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A B S T R A C T   

The optimization of ship energy consumption is attracting a great deal of attention, as societies seek to save 
energy and reduce emissions. Shipping companies are more concerned with the energy consumption of a ship 
fleet, as opposed to that of a single ship. Because the energy consumption of a fleet is influenced by multiple 
factors including environmental factors, port operations and transport demands, an improvement in a single 
ship’s energy consumption does not necessarily mean that the overall energy consumption of a fleet is good. In 
addition, those factors are usually varying over time, making it hard to optimize the fleet’s energy consumption 
by methods that do not consider these time-varying factors. Therefore, a bi-level distributed dynamic optimi-
zation method based on distributed model predictive control is proposed. Moreover, an upper-level optimization 
model for fleet operational decision-making and a lower-level dynamic optimization model of fleet energy 
consumption are established. Based on these, a control algorithm for the dynamic optimization of fleet energy 
consumption is developed. Finally, a case study is carried out to demonstrate the effectiveness of the method. It 
can further reduce the energy consumption of each ship by at least 1.1% and about 6.8% for the whole fleet.   

1. Introduction 

Waterway transportation, as the most fuel-efficient and economic 
way of shipping goods, has undergone great developments in recent 
years (Zheng et al., 2019). The worldwide seaborne transportation 
volume was about 10 billion tons in 2015 (UNCTAD/RMT, 2016). For 
the inland waterway transport, taking Yangtze River as an example, the 
amount of cargo transport was about 1.92 billion tons in 2013 (Tang, 
2014). Apparently, Waterway transportation plays an important role in 
both nationwide and worldwide trades. However, the shipping industry 
is now obliged to reduce emissions of greenhouse gases and pollutants. A 
research conducted by IMO showed that more than 900 million tons of 
CO2 is emitted by maritime transport in 2012, accounting for 2.6% of the 
total emissions over the world (MEPC, 2014). These emissions would 
increase about twice by 2050 if no actions were taken (MEPC, 2014). 
Among others, the total emissions from all ships on the Yangtze River 
would be more than 5 million tons (Cai, 2010). Meanwhile, confronted 

with the depressed market, shipping companies are making every effort 
to control the fuel cost, the main component of their operating costs 
(Lützen et al., 2017; Johnson et al., 2014). Therefore, there is an 
increasing need to reduce the fuel consumption and CO2 emissions 
(Poulsen and Johnson, 2016). 

In recent years, some research has been done on the fleet energy 
consumption optimization and management (Ronen, 2011; Andersson 
et al., 2015; Song and Yue, 2016; Wang et al., 2013; Coraddu et al., 
2014; Song et al., 2015; Wang and Meng, 2012a; Wen et al., 2017; Xia 
et al., 2015). Frangopoulos (2018) carried out a detailed analysis of the 
optimization of energy systems, including static optimization and dy-
namic optimization method, and optimization in modeling of energy 
systems and modeling for optimization and so on. It is important for the 
research and development of the modeling and optimization of energy 
systems. In addition, Sakalis and Frangopoulos (2018) proposed a novel 
intertemporal modeling and optimization approach for the integrated 
energy systems in order to achieve the analysis and optimization of 
energy systems. Lindstad et al. (2011) investigated the influence of 
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speed on the emissions of greenhouse gases and operating costs for 
different kind of ships. Their results indicate that maritime industry can 
achieve a significant reduction in CO2 emissions. Cepeda et al. (2017) 
studied the impact of speed reduction on fleet economy and emissions by 
establishing a simulation model of a fleet. The result shows that the fleet 
can operate with higher efficiency when the speed reduction strategy is 
adopted. Although sailing speed is the major factor for ship energy 
consumption, other factors such as the environmental conditions and 
port operations also make an influence. Wang and Meng (2012b) sug-
gested that energy consumption could be different even with the same 
speed due to the different environmental conditions, and established a 
non-linear model, in order to achieve speed optimization for container 
ships. Qi and Song (2012) studied on the design optimization of vessel 

schedule by accounting for the stochastic port time and frequency 
requirement, for reductions in both total energy consumption and 
emissions. Meng et al. (2016) proposed an effective optimization 
method based on a study on the interrelation between energy con-
sumption and its influencing factors (speed, environmental conditions, 
and displacement) by analyzing shipping log data. Fleet energy con-
sumption is not only related to speed and navigational environment, but 
also to ship loading, engine speed, sailing time, port operation time and 
market transport demand. In general, the above-mentioned optimiza-
tion methods only considered one or a few influencing factors on the 
sea-going fleet energy consumption from the point of view of maritime 
logistics. Few studies, however, have addressed the comprehensive 
impact of multiple factors. In addition, these factors are usually dynamic 

