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Abstract

Interest rate products form a large segment of over-the-counter derivatives. When the interest rate became
negative, for the first time, in July 2009, interest rate models needed to adjust. Where first a log-normal model,
as the Brace Gątarek Musiela (BGM) model, might have seemed logical for interest-rate products, as they were
bounded by zero, now a normally distributed model, as the Hull-White model, could be considered more
practical. To our knowledge, no comparison of the Hull-White model and the Brace Gątarek Musiela model
has been made on the Expected Positive Exposure (EPE) (and thus Credit Valuation Adjustment (CVA)) of a
swap portfolio. Therefore, this thesis compares the Hull-White model with the BGM model on the EPE of
a swap portfolio. First, we show how both models can be simulated with Monte Carlo simulation and cal-
ibrated to caplets, after which we validate the used simulation. Finally, both models are compared on the
convergence, computation time and EPE. It was found that the Hull-White model had a faster convergence
and computation time than the BGM model for our implementation. Moreover, it was shown that the Hull-
White model and BGM model have significantly different swap EPEs, except for far in-the-money (ITM) swaps
and single payment swaps. Therefore, the models used for the EPE of a swap portfolio have a model risk.

Keywords — Hull-White model, Brace Gątarek Musiela (BGM) model, Monte Carlo simulation, Caplet calibration, Ex-
pected positive exposure (EPE), Credit valuation adjustment (CVA), Swap portfolio, Model risk
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1
Introduction

The financial crisis in 2007/2008 triggered several events. First of all, market participants realised that big companies
could have a credit event, like bankruptcy or restructuring. Before the financial crisis, risk management was focused on
Counterparty Credit Risk (CCR), which is the loss exposure due to the fact that a counterparty cannot meet its financial
obligations. However, this risk was often not included in financial derivatives because of the understanding that large
counterparties were too big to fall [14]. To include this risk in the price of financial derivatives, the concept of Credit val-
uation adjustment (CVA) became more common. CVA is an extra charge on a financial derivative to incorporate the risk
that a counterparty is not able to pay its financial obligations. Another effect of the financial crisis was that interest rates
were lowered to stimulate the market. The idea behind low-interest rates is that borrowing money is cheap such that peo-
ple spend more. In this way, central banks try to boost the economy. It even went as far that in July 2009, the central bank
of Sweden was the first to implement negative interest rates [22]. Today the European Central Bank has negative interest
rates as well. Many interest rate models use a log-normal distribution, which does not allow negative inputs. Therefore,
negative interest rates cause a problem for these models. An example of such a model is the Brace Gątarek Musiela (BGM)
model [6]. However, for the models that do allow negative interest rates, their disadvantage of negative rates turned into
an advantage, as was the case for the Hull-White model, which was first published in 1990 [19].

Interest rate products are a large segment of the market. Known products include mortgages, deposits, loans, pensions,
and financial derivatives to hedge risks in fluctuating interest rates, such as interest rate swaps, caps, and floors. In 2019,
interest rate derivatives formed around eighty per cent of the global over the counter derivatives [23]. Hence, it should
not be surprising that there are a large number of interest rate models. The first couple of stochastic interest rate models
regarded the short-rate, which is the interest rate at which one can borrow money for an infinitely small amount of time
in the present. A pioneering paper about a short-rate model was the Vasicek model [33] in 1977, which was the first paper
to use a mean reversion characteristic. A disadvantage of the model is that it is not able to reproduce the initial interest
rate curve, caused by the fact that the model only uses constant parameters. The Ho-Lee model [18] and the Hull-White
model [19] introduced extensions of the Vasicek model that allow to choose the parameters in such a way that the initial
interest rate curve is reproduced. Before the 2008 financial crisis, negative interest rates were not desirable. Therefore,
the Cox-Ingersol-Ross (CIR) model [10] was introduced as an extension of the Vasicek model, a model that does not allow
negative interest rates. Another approach of interest rate modelling is to model the instantaneous forward rates, which
was first introduced in the Heath-Jarrow-Morton framework (HJM) [17]. Instantaneous forward rates are interest rates
taken over an infinitely small amount of time in the future. Another approach was given in 1997 in BGM Model [6], also
known as LIBOR Market Model, which simulates the forward rates. The difference between instantaneous forward rates
and forward rates is that forward rates are interest rates in the future for a given period instead of for an infinitely small
amount of time. The advantage of the BGM model is that the forward rates are directly observable in the market, and the
volatilities are directly linked to caplets and floorlets with Black’s formula. Caplets (and floorlets) are interest rate deriva-
tives, which are in-the-money if the interest rate exceeds (or is below) a specific, agreed value for a certain date in time.
Caplets and floorlets can be seen as options on a reference rate like the LIBOR or EURIBOR rate.

The differences between the short-rate, r (t ), instantaneous forward rate, f r (t ,Ti ), and the forward rate, F (t ,Ti ,Ti+1),
is illustrated in Figure 1.1.

1



2 1. Introduction

r (t0)

t0 t1 t2 t3 t4 t5 t6 t7

f r (t , t3, t3 +δ) F (t , t4, t5)

Time

Figure 1.1: An illustration at time t = t0 of the difference between short-rate, r (t ), instantaneous forward rate, f r (t ,Ti ) = f r (t ,Ti ,Ti +δ)
and forward rate, F (t ,Ti ,Ti+1). Where δ is an infinitely small number.

Each model has its advantages and disadvantages. Therefore, there are some comparisons made between different inter-
est models. In the papers of [8] and [28], a comparison is made between various short-rate models and (instantaneous)
forward rate models. Both papers focus on models that are easy to implement and are used in practice. In [8], the mod-
els are compared with interest rate warrants in the German market between 1990 and 1993. Interest rate warrants are
options issued by a specific company (not an investor). In this paper, the main valuation criterion is that the model can
predict future option prices to measure risk exposure correctly. They find that a two-factor forward rate model best fits
this criterion. In [28], the models are compared on the best fit of the market prices of caps using an internally consistent
model for a given trading day. The used models for the spot interest rate are Black and Karansinski [4], Pelsser [27] and
Hull and White [20] and for the forward rate variations of the Ritchken and Sankarasubramanian model [30]. The paper
concludes that all used spot interest rate models outperform the used forward rate models. Furthermore, to our knowl-
edge, no comparison on CVA is made between the short-rate model, the 1-factor Hull-White model, and the forward rate
model, the 1-factor BGM model. One of the main drivers of the CVA is the Expected positive exposure (EPE), which is the
expected (average) positive credit exposure of a derivative.

Therefore, this thesis aims to compare the Hull-White interest rate model with the Brace Gątarek Musiela (BGM) interest
rate model on their Expected positive exposure (EPE) (and Credit valuation adjustment (CVA)).

The aim is to price a swap portfolio through Monte Carlo simulation of the Hull-White model and Brace Gątarek Musiela
(BGM) model. Both will be multi-curve, single-currency, 1-factor models. Henceforth, both models will be compared on
the computation time of the simulations, the convergence of the Monte Carlo paths and the Expected positive exposure
(EPE). The (possible) difference will be displayed for the EPE for ATM, ITM and OTM swaps. The difference will be anal-
ysed and explained. Last, a recommendation will be provided on which model is best to use in which situation.

The thesis structure is as follows. In Chapter 2, the mathematical framework is given in which definitions and theo-
rems are stated to provide background information. In Chapter 3, both the Hull-White model and the BGM model are
described. In Chapter 4, the simulation and calibration process of both models is presented. The last section of Chapter 4
explains how to incorporate a multi-curve framework (discounting /forecasting curves) in the calibration and simulation.
Chapter 5 gives the calibration results and validates that both models price back the market inputs and validates the MTM
and EPE of a swap. In Chapter 6, a comparison between the two models is made on convergence, computation time and
EPE. Chapter 7 is the conclusion.



2
Mathematical framework

In this section, the mathematical background of the thesis is presented. The information gives an overview of the neces-
sary background knowledge and ensures no misunderstanding regarding definitions will occur.

2.1. General theory
In this section, some theorems and definitions are described regarding the financial market and probability distributions.

Definition 2.1.1 (Numéraire). A numéraire is any positive non-dividend paying asset used to measure the value of an-
other tradable asset. In other words, in which units the value of the tradable asset is measured. The standard measure is
the risk-neutral measure, Q, which has the money-market account as numéraire.

Definition 2.1.2 (Arbitrage). Arbitrage is the event where there is free money in the market by buying/selling certain
financial products.

Theorem 2.1.1 (First fundamental theorem of asset pricing). If a market is characterised by a risk-neutral measure Q
and a risk-free rate r (t ), it does not allow arbitrage [9]. From this theory follows that the value, V (t ), at time t of any
contingent claim with a payoff, H(t ), is given by [26]:

V (t ) = EQ
[

M(t )

M(T )
H(T )|F (t )

]
(2.1)

with EQ the expected value under the Q-measure.

Definition 2.1.3 (Change of numéraire). In a change of numéraire, the numéraire of a tradable asset is changed to an-
other numéraire. Consider a tradable asset, S(t ), which is priced under the Q1-measure with numéraire M1(t ), then:

S(t ) = EQ1
[

M1(t )

M1(T )
S(T )|F (t )

]
(2.2)

Henceforth, the Radon–Nikodym is used to change to another numéraire M2(t ) which defines the measure Q2. The

Radon–Nikodym is of the form dQ2

dQ1 = M2(t )M1(T )
M2(T )M1(t ) . The change from numéraire M1(t ) to numéraire M2(t ) is given by [26]:

EQ
1
[

M1(t )

M1(T )
S(T )|F (t )

]
= EQ2

[
M2(t )M1(T )

M2(T )M1(t )

M1(t )

M1(T )
S(T )|F (t )

]
= EQ2

[
M2(t )

M2(T )
S(T )|F (t )

]
= S(t ) (2.3)

which again prices back S(t ).

In Chapter 3, the fact that the Hull-White model is an affine process is used to find the closed form solution of the zero-
coupon bond.

Definition 2.1.4 (Affine process). A process belongs to the class of affine process if the parameters are deterministic
functions of time. Take for example a process, x(t ), of the form:

dx(t ) =µ(t , x(t ))dt +σ(t , x(t ))dW (t ) (2.4)

3



4 2. Mathematical framework

x(t ) is an affine process if µ(t , x(t )) and σ(t , x(t )) are of the form

µ(t , x(t )) =αµ(t )x(t )+βµ(t ) (2.5)

σ2(t , x(t )) = γσ(t )x(t )+δσ(t ) (2.6)

Moreover, the discounted characteristic function for u ∈C2 is given by

φx(t ,T ) = exp(A(t ,T )−B(t ,T )x(t )) (2.7)

where A and B satisfy the following Riccati differential equations:

∂

∂t
B(t ,T )+α(t )B(t ,T )− 1

2
γ(t )B2(t ,T )+1 = 0 (2.8)

∂

∂t
A(t ,T )−β(t )B(t ,T )+ 1

2
δ(t )B2(t ,T ) = 0 (2.9)

with B(T,T ) = 0 and A(T,T ) = 1. [26]

This thesis will compare the Hull-White model and BGM model. The Hull-White model has normal dynamics, and
the BGM has log-normal dynamics. Therefore, we will address details on both distributions and the characteristics these
distributions hold.

Definition 2.1.5 (Normal (or Gaussian) distribution). The normal distribution is a probability distribution that is sym-
metrical distributed around the mean µ and has variance σ2. The probability density function (pdf) evaluated at x is
given by [12]

1

σ
p

2π
e−

1
2

( x−µ
σ

)2

(2.10)

Moreover, the cumulative distribution function evaluated at x is given by

∫ x

−∞
1

σ
p

2π
e
− 1

2

(
t−µ
σ

)2

dt (2.11)

with −∞< x <∞

Definition 2.1.6 (Standard normal distribution). The standard normal distribution is the normal distribution with mean
µ= 0 and variance σ2 = 1. [12] The cumulative distribution becomes

Φ(x) =
∫ x

−∞
1p
2π

e−
1
2 t 2

dt (2.12)

with −∞< x <∞

Definition 2.1.7 (Log-normal distribution). The log-normal distribution is a probability distribution for which the log-
arithmic of its random variables are normally distributed; the log-normal random variable X with mean µ and standard
deviation σ is defined by the standard normal random variable Z by

X = eµ+σZ (2.13)

the probability density function is given by

1

xσ
p

2π
e
− 1

2

(
ln(x)−µ

σ

)2

(2.14)

Moreover, the cumulative distribution function is given by

Φ

(
ln(x)−µ

σ

)
(2.15)

withΦ the cumulative distribution function of the standard normal distribution.

The probability density function of the normal and log-normal distribution are shown in Figure 2.1 for different µ andσ2.
For both the normal and log-normal distribution, when, respectively, µ=−2.0 (or µ= 2.0), the centre of the graph shifts
two points to the left (or right), and for a larger variance σ2 the distribution is wider.



2.2. Interest-rate products 5

(a) Normal pdf (b) Log-normal pdf

Figure 2.1: Plots of the probability density function (pdf) for different µ and σ2 of (a) the normal and (b) log-normal distribution.

Definition 2.1.8 (Skewness). Skewness is a measure of asymmetry in a probability distribution. The skewness can be
negative, zero, positive or undefined. An example of positive skewness is the log-normal model, which has a right skewed
distribution. The skewness can be measured by the third standardised moment given by

Skew(x) = E
[( x −µ

σ

)3
]

(2.16)

Since the normal distribution is symmetric, the skewness is zero. [2]

Definition 2.1.9 (Kurtosis). The kurtosis is measures the fatness of a tail of a distribution and is given by the fourth
standardised moment:

Kurt(x) = E
[( x −µ

σ

)4
]

(2.17)

A fat-tailed distribution has a higher kurtosis than that of the normal distribution. The kurtosis of a normal distribution is
3. Therefore, a distribution with a higher kurtosis than 3 is considered fat-tailed. Consequently, extreme events, measured
in the tail, have a higher probability for a fat-tailed distribution than that for a normal distribution. [2]

In the validation, the simulated caplet volatilities will be checked against the market volatilities. For the comparison,
we will use a confidence interval of 95 %.

Definition 2.1.10 (Confidence interval). For mean x̄, with known standard deviation s and for n observations, the con-
fidence interval is given by [

x̄ − z∗ sp
n

, x̄ + z∗ sp
n

]
(2.18)

With z∗ =Φ(1−α/2), which is 1.96 for a confidence interval of 95% (α= 0.05) [12].

Definition 2.1.11 (Mean-squared error (MSE)). The mean squared error (MSE) is an error to measure how far an estimate
or a simulated value is different from the true value. As the name, mean squared error, suggests; First, the error is squared,
then the mean is taken of all the squared errors:

MSE = 1

n

n∑
i=1

(yi − ŷi )2 (2.19)

with n the number of items, yi the actual value and ŷi the estimated or simulated value [12].

