑤𝑓 𝐼 and 𝑊𝛥𝑓 = 𝑤𝛥𝑓 𝐼 . For
cross-coupled ILC, the cost function 𝐶𝐶 that is used is given by

𝐶𝐶 (𝑓𝑗+1) = ‖𝑒𝑗+1‖
2
𝑊𝑒𝑐,𝑗

+ ‖𝑓𝑗+1‖
2
𝑊𝑓

+ ‖𝑓𝑗+1 − 𝑓𝑗‖
2
𝑊𝛥𝑓

, (38)

.e., for the weight on the error signal the outputs are coupled, but the
eights on the input and change of input are decoupled. The reason

or this is that weights on the input signal are typically related to
ctuator constraints of the system as well as to robustness against model
ncertainty. For the error signal, the errors in 𝑦- and 𝑥-direction are
oupled through the iteration-varying weight matrix 𝑊𝑒𝑐,𝑗 which is of
he form

𝑒𝑐,𝑗 = 𝐶𝖳
𝑒,𝑗𝑊𝑒𝐶𝑒,𝑗 , (39)

ith

𝑒 = diag
([

𝑤𝜀𝑐 0
0 𝑤𝜀𝑡

])

(40)

block-diagonal, iteration- and time-invariant matrix. The iteration-
nd time-varying coupling matrix 𝐶𝑒,𝑗 is given by

𝑒,𝑗 =

⎡

⎢

⎢

⎢

𝐶1
𝑒,𝑗 … 0
⋮ ⋱ ⋮
0 … 𝐶𝑁

⎤

⎥

⎥

⎥

, (41)
⎣
𝑒,𝑗
⎦
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Fig. 8. 2-norm of the contour error. The weights are chosen as 𝑊𝑓 = 10−10𝐼 and
𝑊𝛥𝑓 = 10−9𝐼 for norm-optimal ILC with 𝑊𝑒 = 𝐼 ( ) and cross-coupled ILC with 𝑊𝑒 = 𝐼
( ) and 𝑊𝑒 = diag(1.5, 0.5) ( ). When 𝑊𝑓 is small, the contour tracking performance
of cross-coupled ILC and standard norm-optimal ILC is comparable.

with the iteration-varying matrices 𝐶𝑘
𝑒,𝑗 given by

𝐶𝑘
𝑒,𝑗 =

[

cos(𝜙(𝑘, 𝑗)) − sin(𝜙(𝑘, 𝑗))
sin(𝜙(𝑘, 𝑗)) cos(𝜙(𝑘, 𝑗))

]

, (42)

such that

𝐶𝑘
𝑒,𝑗

[

𝑒𝑦(𝑘)
𝑒𝑥(𝑘)

]

=
[

𝜀𝑐 (𝑘)
𝜀𝑡(𝑘)

]

. (43)

For both 𝑁𝑂 and 𝐶𝐶 , 𝑊𝛥𝑓 = 10−9𝐼 is chosen. This weight on the
change in input reduces the convergence speed for safety reasons, as
well as the influence of iteration-varying disturbances.

7.3. Experimental results

In Fig. 7, standard norm-optimal ILC is compared to different cross-
coupled ILC configurations. For all configurations, 𝑊𝑓 = 10−8𝐼 , and
for standard norm-optimal ILC, 𝑊𝑒 = 𝐼 . For cross-coupled ILC, 𝑊𝑒 = 𝐼 ,
𝑊𝑒 = diag(1.5, 0.5) and 𝑊𝑒 = diag(10, 0.1) are compared, i.e., the weight
is distributed differently over the contour error 𝜀𝑐 and the tangential
error 𝜀𝑡. In Fig. 7 (left), the convergence of the 2-norms of the contour
error and the errors of the individual axes is compared. Fig. 7 (right)
shows the converged contour and individual errors after 12 iterations.
The experimental results for 𝑊𝑒 = diag(1.5, 0.5) illustrate that cross-
coupled ILC can achieve significantly smaller contour errors while the
individual axis errors are much higher. The results also show that when
the difference in weight between the contour error and the tangential
error is increased, this does not necessarily lead to smaller contour
errors. The resulting contour with and without cross-coupled ILC is
shown in Fig. 6, and illustrates the overall improvement.

Next, cross-coupled ILC and standard norm-optimal ILC are com-
pared for a case in which the weight on the input signal is smaller. In
this case, the algorithms have more freedom in optimizing the input
signal, and the total error can be reduced further. In Fig. 8, the 2-
norm of the contour error is shown for different ILC configurations
with 𝑊𝑓 = 10−10𝐼 . For standard norm-optimal ILC, 𝑊𝑒 = 𝐼 and for
cross-coupled ILC, 𝑊𝑒 = 𝐼 or 𝑊𝑒 = diag(1.5, 0.5). The results show
that when 𝑊𝑓 is small and the input is not restricted, i.e., achieving
a small contour error is feasible, cross-coupled ILC and standard norm-
optimal ILC both lead to good performance and the contour errors are
similar. The combination of 𝑊𝑒 = diag(10, 0.1) with 𝑊𝑓 = 10−10𝐼 leads
o feedforward inputs that violate the actuator constraints, and cannot
mplemented due to safety reasons.