Nomenclature 

k The serial number of time steps 
j# The serial number of ships 
t Time at different time step (h) 
Vg Sailing speed to ground (m/s) 
Vs Sailing speed to water (m/s) 
Sleg Distance of the different legs (m) 
RT Calm water resistance (N) 
RF Frictional resistance (N) 
RAPP Appendage resistance (N) 
RW Resistance for breaking waves (N) 
RB Resistance due to bulbous bow (N) 
RTR Resistance of stern leaching (N) 
RA Ship related resistance (N) 
k1 Viscous resistance factor of the ship 
Rwave Wave adding resistance (N) 
Fr Froude number (Dimensionless) 
h Height of wave (m) 
Lwl Length of waterline (m) 
ρ Water density (kg/m^3) 
SW Wet area of the ship (m^2) 
Rwind Wind resistance (N) 
Cwind Coefficient of wind resistance 
ρair Air density (kg/m^3) 
AT Windward area (m^2) 
Vwind Relative wind speed (m/s) 
Rshallow Resistance as for shallow water (N) 
Rdeep Resistance as for deep water (N) 
fs Conversion coefficient 
H Water depth (m) 
d Ship draft (m) 
R Total resistance of the ship (N) 
PB Power of the main engine (kW) 
K Number of the propellers 
KQ Coefficient of torque 
w Wake coefficient 
ηS Shaft transfer efficiency 
ηG Gearbox efficiency 
ηR Efficiency of rotation 
KT Thrust coefficient 
J Propeller advance coefficient 
t Coefficient of thrust deduction 
qmain Fuel consumption of main engine (g/m) 
Wload Cargo mass (t) 
~Vw Average water speed (m/s) 
~Vwind Average wind speed (m/s) 
~H Average water depth (m) 

eh Average wave height (m) 
gmain Fuel consumption rate (g/kWh) 
Ttotal Total operational time of a voyage (d) 
Tnav Sailing time (d) 
Tlimit Limit of the sailing time of the ship (d) 
Vw Water speed (m/s) 
Twait Waiting time in the port (d) 
Tload Cargo loading and unloading time (d) 
S Distance of the whole voyage (m) 
ηL Loading efficiency (t/d) 
ηU Unloading efficiency (t/d) 
qaux Fuel consumption of auxiliary engines (t) 
gaux Fuel consumption per unit of time (t/d) 
N Number of ships in the fleet 
Ttotal, limit Limit of the total fleet operational time (d) 
Wload, total Total cargo mass of the fleet (t) 
Wload Cargo mass of the ship (t) 
nmin Minimum engine speed (r/min) 
nmax Maximum engine speed (r/min) 
Vmin Minimum sailing speed (m/s) 
Vmax Maximum sailing speed (m/s) 
Vwater Water speed (m/s) 
Vwind Wind speed (m/s) 
H Water depth (m) 
h Wave height (m) 
M The number of steps 
Qtotal Total energy consumption (t) 
τ Current iteration times 
~X Position of the particle 
~pbest The previous optimum 
~gbest The global optimum 
r1, r2 Random numbers between 0 and 1 
c1, c2 Learning factors (Dimensionless) 
~V The updating speed (Dimensionless) 
w Weight of inertia (Dimensionless) 
wmax Maximal inertia factor 
wmin Minimal inertia factor 
itercurrent Current number of iteration times 
itermax Maximal number of iteration times 
Dt_j Deadweight of the j# ship (t) 
Ccarbon CO2 conversion rate of the fuel 
MCO2 Amount of CO2 emissions (t) 
YsðkÞ System state at time step k 
StotalðkÞ Total sailing distance at time step k (m) 
dsðkÞ Disturbance of the system at time step k 
usðkÞ Control input at time step k  
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with a high degree of randomness. In this regard, however, research is 
still lacking on the dynamic optimization of fleet energy consumption. 

In addition, compared with sea-going ship fleets, the sailing speeds 
for inland ship fleets are harder to optimize, due to the more compli-
cated environmental conditions of the inland waterway and the uncer-
tainty in the port operations (Wang et al., 2015). Sun et al. (2013) 
studied the energy consumption of an inland river ship in various sailing 
states and identified the influence of navigational environment and 
speed on the fuel consumed by an inland river ship. Yan et al. (2015) 
analyzed the sensitivity of the weather factors on affecting the ship 
energy consumption using a machine learning method. Wang et al. 
(2017b) investigated a sailing speed optimization method based on 
route division through big data analysis that further promoted the 
development of the energy consumption optimization of inland river 
ships accounting for multiple environmental factors. Despite the fruitful 
achievements on energy consumption optimization for a single inland 
river ship, there has been little study on the inland river ship fleets, let 
alone the dynamic optimization method considering multiple 
time-varying influencing factors. This paper aims to fill this gap. The 
integrated models we established could be used for the strategic opti-
mization managements for the inland river ship fleet. 

In support of this approach on the dynamic optimization method 
considering multiple time-varying influencing factors, we develop a bi- 
level optimization model incorporating a high-level optimization model 
for operational decision-making and a low-level dynamic optimization 
model for energy consumption. For the dynamic optimization and 
control problem, the model predictive control (MPC) has attracted 
extensive research, because of its better dynamic control performance 
and the ability of compensating for disturbances caused by dynamic 
factors (Negenborn et al., 2008; Xin et al., 2015; Zheng et al., 2016; Liu 

et al., 2015). In the practical operation, it is difficult to communicate 
effectively between ships and to achieve the centralized control from the 
shipping company. Therefore, we propose to adopt DMPC to optimize 
the energy consumption for each ship in the fleet. DMPC is a control 
strategy that can deal with control problems in large-scale systems 
caused by organizational couplings between different parties, limited 
control access and communication ability of different parties (Li et al., 
2016). DMPC strategies have been adopted in many different controlled 
systems and applications, giving good performances (Spudi�c et al., 2015; 
Christofides et al., 2013; Zheng et al., 2017; Souza et al., 2015; Real 
et al., 2013; Negenborn and Maestre, 2014). To the best of our knowl-
edge, no one has applied DMPC strategies in the operation optimization 
of ship fleets for reducing energy consumption and CO2 emissions. In 
this paper, this approach is proposed to take for the dynamic optimi-
zation for inland river ship fleets. 