2.2. Interest-rate products
This section describes the different interest rate products that are used in this thesis.

Definition 2.2.1 (Short-rate). The short-rate, r (t ), at time t is the interest rate at which one can earn money on a risk-free
investment for an infinitely small amount of time. [26]

Definition 2.2.2 (Money-market account). The money-market account, M(t), is the value of a bank account at time t.
The process of the money-market account is driven by the short-rate r (t ) and defined by:

dM(t ) = r (t )M(t )dt (2.20)

with M(t0) = 1. Equation (2.20) has solution:

M(t ) = e
∫ t

t0
r (s)d s

(2.21)
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Definition 2.2.3 (Zero-coupon bond). A zero-coupon bond (ZCB) is an interest rate product that pays 1 currency unit at
maturity T . The value of a ZCB is denoted as P (t ,T ) and is given by

P (t ,T ) = EQ
[

M(t )

M(T )
P (T,T )|F (t )

]
= EQ

[
e−

∫ T
t r (z)d z |F (t )

]
(2.22)

where the fundamental theorem of asset pricing is used and P (T,T ) = 1. [26]

Definition 2.2.4 (Instantaneous forward rate). The instantaneous forward rate, f r (t ,T ), at time t with maturity T is
defined as:

f r (t ,T ) =− ∂

∂T
logP (t ,T ) (2.23)

Moreover, the short-rate can be expressed in terms of the instantaneous forward rate by

r (t ) = f r (t , t ) (2.24)

Definition 2.2.5 ((Simple compounded) forward rate). The simple compounded forward rate, F (t ,S,T ), at time t with
fixing date S and payment date T with 0 ≤ t ≤ S ≤ T is defined as

F (t ,S,T ) = 1

τ

(
P (t ,S)

P (t ,T )
−1

)
(2.25)

where τ= T −S, adjusted to the day count convention.

Definition 2.2.6 (Reference rate). A reference rate is a interest rate that is used as benchmark to determine other interest
rates, like EURIBOR, EONIA, SOFR.

Definition 2.2.7 (Interest rate swap). An interest rate swap (IRS) is a financial derivative that allows two parties to swap
a floating interest rate, `(t ), against a fixed rate, K . In a payer swap, one pays the fixed-rate, and in a receiver swap, one
receives the fixed rate. The payoff of an interest rate swap on a payment day Tk+1 ∈ (Ti+1, . . . ,Tm ) (assuming payment
days for floating and fixed leg are the same) is given by

ωτk N (F (Tk ,Tk ,Tk+1)−K ) (2.26)

with ω= 1 for a payer swap and ω = −1 for a receiver swap; N the notional amount and τk = Tk+1 −Tk , adjusted to the
day count convention. Moreover, the net present value (NPV) of the swap, Vswap(t ), for floating payment dates T1, . . . ,Tm
and fixed payment dates T1, . . . ,Tn is given by

Vswap(t ) =ωN

(
m−1∑
k=0

τk P (t ,Tk+1)F (t ,Tk ,Tk+1)−K
n−1∑
l=0

τl P (t ,Tl+1)

)
(2.27)

with P (t ,Tk+1) the zero-coupon bond and F (t ,Tk ,Tk+1) the forward rate at time t for expiry Tk and maturity Tk+1. The
swap rate,Si ,m,n (t ), can be expressed as the strike, K , with a NPV of zero and is given by

Si ,m,n (t ) =
∑m−1

k=i τk P (t ,Tk+1)F (t ,Tk ,Tk+1)∑n−1
k=i τl P (t ,Tl+1)

(2.28)

where the denominator also is known as the annuity factor Ai ,n (t ). Moreover, the swap value can now be given in terms
of the swap rate Si ,m,n (t ) and the Ai ,n (t ) by:

Vswap(t ) =ωN Ai ,n (t )(Si ,m,n −K ) (2.29)

Definition 2.2.8 (Black Scholes formula). The Black Scholes formula describes the theoretical value of a call or put
option price. The Black Scholes formula for a call option price, Vc (t ), and put option price, Vp (t ), on a security S(t ) with
strike K , are given by

Vc (t ) = S(t )Φ(d+)−KΦ(d−) (2.30)

Vp (t ) = KΦ(−d−)−S(t )Φ(−d+) (2.31)

d± = ln( S(t )
K )± 1

2σ
2(T − t )

σ
p

T − t
(2.32)

with T − t the time to expiry, σ the volatility andΦ the cumulative standard normal distribution
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Definition 2.2.9 (Caplet / Floorlet). Caplet/Floorlet is a financial contract for two time points in the future Ti < Ti+1,
with τi = Ti+1 −Ti , adjusted to the day count convention. The caplet and floorlet values with fixed rated K and notional
amount Ni are given by

V C PL
i (t ,Ti ,Ti+1) = Niτi P (t ,Ti+1)ETi+1

[
max(F (t ,Ti ,Ti+1)−K ,0)|F (t )

]
(2.33)

V F L
i (t ,Ti ,Ti+1) = Niτi P (t ,Ti+1)ETi+1

[
max(K −F (t ,Ti ,Ti+1),0)|F (t )

]
(2.34)

Remark that the expectation is under the Ti+1-forward measure instead of the risk-free measure. Hereupon, using Black’s
formula, the value of the caplet/floorlet at time t becomes:

V C PL
i (t ) = Niτi P (t ,Ti+1)

(
F (t ,Ti ,Ti+1)Φ(d+)−KΦ(d−)

)
(2.35)

V F L
i (t ) = Niτi P (t ,Ti+1)

(
KΦ(−d−)−F (t ,Ti ,Ti+1)Φ(−d+)

)
(2.36)

d± = ln( F (t ,Ti ,Ti+1)
K )± 1

2σ
2(Ti − t )

σ
√

Ti − t
(2.37)

withΦ the standard normal cumulative distribution function, σ the volatility and F (t ,Ti ,Ti+1) the forward rate at time t
for expiry date Ti and payment date Ti+1.

Definition 2.2.10 (Swaption). A swaption is an option on an underlying interest rate swap. In this contract, one has the
right, but not an obligation to enter into a specific swap for a predetermined fixed rate K on a future date Ti . The payoff
of the swaption is given by

max(Vswap(Ti ),0) (2.38)

Moreover, using equation (2.29) the value of the swaption, Vswpt(t ,Ti ,Tm ,Tn ), is given under the Q-measure:

Vswpt(t ,Ti ,Tm ,Tn ) = NEQ
[

Ai ,n (Ti )M(t0)

M(Ti )
max(ω(Si ,m,n −K ),0)|F (t )

]
(2.39)

withω= 1 for a payer swap andω=−1 for a receiver swap. Henceforth, changing to the r Ti ,n -measure, which has Ai ,n (t )
as numéraire, gives

Vswpt(t ,Ti ,Tm ,Tn ) = N Ai ,n (t )ETi ,n
[
max(ω(Si ,m,n −K ),0)|F (t )

]
(2.40)

Now, with Black’s formula, follows:

Vswpt(t ,Ti ,Tm ,Tn ) = N Ai ,n (t )
(
ωSi ,m,n (t )Φ(ωd+)−ωKΦ(ωd−)

)
(2.41)

d± = ln(
Si ,m,n (t )

K )± 1
2σ

2(Ti − t )

σ
√

Ti − t
(2.42)

withΦ the standard normal cumulative distribution function and σ the volatility.

2.3. Credit risk and model risk
This section discusses counterparty credit risk and model risk. Counterparty risk is the risk that a counterparty will not
oblige its obligations. The counterparty risk relevant for this thesis is the different types of exposure and credit valuation
adjustment.

Definition 2.3.1 (Positive Exposure). The positive exposure is the exposure in the future of a derivative with a specific
counterparty. In other words, the value one might be exposed to if another counterparty would go bankrupt. Therefore,
the positive exposure, E(t ), is defined by

E(t ) = max(V (t ),0) (2.43)

with V (t ) the derivative value. For example, the derivative value for a swap is given in equation (2.27) [26].

Definition 2.3.2 (Negative Exposure). The negative exposure is the exposure in the future of a derivative with a specific
counterparty. Therefore, the negative exposure is defined by

max(−V (t ),0) (2.44)

with V (t ) the derivative value [26].

Definition 2.3.3 (Expected Positive Exposure). The Expected positive exposure is the expected (average) credit exposure
and only considers the positive market values. Exposure can be seen as the money that potentially can be lost if a default
of the counterparty occurs. The EPE is defined as:

EPE(t0, t ) = EQ
[

M(t0)

M(t )
E(t )|F (t0)

]
(2.45)

with M(t ) the money market account and E(t ) the (positive) exposure described in equation (2.43) [26].
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Moreover, to visualise the difference between the (positive) exposure and expected positive exposure, consider Figure 2.2.
Herein, a Monte Carlo simulation with 100 paths of a 10-years receiver swap is given. In Figure (a), the Monte Carlo of the
swap value is visualised, in (b), the (positive) exposure and in (c), the expected positive exposure. In section 4.1, we will
provide more details of the Monte Carlo simulation.

(a) Value (b) Positve exposure (c) Expected positive exposure

Figure 2.2: Plots of a Monte Carlo simulation with 100 paths of a 10-year receiver swap with a semi-annual payments and par strike. In
(b) the expected positive exposure from (c) is plotted in dark blue.

Types of exposure In Figure 2.2, a basic example is given where only one derivative, a swap, is considered. However,
the EPE can also be calculated for a portfolio. Therefore, we distinguish three types of exposure, according to [26]:

1. Contract-level exposure: The exposure of a single derivative, as given in equation (2.43).

2. Counterparty-level exposure: The exposure of all derivatives with a single counterparty. The exposure can be
found by adding the exposure of all derivatives. For n derivatives with values Vi (t ), the counterparty-level exposure
is given by

n∑
i=1

max
(
Vi (t ),0

)
(2.46)

3. Netting exposure: The exposure of the different derivatives where the positions offset with each other. The netting
exposure of n derivatives with values Vi (t ) (that are netted) is given by

max

(
n∑

i=1
Vi (t ),0

)
(2.47)

Figure 2.3 shows the three described types of exposure for a portfolio of two swaps with 10-year swaps. Swap 1 is a receiver
swap with a notional of 100000, and swap 2 is a payer swap with a notional of 50000. The EPE is calculated with a Monte
Carlo simulation of 10000 paths.

(a) Contract-level exposure (b) Counterparty-level exposure (c) Netting exposure

Figure 2.3: Plots of exposure of two swaps with 10-year swaps with semi-annual payments. Swap 1 is a receiver swap with a notional of
100000, and swap 2 is a payer swap with a notional of 50000. The EPE is calculated with a Monte Carlo simulation of 10000 paths.

Definition 2.3.4 (Credit Valuation Adjustment). The Credit valuation adjustment (CVA) is the extra charge on a deriva-
tive to integrate the counterparty risk. In other words, the CVA is the expected loss due to future counterparty default.
The CVA is calculated by multiplying the loss given default (one minus the recovery rate), probability of default and the
EPE and is defined by:

CV A(t0,T ) = (1−RR)
∫ T

t0

EPE(t )dPD(t0, t ) (2.48)

with RR the recovery rate and PD(s, t ) the probability of counterparty default at between time s and t .
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Definition 2.3.5 (Model Risk). Model risk is a broad term for the various risk that occurs when using and choosing a
model. In this thesis, we use the definition of model risk describes in [11]; How different models, which all price back
market instruments, can give different risk forecasts.

Definition 2.3.6 (Additional valuation adjustment (AVA)). Additional valuation adjustment (AVA) is the difference be-
tween the fair value and the prudent value. AVA is used in the calculation of capital reserve requirement of a bank and
exists out of number of components. One of those components is the model risk AVA, which quantifies the risks of differ-
ent models [13].





3
Interest rate modeling

In this chapter, the one-factor Hull-White short-rate model is presented. Moreover, the effect of negative interest rates is
discussed and the Brace Gątarek Musiela Model is explained.

3.1. Hull-White model
The one-factor Hull-White model is a short-rate model, which is driven by a mean-reverting process. The dynamics of
the Hull-white model are given by [19]

dr (t ) = (θ(t )−αr (t ))dt +σhw (t )dW (t ) (3.1)

with α the constant mean-reversion parameter and dW (t ) a Brownian motion under the risk-neutral measure Q; σhw (t )
is the short-rate volatility; θ(t ) the long-term mean to which the interest rate, r (t ), reverts. In [15], different calibration
techniques are discussed. The trade-off is made between a model that perfectly fits the observed calibration inputs and
a stable optimisation procedure. The authors conclude that a constant mean-reversion parameter, α, and time-varying
volatility, σhw (t ), provide a good balance between fitting and stability. The mean-reversion parameter is chosen a-priori
and the calibration of the volatility will be discussed in section 4.2.1.

To obtain an analytical expression for r (t ), Itô’s Lemma is used with y(t ) = r (t )eαt . It follows that dy(t ) is given by

dy(t ) = ∂y(t )

∂t
dt + ∂y(t )

∂r (t )
dr (t ) (3.2)

=αr (t )eαt dt +eαt dr (t )

Now using equation (3.1) we find
dy(t ) = eαt (

θ(t )dt +σhw (t )dW (t )
)

(3.3)

Integrating equation (3.3) gives

y(t ) = y(t0)+
∫ t

t0

θ(s)eαs ds +
∫ t

t0

σhw (s)eαs dW (s) (3.4)

Substitution of y(t ) = r (t )eαt in equation (3.4) gives

r (t ) = r (t0)e−α(t−t0) +e−αt
∫ t

t0

θ(s)eαs ds +e−αt
∫ t

t0

σhw (s)eαs dW (s) (3.5)

Since the increments of a Brownian motion have a normal distribution, we find that the short-rate, r (t ), has a normal
distribution with mean

E[ r (t )|Ft0 ] = r (t0)e−α(t−t0) +
∫ t

t0

θ(s)e−α(t−s)ds (3.6)

For the variance the Itô’s isometry property is used stated by:

Theorem 3.1.1 (Itô’s isometry). Itô’s isometry theorem states that for a Brownian motion W (t ) and stochastic process
g (t ) [26]

E

[(∫ T

t0

g (t )dW (t )

)2]
=

∫ T

t0

E
[

g 2(t )
]

dt (3.7)

11
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Using Itô’s isometry the variance for r(t) is given by

Var
[

r (t )|Ft0

]= ∫ t

t0

σ2
hw (s)e−2α(t−s)ds (3.8)

Moreover, the term θ(t ) is chosen in such a way to fit the initial term structure. Therefore, for θ we find a time-dependent
equation, defined by the instantaneous forward rate at time 0 [7]

θ(t ) = ∂ f r (t0, t )

∂t
+α f r (t0, t )+

∫ t

t0

σ2
hw (s)e−2α(t−s)ds (3.9)

Appendix A explains how the formula of θ(t ) is obtained.