. Conclusions

In this paper a new framework for cross-coupled norm-optimal ILC
s introduced that leads to high performance by using exact contour
nd tangential errors in an intuitive time- and iteration-varying cost
unction. Conditions for the monotonic convergence of the ILC algo-
ithm are developed. In addition, a resource-efficient implementation is
8

presented that interprets the ILC update law as a linear quadratic track-
ing problem, which can be solved fast and efficiently for any length of
reference signal. The approach is validated through experiments on an
industrial flatbed printer, which show that cross-coupled ILC can lead
to reduced contour errors even if the errors of the individual axes are
higher compared to standard norm-optimal ILC. Directions for future
research include investigating the selection of iteration-varying weights
in cross-coupled ILC, as well as extending the approach to the tracking
of contours for systems with more than two axes.
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Appendix. Proofs of Lemma 5 and Theorem 4

First, the proof of Lemma 5 is given. Second, the proof of Theorem 4,
which employs Lemma 5, is given.

Proof of Lemma 5. To show that (1) ⟹ (2), assume first that for
each �̄� ∈  and �̄� ∈  the sequence of inputs {𝑓𝑗} of the corresponding
iteration-invariant ILC system converges monotonically to a fixed point
𝑓∞, i.e.,

‖𝑓𝑗+1 − 𝑓∞‖2 ≤ 𝜅‖𝑓𝑗 − 𝑓∞‖ ∀ 𝑗, (44)

for some universal 𝜅 ∈ [0, 1). The following steps are illustrated in
Fig. 9.

Step 1: Consider 𝑓𝑗 ∈ 𝐵2(𝑐, 𝑑) and given 𝑄𝑗 ∈ , 𝐿𝑗 ∈ .

Step 2: It holds that 𝐵2(𝑐, 𝑑) ⊂ 𝐵2(𝑓𝑗,∞, 𝑑 + ‖𝑐 − 𝑓𝑗,∞‖2) because

‖𝑓𝑗 − 𝑓𝑗,∞‖2 ≤ ‖𝑓𝑗 − 𝑐‖2 + ‖𝑐 − 𝑓𝑗,∞‖2. (45)

Therefore, if 𝑓𝑗 ∈ 𝐵(𝑐, 𝑑), i.e., ‖𝑓𝑗 − 𝑐‖2 ≤ 𝑑, then

̄ ̄

‖𝑓𝑗 − 𝑓𝑗,∞‖2 ≤ 𝑑 + ‖𝑐 − 𝑓𝑗,∞‖2. (46)



Mechatronics 99 (2024) 103170L. Aarnoudse et al.

(

S

𝜎

Fig. 9. Visual interpretation of steps 1–5 of the proof of Lemma 5. Step 1: the circle

( ) with center 𝑐 and radius 𝑑. Step 2: the circles with centers 𝑓1,∞ ( ) and 𝑓2,∞

). Step 3: the circles with centers 𝑓1,∞ ( ) and 𝑓2,∞ ( ). Step 4: the circles with

centers 𝑓1,∞ ( ) and 𝑓2,∞ ( ). Step 5: the largest circle of Step 4, i.e., the circle

( ) with center 𝑓1,∞ and radius 𝑑∗.

tep 3: It follows from (44) that 𝑓𝑗 ∈ 𝐵2(𝑓𝑗,∞, 𝑑 + ‖𝑐 − 𝑓𝑗,∞‖2) ⟹

𝑓𝑗+1 ∈ 𝐵2(𝑓𝑗,∞, 𝜅𝑑 + 𝜅‖𝑐 − 𝑓𝑗,∞‖2), which leads to

‖𝑓𝑗+1 − 𝑓𝑗,∞‖2 ≤ 𝜅(𝑑 + ‖𝑐 − 𝑓𝑗,∞‖2).

Step 4: It holds that 𝐵2(𝑓𝑗,∞, 𝜅𝑑 + 𝜅‖𝑐 − 𝑓𝑗,∞‖2) ⊂ 𝐵2(𝑐, 𝜅𝑑 + (1 + 𝜅)‖𝑐 −
𝑓𝑗,∞‖2) because

‖𝑓𝑗+1 − 𝑐‖2 ≤ ‖𝑓𝑗+1 − 𝑓𝑗,∞‖2 + ‖𝑐 − 𝑓𝑗,∞‖2 (47)
≤ 𝜅(𝑑 + ‖𝑐 − 𝑓𝑗,∞‖2) + ‖𝑐 − 𝑓𝑗,∞‖2.