This paper is an extension to the authors’ earlier work Wang et al. 
(2016, 2018). The contribution of this paper is twofold. From theoretical 
perspective, we established a fleet energy consumption model ac-
counting for multiple varying influencing factors. The established model 
can illustrate the fleet energy consumption under different operational 
states effectively. From the practical viewpoint, we generalized the 
optimization method for a single ship to a system-level distributed dy-
namic optimization for a fleet by adopting the DMPC strategy based on 
the updated operational information. Our control algorithm and 
controller can obtain the dynamic optimization for fleet energy con-
sumption under continuously changing conditions. The proposed 
bi-level distributed dynamic optimization method could assist ship 
owners in fleet-wide energy consumption optimization, with the capa-
bility of decision-making for operation optimization and energy saving. 

This paper is organized as follows. The method proposed in this 

Fig. 1. The bi-level distributed dynamic optimization for the fleet energy consumption.  
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paper is briefly illustrated in Section 2. Then, a bi-level optimization 
model incorporating a fleet operational decision-making model and 
energy consumption optimization under time-varying operational con-
ditions is established in Section 3. Subsequently, the dynamic optimi-
zation algorithm and controller based on DMPC strategy are designed in 
Section 4. Afterwards, a case study is carried out to validate the pro-
posed dynamic method for fleet energy consumption optimization in 
Section 5. Finally, conclusions and the future research work are detailed 
in Section 6. 

2. Method 

The energy consumed by a fleet is related to multiple influencing 
factors, such as transport demands, environmental factors, port infor-
mation and ship operational conditions. These factors are usually 
continuously varying over time. Moreover, the management of fleet 
energy consumption involves fleet operation optimization decision- 
making by the shipping company and single-ship navigation optimiza-
tion by the controller on each ship. Only by overall management and 
optimization can we optimize the energy consumption, meanwhile 
meeting the transport demands of the fleet. Therefore, a bi-level 
distributed dynamic optimization method for fleet energy 

consumption is proposed in this paper, as showed in Fig. 1. It mainly 
includes an upper-level optimization model for the fleet operational 
decision-making, and a lower-level dynamic optimization model for the 
fleet energy consumption considering multiple influencing factors. 

2.1. Upper-level optimization method for the fleet operation decision- 
making 

The upper-level optimization method of fleet operation refers to the 
decisions made by the shipping company to increase revenue and reduce 
energy cost. As shown in Fig. 2, given the certain transport demand of 
fleet, shipping company could achieve the fleet operation optimization 
through the established fleet operation decision-making model consid-
ering multiple influencing factors. Those factors include port informa-
tion (waiting time, loading and unloading efficiency in the port), 
navigational environment, total time requirement and specific param-
eters of each ship. Finally, the optimal cargo mass as well as sailing 
speed of each ship would be determined to improve economy and energy 
consumption of the fleet, meanwhile ensuring the completion of cargo 
transport tasks within the scheduled time. In this level, the sailing speed 
optimization is based on the constant environmental factors and port 
information, not considering the dynamics of these factors. Therefore, 

Fig. 2. Illustration of the fleet operation optimization method.  

Fig. 3. The dynamic optimization process for fleet energy consumption.  
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the decided sailing speeds are constant along the entire voyage, and 
there are still potentials for better fleet energy efficiency when consid-
ering the dynamics of those influencing factors. In order to complete the 
transportation task within the scheduled time, the sailing time under the 
decided sailing speed would be set as the time constraint of each ship for 
the lower-level navigation optimization model. 

2.2. Lower-level dynamic optimization method for the fleet energy 
consumption 

In the lower-level dynamic optimization method, the dynamics of 
environmental factors and port information are both considered, thus to 
reach the high potential of energy consumption optimization. A route 
could be divided into different segments according to the k time steps. As 
shown in Fig. 3, at step 1, the optimal sailing speeds under the current 
operational conditions can be determined by the constructed optimiza-
tion model and solving method, utilizing the information on naviga-
tional environment and port operation. The j# ship will be operated at 
this optimal speed Vg, j (1, 1) in the first leg within this step. Afterwards, 
the updated environmental conditions and port information would be 
available again before the ship arrives at position A1. Then, the optimal 
sailing speeds corresponding to the updated information for the left n-1 
sailing legs will be obtained by re-running the optimization model and 
solution method. When the j# ship reaches position A1, it would be 
controlled to sail at the optimized sailing speed Vg, j (2, 1) in the second 
leg within the second step. Similarly, continuous optimizations and 
controlling will be carried out until the ship arrives at the destination. In 
this way, from the time-varying information on the navigational envi-
ronment and port operation, a dynamic optimization in the energy 
consumption can be achieved. The DMPC strategy based dynamic 
optimization can keep the optimal solutions at each step, namely, each 
ship could operate at the optimal speeds during each step. 