3.1.1. Zero-coupon bond under Hull-White model
The ZCB is given in definition 2.22 by

P (t ,T ) = E
[

exp

(
−

∫ T

t
r (s)ds

)∣∣∣∣Ft

]
(3.10)

Since the Hull-White model belongs to the class of affine processes [26], P (t ,T ) can be defined in terms of A(t ,T ) and
B(t ,T ) by

P (t ,T ) = exp(A(t ,T )+B(t ,T )r (t )) (3.11)

Henceforth, to find A(t ,T ) and B(t ,T ) consider the integration of equation (3.5):∫ T

t
r (u)du = r (t )

∫ T

t
e−α(u−t )du +

∫ T

t

∫ u

t
θ(s)e−α(u−s)dsdu +

∫ T

t

∫ u

t
σhw (s)e−α(u−s)dW (s)du

= r (t )

α

(
−e−α(T−t ) +1

)
+

∫ T

t

θ(s)

α

(
−e−α(T−s) +1

)
ds +

∫ T

t

σhw (s)

α

(
−e−α(T−s) +1

)
dW (s) (3.12)

where in the second line the integral of s and u are interchanged. Inserting this in equation (3.10) gives

P (t ,T ) = E
[

exp

(
−

∫ T

t
r (s)ds

)∣∣∣∣Ft

]
= E

[
exp

(
r (t )

α

(
e−α(T−t ) −1

)
+

∫ T

t

θ(s)

α

(
e−α(T−s) −1

)
ds +

∫ T

t

σhw (s)

α

(
e−α(T−s) −1

)
dW (s)

)∣∣∣∣Ft

]
= exp

(
r (t )

α

(
e−α(T−t ) −1

)
+

∫ T

t

θ(s)

α

(
e−α(T−s) −1

)
ds + 1

2

∫ T

t

(
σhw (s)

α

(
e−α(T−s) −1

))2
ds

)
(3.13)

where in the third term itô’s isometry is used.

Therefore, P (t ,T ) can be written as
P (t ,T ) = exp(A(t ,T )+B(t ,T )r (t )) (3.14)

with A(t ,T ) defined as

A(t ,T ) =
∫ T

t
θ(s)B(s,T )ds + 1

2

∫ T

t
σhw (s)2B(s,T )2ds (3.15)

and B(t ,T ) as

B(t ,T ) = 1

α

(
e−α(T−t ) −1

)
(3.16)

Moreover, the ZCB is log-normally distributed with SDE [15]

dP (t ,T )

P (t ,T )
= r (t )d t +σhw (t )B(t ,T )dW (t ) (3.17)

To find a closed-form solution for the integrated variance we consider the bond ratio between the fixing date, S, and
payment date, T with t ≤ S < T . In the T -forward measure, this has the dynamics

d
P (t ,S)

P (t ,T )
= P (t ,S)

P (t ,T )
σhw (t ) (B(t ,S)−B(t ,T ))dW T (t ) (3.18)

with integrated variance

Var[P (S,T )|Ft ] =
∫ S

t
σ2

hw (u) (B(u,S)−B(u,T ))2 du

=
∫ S

t
σ2

hw (u)

(
1

α

(
e−α(S−u) −e−α(T−u)

))2
du

=
∫ S

t
σ2

hw (u)e−2α(S−u)
(

1

α2

(
1−2e−α(T−S) +e−2α(T−S)

))
du

= Var[r (S)|Ft ]

(
1

α
(e−α(T−S) −1)

)2
(3.19)



3.2. Negative rates 13

Note that
(

1
α (e−α(T−S) −1)

)2 = B(S,T )2, with B(t ,T ) defined in equation (3.16). The integrated variance is used in Black’s

formula for zero-coupon bond options. In section 4.2, this will be used for calibration of the volatility parameter.

3.1.2. Zero mean-reversion parameter
We want to compare both models in a similar setting. Since the BGM model does not contain a mean-reversion parame-
ter, the mean-reversion parameter, α, of the Hull-White model is chosen to be zero.

The short-rate dynamics with a mean-reversion parameter of zero become

dr (t ) = θ(t )dt +σhw (t )dW (t ) (3.20)

with long-term mean

θ(t ) = ∂ f r (0, t )

∂t
+

∫ t

t0

σ2
hw (s)ds (3.21)

The derivation of the long-term mean is given in appendix A.2. The integrate short-rate dynamics are given by

r (t ) = r (t0)+
∫ t

t0

θ(s)ds +
∫ t

t0

σhw (s)dW (s) (3.22)

The integrate short-rate is given by∫ T

t
r (u)du = r (t )

∫ T

t
du +

∫ T

t

∫ u

t
θ(s)dsdu +

∫ T

t

∫ u

t
σhw (s)dW (s)du

= r (t )(T − t )+
∫ T

t
θ(s)(T − s)ds +

∫ T

t
σhw (s)(T − s)dW (s) (3.23)

Therefore, A(t ,T ) and B(t ,T ) in equation (3.14) are given by

A(t ,T ) =−
∫ T

t
θ(s)(T − s)ds + 1

2

∫ T

t
σ2

hw (s)(T − s)2ds (3.24)

B(t ,T ) =−(T − t ) (3.25)

Furthermore, the integrated zero-coupon bond variance with a zero mean-reversion parameter becomes, using equation
(3.26) and (3.25):

Var[P (S,T )|Ft ] = Var[r (S)|Ft ] (T −S)2 (3.26)

3.2. Negative rates
Since negative interest rates are occurring more and more often, some interest rate models need adjustments. The Hull-
White model allows negative rates. However, Black’s formula for pricing derivatives does not allow negative rates due to
the logarithmic term. Therefore, a shifted Black model is used, of the form:

V C PL
i (t ) = Niτi P (t ,T ) ((F (t ,S,T )+δ)Φ(d+)− (K +δ)Φ(d−)) (3.27)

V F L
i (t ) = Niτi P (t ,T ) ((K +δ)Φ(−d−)− (F (t ,S,T )+δ)Φ(−d+)) (3.28)

d± =
ln(( F (t ,S,T )+δ)

(K+δ) )± 1
2σ

2(S − t )

σ
p

S − t
(3.29)

where the displacement is 0 ≤ δ ≤ 1
τi

[5]. Moreover, the assumption is made that there exists a real valued δ for which

F (t ,S,T )+δ> 0 for all i ∈ {0,1, . . . , N −1}. We define the displaced forward rate, F̃ (t ,S,T ) as

F̃ (t ,S,T ) = F (t ,S,T )+δ. (3.30)

The Brace Gątarek Musiela model also does not allow negative rates and will be discussed in the next section.

3.3. Brace Gatarek Musiela (BGM) model
In this section, a short description of the used BGM model is given.

In the BGM model, the forward rates are modelled and not the short-rate as in the Hull-White model. For each expiry
date, Ti , the forward rate, F (t ,Ti ,Ti+1), is modelled with individual dynamic. Recall that the forward rate is defined in
equation (2.25). The BGM model follows a log-normal distribution. Therefore, the forward rate volatilities can be found
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using Black’s formula for caps and floors. Since a log-normal process does not allow for negative rates, displaced for-
ward rates, F̃ (t ,S,T ), are used, defined in equation (3.30). In this thesis, a 1-factor BGM model is used, according to [32].
Herein, the (displaced) forward rate dynamics are given by

dF (t ,Ti ,Ti+1) = dF̃ (t ,Ti ,Ti+1) = F̃ (t ,Ti ,Ti+1)σbg m (Ti )dW Ti+1 (t ) t ∈ [0,Ti ] (3.31)

where the drift is set to 0 and σbg m (Ti ) is the (relative, instantaneous) volatility for expiry date Ti and chosen to be con-

stant. The forward rates have initial conditions F̃ (t0,Ti ,Ti+1).

Note that each forward rate has a Brownian motion under its own measure, Ti+1-measure. A homogeneous measure
is introduced to simplify the simulation, namely the spot measure, QTq(t ) with q(t ) defined as an integer for which
Tq(t )−1 ≤ t < Tq(t ) holds. The spot-measure has N (t ) as numéraire, which is defined with N (t0) = 1 and, for Ti with
i ∈ {0,1, . . . , N −1}, by

N (Ti ) =
i−1∏
j=0

1

P (T j ,T j+1)

=
i−1∏
j=0

(1+τi F (T j ,T j ,T j+1)). (3.32)

where the definition of the forward rate is used, equation (2.25). Moreover, to understand the formulation of N (t ) consider
the following process: at time T0 = 0 one euro is invested in a zero-coupon bond maturing at time T1. Then, at time T1,
the obtained money is

1

P (T0,T1)
= 1+τ0F (T0,T0,T1) (3.33)

This amount is reinvested in the zero-coupon bond maturing at time T2 and the value of the portfolio is

1

P (T0,T1)

1

P (T1,T2)
= (1+τ0F (T0,T0,T1))(1+τ1F (T1,T1,T2)) (3.34)

Continuing this process until time TN−1.

To change from the Ti+1-measure to the spot-measure, QTq(t ) , we first show the transition from the Ti+1-measure to
the Ti -measure. Hence, P (t ,Ti ) can be written as

P (t ,Ti ) = P (t ,Tq(t ))
i−1∏

j=q(t )

P (t ,T j+1)

P (t ,T j )

= P (t ,Tq(t ))
i−1∏

j=q(t )

1(
1+τ j F (t ,T j ,T j+1)

) (3.35)

Using equation (3.35), the Radon-Nikodym derivative to change from the Ti+1-measure to the spot measure Ti+1-measure
is given by

λi
i+1(t ) = dQTi

dQTi+1

∣∣∣∣∣
F (t0)

= P (t ,Ti )/P (t0,Ti )

P (t ,Ti+1)/P (t0,Ti+1)
= (1+τi F (t ,Ti ,Ti+1))

P (t0,Ti+1)

P (t0,Ti )
(3.36)

From which follows

dλi
i+1(t ) = P (t0,Ti+1)

P (t0,Ti )
τi dF (t ,Ti ,Ti+1)

= P (t0,Ti+1)

P (t0,Ti )
τi F̃ (t ,Ti ,Ti+1)σbg m (Ti )dW Ti+1 (t ) (3.37)

where equation (3.31) is used. Hereafter, dividing by λi
i+1(t ) gives

dλi
i+1(t )

λi
i+1(t )

=
τi F̃ (t ,Ti ,Ti+1)σbg m (Ti )

1+τi F (t ,Ti ,Ti+1)
dW Ti+1 (t ) (3.38)

Now, using Girsanov theorem, we obtain

dW Ti+1 (t ) = dW Ti (t )+
τi F̃ (t ,Ti ,Ti+1)σbg m (Ti )

1+τi F (t ,Ti ,Ti+1)
dt (3.39)
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Moreover, when applying this multiple times, one obtains

dW Ti+1 (t ) = dW Ti (t )+
τi F̃ (t ,Ti ,Ti+1)σbg m (Ti )

1+τi F (t ,Ti ,Ti+1)
dt

= dW Ti−1 (t )+
(
τi F̃ (t ,Ti ,Ti+1)σbg m (Ti )

1+τi F (t ,Ti ,Ti+1)
+ τi−1F̃ (t ,Ti−1,Ti )σi−1

1+τi−1F (t ,Ti−1,Ti )

)
dt

...

= dW Tq(t ) (t )+
i∑

j=q(t )

τ j F̃ (t ,T j ,T j+1)σbg m (T j )

1+τ j F (t ,T j ,T j+1)
dt (3.40)

Therefore, the dynamics of F̃ (t ,S,T ) under the QTq(t ) -measure become

dF̃ (t ,Ti ,Ti+1)

F̃ (t ,Ti ,Ti+1)
=σbg m (Ti )

i∑
j=q(t )

τ j F̃ (t ,T j ,T j+1)σbg m (T j )

1+τ j F (t ,T j ,T j+1)
dt +σbg m (Ti )dW Tq(t ) (t ) t ∈ [0,Ti ] (3.41)

The solution for the SDE is given with Ito’s lemma by

F̃ (t ,Ti ,Ti+1) = F̃ (t0,Ti ,Ti+1)exp

(∫ t

t0

σbg m (Ti )dWQspot
(s)+

∫ t

t0

(
σbg m (Ti )

i∑
j=q(s)

τ j F̃ (s,T j ,T j+1)σbg m (T j )

1+τ j F (s,T j ,T j+1)
− 1

2
σbg m (Ti )2

)
ds

)
(3.42)

3.3.1. Interpolation of the discount factors
The zero-coupon bond for the expiry date, Ti+1, is given by

P (T0,Ti+1) =
i∏

j=0

1

1+τn F (T j ,T j ,T j+1)
(3.43)

However, for non-expiry dates, an interpolation technique is needed. The author of [32] compared different interpolation
techniques and introduced a technique in which the forward rates are interpolated and for which a zero-coupon bond at
time t with maturity T is given by

P (t ,T ) =
1+ (Tq(T ) −T )

(
fT F̃ (t ,Tq(T )−1,Tq(T ))−δ)

1+ (Tq(t ) − t )
(

ft F̃ (t ,Tq(t )−1,Tq(t ))−δ) (
q(T )−1∏
i=q(t )

1

1+τi F (t ,Ti ,Ti+1)

)
(3.44)

with

ft =
F̃ (t0, t ,Tq(t ))

F̃ (t0,Tq(t )−1,Tq(t ))
(3.45)





4
Simulation and calibration

This chapter will discuss the simulation and calibration of both the Hull-White model and the BGM model. For the Hull-
White model, the volatility function, σhw (t ), needs to be calibrated. For the BGM model, each forward rate, Fi , has a
constant volatility, σbg m (Ti ). In [29], a complete overview of different volatility and calibration structures is given. For
ease of implementation, it is chosen to use constant volatility for each forward rate.

First, the simulation of both models will be discussed. After which, we will discuss which calibration instrument will
be used for both models and explain the calibration for both models. Finally, this chapter concludes with the difference
between a single and multi-curve framework.

4.1. Monte Carlo simulation
In this thesis, Monte Carlo simulation is used for simulation of the Hull-White dynamics, equation (3.20), and the BGM
dynamics, equation (3.41), which both depend on a random process, the Brownian process. Therefore, a large number of
paths are generated for the short-rate (or forward rate) to reach a broad set of possible outcomes. The advantage of Monte
Carlo simulation is that it is easy to implement and an intuitive technique. To create the random paths, first, standard
normal random numbers are drawn for each path and each time point1. The convergence of the Monte Carlo simulated
is given by one divided by the square root of the number of paths used in the simulation [26]. The next step is to choose
the type of discretisation of the integral.

One approach of discretisation is Euler’s discretisation which is based on the left rectangle rule for an uniform partition
a = x1 < ·· · < xN = b with xi −xi−1 =∆: ∫ b

a
f (x)dx = lim

∆→0

b∑
x=a

f (xi )∆ (4.1)

For a stochastic derivative, S(t ), with drift m(t ) and diffusion σ(t ), and dynamics

dS(t ) = m(t )dt +σ(t )dW (t ) (4.2)

the Euler discretisation for each next (constant) time step of size ∆ is given by

S(t +∆) = S(t )+m(t )∆+σ(t )
p
∆Z (4.3)

where Z has a standard normal distribution, N (0,1). For an Euler discretisation, the local error is equal to the square of
the step size.