Step 5: It follows that 𝑓𝑗 ∈ 𝐵2(𝑐, 𝑑) ⟹ 𝑓𝑗+1 ∈ 𝐵2(𝑐, 𝜅𝑑 + (1 + 𝜅)‖𝑐 −
𝑓𝑗,∞‖2) ∀𝑄𝑗 ∈ , 𝐿𝑗 ∈ . Next, consider the set 𝐵(𝑐, 𝑑∗) with

𝑑∗ = max
�̄�∈,�̄�∈

𝜅𝑑 + (1 + 𝜅)‖𝑐 − 𝑓∞‖2. (48)

Thus if 𝑓𝑗 ∈ 𝐵2(𝑐, 𝑑), then 𝑓𝑗+1 ∈ 𝐵2(𝑐, 𝑑∗) ∀𝑄𝑗 ∈ , 𝐿𝑗 ∈ .

Step 6: Since the sets  and  are finite and 𝜅 ∈ [0, 1), there exists 𝑎
such that 𝑑 > 𝑑∗ if 𝑑 > 𝑎, and 𝑑 = 𝑑∗ if 𝑑 = 𝑎.

To show that (2) ⟹ (1), assume that the sequence of inputs {𝑓𝑗} is
monotonically convergent in the 2-norm to a closed 2-norm ball given
by 𝐵2(𝑐, 𝑎), i.e.,

‖𝑓𝑗+1 − 𝑐‖2 ≤ 𝜅‖𝑓𝑗 − 𝑐‖2 if ‖𝑒𝑗 − 𝑐‖2 > 𝑎, (49)

Since this is satisfied for any iteration-varying 𝑄𝑗 ∈ , 𝐿𝑗 ∈ , the
iteration-invariant case where 𝑄𝑗 = �̄�, 𝐿𝑗 = �̄� ∀𝑗 also satisfies (49).
Therefore, each of the iteration-invariant systems converges mono-
tonically towards the closed 2-norm ball 𝐵2(𝑐, 𝑎) and since they are
iteration-invariant, they converge monotonically to a fixed point in this
set. □

Proof of Theorem 4. The proof consists of four steps.

Step 1. The sequence of inputs {𝑓𝑗} in (19) for fixed �̄� ∈  and �̄� ∈ 
is monotonically convergent in the 2-norm if the mapping from 𝑓𝑗
9

to 𝑓𝑗+1 is a contraction mapping according to the Banach fixed point
theorem [22, Theorem 5.1-2]. Substituting (1) in (19) shows that this
is satisfied if

‖�̄� − �̄�𝐽‖2 < 1. (50)

Step 2. It holds that �̄�(�̄� − �̄�𝐽 ) ≤ ‖�̄� − �̄�𝐽‖2. From (21) it follows that

(50) is satisfied if

̄ (�̄� − �̄�𝐽 ) = �̄�((𝐽𝖳�̄�𝑒𝑐𝐽 + �̄�𝑓𝑐 + �̄�𝛥𝑓𝑐 )−1�̄�𝛥𝑓𝑐 ) < 1.

It holds that �̄�((𝐴 + 𝐵)−1𝐵) < 1 for 𝐴 ≻ 0, 𝐵 ⪰ 0. For a positive
(semi)definite matrix 𝑀 , 𝐴𝖳𝑀𝐴 is positive (semi)definite if 𝐴 has full
column rank. Thus for non-singular 𝐽 , �̄�𝑒𝑐 ≻ 0, �̄�𝑓𝑐 , �̄�𝛥𝑓𝑐 ⪰ 0 ensures
monotonic convergence. For singular 𝐽 , �̄�𝑓𝑐 ≻ 0 is needed also.

Step 3. Matrices 𝑊𝑒𝑐 , 𝑊𝑓𝑐 and 𝑊𝛥𝑓𝑐 are structured as 𝐶𝖳𝑊𝐶. Thus,
�̄�𝑒𝑐 , �̄�𝑓𝑐 ≻ 0 is satisfied if 𝐶𝑒 respectively 𝐶𝑓 has full column rank and
𝑊𝑒 respectively 𝑊𝑓 ≻ 0. Additionally, �̄�𝛥𝑓𝑐 ⪰ 0 is satisfied for 𝑊𝛥𝑓 ⪰ 0.

Step 4. Applying Step 1–3 for each 𝑄𝑗 ∈ , 𝐿𝑗 ∈  and combining with
Lemma 5 concludes the proof. □

It is also possible to find an expression for the smallest closed 2-
norm ball to which the system converges, a result used in a preliminary
version of [23], see [24, Theorem III.9].
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