Through the above-mentioned bi-level distributed dynamic optimi-
zation method, the full potential of energy consumption optimization for 
the fleet can be realized. The fleet operational decisions can be made, 
taking various influencing factors into account. In addition, the dynamic 
energy consumption optimization for each ship can be achieved in a 
distributed way, according to the updated weather conditions and port 
operational information. These two models, among others, are the key to 
the dynamic optimization for the fleet energy consumption. 

3. Dynamic optimization model of fleet energy consumption 

3.1. Fleet operational decision-making model considering multiple 
influencing factors 

The fleet operational decision-making model is aimed at reducing the 
energy consumption by determining the optimal sailing speeds and 
cargo loads. The operational conditions including the navigational 
environment and port operation have a huge influence on the speed 
optimization results and thus the fuel consumption. The effect of oper-
ational conditions is mainly due to their impact on the ship resistance. 
The fuel consumption can be obtained through the energy conversion 
analysis among hull-propeller-engine by analyzing the resistance of the 
ship under specific sailing speeds and navigational conditions. The total 
resistance, including the resistance in calm water (Holtrop and Mennen, 
1982), resistance of wave and wind (Kwon, 2008), resistance in shallow 
water (Hu, 1986), can be expressed as follows: 

RT¼RFð1þ k1Þ þ RAPP þ RW þ RB þ RTR þ RA (1)  

Rwave¼
1
2

0:065
ðFrÞ

2

�
h

Lwl

�2

ρSW V2
S (2)  

Rwind¼
1
2
CwindρairATV2

wind (3)  

Rshallow ¼ fs⋅Rdeep (4)  

fs¼ 1þ
0:065V2

S�
H
d � 1

�
ffiffiffi
d
p

(5)  

R¼RT þ Rwave þ Rwind þ Rshallow (6) 

As for a given sailing speed, the generated power and related energy 
consumption of the main diesel engine is expressed as (Wang et al., 
2018): 

PB;j¼
Rj⋅
�
Vg;j � ~Vw;j

�
⋅KQ;j⋅2π⋅

�
1 � wj

�

Kj⋅ηS;jηG;jηR;j⋅KT;j⋅Jj⋅
�
1 � tj

� (7)  

qmain;j ¼
Rj⋅
�
Vg;j � ~Vw;j

�
⋅Kq;j⋅2π⋅

�
1 � wj

�

ηS;jηG;jηR;j⋅Kt;j⋅Jj⋅
�
1 � tj

�
⋅Vg;j

⋅gmain;j ¼

​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ Fq;j
�
Wload;j;Vg;j; ~Vw;j; ~Vwind;j; ~Hj; ~hj; gmain;j

�
(8) 

In addition, under a specific sailing speed, the total operational time 
of the ship for a voyage can be expressed as: 

Ttotal;j¼Tnav;jþTwait;jþTload;j ¼ S
.

Vg;j

.
3600þTwait;jþWload;j

.
ηL

j þWload;j

.
ηU

j

(9) 

Moreover, the energy consumption of the auxiliary engines can be 
expressed as: 

qaux;j ¼Ttotal;j⋅gaux;j (10) 

Above all, the upper-level optimization is nonlinear with the mini-
mum total fuel consumption of the ship fleet as the objective, as shown: 

min ​ Qtotal¼
XN

j¼1

�
Fq;j
�
Wload;j;Vg;j; ~Vw;j; ~Vwind;j; ~Hj; ~hj; gmain;j

�
⋅ Sþ qaux;j

�

(11) 

Subject to the following constraints: 

Vg;j ⋅ Tnav;j ¼ S (12)  

Ttotal ¼
XN

j¼1

�
Ttotal;j

�
< Tlimit;total (13)  

XN

j¼1
Wload;j ¼Wload;total (14)  

nmin;j < fengine speed
�
Vg;j� ~Vw;j

�
< nmax;j (15)  

Vmin;j <Vg;j � ~Vw;j < Vmax;j (16) 

In Eq. (11), the cargo loading and sailing speeds of each ship are the 
decision variables. Fq, j() means the energy consumption function that 
take the cargo mass, ship sailing speed, water and wind speed, water 
depth and wave height as the input variables, and take the energy 
consumption of the main diesel engine as the output variable. Con-
straints (12)–(14) ensure that the j# ship could complete its entire 
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voyage and transport demands within the scheduled time. Constraints 
(15) and (16) are the physical constraints for the engine speed and 
sailing speed of the j# ship respectively, in order to avoid overloading. 