Another approach is that of an exact solution of the integration (of equation (4.2), which avoids the error that is caused by
the step size in Euler’s discretisation. The exact solution is given by integration and using the property, aZ +b ∼N (b, a2),
of the normal distribution of Z , such that :

S(t +∆) = S(t )+
∫ t+∆

t
m(s)ds +

√∫ t+∆

t
σ2(s)ds ·Z (4.4)

When m(t ) and σ(t ) are independent of S(t ), the integral can be calculated analytically. However, when they do contain
S(t ) this is not possible and Euler’s discretisation should be chosen.

1Standard normal random numbers are generated with numpy.random.normal.
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4.1.1. Hull-White simulation
For the simulation of the interest-rate, r (t ), the exact solution is used. In equation (3.20), the dynamics of r (t ) are given.
Note that in the dynamics of r (t ), dr (t ), do not depend on r (t ). Therefore, the equation (3.22) is rewritten using the
property, aZ +b ∼N (b, a2), of the standard normal distribution Z , such that the integrals over the time interval [tk , tk+1]
are given by

r (tk+1) = r (tk )+
∫ tk+1

t
θ(s)ds +

√∫ tk+1

tk

σ2
hw (s)ds ·Z (4.5)

In this thesis,σhw (s) is chosen to be piecewise-constant withσhw (Ti−1) constant in the interval of maturities, [T j ,T j+1).
Therefore, the time steps are chosen such that the maturity dates T j are exactly on one of the simulated times. For
σhw (s) ∈ [tk , tk+1] the variance can be written as:∫ tk+1

tk

σ2
hw (s)ds =σ2

hw (tk )
(
tk+1 − tk

)
(4.6)

Furthermore, the integral in the drift term is given by∫ tk+1

tk

θ(s)ds =
∫ tk+1

tk

∂ f r (0, s)

∂s
ds +

∫ tk+1

tk

∫ s

t0

σ2(u)duds

= f r (0, tk+1)− f r (0, tk )+
∫ tk+1

tk

(∫ s

tk

σ2(u)du +
∫ tk

t0

σ2(u)du

)
ds

= f r (0, tk+1)− f r (0, tk )+ 1

2
(tk+1 − tk )2σhw (tk )2 + (tk+1 − tk )

k−1∑
j=0

σhw (t j )2(t j+1 − t j ) (4.7)

where in the last line the fact that the volatilities are piece-wise constant is used. An exact solution for the money-market
account and zero-coupon bond simulation are found in a similar manner and can be found in Appendix B.2 and the
simulation including the mean-reversion parameter in Appendix B.1.

4.1.2. BGM simulation
In equation (3.42) the exact solution for the forward rate dynamics are given. Since there is no analytic solution for the
drift term due to terms of F̃ (s,T j ,T j+1), F (s,T j ,T j+1), it chosen to use Euler’s discretisation. The discretisation for each
time step from tk to tk+1 is given by

F̃ (tk+1,Ti ,Ti+1) = F̃ (tk ,Ti ,Ti+1)e
σbg m (Ti )

p
tk+1−tk Z+

(
σbg m (Ti )

∑i
j=q(tk )

τ j F̃ (tk ,T j ,T j+1)σbg m (T j )

1+τ j F (tk ,T j ,T j+1) − 1
2 (σbg m (Ti ))2

)
(tk+1−tk )

(4.8)

4.2. Calibration
The Hull-White model and BGM model are generally calibrated to financial interest rate derivatives that are liquid in the
market: caps, floors or swaptions. The choice of calibration may depend on the products that are simulated, on the avail-
able data or the computation time. Since this thesis compares the Hull-White model against the BGM model, we want to
calibrate to the same market instrument.

When calibrating to cap or floors a set of maturity dates, Ti , is chosen with Ti ∈ {T1, . . . ,Tn }. For the Hull-White model,
for each period, a volatility can be found; equation (4.14). For the BGM model, the caplet/floorlet volatilities of each pe-
riod can directly be used as constant volatility for each corresponding forward rate; equation (4.16). When calibrating to
swaptions, a set of swaptions need to be chosen with different swaption maturities, Ti , and the swap tenor, swap length,
is given by Tn . Where the Ti can be used to bootstrap the Hull-White volatilities and Tn is to be chosen, see Appendix C.3.
For the BGM model, the swap rate volatility can be approximated with a weighted sum of BGM volatilities, see equation
(5.10), which can be used to find the BGM volatilities. The swap tenors are often chosen with the co-terminal property,
where all swap tenors are chosen such that all swaps end on the same date. The co-terminal depends on the portfolio
that needs to be simulated. For example, if the portfolio only exists out of one 5 year swap, the co-terminal is given in
Table 4.1.

swaption expiry (Ti ) swap tenor (Tn)
1 4
2 3
3 2
4 1

Table 4.1: Co-terminal for the calibration of a 5 year swap with Ti the swaption expiry and Tn the swap tenor
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For the BGM model, calibrating to caplets has a high preference for a short calibration time, as these volatilities can
directly be used in the forward rate dynamics. However, if only one swap is to be priced and the swaption data cor-
responding with this swap is available, one does not need to calibrate to caplets and can determine the EPE from this
swaption data. Nonetheless, the research question is to simulate a whole portfolio. The calibration to swaption brings
a new problem: which co-terminals to choose if the maturities of the swap in the portfolio differ. Since the calibration
to swaptions is not guaranteed to be more accurate than caplets for each portfolio, it is chosen to calibrate to caplets.
Another advantage of caplets is that the calibration instruments do not need adjustments every time a new instrument is
added to the portfolio.

4.2.1. Hull-White calibration
The caplets used for calibration have fixing dates Ti ∈ {T1, . . . ,Tn } and an at-the-money strike price K . For the calibration,
first, the mean-reversion parameter, α, is chosen, after which we will calibrate the time-dependent volatility. Recall that
the mean-reversion parameter, α, is chosen to be zero.

The volatility, σhw (t ), is simplified to a piecewise-constant volatility, σhw (Ti−1), for which, for each expiry 0 < T1 <
·· · < Tn a constant σhw (Ti−1) will be found for interval [Ti−1,Ti ), see Figure 4.1.
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0.5

T2
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T8

σhw (T2) σhw (T3)

Years

Figure 4.1: Piecewise-constant volatility grid with ∆= 0.25 years

The piecewise constant volatility for the Hull-White model can be found by local optimisation (bootstrapping) or by
global optimisation. In bootstrapping, each next volatility term is based on all the previously-found volatilities. In global
optimisation, all the volatility terms are optimised at the same time.

Local optimisation Local optimisation can be done by bootstrapping the Hull-White volatilities to the market-implied
caplet volatilities. Moreover, the fact that a caplet payoff can be written as a put on a zero-coupon bond is used. For a
detailed description of the calibration with all calculations, we refer to Appendix C.1. In short, for expiry time Ti and
τi = Ti+1 −Ti (adjusted to the day count convention), the caplet payoff can be written as

V
cpl

i (t ,Ti ,Ti+1) = N (1+τi K )P (t ,Ti )ETi

[
max

(
1

1+τi K
−P (Ti ,Ti+1),0

)∣∣∣∣Ft

]
(4.9)

It follows that

V
cpl

i (t ,Ti ,Ti+1) = (1+τi K )V zcb
p (t ,Ti ,Ti+1,

1

1+τi K
) (4.10)

V zcb
p (t ,Ti ,Ti+1, X ) = N P (t ,Ti )

(
XΦ(−dzcb− )−P (t ,Ti ,Ti+1)Φ(−dzcb+ )

)
(4.11)

dzcb± = ln( P (t ,Ti ,Ti+1)
X )± 1

2 Var[P (Ti ,Ti+1)|Ft ]√
Var[P (Ti ,Ti+1)|Ft ]

(4.12)

Now, to find the volatilities for the Hull-White model, first, the caplet price is calculated, using the market-implied volatil-
ities. This caplet price is used to find the variance of the zero-coupon bond, see equations (4.10)-(4.12). Hereafter, to find
the Hull-White volatilities, σhw (Ti−1), each market zero-coupon bond variance is set equal to the zero-coupon bond
variance under the Hull-White model.

Therefore, the objective function is stated as:

Var[P (t0,Ti ,Ti+1,σhw (Ti−1))] =σzcb
mkt (t0,Ti ,Ti+1,K )2(Ti − t0) (4.13)

where the closed-form solution of the zero-coupon bond variance under the Hull-White model for zero-mean reversion
is given in equation (3.26). From which Hull-White volatilities,σhw (Ti−1,Ti )2, can be found and for zero-mean reversion
are given by

σhw (Ti−1)2 =
σzcb

mkt (t0,Ti ,Ti+1,K )2(Ti−t0)

(Ti+1−Ti )2 −∑i−1
k=1σhw (Tk−1)2(Tk −Tk−1)

Ti −Ti−1
(4.14)

The caplet volatility calibration for a Hull-White model with mean-reversion parameter is given in equation (C.7).
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Global optimisation Another approach is optimising all the volatility terms at the same time, in a multi-variable
global optimisation, where the Hull-White volatilities are optimise by comparing the implied caplet Hull-White volatilities
with the market caplet volatilities for each expiry time (Ti ).

Ω(σhw (T0), . . . ,σhw (Tn−1)) = min
n∑

i=1

[
caplet vol market(Ti )−caplet vol hw(Ti )

]2 (4.15)

with the constraint that all the volatilities,σhw (Ti ), are positive. Moreover, one might consider multiplying the difference
with a large number since the objective function works with many small numbers (<1) and a squared error.
For the Hull-White model, the volatility is given in equation (4.14). Moreover, both the local optimisation as the global
optimisation will be compared. A recap of the Hull-White calibration process is shown in Figure 4.2.

Caplet
Volatility

Eq. (2.35) Caplet
Price

Eq. (4.10) ZCB Put
Price

Eq. (4.12) ZCB Put
Volatility

Eq. (4.14) HW
Volatility

Figure 4.2: Hull-White volatility calibration process to caplets for each bootstrapping step with reference to the equations for the given
change

4.2.2. BGM calibration
The BGM calibration to caps uses the fact that the BGM model has a log-normal distribution and Black’s formula (defi-
nition 2.2.8). Moreover, it is chosen to have a constant volatility for each forward rate and calibrate to ATM caplets. Now,
using Black’s formula for caplets one finds that the dynamics of a forward rate Fi (t ) := F (t ,Ti ,Ti+1) the BGM volatility,
σbg m (Ti ), is given by

σbg m (Ti ) =σcpl
mkt (t0,Ti ,Ti+1) (4.16)

where σ
cpl
mkt (t0,Ti ,Ti+1) is the market caplet volatility and described by Black’s formula as an option on the forward rate

F (t ,Ti ,Ti+1)).

For the BGM model, the volatility is given in equation (4.16). A recap of the BGM calibration process is shown in Fig-
ure 4.3.

Caplet
Volatility

Eq. (4.16) BGM
Volatility

Figure 4.3: Caplet volatility can directly be used in the BGM model

4.3. Single-curve and multi-curve framework
The multi-curve framework has received more focus since the financial crisis in 2007/2008. Before this crisis, people may
have underestimated counterparty risk, as people assumed banks were stable companies and governments were there
to back them up. Therefore, the difference between, for example, the 3-months EURIBOR and 6-months EURIBOR were
close to zero (or other reference rates). In the new setting, the risk of default needs to be incorporated, where longer tenor
periods have higher risks. Consequently, a spread between the different yield curves arose [3]. Henceforth, we introduce
a multi-curve framework to include both the discounting yield curve, P d (t ,T ), and the multiple forecasting yield curves,
P fi (t ,T ), for each tenor structure, often 1-month, 3-months, 6-months and 12-months.

First, we explain how the yield curves are obtained from the market, after which we present how to implement the multi-
curve framework.

The first step in obtaining the discounting curve (and similarly the forecasting curve) is stripping of the discount/forecast
factors from some market instruments [1] (the discount/forecast factors are given as data input in our simulation). The
discount factors are retrieved for each relevant date of the interest rate products in the portfolio. Then, the second step
is to interpolate these discount factors to obtain a continuous function for all time points. Remark that the Hull-White
model uses a discounting/forecasting yield curve for the instantaneous forward rate in θ, see equation (3.9). Therefore,
the yield curve should be twice differentiable and continuous. According to [16], a cubic spline interpolation contains
these properties. Therefore, cubic spline interpolation is used to obtain a continuous curve. The forecasting curves are
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only obtained for the relevant tensor structures, which correspond with the tenor structure of the derivatives in a portfolio.

The difference between a single-curve and multi-curve framework is that the discounting and forecasting curves are not
the same. Moreover, in a multi-curve framework, one wants to obtain the discount factors and forecast factors for future
time points (through Monte Carlo simulation). To obtain multiple yield curves from the simulation, first, a single-curve
simulation is performed, after which the other curves are obtained through the initial spreads between the curves [25],
[34]. The spread, at time 0 with maturity T , between the simulated discount/forecast factor, P A(t ,T ), and another factor,
P B (t ,T ) (e.g. B = {d ,1M ,3M ,6M ,12M }/A), is given by

Ps (0,T ) =
P B

mkt (0,T )

P A
mkt (0,T )

. (4.17)

Moreover, the assumption is made that the spreads between the initial curve, P A(t ,T ), and derived curves, P B (t ,T ), are
deterministic and not changed with time. Now, the discount/forecast factors, P B (t ,T ), for a future time point t can be
derived by:

P B
hw (t ,T ) = P A

hw (t ,T )Ps (0,T ) = P A
hw (t ,T )

P B
mkt (0,T )

P A
mkt (0,T )

(4.18)

Under the risk-neutral measure with numéraire, M(t ), the zero-coupon-bond over numéraire values is a martingale and,
thus, the simulated discount/forecast factors at time 0 are equal to the initial market discount/forecast factors, the fol-
lowing holds:

E

[
M(0)

M(t )
P A

hw (t ,T )

∣∣∣∣F0

]
= P A

hw (0,T ) = P A
mkt (0,T ) (4.19)

Now, using this equation, the expectation of the derived discount/forecast factors is given by

E

[
1

M(t )
P B

hw (t ,T )

]
= E

[
1

M(t )
P A

hw (t ,T )
P B

mkt (0,T )

P A
mkt (0,T )

]
= P B

mkt (0,T ) (4.20)

resulting in a simulated discount/forecast factors, P A
hw (t ,T ), and a way to derive other factors, P B

mkt (t ,T ) for multiple

paths and time points. For example, let the simulated factors be the 3-months forecasting, P 3m
hw (t ,T ), and the factors one

wants to obtain be the discount factors, P d
hw (t ,T ), and the 6-month forecasting factors, P 6m

hw (t ,T ). These are then given
by

P d
hw (t ,T ) = P 3m

hw (t ,T )
P d

mkt (0,T )

P 3m
mkt (0,T )

(4.21)

and

P 6m
hw (t ,T ) = P 3m

hw (t ,T )
P 6m

mkt (0,T )

P 3m
mkt (0,T )

. (4.22)

Furthermore, to determine which curve to simulate, consider the Hull-White model calibration to a zero-coupon bond
put value using a discounting curve, P d (0, t ), and a forecasting curve, P f j (0, t ). Next, equation (4.9) is rewritten con-
sidering both curves, shown in Appendix D. Since we can rewrite this equation to only the forecasting curve, P f j (0, t ),
calibrating to the forecasting curve is a logical choice. Moreover, for the BGM model, the forward rate is simulated for
which forward factors are used. Therefore, it is chosen to use the forecasting curve as input.