3.2. Dynamic optimization model of fleet energy consumption under time- 
varying conditions 

According to Eq. (7), the main engine output power of the j# ship at 
time step k can be obtained as: 

PB;jk ¼
Rjk⋅VS;jk⋅KQ;jk⋅2π⋅

�
1 � wj

�

Kj⋅ηS;jk⋅ηG;jk⋅ηR;jk⋅KT;jk⋅Jjk⋅
�
1 � tj

� (17) 

On this basis, the consumed fuel of the main diesel engine per unit of 
distance for the j# ship at time step k is shown as: 

qmain;jk ¼
Rjk⋅
�
Vg;jk � Vw;jk

�
⋅KQ;jk⋅2π⋅

�
1 � wj

�

ηS;jk⋅ηG;jk⋅ηR;jk⋅KT;jk⋅Jjk⋅
�
1 � tj

�
⋅Vg;jk

⋅gmain;jk

​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ¼ Gq;jk
�
Vg;jk;Vw;jk;Vwind;jk;Hjk; hjk; gmain;jk

�
(18) 

In addition, the total energy consumption of the auxiliary engine of 
the j# ship can be expressed as: 

qaux;j¼ Tlimit;j⋅gaux;j (19) 

Then, the remaining navigational time of the j# ship at time step k is: 

Tnav;jk ¼Tlimit;j � Twait;jk � Wload;j
�

ηL
jk � Wload;j

�
ηU

jk �
Xk� 1

i¼1

�
Tnav; ​ ji

�
ðM � kþ 1Þ

�

(20) 

Above all, the dynamic optimization of the fleet energy consumption 
is also nonlinear with the minimal total energy consumption as the 
objective, as expressed by:   

Subject to the following constraints: 

XM� kþ1

i¼1

�

Vg;ji ⋅
Tnav;jk

M � k þ 1

�

¼ S � Stotal;jðk� 1Þ (22)  

Nmin;j < fengine speed
�
Vg;jk �Vw;jk

�
<Nmax;j (23)  

Vmin;j <Vg;jk � Vw;jk < Vmax;j (24) 

For this optimization model, the optimization variables are the 
sailing speeds of each ship at each time step. Constraint (22) ensures the 
ship reaches the destination within the scheduled time. Constraints 
(23) and (24) are the physical constraints for the main diesel engine and 
navigation speed of the j# ship respectively, which can avoid 
overloading. 

Fig. 4. The solving process of the nonlinear optimization model based on PSO.  

min Qtotal;jk ¼
PM� kþ1

i¼1

�

Gq;ji
�
Vg;ji;Vw;ji;Vwind;ji;Hji;hji;gmain;ji

�
⋅Vg;ji⋅

Tnav;jk

M � kþ1

�

þ
�

Tnav;jkþTwait;jkþWload;j

.
ηL

jkþWload;j

.
ηU

jk

�
⋅gaux;j8 k2f1; 2; :::; Mg (21)   
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The adopted DMPC strategy can be used to predict the results of the 
energy consumption system according to the historical data, including 
the current state, and the current and future inputs and disturbance of 
the system. For the dynamic optimization of fleet energy consumption in 
this paper, the current state mainly includes the distance of sailing and 
weather information as well as port operational information, which can 
be expressed as: 

Ys;jðkÞ¼ Stotal;jðkÞ¼
Xk

i¼1

�

Vg;jðk� iþ1Þ ⋅
Tnav;jðk� iþ1Þ

M � k þ i

�

(25)   

Thus, the dynamics of the energy consumption optimization system 

at step k can be represented as follows: 

Ys;jðkþ 1Þ¼ Fs;j
�
Ys;jðkÞ; us;jðkÞ; ds;jðkÞ

�
(27)  

4. Distributed control algorithm and controller design 

4.1. Control algorithm 

The DMPC based control algorithm for dynamic optimization of fleet 
energy consumption is developed, as shown in the Algorithm 1.   

As shown in Fig. 4, the solving process of the upper-level nonlinear 

optimization model based on the modified Particle Swarm Optimization 

Fig. 5. The dynamic optimization controller for the fleet energy consumption optimization.  

ds;jðkÞ¼
�

Vg;jðkþi� 1Þ;Vw;jðkþi� 1Þ;Vwind;jðkþi� 1Þ;Hjðkþi� 1Þ;hjðkþi� 1Þ;Twait;jðkþi� 1Þ
�
​ 8i2f1; ​ 2; ​ :::;Mg (26)   
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(PSO) mainly includes: 
Step 1: Initialize NS particles in 2N dimensions, and obtain the 

optimal values of individual and group by Eq. (11); 
Step 2: Update the speed and location of the particle. These particles’ 

positions are updated based on their speeds, giving: 

~Vτþ1
¼w ⋅ ~Vτ

þ c1 ⋅ r1
�
~pτ

best �
~Xτ�
þ c2 ⋅ r2

�
~gτ

best �
~Xτ�

8τ
2 f1; 2; ⋅ ⋅ ⋅ ; τmax � 1g (28)  

~Xτþ1
¼ ~Xτ

þ ~Vτþ1
8τ 2 f1; 2; ⋅ ⋅ ⋅ ; τmax � 1g (29) 

In order to guarantee optimality of the results, the method of linear 
decreasing inertia weight is adopted in this paper, as shown in Eq. (30). 
At the beginning of iteration, the larger inertia weight is adopted to 
guarantee the strong global search ability of the algorithm, and in later 
iterations, the lower inertia weight is used to ensure the accurate local 
search of the algorithm, thus improving the accuracy of the algorithm. 

w¼wmax � ðwmax � wminÞ⋅itercurrent=itermax (30) 

Step 3: Calculate the fitness values of the particles that meet the 
Constraints (12)-(16), and then obtain the updated optimal values of 
individual and population; 

Step 4: Go to Step 2 and repeat until the preset threshold or iteration 
times are reached. In this way, the optimal sailing speeds along the route 
and the loading weight of each ship can be achieved. 

Similarly, the process of solving the lower-level nonlinear optimi-
zation model mainly includes the following steps: 

Step 1: Initialize Nx particles in M-kþ1 dimensions, and obtain the 
individual and group optimal values by calculating the fitness values of 
the particles through Eq. (21); 

Table 1 
Parameters of the target fleet.  

Parameters Ship 1# Ship 2# Ship 3# Ship 4# Ship 5# 

Length (m) 77 85.88 85.88 90 99.8 
Width (m) 15.8 15.84 15.84 16.2 16.25 
Depth (m) 5.6 6 6 6 5 
Deadweight (t) 3600 4830 4830 5130 4579 
Engine power (kW) 528 � 2 600 � 2 600 � 2 720 � 2 528 � 2 
Engine speed (r/min) 1200 1500 1500 1450 1200  

Fig. 6. The sailing route of the fleet.  
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Step 2: Update speeds and positions of the particles by Eq. (28) and 
Eq. (29) at each time step; 

Step 3: Calculate the fitness values of the particles that meet the 
constraints (22)–(24), and then obtain the updated optimal values of 
individual and population; 

Step 4: Go to Step 2 and repeat until the algorithm reaches the preset Ta
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 Table 3 

Parameters for the upper-level operational decision-making model.  

Parameters c1 c2 wmax wmin itermax ηU=L
j (t/ 

d)  

Twait,j 

(d) 

Values 2 2 0.9 0.4 150 5000 0.5 

Parameters Dt_1 
(t) 

Dt_2 
(t) 

Dt_3 
(t) 

Dt_4 
(t) 

Dt_5 
(t) 

S (km) Wload, 

total (t) 
Values 3600 4830 4830 5130 4579 1124.78 20672  

Fig. 7. The sailing speed of each ship along the entire route.  

Fig. 8. The weight of cargo loading for each ship.  

Table 4 
The voyage time in the upper level and time constraint for the lower level.  

Item Ship 
1# 

Ship 
2# 

Ship 
3# 

Ship 
4# 

Ship 
5# 

Voyage time in the upper 
level (d) 

6.183 8.227 7.752 8.392 7.447 

Time constraint for the lower 
level (d) 

6.183 8.227 7.752 8.392 7.447  

Table 5 
Parameters for the lower-level fleet energy consumption optimization.  

Parameters c1 c2 wmax wmin itermax 

Values 2 2 0.9 0.4 100  
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threshold or iteration times. In this way, the optimal speeds are achieved 
as (Vg, jk, …, Vg, jM), which are also the system’s inputs (us(k), …, us(M)). 

4.2. Controller design 

According to the above-mentioned algorithms, a DMPC-based dy-
namic optimization method and controller for fleet energy consumption 
is proposed, as shown in Fig. 5. It includes a central decision-making 
optimizer and a dynamic optimization of fleet energy consumption 
(DOFEC) controller. Firstly, the central decision-making optimizer de-
termines the optimal sailing speeds and load weights for each ship, thus 
to improve the economy under the sailing time and transport demands 
constraints. Then the upper-level optimal solutions are taken as the in-
puts of the controller for each ship. The controller achieves the optimal 
solutions at each step through the low-level optimization model, and 
then executes the first decision through the optimization system. This 
DOFEC controller can make up for disturbances resulting from the 
constantly changing weather conditions and port operations. Conse-
quently, the dynamic optimization can be achieved, realizing the dy-
namic optimization of fleet energy consumption. 

5. Case study 

5.1. Numerical experiment 

This paper takes as the research target a fleet consisting of five cargo 
ships from a major Chinese marine shipping company, sailing on the 
Yangtze River. The basic parameters of those ships are illustrated in 
Table 1. 

The ship fleet sails from Shanghai port to Wuhan port along the 
Yangtze River, as shown in Fig. 6. The voyage time constraint is 38 days 
and the total transport amount is 20672 tons from the practical point of 
view. Under the normal weather condition, it usually takes about 8 h for 
the weather to change at a certain extent according to the weather 
analysis and so the total number of time steps is set as nine with about 8 
h for each time step. In addition, based on the characteristic analysis on 
the environment and port operation data, the updated information on 
the navigational environment and port operation information at 
different time steps are shown in Table 2. This numerical study aims to 
demonstrate the validity of the dynamic optimization method. 

5.2. Optimization result 

5.2.1. Upper-level optimization result of fleet operation decision-making 
The parameters required for the upper-level optimization in terms of 

the fleet operation decision making are shown in Table 3. By adopting 
the above-established model and solving method, we obtained the 
optimal sailing speeds along the entire route and the optimal cargo 
loading weights for each ship, as shown in Figs. 7 and 8, respectively. 