These equations give a similar setting for the calibration as in the single curve framework, only now the model is cali-

brated using the forecasting curve, P
f j

mkt (0,T ). Therefore, it is chosen to simulate the forecasting curve, P
f j

hw (0,T ), in the
single-curve simulation. Consequently, the forecasting curve is an input for the instantaneous forward rate used in θ(t ).

For the BGM model, forwards with different tenor structures are needed to price swaps. First, the discount factors,

P
f j

bg m (t ,T ), are calculated from which the corresponding forward rates, F
f j

i (t ), can be found with the forward rate defi-

nition; equation (2.25).

Moreover, if a portfolio uses multiple forecasting curves, one needs to choose the forecasting curve for simulation, which
curve is most used in a portfolio. The forecasting curve that is used as input for the simulation is chosen with Algorithm 1
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Algorithm 1 How to choose simulation curve

sum = { }
for ti in tenorlist do

sum[ti] = 0
for swap in swaplist do

if floatingtenor is ti then
sum[ti] = sum[ti] + remaining swap duration × swap notional

end if
end for

end for
simulationtenor = max(sum.items(), key=lambda x: x[1])[0]

A recap of the single-curve and multi-curve simulation process for the Hull-White model and BGM model is shown in
Figures 4.4, 4.5.
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Figure 4.4: The different simulation structures and inputs for single and multi-curve Hull-White Monte Carlo simulation. The Hull-
White single-curve framework has as input a initial yield curve, Pmkt (0,T ), a mean-reversion parameter α and market caplet volatilities

σ
cpl
mkt

(Ti ). Hereafter, Hull-White model volatilities σhw (t ), Hull-White model long-term mean θ(t ) are calibrated and the Monte Carlo
simulation of the short-rate, r (t ), is done. One yield curve is obtained from this short-rate for future time points, Phw (t ,T ). The differ-

ence with the multi-curve framework is that a certain forecasting curve is used as input, P
f
mkt

(0,T ) with f either 1M, 3M, 6M or 12M,

and multiple yield curves are obtained for future time points, P d
hw (t ,T ), P

f j
hw

(t ,T ) with f j ∈ {1M ,3M ,6M or 12M } \ f
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Figure 4.5: The different simulation structures and inputs for single and multi-curve BGM Monte Carlo simulation. The BGM single-

curve framework has as input one initial yield curve, Pmkt (0,T ) and market caplet volatilities σ
cpl
mkt

(Ti ). Hereafter, the Monte Carlo
simulation of the forward rates, Fi (t ), is done. From this forward rates one yield curve is obtained for future time points, Pbg m (t ,T ).

The difference with the multi-curve framework is that a certain forecasting curve is used as input, P
f
mkt

(0,T ) with f either 1M, 3M, 6M

or 12M. Therefore, a forward rate F
f

i (t ) is simulated with tenor structure f . Hereafter, multiple yield curves are obtained for future time

points, P d
bg m (t ,T ), P

f j
bg m

(t ,T ) with f j ∈ {1M ,3M ,6M or 12M } \ f . Last, with these forecast factors, P
f j
bg m

(t ,T ), the forward rate with

different tenor structures can be found.





5
Validation of the results

In this chapter, a validation of the results of the Hull-White model and BGM model is discussed. First, the local and the
global calibration of the Hull-White model are compared. Then, the validation of the calibration of both models is given,
where we will compare the simulated caplet volatilities and discounting/forecasting curves against market data. Last, we
provide a validation of the EPE and MTM of several single swaps. In the validation, we will consider different scenarios
with single curve and multi-curve and different accrual periods. Moreover, it is chosen to provide a relevant number of
different scenarios. However, not all scenarios will be shown, as in some cases, many combinations are possible, which
will not enhance the validation. In the validation, the simulated caplet volatilities will be checked against the market
volatilities. For the comparison, we will use a confidence interval of 95 %.

5.1. Hull-White model calibration methods
The calibration for the Hull-White model is chosen to have a time-dependent volatility and no mean-reversion. The
calibration of the Hull-White model is described in section 4.2. In this section, local and global calibration methods are
described. The results of the both methods are displayed in Figure 5.1.

(a) Hull-White model volatility (b) Implied caplet volatility (c) Caplet implied volatility error

Figure 5.1: Volatility of the local and global calibration of the Hull-White model. (a) Calibrated Hull-White model volatility. (b) Analyt-
ically calculated caplet volatility from model volatility compared with market caplet volatility. (c) Error between analytically calculated
caplet volatility and market in basis points (bp).

Recall that in finding the Hull-White volatility, σhw (t ), one first finds the Hull-White variance, σ2
hw (t ), given in equation

(4.14). During the local calibration, this value sometimes occurs to be negative. Therefore, if the exact calibrated value of
σ2

hw (t ) is negative, we set σ2
hw (t ) to zero (closest nonnegative value), see Figure 5.1 (a). Consequently, not all values are

exactly calibrated. In Figure 5.1 (c), the implied error due to the fact that an exact calibration is not possible is shown. At
the end of this section, we will explain why this effect occurs.

The computation time of the calibration of the three methods is shown in Table 5.1. Since the calibration time of the
global calibration is quite large, we try to improve the optimisation and call this method "Local & Global". Now, instead
of optimising the caplet volatility, we optimise to the zero-coupon bond volatility, which is the last step of the calibration,
shown in Figure 4.2. The optimisation function now becomes:

Ω(σhw (T0), . . . ,σhw (Tn−1)) = min
n∑

i=1

[
σzcb

mkt (t0,Ti ,Ti+1,K )2(Ti − t0)− (Ti+1 −Ti )2
i−1∑
k=0

σhw (Tk )2 (
Tk+1 −Tk

)]2

(5.1)
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with the constraint that all the volatilities, σhw (Ti ), are positive.

Table 5.1: The calibration time of the Hull-White volatilities. Taken the mean and standard division of 10 runs.

Method Mean (seconds) Standard deviation
Local 0.043 0.005

Global 30.4 1.24
Local & Global 3.57 0.35

The errors of the three methods are shown in Figure 5.1(c) and Table 5.2. The table shows that for the global optimisation
compared with the local optimisation, the mean square error reduces by a factor of 3 and the computation time of the
local optimisation increases by a factor of 85 compared to the "local&global" optimisation. Therefore, we recommend
choosing the local calibration for a fast calibration and a global optimisation calibration for the most accurate calibration.
In this thesis, we do not have a time limitation. Therefore, we choose to use the method with global optimisation, as this
method has the smallest error.

Table 5.2: Implied volatility error of different calibration methods for the Hull-White volatilities. The volatilities are in percentages (%).

Model Mean absolute error Max absolute error Mean squared error
Local 0.1055 1.256 6.89

Global 0.0703 0.636 2.19

To explain the effect where the optimal Hull-White variance becomes negative, recall equation (4.14). In this equation,
the Hull-White volatility, σi for the period [Ti−1,Ti ) is found by comparing the market zero-coupon bond variance to
the analytic Hull-White zero-coupon bond variance. The Hull-White zero-coupon bond variance is given by a sum of
all previous Hull-White variance multiplied with (Ti+1 −Ti )2. When this sum gets larger than the zero-coupon bond
market variance divided by (Ti+1−Ti )2, the numerator becomes negative. The largest errors in implied Hull-White caplet
volatility are around 15 and 20 years, Figure 5.1 (c), which could be explained by the forecasting curve, Figure 5.2. In this
figure, around 15 and 20 years, the slope declines slower; similar to the points, the Hull-White variance becomes negative.

Figure 5.2: Plot of the forecasting curve

To substantiate this theory, we implement a parabolic forecasting curve, which is generated by

P (0,T ) = −(T −6)2

1000
+1.02 (5.2)

and shown in Figure 5.3 (a). Equation (5.2) has its top at 6-years with a value of 1.02, similar to the forecasting curve.
Figure 5.3 (b) shows the Hull-White volatilities generated with the market caplet volatilities and the parabolic forecasting
curve. It shows that no negative volatilities occur. Figure 5.3 (c) shows the caplet market volatilities and implied Hull-
White volatilities are the same. Figure 5.3 (d)-(f) shows what happens when 0.001 is subtracted from the forecast factor at
a time of 10-years.
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(a) (b) (c)

(d) (e) (f)

Figure 5.3: Plots of the effect of subtraction of 0.001 of the forecast factor at time 10-years. (a) parabolic curve described in equation (5.2).
(b) Corresponding Hull-White volatilities. (c) The analytically calculated caplet volatility and market volatility. (d) The modified curve
with subtraction of 0.001. (b) Corresponding Hull-White volatilities. (c) The analytically calculated caplet volatility and market volatility.

In Figure 5.3 (e), for the period from 9-years to 9.5-years, a higher Hull-White volatility occurs than in Figure (b) and from
9.5-years to 10-years a lower Hull-White volatility. When we investigate equation (4.14), for the higher period Ti−1 = 9-
years, Ti = 9.5-years, Ti+1 = 10-years. Hence, for a lower value of P (0,Ti+1), this results in a higher zero-coupon bond put
price, see equation (4.11). Therefore, a higher Hull-White volatility. For the period from 9.5-years to 10-years, the exact
opposite happens, which results in a lower Hull-White volatility.

The inconsistencies that occur at 15-years and 20-years in the forecasting curve are caused by the retrieved data. The
retrieved curve data for those points uses its own interpolation technique and data points, which are for us unknown.

5.1.1. Smoothing the curve
There are many available smoothing functions with which one can smooth a curve or set of points. Since this is out of
the scope of our research question, we only give an example of the effect of a smoothing function. We will not provide an
overview of different smoothing techniques nor an analysis on the effect of smoothing the curve. One of the smoothing
functions is the Savitzky-Golay filter [31]. The filter can be applied to data points that are at an equal distance from each
other. Now, for a given window, w , and degree r , it fits a polynomial of degree r , for each group of w consecutive points.
The method generates a new set of points using these polynomials. A curve of 22 years with a 6-months accrual period
has 44 points. Figure 5.4 shows the application of a Savitzky-Golay filter with a window of 23 and polynomials of degree
3. It shows that the calibration can now perfectly fit the market caplet volatilities.

(a) Forecasting curve (b) Hull-White volatility (c) Caplet implied volatility

Figure 5.4: Plots of the application of the Savitzky-Golayfilter. (a) The market curve and the Savitzky-Golayfilter 6-months forecasting
curve. (b) The Hull-White volatility. (c) The analytically calculated caplet volatility and market volatility.
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5.2. Hull-White model and BGM model validation
The simulated Hull-White caplet volatilities (with global calibration) are compared with the market volatilities, shown in
Figure 5.5. In Figure 5.5 (b), the errors with market caplet volatilities are shown, and in (c), the errors with the analytically
implied volatilities (The implied caplet volatilities that are found using the Hull-White volatilities). The errors in Figure
5.5 (a)-(b) are because an exact calibration was not possible and not due to the simulation, as confirmed in (c). In Figure
5.5 (c), the market caplet volatilities are in between the confidence interval of the simulated volatilities.

(a) Simulation of caplet volatilities (b) Error market caplet volatility (c) Error analytical caplet volatility

Figure 5.5: Plots of the simulated Hull-White caplet volatilities with 10000 paths. (a) The market caplet volatility and the the Hull-White
simulation caplet volatility with a confidence interval of 95%. (b) The error between the simulated and market caplet volatility. (c)
The error between the simulated and analytically implied caplet volatility. The analytically caplet volatility is implied by the Hull-White
volatilities, which does not always have an exact solution.

For the BGM model, the caplet volatilities can be directly used as model volatilities, see equation (4.16). In Figure 5.6 (a),
the simulated caplet volatilities and confidence interval of the BGM model are shown. In (b), the errors of the simulated
and market caplet volatilities are given. The market volatilities are in the confidence interval of the simulated caplet
volatilities.

(a) Simulation of caplet volatilities (b) Error market caplet volatility

Figure 5.6: Plots of the BGM volatilities simulation with 10000 paths. (a) The market caplet volatility and the the BGM simulation caplet
volatility with a confidence interval of 95%. (b) The error between the simulated and market caplet volatility.

5.3. Validation of the calibration to market curves
In this section, we will compare the simulated discount and forecast factors with the market input.

The simulated Hull-White forecast factors should be equal to the market forecast factors by equation

P
f j

mkt(0,T ) = E
[

M(0)

M(t )
P f j (t ,T )

∣∣∣∣F0

]
(5.3)

with M(t ) the money account and P f j (t ,T ) the simulated zero-coupon bond given in equation (3.14). Therefore, both
forecast factors will be compared. The used forecast factors have a 6-months accrual period and will be either single or
multi-curve. The forecast factors for time, t , 1, 5 and 15 years, are shown in Figure 5.7. The figure shows that Hull-White
forecast factors are within the confidence interval. A multi-curve setting is used in Figure 5.7 (a) and (c) and a single-curve
setting in (b).
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(a) (b) (c)

Figure 5.7: Plots of the market forecast factors and the simulated Hull-White forecast factors P 6m (t ,T ) with a confidence interval of 95%
and 10000 paths. (a) Multi curve with t = 1Y and T varying. (b) Single curve with t = 5Y and T varying. (c) Multi curve with t = 15Y and
T varying

For the discount factors, in the Hull-White model the money-market account M(t ) is given in equation (B.6) and for the
BGM model the interpolated discount factors are given in equation (3.44). The relation between the market discount
curve, P disc

mkt (0, t ), and the money market account M(t ) is given by

P disc
mkt (0, t ) = E

[
P disc(t , t )

M(t )

∣∣∣∣∣F0

]
= E

[
1

M(t )

∣∣∣∣F0

]
(5.4)

The simulated discount factors are compared with the discount curve in Figure 5.8 and Figure 5.9. The figures show that
for both models and scenarios the market curves are in the confidence interval of the model.

(a) Single Curve (b) Multi Curve

Figure 5.8: Plots of the market discount factors and the simulated Hull-White discount factors for different t with 10000 paths.

(a) Single Curve (b) Multi Curve

Figure 5.9: Plots of the market discount factors and the simulated BGM discount factors for different t with 10000 paths.

5.4. Validation EPE and MtM of a swap
The goal of this thesis is to compare both models on the Expected positive exposure (EPE) of a swap portfolio. To validate
that they are calculated correctly, and the simulation is properly modelled, one can analytically calculate the Market-to-
market (MTM) and estimate the EPE of a single swap and compare this with the results of the models.

To calculate the MTM of a swap (or swap portfolio), one uses the market curves for the discounting and the correct
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forecasting factors. The MTM of both single, as multi-curve for different maturities and accrual periods are shown in Fig-
ure 5.10 and 5.11. The figures show that the MTM are in the confidence interval and thus validate that the model prices
back to the market.

(a) (b) (c)

Figure 5.10: Plots of the analytic swap MTM and the simulated swap MTM of the Hull-White model and BGM model with 100000 paths.
(a) 5-years payer swap with quarterly payments in a single curve framework. (b) 10-years receiver swap with semi-annual payments in a
multi-curve framework. (c) 20-years payer swap with semi-annual payments in a single curve framework

(a) (b) (c)

Figure 5.11: Plots of the analytic swap MTM and the simulated swap MTM of the Hull-White model and BGM model with 100000 paths.
(a) 5-years payer swap with quarterly payments in a single curve framework. (b) 10-years receiver swap with semi-annual payments in a
multi-curve framework. (c) 20-years receiver swap with semi-annual payments in a single curve framework

To estimate the EPE for the BGM model, an approximation of the swap rate volatility can be used [21]. In the paper, the
swap rate volatility is expressed in terms of forward rate volatilities given the forward rate is log-normally distributed and
the swap rate is approximately log-normally distributed [21]. As this is true for the BGM model, the (displaced) swap rate,
S̃i ,n (t ), can be expressed by the sum of the weighted (displaced) forward rate [21]:

S̃i ,n (t ) =
n∑

k=i
ωk (t )F̃ (t ,Tk ,Tk+1) (5.5)

with

ωk (t ) = τk P (t ,Tk+1)∑n
k=i τk P (t ,Tk+1)

(5.6)

The dynamics of a log-normal forward rate are given by

dF̃ (t ,Tk ,Tk+1) = F̃ (t ,Tk ,Tk+1)σ̃k dW (t ) (5.7)

Using the dynamics of F̃k , it follows that

n∑
k=i

ωk (t0)dF̃k =
n∑

k=i
ωk (t0)F̃ (t ,Tk ,Tk+1)σ̃k dW (t ) (5.8)

Therefore, the dynamics of the (displaced) swap rate can be expressed by

dS̃i ,n (t ) = S̃i ,n (t )σS
i ,n dW (t ) (5.9)
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and thus follows

σS
i ,n ≈

n∑
k=i

F̃ (t ,Tk ,Tk+1)

S̃i ,n (t )
ωk (t0)σ̃k

≈
n∑

k=i

F̃ (t0,Tk ,Tk+1)

S̃i ,n (t0, t )
ωk (t0)σ̃k (5.10)

Now, the EPE is given by

EPE(t0, t ,Tn ) =V swpt(t0, t ,Tn ,Tn )

=V Black
c (0, t , S̃i ,n (t0, t ),K ,σS

i ,n )
N∑

k=q(t )
τk P (t ,Tk ) (5.11)

For the approximation of the Hull-White EPE, Jamshidian’s composition is used [24], which uses the characteristics of a
single-curve environment. The Jamshidian’s decomposition is given in equation (5.12) and explained in more detail in
Appendix C.2.

Vswpt(t0,Ti ,Tn ,Tn ) =
n∑

k=i
ci V zcb

p (t0,Ti ,Tk+1, Xi ,k )

ci = Kτi

cn = 1+Kτi

Xi ,k = exp
(

A(Ti ,Tk+1)−B(Ti ,Tk+1)r∗
)

(5.12)

and where r∗ can be found by

n∑
k=i

ci exp
(

A(Ti ,Tk+1)−B(Ti ,Tk+1)r∗
)= 1 (5.13)

To find the zero-coupon bond put price, equation (4.11) is used. The bond volatility, Var[P (Ti ,Ti+1)|Ft ], is expressed in
terms of Hull-White volatilities and given in equation (3.26). Note that the EPE of a swap is equal to the swaption price.

The EPEs are shown in Figure 5.12, with different maturities and different accrual periods. Since the Hull-White EPE
estimation uses the properties of a single-curve environment, Figure 5.12 only shows single-curve EPEs. Moreover, the
approximation of the Hull-White EPE is only calculated for tenor points. Therefore, it should correspond with the lower
points of the simulated Hull-White EPEs.

(a) (b) (c)

Figure 5.12: Plots of the analytic swap EPE and the simulated swap EPE of the Hull-White model and BGM model with 100000 paths. (a)
a 5-years payer swap with quarterly payments in single curve framework. (b) a 10-years receiver swap with semi-annually payments, in
a single curve framework. (c) a 20-years payer swap with semi-annually payments, in a single curve framework.

The EPE calculations are an approximation and are thus not exact. Therefore, the slight difference between the simulated
EPE and the calculated EPE that appears is, however, negligible for practical purposes.
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Comparison

In this chapter, the Hull-White model and BGM model are compared. First, a convergence analysis, computational com-
plexity and computation time are given of both models. Then the swap EPE of both models for different scenarios is
presented. Finally, a conclusion is given.

6.1. Computation
6.1.1. Convergence
In this section, we check the convergence of both models. Therefore, we measure the mean-squared error, mean absolute
error, maximum absolute error and computation time for a different number of paths of the simulated caplet volatilities.
Figure 6.1 (a) and (b) show the mean-squared error and the absolute error of the Hull-White and BGM model for a varying
number of paths and a fixed number of time steps and number of forwards. Figure 6.1 (c) shows the computation times
per number of paths. Since the error can fluctuate a lot for a small number of paths, the simulation is run 100 times, and
for each path, the mean is taken of the mean-squared error and the computation time.

(a) Mean-squared error (b) Absolute error (c) Computation time

Figure 6.1: Plots of the mean-squared error of the simulated caplet volatility and computation time per number of paths for both the
Hull-White model and BGM model. The volatilities are in %. For 230 time steps and 42 forwards. For each path the mean is taken over
100 simulations. In (a) and (b) is for both models a power function is fitted through the data points.

Note that only the computation time of the Monte Carlo simulation and the calculation of the caplet volatilities is taken
into account (not the calibration). In Figure 6.1, it is shown that the Hull-White model has both a smaller error and a
shorter computation time per number of paths than the BGM model. The computation of both the Hull-White model
and BGM model increase linearly. Furthermore, a characteristic of the Monte Carlo simulation is that it converges with a
factor

√
# paths [26]. Figure 6.1 (a) and (b) the MSE and absolute error with a fitted line through the points, which shows

that they converges approximately by a factor
√

# paths . The power of the fitted line can change a little if another set of
data points is chosen. For the Hull-White, the convergence slows down around the data point of 16000 paths and, for the
BGM model, around the data points of 24000 or 32000 paths. Therefore, we will compare the swap MTM and EPE of both
models for 25000 paths.

6.1.2. Computational complexity
For the computational complexity section, we explain how the computations are structured and give the calibration and
simulation computation time. In each comparison of the computation time, only one input is changed. In such a way,
the impact of each component is taken into account.

33
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Calibration Only the Hull-White model has to calibrate its model volatilities. In this calibration, the Hull-White model
volatility is found from the market caplet volatility for each accrual period. Therefore, a for loop depends on the number
of caplet volatilities and thus a number of forwards. In this for loop, 4 transitions are made; from the caplet volatility to
the caplet price, to the zero-coupon bond price to the zero-coupon bond volatility to the Hull-White model volatility, as
shown in Figure 4.2. Where in each loop on integer level multiplications and additions and subtractions are done, see the
formula mentioned in Figure 4.2. Therefore, the more expiry dates per swap, the longer the calibration will be. Both for
local and global calibration, the computation time for a different number of expiry dates is given in Figure 6.2.

Figure 6.2 shows that the local calibration computation time grows linearly, and the global optimisation increase linearly
until 40 expiry dates, after which it increase considerably faster. The difference between local and global optimisation
becomes more evident the more expiry dates are used. For the local optimisation for each extra expiry date, an extra time
the for loop has to run. Furthermore, for the global optimisation for each additional forward rate, an extra dimension is
added to the optimisation. Note that for global optimisation, local optimisation is used as input.

Simulation In the simulation, the number of paths, the number of time steps and the number of forwards play a role.
For the Hull-White short-rate simulation, a for loop is taken over the number of time steps wherein each loop the simu-
lated short-rate is calculated for each path, by vector and integer multiplication, addition and subtraction. For the BGM
forward rate simulation, a double for loop is used over the time steps and over the forwards, as each forward has its own
dynamics. For each time step, all the forward rates are calculated for each path by vector and integer multiplication, ad-
dition and subtraction.

Figure 6.2(b) shows the CPU time for a different number of time steps for both the simulation of the Hull-White short-rate
and the BGM forward rates. The paths and number of forwards are set to 10000 paths and 42 forwards and 10 steps per
accrual period. In other words, the maximum number of time steps is 420 time steps. Henceforth, for 40 time steps, all
the 42 forward rates are considered, and the simulation stops after 40 time steps.

Furthermore, the effect of the different number of forwards on the computation time of the BGM simulated forwards
is shown in Figure 6.2(c). In these simulations, 10000 paths and 400 time steps. Therefore, the fewer forwards are simu-
lated, the more time steps per accrual period are used.

(a) CPU calibration HW (b) CPU simulation HW and BGM (c) CPU simulation BGM

Figure 6.2: Plots of the CPU time of (a) the calibration of the Hull-White model for different number of expiry dates for local and global
calibration, where the grey line represents the standard deviation. (b) simulation of the Hull-White short-rates and BGM forward rates
for different number of time steps and (c) simulation of BGM forwards for different number of forwards. The CPU times are an average
of 100 runs.

Figure 6.2(b) shows that both the computation time of the Hull-White model and the BGM model increase linearly with
the number of steps. Moreover, the Hull-White simulation has a lower computation time than the BGM model for the
same number of time steps and forwards. Figure 6.2(c) shows that the computation time increases linearly when more
forwards are simulated. Note that only one factor changes in all the computation time analyses, and the other factors are
constant.

Concluding in that for the same number of forward rates, paths and time steps, the Hull-White model has a lower compu-
tation time for the simulation than the BGM model. Besides, the local and global calibration are compared, where from
40 expiry dates, the global calibration increases considerably compared with the local calibration. Note that the given
computation times are implementation and computer-dependent and could be improved or optimised. However, it does
provide a good reflection of how the computation time increases for larger inputs.
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6.2. Comparison
This section will give a comparison of the EPE of different swaps of both models. We will compare different swaps that
are ATM, ITM and OTM, receiver and payer swaps and swaps with different tenor-structures and maturities.

First, we consider what happens when a swap is far ITM. Figure 6.3 shows three swaps all with a 1 month accrual pe-
riod, 2 years maturity and receiving fixed with 100000 paths and 10 steps per accrual period. All three have a different
strike with (a) a par strike of -0.00544, (b) a strike of -0.00644 and (c) a strike of -0.01544.

(a) (b) (c)

Figure 6.3: Plots of 2 year receiver swap with monthly payments with a notional of 100000 and in Figure (a) a par strike of -0.00544, (b) a
strike of -0.00644 and (c) a strike of -0.01544.

Figure 6.3 shows that the further the swap is into the money, the closer the EPE is to the MTM. In Figure 6.3 (c), the EPE is
equal to the MTM (for both models). Remark that according to equation (2.45), this could be explained by the fact that the
maximum of each swap value and zero is equal to the swap value (no paths below zero). Since both models are calibrated
to the market curves, the simulated MTM of the swap should be equal to the analytically calculated MTM, see Section 5.2.

Next, consider the EPE of a payer and receiver swap with a 6-months accrual period and a 20-years maturity, in Figure
6.4.

(a) ATM receiver swap (b) OTM receiver swap (c) OTM receiver swap

(d) ATM payer swap (e) OTM payer swap (f) OTM payer swap

Figure 6.4: Plots of of the MTM and EPE of the Hull-White and BGM model of 20-years receiver/payer swap with semi-annual payments
with a notional of 100000 and in Figure (a) a par strike of 0.00272, (b) a strike of 0.00172 and (c) a strike of -0.00728. (d) a par strike of
0.00272, (e) a strike of 0.00372 and (f) a strike of 0.01272. The simulation have 100000 paths and 10 steps per accrual period.

Figure 6.4 shows the EPE and MTM of the Hull-White and BGM model of the swap for different ATM and OTM strikes.
Where the MTM is plotted to show how far the swap is out of the money. In Figure 6.4 (c) and Figure 6.4 (f), the MTM is
partly outside the shown plot. However, since we want to compare the EPE the exact value of the MTM is not of impor-
tance.
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Moreover, Figure 6.5 shows the swap rate distribution of this 20-years swap with semi-annually payments. The distri-
bution of both the Hull-White and BGM model is shown for 2-years, 5-years and 15-years.

(a) 2 years (b) 5 years (c) 15 years

Figure 6.5: Plots of the swap rate distribution of a 2 year swap with semi-annually payments and a notional of 100000 at time (a) 5 years,
(b) 10 years, (c) 15 years of the Hull-White and BGM model. The vertical lines are the par strike of 0.0027 and the OTM strikes -0.00728,
0.01272

Figure 6.5 shows that the distributions for the BGM model are skewed to the right and start around -0.03 (the value of the
displacement), similarly to a displaced log-normal distribution. The Hull-White distributions are symmetric in the first
number of years, likewise to the normal distribution, and start to become more left skewed, see Figure 6.5 (c). Moreover,
the further the simulation, the wider the distribution becomes, as the paths spread out more. Recall the formula for the
swap rate in equation (2.28). From this formula, one can find that the left tail of the swap rate distribution is essential for
the receiver swap EPE and the right tail for the payer swap EPE. Therefore, for far OTM swaps, the tails are evident in the
EPE. For a far OTM receiver swap, the left tail is of importance. The left tail of the Hull-White distribution is fatter than
that of the BGM model, see Figure 6.5 (b)-(c). Therefore, the EPE of the Hull-White at time 10-years and 15-years is higher
than that of the BGM model, see Figure 6.4 (c). For a far OTM payer swap, the right tail is of importance. In Figure 6.5 (a),
the BGM model has a larger tail than the Hull-White model. Figure 6.4 (f) shows this effect, where at time 5-years, the EPE
of the Hull-White model is lower than that of the BGM model.

Figure 6.6 shows the MTM and EPE of the Hull-White and BGM model of a 3-years swap with quarterly payments.