Fig. 9. The navigation optimization results of the 1# ship.  

Fig. 10. The navigation optimization results of the 2# ship.  

Fig. 11. The navigation optimization results of the 3# ship.  

Fig. 12. The navigation optimization results of the 4# ship.  

Fig. 13. The navigation optimization results of the 5# ship.  
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5.2.2. Lower-level dynamic optimization result of fleet energy consumption 
The operation time for each ship, obtained from the upper-level 

optimization, is used as the time constraint for the dynamic optimiza-
tion of the lower-level fleet energy consumption, as shown in Table 4. In 
addition, other parameters required for dynamic optimization of the 
fleet energy consumption in the lower level are showed in Table 5. By 
adopting the above model and solving method, we get the optimal re-
sults including the optimal sailing speeds and energy consumption. In 
addition, the EEOIs (energy efficiency operational index of single ship) 
for each ship can be obtained by Eq. (31), in which, Ccarbon means CO2 
conversion rate of the fuel and it is 3.206 for the diesel oil (Burel et al., 
2013). 

EEOI ¼
Qtotal⋅Ccarbon

Wload⋅S
(31) 

The obtained optimal sailing speeds, energy consumption, and EEOIs 
of different ships by the bi-level dynamic optimization method are 
shown in Figs. 9–13. In addition, in order to demonstrate the validity of 
the dynamic optimization method for fleet energy consumption, we also 
obtain the optimization results in terms of the speeds, fuel consumption 

and EEOIs for each ship at different steps by the static method, as shown 
in Figs. 9–13. The static optimization in this paper means that it does not 
consider the time-varying environment at different time steps, and 
assumed that the environment at the same location is unchanged over 
the time. Therefore, the optimization process for a whole voyage before 
starting the voyage is only carried out once. 

5.3. Results analysis and discussion 

5.3.1. Comparative analysis 
As can be seen from Figs. 9–13, the optimized speeds at each time 

step are different due to the differences in the navigational environment 
and port operation time. The time-varying environment and port oper-
ation time can add to the optimization potentials for the fleet energy 
consumption. In addition, the energy consumption, CO2 emissions and 
EEOIs for each ship adopting the dynamic and static optimization 
methods are shown in Table 6. Among others, the CO2 emission is ob-
tained by: 

MCO2 ¼ Qtotal⋅Ccarbon (32) 

By comparing the data in this table, we can see that the dynamic 
optimization can further improve the fleet energy efficiency than the 
static method that does not consider the time-varying environment. The 
maximum reduction is 2.03% (2# ship) and the minimum reduction is 
1.13% (3# ship). What’s more, we can reduce the energy consumption 
of the 1#, 4# and 5# ships by 1.69%, 1.42% and 1.93% respectively. 
Therefore, the proposed dynamic optimization method of fleet energy 
consumption can help to effectively abate the fuel consumption and CO2 
emissions, and thus improve the fleet energy efficiency. 

In addition, the proposed dynamic optimization method considers 
the time-varying environment and external factors, making it can reflect 
the actual situation and have more accurate optimization results than 
the static optimization method. Therefore, it can be concluded that the 
larger the change in the environment with time, the more the result of 
the static optimization deviates from the optimal value, and the dynamic 
optimization method will have a better optimization effect than the 

Table 6 
A comparison between the dynamic and static optimization results.  

Items Ship 1# Ship 2# Ship 3# Ship 4# Ship 5# 

Static optimization Fuel consumption (t) 8.33 9.41 9.17 9.16 8.26 
CO2 emissions (t) 26.71 30.16 29.41 29.37 26.47 
EEOIs [g/(t⋅n mile)] 12.68 11.38 13.15 10.09 9.98 

Dynamic optimization Fuel consumption (t) 8.19 9.22 9.07 9.03 8.10 
CO2 emissions (t) 26.26 29.55 29.07 28.95 25.96 
EEOIs [g/(t⋅n mile)] 12.46 11.15 13.00 9.95 9.79 

Reduced percent (%) 1.69 2.03 1.13 1.42 1.93  

Table 7 
A comparison between the optimization results of the fleet energy consumption.  

Item Traditional operation 
decision-making 
method 

Bi-level dynamic 
optimization 
method 

Reduced 
percent (%) 

Total fuel 
consumption 
(t) 

46.80 43.61 6.82 

Total CO2 

emissions (t) 
150.03 139.80 6.82 

EEOIf [g/(t⋅n 
mile)] 

11.95 11.14 6.82  

Fig. 14. The fleet’s energy consumption under different total fleet opera-
tional time. Fig. 15. The fleet’s energy consumption under different total cargo mass of 

the fleet. 
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static optimization method. From the optimization results, we can see 
that for the 2# ship, the largest differences occur between the dynamic 
optimization speed and the static optimization speed due to the time- 
varying navigational environment. Therefore, it has the largest optimi-
zation percent of energy consumption compared with other ships. On 
the contrary, for the 3# ship, the least differences are found between the 
dynamic optimization speed and the static optimization speed. The 
optimization results show that it has lowest optimization percent of 
energy consumption compared with other ships. 