(a) ATM receiver swap (b) OTM receiver swap (c) OTM receiver swap

(d) ATM payer swap (e) OTM payer swap (f) OTM payer swap

Figure 6.6: Plots of of the MTM and EPE of the Hull-White and BGM model of a 3 year receiver/payer swap with quarterly payments and
a notional of 100000 and in Figure (a) a par strike of -0.0048457, (b) a strike of -0.0058457 and (c) a strike of -0.0068457.(d) a par strike of
-0.0048457, (e) a strike of -0.0038457 and (f) a strike of -0.0028457.

The swap rate distributions of the swaps of Figure 6.6 is given in Figure 6.7 for 0.5-year, 1-year and 2-years.
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(a) 0.5 years (b) 1 years (c) 2 years

Figure 6.7: Plots of the swap rate distribution of a 3 year swap with quarterly payments and a notional of 100000 at time (a) 0.5 years, (b)
1 years, (c) 2 years of the Hull-White and BGM model. The vertical lines are the par strike of -0.0048457 and the OTM strikes -0.0028457,
-0.0068457

The swap-rate distribution in Figure 6.7 shows that the BGM model has fatter-tails than the Hull-White model on both
sides. In Figure 6.6, this results in a lower EPE for the Hull-White model respective to the BGM model.

Furthermore, consider a two year swap with yearly payments. The first payment is fixed at time zero and the second
payment is fixed at 1 year, shown in Figure 6.8.

(a) atm (b) otm (c) far otm

Figure 6.8: Plots of the swap rate distribution of a 3 year swap with quarterly payments and a notional of 100000 at time (a) 0.5 years, (b)
1 years, (c) 2 years of the Hull-White and BGM model. The vertical lines are the par strike of -0.0048457 and the OTM strikes -0.0028457,
-0.0068457

The swap rate distributions of this swap for different times are shown in Figure 6.9.

(a) 0.5 years (b) 1 years (c) 2 years

Figure 6.9: Plots of the swap rate distribution of a 2 years swap with annual payments (a) atm, (b) 1 years, (c) 2 years of the Hull-White
and BGM model. The vertical lines are the par strike of -0.0048457 and the OTM strikes -0.0028457, -0.0068457

Figure 6.8 and Figure 6.9 show that the EPE and the swap rate distributions are equal for the Hull-White and BGM model.
Remark that both models are calibrated to caplets and that the EPE of a swap with a single payment is equal to the caplet
value. Indeed, as for a single payment, the swap rate is equal to the forward; see equation (2.28). Henceforth, the swaption
value is equal to the caplet value, equation (2.33) and (2.39). Moreover, this is again confirmed if we inspect the analytic
approximation of the EPE for both models. The analytic approximation of the swap EPE in the Hull-White model is given
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in equation (5.12). For a single payment, this becomes

Vswpt(t0,Ti ,Ti+1,Ti+1) = (1+Kτi )V zcb
p (t0,Ti ,Ti+1, Xi ,i+1) (6.1)

Xi ,i+1 = 1

1+Kτi
(6.2)

which is equal to the caplet price, equation (4.10). Moreover, the analytic approximation of the swap EPE in the BGM
model is given in equation (5.5). For a single payment the swap rate volatility is equal to the forward rate volatility, and
thus the caplet volatility. Therefore, by equation (5.11) the swaption is equal to the caplet price.

In Figure 6.10, a swap portefolio with 10 swaps is considered, where the swaps have different maturities and payment
structures.

(a) MtM (b) EPE (c) Netted EPE

Figure 6.10: Plots of swap portfolio with 10 different swaps. Where swap 1-6 are receiver swaps and swap 7-10 are payer swaps. Swap
4,5,9 are quarterly paying swaps and the rest are semi-annually paying swaps. Swap 1,5,6 have a notional of 200000, swap 3,7,9 of 100000
and swap 2,4,8,10 of 50000. (a) the MtM (solid) of the individual swaps for the Hull-White and BGM (dashed) model. (b) the EPE (solid)
of the individual swaps for the Hull-White and BGM (dashed) model. (c) the netted EPE of the swap portfolio of both models.

Figure 6.10 (a) shows that indeed the MTM of the swaps are the same for both models. Figure 6.10 (b) and (c) show the
EPE of the individual swaps and the netted EPE of the whole portfolio. The figure shows that the EPE of a portfolio can be
significantly different for both models.

Concluding with that Hull-White model and the BGM model give a different EPE in most situations. Only for a single
payment swap and for a far ITM swaps, both models give the same EPE. Figure 6.5, Figure 6.7 and Figure 6.9 show the dif-
ference for both models in the swap rate distributions, where the Hull-White model is more centred than the BGM model.
Moreover, the BGM model has larger right skewness, similar to that of a log-normal distribution. The more extreme cases
occur in the swap rate distribution, the higher a far OTM swap EPE is. Therefore, the tails of swap rate distribution should
correspond with market expectations. A tail that is not fat enough might underprice far OTM swap EPEs and the other
way around. The key takeaway is that there is a model risk when choosing between the Hull-White model and the BGM
model, as they give different results for the EPE; definition 2.3.5. This model risk could be incorporate in for example the
model risk AVA, defined in definition 2.3.6.



7
Conclusion

Since the appearance of negative interest rates, the use of log-normal models has come under re-considerations. Hence-
forth, the disadvantage of normally distributed interest rate models becomes their advantage; the possibility of negative
rates. Furthermore, since the financial crisis in 2008, increased importance around credit risk has risen, which includes
the credit validation adjustment (CVA) and expected positive exposure (EPE).

Therefore, the aim of this thesis was to give a comparison of the Hull-White and BGM model on the EPE of a swap
portfolio. Both models were chosen to be multi-curve, single-currency and calibrated to caplets. The mean-reversion
parameter was left out of the Hull-White model to compare both models on a similar level. For both models, a Monte
Carlo simulation has been carried out, from where the EPE of the swaps is calculated. The models will be compared on
the convergence, computation time and EPE.

The Hull-White model is a model that simulates the short-rate with a normal distribution. Since it has a normal dis-
tribution, it can incorporate negative rates. Furthermore, one of the advantages of the Hull-White model is that it has a
closed-form solution for the zero-coupon bond, given in equation (3.14). For the calibration of the Hull-White model to
caplet volatilities, multiple steps are needed. First, with the market caplet volatility, the caplet price is calculated. After
that, the zero-coupon bond put prices are found. Next, the zero-coupon bond put volatility is determined. Last, the im-
plied market zero-coupon bond variance is set equal to that of the analytic Hull-White zero-coupon variance, with which
the Hull-White model volatilities are found; see Figure 4.2. For the calibration, local optimisation is introduced with
bootstrapping. In the local optimisation in some situations, the optimal Hull-White variance would be negative variance,
which is not possible. Therefore, two methods are proposed to solve this problem; one is a global optimisation on the
Hull-White volatilities, which minimises the mean-squared error. Another is by smoothing the discounting/forecasting
curve, which is used as input for the calibration. Moreover, Monte Carlo simulation is used to simulate the Hull-White
short-rate. We suggest using an analytical integration instead of Euler’s discretisation method, such that the simulation is
not dependent on the step size of the discretisation.

Whereas the BGM model is a model which simulates the forward rates, where each forward rate has its own dynamics, and
all follow a log-normal distribution. Since a log-normal distribution does not have negative random variables and thus
negative forward rates can not be incorporated, a displacement is used. For the BGM model the market caplet volatilities
can directly be used model volatilities, where each forward is driven by a corresponding constant caplet volatility. In the
Monte Carlo simulation of the BGM forward, Eulers discretisation is used, since it is not possible to find an analytic solu-
tion for the integration. The discount factors of the BGM simulation are found by multiplication using the forward rates
and an interpolation technique; described in equation (3.44).

Furthermore, we introduce a way to incorporate multiple discounting/forecasting curves by using the spreads between
the curves. For the BGM model, the same technique can be used when there are in a swap portfolio swaps with forwards
with different payments structures. For example, if a 6-months forward is simulated, first, the discount factors are found
and then these discount factors are multiplied with the spread to find the 3-months forecast factors. Last, the 3-months
forward can be found with these forecast factors and the forward rate definition.

To validate that the models are correctly implemented the models are tested to price back the caplet volatilities, the
discounting curve, the MTM of single swap and the EPE of a single swap. For the EPE an approximation is made for both
models. For the BGM model the approximation is made using the fact that the swap rate can be given by a weighted sum
of forward rates, which is used to find the swap rate volatility and therefore the swaption price (or EPE); equation (5.11).
For the Hull-White model the approximation of the EPE is made by Jamshidian’s decomposition, which states that the
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swaption price can be given by a weighted sum of zero-coupon bond puts prices. Where the strikes of the zero-coupon
bond put price can be determined using the Hull-White closed form solution of the zero-coupon bond; equation (5.12).

To compare both models, we inspect the convergence, the computation time and the EPE. We found that the Hull-White
model both has a faster convergence as a shorter computation time for different inputs than the BGM model. Note that
this is implementation dependent. Moreover, the EPE of both models were compared, where for a single payment swap
and for far ITM swap EPEs, both models give the same EPE. The EPE of a single payment swap is equal to the swaption
value of the single payment swap, which is the caplet value. Since both models are calibrated to the same caplets the EPE
is the same. The EPE of far ITM swaps is the same since these become equal to the MTM, which are the same as both
models are calibrated tot the market curves. For the other compared swaps, the EPEs of both models differ and can be
explained by the distribution of the swap rate. The swap rate distribution of the BGM model has fatter tails and more
right-skewed than the Hull-White model. The left tail of the swap rate distribution tells us something about the receiver
swaps and the right tail of the distribution of the payer swaps. Especially for far OTM swaps, the tails are of great im-
portance. If a tail of the swap rate distribution is fatter than it should be according to the market, the EPE is overpriced,
and if it is less fat, it might be underpriced. Since the interest rate is not limited by zero or any other number, the model
should incorporate the possibility of negative rates. In the BGM model, this could be done by a displacement. However,
this displacement still limits the left tail of the distribution of the forward rates and thus the swap rates distribution.

We limited the research question to a single currency model and chose to calibrate to caplets. Therefore, we would recom-
mend for further research to look into a multi-currency model and the possibility of calibrating to swaptions. In particular,
the calibration to swaptions might be more appealing for a single swap or a small swap portfolio, as the swaption value
gives the EPE of the underlying swap. Furthermore, one could research a more advanced multi-curve framework. An
option could be to have a framework where each discounting or forecasting curve is simulated with its own dynamics
and a mutual correlation. A disadvantage of this framework would be that it has a higher computation time.

In conclusion, the key takeaway found in this thesis is that there is a difference between the EPE of the Hull-White model
and the BGM model. This difference causes that there is model risk in choosing between both models. This model risk
could be incorporated in, for example, the model risk AVA, defined in definition 2.3.6. If we should recommend which
model is best to use, our personal preference will be the Hull-White model because of the lower bound of the BGM model.
However, it is difficult to quantify what the "best" EPE is, and the most important message is that one should not ignore
the risks of a specific model choice.
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A
Appendix A: Hull-White parameter theta

For theta to fit the initial term structure, we use the closed form of the zero-coupon bond under the Hull-White model
and the fact that the zero-coupon bond of the market is equal to the zero coupon bond of the model:

e
−∫ t

t0
f r (t0,s)ds = P M (t0, t ) = P HW (t0, t ) = e−

∫ t
0 r HW (s)ds (A.1)

with f r (t0, t ) the instantaneous forward rate and r (t ) the short-rate. It follows that

θ(t ) = ∂ f r (t0, t )
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 (A.2)

A.1. Theta parameter with mean-reversion
The integrated short-rate variance is given by
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[∫ t
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r (s)ds
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]
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Using Leibniz integration rule, ∂
∂t

∫ t
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a
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Again, differentiating:
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Therefore, it follows with substitution in equation (A.2) that theta is given by

θ(t ) = ∂ f r (t0, t )

∂t
+α f r (t0, t )+

∫ t

t0

σ2
hw (s)e−2α(t−s)ds (A.6)
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A.2. Theta parameter with zero mean-reversion
The integrated short-rate variance is given by
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Again, differentiating:
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Therefore, it follows that theta is given by

θ(t ) = ∂ f r (0, t )
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Appendix B: Simulation

B.1. Simulation Hull-White model with mean-reversion

B.1.1. Interest-rate simulation
The simulation of the interest-rate, r (t ), for the Hull-White model is described in section 4.1.1. In this section is described
how y(t ) = r (t )eαt can be simulated using the integration of the drift term and the diffusion term and where each step is
given by

y(t +∆) = y(t )+
∫ t+∆

t
θ(s)eαs ds +

√∫ t+∆

t
σ2(s)e2αs ds ·Z (B.1)

Now, the drift term,
∫ t+∆

t θ(s)eαs ds, is a deterministic function and can be calculated analytically. The analytic solution
for each time step is given by
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where, in the second line, partial integration is used. Next, we use the fact that σ(s) is constant on [t , t +∆). However,
if only the last integration point is changed, results would not change. Thus, we can assume it constant on the closed
interval [t , t +∆] and equal to σ(t ). Therefore, equation (B.2) becomes:
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B.1.2. Money-market account simulation
Next, the money-market account, defined in equation (2.21), under the Hull-White model can be found by using equa-
tions (3.12),(3.16),(3.15) the closed form of the money market account is given by
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∫ t

t0

σhw (s)B(s, t )dW (s)

)
(B.4)

Therefore, in a similar way as the interest rate, r (t ), the logarithm of the money-market account is simulated simultane-
ously by

log(M(t +∆)) = log(M(t ))+B(t , t +∆)
(
θ(t )∆+σ(t )

p
∆Z

)
, (B.5)

where log(M(t0)) = r (t0)B(t0, t ) depends on t . Therefore, log(M(t0)) is set to 0 and r (t0)B(t0, t ) can be added after the
discretisation

Furthermore, for the logarithm of the money-market account, equation (B.4)), a similar integration for each step is done
as in the case of the interest-rate, r (t ). Equation (B.4)) is rewritten to:

log(M(t )) =−r (t0)B(t0, t )−
∫ t

t0

θ(s)B(s, t )ds −
∫ t

t0

σ(s)B(s, t )dW (s)

= r (t0)

α
(1−e−α(t−t0))+ 1

α

∫ t

t0

θ(s)(1−e−α(t−s))ds + 1

α

∫ t

t0

σ(s)(1−e−α(t−s))dW (s)

= r (t0)

α
(1−e−α(t−t0))+ 1

α

∫ t

t0

θ(s)ds − 1

α

∫ t

t0

θ(s)e−α(t−s)ds + 1

α

∫ t

t0

σ(s)dW (s)− 1

α

∫ t

t0

σ(s)e−α(t−s)dW (s)

= 1

α

(
r (t0)+

∫ t

t0

θ(s)ds +
∫ t

t0

σ(s)dW (s)− r (t )

)
(B.6)