5.3.2. Analysis of the optimization results of the fleet energy consumption 
The total energy consumption, CO2 emissions and EEOIf (energy ef-

ficiency operational index of ship fleet) by adopting the traditional 
operational decision-making method (the only upper-level optimization 
method for the fleet operational decision-making. It means that the in-
fluence of the environmental conditions on fleet’s fuel consumption is 
not considered and the speed optimization under different environ-
mental conditions is not carried out.), and the bi-level dynamic opti-
mization method are illustrated in Table 7. The bi-level dynamic 
optimization could further reduce the total energy consumption and 
emissions by about 6.82% than the traditional fleet operational decision- 
making method. Therefore, the bi-level distributed dynamic optimiza-
tion can improve the energy efficiency of the fleet effectively. 

5.4. Sensitivity analysis 

In order to analyze the effects of various parameters on the fleet’s 
energy consumption and to identify the robustness and effectiveness of 
the optimization results, a sensitivity analysis of the fleet’s energy 
consumption under different total fleet’s operational time and different 
total cargo mass of the fleet is carried out. Sensitivity analysis is to study 
how the uncertainties of a mathematical model or system output are 
affected by the uncertainties of the different input sources. The sensi-
tivity analysis of output results under different inputs can contribute to 
know the influence of the variables on the outputs. For models with 
multi-input variables, sensitivity analysis is an important part of model 
building and its quality (Wang et al., 2017a). 

Before the sensitivity analysis, the fleet’s energy consumption under 
different total fleet operational time and different total fleet’s cargo 
mass is analyzed and the results are shown in Figs. 14 and 15, respec-
tively. As can be seen from Fig. 14, a longer fleet operational time will 
result in lower energy consumption, which is due to the greater opti-
mization potential for ships to slow down for a longer operational 
period. However, the longer operational time will fail to meet the 
transport demands within the specified time. In addition, as can be seen 
from Fig. 15, the fleet’s energy consumption increases with the increase 
of the fleet’s cargo mass. This is because the increase of the cargo mass 
increases the ship’s draft and thus increases its resistance. 

For the sensitivity analysis method in this paper, the benchmark of 
total fleet operational time is 38 d and the benchmark of the total cargo 
mass of the fleet is 20672 t, and each factor is divided into five levels. 
The fleet’s energy consumption under different conditions and the 
sensitivity values of each level that are obtained are shown in Table 8. 

Based on the statistics of the sensitivity analysis at different levels, 
the calculated sensitivity discriminant coefficient of the fleet’s opera-
tional time and cargo mass is about 0.46 and 0.40, respectively. As can 

be seen, the sensitivity discriminant coefficient of the fleet’s operational 
time is larger than the fleet’s cargo mass. Therefore, it can be concluded 
that the voyage’s operational time has a more significant influence on 
the fleet’s energy consumption than the fleet’s cargo mass, and the 
fleet’s energy efficiency can be improved by prolonging the voyage’s 
operational time. 

6. Conclusions and discussions 

Considering the uncertainty of the fleet operational conditions and 
the multitude of influencing factors, a dynamic optimization method is 
proposed for the fleet energy consumption. A bi-level optimization 
model, including an upper-level operational decision-making model and 
a lower-level distributed navigation optimization model, is established, 
to improve economy and reduce energy consumption of the fleet. The 
DMPC-based dynamic optimization is investigated for the decisions on 
the optimal speeds under the updated weather conditions and port 
operation information. Based on the designed dynamic optimization 
algorithm, we developed the DOFEC controller, which can compensate 
for disturbances resulting from the constantly changing environments 
and port operation information during the entire voyage. The case study 
shows that we can obtain better fleet energy efficiency using the pro-
posed method by considering a multiple of time-varying influencing 
factors. We find that this proposed bi-level distributed energy con-
sumption dynamic optimization method can reduce the total energy 
consumption and emissions of the fleet effectively. Compared with the 
method that does not consider the time-varying environment, we can 
further reduce the energy consumption of each ship by at least 1.1%. 
From the perspective of system-level fleet energy consumption, we can 
reduce the energy consumption by as much as 6.8%. It means that about 
3.2 tons fuel could be saved for a single eight-day voyage. It is un-
doubtedly a good benefit for the shipping corporations. In addition, from 
the sensitivity analysis, we find the proposed dynamic optimization 
method can obtain the optimization results under different conditions, 
and the voyage operational time has a more significant influence on the 
fleet’s energy consumption than the fleet’s cargo mass. 

The proposed bi-level dynamic method can also be extended to other 
kinds of ship fleet when the relevant information is available. It should 
be noted that there are differences in the operational modes for different 
ship fleets, e.g., service frequency requirements, transport modes. 
Therefore, an extension of this study to different kinds of operational 
modes and ship fleets would be our future study. With increasingly 
stringent emission regulations, shipping companies should explore 
novel effective methods to reduce energy consumption and CO2 emis-
sions. This paper proposed a novel dynamic optimization method based 
on the DMPC strategy. It can provide a new way for the fleet managers to 
improve economy and reduce CO2 emissions by the system-level opti-
mization of fleet energy consumption. 
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