Where 1
α

∫ t
t0
θ(s)ds can be determined without Monte Carlo simulation. For

∫ t
t0
σ(s)dW (s) the piecewise continuity of the

σ(t ) is used and each step of the integral can be calculated by

∫ t+∆

t
σ(s)dW (s) =σ(t )

p
t +∆− t Z (B.7)

B.1.3. Zero-coupon bond simulation
Remember, in equation (3.11) the affine form of the zero-coupon bond under the Hull-White model was given by

P (t ,T ) = e A(t ,T )+B(t ,T )r (t ), (B.8)

with

A(t ,T ) =
∫ T

t
θ(s)B(s,T )ds + 1

2

∫ T

t
σ(s)2B(s,T )2ds (B.9)

B(t ,T ) =− 1

α

(
1−e−α(T−t )

)
(B.10)

Now, A(t ,T ) can be rewritten as:

A(t ,T ) =
∫ T

t
θ(s)B(s,T )ds + 1

2

∫ T

t
σ(s)2B(s,T )2ds (B.11)

=− 1

α

(∫ T

t
θ(s)ds −e−αT

∫ T

t
θ(s)eαs ds

)
+ 1

2α2

(∫ T

t
σ2(s)ds −2e−αT

∫ T

t
σ2(s)eαs ds +e−2αT

∫ T

t
σ2(s)e2αs ds

)

B.2. Simulation Hull-White model zero mean-reversion
In this subsection, the money-market account and zero-coupon bond simulation with a zero mean-reversion parameter
are discussed.
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B.2.1. Money-market account simulation
Next, the money-market account, defined in equation (2.21), under the Hull-White model can be found by using equa-
tions (3.12),(3.24),(3.25) the closed form of the money market account is given by

M(t ) = exp

(∫ t

t0

r (s)ds

)
= exp

(
r (t0)(t − t0)+ t

∫ T

t0

θ(s)ds −
∫ T

t0

θ(s)sds +T
∫ T

t0

σ(s)dW (s)−
∫ T

t0

σ(s)sdW (s)

)
= exp

(
−r (t0)t0 −

∫ T

t0

θ(s)sds −
∫ T

t0

σ(s)sdW (s)+ tr (t )

)
(B.12)

B.2.2. Zero-coupon bond simulation
Remember, in equation (3.11) the affine form of the zero-coupon bond under the Hull-White model was given by

P (t ,T ) = e A(t ,T )−B(t ,T )r (t ), (B.13)

with

A(t ,T ) =
∫ T

t
θ(s)B(s,T )ds + 1

2

∫ T

t
σ(s)2B(s,T )2ds (B.14)

B(t ,T ) =−(T − t ) (B.15)

Now, A(t ,T ) can be rewritten as:

A(t ,T ) =
∫ T

t
θ(s)B(s,T )ds + 1

2

∫ T

t
σ(s)2B(s,T )2ds (B.16)

=−
∫ T

t
θ(s)(T − s)ds + 1

2

∫ T

t
σ(s)2(T − s)2ds

=−T
∫ T

t
θ(s)ds +

∫ T

t
θ(s)sds + 1

2
T 2

∫ T

t
σ(s)2ds −T

∫ T

t
σ(s)2sds + 1

2

∫ T

t
σ(s)2s2ds (B.17)
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Appendix C: Calibration Hull-White model

C.1. Hull-white model calibration to caplets
This section is a step wise description of the Calibration of the Hull-White model to caplets, which is given in Section 4.2.1.

The Hull-White model calibration uses the fact that a caplet payoff can be written as a put on a zero-coupon bond. More
precisely, for expiry time Ti and τi = Ti+1 −Ti (adjusted to the day count convention), the transformation is given by

V
cpl

i (t ,Ti ,Ti+1) =N M(t )E

[
1

M(Ti+1)
τi max(F (Ti ,Ti ,Ti+1)−K ,0)

∣∣∣∣Ft

]
=N M(t )E

[
1

M(Ti )
E

[
M(Ti )

M(Ti+1)
τi max(F (Ti ,Ti ,Ti+1)−K ,0)

∣∣∣∣FTi

]∣∣∣∣Ft

]
=N M(t )E

[
1

M(Ti )
ETi

[
P (Ti ,Ti+1)τi max(F (Ti ,Ti ,Ti+1)−K ,0)

∣∣FTi

]∣∣∣∣Ft

]
=N M(t )E

[
1

M(Ti )
P (Ti ,Ti+1)τi max

(
1

τi
(

P (Ti ,Ti )

P (Ti ,Ti+1)
−1)−K ,0

)∣∣∣∣Ft

]
=N M(t )E

[
1

M(Ti )
max

(
1−P (Ti ,Ti+1)(1+τi K ),0

)∣∣∣∣Ft

]
=N (1+τi K )M(t )E

[
1

M(Ti )
max

(
1

1+τi K
−P (Ti ,Ti+1),0

)∣∣∣∣Ft

]
=N (1+τi K )P (t ,Ti )ETi

[
max

(
1

1+τi K
−P (Ti ,Ti+1),0

)∣∣∣∣Ft

]
(C.1)

Where in the third line a change of measure from the risk neutral measure Q to the Ti -forward measure QTi is used.

It follows that

V CPL
i = (1+τi K )V zcb

put (t ,Ti ,Ti+1,
1

1+τi K
) (C.2)

V zcb
put (t ,Ti ,Ti+1, X ) = N P (t ,Ti )

(
XΦ(−dzcb− )−P (t ,Ti ,Ti+1)Φ(−dzcb+ )

)
(C.3)

dzcb± = ln( P (t ,Ti ,Ti+1)
X )± 1

2 Var[P (Ti ,Ti+1)|Ft ]√
Var[P (Ti ,Ti+1)|Ft ]

(C.4)

Now, to find the volatilities for the Hull-White model, first, the caplet price is calculated, using the market-implied volatil-
ities. This caplet price is used to find the variance of the zero-coupon bond in equation (C.4). Hereafter, to find the
Hull-White volatilities, σi , each market zero-coupon bond variance is set equal to the closed form of this zero-coupon
bond variance under the Hull-White model, equation (3.19).

49
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Therefore, the objective function is stated as:

Var[P (t0,Ti ,Ti+1,α,σi )] =σzcb
mkt (t0,Ti ,Ti+1,K )2(Ti − t0)

Var
[
r (Ti )|Ft0

]
B(Ti ,Ti+1)2 =σzcb

mkt (t0,Ti ,Ti+1,K )2(Ti − t0)

B(Ti ,Ti+1)2
∫ Ti

t0

σ2(s)e−2α(Ti−s)ds =σzcb
mkt (t0,Ti ,Ti+1,K )2(Ti − t0)

i∑
k=1

σ2
k

2α

(
e−2α(Ti−Tk ) −e−2α(Ti−Tk−1)

)
=
σzcb

mkt (t0,Ti ,Ti+1,K )2(Ti − t0)

B(Ti ,Ti+1)2
(C.5)

In equation (C.5), the summation is a result of the fact that for a given period σ(t ) is piecewise constant. Moreover, the
summation can be rewritten as

σ2
i

2α

(
1−e−2α(Ti−Ti−1)

)
+

i−1∑
k=1

σ2
k

2α

(
e−2α(Ti−Tk ) −e−2α(Ti−Tk−1)

)
. (C.6)

From which Hull-White volatilities, σ2
i , can be found and are given by

σ2
i =

σzcb
mkt (t0,Ti ,Ti+1,K )2(Ti−t0)

B(Ti ,Ti+1)2 −∑i−1
k=1

σ2
k

2α

(
e−2α(Ti−Tk ) −e−2α(Ti−Tk−1)

)
1

2α

(
1−e−2α(Ti−Ti−1)

) (C.7)

Global optimisation:

min
n∑

i=1

[
σzcb

mkt (t0,Ti ,Ti+1,K )2(Ti − t0)−B(Ti ,Ti+1)2
i∑

k=1

σhw (Tk−1,Tk )2

2α

(
e−2α(Ti−Tk ) −e−2α(Ti−Tk−1)

)]2

(C.8)

Zero mean-reversion Moreover, the calibration of the Hull-White volatilities, given in equation (4.14), for zero-mean
reversion can be found using the zero-coupon bond variance in equation (3.26), which gives

Var[r (S)|Ft ] (T −S)2 =σzcb
mkt (t0,Ti ,Ti+1,K )2(Ti − t0) (C.9)

Henceforth, the Hull-White volatility becomes

σ2
i =

σzcb
mkt (t0,Ti ,Ti+1,K )2(Ti−t0)

(Ti+1−Ti )2 −∑i−1
k=1σ

2
k (Tk −Tk−1)

Ti −Ti−1
(C.10)

C.2. Jamshidian decomposition
The Jamshidian decomposition given in equation (C.19-C.20) is derived as follows:

V swpt(t0,Ti ,Tn ) = P (t0,Ti )ETi
[

max
(
V swap(Ti ,Ti ,Tn ),0

)∣∣F (t0)
]

= N P (t0,Ti )ETi

[
max

(
P (Ti ,Ti )−P (Ti ,Tn+1)−K

n∑
k=i

τk P (Ti ,Tk+1),0

)∣∣∣∣∣F (t0)

]

= N P (t0,Ti )ETi

[
max

(
1−

n∑
k=i

ck P (Ti ,Tk+1),0

)∣∣∣∣∣F (t0)

]

= N P (t0,Ti )ETi

[
max

(
1−

n∑
k=i

ck e A(Ti ,Tk+1)−B(Ti ,Tk+1)r (Ti ),0

)∣∣∣∣∣F (t0)

]
(C.11)

with ck = Kτk for k = i , . . . ,n −1 and cn = 1+Kτn . Hereafter, Jamshidian’s trick is used. First, consider the monotonically
increasing function [24].

A = max

(
B −∑

k
φk (r ),0

)
(C.12)

Then find a value r∗ such that

B =∑
k
φk (r∗) (C.13)
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Next we find by substituting

A = max

(∑
k
φk (r∗)−∑

k
φk (r ),0

)

= max

(∑
k

(
φk (r∗)−φk (r )

)
,0

)
=∑

k

(
φk (r∗)−φk (r )

)
1r>r∗

=∑
k

max
(
φk (r∗)−φk (r ),0

)
(C.14)

Finally, applying Jamshidian’s trick

max

(
1−

n∑
k=i

e A(Ti ,Tk+1)−B(Ti ,Tk+1)r (Ti ),0

)
=∑

k
max

(
e A(Ti ,Tk+1)−B(Ti ,Tk+1)r∗ −e A(Ti ,Tk+1)−B(Ti ,Tk+1)r (Ti ),0

)
(C.15)

and r∗ can be found by

n∑
k=i

ck e A(Ti ,Tk+1)−B(Ti ,Tk+1)r∗ = 1 (C.16)

Now

V swpt(t0) = N P (t0,Ti )
n∑

k=i
ckE

Ti
[

max
(
e A(Ti ,Tk+1)−B(Ti ,Tk+1)r∗ −e A(Ti ,Tk+1)−B(Ti ,Tk+1)r (Ti ),0

)
|F (t0)

]
(C.17)

Concluding

V swpt(t0,Ti ,Tn ) = N P (t0,Ti )
n∑

k=i
ckV zcb

p (t0,Ti ,Tk+1, Xi ,k ) (C.18)

ck = Kτk

cn = 1+Kτn

Xi ,k = e A(Ti ,Tk+1)−B(Ti ,Tk+1)r∗

C.3. Hull-White model calibration to swaptions
Again, the mean-reversion parameter,α, is assumed to be given as an input, and the volatilities will be piecewise constant
as described in Figure 4.1. The swaptions used for calibration have the following properties:

1. The used swaptions have maturity dates Ti ∈ {T1, . . . ,Tn }

2. The maturity of the underlying swap, Tn , of the swaptions are determined depending on the products in the port-
folio

3. Strike price K is ATM

The formulations given in [15] for the calibration of the Hull-White model to swaptions will be followed. A (payer) swap-
tion with strike K , swap fixing dates T0, . . . ,Tn can be rewritten to a weighted sum of zero-coupon bond put options by
Jamshidian’s decomposition [24] and is given by

Vswpt(t0,Ti ,Tn ,Tn ) =
n∑

k=i
ckV zcb

p (t0,Ti ,Tk+1, Xi ,k ) (C.19)

ck = Kτk

cn = 1+Kτn

Xi ,k = exp
(

A(Ti ,Tk+1)−B(Ti Tk+1)r∗
)

and where r∗ can be found by

n∑
k=i

ci exp
(

A(Ti ,Tk+1)−B(Ti ,Tk+1)r∗
)= 1 (C.20)

For more details on the Jamshidian’s decomposition we refer to appendix C.2.

Moreover, this sum is approximated and the variance of a swap rate, Si ,m,n (t ), can be rewritten to [15]

Var
[
Si ,n,n (t0)

]= (
P (t0,Ti )

P (t0,Ti )−P (t0,Tn )

)2
Var

[
P (t0,Ti ,Ti+1,α,σhw )

]
(C.21)
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Note, that the swaption maturity is given by Ti and the swap tenor, swap length, is given by Tn . Where the Ti can be used
to bootstrap the Hull-White volatilities and Tn is to be chosen. The swap tenors are often chosen with the co-terminal
property, where all swap tenors are chosen such that all swaps end on the same date. The co-terminal depends on the
portfolio that needs to be simulated.



D
Appendix D: Multi-curve framework

This appendix shows a multi-curve setting for equation (4.9) and how to rewrite this to only a forecasting curve. In the fol-

lowing equations, a change to the T
f j

i -forward measure is used with P f j (0, t ) as numeraire with f j ∈ {1M ,3M ,6M ,12M }:

V
cpl

mkt (t ,Ti ,Ti+1) =Ni M(t )E

[
1

M(Ti+1)
τi max(F (Ti ,Ti ,Ti+1)−K ,0)

∣∣∣∣Ft

]
=Ni M(t )E
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1

M(Ti )
E

[
M(Ti )

M(Ti+1)
τi max(F (Ti ,Ti ,Ti+1)−K ,0)

∣∣∣∣FTi

]∣∣∣∣Ft

]
=Ni M(t )E

[
1

M(Ti )
ET

f j
i

[
P f j (Ti ,Ti+1)τi max(F (Ti ,Ti ,Ti+1)−K ,0)

∣∣∣FTi

]∣∣∣∣Ft

]
=Ni M(t )E

[
1

M(Ti )
P f j (Ti ,Ti+1)τi max

(
1

τi
(

P f j (Ti ,Ti )

P f j (Ti ,Ti+1)
−1)−K ,0

)∣∣∣∣∣Ft

]

=Ni (1+τi K )M(t )E

[
1

M(Ti )
max

(
1

1+τi K
−P f j (Ti ,Ti+1),0

)∣∣∣∣Ft

]
=Ni (1+τi K )P f j (t ,Ti )ET

f j
i

[
max

(
1

1+τi K
−P f j (Ti ,Ti+1),0

)∣∣∣∣Ft

]
(D.1)
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